Sample records for cruzi leishmania braziliensis

  1. The TryPIKinome of five human pathogenic trypanosomatids: Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum--new tools for designing specific inhibitors.

    PubMed

    Bahia, Diana; Oliveira, Luciana Márcia; Lima, Fabio Mitsuo; Oliveira, Priscila; Silveira, José Franco da; Mortara, Renato Arruda; Ruiz, Jerônimo Conceição

    2009-12-18

    Phosphatidylinositol (PI) kinases are at the heart of one of the major pathways of intracellular signal transduction. Herein, we present the first report on a survey made by similarity searches against the five human pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, Leishmania major, Leishmania braziliensis and Leishmania infantum genomes available to date for phosphatidylinositol- and related-kinases (TryPIKs). In addition to generating a panel called "The TryPIKinome", we propose a model of signaling pathways for these TryPIKs. The involvement of TryPIKs in fundamental pathways, such as intracellular signal transduction and host invasion processes, makes the study of TryPIKs an important area for further inquiry. New subtype-specific inhibitors are expected to work on individual members of the PIK family and, therefore, can presumably neutralize trypanosomatid invasion processes.

  2. Exposure to mixed asymptomatic infections with Trypanosoma cruzi, Leishmania braziliensis and Leishmania chagasi in the human population of the greater Amazon.

    PubMed

    Mendes, Daniella G; Lauria-Pires, Liana; Nitz, Nadjar; Lozzi, Silene P; Nascimento, Rubens J; Monteiro, Pedro S; Rebelo, Manuel M; Rosa, Ana de Cássia; Santana, Jaime M; Teixeira, Antonio R L

    2007-05-01

    Lack of conservation of the Amazon tropical rainforest has imposed severe threats to its human population living in newly settled villages, resulting in outbreaks of some infectious diseases. We conducted a seroepidemiological survey of 1100 inhabitants of 15 villages of Paço do Lumiar County, Brazil. Thirty-five (3%) individuals had been exposed to Trypanosoma cruzi (Tc), 41 (4%) to Leishmania braziliensis (Lb) and 50 (4.5%) to Leishmania chagasi (Lc) infections. Also, 35 cases had antibodies that were cross-reactive against the heterologous kinetoplastid antigens. Amongst these, the Western blot assays revealed that 11 (1%) had Tc and Lb, that seven (0.6%) had Lc and Tc, and that 17 (1.6%) had Lb and Lc infections. All of these cases of exposures to mixed infections with Leishmania sp, and eight of 11 cases of Tc and Lb were confirmed by specific PCR assays and Southern hybridizations. Two cases had triple infections. We consider these asymptomatic cases showing phenotype and genotype markers consistent with mixed infections by two or more kinetoplastid flagellates a high risk factor for association with Psychodidae and Triatominae vectors blood feeding and transmitting these protozoa infections. This is the first publication showing human exposure to mixed asymptomatic kinetoplastid infections in the Amazon.

  3. Extreme inbreeding in Leishmania braziliensis

    PubMed Central

    Rougeron, Virginie; De Meeûs, Thierry; Hide, Mallorie; Waleckx, Etienne; Bermudez, Herman; Arevalo, Jorge; Llanos-Cuentas, Alejandro; Dujardin, Jean-Claude; De Doncker, Simone; Le Ray, Dominique; Ayala, Francisco J.; Bañuls, Anne-Laure

    2009-01-01

    Leishmania species of the subgenus Viannia and especially Leishmania braziliensis are responsible for a large proportion of New World leishmaniasis cases. The reproductive mode of Leishmania species has often been assumed to be predominantly clonal, but remains unsettled. We have investigated the genetic polymorphism at 12 microsatellite loci on 124 human strains of Leishmania braziliensis from 2 countries, Peru and Bolivia. There is substantial genetic diversity, with an average of 12.4 ± 4.4 alleles per locus. There is linkage disequilibrium at a genome-wide scale, as well as a substantial heterozygote deficit (more than 50% the expected value from Hardy−Weinberg equilibrium), which indicates high levels of inbreeding. These observations are inconsistent with a strictly clonal model of reproduction, which implies excess heterozygosity. Moreover, there is large genetic heterogeneity between populations within countries (Wahlund effect), which evinces a strong population structure at a microgeographic scale. Our findings are compatible with the existence of population foci at a microgeographic scale, where clonality alternates with sexuality of an endogamic nature, with possible occasional recombination events between individuals of different genotypes. These findings provide key clues on the ecology and transmission patterns of Leishmania parasites. PMID:19497885

  4. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    PubMed

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  5. Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis.

    PubMed

    Falcão, Sarah A C; Weinkopff, Tiffany; Hurrell, Benjamin P; Celes, Fabiana S; Curvelo, Rebecca P; Prates, Deboraci B; Barral, Aldina; Borges, Valeria M; Tacchini-Cottier, Fabienne; de Oliveira, Camila I

    2015-03-01

    Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.

  6. Amastin Knockdown in Leishmania braziliensis Affects Parasite-Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes.

    PubMed

    de Paiva, Rita Marcia Cardoso; Grazielle-Silva, Viviane; Cardoso, Mariana Santos; Nakagaki, Brenda Naemi; Mendonça-Neto, Rondon Pessoa; Canavaci, Adriana Monte Cassiano; Souza Melo, Normanda; Martinelli, Patrícia Massara; Fernandes, Ana Paula; daRocha, Wanderson Duarte; Teixeira, Santuza M R

    2015-12-01

    Leishmaniasis, a human parasitic disease with manifestations ranging from cutaneous ulcerations to fatal visceral infection, is caused by several Leishmania species. These protozoan parasites replicate as extracellular, flagellated promastigotes in the gut of a sandfly vector and as amastigotes inside the parasitophorous vacuole of vertebrate host macrophages. Amastins are surface glycoproteins encoded by large gene families present in the genomes of several trypanosomatids and highly expressed in the intracellular amastigote stages of Trypanosoma cruzi and Leishmania spp. Here, we showed that the genome of L. braziliensis contains 52 amastin genes belonging to all four previously described amastin subfamilies and that the expression of members of all subfamilies is upregulated in L. braziliensis amastigotes. Although primary sequence alignments showed no homology to any known protein sequence, homology searches based on secondary structure predictions indicate that amastins are related to claudins, a group of proteins that are components of eukaryotic tight junction complexes. By knocking-down the expression of δ-amastins in L. braziliensis, their essential role during infection became evident. δ-amastin knockdown parasites showed impaired growth after in vitro infection of mouse macrophages and completely failed to produce infection when inoculated in BALB/c mice, an attenuated phenotype that was reverted by the re-expression of an RNAi-resistant amastin gene. Further highlighting their essential role in host-parasite interactions, electron microscopy analyses of macrophages infected with amastin knockdown parasites showed significant alterations in the tight contact that is normally observed between the surface of wild type amastigotes and the membrane of the parasitophorous vacuole.

  7. First evidence of autochthonous cases of Leishmania (Leishmania) infantum in horse (Equus caballus) in the Americas and mixed infection of Leishmania infantum and Leishmania (Viannia) braziliensis.

    PubMed

    Soares, Isabel R; Silva, Soraia O; Moreira, Filipe Moraghi; Prado, Luan Gavião; Fantini, Priscila; Maranhão, Renata de Pino Albuquerque; da Silva Filho, José Monteiro; Melo, Maria Norma; Palhares, Maristela S

    2013-11-08

    This study reports the first evidence of infection by Leishmania infantum in Equus caballus in Americas and the first mixed infection of L. infantum/Leishmania braziliensis on this mammalian species in the world. The diagnoses was based on presence of parasites in lesions and bone marrow aspirates, their identification by using specific primers for L. infantum and L. braziliensis complexes and also serological methods IFAT and ELISA. The analysis of the PCR products suggested mixed infection in three animals. Further studies involving equine leishmaniasis are carrying out in order to clarify the dynamic of Leishmania sp. in this mammalian specie and their role in the transmission of those parasites in urban endemic area of Belo Horizonte, Minas Gerais State, Brazil. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Detection of different Leishmania spp. and Trypanosoma cruzi antibodies in cats from the Yucatan Peninsula (Mexico) using an iron superoxide dismutase excreted as antigen.

    PubMed

    Longoni, Silvia S; López-Cespedes, Angeles; Sánchez-Moreno, Manuel; Bolio-Gonzalez, Manuel E; Sauri-Arceo, Carlos H; Rodríguez-Vivas, Roger I; Marín, Clotilde

    2012-09-01

    Although human leishmaniasis has been reported in 20 states in Mexico, no case of leishmaniasis has been reported in cats to date. In the Yucatan Peninsula, it has been found that dogs may act as reservoirs for at least three Leishmania species (Leishmania mexicana, Leishmania braziliensis, and Leishmania panamensis). In this study we identified specific antibodies against these three Leishmania spp. and Trypanosoma cruzi in the sera from 95 cats from two States on the Yucatan Peninsula, namely Quintana Roo and Yucatan, by ELISA and Western blot techniques using whole extract and an iron superoxide dismutase excreted by the parasites as antigens. As well as demonstrating the presence of trypanosomatid antibodies in the feline population on the Yucatan Peninsula, we were also able to confirm the high sensitivity and specificity of the iron superoxide dismutase antigen secreted by them, which may prove to be very useful in epidemiological studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Parasite Killing of Leishmania (V) braziliensis by Standardized Propolis Extracts

    PubMed Central

    Rebouças-Silva, Jéssica; Celes, Fabiana S.; Lima, Jonilson Berlink

    2017-01-01

    Treatments based on antimonials to cutaneous leishmaniasis (CL) entail a range of toxic side effects. Propolis, a natural compound widely used in traditional medical applications, exhibits a range of biological effects, including activity against infectious agents. The aim of this study was to test the potential leishmanicidal effects of different propolis extracts against Leishmania (Viannia) braziliensis promastigotes and intracellular amastigotes in vitro. Stationary-phase L. (V) braziliensis promastigotes were incubated with medium alone or treated with dry, alcoholic, or glycolic propolis extract (10, 50, or 100 μg/mL) for 96 h. Our data showed that all extracts exhibited a dose-dependent effect on the viability of L. (V) braziliensis promastigotes, while controlling the parasite burden inside infected macrophages. Dry propolis extract significantly modified the inflammatory profile of murine macrophages by downmodulating TGF-β and IL-10 production, while upmodulating TNF-α. All three types of propolis extract were found to reduce nitric oxide and superoxide levels in activated L. braziliensis-infected macrophages. Altogether, our results showed that propolis extracts exhibited a leishmanicidal effect against both stages of L. (V) braziliensis. The low cell toxicity and efficient microbicidal effect of alcoholic or glycolic propolis extracts make them candidates to an additive treatment for cutaneous leishmaniasis. PMID:28690662

  10. Pterocarpanquinone LQB-118 induces apoptosis in Leishmania (Viannia) braziliensis and controls lesions in infected hamsters.

    PubMed

    Costa, Luciana; Pinheiro, Roberta O; Dutra, Patrícia M L; Santos, Rosiane F; Cunha-Júnior, Edézio F; Torres-Santos, Eduardo C; da Silva, Alcides J M; Costa, Paulo R R; Da-Silva, Silvia A G

    2014-01-01

    Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the

  11. Pterocarpanquinone LQB-118 Induces Apoptosis in Leishmania (Viannia) braziliensis and Controls Lesions in Infected Hamsters

    PubMed Central

    Costa, Luciana; Pinheiro, Roberta O.; Dutra, Patrícia M. L.; Santos, Rosiane F.; Cunha-Júnior, Edézio F.; Torres-Santos, Eduardo C.; da Silva, Alcides J. M.; Costa, Paulo R. R.; Da-Silva, Silvia A. G.

    2014-01-01

    Previous results demonstrate that the hybrid synthetic pterocarpanquinone LQB-118 presents antileishmanial activity against Leishmania amazonensis in a mouse model. The aim of the present study was to use a hamster model to investigate whether LQB-118 presents antileishmanial activity against Leishmania (Viannia) braziliensis, which is the major Leishmania species related to American tegumentary leishmaniasis. The in vitro antileishmanial activity of LQB-118 on L. braziliensis was tested on the promastigote and intracellular amastigote forms. The cell death induced by LQB-118 in the L. braziliensis promastigotes was analyzed using an annexin V-FITC/PI kit, the oxidative stress was evaluated by 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) and the ATP content by luminescence. In situ labeling of DNA fragments by terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to investigate apoptosis in the intracellular amastigotes. L. braziliensis-infected hamsters were treated from the seventh day of infection with LQB-118 administered intralesionally (26 µg/kg/day, three times a week) or orally (4,3 mg/kg/day, five times a week) for eight weeks. LQB-118 was active against the L. braziliensis promastigotes and intracellular amastigotes, producing IC50 (50% inhibitory concentration) values of 3,4±0,1 and 7,5±0,8 µM, respectively. LQB-118 induced promastigote phosphatidylserine externalization accompanied by increased reactive oxygen species production and ATP depletion. Intracellular amastigote DNA fragmentation was also observed, without affecting the viability of macrophages. The treatment of L. braziliensis-infected hamsters with LQB-118, either orally or intralesionally, was effective in the control of lesion size, parasite load and increase intradermal reaction to parasite antigen. Taken together, these results show that the antileishmanial effect of LQB-118 extends to L. braziliensis in the hamster model, involves the

  12. Leishmania (V.) braziliensis infecting bats from Pantanal wetland, Brazil: First records for Platyrrhinus lineatus and Artibeus planirostris.

    PubMed

    de Castro Ferreira, Eduardo; Pereira, Agnes Antônio Sampaio; Silveira, Maurício; Margonari, Carina; Marcon, Glaucia Elisete Barbosa; de Oliveira França, Adriana; Castro, Ludiele Souza; Bordignon, Marcelo Oscar; Fischer, Erich; Tomas, Walfrido Moraes; Dorval, Maria Elizabeth Cavalheiros; Gontijo, Célia Maria Ferreira

    2017-08-01

    In the New World genus Leishmania parasites are etiological agents of neglected zoonoses known as leishmaniasis. Its epidemiology is very complex due to the participation of several species of sand fly vectors and mammalian hosts, and man is an accidental host. Control is very difficult because of the different epidemiological patterns of transmission observed. Studies about Leishmania spp. infection in bats are so scarce, which represents a large gap in knowledge about the role of these animals in the transmission cycle of these pathogens, especially when considering that Chiroptera is one of the most abundant and diverse orders among mammals. Leishmaniasis in Mato Grosso do Sul, Brazil are remarkably frequent, probably due to the abundance of its regional mastofauna. The recent record of L. braziliensis in bats from this state indicates the need to clarify the role of these mammals in the transmission cycle. In this study we evaluated the presence of Leishmania parasites in the skin of different species of bats, using PCR directed to Leishmania spp. kDNA for screening followed by PCR/RFLP analysis of the hsp70 gene for the identification of parasite species. Leishmania species identification was confirmed by PCR directed to the G6PD gene of L. braziliensis, followed by sequencing of the PCR product. Samples from 47 bats were processed, of which in three specimens (6.38%) was detected the presence of Leishmania sp. kDNA. PCR/RFLP and sequencing identified the species involved in the infection as L. braziliensis in all of them. This is the first report of Leishmania braziliensis in bats from Pantanal ecosystem and the first record of this species in Platyrrhinus lineatus and Artibeus planirostris, bats with a wide distribution in South America. These results reinforce the need to deepen the knowledge about the possibility of bats act as reservoirs of Leishmania spp. especially considering their ability of dispersion and occupation of anthropic environments

  13. Mixed infection of Leishmania infantum and Leishmania braziliensis in rodents from endemic urban area of the New World.

    PubMed

    Ferreira, Eduardo de Castro; Cruz, Israel; Cañavate, Carmen; de Melo, Lutiana Amaral; Pereira, Agnes Antônia Sampaio; Madeira, Filipe A M; Valério, Sofia Alves Nogueira; Cunha, Heitor Morais; Paglia, Adriano Pereira; Gontijo, Célia Maria Ferreira

    2015-03-20

    In Brazil Leishmania braziliensis and L. infantum are the principal species responsible for cutaneous and visceral leishmaniases, respectively. Domestic dogs are the main reservoirs of visceral leishmaniasis, while rodents and marsupials are the main reservoirs for cutaneous leishmaniasis. It has also been suggested that dogs could play a role in transmission of cutaneous leishmaniasis. The identification of the species of Leishmania, the reservoirs, and the vectors involved in each particular transmission cycle is critical for the establishment of control activities. Belo Horizonte has emerged as an endemic region for leishmaniases, however, epidemiological studies assessing the contribution of wild reservoirs to transmission are scarce in the area. The aim of this study was to investigate Leishmania spp. infection in possible reservoirs of an urbanized area. A high rate of infection was found in small mammals (64.9%) and dogs (DG1 30.4% and DG2 48.6%). The presence of L. infantum and L. braziliensis was detected in small mammals and dogs, and mixed infections by both species were detected in rodents which, to the best of our knowledge, is the first description of this phenomenon in an urban area. Additionally, L. amazonensis was detected in the canine samples. The possible role of these animals as a source of infection of the vector of each species of Leishmania identified should not be overlooked and should be taken into account in future control activities. The results of mixed infection by L. braziliensis and L. infantum in cosmopolitan rodents as M. musculus and R. rattus, may have important implications in the context of the control of leishmaniasis in urban areas, especially when considering that these rodents live in close relationship with human dwellings, especially those in more precarious conditions.

  14. Betulin derivatives impair Leishmania braziliensis viability and host-parasite interaction.

    PubMed

    Alcazar, Wilmer; López, Adrian Silva; Alakurtti, Sami; Tuononen, Maija-Liisa; Yli-Kauhaluoma, Jari; Ponte-Sucre, Alicia

    2014-11-01

    Leishmaniasis is a public health problem in tropical and subtropical areas of the world, including Venezuela. The incidence of treatment failure and the number of cases with Leishmania-HIV co-infection underscore the importance of developing alternative, economical and effective therapies against this disease. The work presented here analyzed whether terpenoids derived from betulin are active against New World Leishmania parasites. Initially we determined the concentration that inhibits the growth of these parasites by 50% or IC50, and subsequently evaluated the chemotactic effect of four compounds with leishmanicidal activity in the sub-micromolar and micromolar range. That is, we measured the migratory capacity of Leishmania (V.) braziliensis in the presence of increasing concentrations of compounds. Finally, we evaluated their cytotoxicity against the host cell and their effect on the infectivity of L. (V.) braziliensis. The results suggest that (1) compounds 14, 17, 18, 25 and 27 are active at concentrations lower than 10 μM; (2) compound 26 inhibits parasite growth with an IC50 lower than 1 μM; (3) compounds 18, 26 and 27 inhibit parasite migration at pico- to nanomolar concentrations, suggesting that they impair host-parasite interaction. None of the tested compounds was cytotoxic against J774.A1 macrophages thus indicating their potential as starting points to develop compounds that might affect parasite-host cell interaction, as well as being leishmanicidal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Nerolidol, the main constituent of Piper aduncum essential oil, has anti-Leishmania braziliensis activity.

    PubMed

    Ceole, Ligia Fernanda; Cardoso, Maria DAS Graças; Soares, Maurilio José

    2017-08-01

    Leishmania (Viannia) braziliensis is a protozoan that causes mucocutaneous leishmaniasis, which is an infectious disease that affects more than 12 million people worldwide. The available treatment is limited, has side-effects or is inefficient. In a search for alternative compounds of natural origin, we tested the microbicidal activity of Piper aduncum essential oil (PaEO) on this parasite. Our data showed that PaEO had an inhibitory effect on the growth of L. braziliensis promastigotes with an IC50/24 h=77·9 µg mL-1. The main constituent (nerolidol: 25·22%) presented a similar inhibitory effect (IC50/24 h = 74·3 µg mL-1). Ultrastructural observation of nerolidol-treated parasites by scanning and transmission electron microscopies revealed cell shrinkage and morphological alterations in the mitochondrion, nuclear chromatin and flagellar pocket. Flow cytometry analysis showed a reduction in the cell size, loss of mitochondrial membrane potential, phosphatidylserine exposure and DNA degradation, which when associated with the morphological changes indicated that nerolidol induced incidental cell death in the L. braziliensis promastigotes. The results presented here indicate that nerolidol derivatives are promising compounds for further evaluation against Leishmania parasites.

  16. Cloning, expression, purification and spectrophotometric analysis of lanosterol 14-alpha demethylase from Leishmania braziliensis (LbCYP51).

    PubMed

    Freitas, Humberto F; Leal Pires, Acássia Benjamim; Castilho, Marcelo S

    2018-04-01

    Leishmaniasis, a neglected tropical disease, is a major cause of morbidity and mortality worldwide. Of the three main clinical forms, cutaneous leishmaniasis (CL) is the most common and 40 million people are at risk in the endemic areas. Currently, the available drugs to fight leishmaniasis have high toxicity and poor efficiency. Then, it is very important to search for effective and safe drugs that would target essential enzymes from the parasite, such as lanosterol 14-alpha demethylase (CYP51, EC 1.14.13.70) from Leishmania braziliensis. Because most drug design efforts have been directed for Leishmania non-braziliensis species, there is no structural or kinetic data regarding L. braziliensis CYP51. Herein, we present for the first time molecular biology efforts and purification protocol to obtain the enzyme LbCYP51. These results lay the ground for future investigation of drugs against this target.

  17. Host-biting rate and susceptibility of some suspected vectors to Leishmania braziliensis

    PubMed Central

    2014-01-01

    Background American tegumentary leishmaniasis is a serious Brazilian public health problem. This diseases is attributed to seven species of Leishmania, however, the majority of cases are associated with Leishmania braziliensis. Some phlebotomine species have been implicated in the transmission of this parasite, nonetheless only Psychodopygus wellcomei has had its vectorial competence demonstrated. Thus this study sought to assess some parameters related to the vectorial capacity of anthropophilic species of sand fly occurring in São Paulo state: Pintomyia fischeri, Migonemyia migonei Nyssomyia intermedia, Nyssomyia whitmani, Expapillata firmatoi and Psychodopygus ayrozai, under laboratory conditions. These parameters were the duration of the gonotrophic cycle, proportion of females which feed on hamster, the rate of infection by L. braziliensis and the duration of the extrinsic incubation period. Methods The sandflies were collected in three regions of the São Paulo state: Greater São Paulo and the Mogi Guaçu and Iporanga municipalities. To assess the proportion of engorged females the insects were fed on hamsters to estimate the duration of the gonotrophic cycle. To estimate the susceptibility to infection of each species, their females were fed on hamsters infected with Leishmania braziliensis and dissected to ascertain the localization of the flagellates and estimate the extrinsic incubation period. Results Low hamster attractiveness to Ps. ayrozai was observed. A high proportion of engorged females was observed when the hamster had its whole body exposed. The gonotrophic cycle ranged between three and eight days. Mg. migonei, Pi. fischeri, Ny. neivai, Ny. intermedia, Ny. whitmani and Ex.firmatoi presented susceptibility to infection by L. braziliensis. The highest infection rate (34.4%) was observed for Ny. whitmani and the lowest for Ny. intermedia (6.6%). Mg. migonei presented late-stage infection forms on the fifth day after feeding, but in the other

  18. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis.

    PubMed

    Pinto, Juliana Guerra; Fontana, Letícia Correa; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-07-01

    Cutaneous leishmaniasis is an infectious disease caused by the Leishmania protozoan. The conventional treatment is long-lasting and aggressive, in addition to causing harmful effect. Photodynamic therapy has emerged as a promising alternative treatment, which allows local administration with fewer side effects. This study investigated the photodynamic activity of curcumin on Leishmania major and Leishmania braziliensis promastigote. Both species were submitted to incubation with curcumin in serial dilutions from 500 μg/ml up to 7.8 μg/ml. Control groups were kept in the dark while PDT groups received a fluency of 10 J/cm(2) at 450 nm. Mitochondrial activity was assessed by MTT assay 18 h after light treatment, and viability was measured by Trypan blue dye exclusion test. Morphological alterations were observed by Giemsa staining. Confocal microscopy showed the uptake of curcumin by both tested Leishmania species. Mitochondrial activity was inconclusive to determine viability; however, Trypan blue test was able to show that curcumin photodynamic treatment had a significant effect on viability of parasites. The morphology of promastigotes was highly affected by the photodynamic therapy. These results indicated that curcumin may be a promising alternative photosensitizer, because it presents no toxicity in the dark; however, further tests in co-culture with macrophages and other species of Leishmania should be conducted to determine better conditions before in vivo tests are performed.

  19. Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva.

    PubMed

    Cunha, Jurema M; Abbehusen, Melissa; Suarez, Martha; Valenzuela, Jesus; Teixeira, Clarissa R; Brodskyn, Cláudia I

    2018-01-01

    Leishmania is transmitted in the presence of sand fly saliva. Protective immunity generated by saliva has encouraged identification of a vector salivary-based vaccine. Previous studies have shown that immunization with LJM11, a salivary protein from Lutzomyia longipalpis, is able to induce a Th1 immune response and protect mice against bites of Leishmania major-infected Lutzomyia longipalpis. Here, we further investigate if immunization with LJM11 recombinant protein is able to confer cross-protection against infection with Leishmania braziliensis associated with salivary gland sonicate (SGS) from Lutzomyia intermedia or Lu. longipalpis. Mice immunized with LJM11 protein exhibited an increased production of anti-LJM11 IgG, IgG1 and IgG2a and a DTH response characterized by an inflammatory infiltrate with the presence of CD4 + IFN-γ + T cells. LJM11-immunized mice were intradermally infected in the ear with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia SGS. A significant reduction of parasite numbers in the ear and lymph node in the group challenged with L. braziliensis plus Lu. longipalpis SGS was observed, but not when the challenge was performed with L. braziliensis plus Lu. intermedia SGS. A higher specific production of IFN-γ and absence of IL-10 by lymph node cells were only observed in LJM11 immunized mice after infection. After two weeks, a similar frequency of CD4 + IFN-γ + T cells was detected in LJM11 and BSA groups challenged with L. braziliensis plus Lu. longipalpis SGS, suggesting that early events possibly triggered by immunization are essential for protection against Leishmania infection. Our findings support the specificity of saliva-mediated immune responses and reinforce the importance of identifying cross-protective salivary antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Immunoproteomic and bioinformatic approaches to identify secreted Leishmania amazonensis, L. braziliensis, and L. infantum proteins with specific reactivity using canine serum.

    PubMed

    Lima, B S S; Fialho, L C; Pires, S F; Tafuri, W L; Andrade, H M

    2016-06-15

    Leishmania spp have a wide range of hosts, and each host can harbor several Leishmania species. Dogs, for example, are frequently infected by Leishmania infantum, where they constitute its main reservoir, but they also serve as hosts for L. braziliensis and L. amazonensis. Serological tests for antibody detection are valuable tools for diagnosis of L. infantum infection due to the high levels of antibodies induced, unlike what is observed in L. amazonensis and L. braziliensis infections. Likewise, serology-based antigen-detection can be useful as an approach to diagnose any Leishmania species infection using different corporal fluid samples. Immunogenic and secreted proteins constitute powerful targets for diagnostic methods in antigen detection. As such, we performed immunoproteomic (2-DE, western blot and mass spectrometry) and bioinformatic screening to search for reactive and secreted proteins from L. amazonensis, L. braziliensis, and L. infantum. Twenty-eight non-redundant proteins were identified, among which, six were reactive only in L. amazonensis extracts, 10 in L. braziliensis extracts, and seven in L. infantum extracts. After bioinformatic analysis, seven proteins were predicted to be secreted, two of which were reactive only in L. amazonensis extracts (52kDa PDI and the glucose-regulated protein 78), one in L. braziliensis extracts (pyruvate dehydrogenase E1 beta subunit) and three in L. infantum extracts (two conserved hypothetical proteins and elongation factor 1-beta). We propose that proteins can be suitable targets for diagnostic methods based on antigen detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species.

    PubMed

    Lage, Daniela Pagliara; Martins, Vívian Tamietti; Duarte, Mariana Costa; Costa, Lourena Emanuele; Tavares, Grasiele de Sousa Vieira; Ramos, Fernanda Fonseca; Chávez-Fumagalli, Miguel Angel; Menezes-Souza, Daniel; Roatt, Bruno Mendes; Tavares, Carlos Alberto Pereira; Coelho, Eduardo Antonio Ferraz

    2016-06-01

    Vaccination can be considered the most cost-effective strategy to control neglected diseases, but nowadays there is not an effective vaccine available against leishmaniasis. In the present study, a vaccine based on the combination of the Leishmania-specific hypothetical protein (LiHyD) with saponin was tested in BALB/c mice against infection caused by Leishmania major and Leishmania braziliensis species. This antigen was firstly identified in Leishmania infantum and showed to be protective against infection of BALB/c mice using this parasite species. The immunogenicity of rLiHyD/saponin vaccine was evaluated, and the results showed that immunized mice produced high levels of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with rLiHyD, as well as by using L. major or L. braziliensis protein extracts. After challenge, vaccinated animals showed significant reductions in the infected footpad swellings, as well as in the parasite burden in the infection site, liver, spleen, and infected paws draining lymph nodes, when compared to those that were inoculated with the vaccine diluent (saline) or immunized with saponin. The immunization of rLiHyD without adjuvant was not protective against both challenges. The partial protection obtained by the rLiHyD/saponin vaccine was associated with a parasite-specific IL-12-dependent IFN-γ secretion, which was produced mainly by CD4(+) T cells. In these animals, a decrease in the parasite-mediated IL-4 and IL-10 responses, associated with the presence of high levels of LiHyD- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a hypothetical protein that was firstly identified in L. infantum, when combined to a Th1 adjuvant, was able to confer a cross-protection against highly infective stationary-phase promastigotes of two Leishmania species causing tegumentary leishmaniasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Evaluation of methylene blue as photosensitizer in promastigotes of Leishmania major and Leishmania braziliensis.

    PubMed

    Pinto, Juliana Guerra; Martins, Jaciara Fagundes de Souza; Pereira, André Henrique Correia; Mittmann, Josane; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2017-06-01

    The cutaneous leishmaniasis is caused by the protozoan of the genus Leishmania. It is considered by WHO as a public health issue and a neglected disease, which affects rural workers and it is also a risk to travelers in endemic areas. The conventional treatment is toxic and leads to severe side effects. The photodynamic therapy has been studied as an alternative treatment to cutaneous leishmaniasis. This study aimed to evaluate the methylene blue internalization and the impact of the PDT in the viability and morphology of Leishmania major and Leishmania braziliensis promastigote in culture medium. The fluorescence microscopy was used to determine the MB localization. To evaluate the mitochondrial activity (MTT), viability (Trypan blue test) and the morphological alterations both species were incubated with the MB in concentrations starting in 500μg/ml, in serial dilution, until 7,8μg/ml. The fluorescence microscopy demonstrated that the MB is internalized by both species after one hour of incubation. The MB presented low toxicity at the dark and the PDT was capable of decreasing the viability in more than 70% in the higher concentrations tested. The PDT also triggered significant morphological alterations in the Leishmania promastigotes. The results presented in this study are an indicative that the MB is a photosensitizer with promising potential to clinical application, besides its low cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Inhibitory activity of pentacyano(isoniazid)ferrate(II), IQG-607, against promastigotes and amastigotes forms of Leishmania braziliensis

    PubMed Central

    Amorim, Camila F.; Galina, Luiza; Carvalho, Natália B.; Sperotto, Nathalia D. M.; Pissinate, Kenia; Machado, Pablo; Campos, Maria M.; Basso, Luiz A.; Carvalho, Edgar M.; Santos, Diógenes Santiago

    2017-01-01

    M. tuberculosis and parasites of the genus Leishmania present the type II fatty acid biosynthesis system (FASII). The pentacyano(isoniazid)ferrate(II) compound, named IQG-607, inhibits the enzyme 2-trans-enoyl-ACP(CoA) reductase from M. tuberculosis, a key component in the FASII system. Here, we aimed to evaluate the inhibitory activity of IQG-607 against promastigote and amastigote forms of Leishmania (Viannia) braziliensis isolated from patients with different clinical forms of L. braziliensis infection, including cutaneous, mucosal and disseminated leishmaniasis. Importantly, IQG-607 inhibited the proliferation of three different isolates of L. braziliensis promastigotes associated with cutaneous, mucosal and disseminated leishmaniasis. The IC50 values for IQG-607 ranged from 32 to 75 μM, for these forms. Additionally, IQG-607 treatment decreased the proliferation of intracellular amastigotes in infected macrophages, after an analysis of the percentage of infected cells and the number of intracellular parasites/100 cells. IQG-607 reduced from 58% to 98% the proliferation of L. braziliensis from cutaneous, mucosal and disseminated strains. Moreover, IQG-607 was also evaluated regarding its potential toxic profile, by using different cell lines. Cell viability of the lineages Vero, HaCat and HepG2 was significantly reduced after incubation with concentrations of IQG-607 higher than 2 mM. Importantly, IQG-607, in a concentration of 1 mM, did not induce DNA damage in HepG2 cells, when compared to the untreated control group. Future studies will confirm the mechanism of action of IQG-607 against L. braziliensis. PMID:29281707

  4. First Evidence of a Hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana DNA Detected from the Phlebotomine Sand Fly Lutzomyia tejadai in Peru

    PubMed Central

    Hashiguchi, Yoshihisa

    2016-01-01

    The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana is endemic. A total of 2,997 female sand flies were captured by CDC light traps and Shannon traps, of which 2,931 and 66 flies were identified as Lutzomyia tejadai and Lu fischeri, respectively. Using crude DNA extracted from individual sand flies as a template, Leishmania DNA was detected from one Lu. tejadai. The parasite species was identified as a hybrid of L. (V.) braziliensis/L. (V.) peruviana on the basis of cytochrome b and mannose phosphate isomerase gene analyses. The result suggested that Lu. tejadai is responsible for the transmission of the hybrid Leishmania circulating in this area. PMID:26735142

  5. First Evidence of a Hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana DNA Detected from the Phlebotomine Sand Fly Lutzomyia tejadai in Peru.

    PubMed

    Kato, Hirotomo; Cáceres, Abraham G; Hashiguchi, Yoshihisa

    2016-01-01

    The natural infection of sand flies by Leishmania was examined in the Department of Huanuco of Peru, where cutaneous leishmaniasis caused by a hybrid of Leishmania (Viannia) braziliensis/L. (V.) peruviana is endemic. A total of 2,997 female sand flies were captured by CDC light traps and Shannon traps, of which 2,931 and 66 flies were identified as Lutzomyia tejadai and Lu fischeri, respectively. Using crude DNA extracted from individual sand flies as a template, Leishmania DNA was detected from one Lu. tejadai. The parasite species was identified as a hybrid of L. (V.) braziliensis/L. (V.) peruviana on the basis of cytochrome b and mannose phosphate isomerase gene analyses. The result suggested that Lu. tejadai is responsible for the transmission of the hybrid Leishmania circulating in this area.

  6. Antigenicity of Leishmania braziliensis Histone H1 during Cutaneous Leishmaniasis: Localization of Antigenic Determinants

    PubMed Central

    Carmelo, Emma; Martínez, Enrique; González, Ana Cristina; Piñero, José Enrique; Patarroyo, Manuel E.; del Castillo, Antonio; Valladares, Basilio

    2002-01-01

    The humoral immune response against Leishmania braziliensis histone H1 by patients with cutaneous leishmaniasis is described. For this purpose, the protein was purified as a recombinant protein in a prokaryotic expression system and was assayed by enzyme-linked immunosorbent assay (ELISA) with a collection of sera from patients with cutaneous leishmaniasis and Chagas' disease. The assays showed that L. braziliensis histone H1 was recognized by 66% of the serum samples from patients with leishmaniasis and by 40% of the serum samples from patients with Chagas' disease, indicating that it acts as an immunogen during cutaneous leishmaniasis. In order to locate the linear antigenic determinants of this protein, a collection of synthetic peptides covering the L. braziliensis histone H1sequence was tested by ELISA. The experiments showed that the main antigenic determinant is located in the central region of this protein. Our results show that the recombinant L. braziliensis histone H1 is recognized by a significant percentage of serum samples from patients with cutaneous leishmaniasis, but use of this protein as a tool for the diagnosis of cutaneous leishmaniasis is hampered by the cross-reaction with sera from patients with Chagas' disease. PMID:12093677

  7. Antigenicity of Leishmania braziliensis histone H1 during cutaneous leishmaniasis: localization of antigenic determinants.

    PubMed

    Carmelo, Emma; Martínez, Enrique; González, Ana Cristina; Piñero, José Enrique; Patarroyo, Manuel E; Del Castillo, Antonio; Valladares, Basilio

    2002-07-01

    The humoral immune response against Leishmania braziliensis histone H1 by patients with cutaneous leishmaniasis is described. For this purpose, the protein was purified as a recombinant protein in a prokaryotic expression system and was assayed by enzyme-linked immunosorbent assay (ELISA) with a collection of sera from patients with cutaneous leishmaniasis and Chagas' disease. The assays showed that L. braziliensis histone H1 was recognized by 66% of the serum samples from patients with leishmaniasis and by 40% of the serum samples from patients with Chagas' disease, indicating that it acts as an immunogen during cutaneous leishmaniasis. In order to locate the linear antigenic determinants of this protein, a collection of synthetic peptides covering the L. braziliensis histone H1sequence was tested by ELISA. The experiments showed that the main antigenic determinant is located in the central region of this protein. Our results show that the recombinant L. braziliensis histone H1 is recognized by a significant percentage of serum samples from patients with cutaneous leishmaniasis, but use of this protein as a tool for the diagnosis of cutaneous leishmaniasis is hampered by the cross-reaction with sera from patients with Chagas' disease.

  8. Assessment of sesquiterpene lactones isolated from Mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp.

    PubMed Central

    Bivona, Augusto E.; Sánchez Alberti, Andrés; Giberti, Gustavo; Malchiodi, Emilio L.; Martino, Virginia S.; Catalan, Cesar A.; Alonso, María Rosario; Cazorla, Silvia I.

    2017-01-01

    Four sesquiterpene lactones, mikanolide, deoxymikanolide, dihydromikanolide and scandenolide, were isolated by a bioassay-guided fractionation of Mikania variifolia and Mikania micrantha dichloromethane extracts. Mikanolide and deoxymikanolide were the major compounds in both extracts (2.2% and 0.4% for Mikania variifolia and 21.0% and 6.4% for Mikania micrantha respectively, calculated on extract dry weight). Mikanolide, deoxymikanolide and dihydromikanolide were active against Trypanosoma cruzi epimastigotes (50% inhibitory concentrations of 0.7, 0.08 and 2.5 μg/mL, for each compound respectively). These sesquiterpene lactones were also active against the bloodstream trypomastigotes (50% inhibitory concentrations for each compound were 2.1, 1.5 and 0.3 μg/mL, respectively) and against amastigotes (50% inhibitory concentrations for each compound were 4.5, 6.3 and 8.5 μg/mL, respectively). By contrast, scandenolide was not active on Trypanosoma cruzi. Besides, mikanolide and deoxymikanolide were also active on Leishmania braziliensis promastigotes (50% inhibitory concentrations of 5.1 and 11.5 μg/mL, respectively). The four sesquiterpene lactones were tested for their cytotoxicity on THP 1 cells. Deoxymikanolide presented the highest selectivity index for trypomastigotes (SI = 54) and amastigotes (SI = 12.5). In an in vivo model of Trypanosoma cruzi infection, deoxymikanolide was able to decrease the parasitemia and the weight loss associated to the acute phase of the parasite infection. More importantly, while 100% of control mice died by day 22 after receiving a lethal T. cruzi infection, 70% of deoxymikanolide-treated mice survived. We also observed that this compound increased TNF-α and IL-12 production by macrophages, which could contribute to control T. cruzi infection. PMID:28945741

  9. Native Rodent Species Are Unlikely Sources of Infection for Leishmania (Viannia) braziliensis along the Transoceanic Highway in Madre de Dios, Peru

    PubMed Central

    Shender, Lisa A.; De Los Santos, Maxy; Montgomery, Joel M.; Conrad, Patricia A.; Ghersi, Bruno M.; Razuri, Hugo; Lescano, Andres G.; Mazet, Jonna A. K.

    2014-01-01

    An estimated 2.3 million disability-adjusted life years are lost globally from leishmaniasis. In Peru's Amazon region, the department of Madre de Dios (MDD) rises above the rest of the country in terms of the annual incidence rates of human leishmaniasis. Leishmania (Viannia) braziliensis is the species most frequently responsible for the form of disease that results in tissue destruction of the nose and mouth. However, essentially nothing is known regarding the reservoirs of this vector-borne, zoonotic parasite in MDD. Wild rodents have been suspected, or proven, to be reservoirs of several Leishmania spp. in various ecosystems and countries. Additionally, people who live or work in forested terrain, especially those who are not regionally local and whose immune systems are thus naïve to the parasite, are at most risk for contracting L. (V.) braziliensis. Hence, the objective of this study was to collect tissues from wild rodents captured at several study sites along the Amazonian segment of the newly constructed Transoceanic Highway and to use molecular laboratory techniques to analyze samples for the presence of Leishmania parasites. Liver tissues were tested via polymerase chain reaction from a total of 217 rodents; bone marrow and skin biopsies (ear and tail) were also tested from a subset of these same animals. The most numerous rodent species captured and tested were Oligoryzomys microtis (40.7%), Hylaeamys perenensis (15.7%), and Proechimys spp. (12%). All samples were negative for Leishmania, implying that although incidental infections may occur, these abundant rodent species are unlikely to serve as primary reservoirs of L. (V.) braziliensis along the Transoceanic Highway in MDD. Therefore, although these rodent species may persist and even thrive in moderately altered landscapes, we did not find any evidence to suggest they pose a risk for L. (V.) braziliensis transmission to human inhabitants in this highly prevalent region. PMID:25062033

  10. Native rodent species are unlikely sources of infection for Leishmania (Viannia) braziliensis along the Transoceanic Highway in Madre de Dios, Peru.

    PubMed

    Shender, Lisa A; De Los Santos, Maxy; Montgomery, Joel M; Conrad, Patricia A; Ghersi, Bruno M; Razuri, Hugo; Lescano, Andres G; Mazet, Jonna A K

    2014-01-01

    An estimated 2.3 million disability-adjusted life years are lost globally from leishmaniasis. In Peru's Amazon region, the department of Madre de Dios (MDD) rises above the rest of the country in terms of the annual incidence rates of human leishmaniasis. Leishmania (Viannia) braziliensis is the species most frequently responsible for the form of disease that results in tissue destruction of the nose and mouth. However, essentially nothing is known regarding the reservoirs of this vector-borne, zoonotic parasite in MDD. Wild rodents have been suspected, or proven, to be reservoirs of several Leishmania spp. in various ecosystems and countries. Additionally, people who live or work in forested terrain, especially those who are not regionally local and whose immune systems are thus naïve to the parasite, are at most risk for contracting L. (V.) braziliensis. Hence, the objective of this study was to collect tissues from wild rodents captured at several study sites along the Amazonian segment of the newly constructed Transoceanic Highway and to use molecular laboratory techniques to analyze samples for the presence of Leishmania parasites. Liver tissues were tested via polymerase chain reaction from a total of 217 rodents; bone marrow and skin biopsies (ear and tail) were also tested from a subset of these same animals. The most numerous rodent species captured and tested were Oligoryzomys microtis (40.7%), Hylaeamys perenensis (15.7%), and Proechimys spp. (12%). All samples were negative for Leishmania, implying that although incidental infections may occur, these abundant rodent species are unlikely to serve as primary reservoirs of L. (V.) braziliensis along the Transoceanic Highway in MDD. Therefore, although these rodent species may persist and even thrive in moderately altered landscapes, we did not find any evidence to suggest they pose a risk for L. (V.) braziliensis transmission to human inhabitants in this highly prevalent region.

  11. An epidemic outbreak of canine cutaneous leishmaniasis in Colombia caused by Leishmania braziliensis and Leishmania panamensis.

    PubMed

    Vélez, Iván D; Carrillo, Lina M; López, Liliana; Rodríguez, Erwin; Robledo, Sara M

    2012-05-01

    The largest recorded outbreak of cutaneous leishmaniasis in Colombia's history occurred during 2005-2009 in soldiers of the Colombian Army, with ~40,000 cases. This outbreak was caused by the influx of military personnel into the jungle with the mission of combat illicit crops and the guerrilla. The soldiers remain for long periods within the rainforest and are exposed to the bite of infected sand flies. During the military activities, soldiers work with dogs specially trained to detect landmines, and therefore, dogs are also exposed to the infected sand flies and show high incidence of cutaneous leishmaniasis (CL). This work describes an epidemic outbreak of canine CL caused by Leishmania braziliensis and Leishmania panamensis in Colombia, South America. The clinical features of the disease and the response to treatment with pentavalent antimonials observed in 72 guard dogs from the Colombian Army are described. A program for prevention and control of canine CL is also discussed.

  12. An Epidemic Outbreak of Canine Cutaneous Leishmaniasis in Colombia Caused by Leishmania braziliensis and Leishmania panamensis

    PubMed Central

    Vélez, Iván D.; Carrillo, Lina M.; López, Liliana; Rodríguez, Erwin; Robledo, Sara M.

    2012-01-01

    The largest recorded outbreak of cutaneous leishmaniasis in Colombia's history occurred during 2005–2009 in soldiers of the Colombian Army, with ∼40,000 cases. This outbreak was caused by the influx of military personnel into the jungle with the mission of combat illicit crops and the guerrilla. The soldiers remain for long periods within the rainforest and are exposed to the bite of infected sand flies. During the military activities, soldiers work with dogs specially trained to detect landmines, and therefore, dogs are also exposed to the infected sand flies and show high incidence of cutaneous leishmaniasis (CL). This work describes an epidemic outbreak of canine CL caused by Leishmania braziliensis and Leishmania panamensis in Colombia, South America. The clinical features of the disease and the response to treatment with pentavalent antimonials observed in 72 guard dogs from the Colombian Army are described. A program for prevention and control of canine CL is also discussed. PMID:22556078

  13. Functional Transcriptomics of Wild-Caught Lutzomyia intermedia Salivary Glands: Identification of a Protective Salivary Protein against Leishmania braziliensis Infection

    PubMed Central

    Carneiro, Marcia W.; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M. C.; Valenzuela, Jesus G.; de Oliveira, Camila I.

    2013-01-01

    Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. Methods and Findings A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11—coding for a 4.5-kDa protein—induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. Conclusions We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis. PMID:23717705

  14. Functional transcriptomics of wild-caught Lutzomyia intermedia salivary glands: identification of a protective salivary protein against Leishmania braziliensis infection.

    PubMed

    de Moura, Tatiana R; Oliveira, Fabiano; Carneiro, Marcia W; Miranda, José Carlos; Clarêncio, Jorge; Barral-Netto, Manoel; Brodskyn, Cláudia; Barral, Aldina; Ribeiro, José M C; Valenzuela, Jesus G; de Oliveira, Camila I

    2013-01-01

    Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects salivary components that change the environment at the feeding site. Mice immunized with Phlebotomus papatasi salivary gland (SG) homogenate are protected against Leishmania major infection, while immunity to Lutzomyia intermedia SG homogenate exacerbated experimental Leishmania braziliensis infection. In humans, antibodies to Lu. intermedia saliva are associated with risk of acquiring L. braziliensis infection. Despite these important findings, there is no information regarding the repertoire of Lu. intermedia salivary proteins. A cDNA library from the Salivary Glands (SGs) of wild-caught Lu. intermedia was constructed, sequenced, and complemented by a proteomic approach based on 1D SDS PAGE and mass/mass spectrometry to validate the transcripts present in this cDNA library. We identified the most abundant transcripts and proteins reported in other sand fly species as well as novel proteins such as neurotoxin-like proteins, peptides with ML domain, and three small peptides found so far only in this sand fly species. DNA plasmids coding for ten selected transcripts were constructed and used to immunize BALB/c mice to study their immunogenicity. Plasmid Linb-11--coding for a 4.5-kDa protein--induced a cellular immune response and conferred protection against L. braziliensis infection. This protection correlated with a decreased parasite load and an increased frequency of IFN-γ-producing cells. We identified the most abundant and novel proteins present in the SGs of Lu. intermedia, a vector of cutaneous leishmaniasis in the Americas. We also show for the first time that immunity to a single salivary protein from Lu. intermedia can protect against cutaneous leishmaniasis caused by L. braziliensis.

  15. Trypanosoma cruzi Differentiates and Multiplies within Chimeric Parasitophorous Vacuoles in Macrophages Coinfected with Leishmania amazonensis

    PubMed Central

    Pessoa, Carina Carraro; Ferreira, Éden Ramalho; Bayer-Santos, Ethel; Rabinovitch, Michel; Mortara, Renato Arruda

    2016-01-01

    The trypanosomatids Leishmania amazonensis and Trypanosoma cruzi are excellent models for the study of the cell biology of intracellular protozoan infections. After their uptake by mammalian cells, the parasitic protozoan flagellates L. amazonensis and T. cruzi lodge within acidified parasitophorous vacuoles (PVs). However, whereas L. amazonensis develops in spacious, phagolysosome-like PVs that may enclose numerous parasites, T. cruzi is transiently hosted within smaller vacuoles from which it soon escapes to the host cell cytosol. To investigate if parasite-specific vacuoles are required for the survival and differentiation of T. cruzi, we constructed chimeric vacuoles by infection of L. amazonensis amastigote-infected macrophages with T. cruzi epimastigotes (EPIs) or metacyclic trypomastigotes (MTs). These chimeric vacuoles, easily observed by microscopy, allowed the entry and fate of T. cruzi in L. amazonensis PVs to be dynamically recorded by multidimensional imaging of coinfected cells. We found that although T. cruzi EPIs remained motile and conserved their morphology in chimeric vacuoles, T. cruzi MTs differentiated into amastigote-like forms capable of multiplying. These results demonstrate that the large adaptive vacuoles of L. amazonensis are permissive to T. cruzi survival and differentiation and that noninfective EPIs are spared from destruction within the chimeric PVs. We conclude that T. cruzi differentiation can take place in Leishmania-containing vacuoles, suggesting this occurs prior to their escape into the host cell cytosol. PMID:26975994

  16. In vitro antiprotozoal activity of (S)-cis-Verbenol against Leishmania spp. and Trypanosoma cruzi.

    PubMed

    Yaluff, Gloria; Vega, Celeste; Alvarenga, Nelson

    2017-04-01

    (S)-cis-Verbenol, a monoterpene frequently found as a component of essential oils, was assayed against Leishmania amazonensis, Leishmania infantum, Leishmania brasiliensis and against two strains of Trypanosoma cruzi. The cytotoxicity of the compound was also assayed against human fibroblast cells using a colorimetric method. Benznidazole was used as reference drug against T. cruzi and amphotericin B was used against Leishmania spp. The compound showed good activity against the trypanosomes, being more active against the CL Brenner strain, with an IC 50 value of 8.3μg/mL. Against Leishmania, the IC 50 values were between 2.1 and 3.8μg/mL. The compound showed no cytotoxicity against human fibroblasts at the concentrations assayed and was 100-500 times more toxic for the parasites than for the human cells, as indicated by the selectivity indexes. The results open interesting perspectives about the potential of (S)-cis-Verbenol and other individual components of essential oils for the treatment of these diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Thrichomys laurentius (Rodentia; Echimyidae) as a Putative Reservoir of Leishmania infantum and L. braziliensis: Patterns of Experimental Infection

    PubMed Central

    Roque, André Luiz Rodrigues; Cupolillo, Elisa; Marchevsky, Renato Sergio; Jansen, Ana Maria

    2010-01-01

    The importance of the genus Thrichomys in the retention of infection and transmission of Leishmania species is supported by previous studies that describe an ancient interaction between caviomorphs and trypanosomatids and report the natural infection of Thrichomys spp. Moreover, these rodents are widely dispersed in Brazil and recognized as important hosts of other tripanosomatids. Our main purpose was to evaluate the putative role of Thrichomys laurentius in the retention of infection and amplification of the transmission cycle of Leishmania infantum and L. braziliensis. Male and female T. laurentius (n = 24) born in captivity were evaluated for the retention of infection with these Leishmania species and followed up by parasitological, serological, hematological, biochemical, histological, and molecular assays for 3, 6, 9, or 12 months post infection (mpi). T. laurentius showed its competence as maintenance host for the two inoculated Leishmania species. Four aspects should be highlighted: (i) re-isolation of parasites 12 mpi; (ii) the low parasitic burden displayed by T. laurentius tissues; (iii) the early onset and maintenance of humoral response, and (iv) the similar pattern of infection by the two Leishmania species. Both Leishmania species demonstrated the ability to invade and maintain itself in viscera and skin of T. laurentius, and no rodent displayed any lesion, histological changes, or clinical evidence of infection. We also wish to point out the irrelevance of the adjective dermotropic or viscerotropic to qualify L. braziliensis and L. infantum, respectively, when these species are hosted by nonhuman hosts. Our data suggest that T. laurentius may act at least as a maintenance host of both tested Leishmania species since it maintained long-lasting infections. Moreover, it cannot be discarded that Leishmania spp. infection in free-ranging T. laurentius could result in higher parasite burden due the more stressing conditions in the wild. Therefore the

  18. Experimental Infection of Lutzomyia (Nyssomyia) whitmani (Diptera: Psychodidae: Phlebotominae) With Leishmania (Viannia) braziliensis and Leishmania (L.) amazonensis, Etiological Agents of American Tugumentary Leishmaniasis.

    PubMed

    Fonteles, Raquel S; Pereira Filho, Adalberto A; Moraes, Jorge L P; Kuppinger, Oliver; Rebêlo, José M M

    2016-01-01

    Leishmania (L.) amazonensis (Lainson & Shaw, 1972) and Leishmania (Viannia) braziliensis (Vianna, 1911) are the principal causative agents of American tegumentary leishmaniasis (ATL) in Brazil. L. amazonensis also causes diffuse cutaneous leishmaniasis (DCL) vectored principally by Lutzomyia flaviscutellata and secondarily by Lutzomyia whitmani (Antunes & Coutinho, 1939). The latter is the most common phlebotomine in the state of Maranhão, and it is the focal species for potential ATL transmission. For this reason, we tested the ability of L. whitmani to become infected with Lutzomyia parasites. Phlebotomines were derived from a colony maintained in the laboratorial conditions. The first generation, uninfected females were offered a bloodmeal with mice infected with the strains of both parasites. We found that L. whitmani can become infected with both parasite species, with infection rates of 65.2% (L. braziliensis) and 47.4% (L. amazonensis). We conclude that in Maranhão, L. whitmani is likely an important vector in the transmission of ATL and may function as a vector of DCL. This possibility should be further investigated. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the ecology of parasite-vector interactions

    PubMed Central

    Murat, Paula Guerra; de Medeiros, Márcio José; Souza, Alda Izabel; de Oliveira, Alessandra Gutierrez

    2017-01-01

    Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis–infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis–infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L

  20. Experimental infection and transmission of Leishmania by Lutzomyia cruzi (Diptera: Psychodidae): Aspects of the ecology of parasite-vector interactions.

    PubMed

    Falcão de Oliveira, Everton; Oshiro, Elisa Teruya; Fernandes, Wagner de Souza; Murat, Paula Guerra; Medeiros, Márcio José de; Souza, Alda Izabel; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi

    2017-02-01

    Several parameters should be addressed before incriminating a vector for Leishmania transmission. Those may include its ability to become infected by the same Leishmania species found in humans, the degree of attractiveness for reservoirs and humans and capacity to sustain parasite infection under laboratory conditions. This study evaluated the vectorial capacity of Lutzomyia cruzi for Leishmania infantum and gathered information on its ability to harbor L. amazonensis. Laboratory-reared Lu. cruzi were infected experimentally by feeding them on dogs infected naturally with L. infantum and hamsters infected with L. amazonensis. Sand fly attractiveness to dogs and humans was determined using wild caught insects. The expected daily survival of infected Lu. cruzi, the duration of the gonotrophic cycle, and the extrinsic incubation period were also investigated for both parasites. Vector competence was investigated for both Leishmania species. The mean proportion of female sand flies that fed on hosts was 0.40. For L. infantum and L. amazonensis, Lu. cruzi had experimental infection rates of 10.55% and 41.56%, respectively. The extrinsic incubation period was 3 days for both Leishmania species, regardless of the host. Survival expectancy of females infected with L. infantum and L. amazonensis after completing the gonotrophic cycle was 1.32 and 0.43, respectively. There was no association between L. infantum infection and sand fly longevity, but L. amazonensis-infected flies had significantly greater survival probabilities. Furthermore, egg-laying was significantly detrimental to survival. Lu. cruzi was found to be highly attracted to both dogs and humans. After a bloodmeal on experimentally infected hosts, both parasites were able to survive and develop late-stage infections in Lu. cruzi. However, transmission was demonstrated only for L. amazonensis-infected sand flies. In conclusion, Lu. cruzi fulfilled several of the requirements of vectorial capacity for L. infantum

  1. Inactivation of Leishmania donovani infantum and Trypanosoma cruzi in red cell suspensions with thiazole orange.

    PubMed

    Wagner, Stephen J; Skripchenko, Andrey; Salata, Jeanne; O'Sullivan, Anne Marie; Cardo, Lisa J

    2008-07-01

    Methods for pathogen inactivation are currently available in some European countries for treatment of plasma and platelet (PLT) components; no approved method for treatment of red cells (RBCs) or whole blood is ready for implementation. In a previous study, thiazole orange (TO), a dye commonly used to count reticulated RBCs and PLTs, exhibited potent photoactivity against human immunodeficiency virus-1 and several model viruses in RBC suspensions. The aim of this study is to further evaluate the ability of TO to inactivate pathogens by measuring its activity against the protozoa Leishmania donovani infantum and Trypanosoma cruzi. RBC suspensions were deliberately contaminated with L. donovani infantum promastigotes or T. cruzi trypomastigotes and either maintained as an untreated control, incubated with 80 mumol per L TO in the dark, or treated with TO and light. Control and treated samples were inoculated into medium and subsequently microscopically examined for growth. No growth was observed in samples treated with TO in the presence or absence of light, while matched control samples lacking TO and diluted up to 5 log consistently demonstrated Leishmania or T. cruzi growth (n = 3). TO inactivated Leishmania or T. cruzi to the limit of detection in RBC suspensions without intentional illumination.

  2. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection.

    PubMed

    de Morais, Carlos Gustavo Vieira; Castro Lima, Ana Karina; Terra, Rodrigo; dos Santos, Rosiane Freire; Da-Silva, Silvia Amaral Gonçalves; Dutra, Patrícia Maria Lourenço

    2015-01-01

    The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.

  3. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection

    PubMed Central

    de Morais, Carlos Gustavo Vieira; Castro Lima, Ana Karina; dos Santos, Rosiane Freire; Da-Silva, Silvia Amaral Gonçalves; Dutra, Patrícia Maria Lourenço

    2015-01-01

    The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs. PMID:26090399

  4. Leishmania (Viannia) braziliensis infection in wild small mammals in ecotourism area of Brazil

    PubMed Central

    Tonelli, Gabriel Barbosa; Tanure, Aline; Rego, Felipe Dutra; Carvalho, Gustavo Mayr de Lima; Stumpp, Rodolfo; Ássimos, Gabriela Ribeiro; Campos, Aldenise Martins; Lima, Ana Cristina Viana Mariano da Rocha; Gontijo, Célia Maria Ferreira

    2017-01-01

    Leishmaniases are parasitic diseases transmitted to mammalian hosts by sand fly vectors (Diptera: Psychodidae). Despite the increasing occurrence of visceral and cutaneous leishmaniasis cases in urban centers, their transmission still occur primarily in wild environments and may be associated with professional activities and recreation, such as ecotourism. The Reserva Particular do Patrimônio Natural Santuário do Caraça (RPPNSC) is one of the largest ecotourism attractions in the State of Minas Gerais, Brazil, and comprises an area of environmental preservation with 11,233 hectares presenting a transitional vegetation between Cerrado and Atlantic Forest. The present study describes the abundance of small mammals in RPPNSC, the isolation and identification of Leishmania in five wild animals. Small mammals were bimonthly trapped along 6 trails within the RPPNSC with 10 Tomahawk traps each. Two trails were located in peridomiciliary areas near tourist lodging facilities, and four trails were located at sites visited by tourists in forest areas. The most prevalent species were Akodon cursor, Cerradomys subflavus and Oligoryzomys nigripes. Six isolates of Leishmania were obtained from these animals and identified as Leishmania braziliensis through HSP70-PCR RFLP method. Leishmania spp. DNA was detected by kDNA-PCR method and isolated by biphasic culture. Studies point to some of the captured species as potential wild reservoirs of Leishmania, suggesting they may be involved in the transmission cycle in these wild environments. PMID:29284049

  5. Leishmania (Viannia) braziliensis infection in wild small mammals in ecotourism area of Brazil.

    PubMed

    Tonelli, Gabriel Barbosa; Tanure, Aline; Rego, Felipe Dutra; Carvalho, Gustavo Mayr de Lima; Stumpp, Rodolfo; Ássimos, Gabriela Ribeiro; Campos, Aldenise Martins; Lima, Ana Cristina Viana Mariano da Rocha; Gontijo, Célia Maria Ferreira; Paz, Gustavo Fontes; Andrade Filho, José Dilermando

    2017-01-01

    Leishmaniases are parasitic diseases transmitted to mammalian hosts by sand fly vectors (Diptera: Psychodidae). Despite the increasing occurrence of visceral and cutaneous leishmaniasis cases in urban centers, their transmission still occur primarily in wild environments and may be associated with professional activities and recreation, such as ecotourism. The Reserva Particular do Patrimônio Natural Santuário do Caraça (RPPNSC) is one of the largest ecotourism attractions in the State of Minas Gerais, Brazil, and comprises an area of environmental preservation with 11,233 hectares presenting a transitional vegetation between Cerrado and Atlantic Forest. The present study describes the abundance of small mammals in RPPNSC, the isolation and identification of Leishmania in five wild animals. Small mammals were bimonthly trapped along 6 trails within the RPPNSC with 10 Tomahawk traps each. Two trails were located in peridomiciliary areas near tourist lodging facilities, and four trails were located at sites visited by tourists in forest areas. The most prevalent species were Akodon cursor, Cerradomys subflavus and Oligoryzomys nigripes. Six isolates of Leishmania were obtained from these animals and identified as Leishmania braziliensis through HSP70-PCR RFLP method. Leishmania spp. DNA was detected by kDNA-PCR method and isolated by biphasic culture. Studies point to some of the captured species as potential wild reservoirs of Leishmania, suggesting they may be involved in the transmission cycle in these wild environments.

  6. Interactions between Leishmania braziliensis and Macrophages Are Dependent on the Cytoskeleton and Myosin Va

    PubMed Central

    Azevedo, Elisama; Oliveira, Leandro Teixeira; Castro Lima, Ana Karina; Terra, Rodrigo; Dutra, Patrícia Maria Lourenço; Salerno, Verônica P.

    2012-01-01

    Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections. PMID:22792440

  7. Interactions between Leishmania braziliensis and Macrophages Are Dependent on the Cytoskeleton and Myosin Va.

    PubMed

    Azevedo, Elisama; Oliveira, Leandro Teixeira; Castro Lima, Ana Karina; Terra, Rodrigo; Dutra, Patrícia Maria Lourenço; Salerno, Verônica P

    2012-01-01

    Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections.

  8. Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by Leishmania braziliensis in Peru and Bolivia

    PubMed Central

    Adaui, Vanessa; Lye, Lon-Fye; Akopyants, Natalia S.; Zimic, Mirko; Llanos-Cuentas, Alejandro; Garcia, Lineth; Maes, Ilse; De Doncker, Simonne; Dobson, Deborah E.; Arevalo, Jorge; Dujardin, Jean-Claude; Beverley, Stephen M.

    2016-01-01

    Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [SbV]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis–infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription–polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic SbV resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis. PMID:26123565

  9. Drought, Smallpox, and Emergence of Leishmania braziliensis in Northeastern Brazil

    PubMed Central

    Pearson, Richard

    2009-01-01

    Cutaneous leishmaniasis caused by Leishmania (Vianna) braziliensis is a major health problem in the state of Ceará in northeastern Brazil. We propose that the disease emerged as a consequence of the displacement of persons from Ceará to the Amazon region following the Great Drought and smallpox epidemic of 1877–1879. As the economic and social situation in Ceará deteriorated, ≈55,000 residents migrated to the Amazon region to find work, many on rubber plantations. Those that returned likely introduced L. (V.) brazilensis into Ceará, where the first cases of cutaneous leishmaniasis were reported early in the 20th century. The absence of an animal reservoir in Ceará, apart from dogs, supports the hypothesis. The spread of HIV/AIDS into the region and the possibility of concurrent cutaneous leishmaniasis raise the possibility of future problems. PMID:19523291

  10. Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by Leishmania braziliensis in Peru and Bolivia.

    PubMed

    Adaui, Vanessa; Lye, Lon-Fye; Akopyants, Natalia S; Zimic, Mirko; Llanos-Cuentas, Alejandro; Garcia, Lineth; Maes, Ilse; De Doncker, Simonne; Dobson, Deborah E; Arevalo, Jorge; Dujardin, Jean-Claude; Beverley, Stephen M

    2016-01-01

    Cutaneous and mucosal leishmaniasis, caused in South America by Leishmania braziliensis, is difficult to cure by chemotherapy (primarily pentavalent antimonials [Sb(V)]). Treatment failure does not correlate well with resistance in vitro, and the factors responsible for treatment failure in patients are not well understood. Many isolates of L. braziliensis (>25%) contain a double-stranded RNA virus named Leishmaniavirus 1 (LRV1), which has also been reported in Leishmania guyanensis, for which an association with increased pathology, metastasis, and parasite replication was found in murine models. Here we probed the relationship of LRV1 to drug treatment success and disease in 97 L. braziliensis-infected patients from Peru and Bolivia. In vitro cultures were established, parasites were typed as L. braziliensis, and the presence of LRV1 was determined by reverse transcription-polymerase chain reaction, followed by sequence analysis. LRV1 was associated significantly with an increased risk of treatment failure (odds ratio, 3.99; P = .04). There was no significant association with intrinsic Sb(V) resistance among parasites, suggesting that treatment failure arises from LRV1-mediated effects on host metabolism and/or parasite survival. The association of LRV1 with clinical drug treatment failure could serve to guide more-effective treatment of tegumentary disease caused by L. braziliensis. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  11. Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania (V.) braziliensis and Leishmania (L.) amazonensis

    PubMed Central

    Campos, Marliane Batista; Lima, Luciana Vieira do Rêgo; de Lima, Ana Carolina Stocco; Vasconcelos dos Santos, Thiago; Ramos, Patrícia Karla Santos; Gomes, Claudia Maria de Castro

    2018-01-01

    Leishmania (V.) braziliensis and Leishmania(L.) amazonensis are the most pathogenic agents of American Cutaneous Leishmaniasis in Brazil, causing a wide spectrum of clinical and immunopathological manifestations, including: localized cutaneous leishmaniasis (LCLDTH+/++), borderline disseminated cutaneous leishmaniasis (BDCLDTH±), anergic diffuse cutaneous leishmaniasis (ADCLDTH-), and mucosal leishmaniasis (MLDTH++++). It has recently been demonstrated, however, that while L. (V.) braziliensis shows a clear potential to advance the infection from central LCL (a moderate T-cell hypersensitivity form) towards ML (the highest T-cell hypersensitivity pole), L. (L.) amazonensis drives the infection in the opposite direction to ADCL (the lowest T-cell hypersensitivity pole). This study evaluated by immunohistochemistry the expression of Toll-like receptors (TLRs) 2, 4, and 9 and their relationships with CD4 and CD8 T-cells, and TNF-α, IL-10, and TGF-β cytokines in that disease spectrum. Biopsies of skin and mucosal lesions from 43 patients were examined: 6 cases of ADCL, 5 of BDCL, and 11 of LCL caused byL. (L.) amazonensis; as well as 10 cases of LCL, 4 of BDCL, and 6 of ML caused byL. (V.) braziliensis. CD4+ T-cells demonstrated their highest expression in ML and, in contrast, their lowest in ADCL. CD8+ T-cells also showed their lowest expression in ADCL as compared to the other forms of the disease. TNF-α+showed increased expression from ADCL to ML, while IL-10+and TGF-β+ showed increased expression in the opposite direction, from ML to ADCL. With regards to TLR2, 4, and 9 expressions, strong interactions of TLR2 and 4 with clinical forms associated with L. (V.) braziliensis were observed, while TLR9, in contrast, showed a strong interaction with clinical forms linked to L. (L.) amazonensis. These findings strongly suggest the ability of L. (V.) braziliensis and L. (L.) amazonensis to interact with those TLRs to promote a dichotomous T-cell immune response in ACL

  12. Leishmania amazonensis DNA in wild females of Lutzomyia cruzi (Diptera: Psychodidae) in the state of Mato Grosso do Sul, Brazil.

    PubMed

    Oliveira, Everton Falcão de; Casaril, Aline Etelvina; Mateus, Nathália Lopes Fontoura; Murat, Paula Guerra; Fernandes, Wagner Souza; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Galati, Eunice Aparecida Bianchi

    2015-12-01

    Studies on natural infection by Leishmania spp of sandflies collected in endemic and nonendemic areas can provide important information on the distribution and intensity of the transmission of these parasites. This study sought to investigate the natural infection by Leishmaniain wild female sandflies. The specimens were caught in the city of Corumbá, state of Mato Grosso do Sul (Brazil) between October 2012-March 2014, and dissected to investigate flagellates and/or submitted to molecular analysis to detect Leishmania DNA. A total of 1,164 females (77.56% of which were Lutzomyia cruzi) representing 11 species were investigated using molecular analysis; 126 specimens of Lu. cruziwere dissected and also submitted to molecular analysis. The infection rate based on the presence of Leishmania DNA considering all the sandfly species analysed was 0.69%; only Leishmania (Leishmania) amazonensis was identified in Lu. cruzi by the molecular analysis. The dissections were negative for flagellates. This is the first record of the presence of L. (L.) amazonensis DNA in Lu. cruzi, and the first record of this parasite in this area. These findings point to the need for further investigation into the possible role of this sandfly as vector of this parasite.

  13. CK2 Secreted by Leishmania braziliensis Mediates Macrophage Association Invasion: A Comparative Study between Virulent and Avirulent Promastigotes.

    PubMed

    Zylbersztejn, Ana Madeira Brito; de Morais, Carlos Gustavo Vieira; Lima, Ana Karina Castro; Souza, Joyce Eliza de Oliveira; Lopes, Angela Hampshire; Da-Silva, Sílvia Amaral Gonçalves; Silva-Neto, Mário Alberto Cardoso; Dutra, Patrícia Maria Lourenço

    2015-01-01

    CK2 is a protein kinase distributed in different compartments of Leishmania braziliensis: an externally oriented ecto-CK2, an intracellular CK2, and a secreted CK2. This latter form is constitutively secreted from the parasite (CsCK2), but such secretion may be highly enhanced by the association of specific molecules, including enzyme substrates, which lead to a higher enzymatic activity, called inductively secreted CK2 (IsCK2). Here, we examined the influence of secreted CK2 (sCK2) activity on the infectivity of a virulent L. braziliensis strain. The virulent strain presented 121-fold higher total CK2 activity than those found in an avirulent strain. The use of specific CK2 inhibitors (TBB, DRB, or heparin) inhibited virulent parasite growth, whereas no effect was observed in the avirulent parasites. When these inhibitors were added to the interaction assays between the virulent L. braziliensis strain and macrophages, association index was drastically inhibited. Polyamines enhanced sCK2 activity and increased the association index between parasites and macrophages. Finally, sCK2 and the supernatant of the virulent strain increased the association index between the avirulent strain and macrophages, which was inhibited by TBB. Thus, the kinase enzyme CK2 seems to be important to invasion mechanisms of L. braziliensis.

  14. Antiparasitic activity and effect of casearins isolated from Casearia sylvestris on Leishmania and Trypanosoma cruzi plasma membrane.

    PubMed

    Bou, Diego Dinis; Tempone, André G; Pinto, Érika G; Lago, João Henrique G; Sartorelli, Patricia

    2014-04-15

    Leishmaniasis and Chagas disease are infectious diseases caused by parasite Leishmania sp. and Trypanosoma cruzi, respectively, and are included among the most neglected diseases in several underdeveloped and developing countries, with an urgent demand for new drugs. Considering the antiparasitic potential of MeOH extract from leaves of Casearia sylvestris Sw. (Salicaceae), a bioguided fractionation was conducted and afforded four active clerodane diterpenes (casearins A, B, G, and J). The obtained results indicated a superior efficacy of tested casearins against trypomastigotes of T. cruzi, with IC50 values ranging from 0.53 to 2.77 μg/ml. Leishmania infantum promastigotes were also susceptible to casearins, with IC50 values in a range between 4.45 and 9.48 μg/ml. These substances were also evaluated for mammalian cytotoxicity against NCTC cells resulting in 50% cytotoxic concentrations (CC50) ranging from 1.46 to 13.76 μg/ml. Additionally, the action of casearins on parasite membranes was investigated using the fluorescent probe SYTOX Green. The obtained results demonstrated a strong interaction of casearins A and B to the plasma membrane of T. cruzi parasites, corroborating their higher efficacy against these parasites. In contrast, the tested casearins induced no alteration in the permeability of plasma membrane of Leishmania parasites, suggesting that biochemical differences between Leishmania and T. cruzi plasma membrane might have contributed to the target effect of casearins on trypomastigotes. Thus, considering the importance of studying novel and selective drug candidates against protozoans, casearins A, B, G, and J could be used as tools to future drug design studies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Leishmania amazonensis DNA in wild females of Lutzomyia cruzi (Diptera: Psychodidae) in the state of Mato Grosso do Sul, Brazil

    PubMed Central

    de Oliveira, Everton Falcão; Casaril, Aline Etelvina; Mateus, Nathália Lopes Fontoura; Murat, Paula Guerra; Fernandes, Wagner Souza; Oshiro, Elisa Teruya; de Oliveira, Alessandra Gutierrez; Galati, Eunice Aparecida Bianchi

    2015-01-01

    Studies on natural infection by Leishmania spp of sandflies collected in endemic and nonendemic areas can provide important information on the distribution and intensity of the transmission of these parasites. This study sought to investigate the natural infection by Leishmaniain wild female sandflies. The specimens were caught in the city of Corumbá, state of Mato Grosso do Sul (Brazil) between October 2012-March 2014, and dissected to investigate flagellates and/or submitted to molecular analysis to detect Leishmania DNA. A total of 1,164 females (77.56% of which were Lutzomyia cruzi) representing 11 species were investigated using molecular analysis; 126 specimens of Lu. cruziwere dissected and also submitted to molecular analysis. The infection rate based on the presence of Leishmania DNA considering all the sandfly species analysed was 0.69%; only Leishmania (Leishmania) amazonensis was identified in Lu. cruzi by the molecular analysis. The dissections were negative for flagellates. This is the first record of the presence of L. (L.) amazonensis DNA in Lu. cruzi, and the first record of this parasite in this area. These findings point to the need for further investigation into the possible role of this sandfly as vector of this parasite. PMID:26602870

  16. Antimicrobial peptides isolated from Phyllomedusa nordestina (Amphibia) alter the permeability of plasma membrane of Leishmania and Trypanosoma cruzi.

    PubMed

    Pinto, Erika Gracielle; Pimenta, Daniel C; Antoniazzi, Marta Maria; Jared, Carlos; Tempone, Andre Gustavo

    2013-12-01

    Nature has provided inspiration for Drug Discovery studies and amphibian secretions have been used as a promising source of effective peptides which could be explored as novel drug prototypes for neglected parasitic diseases as Leishmaniasis and Chagas disease. In this study, we isolated four antimicrobial peptides (AMPs) from Phyllomedusa nordestina secretion, and studied their effectiveness against Leishmania (L.) infantum and Trypanosoma cruzi. The antiparasitic fractions were characterized by mass spectrometry and Edman degradation, leading to the identification of dermaseptins 1 and 4 and phylloseptins 7 and 8. T. cruzi trypomastigotes were susceptible to peptides, showing IC50 values in the range concentration of 0.25-0.68 μM. Leishmania (L.) infantum showed susceptibility to phylloseptin 7, presenting an IC50 value of 10 μM. Except for phylloseptin 7 which moderate showed cytotoxicity (IC50=34 μM), the peptides induced no cellular damage to mammalian cells. The lack of mitochondrial oxidative activity of parasites detected by the MTT assay, suggested that peptides were leishmanicidal and trypanocidal. By using the fluorescent probe SYTOX(®) Green, dermaseptins 1 and 4 and phylloseptins 7 and 8 showed time-dependent plasma membrane permeabilization of T. cruzi; phylloseptin 7 also showed a similar effect in Leishmania parasites. The present study demonstrates for the first time that AMPs target the plasma membrane of Leishmania and T. cruzi, leading to cellular death. Considering the potential of amphibian peptides against protozoan parasites and the reduced mammalian toxicity, they may contribute as scaffolds for drug design studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Phototoxic effects of silicon bis (dimetilaminoetanoxi)-phthalocyanine (SiPc) on the viability of Leishmania major and Leishmania braziliensis promastigotes

    NASA Astrophysics Data System (ADS)

    Guerra Pinto, Juliana; Ferreira-Strixino, Juliana; Mittmann, Josane

    2016-06-01

    American cutaneous leishmaniasis (ACL) is an infectious disease caused by protozoans of the genus Leishmania. The treatment may consist of pentavalent antimonials or pentamidine and amphotericin. However, these treatments are extremely aggressive. Photodynamic antimicrobial chemotherapy (PACT) involves the same mechanism of photodynamic therapy which associates a photosensitizer with oxygen and a light source generating a photochemical reaction leading to cell death. The aim of this study was to verify the potential use of silicon bis (dimetilaminoetanoxi)-phthalocyanine (SiPc) compound in photodynamic treatment through evaluation of its phototoxic effect in promastigotes of the genus Leishmania braziliensis and Leishmania major. Treatment with SiPc was able to drastically affect the viability of the parasites as well as affect their growth and morphology, after PACT treatment. The data shown in this study allows us to conclude that SiPc is a promising photosensitizer (PS) since it does not affect parasite growth and viability in the dark. After PACT with this phthalocyanine, over 99% of parasites were killed with the higher concentration and a light dose used. These results suggest that SiPc can be used in future to treat CL, however, further studies are necessary to determine whether the PS are toxic to mononuclear phagocytic cells and epithelial cells which will also be affected by therapy when applied topically.

  18. RNA polymerase activity is associated with viral particles isolated from Leishmania braziliensis subsp. guyanensis.

    PubMed Central

    Widmer, G; Keenan, M C; Patterson, J L

    1990-01-01

    Viral particles purified from species of the protozoan parasite Leishmania braziliensis subsp. guyanensis by centrifugation in CsCl gradients were examined for the presence of viral polymerase. We demonstrated that RNA-dependent RNA polymerase is associated with viral particles. Viral transcription was studied in vitro with pulse-chase experiments and by assaying the RNase sensitivity of the viral transcripts. Viral polymerase synthesized full-length transcripts within 1 h. Double-strained, genome-length, and single-stranded RNAs were produced in this system. The nature of the RNA extracted from virions was also tested by RNase protection assays; both single-stranded and double-stranded RNAs were found. Images PMID:2370680

  19. Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages.

    PubMed

    Téllez, Jair; Romero, Ibeth; Soares, Maurilio José; Steindel, Mario; Romanha, Alvaro José

    2017-07-01

    Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmania -infected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (Sb V ), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S -transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of Sb V By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1 , GSS , and ABCB5 resulted in an increased leishmanicidal effect of Sb V exposure in vitro Our results suggest that human MDMs infected with L. braziliensis and treated with Sb V express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime. Copyright © 2017 American Society for

  20. Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages

    PubMed Central

    Romero, Ibeth; Soares, Maurilio José; Romanha, Alvaro José

    2017-01-01

    ABSTRACT Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmania-infected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (SbV), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S-transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of SbV. By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1, GSS, and ABCB5 resulted in an increased leishmanicidal effect of SbV exposure in vitro. Our results suggest that human MDMs infected with L. braziliensis and treated with SbV express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime. PMID:28461312

  1. Detection of Leishmania amazonensis and Leishmania braziliensis in Culicoides (Diptera, Ceratopogonidae) in an endemic area of cutaneous leishmaniasis in the Brazilian Amazonia.

    PubMed

    Rebêlo, José Manuel Macário; Rodrigues, Bruno Leite; Bandeira, Maria da Conceição Abreu; Moraes, Jorge Luiz Pinto; Fonteles, Raquel Silva; Pereira, Silma Regina Ferreira

    2016-12-01

    Biting midges in the genus Culicoides act as vectors of arboviruses throughout the world and as vectors of filariasis in Latin America, the Caribbean, and parts of Africa. Although Culicoides spp. are currently not considered to be vectors of Leishmania protozoa, the high abundance of biting midges in areas with active cutaneous leishmaniasis transmission points to the possibility of Culicoides infection by these pathogens. We used PCR to test captured Culicoides species for natural infection with Leishmania spp. We tested 450 Culicoides females, divided into 30 pools of 15 individuals each, as follows: nine pools of C. foxi (135 specimens), seven pools of C. filariferus (105), seven pools of C. insignis (105), five pools of C. ignacioi (75), and two pools of C. flavivenula (30). PCR confirmed the presence of Leishmania braziliensis DNA in C. ignacioi (0.14%), C. insignis (0.14%), and C. foxi (0.11); and Le. amazonensis DNA in C. filariferus (0.14%) and C. flavivenula (0.50%). We conclude that these Culicoides species can be naturally infected, but vector competence and transmission capability must be confirmed in future studies. Our results warrant further investigation into the role of these biting midge species in the leishmaniasis epidemiological cycle. © 2016 The Society for Vector Ecology.

  2. Cutaneous leishmaniosis in naturally infected dogs in Paraná, Brazil, and the epidemiological implications of Leishmania (Viannia) braziliensis detection in internal organs and intact skin.

    PubMed

    Marquez, Ellen de Souza; de Castro, Edilene Alcântara; Nabut, Luciene Biazono; da Costa-Ribeiro, Magda Clara Vieira; Dela Coletta Troiano Araújo, Ludmilla; Poubel, Saloe Bispo; Gonçalves, André Luiz; Cruz, Mariza Fordellone Rosa; Dos Santos Trad, Ana Paula Millet Evangelista; Dias, Rafael Andre Ferreira; Navarro, Italmar Teodorico; Thomaz-Soccol, Vanete

    2017-08-30

    Environmental changes have occurred over the years, altering the eco-epidemiological pattern of leishmaniosis in the State of Paraná, Brazil, involving the pillars of the cycle (parasite, vectors, reservoir, and environment) and their interaction. Much has been discussed about the dog's role as a reservoir of the Leishmania (Viannia) braziliensis Vianna, 1911 transmission cycle. However, this question remains unanswered. The purpose of this study was to investigate, using parasitological and molecular methods, different samples in eight naturally infected dogs from an endemic rural locality where only L. (V.) braziliensis is present, and where human cases have been previously notified. Blood and biopsied organ samples from naturally infected dogs were analyzed by culture media, PCR, random amplified polymorphic DNA and sequencing methodologies. Only skin lesions from all dogs yielded positive cultures and when PCR was performed, L. (V.) braziliensis DNA was amplified from intact skin, peripheral blood, bone marrow, spleen, liver and lymph nodes. RAPD was also applied to isolates from the skin lesions, exhibiting the genetic variability of the parasite identified. To confirm which species of Leishmania was amplified in PCR, the sequencing method was performed, verifying 100% similarity with the Viannia subgenus. This study showed that L. (V.) braziliensis can spread to other sites besides the ulcerous lesions, such as intact skin, peripheral blood and internal organs, making it possibility for dogs to serve as active sources of parasite transmission. For definitive proof, xenodiagnostic test on intact skin of infected dogs, should be done. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Characterization of cell cultures derived from Lutzomyia spinicrassa (Diptera: Psychodidae) and their susceptibility to infection with Leishmania (Viannia) braziliensis.

    PubMed

    Zapata Lesmes, Angela Cristina; Cárdenas Castro, Estrella; Bello, Felio

    2005-12-01

    The sand fly Lutzomyia spinicrassa (Morales, Osorno-Mesa, Osorno & de Hoyos, 1969) is a vector of Leishmania (Viannia) braziliensis, an etiological agent of cutaneous leishmaniasis in Colombia. The present article describes, for the first time, the morphological, karyotypical, and isozymatic characteristics of cell cultures derived from L. Spinicrassa embryonic tissues as well as the interaction of L. Braziliensis with these cell cultures. L. Spinicrassa embryonated eggs and neonate larvae were taken for tissue explants. These were seeded in Grace, L-15, Grace/L-15, MM/VP12, and MK/VP12 culture media. The pH range in these media was 6.7 to 6.9 and the cultures were incubated at 28 degrees C. The MHOM/CO/86/CL250 strain of L. Braziliensis was used for experimental infection of cell cultures of L. Spinicrassa. Cell growth was achieved in L-15 medium and a confluent monolayer was obtained 180 days after the embryonated eggs were explanted. The cell morphology of the primary cell cultures was initially heterogeneous, but in the confluent monolayer of these cell cultures and in the subcultures the predominant cell types were later fibroblast-like and epithelial-like. Cultured cells were predominantly diploid (2n=8); however, significant percentages of aneuploids were also recorded. The cell culture isozyme patterns of L. Spinicrassa coincided with pupae samples from the same species. Promastigote forms of L. Braziliensis could invade cells and transform into amastigote-like forms inside them. The characteristics of cell cultures derived from L. Spinicrassa embryonic tissues were determined. These cultures emerge as a new model to study the life-cycle of L. Braziliensis.

  4. Evaluation of photodynamic antimicrobial therapy (PACT) against promastigotes form of the Leishmania (Viannia) braziliensis: in vitro study

    NASA Astrophysics Data System (ADS)

    Barbosa, Artur F. S.; Sangiorgi, Bruno B.; Galdino, Suely L.; Pitta, Ivan R.; Barral Netto, Manoel; Correia, Neandder A.; Pinheiro, Antônio L. B.

    2012-03-01

    Leishmaniasis is a complex disease that affects more than 12 million people in 88 countries worldwide. Leishmania (Viannia) braziliensis is the most common species in the Americas and the most important causative agent of cutaneous and mucocutaneous leishmaniasis in Brazil. The therapeutic arsenal routinely employed to treat patients with leishmaniasis is limited and unsatisfactory. For cutaneous leishmaniasis, pentavalent antimonials are the first line therapeutic scheme recommended by the WHO. These compounds are highly toxic, poorly tolerated and their effectiveness highly variable. In this work, a technique with, so far, an unknown disadvantage is discussed. The aim of this study was to verify the effectiveness of PACT in vitro, as a new technique for the treatment of Leishmaniasis. For this, semiconductor laser (λ = 660nm, 40mW, 4.2J/cm2, CW) associated to phenothiazine's derivatives (5 and 10 μg/ml, TBO, Methylene Blue or Phenothiazine) on the promastigotes form of Leishmania braziliensis in a single session was used. Viability of the parasites was assessed in quadruplicates of each group. The samples were removed and analyzed in a hemocytometer 72h after PACT. We found an important decrease in the number of viable parasites on all treated groups in comparison to their controls. The results of present study showed significant percentage of lethality (above 95%) of the protocol. The 99.23% of lethality was achieved with 10 μg/ml of TBO. No lethality was seen on groups treated neither with laser nor with each compounds separately. The results are promising and indicative that the use of PACT may be a powerful treatment of leishmaniasis when compared to already available ones.

  5. Prevalence and Distribution of Leishmania RNA Virus 1 in Leishmania Parasites from French Guiana

    PubMed Central

    Ginouvès, Marine; Simon, Stéphane; Bourreau, Eliane; Lacoste, Vincent; Ronet, Catherine; Couppié, Pierre; Nacher, Mathieu; Demar, Magalie; Prévot, Ghislaine

    2016-01-01

    In South America, the presence of the Leishmania RNA virus type 1 (LRV1) was described in Leishmania guyanensis and Leishmania braziliensis strains. The aim of this study was to determine the prevalence distribution of LRV1 in Leishmania isolates in French Guiana given that, in this French overseas department, most Leishmania infections are due to these parasite species. The presence of the virus was observed in 74% of Leishmania sp. isolates, with a highest presence in the internal areas of the country. PMID:26598572

  6. Prevalence and Distribution of Leishmania RNA Virus 1 in Leishmania Parasites from French Guiana.

    PubMed

    Ginouvès, Marine; Simon, Stéphane; Bourreau, Eliane; Lacoste, Vincent; Ronet, Catherine; Couppié, Pierre; Nacher, Mathieu; Demar, Magalie; Prévot, Ghislaine

    2016-01-01

    In South America, the presence of the Leishmania RNA virus type 1 (LRV1) was described in Leishmania guyanensis and Leishmania braziliensis strains. The aim of this study was to determine the prevalence distribution of LRV1 in Leishmania isolates in French Guiana given that, in this French overseas department, most Leishmania infections are due to these parasite species. The presence of the virus was observed in 74% of Leishmania spp. isolates, with a highest presence in the internal areas of the country. © The American Society of Tropical Medicine and Hygiene.

  7. Assessment of the role of small mammals in the transmission cycle of tegumentary leishmaniasis and first report of natural infection with Leishmania braziliensis in two sigmodontines in northeastern Argentina.

    PubMed

    Fernández, María S; Fraschina, Jimena; Acardi, Soraya; Liotta, Domingo J; Lestani, Eduardo; Giuliani, Magalí; Busch, María; Salomón, O Daniel

    2018-02-01

    To contribute to the knowledge of the role of small mammals in the transmission cycle of tegumentary leishmaniasis caused by Leishmania braziliensis, we studied the small mammal community and its temporal and spatial association with phlebotominae, as well as small mammal infection by Leishmania spp. by PCR-RFLP analyses in an endemic area of northeastern Argentina. Ten small mammal samplings were conducted (2007-2009, 7506 Sherman trap nights and 422 cage trap nights). In two of these samplings, 16 capture stations each one consisting of a CDC light trap to capture phlebotominae, two to four Sherman traps and two cage traps were placed. We found co-occurrence of phlebotominae and small mammal captures in four stations, which were all the stations with small mammal captures and yielded 97% (2295 specimens, including 21 gravid females) of the total phlebotominae captures, suggesting that small mammals may provide a potential source of blood for phlebotominae females. One Didelphis albiventris and two Rattus rattus were associated with high captures of Nyssomyia whitmani, vector of L. braziliensis in the study area. The PCR-RFLP analyses confirm the presence of L. braziliensis in two sigmodontine small mammals (Akodon sp. and Euryoryzomys russatus) for the first time in Argentina, to our knowledge.

  8. Abietane-Type Diterpenoid Amides with Highly Potent and Selective Activity against Leishmania donovani and Trypanosoma cruzi.

    PubMed

    Pirttimaa, Minni; Nasereddin, Abedelmajeed; Kopelyanskiy, Dmitry; Kaiser, Marcel; Yli-Kauhaluoma, Jari; Oksman-Caldentey, Kirsi-Marja; Brun, Reto; Jaffe, Charles L; Moreira, Vânia M; Alakurtti, Sami

    2016-02-26

    Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 μM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 μM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 μM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.

  9. Trypanosoma cruzi and Leishmania infantum chagasi Infection in Wild Mammals from Maranhão State, Brazil.

    PubMed

    da Costa, Andréa Pereira; Costa, Francisco Borges; Soares, Herbert Sousa; Ramirez, Diego Garcia; Mesquita, Eric Takashi Kamakura de Carvalho; Gennari, Solange Maria; Marcili, Arlei

    2015-11-01

    Trypanosoma and Leishmania are obligate parasites that cause important diseases in human and domestic animals. Wild mammals are the natural reservoirs of these parasites, which are transmitted by hematophagous arthropods. The present study aimed to detect the natural occurrence of trypanosomatids through serological diagnosis, PCR of whole blood and blood culture (hemoculture), and phylogenetic relationships using small subunit ribosomal DNA (SSU rDNA), cytochrome b, and glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) genes. Samples from 131 wild animals, including rodents, marsupials, and bats, were sampled in six areas in the state of Maranhão, in a transition zone of semiarid climates northeast of the equatorial humid Amazon. Serological analysis for Leishmania (Leishmania) infantum chagasi was performed in opossums by indirect fluorescent antibody test (IFAT), and all animals were serologically negative. Nine positive hemocultures (6.77%) were isolated and cryopreserved and from mammals of the Didelphimorphia and Chiroptera orders and positioned in phylogenies on the basis of sequences from different genes with reference strains of Trypanosoma cruzi marinkellei and T. cruzi. From primary samples (blood and tissues) only one bat, Pteronotus parnellii, was positive to SSU rDNA and gGAPDH genes and grouped with the L. infantum chagasi branch. The studies conducted in Maranhão State provide knowledge of parasite diversity. It is important to determine the presence of trypanosomatids in wild mammals with synanthropic habits.

  10. New primers for the detection Leishmania species by multiplex polymerase chain reaction.

    PubMed

    Conter, Carolina Cella; Lonardoni, Maria Valdrinez Campana; Aristides, Sandra Mara Alessi; Cardoso, Rosilene Fressatti; Silveira, Thaís Gomes Verzignassi

    2018-02-01

    Leishmaniasis is caused by protozoa of the Leishmania genus, which is divided into subgenus Viannia and Leishmania. In humans, the course of infection largely depends on the host-parasite relationship and primarily of the infective species. The objective of the present study was to design specific primers to the identification of Leishmania species using multiplex PCR. Four primers were designed, based on the GenBank sequences of the kDNA minicircle, amplifying 127 bp for subgenus Viannia, 100 bp for L. amazonensis, and 60 bp for Leishmania donovani complex and L. major. None of the primers amplified Trypanosoma cruzi or L. mexicana. The limit of detection of multiplex PCR was 2 × 10 -5 parasites for L. braziliensis, 2 x 10 -3 parasites for L. amazonensis, and 1.4 × 10 -3 parasites for L. infantum. The high sensitivity of multiplex PCR was confirmed by the detection of parasites in different biological samples, including lesion scrapings, spleen imprinting of a hamster, sandflies, and blood. The multiplex PCR that was developed herein presented good performance with regard to detecting and identifying the parasite in different biological samples and may thus be useful for diagnosis, decision making with regard to the proper therapeutic approach, and determining the geographic distribution of Leishmania species.

  11. A vaccine composed of a hypothetical protein and the eukaryotic initiation factor 5a from Leishmania braziliensis cross-protection against Leishmania amazonensis infection.

    PubMed

    Duarte, Mariana Costa; Lage, Daniela Pagliara; Martins, Vívian Tamietti; Costa, Lourena Emanuele; Carvalho, Ana Maria Ravena Severino; Ludolf, Fernanda; Santos, Thaís Teodoro de Oliveira; Vale, Danniele Luciana; Roatt, Bruno Mendes; Menezes-Souza, Daniel; Fernandes, Ana Paula; Tavares, Carlos Alberto Pereira; Coelho, Eduardo Antonio Ferraz

    2017-02-01

    In the present study, two proteins cloned from Leishmania braziliensis species, a hypothetical protein (LbHyp) and the eukaryotic initiation factor 5a (EiF5a), were evaluated to protect BALB/c mice against L. amazonensis infection. The animals were immunized with the antigens, either separately or in combination, using saponin as an immune adjuvant in both cases. Spleen cells from vaccinated and later infected mice produced significantly higher levels of protein and parasite-specific IFN-γ, IL-12, and GM-CSF, in addition to low levels of IL-4 and IL-10. Evaluating the parasite load by means of a limiting dilution technique and quantitative Real-Time PCR, vaccinated animals presented significant reductions in the parasite load in both infected tissues and organs, as well as lower footpad swelling, when compared to the control (saline and saponin) groups. The best results regarding the protection of the animals were achieved when the combined vaccine was administered into the animals. Protection was associated with an IFN-γ production against parasite antigens, which was mediated by both CD4 + and CD8 + T cells and correlated with antileishmanial nitrite production. In conclusion, data from the present study show that this polyprotein vaccine, which combines two L. braziliensis proteins, can induce protection against L. amazonensis infection. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Comparative genomic analysis of three Leishmania species that cause diverse human disease

    PubMed Central

    Peacock, Christopher S; Seeger, Kathy; Harris, David; Murphy, Lee; Ruiz, Jeronimo C; Quail, Michael A; Peters, Nick; Adlem, Ellen; Tivey, Adrian; Aslett, Martin; Kerhornou, Arnaud; Ivens, Alasdair; Fraser, Audrey; Rajandream, Marie-Adele; Carver, Tim; Norbertczak, Halina; Chillingworth, Tracey; Hance, Zahra; Jagels, Kay; Moule, Sharon; Ormond, Doug; Rutter, Simon; Squares, Rob; Whitehead, Sally; Rabbinowitsch, Ester; Arrowsmith, Claire; White, Brian; Thurston, Scott; Bringaud, Frédéric; Baldauf, Sandra L; Faulconbridge, Adam; Jeffares, Daniel; Depledge, Daniel P; Oyola, Samuel O; Hilley, James D; Brito, Loislene O; Tosi, Luiz R O; Barrell, Barclay; Cruz, Angela K; Mottram, Jeremy C; Smith, Deborah F; Berriman, Matthew

    2008-01-01

    Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage. PMID:17572675

  13. Germacranolide-type sesquiterpene lactones from Smallanthus sonchifolius with promising activity against Leishmania mexicana and Trypanosoma cruzi.

    PubMed

    Ulloa, Jerónimo L; Spina, Renata; Casasco, Agustina; Petray, Patricia B; Martino, Virginia; Sosa, Miguel A; Frank, Fernanda M; Muschietti, Liliana V

    2017-11-13

    Leishmaniasis and Chagas disease are life-threatening illnesses caused by the protozoan parasites Leishmania spp. and Trypanosoma cruzi, respectively. They are known as "neglected diseases" due to the lack of effective drug treatments and the scarcity of research work devoted to them. Therefore, the development of novel and effective drugs is an important and urgent need. Natural products are an important source of bioactive molecules for the development of new drugs. In this study, we evaluated the activity of enhydrin, uvedalin and polymatin B, three sesquiterpene lactones (STLs) isolated from Smallanthus sonchifolius, on Leishmania mexicana (MNYC/BZ/62/M) and Trypanosoma cruzi (Dm28c). In addition, the in vivo trypanocidal activity of enhydrin and uvedalin and the effects of these STLs on parasites' ultrastructure were evaluated. The inhibitory effect of the three STLs on the growth of L. mexicana amastigotes and promastigotes as well as T. cruzi epimastigotes was evaluated in vitro. The changes produced by the STLs on the ultrastructure of parasites were examined by transmission electron microscopy (TEM). Enhydrin and uvedalin were also studied in a murine model of acute T. cruzi infection (RA strain). Serum activities of the hepatic enzymes alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were used as biochemical markers of hepatotoxicity. The three compounds exhibited leishmanicidal activity on both parasite forms with IC 50 values of 0.42-0.54 μg/ml for promastigotes and 0.85-1.64 μg/ml for intracellular amastigotes. Similar results were observed on T. cruzi epimastigotes (IC 50 0.35-0.60 μg/ml). The TEM evaluation showed marked ultrastructural alterations, such as an intense vacuolization and mitochondrial swelling in both L. mexicana promastigotes and T. cruzi epimastigotes exposed to the STLs. In the in vivo study, enhydrin and uvedalin displayed a significant decrease in circulating parasites (50-71%) and no signs of

  14. Differential Recruitment of Dendritic Cells Subsets to Lymph Nodes Correlates with a Protective or Permissive T-Cell Response during Leishmania (Viannia) Braziliensis or Leishmania (Leishmania) Amazonensis Infection.

    PubMed

    Carvalho, A K; Carvalho, K; Passero, L F D; Sousa, M G T; da Matta, V L R; Gomes, C M C; Corbett, C E P; Kallas, G E; Silveira, F T; Laurenti, M D

    2016-01-01

    Leishmania (L.) amazonensis (La) and L. (V.) braziliensis (Lb) are responsible for a large clinical and immunopathological spectrum in human disease; while La may be responsible for anergic disease, Lb infection leads to cellular hypersensitivity. To better understand the dichotomy in the immune response caused by these Leishmania species, we evaluated subsets of dendritic cells (DCs) and T lymphocyte in draining lymph nodes during the course of La and Lb infection in BALB/c mice. Our results demonstrated a high involvement of DCs in La infection, which was characterized by the greater accumulation of Langerhans cells (LCs); conversely, Lb infection led to an increase in dermal DCs (dDCs) throughout the infection. Considering the T lymphocyte response, an increase of effector, activated, and memory CD4(+) T-cells was observed in Lb infection. Interleukin- (IL-) 4- and IL-10-producing CD4(+)and CD8(+) T-cells were present in both La and Lb infection; however, interferon- (IFN-) γ-producing CD4(+)and CD8(+) T-cells were detected only in Lb infection. The results suggest that during Lb infection, the dDCs were the predominant subset of DCs that in turn was associated with the development of Th1 immune response; in contrast La infection was associated with a preferential accumulation of LCs and total blockage of the development of Th1 immune response.

  15. In vitro characterization of Leishmania (Viannia) braziliensis isolates from patients with different responses to Glucantime(®) treatment from Northwest Paraná, Brazil.

    PubMed

    Fernandes, Andrea Claudia Bekner Silva; Pedroso, Raíssa Bocchi; de Mello, Tatiane França Perles; Donatti, Lucélia; Venazzi, Eneide Aparecida Sabaini; Demarchi, Izabel Galhardo; Aristides, Sandra Mara Alessi; Lonardoni, Maria Valdrinez Campana; Silveira, Thaís Gomes Verzignassi

    2016-08-01

    Leishmaniasis is a group of diseases that presents various clinical manifestations. Many studies have shown that the parasite plays an important role in the clinical manifestations and prognosis of this disease. The cutaneous and mucosal forms of American tegumentary leishmaniasis (ATL) are associated with Leishmania (Viannia) braziliensis, which exhibits intraspecific genetic polymorphisms and various clinical manifestations. The present study focused on four different L. braziliensis strains that were isolated from patients with distinct Glucantime(®) treatment responses. The isolates were described based on their molecular, biological, and infective characteristics. Growth patterns in culture medium and different grow phases were analyzed, MID-Logarithimic (Mid-LOG), Logarithimic (LOG) and Stationary (STAT) phases. Complement resistance was evaluated using guinea pig serum. Infection to murine peritoneal macrophages, cytokine and nitric oxide were analyzed. Ultrastructural features were determined by transmission electron microscopy, and molecular characteristics were determined based on random amplified polymorphic DNA (RAPD). All of the L. braziliensis isolates showed typical growth and similar complement sensitivity patterns. Markedly lower infectivity indexes were observed for all strains in the LOG phase, with different cytokine profiles. The ultrastructure analysis revealed distinct differences between the MID-LOG, LOG, and STAT phases. The RAPD results showed a divergence between the isolates of the L. braziliensis. The in vitro characterization of L. braziliensis isolates from humans with different treatment responses using various parameters enabled us to observe differences among the isolates. Molecular and in vivo characterizations are currently under study to improve understanding of the parasite-host interaction that can imply in the clinical manifestation differences. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Identification of two p23 co-chaperone isoforms in Leishmania braziliensis exhibiting similar structures and Hsp90 interaction properties despite divergent stabilities.

    PubMed

    Batista, Fernanda A H; Almeida, Glessler S; Seraphim, Thiago V; Silva, Kelly P; Murta, Silvane M F; Barbosa, Leandro R S; Borges, Júlio C

    2015-01-01

    The small acidic protein called p23 acts as a co-chaperone for heat-shock protein of 90 kDa (Hsp90) during its ATPase cycle. p23 proteins inhibit Hsp90 ATPase activity and show intrinsic chaperone activity. A search for p23 in protozoa, especially trypanosomatids, led us to identify two putative proteins in the Leishmania braziliensis genome that share approximately 30% identity with each other and with the human p23. To understand the presence of two p23 isoforms in trypanosomatids, we obtained the recombinant p23 proteins of L. braziliensis (named Lbp23A and Lbp23B) and performed structural and functional studies. The recombinant proteins share similar solution structures; however, temperature- and chemical-induced unfolding experiments showed that Lbp23A is more stable than Lbp23B, suggesting that they may have different functions. Lbp23B prevented the temperature-induced aggregation of malic dehydrogenase more efficiently than did Lbp23A, whereas the two proteins had equivalent efficiencies with respect to preventing the temperature-induced aggregation of luciferase. Both proteins interacted with L. braziliensis Hsp90 (LbHsp90) and inhibited its ATPase activity, although their efficiencies differed. In vivo identification studies suggested that both proteins are present in L. braziliensis cells grown under different conditions, although Lbp23B may undergo post-translation modifications. Interaction studies indicated that both Lbp23 proteins interact with LbHsp90. Taken together, our data suggest that the two protozoa p23 isoforms act similarly when regulating Hsp90 function. However, they also have some differences, indicating that the L. braziliensis Hsp90 machine has features providing an opportunity for novel forms of selective inhibition of protozoan Hsp90. © 2014 FEBS.

  17. Early Cutaneous Leishmaniasis Patients Infected With Leishmania braziliensis Express Increased Inflammatory Responses After Antimony Therapy.

    PubMed

    Costa, Rúbia S; Carvalho, Lucas P; Campos, Taís M; Magalhães, Andréa S; Passos, Sara T; Schriefer, Albert; Silva, Juliana A; Lago, Ednaldo; Paixão, Camilla S; Machado, Paulo; Scott, Phillip; Carvalho, Edgar M

    2018-02-14

    Early cutaneous leishmaniasis (ECL) is characterized by a nonulcerated papular lesion and illness duration less than 30 days. Approximately 4 weeks later, the cutaneous leishmaniasis (CL) ulcers appear. We were surprised to find that failure after antimony therapy (Sb5) is higher in ECL than CL. We hypothesize that the inflammatory response in ECL patients may increase during Sb5 therapy, which leads to treatment failure. A cohort of 44 ECL patients infected by Leishmania braziliensis was established to evaluate the response to Sb5 and to compare immunologic responses in ECL patients with CL and healthy subjects. A hierarchical clustering based on cytokine levels showed a weak positive correlation between proinflammatory cytokine levels and those patients that failed Sb5 treatment. Although Sb5 therapy decreased interferon-γ and tumor necrosis factor levels in CL patients, we were surprised to find that an increase in these cytokines was observed in ECL patients. Moreover, interleukin (IL)-10 was less able to down-modulate immune responses in ECL. The enhanced production of proinflammatory cytokines, due in part to the decreased ability of IL-10 to down-modulate immune response during therapy in ECL, promotes the development and persistence of leishmania ulcer despite antimony therapy. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Ecto-Nucleotidase Activities of Promastigotes from Leishmania (Viannia) braziliensis Relates to Parasite Infectivity and Disease Clinical Outcome

    PubMed Central

    Leite, Pauline M.; Gomes, Rodrigo S.; Figueiredo, Amanda B.; Serafim, Tiago D.; Tafuri, Wagner L.; de Souza, Carolina C.; Moura, Sandra A. L.; Fietto, Juliana L. R.; Melo, Maria N.; Ribeiro-Dias, Fátima; Oliveira, Milton A. P.; Rabello, Ana; Afonso, Luís C. C.

    2012-01-01

    Background Leishmania (Viannia) braziliensis has been associated with a broad range of clinical manifestations ranging from a simple cutaneous ulcer to destructive mucosal lesions. Factors leading to this diversity of clinical presentations are not clear, but parasite factors have lately been recognized as important in determining disease progression. Given the fact that the activity of ecto-nucleotidases correlates with parasitism and the development of infection, we evaluated the activity of these enzymes in promastigotes from 23 L. braziliensis isolates as a possible parasite-related factor that could influence the clinical outcome of the disease. Methodology/Principal Findings Our results show that the isolates differ in their ability to hydrolyze adenine nucleotides. Furthermore, we observed a positive correlation between the time for peak of lesion development in C57BL/6J mice and enzymatic activity and clinical manifestation of the isolate. In addition, we found that L. (V.) braziliensis isolates obtained from mucosal lesions hydrolyze higher amounts of adenine nucleotides than isolates obtained from skin lesions. One isolate with high (PPS6m) and another with low (SSF) ecto-nucleotidase activity were chosen for further studies. Mice inoculated with PPS6m show delayed lesion development and present larger parasite loads than animals inoculated with the SSF isolate. In addition, PPS6m modulates the host immune response by inhibiting dendritic cell activation and NO production by activated J774 macrophages. Finally, we observed that the amastigote forms from PPS6m and SSF isolates present low enzymatic activity that does not interfere with NO production and parasite survival in macrophages. Conclusions/Significance Our data suggest that ecto-nucleotidases present on the promastigote forms of the parasite may interfere with the establishment of the immune response with consequent impaired ability to control parasite dissemination and this may be an important

  19. Analogues of Marine Guanidine Alkaloids Are in Vitro Effective against Trypanosoma cruzi and Selectively Eliminate Leishmania (L.) infantum Intracellular Amastigotes.

    PubMed

    Martins, Ligia F; Mesquita, Juliana T; Pinto, Erika G; Costa-Silva, Thais A; Borborema, Samanta E T; Galisteo Junior, Andres J; Neves, Bruno J; Andrade, Carolina H; Shuhaib, Zainab Al; Bennett, Elliot L; Black, Gregory P; Harper, Philip M; Evans, Daniel M; Fituri, Hisham S; Leyland, John P; Martin, Claire; Roberts, Terence D; Thornhill, Andrew J; Vale, Stephen A; Howard-Jones, Andrew; Thomas, Dafydd A; Williams, Harri L; Overman, Larry E; Berlinck, Roberto G S; Murphy, Patrick J; Tempone, Andre G

    2016-09-23

    Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.

  20. Leishmania (Viannia) braziliensis infection in two Colombian dogs: a note on infectivity for sand flies and response to treatment.

    PubMed

    Travi, Bruno L; Tabares, Carlos Javier; Cadena, Horacio

    2006-10-01

    Although canine cutaneous leishmaniasis has been reported in several foci of South America, no published information from Colombia is available. We report on two cases found in the Pacific coast region of this country, which presented as a single scrotal ulcer in one dog, and two ulcers on the external surface of the ear in a second dog. Parasites were isolated by culture in Senekjie's culture medium and identified using monoclonal antibodies. The capacity of these dogs to transmit the parasites to sand fly vectors (Lutzomyia trapidoi, Lutzomyia gomezi, Lutzomyia longipalpis, Lutzomyia youngi) was tested by allowing the flies to feed on the lesion borders. Both isolates were identified as Leishmania (Viannia) braziliensis. No infections were detected upon dissection of engorged flies. A single peri-and sub-lesional injection of 1-2 ml of pentavalent antimony in the dog with ear lesions resulted in clinical cure 6 weeks post-treatment. These observations suggest that although dogs are susceptible to L. braziliensis, their reservoir competence could be low. However, if further studies indicate that canines are capable reservoir hosts of L. Viannia spp., the local treatment of lesions could become a feasible approach to diminish the risk of human infection in the peridomestic setting, without sacrificing infected dogs.

  1. Didelphis marsupialis, an important reservoir of Trypanosoma (Schizotrypanum) cruzi and Leishmania (Leishmania) chagasi in Colombia.

    PubMed

    Travi, B L; Jaramillo, C; Montoya, J; Segura, I; Zea, A; Goncalves, A; Velez, I D

    1994-05-01

    The role of Didelphis marsupialis as a reservoir of zoonotic hemoflagellates was examined in two ecologically distinct settings in Colombia. While 72% (12 of 18) of the opossums collected in the tropical rain forest harbored Trypanosoma cruzi, other mammals in the area had lower infection rates: 1.3% (Proechymis semispinosus [spiny rat]; 13% Tylomys mirae [climbing rat]; and 6% Rattus rattus). Trypanosoma cruzi isolates from D. marsupialis were similar to zymodeme 1 (Z1), and two of four phenotypes were shared with Tylomys mirae, which is also predominantly arboreal. Terrestrial (P. semispinosus) and peridomestic (R. rattus) animals were infected with Z3 or other Z1 phenotypes, respectively. Schizodeme analysis showed polymorphisms among isolates from mammals, reflecting diverse modes of transmission, and a complex epidemiologic situation. Despite the lower infection rate of the opossum (14%) found in our study in the tropical dry forest as compared with the tropical wet forest, Chagas' disease has been reported only in the former area. This suggests that the lack of alternative blood sources for triatomines of the tropical dry forest, where mammals are less abundant than in the wet forest, may increase the risk of human infection. Among several species of mammals captured in the tropical dry forest, Leishmania chagasi was isolated from 22.7% (5 of 22) D. marsupialis. This finding confirms the important role of opossums in Colombian foci of visceral leishmaniasis, including those where the phlebotomine species involved in transmission is Lutzomyia evansi, an alternative vector to the more common Lutzomyia longipalpis.

  2. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    PubMed

    Kato, Hirotomo; Gomez, Eduardo A; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-07-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas.

  3. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army.

    PubMed

    Patino, Luz H; Mendez, Claudia; Rodriguez, Omaira; Romero, Yanira; Velandia, Daniel; Alvarado, Maria; Pérez, Julie; Duque, Maria Clara; Ramírez, Juan David

    2017-08-01

    In Colombia, the cutaneous leishmaniasis (CL) is the most common manifestation across the army personnel. Hence, it is mandatory to determine the species associated with the disease as well as the association with the clinical traits. A total of 273 samples of male patients with CL were included in the study and clinical data of the patients was studied. PCR and sequencing analyses (Cytb and HSP70 genes) were performed to identify the species and the intra-specific genetic variability. A georeferenced database was constructed to identify the spatial distribution of Leishmania species isolated. The identification of five species of Leishmania that circulate in the areas where army personnel are deployed is described. Predominant infecting Leishmania species corresponds to L. braziliensis (61.1%), followed by Leishmania panamensis (33.5%), with a high distribution of both species at geographical and municipal level. The species L. guyanensis, L. mexicana and L. lainsoni were also detected at lower frequency. We also showed the identification of different genotypes within L. braziliensis and L. panamensis. In conclusion, we identified the Leishmania species circulating in the areas where Colombian army personnel are deployed, as well as the high intra-specific genetic variability of L. braziliensis and L. panamensis and how these genotypes are distributed at the geographic level.

  4. High Molecular Weight Proteins of Trypanosoma cruzi Reduce Cross-Reaction with Leishmania spp. in Serological Diagnosis Tests

    PubMed Central

    Cervantes-Landín, Alejandra Yunuen; Martínez, Ignacio; Schabib, Muslim; Espinoza, Bertha

    2014-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. Because of its distribution throughout Latin America, sometimes it can overlap with other parasitic diseases, such as leishmaniasis, caused by Leishmania spp. This might represent a problem when performing serological diagnosis, because both parasites share antigens, resulting in cross-reactions. In the present work we evaluated Mexican sera samples: 83.8% of chagasic patients recognized at least one antigen of high molecular weight (>95 kDa) when evaluated by Western blot. Proteins of 130 kDa and 160 kDa are predominantly being recognized by asymptomatic chagasic patients. When the proteins were extracted using Triton X-100 detergent, a larger number of specific T. cruzi proteins were obtained. This protein fraction can be used to increase specificity to 100% in Western blot assays without losing sensitivity of the test. High molecular weight proteins of T. cruzi include glycoproteins with a great amount of αMan (α-mannose), αGlc (α-glucose), GlcNAc (N-acetylglucosamine), and αGal (α-galactose) content and these structures play an essential role in antigens recognition by antibodies present in patients' sera. PMID:25136581

  5. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis

    PubMed Central

    Kato, Hirotomo; Gomez, Eduardo A.; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-01-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas. PMID:27410039

  6. Hepatozoon canis and Leishmania spp. coinfection in dogs diagnosed with visceral leishmaniasis.

    PubMed

    Morgado, Fernanda Nazaré; Cavalcanti, Amanda Dos Santos; Miranda, Luisa Helena de; O'Dwyer, Lúcia Helena; Silva, Maria Regina Lucas da; Menezes, Rodrigo Caldas; Andrade da Silva, Aurea Virgínia; Boité, Mariana Côrtes; Cupolillo, Elisa; Porrozzi, Renato

    2016-01-01

    This study describes the occurrence of dogs naturally co-infected with Hepatozoon canis and two Leishmania species: L. infantum or L. braziliensis. Four dogs serologically diagnosed with Visceral Leishmaniasis were euthanized. Liver and spleen samples were collected for histopathological analysis and DNA isolation. H. canis meronts were observed in tissues from all four dogs. H. canis infection was confirmed by PCR followed by sequencing of a fragment of 18S rRNA gene. Leishmania detection and typing was confirmed by ITS1' PCR-RFLP and parasite burden was calculated using ssrRNA quantitative qPCR. A DPP - Dual Path platform test was performed. One out (Dog #2) of four animals was asymptomatic. Dogs #1 and #4 were infected by L. infantum and were DPP test positive. Dogs #2 and #3 were infected by L. braziliensis and were DPP test negative. Furthermore, visceral dissemination was observed in Dogs #2 and #3, since L. braziliensis was detected in liver and spleen samples. The visceral dissemination of L. braziliensis associated with systemic signs suggested that this co-infection could influence the parasite burden and disease progression.

  7. The opossum, Didelphis marsupialis (Marsupialia: Didelphidae), as a reservoir host of Leishmania braziliensis guyanensis in the Amazon Basin of Brazil.

    PubMed

    Arias, J R; Naif, R D; Miles, M A; de Souza, A A

    1981-01-01

    A total of 52 opossums (six species) were examined for evidence of infection with Leishmania in three different areas of forest near Manaus, Amazonas State, Brazil. No infections were detected in 27 opossums from a region of relatively undisturbed forest, including specimens of Didelphis marsupialis (18); Metachirus nudicaudatus (four); Monodelphis brevicaudata (one); Marmosa cinerea (two); M. murina (one) and M. parvidens (one). Of 15 D. marsupialis captured from a biological reserve, much disturbed by man, three were infected with L. braziliensis guyanensis: isolations were made from the skin of two of the animals, and from the viscera of the third. The isolates were biologically and biochemically indistinguishable from one isolate of L. b. guyanensis made from man and two from the sandfly vector Lutzomyia umbratilis from the same area. Two of eight D. marsupialis and both of two M. cinerea from another area of virgin forest used for army manoeuvres were infected with Leishmania mexicana amazonensis: the parasite was in all four cases isolated from normal skin. Five of nine specimens of Proechimys guyannensis, from the vicinity of Manaus, were also infected with L. m. amazonensis. A further 13 mammals (eight species) were negative for Leishmania. The importance of opossums as a reservoir of L. b. guyanensis is discussed. Although they may play only a minor role in virgin forest which is undisturbed by man, opossums (D. marsupialis) may become a significant reservoir of infection where man's activities have eliminated the major reservoir--which has yet to be incriminated.

  8. Analysis of expression of FLI1 and MMP1 in American cutaneous leishmaniasis caused by Leishmania braziliensis infection

    PubMed Central

    Almeida, Lucas; Silva, Juliana A.; Andrade, Viviane M.; Machado, Paulo; Jamieson, Sarra E.; Carvalho, Edgar M.

    2017-01-01

    FLI1 (Friend leukemia virus integration 1) and IL6 (interleukin 6; IL-6) are associated with Leishmania braziliensis susceptibility. Cutaneous lesions show exaggerated matrix metalloproteinase 1 (MMP1). In other skin diseases, FLI1 promoter methylation reduces FLI1 expression, and low FLI1 down-regulates MMP1. IL-6 increases FLI1 expression. We hypothesized that epigenetic regulation of FLI1 in cutaneous leishmaniasis, together with IL-6, might determine MMP1 expression. While generally low (<10%), percent FLI1 promoter methylation was lower (P=0.001) in lesion biopsies than normal skin. Contrary to expectation, a strong positive correlation occurred between FLI1 methylation and gene expression in lesions (r=0.98, P=0.0005) and in IL-6-treated L. braziliensis-infected macrophages (r=0.99, P=0.0004). In silico analysis of the FLI1 promoter revealed co-occurring active H3K27ac and repressive DNA methylation marks to enhance gene expression. FLI1 expression was enhanced between 3 and 24 hours post infection in untreated (P=0.0002) and IL-6-treated (P=0.028) macrophages. MMP1 was enhanced in lesion biopsies (P=0.0002), induced (P=0.007) in infected macrophages, but strongly inhibited by IL-6. No correlations occurred between FLI1 and MMP1 expression in lesions or infected macrophages (with/without IL-6). We conclude that MMP1 is regulated by factors other than FLI1, and that the influence of IL-6 on MMP1 was independent of its effect on FLI1. PMID:28119029

  9. In vitro and in vivo antileishmanial and trypanocidal studies of new N-benzene- and N-naphthalenesulfonamide derivatives.

    PubMed

    Galiana-Roselló, Cristina; Bilbao-Ramos, Pablo; Dea-Ayuela, M Auxiliadora; Rolón, Miriam; Vega, Celeste; Bolás-Fernández, Francisco; García-España, Enrique; Alfonso, Jorge; Coronel, Cathia; González-Rosende, M Eugenia

    2013-11-27

    We report in vivo and in vitro antileishmanial and trypanocidal activities of a new series of N-substituted benzene and naphthalenesulfonamides 1-15. Compounds 1-15 were screened in vitro against Leishmania infantum , Leishmania braziliensis , Leishmania guyanensis , Leishmania amazonensis , and Trypanosoma cruzi . Sulfonamides 6e, 10b, and 10d displayed remarkable activity and selectivity toward T. cruzi epimastigotes and amastigotes. 6e showed significant trypanocidal activity on parasitemia in a murine model of acute Chagas disease. Moreover, 6e, 8c, 9c, 12c, and 14d displayed interesting IC50 values against Leishmania spp promastigotes as well as L. amazonensis and L. infantum amastigotes. 9c showed excellent in vivo activity (up to 97% inhibition of the parasite growth) in a short-term treatment murine model for acute infection by L. infantum. In addition, the effect of compounds 9c and 14d on tubulin as potential target was assessed by confocal microscopy analysis applied to L. infantum promastigotes.

  10. Real-time PCR for Leishmania species identification: Evaluation and comparison with classical techniques.

    PubMed

    de Morais, Rayana Carla Silva; da Costa Oliveira, Cintia Nascimento; de Albuquerque, Suênia da Cunha Gonçalves; Mendonça Trajano Silva, Lays Adrianne; Pessoa-E-Silva, Rômulo; Alves da Cruz, Heidi Lacerda; de Brito, Maria Edileuza Felinto; de Paiva Cavalcanti, Milena

    2016-06-01

    Cutaneous leishmaniasis (CL) is a parasitic disease caused by various Leishmania species. Several studies have shown that real time quantitative PCR (qPCR) can be used for Leishmania spp. identification by analyzing the melting temperature (Tm). Thus, the aim of this study was to evaluate the viability of qPCR for differentiating eight closely related Leishmania species that cause the same clinical form of the disease and to compare the results with classical techniques. qPCR assays for standardizing the Tm using reference strains were performed. After the CL diagnosis on blood samples of domestic animals, positive samples were analyzed by their Tm and qPCR products were purified and sequenced. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by Tm. A Restriction Fragment Length Polymorphism (RFLP) assay, a reference test, was also standardized, by using the reference strains. Through standardization of Tm for Leishmania spp., two Tm ranges were created for analysis: 1 (Tm = 78-79.99 °C) included Leishmania (V.) braziliensis, Leishmania (V.) panamensis, Leishmania (V.) lainsoni, Leishmania (V.) guyanensis and Leishmania (V.) shawi; and 2 (Tm = 80-82.2 °C) included Leishmania (V.) naiffi, Leishmania (L.) amazonensis and Leishmania (L.) mexicana. A total of 223 positive blood samples were analyzed, with 58 included in range 1 and 165 in range 2. L. (V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis were identified by sequencing, while L. (V.) braziliensis, L. (L.) mexicana and L. (V.) panamensis were identified by RFLP analysis. Ten human samples previously characterized by Multilocus Enzyme Electrophoresis (MLEE) were also analyzed by qPCR Tm analysis; five were classified in range 1 and five in range 2. A concordance of 80% was calculated between qPCR and the gold-standard (MLEE) with no significant difference between the methods (p = 0.6499); a similar result was observed for sequencing

  11. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis.

    PubMed

    Diaz, E; Zacarias, A K; Pérez, S; Vanegas, O; Köhidai, L; Padrón-Nieves, M; Ponte-Sucre, A

    2015-11-01

    In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.

  12. In vitro evaluation of newly synthesised [1,2,4]triazolo[1,5a]pyrimidine derivatives against Trypanosoma cruzi, Leishmania donovani and Phytomonas staheli.

    PubMed

    Luque, F; Fernández-Ramos, C; Entrala, E; Rosales, M J; Navarro, J A; Romero, M A; Salas, J M; Sánchez-Moreno, M

    2000-05-01

    The antiprotozoal activity of newly synthesised compounds, all [1,2,4]triazolo [1,5a]pyrimidine derivatives, was tested against the protozoan parasites Trypanosoma cruzi, Leishmania donovani and Phytotmonas staheli. Six of these compounds significantly inhibited in vitro cell growth of the epimastigote forms of T. cruzi, and the promastigote forms of L. donovani and P. staheli. Some of the compounds reached complete growth inhibition at 1 microg/ml for 48 h of parasite/drug interaction. None of the compounds tested showed significant toxicity against cells of Aedes albopictus, mouse macrophages J-774A.1 and Lycopersicum esculentum at dosages five times greater than used against parasites.

  13. Analysis of expression of FLI1 and MMP1 in American cutaneous leishmaniasis caused by Leishmania braziliensis infection.

    PubMed

    Almeida, Lucas; Silva, Juliana A; Andrade, Viviane M; Machado, Paulo; Jamieson, Sarra E; Carvalho, Edgar M; Blackwell, Jenefer M; Castellucci, Léa C

    2017-04-01

    FLI1 (Friend leukemia virus integration 1) and IL6 (interleukin 6; IL-6) are associated with Leishmania braziliensis susceptibility. Cutaneous lesions show exaggerated matrix metalloproteinase 1 (MMP1). In other skin diseases, FLI1 promoter methylation reduces FLI1 expression, and low FLI1 down-regulates MMP1. IL-6 increases FLI1 expression. We hypothesized that epigenetic regulation of FLI1 in cutaneous leishmaniasis, together with IL-6, might determine MMP1 expression. While generally low (<10%), percent FLI1 promoter methylation was lower (P=0.001) in lesion biopsies than normal skin. Contrary to expectation, a strong positive correlation occurred between FLI1 methylation and gene expression in lesions (r=0.98, P=0.0005) and in IL-6-treated L. braziliensis-infected macrophages (r=0.99, P=0.0004). In silico analysis of the FLI1 promoter revealed co-occurring active H3K27ac and repressive DNA methylation marks to enhance gene expression. FLI1 expression was enhanced between 3 and 24hour post infection in untreated (P=0.0002) and IL-6-treated (P=0.028) macrophages. MMP1 was enhanced in lesion biopsies (P=0.0002), induced (P=0.007) in infected macrophages, but strongly inhibited by IL-6. No correlations occurred between FLI1 and MMP1 expression in lesions or infected macrophages (with/without IL-6). We conclude that MMP1 is regulated by factors other than FLI1, and that the influence of IL-6 on MMP1 was independent of its effect on FLI1. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The use of kDNA minicircle subclass relative abundance to differentiate between Leishmania (L.) infantum and Leishmania (L.) amazonensis.

    PubMed

    Ceccarelli, Marcello; Galluzzi, Luca; Diotallevi, Aurora; Andreoni, Francesca; Fowler, Hailie; Petersen, Christine; Vitale, Fabrizio; Magnani, Mauro

    2017-05-16

    Leishmaniasis is a neglected disease caused by many Leishmania species, belonging to subgenera Leishmania (Leishmania) and Leishmania (Viannia). Several qPCR-based molecular diagnostic approaches have been reported for detection and quantification of Leishmania species. Many of these approaches use the kinetoplast DNA (kDNA) minicircles as the target sequence. These assays had potential cross-species amplification, due to sequence similarity between Leishmania species. Previous works demonstrated discrimination between L. (Leishmania) and L. (Viannia) by SYBR green-based qPCR assays designed on kDNA, followed by melting or high-resolution melt (HRM) analysis. Importantly, these approaches cannot fully distinguish L. (L.) infantum from L. (L.) amazonensis, which can coexist in the same geographical area. DNA from 18 strains/isolates of L. (L.) infantum, L. (L.) amazonensis, L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, and 62 clinical samples from L. (L.) infantum-infected dogs were amplified by a previously developed qPCR (qPCR-ML) and subjected to HRM analysis; selected PCR products were sequenced using an ABI PRISM 310 Genetic Analyzer. Based on the obtained sequences, a new SYBR-green qPCR assay (qPCR-ama) intended to amplify a minicircle subclass more abundant in L. (L.) amazonensis was designed. The qPCR-ML followed by HRM analysis did not allow discrimination between L. (L.) amazonensis and L. (L.) infantum in 53.4% of cases. Hence, the novel SYBR green-based qPCR (qPCR-ama) has been tested. This assay achieved a detection limit of 0.1 pg of parasite DNA in samples spiked with host DNA and did not show cross amplification with Trypanosoma cruzi or host DNA. Although the qPCR-ama also amplified L. (L.) infantum strains, the C q values were dramatically increased compared to qPCR-ML. Therefore, the combined analysis of C q values from qPCR-ML and qPCR-ama allowed to distinguish L. (L.) infantum and L. (L.) amazonensis in 100% of tested samples

  15. New insights into the genetic diversity of Leishmania RNA Virus 1 and its species-specific relationship with Leishmania parasites.

    PubMed

    Cantanhêde, Lilian Motta; Fernandes, Flavia Gonçalves; Ferreira, Gabriel Eduardo Melim; Porrozzi, Renato; Ferreira, Ricardo de Godoi Mattos; Cupolillo, Elisa

    2018-01-01

    Cutaneous leishmaniasis is a neglected parasitic disease that manifests in infected individuals under different phenotypes, with a range of factors contributing to its broad clinical spectrum. One factor, Leishmania RNA Virus 1 (LRV1), has been described as an endosymbiont present in different species of Leishmania. LRV1 significantly worsens the lesion, exacerbating the immune response in both experimentally infected animals and infected individuals. Little is known about the composition and genetic diversity of these viruses. Here, we investigated the relationship between the genetic composition of LRV1 detected in strains of Leishmania (Viannia) braziliensis and L. (V.) guyanensis and the interaction between the endosymbiont and the parasitic species, analyzing an approximately 850 base pair region of the viral genome. We also included one LRV1 sequence detected in L. (V.) shawi, representing the first report of LRV1 in a species other than L. braziliensis and L. guyanensis. The results illustrate the genetic diversity of the LRV1 strains analyzed here, with smaller divergences detected among viral sequences from the same parasite species. Phylogenetic analyses showed that the LRV1 sequences are grouped according to the parasite species and possibly according to the population of the parasite in which the virus was detected, corroborating the hypothesis of joint evolution of the viruses with the speciation of Leishmania parasites.

  16. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite.

    PubMed

    Tschoeke, Diogo A; Nunes, Gisele L; Jardim, Rodrigo; Lima, Joana; Dumaresq, Aline Sr; Gomes, Monete R; de Mattos Pereira, Leandro; Loureiro, Daniel R; Stoco, Patricia H; de Matos Guedes, Herbert Leonel; de Miranda, Antonio Basilio; Ruiz, Jeronimo; Pitaluga, André; Silva, Floriano P; Probst, Christian M; Dickens, Nicholas J; Mottram, Jeremy C; Grisard, Edmundo C; Dávila, Alberto Mr

    2014-01-01

    Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the "Mexicana complex", reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development.

  17. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite

    PubMed Central

    Tschoeke, Diogo A; Nunes, Gisele L; Jardim, Rodrigo; Lima, Joana; Dumaresq, Aline SR; Gomes, Monete R; de Mattos Pereira, Leandro; Loureiro, Daniel R; Stoco, Patricia H; de Matos Guedes, Herbert Leonel; de Miranda, Antonio Basilio; Ruiz, Jeronimo; Pitaluga, André; Silva, Floriano P; Probst, Christian M; Dickens, Nicholas J; Mottram, Jeremy C; Grisard, Edmundo C; Dávila, Alberto MR

    2014-01-01

    Leishmaniasis is an infectious disease caused by Leishmania species. Leishmania amazonensis is a New World Leishmania species belonging to the Mexicana complex, which is able to cause all types of leishmaniasis infections. The L. amazonensis reference strain MHOM/BR/1973/M2269 was sequenced identifying 8,802 codifying sequences (CDS), most of them of hypothetical function. Comparative analysis using six Leishmania species showed a core set of 7,016 orthologs. L. amazonensis and Leishmania mexicana share the largest number of distinct orthologs, while Leishmania braziliensis presented the largest number of inparalogs. Additionally, phylogenomic analysis confirmed the taxonomic position for L. amazonensis within the “Mexicana complex”, reinforcing understanding of the split of New and Old World Leishmania. Potential non-homologous isofunctional enzymes (NISE) were identified between L. amazonensis and Homo sapiens that could provide new drug targets for development. PMID:25336895

  18. Detection of Leishmania in Unaffected Mucosal Tissues of Patients with Cutaneous Leishmaniasis Caused by Leishmania (Viannia) Species

    PubMed Central

    Figueroa, Roger Adrian; Lozano, Leyder Elena; Romero, Ibeth Cristina; Cardona, Maria Teresa; Prager, Martin; Pacheco, Robinson; Diaz, Yira Rosalba; Tellez, Jair Alexander; Saravia, Nancy Gore

    2016-01-01

    Background Leishmania (Viannia) species are the principal cause of mucosal leishmaniasis. The natural history and pathogenesis of mucosal disease are enigmatic. Parasitological evaluation of mucosal tissues has been constrained by the invasiveness of conventional sampling methods. Methods We evaluated the presence ofLeishmania in the mucosa of 26 patients with cutaneous leishmaniasis and 2 patients with mucocutaneous leishmaniasis. Swab samples of the nasal mucosa, tonsils, and conjunctiva were analyzed using polymerase chain reaction with LV-B1 primers and Southern blot hybridization. Results Two patients with mucocutaneous leishmaniasis and 21 (81%) of 26 patients with cutaneous leishmaniasis had Leishmania kinetoplast minicircle DNA (kDNA) in mucosal tissues. kDNA was amplified from swab samples of nasal mucosa from 14 (58%) of 24 patients, tonsils from 13 (46%) of 28 patients, and conjunctiva from 6 (25%) of 24 patients. kDNA was detected in the mucosa of patients with cutaneous disease caused by Leishmania panamensis, Leishmania guyanensis, and Leishmania braziliensis. Conclusion The asymptomatic presence of parasites in mucosal tissues may be common in patients with Leishmania (Viannia) infection. PMID:19569974

  19. Molecular characterization and functional analysis of pteridine reductase in wild-type and antimony-resistant Leishmania lines.

    PubMed

    de Souza Moreira, Douglas; Ferreira, Rafael Fernandes; Murta, Silvane M F

    2016-01-01

    Pteridine reductase (PTR1) is an NADPH-dependent reductase that participates in the salvage of pteridines, which are essential to maintain growth of Leishmania. In this study, we performed the molecular characterization of ptr1 gene in wild-type (WTS) and SbIII-resistant (SbR) lines from Leishmania guyanensis (Lg), Leishmania amazonensis (La), Leishmania braziliensis (Lb) and Leishmania infantum (Li), evaluating the chromosomal location, mRNA levels of the ptr1 gene and PTR1 protein expression. PFGE results showed that the ptr1 gene is located in a 797 kb chromosomal band in all Leishmania lines analyzed. Interestingly, an additional chromosomal band of 1070 kb was observed only in LbSbR line. Northern blot results showed that the levels of ptr1 mRNA are increased in the LgSbR, LaSbR and LbSbR lines. Western blot assays using the polyclonal anti-LmPTR1 antibody demonstrated that PTR1 protein is more expressed in the LgSbR, LaSbR and LbSbR lines compared to their respective WTS counterparts. Nevertheless, no difference in the level of mRNA and protein was observed between the LiWTS and LiSbR lines. Functional analysis of PTR1 enzyme was performed to determine whether the overexpression of ptr1 gene in the WTS L. braziliensis and L. infantum lines would change the SbIII-resistance phenotype of transfected parasites. Western blot results showed that the expression level of PTR1 protein was increased in the transfected parasites compared to the non-transfected ones. IC50 analysis revealed that the overexpression of ptr1 gene in the WTS L. braziliensis line increased 2-fold the SbIII-resistance phenotype compared to the non-transfected counterpart. Furthermore, the overexpression of ptr1 gene in the WTS L. infantum line did not change the SbIII-resistance phenotype. These results suggest that the PTR1 enzyme may be implicated in the SbIII-resistance phenotype in L. braziliensis line. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The Effect of (-)-Epigallocatechin 3-O - Gallate In Vitro and In Vivo in Leishmania braziliensis: Involvement of Reactive Oxygen Species as a Mechanism of Action

    PubMed Central

    Inacio, Job D. F.; Gervazoni, Luiza; Canto-Cavalheiro, Marilene M.; Almeida-Amaral, Elmo E.

    2014-01-01

    Background Leishmaniasis is a parasitic disease associated with extensive mortality and morbidity. The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. Natural compounds have been used as novel treatments for parasitic diseases. In this paper, we evaluated the effect of (-)-epigallocatechin 3-O-gallate (EGCG) on Leishmania braziliensis in vitro and in vivo and described the mechanism of EGCG action against L. braziliensis promastigotes and intracellular amastigotes. Methodology/Principal Finding In vitro activity and reactive oxygen species (ROS) measurements were determined during the promastigote and intracellular amastigote life stages. The effect of EGCG on mitochondrial membrane potential (ΔΨm) was assayed using JC-1, and intracellular ATP concentrations were measured using a luciferin-luciferase system. The in vivo experiments were performed in infected BALB/c mice orally treated with EGCG. EGCG reduced promastigote viability and the infection index in a time- and dose-dependent manner, with IC50 values of 278.8 µM and 3.4 µM, respectively, at 72 h and a selectivity index of 149.5. In addition, EGCG induced ROS production in the promastigote and intracellular amastigote, and the effects were reversed by polyethylene glycol (PEG)-catalase. Additionally, EGCG reduced ΔΨm, thereby decreasing intracellular ATP concentrations in promastigotes. Furthermore, EGCG treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers. Conclusions/Significance In conclusion, our study demonstrates the leishmanicidal effects of EGCG against the two forms of L. braziliensis, the promastigote and amastigote. In addition, EGCG promotes ROS production as a part of its mechanism of action, resulting in decreased ΔΨm and reduced intracellular ATP concentrations. These actions ultimately

  1. Investigations of Cross Immunity between Leishmania tropica (Jericho) and Leishmania braziliensis in Experimentally Infected Mystromys albacaudatus.

    DTIC Science & Technology

    1979-09-01

    would be the utilization of irradiated killed promastigotes of L. braziliensis. Precedence of this exists in malaria with the radiation of attenuated...34 "’Vaccination with a 5-year-old IHurman Strain of I. tropica from the Negev ," transcript of the Royal S:ociety of T7ropical Medicine and Hy,-iene; 66 - 1972

  2. Prevalence of antibodies to Trypanosoma cruzi, Leishmania infantum, Encephalitozoon cuniculi, Sarcocystis neurona, and Neospora caninum in Capybara, Hydrochoerus hydrochaeris, from São Paulo State, Brazil.

    PubMed

    Valadas, Samantha; Gennari, Solange Maria; Yai, Lucia Eiko Oishi; Rosypal, Alexa C; Lindsay, David S

    2010-06-01

    Little is known about the importance of capybara, Hydrochoerus hydrochaeris, as reservoirs for parasites of zoonotic or veterinary importance. Sera from 63 capybaras, from 6 counties in the state of São Paulo, Brazil, were examined for antibodies to Trypanosoma cruzi, Leishmania infantum, Encephalitozoon cuniculi, Sarcocystis neurona, and Neospora caninum using an indirect immunofluorescent antibody test. Five (8%) of the 63 capybaras had antibodies to T. cruzi epimastigotes. None of the samples from capybara reacted positively with L. infantum promastigotes or with spores of E. cuniculi . Two (3%) of the serum samples were positive for antibodies to S. neurona merozoites, and 2 (3%) of the serum samples were positive for antibodies to N. caninum tachyzoites. A serum sample from 1 capybara was positive for antibodies to both T. cruzi and N. caninum. None of the remaining 62 samples reacted with more than 1 parasite.

  3. Calmodulin Polymerase Chain Reaction–Restriction Fragment Length Polymorphism for Leishmania Identification and Typing

    PubMed Central

    Miranda, Aracelis; Samudio, Franklyn; González, Kadir; Saldaña, Azael; Brandão, Adeilton; Calzada, Jose E.

    2016-01-01

    A precise identification of Leishmania species involved in human infections has epidemiological and clinical importance. Herein, we describe a preliminary validation of a restriction fragment length polymorphism assay, based on the calmodulin intergenic spacer region, as a tool for detecting and typing Leishmania species. After calmodulin amplification, the enzyme HaeIII yielded a clear distinction between reference strains of Leishmania mexicana, Leishmania amazonensis, Leishmania infantum, Leishmania lainsoni, and the rest of the Viannia reference species analyzed. The closely related Viannia species: Leishmania braziliensis, Leishmania panamensis, and Leishmania guyanensis, are separated in a subsequent digestion step with different restriction enzymes. We have developed a more accessible molecular protocol for Leishmania identification/typing based on the exploitation of part of the calmodulin gene. This methodology has the potential to become an additional tool for Leishmania species characterization and taxonomy. PMID:27352873

  4. Ultradeformable Archaeosomes for Needle Free Nanovaccination with Leishmania braziliensis Antigens.

    PubMed

    Higa, Leticia H; Arnal, Laura; Vermeulen, Mónica; Perez, Ana Paula; Schilrreff, Priscila; Mundiña-Weilenmann, Cecilia; Yantorno, Osvaldo; Vela, María Elena; Morilla, María José; Romero, Eder Lilia

    2016-01-01

    Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1β, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with

  5. Trypanocidal and leishmanicidal activities of different antimicrobial peptides (AMPs) isolated from aquatic animals.

    PubMed

    Löfgren, S E; Miletti, L C; Steindel, M; Bachère, E; Barracco, M A

    2008-02-01

    Most of the available animal antimicrobial peptides (AMPs) have been tested against bacteria and fungi, but very few against protozoan parasites. In the present study, we investigated the antiparasitic activity of different AMPs isolated from aquatic animals: tachyplesin (Tach, from Tachypleus tridentatus), magainin (Mag, from Xenopus laevis), clavanin (Clav, from Styela clava), penaeidin (Pen, from Litopenaeus vannamei), mytilin (Myt, from Mytilus edulis) and anti-lipopolysaccharide factor (ALF, from Penaeus monodon). The antiparasitic activity was evaluated against the promastigote form of Leishmania braziliensis and epi and trypomastigote forms of Trypanosoma cruzi, through the MTT method. Tach was the most potent peptide, killing completely L. braziliensis and trypomastigote T. cruzi from 12.5microM, whereas Pen and Clav were weakly active against trypomastigotes and Myt against L. braziliensis, only at a high concentration (100microM). Tach and Mag were markedly hemolytic at high concentrations, whereas the other peptides caused only a slight hemolysis (<10% up to 50microM). Our results point to Tach as the only potential candidate for further investigation and potential application as a therapeutic agent.

  6. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response.

    PubMed

    Brettmann, Erin A; Shaik, Jahangheer S; Zangger, Haroun; Lye, Lon-Fye; Kuhlmann, F Matthew; Akopyants, Natalia S; Oschwald, Dayna M; Owens, Katherine L; Hickerson, Suzanne M; Ronet, Catherine; Fasel, Nicolas; Beverley, Stephen M

    2016-10-25

    Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.4 to 2.5%) of small RNAs derived from LRV1 in both Leishmania braziliensis and Leishmania guyanensis, mapping across both strands and with properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis- or trans-acting RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between RNAi activity and LRV1 replication. To tilt this balance toward elimination, we targeted LRV1 using long-hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyperinflammatory cytokine response in infected macrophages. We demonstrate in vitro a role for LRV1 in virulence of L. braziliensis, the Leishmania species responsible for the vast majority of mucocutaneous leishmaniasis cases. These findings establish a targeted method for elimination of LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships in evolution: one of balance rather than elimination.

  7. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana.

    PubMed

    Tirera, Sourakhata; Ginouves, Marine; Donato, Damien; Caballero, Ignacio S; Bouchier, Christiane; Lavergne, Anne; Bourreau, Eliane; Mosnier, Emilie; Vantilcke, Vincent; Couppié, Pierre; Prevot, Ghislaine; Lacoste, Vincent

    2017-07-01

    Leishmania RNA virus type 1 (LRV1) is an endosymbiont of some Leishmania (Vianna) species in South America. Presence of LRV1 in parasites exacerbates disease severity in animal models and humans, related to a disproportioned innate immune response, and is correlated with drug treatment failures in humans. Although the virus was identified decades ago, its genomic diversity has been overlooked until now. We subjected LRV1 strains from 19 L. (V.) guyanensis and one L. (V.) braziliensis isolates obtained from cutaneous leishmaniasis samples identified throughout French Guiana with next-generation sequencing and de novo sequence assembly. We generated and analyzed 24 unique LRV1 sequences over their full-length coding regions. Multiple alignment of these new sequences revealed variability (0.5%-23.5%) across the entire sequence except for highly conserved motifs within the 5' untranslated region. Phylogenetic analyses showed that viral genomes of L. (V.) guyanensis grouped into five distinct clusters. They further showed a species-dependent clustering between viral genomes of L. (V.) guyanensis and L. (V.) braziliensis, confirming a long-term co-evolutionary history. Noteworthy, we identified cases of multiple LRV1 infections in three of the 20 Leishmania isolates. Here, we present the first-ever estimate of LRV1 genomic diversity that exists in Leishmania (V.) guyanensis parasites. Genetic characterization and phylogenetic analyses of these viruses has shed light on their evolutionary relationships. To our knowledge, this study is also the first to report cases of multiple LRV1 infections in some parasites. Finally, this work has made it possible to develop molecular tools for adequate identification and genotyping of LRV1 strains for diagnostic purposes. Given the suspected worsening role of LRV1 infection in the pathogenesis of human leishmaniasis, these data have a major impact from a clinical viewpoint and for the management of Leishmania-infected patients.

  8. Leishmania isoenzyme polymorphisms in Ecuador: Relationships with geographic distribution and clinical presentation

    PubMed Central

    Calvopina, Manuel; Armijos, Rodrigo X; Marco, Jorge D; Uezato, Hiroshi; Kato, Hirotomo; Gomez, Eduardo A; Korenaga, Masataka; Barroso, Paola A; Mimori, Tatsuyuki; Cooper, Philip J; Nonaka, Shigeo; Hashiguchi, Yoshihisa

    2006-01-01

    Background Determinants of the clinical presentation of the leishmaniases are poorly understood but Leishmania species and strain differences are important. To examine the relationship between clinical presentation, species and isoenzyme polymorphisms, 56 Leishmania isolates from distinct presentations of American tegumentary leishmaniasis (ATL) from Ecuador were analyzed. Methods Isolates were characterized by multilocus enzyme electrophoresis for polymorphisms of 11 isoenzymes. Patients were infected in four different ecologic regions: highland and lowland jungle of the Pacific coast, Amazonian lowlands and Andean highlands. Results Six Leishmania species constituting 21 zymodemes were identified: L. (Viannia) panamensis (21 isolates, 7 zymodemes), L. (V.) guyanensis (7 isolates, 4 zymodemes), L. (V.) braziliensis (5 isolates, 3 zymodemes), L. (Leishmania) mexicana (11 isolates, 4 zymodemes), L. (L.) amazonensis (10 isolates, 2 zymodemes) and L. (L.) major (2 isolates, 1 zymodeme). L. panamensis was the species most frequently identified in the Pacific region and was associated with several clinical variants of cutaneous disease (CL); eight cases of leishmaniasis recidiva cutis (LRC) found in the Pacific highlands were associated with 3 zymodemes of this species. Mucocutaneous leishmaniasis found only in the Amazonian focus was associated with 3 zymodemes of L. braziliensis. The papular variant of CL, Uta, found in the Andean highlands was related predominantly with a single zymodeme of L. mexicana. Conclusion Our data show a high degree of phenotypic variation within species, and some evidence for associations between specific variants of ATL (i.e. Uta and LRC) and specific Leishmania zymodemes. This study further defines the geographic distribution of Leishmania species and clinical variants of ATL in Ecuador. PMID:16968553

  9. Lulo cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae): a novel model to assay Leishmania spp. and vector interaction.

    PubMed

    Côrtes, Luzia Mc; Silva, Roger Mm; Pereira, Bernardo As; Guerra, Camila; Zapata, Angela C; Bello, Felio J; Finkelstein, Léa C; Madeira, Maria F; Brazil, Reginaldo P; Côrte-Real, Suzana; Alves, Carlos R

    2011-11-14

    Leishmania (Vianna) braziliensis, Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) chagasi are important parasites in the scenario of leishmaniasis in Brazil. During the life cycle of these parasites, the promastigote forms adhere to the midgut epithelial microvillii of phlebotomine insects to avoid being secreted along with digestive products. Lulo cells are a potential model that will help to understand the features of this adhesion phenomenon. Here, we analyze the interaction between Leishmania spp. promastigotes and Lulo cells in vitro, specifically focusing on adhesion events occurring between three Leishmania species and this cell line. Confluent monolayers of Lulo cells were incubated with promastigotes and adhesion was assessed using both light microscopy and scanning electron microscopy. The results indicate that species from the subgenera Leishmania and Viannia have great potential to adhere to Lulo cells. The highest adherence rate was observed for L. (L.) chagasi after 24 h of incubation with Lulo cells (27.3 ± 1.8% of cells with adhered promastigotes), followed by L. (L.) amazonensis (16.0 ± 0.7%) and L. (V.) braziliensis (3.0 ± 0.7%), both after 48 h. In the ultrastructural analysis, promastigote adherence was also assessed by scanning electron microscopy, showing that, for parasites from both subgenera, adhesion occurs by both the body and the flagellum. The interaction of Lulo cells with Leishmania (L.) chagasi showed the participation of cytoplasmic projections from the former closely associating the parasites with the cells. We present evidence that Lulo cells can be useful in studies of insect-parasite interactions for Leishmania species.

  10. Lulo cell line derived from Lutzomyia longipalpis (Diptera: Psychodidae): a novel model to assay Leishmania spp. and vector interaction

    PubMed Central

    2011-01-01

    Background Leishmania (Vianna) braziliensis, Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) chagasi are important parasites in the scenario of leishmaniasis in Brazil. During the life cycle of these parasites, the promastigote forms adhere to the midgut epithelial microvillii of phlebotomine insects to avoid being secreted along with digestive products. Lulo cells are a potential model that will help to understand the features of this adhesion phenomenon. Here, we analyze the interaction between Leishmania spp. promastigotes and Lulo cells in vitro, specifically focusing on adhesion events occurring between three Leishmania species and this cell line. Methods Confluent monolayers of Lulo cells were incubated with promastigotes and adhesion was assessed using both light microscopy and scanning electron microscopy. Findings The results indicate that species from the subgenera Leishmania and Viannia have great potential to adhere to Lulo cells. The highest adherence rate was observed for L. (L.) chagasi after 24 h of incubation with Lulo cells (27.3 ± 1.8% of cells with adhered promastigotes), followed by L. (L.) amazonensis (16.0 ± 0.7%) and L. (V.) braziliensis (3.0 ± 0.7%), both after 48 h. In the ultrastructural analysis, promastigote adherence was also assessed by scanning electron microscopy, showing that, for parasites from both subgenera, adhesion occurs by both the body and the flagellum. The interaction of Lulo cells with Leishmania (L.) chagasi showed the participation of cytoplasmic projections from the former closely associating the parasites with the cells. Conclusions We present evidence that Lulo cells can be useful in studies of insect-parasite interactions for Leishmania species. PMID:22082050

  11. Antiparasitic Activity and Essential Oil Chemical Analysis of the Piper Tuberculatum Jacq Fruit

    PubMed Central

    dos Santos Sales, Valterlúcio; Monteiro, Álefe Brito; Delmondes, Gyllyandeson de Araújo; do Nascimento, Emmily Petícia; Sobreira Dantas Nóbrega de Figuêiredo, Francisco Rodolpho; de Souza Rodrigues, Cristina Kelly; Evangelista de Lacerda, Josefa Fernanda; Fernandes, Cícera Norma; Barbosa, Maysa de Oliveira; Brasil, Adamo Xenofonte; Tintino, Saulo Relison; Vega Gomez, Maria Celeste; Coronel, Cathia; Melo Coutinho, Henrique Douglas; Martins da Costa, José Galberto; Bezerra Felipe, Cícero Francisco; Alencar de Menezes, Irwin Rose; Kerntopf, Marta Regina

    2018-01-01

    With the increase of neglected diseases such as leishmaniasis and Chagas disease, there was a need for the search for new therapeutic alternatives that reduce the harm caused by medicine available for treatment. Thus, this study was performed to investigate the antiparasitic activity of the essential oil from the fruits of Piper tuberculatum Jacq, against lines of Leishmania braziliensis (MHOM/CO/88/UA301), Leishmania infantum (MHOM/ES/92/BCN83) and Trypanosoma cruzi (LC-B5 clone). Before running protocols, an analysis of the chemical composition of essential oil was conducted, which presented monoterpenes and sesquiterpenes. As major constituents, β-pinene and α-pinene were identified. Regarding to antiparasitic activity, the essential oil had an EC50 values of 133.97 µg/mL and 143.59 µg/mL against variations promastigotes of L. infantum and L. braziliensis, respectively. As for trypanocidal activity, the oil showed EC50 value of 140.31 µg/mL against epimastigote form of T. cruzi. Moreover, it showed moderate cytotoxicity in fibroblasts with LC50 value of 204.71 µg/mL. The observed effect may be related to the presence of terpenes contained in the essential oil, since it has its antiparasitic activity proven in the literature.

  12. Leishmania species identification using FTA card sampling directly from patients' cutaneous lesions in the state of Lara, Venezuela.

    PubMed

    Kato, Hirotomo; Watanabe, Junko; Mendoza Nieto, Iraida; Korenaga, Masataka; Hashiguchi, Yoshihisa

    2011-10-01

    A molecular epidemiological study was performed using FTA card materials directly sampled from lesions of patients with cutaneous leishmaniasis (CL) in the state of Lara, Venezuela, where causative agents have been identified as Leishmania (Viannia) braziliensis and L. (Leishmania) venezuelensis in previous studies. Of the 17 patients diagnosed with CL, Leishmania spp. were successfully identified in 16 patients based on analysis of the cytochrome b gene and rRNA internal transcribed spacer sequences. Consistent with previous findings, seven of the patients were infected with L. (V.) braziliensis. However, parasites from the other nine patients were genetically identified as L. (L.) mexicana, which differed from results of previous enzymatic and antigenic analyses. These results strongly suggest that L. (L.) venezuelensis is a variant of L. (L.) mexicana and that the classification of L. (L.) venezuelensis should be reconsidered. Copyright © 2011 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  13. In vitro interaction between paromomycin sulphate and four drugs with leishmanicidal activity against three New World Leishmania species.

    PubMed

    de Morais-Teixeira, Eliane; Gallupo, Mariana Kolos; Rodrigues, Lucas Fonseca; Romanha, Alvaro José; Rabello, Ana

    2014-01-01

    To evaluate in vitro interactions between paromomycin sulphate and the antileishmanial drugs meglumine antimoniate, amphotericin B, miltefosine and azithromycin against intracellular Leishmania (Leishmania) infantum chagasi, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis amastigotes in peritoneal mouse macrophages. First, drug susceptibility was assessed in 3, 5 and 7 day assays, followed by drug interaction assays with a modified fixed-ratio method. An overall mean sum fractional inhibitory concentration (∑FIC) was calculated for each combination and each Leishmania species. The nature of the interactions was classified as synergistic if the mean ∑FIC was ≤ 0.5, indifferent if the mean ∑FIC was >0.5-4.0 and antagonistic if the mean ∑FIC was >4.0. In vitro synergism was observed for the combinations of paromomycin plus miltefosine [at 50% and 90% inhibitory concentrations (IC50 and IC90, respectively)] and paromomycin plus amphotericin B (at the IC90 level) against L. (L.) amazonensis, paromomycin plus meglumine antimoniate (at the IC50 and IC90 levels) and paromomycin plus amphotericin B (at the IC50 level) against L. (V.) braziliensis, and paromomycin plus miltefosine, paromomycin plus amphotericin B (both at the IC90 level) and paromomycin plus azithromycin (at the IC50 level) against L. (L) infantum chagasi. This work provides a preclinical dataset that supports future studies on multidrug treatment schedules against New World leishmaniasis.

  14. Topical and Intradermal Efficacy of Photodynamic Therapy with Methylene Blue and Light-Emitting Diode in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis

    PubMed Central

    Sbeghen, Mônica Raquel; Voltarelli, Evandra Maria; Campois, Tácito Graminha; Kimura, Elza; Aristides, Sandra Mara Alessi; Hernandes, Luzmarina; Caetano, Wilker; Hioka, Noboru; Lonardoni, Maria Valdrinez Campana; Silveira, Thaís Gomes Verzignassi

    2015-01-01

    Introduction: The topical and intradermal photodynamic therapy (PDT) effect of methylene blue (MB) using light-emitting diode (LED) as light source (MB/LED-PDT) in the treatment of lesions of American cutaneous leishmaniasis (ACL) caused by Leishmania braziliensis in hamsters were investigated. Methods: Hamsters were infected in the footpad with 4×107 promastigotes of L. braziliensis and divided in 4 groups: Control group was not treated, AmB group was treated with amphotericin B, MB-Id group received intradermal MB at the edge of the lesion and MB-Tp group received MB topic. After treatment with MB, the animals were illuminated using red LEDs at the 655 nm wavelength for 1 hour. The MB/LED-PDT was carried out three times a week for 12 weeks. Results: Animals of MB-Tp group presented lesion healing with significant diminution in extent of the lesion, and reduced parasite burden compared to control group; however, no significant difference was seen compared to the AmB group. MB-Tp group also showed reconstitution of the epithelium, the formation of collagen fibers, organization in the epidermis, a little disorganization and inflammation in the dermis. MB-Id was ineffective in all parameters evaluated, and it was comparable to the control group results. Conclusion: These data show that PDT with the use of MB-Tp and LED may be an alternative for the treatment of ACL. However, additional studies are being conducted to assess the potential of MB/LED-PDT, alone or in combination with conventional therapy, for the treatment of ACL. PMID:26464777

  15. Study of Compounds for Activity against Leishmania

    DTIC Science & Technology

    1994-03-27

    other authorized documents. REPOT DCUMNTATON AGEForm Approved andOR DOudENT TIO PA En Omni . MB No. 0704-0188 Pubic : reporlinq burden for this...such clinical signs of toxicity as nervous disorders, roughened hair coat, and sluggish activity. Deaths of the animals was also considered indicative of...Test System Leishmania (V.) braziliensis (WR539) was used in these studies. Male golden hamsters, 50-70 gm, served as experimental hosts

  16. New alkenyl derivative from Piper malacophyllum and analogues: Antiparasitic activity against Trypanosoma cruzi and Leishmania infantum.

    PubMed

    Varela, Marina T; Lima, Marta L; Galuppo, Mariana K; Tempone, Andre G; de Oliveira, Alberto; Lago, João Henrique G; Fernandes, João Paulo S

    2017-11-01

    Alkylphenols isolated from Piper malacophyllum (Piperaceae), gibbilimbols A and B, showed interesting activity against the parasites Trypanosoma cruzi and Leishmania infantum. In continuation to our previous work, a new natural product from the essential oil of the leaves of P. malacophyllum was isolated, the 5-[(3E)-oct-3-en-1-il]-1,3-benzodioxole, and also a new set of five compounds was prepared. The antiparasitic activity of the natural product was evaluated in vitro against these parasites, indicating potential against the promastigote/trypomastigote/amastigote forms (IC 50 32-83 μm) of the parasites and low toxicity (CC 50  > 200 μm) to mammalian cells. The results obtained to the synthetic compounds indicated that the new derivatives maintained the promising antiparasitic activity, but the cytotoxicity was considerably lowered. The amine derivative LINS03011 displayed the most potent IC 50 values (13.3 and 16.7 μm) against amastigotes of T. cruzi and L. infantum, respectively, indicating comparable activity to the phenolic prototype LINS03003, with threefold decreased (CC 50 73.5 μm) cytotoxicity, leading the selectivity index (SI) towards the parasites up to 24.5. In counterpart, LINS03011 has not shown membrane disruptor activity in SYTOX Green model. In summary, this new set showed the hydroxyl is not essential for the antiparasitic activity, and its substitution could decrease the toxicity to mammalian cells. © 2017 John Wiley & Sons A/S.

  17. PCR-RFLP of ribosomal internal transcribed spacers highlights inter and intra-species variation among Leishmania strains native to La Paz, Bolivia.

    PubMed

    Buitrago, Rosio; Cupolillo, Elisa; Bastrenta, Brigitte; Le Pont, Francois; Martinez, Eddy; Barnabé, Christian; Brenière, Simone Frédérique

    2011-04-01

    Human leishmaniasis is highly endemic in Bolivia and shows a growing incidence. This report reveals the genetic variability of 35 isolates mainly belonging to Leishmania braziliensis and Leishmania amazonensis species. Among them, 31 were from human patients with different clinical presentations, 3 strains from Lutzomya nuneztovari anglesi (the proven vector of L. amazonensis) and 1 strain of a mammal (Conepatus chinga). The isolates were analyzed by isoenzyme electrophoresis (MLEE) and PCR-RFLP of ITS rRNA genes, a genetic marker highly polymorphic and better adapted to sub-structuring of populations. MLEE and RFLP-ITS were in agreement to discriminate the species, 12 belong to L. (V.) braziliensis, 21 to L. (L.) amazonensis, 1 to Leishmania (V.) lainsoni and 1 to Leishmania (L.) chagasi. Among L. (V.) braziliensis the RFLP-ITS only highlights variability. Ten isolates from either cutaneous or mucocutaneous clinical forms, were grouped together (bootstrap value of 99.8%) apart from two others, one from a mammal (C. chinga), the other from a patient with a cutaneous form. Among L. (L.) amazonensis both markers detect variability but no significant sub-division was identified including isolates from different clinical forms. Moreover, the high frequency of several isolates from cutaneous forms occurred during an outbreak, with putative hybrid character (multiloci heterozygous patterns depicted by MLEE) could be linked to better fitness of these parasites. However, in the absence of observation of hypothetical parents, their hybrid status remains a question. Copyright © 2010. Published by Elsevier B.V.

  18. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana

    PubMed Central

    Caballero, Ignacio S.; Bouchier, Christiane; Lavergne, Anne; Bourreau, Eliane; Mosnier, Emilie; Vantilcke, Vincent; Couppié, Pierre; Prevot, Ghislaine

    2017-01-01

    Introduction Leishmania RNA virus type 1 (LRV1) is an endosymbiont of some Leishmania (Vianna) species in South America. Presence of LRV1 in parasites exacerbates disease severity in animal models and humans, related to a disproportioned innate immune response, and is correlated with drug treatment failures in humans. Although the virus was identified decades ago, its genomic diversity has been overlooked until now. Methodology/Principles findings We subjected LRV1 strains from 19 L. (V.) guyanensis and one L. (V.) braziliensis isolates obtained from cutaneous leishmaniasis samples identified throughout French Guiana with next-generation sequencing and de novo sequence assembly. We generated and analyzed 24 unique LRV1 sequences over their full-length coding regions. Multiple alignment of these new sequences revealed variability (0.5%–23.5%) across the entire sequence except for highly conserved motifs within the 5’ untranslated region. Phylogenetic analyses showed that viral genomes of L. (V.) guyanensis grouped into five distinct clusters. They further showed a species-dependent clustering between viral genomes of L. (V.) guyanensis and L. (V.) braziliensis, confirming a long-term co-evolutionary history. Noteworthy, we identified cases of multiple LRV1 infections in three of the 20 Leishmania isolates. Conclusions/Significance Here, we present the first-ever estimate of LRV1 genomic diversity that exists in Leishmania (V.) guyanensis parasites. Genetic characterization and phylogenetic analyses of these viruses has shed light on their evolutionary relationships. To our knowledge, this study is also the first to report cases of multiple LRV1 infections in some parasites. Finally, this work has made it possible to develop molecular tools for adequate identification and genotyping of LRV1 strains for diagnostic purposes. Given the suspected worsening role of LRV1 infection in the pathogenesis of human leishmaniasis, these data have a major impact from a

  19. Implications of the use of serological and molecular methods to detect infection by Leishmania spp. in urban pet dogs.

    PubMed

    Paz, Gustavo F; Rugani, Jeronimo M N; Marcelino, Andreza P; Gontijo, Célia M F

    2018-06-01

    The aim of this study was to evaluate the relationship between naturally occurring Leishmania spp. infections in dogs (Canis familiaris) and the practical implications of the use of serological and molecular methods to confirm diagnoses. The study population consisted of 96 domestic dogs in southeastern Brazil. Serum samples were tested for the presence of anti-Leishmania immunoglobulin G (IgG) antibodies using four commercial canine visceral leishmaniasis kits. Dogs confirmed positive by immunofluorescence antibody test (IFAT) were culled and samples from mesenteric lymph nodes, spleen border, bone marrow and ear skin were taken and submitted to DNA extraction. PCR reactions were performed using primers that amplify a 300-350 bp fragment of the Leishmania ribosomal internal transcribed spacer 1 (ITS1) region. The ITS1 amplified products were analyzed by PCR-RFLP using Hae III restriction endonuclease. To confirm the Leishmania species detected by PCR, each purified sample was sequenced in duplicate. Of the 96 serum samples submitted to serological assays, 8 (8.3%) tested positive for Leishmania by IFAT, 4 (4.1%) by ELISA, 2 (2.1%) by rK39 RDT and 7 (7.3%) by DPP. Four of these infected dogs (50%) were found to be infected only by Leishmania braziliensis or Leishmania amazonensis, and their serum samples tested positive by IFAT and DPP. These findings demonstrate for the first time that cross-reactivity of L. braziliensis and L. amazonensis infection in dogs can be found using the DPP serum test. This is the first record of Leishmania (Leishmania) amazonensis confirmed by a specific molecular marker in dogs (Canis familiaris) from Belo Horizonte, Brazil. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Correlation between presence of Leishmania RNA virus 1 and clinical characteristics of nasal mucosal leishmaniosis.

    PubMed

    Ito, Marcos Massayuki; Catanhêde, Lilian Motta; Katsuragawa, Tony Hiroshi; Silva Junior, Cipriano Ferreira da; Camargo, Luis Marcelo Aranha; Mattos, Ricardo de Godoi; Vilallobos-Salcedo, Juan Miguel

    2015-01-01

    Mucosal leishmaniosis (ML) is a severe clinical form of leishmaniosis. Complex factors related to the parasite and the host are attributed to the development of mucosal lesions. Leishmania RNA virus 1 (LRV1) can disrupt immune response, and may be the main determinant of severity of the disease; it should be investigated. To study the existence of clinical differences between patients with ML with endosymbiosis by LRV1 and. those without it. A cross-sectional cohort study with clinical evaluation, polymerase chain reaction (PCR) detection of Leishmania, species classification, and search of LRV1 was performed. Only patients with confirmed diagnosis of ML by positive PCR and with nasal mucosa injuries were included in this analysis. Out of 37 patients, 30 (81.1%) were diagnosed with Leishmania braziliensis, five (13.5%) with Leishmania guyanensis, and two (5.4%) with mixed infection of L. braziliensis and L. guyanensis. LVR1 virus was present in 26 (70.3%) of the cases. Correlation between clinical phenotype and presence of LRV1 was not observed, although the frequency of the virus is two-fold higher in mucosal lesions than that found in the literature on skin lesions in the same geographical area. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. Influence of Leishmania RNA Virus 1 on Proinflammatory Biomarker Expression in a Human Macrophage Model of American Tegumentary Leishmaniasis.

    PubMed

    Kariyawasam, Ruwandi; Grewal, Jugvinder; Lau, Rachel; Purssell, Andrew; Valencia, Braulio M; Llanos-Cuentas, Alejandro; Boggild, Andrea K

    2017-10-17

    Species of the Leishmania Viannia (L. V.) subgenus harbor the double-stranded Leishmania RNA virus 1 (LRV-1), previously identified in isolates from Brazil and Peru. Higher levels of LRV-1 in metastasizing strains of L. V. guyanensis have been documented in both human and murine models, and correlated to disease severity. Expression of proinflammatory biomarkers, including interleukin (IL) 1β, tumor necrosis factor alpha (TNF-α), CXCL10, CCL5, IL-6, and superoxide dismutase, in human macrophages infected with 3 ATCC and 5 clinical isolates of L. V. braziliensis, L. V. guyanensis, and L. V. panamensis for 24 and 48 hours were measured by commercial enzyme immunoassay. Analyses were performed at 24 and 48 hours, stratified by LRV-1 status and species. LRV-1-positive L. V. braziliensis demonstrated significantly lower expression levels of TNF-α (P = .01), IL-1β (P = .0015), IL-6 (P = .001), and CXCL10 (P = .0004) compared with LRV-1-negative L. V. braziliensis. No differences were observed in strains of L. V. panamensis by LRV-1 status. Compared to LRV-1-negative L. V. braziliensis, LRV-1-positive strains of L. V. braziliensis produced a predominant Th2-biased immune response, correlated in humans to poorer immunologic control of infection and more severe disease, including mucosal leishmaniasis. Effects of LRV-1 on the pathogenesis of American tegumentary leishmaniasis may be species specific. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro

    PubMed Central

    2012-01-01

    Background Leishmania (V.) braziliensis is a causative agent of cutaneous leishmaniasis in Brazil. During the parasite life cycle, the promastigotes adhere to the gut of sandflies, to avoid being eliminated with the dejection. The Lulo cell line, derived from Lutzomyia longipalpis (Diptera: Psychodidae), is a suitable in vitro study model to understand the features of parasite adhesion. Here, we analyze the role of glycosaminoglycans (GAGs) from Lulo cells and proteins from the parasites in this event. Methods Flagellar (Ff) and membrane (Mf) fractions from promastigotes were obtained by differential centrifugation and the purity of fractions confirmed by western blot assays, using specific antibodies for cellular compartments. Heparin-binding proteins (HBP) were isolated from both fractions using a HiTrap-Heparin column. In addition, binding of promastigotes to Lulo cells or to a heparin-coated surface was assessed by inhibition assays or surface plasmon resonance (SPR) analysis. Results The success of promastigotes subcellular fractionation led to the obtainment of Ff and Mf proteins, both of which presented two main protein bands (65.0 and 55.0kDa) with affinity to heparin. The contribution of HBPs in the adherence of promastigotes to Lulo cells was assessed through competition assays, using HS or the purified HBPs fractions. All tested samples presented a measurable inhibition rate when compared to control adhesion rate (17 ± 2.0% of culture cells with adhered parasites): 30% (for HS 20μg/ml) and 16% (for HS 10μg/ml); HBP Mf (35.2% for 10μg/ml and 25.4% for 20μg/ml) and HBP Ff (10.0% for 10μg/ml and 31.4% for 20μg/ml). Additionally, to verify the presence of sulfated GAGs in Lulo cells surface and intracellular compartment, metabolic labeling with radioactive sulfate was performed, indicating the presence of an HS and chondroitin sulfate in both cell sections. The SPR analysis performed further confirmed the presence of GAGs ligands on L. (V

  3. [Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study].

    PubMed

    Ovalle-Bracho, Clemencia; Camargo, Carolina; Díaz-Toro, Yira; Parra-Muñoz, Marcela

    2018-03-15

    Multilocus enzyme electrophoresis (MLEE) is the reference standard for the characterization of Leishmania species. The test is restricted to specialized laboratories due to its technical complexity, cost, and time required to obtain results. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) is used to identify Leishmania species. To establish the concordance between the two tests as identifying methods for circulating species in Colombia. A total of 96 isolates from patients with cutaneous or mucosal leishmaniasis were selected and identified by MLEE and PCR-RFLP with miniexon and hsp70 as the molecular targets, which were used sequentially. Restriction enzymes HaeIII and BccI were similarly applied. Cohen's kappa coefficient and the 95% confidence interval (CI) were calculated. The kappa coefficient and the 95% CI between MLEE and PCR-RFLP displayed "very good" concordance with a coefficient of 0.98 (CI95%: 0.98 to 1.00). The identified species were Leishmania Viannia braziliensis, Leishmania Viannia panamensis, Leishmania Viannia guyanensis and Leishmania Leishmania amazonensis. A total of 80 of the 96 isolates were sequenced and the results obtained by PCR-RFLP were confirmed. Due to the concordance obtained between tests results with the amplification of the genes miniexon and hsp70, PCR-RFLP is proposed as an alternative for identifying circulating Leishmania species in Colombia.

  4. Use of Recombinant Antigens for Sensitive Serodiagnosis of American Tegumentary Leishmaniasis Caused by Different Leishmania Species.

    PubMed

    Sato, Camila Massae; Sanchez, Maria Carmen Arroyo; Celeste, Beatriz Julieta; Duthie, Malcolm S; Guderian, Jeffrey; Reed, Steven G; de Brito, Maria Edileuza Felinto; Campos, Marliane Batista; de Souza Encarnação, Helia Valeria; Guerra, Jorge; de Mesquita, Tirza Gabrielle Ramos; Pinheiro, Suzana Kanawati; Ramasawmy, Rajendranath; Silveira, Fernando Tobias; de Assis Souza, Marina; Goto, Hiro

    2017-02-01

    American tegumentary leishmaniasis (ATL) (also known as cutaneous leishmaniasis [CL]) is caused by various species of protozoa of the genus Leishmania The diagnosis is achieved on a clinical, epidemiological, and pathological basis, supported by positive parasitological exams and demonstration of leishmanin delayed-type hypersensitivity. Serological assays are not routinely used in the diagnosis because many are considered to have low sensitivity and the particular Leishmania species causing the disease can lead to variable performance. In the present study, we generated recombinant versions of two highly conserved Leishmania proteins, Leishmania (Viannia) braziliensis-derived Lb8E and Lb6H, and evaluated both in enzyme-linked immunosorbent assays (ELISA). Recombinant Lb6H (rLb6H) had better performance and reacted with 100.0% of the ATL and 89.4% of the VL samples. These reactions with rLb6H were highly specific (98.5%) when compared against those for samples from healthy control individuals. We then assessed rLb6H against sera from ATL patients infected with different species of Leishmania prevalent in Brazil [Leishmania (Leishmania) amazonensis, L (Viannia) braziliensis, and L (V) guyanensis] and samples from patients with other infectious diseases. In analyses of 500 sera, ELISA using rLb6H detected all 219 ATL samples (sensitivity of 100.0%) with an overall specificity of 93.9% (considering healthy individuals and other infectious diseases patients). Only a minority of samples from Chagas disease patients possessed antibodies against rLb6H, and all of these responses were low (with a highest reactivity index of 2.2). Taken together, our data support further evaluation of rLb6H and the potential for its routine use in the serological diagnosis of ATL. Copyright © 2017 Sato et al.

  5. Computational prediction of protein-protein interactions in Leishmania predicted proteomes.

    PubMed

    Rezende, Antonio M; Folador, Edson L; Resende, Daniela de M; Ruiz, Jeronimo C

    2012-01-01

    The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI) study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping) and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks received some degree

  6. Gene gun-mediated delivery of an interleukin-12 expression plasmid protects against infections with the intracellular protozoan parasites Leishmania major and Trypanosoma cruzi in mice

    PubMed Central

    Sakai, T; Hisaeda, H; Nakano, Y; Ishikawa, H; Maekawa, Y; Ishii, K; Nitta, Y; Miyazaki, J; Himeno, K

    2000-01-01

    An interleukin-12 (IL-12) expression plasmid was transferred, using a gene gun, to mice infected with Leishmania major or Trypanosoma cruzi. Transfer of the IL-12 gene to susceptible BALB/c mice resulted in regression of lesion size and reduced the number of parasites in draining lymph nodes (LN) at the site of L. major infection. Coincident with these protective effects, the T-helper type (Th) response shifted towards Th1, as evaluated by cytokine production in vitro and L. major-specific antibody responses. Protective effects of the IL-12 gene were also observed in T. cruzi infection. Treatment of BALB/c mice infected with T. cruzi enhanced the production of interferon-γ (IFN-γ) by spleen cells, while suppressed production of interleukin-10 (IL-10) compared with control mice. Administration of anti-CD4 or anti-CD8 monoclonal antibody (mAb) abolished the protective immunity against T. cruzi infection, and treatment with the IL-12 gene could not restore the resistance in these mice. Mice depleted of natural killer (NK) cells with anti-asialo GM1 also became susceptible to infection, while the resistance was restored when these mice were treated with the IL-12 gene. Thus, target cells for the treatment appear to be CD4+ and CD8+ T cells, which are ordinarily activated by NK cells. These results suggest that the transfer of cytokine genes using a gene gun is an effective method for investigating the roles of cytokines and gene therapy in infectious diseases. PMID:10792510

  7. Antiparasitic effect of the Psidium guajava L. (guava) and Psidium brownianum MART. EX DC. (araçá-de-veado) extracts.

    PubMed

    Machado, Antonio J T; Santos, Antonia T L; Martins, Gioconda M A B; Cruz, Rafael P; Costa, Maria do S; Campina, Fábia F; Freitas, Maria A; Bezerra, Camila F; Leal, Antonio L A B; Carneiro, Joara N P; Coronel, Cathia; Rolón, Miriam; Gómez, Celeste V; Coutinho, Henrique D M; Morais-Braga, Maria F B

    2018-03-13

    In the search for new therapeutic agents against neglected diseases, both aqueous and hydroethanolic extracts from Psidium guajava L. and P. brownianum Mart ex DC leaves were investigated regarding their antiparasitic effect and cytotoxic potential. The extracts were tested at three concentrations (250, 500 and 1000 μg/mL) against Trypanosoma cruzi epimastigote forms (Chagas, 1909), Leishmania braziliensis (Vianna, 1911) and L. infantum promastigotes forms (Nicolle, 1908), as well as against fibroblasts. P. guajava showed no activity against T. cruzi forms, while the hydroethanolic (PBHE), aqueous by decoction (PBAED) and aqueous by infusion (PBAEI) P. browninaum extracts were responsible, respectively, for inhibiting 100, 100 and 92.68% of T. cruzi epimastigote growth at the 1000 μg/mL concentration. The P. brownianum hydroethanolic extract (PBHE) at the highest concentration caused 58.46% death in L. braziliensis, thus demonstrating moderate activity, however when tested against L. infantum, the PBHE inhibited their growth by 37.16%, revealing its low activity. As for the cytotoxicity assays, the P. brownianum aqueous extract by decoction (PBAED) obtained the highest death percentage when compared to the others, causing 90.85% fibroblast mortality at the 1000 μg/mL concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Phlebotomine fauna, natural infection rate and feeding habits of Lutzomyia cruzi in Jaciara, state of Mato Grosso, Brazil

    PubMed Central

    de Brito, Veruska Nogueira; de Almeida, Arleana do Bom Parto Ferreira; Nakazato, Luciano; Duarte, Rosemere; Souza, Cladson de Oliveira; Sousa, Valéria Régia Franco

    2014-01-01

    Visceral leishmaniasis (VL) in Brazil is transmitted by the phlebotomine Lutzomyia longipalpis and in some midwestern regions by Lutzomyia cruzi. Studies of the phlebotomine fauna, feeding habits and natural infection rate by Leishmania contribute to increased understanding of the epidemiological chain of leishmaniases and their vectorial capacity. Collections were performed in Jaciara, state of Mato Grosso from 2010-2013, during which time 2,011 phlebotomines (23 species) were captured (68.70% Lu. cruzi and 20.52% Lutzomyia whitmani). Lu. cruzi females were identified by observing the shapes of the cibarium (a portion of the mouthpart) and spermatheca, from which samples were obtained for polymerase chain reaction to determine the rates of natural infection. Engorged phlebotomines were assessed to identify the blood-meal host by ELISA. A moderate correlation was discovered between the number of Lu. cruzi and the temperature and the minimum rate of infection was 6.10%. Twenty-two females were reactive to the antisera of bird (28%), dog (3.30%) and skunk (1.60%). We conclude that Lu. cruzi and Lu. whitmani have adapted to the urban environment in this region and that Lu. cruzi is the most likely vector of VL in Jaciara. Moreover, maintenance of Leishmania in the environment is likely aided by the presence of birds and domestic and synanthropic animals. PMID:25410993

  9. Molecular Detection of Leishmania DNA in Wild-Caught Phlebotomine Sand Flies (Diptera: Psychodidae) From a Cave in the State of Minas Gerais, Brazil.

    PubMed

    Carvalho, G M L; Brazil, R P; Rêgo, F D; Ramos, M C N F; Zenóbio, A P L A; Andrade Filho, J D

    2017-01-01

    Leishmania spp. are distributed throughout the world, and different species are associated with varying degrees of disease severity. In Brazil, Leishmania transmission involves several species of phlebotomine sand flies that are closely associated with different parasites and reservoirs, and thereby giving rise to different transmission cycles. Infection occurs during the bloodmeals of sand flies obtained from a variety of wild and domestic animals, and sometimes from humans. The present study focused on detection of Leishmania DNA in phlebotomine sand flies from a cave in the state of Minas Gerais. Detection of Leishmania in female sand flies was performed with ITS1 PCR-RFLP (internal transcribed spacer 1) using HaeIII enzyme and genetic sequencing for SSUrRNA target. The survey of Leishmania DNA was carried out on 232 pools and the parasite DNA was detected in four: one pool of Lutzomyia cavernicola (Costa Lima, 1932), infected with Le. infantum (ITS1 PCR-RFLP), two pools of Evandromyia sallesi (Galvão & Coutinho, 1939), both infected with Leishmania braziliensis complex (SSUrRNA genetic sequencing analysis), and one pool of Sciopemyia sordellii (Shannon & Del Ponte, 1927), infected with subgenus Leishmania (SSUrRNA genetic sequencing analysis). The present study identified the species for Leishmania DNA detected in four pools of sand flies, all of which were captured inside the cave. These results represent the first molecular detection of Lu cavernicola with Le infantum DNA, Sc sordellii with subgenus Leishmania DNA, and Ev sallesi with Leishmania braziliensis complex DNA. The infection rate in females captured for this study was 0.17%. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Treatment Failure and Miltefosine Susceptibility in Dermal Leishmaniasis Caused by Leishmania Subgenus Viannia Species

    PubMed Central

    Obonaga, Ricardo; Fernández, Olga Lucía; Valderrama, Liliana; Rubiano, Luisa Consuelo; Castro, Maria del Mar; Barrera, Maria Claudia; Gomez, Maria Adelaida

    2014-01-01

    Treatment failure and parasite drug susceptibility in dermal leishmaniasis caused by Leishmania (Viannia) species are poorly understood. Prospective evaluation of drug susceptibility of strains isolated from individual patients before drug exposure and at clinical failure allows intrinsic and acquired differences in susceptibility to be discerned and analyzed. To determine whether intrinsic susceptibility or loss of susceptibility to miltefosine contributed to treatment failure, we evaluated the miltefosine susceptibility of intracellular amastigotes and promastigotes of six Leishmania (Viannia) braziliensis and six Leishmania (Viannia) panamensis strains isolated sequentially, at diagnosis and treatment failure, from two children and four adults ≥55 years old with concurrent conditions. Four patients presented only cutaneous lesions, one had mucosal disease, and one had disseminated mucocutaneous disease. Expression of the Leishmania drug transporter genes abca2, abca3, abcc2, abcc3, abcg4, abcg6, and LbMT was evaluated by quantitative reverse transcription-PCR (qRT-PCR). Intracellular amastigotes (median 50% effective concentration [EC50], 10.7 μmol/liter) were more susceptible to miltefosine than promastigotes (median EC50, 55.3 μmol/liter) (P < 0.0001). Loss of susceptibility at failure, demonstrated by a miltefosine EC50 of >32 μmol/liter (the upper limit of intracellular amastigote assay), occurred in L. panamensis infection in a child and in L. braziliensis infection in an adult and was accompanied by decreased expression of the miltefosine transporter LbMT (LbMT/β-tubulin, 0.42- to 0.26-fold [P = 0.039] and 0.70- to 0.57-fold [P = 0.009], respectively). LbMT gene polymorphisms were not associated with susceptibility phenotype. Leishmania ABCA3 transporter expression was inversely correlated with miltefosine susceptibility (r = −0.605; P = 0.037). Loss of susceptibility is one of multiple factors involved in failure of miltefosine treatment in dermal

  11. Evaluation of Genetic Polymorphism of Leishmania (V.) braziliensis Isolates Obtained from the Same Patient before and after Therapeutic Failure or Reactivation of Cutaneous Lesions

    PubMed Central

    Baptista, Cibele; Schubach, Armando de Oliveira; Madeira, Maria de Fatima; de Freitas Campos Miranda, Luciana; Guimarães de Souza Pinto, Andressa; Helena da Silva Barros, Juliana; Conceição-Silva, Fatima; Fernandes Pimentel, Maria Ines; da Silva Pacheco, Raquel

    2012-01-01

    The aim of this study was to investigate genetic polymorphism in Leishmania braziliensis population previously typed through isoenzyme electrophoresis, isolated from the same patient in two different moments: (A) before the beginning of treatment and (B) after treatment failure to meglumine antimoniate or reactivation after successful initial treatment. Fifteen pairs of isolates were assessed using the polymorphic molecular marker LSSP-PCR and following the phenetic analysis. The genetic profiles of the 30 samples were grouped in four clusters. Only two patients presented total identity in the A and B isolates. Most isolates presented similarity coefficients varying from 0.63 to 0.91. In this group of patients genetic polymorphisms could be observed indicating low similarity between the pairs of isolates. The results demonstrate the existence of genetic polymorphism between the samples isolated before treatment and after reactivation or treatment failure, suggesting a possible differentiation of the structure of the original parasite population which could be involved in the mechanisms of resistance to treatment or reactivation of lesions in the ATL. This phenomenon is important, although other factors also could be involved in this context and are discussed in this paper. PMID:23304168

  12. Leishmania spp. epidemiology of canine leishmaniasis in the Yucatan Peninsula.

    PubMed

    López-Céspedes, A; Longoni, S S; Sauri-Arceo, C H; Sánchez-Moreno, M; Rodríguez-Vivas, R I; Escobedo-Ortegón, F J; Barrera-Pérez, M A; Bolio-González, M E; Marín, C

    2012-01-01

    Canine Leishmaniasis is widespread in various Mexican states, where different species of Leishmania have been isolated from dogs. In the present study, we describe the detection of L. braziliensis, L. infantum, and L. mexicana in serum of dogs from the states of Yucatan and Quintana Roo in the Yucatan Peninsula (Mexico). A total of 412 sera were analyzed by ELISA using the total extract of the parasite and the iron superoxide dismutase excreted by different trypanosomatids as antigens. We found the prevalence of L. braziliensis to be 7.52%, L. infantum to be 6.07%, and L. mexicana to be 20.63%, in the dog population studied. The results obtained with ELISA using iron superoxide dismutase as the antigen were confirmed by western blot analysis with its greater sensitivity, and the agreement between the two techniques was very high.

  13. Leishmania spp. Epidemiology of Canine Leishmaniasis in the Yucatan Peninsula

    PubMed Central

    López-Céspedes, A.; Longoni, S. S.; Sauri-Arceo, C. H.; Sánchez-Moreno, M.; Rodríguez-Vivas, R. I.; Escobedo-Ortegón, F. J.; Barrera-Pérez, M. A.; Bolio-González, M. E.; Marín, C.

    2012-01-01

    Canine Leishmaniasis is widespread in various Mexican states, where different species of Leishmania have been isolated from dogs. In the present study, we describe the detection of L. braziliensis, L. infantum, and L. mexicana in serum of dogs from the states of Yucatan and Quintana Roo in the Yucatan Peninsula (Mexico). A total of 412 sera were analyzed by ELISA using the total extract of the parasite and the iron superoxide dismutase excreted by different trypanosomatids as antigens. We found the prevalence of L. braziliensis to be 7.52%, L. infantum to be 6.07%, and L. mexicana to be 20.63%, in the dog population studied. The results obtained with ELISA using iron superoxide dismutase as the antigen were confirmed by western blot analysis with its greater sensitivity, and the agreement between the two techniques was very high. PMID:22927792

  14. Leishmania infection and blood food sources of phlebotomines in an area of Brazil endemic for visceral and tegumentary leishmaniasis

    PubMed Central

    Guimarães-e-Silva, Antônia Suely; Silva, Soraia de Oliveira; Ribeiro da Silva, Rosa Cristina; Pinheiro, Valéria Cristina Soares; Rebêlo, José Manuel Macário; Melo, Maria Norma

    2017-01-01

    The aims of the study were to determine the blood feeding preferences of sandflies and to identify species of Leishmania that infected phlebotomines in Caxias, Maranhão, Brazil, an area that is highly endemic for leishmaniasis. Sandflies were captured in light traps located in the peridomiciliary environments of randomly selected houses in urban and rural settings between 1800 and 0600 hours on new moon days between March 2013 and February 2015. DNA extracts from 982 engorged female sandflies were submitted to fragment length polymorphism analysis to identify infecting species of Leishmania, and blood sources were identified for 778 of these specimens. Infection by Leishmania infantum was detected in Lutzomyia longipalpis, Lu. whitmani and Lu. termitophila; L. infantum/L. braziliensis in Lu. longipalpis, Lu. whitmani and Lu. trinidadensis; L. shawi in Lu. longipalpis; L. mexicana in Lu. longipalpis; L. braziliensis in Lu. longipalpis and Lu. whitmani; L. guyanensis in Lu. longipalpis and Lu. termitophila; L. amazonensis in Lu. longipalpis and L. lainsoni or L. naiffi in Lu. longipalpis, while Lu. longipalpis and Lu. trinidadensis were infected with unidentified Leishmania sp. Blood sources were identified in 573 individual phlebotomines and the preferred hosts were, in decreasing order, chicken, dog, rodent and human with lower preferences for pig, horse, opossum and cattle. Lu. longipalpis and Lu. whitmani performed mixed feeding on man, dog and rodent, while Lu. longipalpis was the most opportunistic species, feeding on the blood of all hosts surveyed, but preferably on dog/chicken, dog/rodent and rodent/chicken. Our findings reveal the concomitant circulation of Leishmania species that cause visceral leishmaniasis and tegumentary leishmaniasis in the study area, and explain the occurrence of autochthonous human cases of both clinical forms of leishmaniasis in Caxias, Maranhão. The results support our hypothesis that, in the municipality of Caxias, transmission

  15. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus

    PubMed Central

    Coughlan, Simone; Taylor, Ali Shirley; Feane, Eoghan; Sanders, Mandy; Schonian, Gabriele; Cotton, James A.

    2018-01-01

    The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. (Viannia) braziliensis and L. (V.) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. (V.) naiffi and L. (V.) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia: aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia, there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni, L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3’ end of chromosome 34. This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance. PMID:29765675

  16. Successful isolation of Leishmania infantum from Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) collected from naturally infected dogs.

    PubMed

    Medeiros-Silva, Viviane; Gurgel-Gonçalves, Rodrigo; Nitz, Nadjar; Morales, Lucia Emilia D' Anduraim; Cruz, Laurício Monteiro; Sobral, Isabele Gonçalves; Boité, Mariana Côrtes; Ferreira, Gabriel Eduardo Melim; Cupolillo, Elisa; Romero, Gustavo Adolfo Sierra

    2015-10-09

    The main transmission route of Leishmania infantum is through the bites of sand flies. However, alternative mechanisms are being investigated, such as through the bites of ticks, which could have epidemiological relevance. The objective of this work was to verify the presence of Leishmania spp. in Rhipicephalus sanguineus sensu lato collected from naturally infected dogs in the Federal District of Brazil. Ticks were dissected to remove their intestines and salivary glands for DNA extraction and the subsequent amplification of the conserved region of 120 bp of kDNA and 234 bp of the hsp70 gene of Leishmania spp. The amplified kDNA products were digested with endonucleases HaeIII and BstUI and were submitted to DNA sequencing. Isolated Leishmania parasites from these ticks were analyzed by multilocus enzyme electrophoresis, and the DNA obtained from this culture was subjected to microsatellite analyses. Overall, 130 specimens of R. sanguineus were collected from 27 dogs. Leishmania spp. were successfully isolated in culture from five pools of salivary glands and the intestines of ticks collected from four dogs. The amplified kDNA products from the dog blood samples and from the tick cultures, when digested by HaeIII and BstUI, revealed the presence of L. braziliensis and L. infantum. One strain was cultivated and characterized as L. infantum by enzyme electrophoresis. The amplified kDNA products from the blood of one dog showed a sequence homology with L. braziliensis; however, the amplified kDNA from the ticks collected from this dog showed a sequence homology to L. infantum. The results confirm that the specimens of R. sanguineus that feed on dogs naturally infected by L. infantum contain the parasite DNA in their intestines and salivary glands, and viable L. infantum can be successfully isolated from these ectoparasites.

  17. An Innovative Field-Applicable Molecular Test to Diagnose Cutaneous Leishmania Viannia spp. Infections

    PubMed Central

    Saldarriaga, Omar A.; Castellanos-Gonzalez, Alejandro; Porrozzi, Renato; Baldeviano, Gerald C.; Lescano, Andrés G.; de Los Santos, Maxy B.; Fernandez, Olga L.; Saravia, Nancy G.; Costa, Erika; Melby, Peter C.; Travi, Bruno L.

    2016-01-01

    Cutaneous and mucosal leishmaniasis is widely distributed in Central and South America. Leishmania of the Viannia subgenus are the most frequent species infecting humans. L. (V.) braziliensis, L. (V.) panamensis are also responsible for metastatic mucosal leishmaniasis. Conventional or real time PCR is a more sensitive diagnostic test than microscopy, but the cost and requirement for infrastructure and trained personnel makes it impractical in most endemic regions. Primary health systems need a sensitive and specific point of care (POC) diagnostic tool. We developed a novel POC molecular diagnostic test for cutaneous leishmaniasis caused by Leishmania (Viannia) spp. Parasite DNA was amplified using isothermal Recombinase Polymerase Amplification (RPA) with primers and probes that targeted the kinetoplast DNA. The amplification product was detected by naked eye with a lateral flow (LF) immunochromatographic strip. The RPA-LF had an analytical sensitivity equivalent to 0.1 parasites per reaction. The test amplified the principal L. Viannia species from multiple countries: L. (V.) braziliensis (n = 33), L. (V.) guyanensis (n = 17), L. (V.) panamensis (n = 9). The less common L. (V.) lainsoni, L. (V.) shawi, and L. (V.) naiffi were also amplified. No amplification was observed in parasites of the L. (Leishmania) subgenus. In a small number of clinical samples (n = 13) we found 100% agreement between PCR and RPA-LF. The high analytical sensitivity and clinical validation indicate the test could improve the efficiency of diagnosis, especially in chronic lesions with submicroscopic parasite burdens. Field implementation of the RPA-LF test could contribute to management and control of cutaneous and mucosal leishmaniasis. PMID:27115155

  18. Cross-protective efficacy from a immunogen firstly identified in Leishmania infantum against tegumentary leishmaniasis.

    PubMed

    Martins, V T; Lage, D P; Duarte, M C; Costa, L E; Chávez-Fumagalli, M A; Roatt, B M; Menezes-Souza, D; Tavares, C A P; Coelho, E A F

    2016-02-01

    Experimental vaccine candidates have been evaluated to prevent leishmaniasis, but no commercial vaccine has been proved to be effective against more than one parasite species. LiHyT is a Leishmania-specific protein that was firstly identified as protective against Leishmania infantum. In this study, LiHyT was evaluated as a vaccine to against two Leishmania species causing tegumentary leishmaniasis (TL): Leishmania major and Leishmania braziliensis. BALB/c mice were immunized with rLiHyT plus saponin and lately challenged with promastigotes of the two parasite species. The immune response generated was evaluated before and 10 weeks after infection, as well as the parasite burden at this time after infection. The vaccination induced a Th1 response, which was characterized by the production of IFN-γ, IL-12 and GM-CSF, as well as by high levels of IgG2a antibodies, after in vitro stimulation using both the protein and parasite extracts. After challenge, vaccinated mice showed significant reductions in their infected footpads, as well as in the parasite burden in the tissue and organs evaluated, when compared to the control groups. The anti-Leishmania Th1 response was maintained after infection, being the IFN-γ production based mainly on CD4(+) T cells. We described one conserved Leishmania-specific protein that could compose a pan-Leishmania vaccine. © 2016 John Wiley & Sons Ltd.

  19. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia.

    PubMed

    Beer, María Florencia; Frank, Fernanda Maria; Germán Elso, Orlando; Ernesto Bivona, Augusto; Cerny, Natacha; Giberti, Gustavo; Luis Malchiodi, Emilio; Susana Martino, Virginia; Alonso, María Rosario; Patricia Sülsen, Valeria; Cazorla, Silvia Ines

    2016-10-01

    Context Chagas' disease and leishmaniasis produce significant disability and mortality with great social and economic impact. The genus Stevia (Asteraceae) is a potential source of antiprotozoal compounds. Objective Aerial parts of four Stevia species were screened on Trypanosoma cruzi. Stevia satureiifolia (Lam.) Sch. Bip. var. satureiifolia (Asteraceae) dichloromethane extract was selected for a bioassay-guided fractionation in order to isolate its active compounds. Additionally, the antileishmanial activity and the cytotoxicity of these compounds on mammalian cells were assessed. Materials and methods The dichloromethane extract was fractionated by column chromatography. The isolated compounds were evaluated using concentrations of 0-100 μg/mL on T. cruzi epimastigotes and on Leishmania braziliensis promastigotes for 72 h, on trypomastigotes and amastigotes of T. cruzi for 24 h and 120 h, respectively. The compounds' cytotoxicity (12.5-500 μg/mL) was assessed on Vero cells by the MTT assay. The structure elucidation of each compound was performed by spectroscopic methods and HPLC analysis. Results The dichloromethane extracts of Stevia species showed significant activity on T. cruzi epimastigotes. The flavonoids eupatorin (1.3%), cirsimaritin (1.9%) and 5-desmethylsinensetin (1.5%) were isolated from S. satureiifolia var. satureiifolia extract. Eupatorin and 5-desmethylsinensetin showed IC50 values of 0.2 and 0.4 μg/mL on T. cruzi epimastigotes and 61.8 and 75.1 μg/mL on trypomastigotes, respectively. The flavonoid 5-desmethylsinensetin showed moderate activity against T. cruzi amastigotes (IC50  value = 78.7 μg/mL) and was the most active compound on L. braziliensis promastigotes (IC50  value = 37.0 μg/mL). Neither of the flavonoids showed cytotoxicity on Vero cells, up to a concentration of 500 μg/mL.

  20. In vitro study of the photodynamic antimicrobial therapy (PACT) against promastigotes form of the leishmania (viannia) braziliensis: in vitro study

    NASA Astrophysics Data System (ADS)

    Barbosa, Artur F. S.; Sangiorgi, Bruno B.; Galdino, Suely L.; Pitta, Ivan R.; Barral-Netto, Manoel; Pinheiro, Antônio L. B.

    2013-03-01

    Leishmaniasis, a protozoan parasitic disease that remains a major worldwide health problem with high endemicity in developing countries. Treatment of cutaneous Leishmaniasis (CL) should be decided by the clinical lesions, etiological species and its potential to develop into mucosal Leishmaniasis. High cost, systemic toxicity, and diminished efficacy due to development of parasite resistance are the serious drawbacks of current treatment options. Thus, identifying new, effective, and safer anti-leishmanial drug(s) is of paramount importance. The aim of this study was to verify the effectiveness of PACT in vitro, as a new technique for the treatment of Leishmaniasis. For this, semiconductor laser (λ = 660nm, 40mW, 8.4J/cm2, CW) associated to phenothiazine's derivatives (5 and 10 μg/ml, TBO, Methylene Blue or Phenothiazine) on the promastigotes form of Leishmania braziliensis in a single session was used. Viability of the parasites was assessed in quadruplicates of each group. The samples were removed and analyzed in a hemocytometer 72h after PACT. We found an important decrease in the number of viable parasites on all treated groups in comparison to their controls. The results of present study showed significant percentage of lethality (above 92%) of the protocol. The 98.33% of lethality was achieved with 10 μg/ml of FTZ. No lethality was seen on groups treated neither with laser nor with each compounds separately. The results are promising and indicative that the use of PACT may be a powerful treatment of Leishmaniasis when compared to already available ones.

  1. Leishmania (Viannia) Infection in the Domestic Dog in Chaparral, Colombia

    PubMed Central

    Santaella, Julián; Ocampo, Clara B.; Saravia, Nancy G.; Méndez, Fabián; Góngora, Rafael; Gomez, Maria Adelaida; Munstermann, Leonard E.; Quinnell, Rupert J.

    2011-01-01

    Peridomestic transmission of American cutaneous leishmaniasis is increasingly reported and dogs may be a reservoir of Leishmania (Viannia) in this setting. We investigated the prevalence of infection in dogs in Chaparral County, Colombia, the focus of an epidemic of human cutaneous leishmaniasis caused by Leishmania (Viannia) guyanensis. Two (0.72%) of 279 dogs had lesions typical of cutaneous leishmaniasis that were biopsy positive by kinetoplast DNA polymerase chain reaction–Southern blotting. Seroprevalence was 2.2% (6 of 279) by enzyme-linked immunosorbent assay. Buffy coat and ear skin biopsy specimens were positive by polymerase chain reaction–Southern blotting in 7.3% (10 of 137) and 11.4% (12 of 105) of dogs, respectively. Overall 20% of dogs (21 of 105) showed positive results for one or more tests. Amplification and sequencing of the Leishmania 7SL RNA gene identified L. guyanensis in one dog and L. braziliensis in two dogs. No association was identified between the risk factors evaluated and canine infection. Dogs may contribute to transmission but their role in this focus appears to be limited. PMID:21540374

  2. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis.

    PubMed

    Costa Duarte, Mariana; dos Reis Lage, Letícia Martins; Lage, Daniela Pagliara; Mesquita, Juliana Tonini; Salles, Beatriz Cristina Silveira; Lavorato, Stefânia Neiva; Menezes-Souza, Daniel; Roatt, Bruno Mendes; Alves, Ricardo José; Tavares, Carlos Alberto Pereira; Tempone, André Gustavo; Coelho, Eduardo Antonio Ferraz

    2016-02-15

    The development of new therapeutic strategies to treat leishmaniasis has become a priority. In the present study, the antileishmanial activity of 8-hydroxyquinoline (8-HQN) was investigated against in vitro promastigotes and in vivo intra-macrophage amastigotes of three Leishmania species: Leishmania amazonensis, Leishmania infantum and Leishmania braziliensis. Studies were performed to establish the 50% Leishmania inhibitory concentration (IC50) of 8-HQN, as well as its 50% cytotoxic concentration (CC50) on murine macrophages and in human red blood cells. The inhibition of macrophages infection was also evaluated using parasites that were pre-treated with 8-HQN. The effects of this compound on nitric oxide (NO) production and in the mitochondrial membrane potential were also evaluated. Finally, the therapeutic efficacy of 8-HQN was assessed in a known murine model, L. amazonensis-chronically infected BALB/c mice. Our results showed that 8-HQN was effective against promastigote and amastigote stages of all tested Leishmania species, presenting a selectivity index of 328.0, 62.0 and 47.0 for L. amazonensis, L. infantum and L. braziliensis, respectively. It was effective in treating infected macrophages, as well as in preventing the infection of these cells using pre-treated parasites. In addition, 8-HQN caused an alteration in the mitochondrial membrane potential of the parasites. When administered at 10mg/kg body weight/day by subcutaneous route, this product was effective in reducing the lesion diameter, as well as the parasite load in evaluated tissues and organs of infected animals. The results showed the in vitro and in vivo efficacy of 8-HQN against three different Leishmania species causing tegumentary and/or visceral leishmaniasis, and it could well be used for future therapeutic optimization studies to treat leishmaniasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The SIDER2 elements, interspersed repeated sequences that populate the Leishmania genomes, constitute subfamilies showing chromosomal proximity relationship.

    PubMed

    Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen

    2008-06-02

    Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania

  4. Comparison of four PCR methods for efficient detection of Trypanosoma cruzi in routine diagnostics.

    PubMed

    Seiringer, Peter; Pritsch, Michael; Flores-Chavez, María; Marchisio, Edoardo; Helfrich, Kerstin; Mengele, Carolin; Hohnerlein, Stefan; Bretzel, Gisela; Löscher, Thomas; Hoelscher, Michael; Berens-Riha, Nicole

    2017-07-01

    Due to increased migration, Chagas disease has become an international health problem. Reliable diagnosis of chronically infected people is crucial for prevention of non-vectorial transmission as well as treatment. This study compared four distinct PCR methods for detection of Trypanosoma cruzi DNA for the use in well-equipped routine diagnostic laboratories. DNA was extracted of T. cruzi-positive and negative patients' blood samples and cultured T. cruzi, T. rangeli as well as Leishmania spp. One conventional and two real-time PCR methods targeting a repetitive Sat-DNA sequence as well as one conventional PCR method targeting the variable region of the kDNA minicircle were compared for sensitivity, intra- and interassay precision, limit of detection, specificity and cross-reactivity. Considering the performance, costs and ease of use, an algorithm for PCR-diagnosis of patients with a positive serology for T. cruzi antibodies was developed. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects.

    PubMed

    Jones, Nathaniel G; Catta-Preta, Carolina M C; Lima, Ana Paula C A; Mottram, Jeremy C

    2018-04-13

    There has been a very limited number of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable target genes that have been shown by genetic or chemical methods to be essential for the parasite. In this perspective, we discuss the state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and 36 Trypanosoma cruzi genes for which gene deletion attempts have been made since the first published case in 1990. We define a quality score for the different genetic deletion techniques that can be used to identify potential drug targets. We also discuss how the advances in genome-scale gene disruption techniques have been used to assist target-based and phenotypic-based drug development in other parasitic protozoa and why Leishmania has lacked a similar approach so far. The prospects for this scale of work are considered in the context of the application of CRISPR/Cas9 gene editing as a useful tool in Leishmania.

  6. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    PubMed

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Distinct Leishmania Species Infecting Wild Caviomorph Rodents (Rodentia: Hystricognathi) from Brazil

    PubMed Central

    Cássia-Pires, Renata; Boité, Mariana C.; D'Andrea, Paulo S.; Herrera, Heitor M.; Cupolillo, Elisa; Jansen, Ana Maria; Roque, André Luiz R.

    2014-01-01

    Background Caviomorph rodents, some of the oldest Leishmania spp. hosts, are widely dispersed in Brazil. Despite both experimental and field studies having suggested that these rodents are potential reservoirs of Leishmania parasites, not more than 88 specimens were analyzed in the few studies of natural infection. Our hypothesis was that caviomorph rodents are inserted in the transmission cycles of Leishmania in different regions, more so than is currently recognized. Methodology We investigated the Leishmania infection in spleen fragments of 373 caviomorph rodents from 20 different species collected in five Brazilian biomes in a period of 13 years. PCR reactions targeting kDNA of Leishmania sp. were used to diagnose infection, while Leishmania species identification was performed by DNA sequencing of the amplified products obtained in the HSP70 (234) targeting. Serology by IFAT was performed on the available serum of these rodents. Principal findings In 13 caviomorph rodents, DNA sequencing analyses allowed the identification of 4 species of the subgenus L. (Viannia): L. shawi, L. guyanensis, L. naiffi, and L. braziliensis; and 1 species of the subgenus L. (Leishmania): L. infantum. These include the description of parasite species in areas not previously included in their known distribution: L. shawi in Thrichomys inermis from Northeastern Brazil and L. naiffi in T. fosteri from Western Brazil. From the four other positive rodents, two were positive for HSP70 (234) targeting but did not generate sequences that enabled the species identification, and another two were positive only in kDNA targeting. Conclusions/Significance The infection rate demonstrated by the serology (51.3%) points out that the natural Leishmania infection in caviomorph rodents is much higher than that observed in the molecular diagnosis (4.6%), highlighting that, in terms of the host species responsible for maintaining Leishmania species in the wild, our current knowledge represents only the

  8. In vitro and in vivo leishmanicidal activity of Astronium fraxinifolium (Schott) and Plectranthus amboinicus (Lour.) Spreng against Leishmania (Viannia) braziliensis.

    PubMed

    de Lima, Silvio César Gomes; Teixeira, Maria Jania; Lopes, José Evaldo Gonçalves; de Morais, Selene Maia; Torres, Alba Fabiola; Braga, Milena Aguiar; Rodrigues, Raphael Oliveira; Santiago, Gilvandete Maria Pinheiro; Martins, Alice Costa; Nagao-Dias, Aparecida Tiemi

    2014-01-01

    The aim of the present work was to evaluate antileishmanial activity of Astronium fraxinifolium and Plectranthus amboinicus. For the in vitro tests, essential oil of P. amboinicus (OEPA) and ethanolic extracts from A. fraxinifolium (EEAF) were incubated with 10(6) promastigotes of L. (Viannia) braziliensis. The OEPA was able to reduce the parasite growth after 48 h; nonetheless, all the EEAFs could totally abolish the parasite growth. For the in vivo studies, BALB/c mice were infected subcutaneously (s.c.) with 10(7) L. braziliensis promastigotes. Treatment was done by administering OEPA intralesionally (i.l.) for 14 days. No difference was found in lesion thickness when those animals were compared with the untreated animals. Further, golden hamsters were infected s.c. with 10(6) L. braziliensis promastigotes. The first protocol of treatment consisted of ethanolic leaf extract from A. fraxinifolium (ELEAF) administered i.l. for 4 days and a booster dose at the 7th day. The animals showed a significant reduction of lesion thickness in the 6th week, but it was not comparable to the animals treated with Glucantime. The second protocol consisted of 15 daily intralesional injections. The profiles of lesion thickness were similar to the standard treatment. In conclusion, in vivo studies showed a high efficacy when the infected animals were intralesionally treated with leaf ethanolic extract from A. fraxinifolium.

  9. Chlorin E6 phototoxicity in L. major and L. braziliensis promastigotes-In vitro study.

    PubMed

    Pinto, Juliana Guerra; Pereira, André Henrique Correia; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-09-01

    Cutaneous leishmaniasis is a zoonosis caused by protozoa of the genus Leishmania. Conventional treatments are long and aggressive, and they trigger a diversity of side effects. Photodynamic Therapy was originally proposed as a treatment for cancer, and it now appears to be a promising therapy for local treatment with fewer side effects of infectious diseases. This study aimed to evaluate Chlorin e6 internalization by Leishmania major and Leishmania braziliensis promastigotes and its viability and effects on mitochondrial activity. Control groups were kept in the dark, while PDT groups received fluence of 10J/cm(2) (660nm). Chlorin internalization was evaluated using confocal microscopy after one hour of incubation for both species. The mitochondrial activity was evaluated by MTT assay, and viability was measured by the Trypan blue exclusion test. Giemsa staining was used to observe morphological changes. PS was internalized in both species and mitochondrial activity changed in all groups. However, the obtained MTT and Trypan results indicated that despite the change in mitochondrial activity in the dark groups, their viability was not affected, whereas the PDT treated groups had significantly reduced viability. Morphology was drastically altered in PDT treated groups, while groups kept in the dark exhibited the standard morphology. This study demonstrates that Chlorin has great potential for being used in PDT as a treatment for cutaneous leishmaniasis, although more studies are needed to determine in vivo application protocols. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Concentration of 2'C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase.

    PubMed

    Robinson, John I; Beverley, Stephen M

    2018-04-27

    Leishmania is a widespread trypanosomatid protozoan parasite causing significant morbidity and mortality in humans. The endobiont dsRNA virus Leishmania RNA virus 1 (LRV1) chronically infects some strains, where it increases parasite numbers and virulence in murine leishmaniasis models, and correlates with increased treatment failure in human disease. Previously, we reported that 2'-C-methyladenosine (2CMA) potently inhibited LRV1 in Leishmania guyanensis ( Lgy ) and Leishmania braziliensis , leading to viral eradication at concentrations above 10 μm Here we probed the cellular mechanisms of 2CMA inhibition, involving metabolism, accumulation, and inhibition of the viral RNA-dependent RNA polymerase (RDRP). Activation to 2CMA triphosphate (2CMA-TP) was required, as 2CMA showed no inhibition of RDRP activity from virions purified on cesium chloride gradients. In contrast, 2CMA-TP showed IC 50 values ranging from 150 to 910 μm, depending on the CsCl density of the virion (empty, ssRNA-, and dsRNA-containing). Lgy parasites incubated in vitro with 10 μm 2CMA accumulated 2CMA-TP to 410 μm, greater than the most sensitive RDRP IC 50 measured. Quantitative modeling showed good agreement between the degree of LRV1 RDRP inhibition and LRV1 levels. These results establish that 2CMA activity is due to its conversion to 2CMA-TP, which accumulates to levels that inhibit RDRP and cause LRV1 loss. This attests to the impact of the Leishmania purine uptake and metabolism pathways, which allow even a weak RDRP inhibitor to effectively eradicate LRV1 at micromolar concentrations. Future RDRP inhibitors with increased potency may have potential therapeutic applications for ameliorating the increased Leishmania pathogenicity conferred by LRV1. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Detection of antibodies against Trypanosoma cruzi in donors from a blood bank in Cuernavaca, Morelos, Mexico.

    PubMed

    Rangel, H; Gatica, R; Ramos, C

    1998-01-01

    Surveys carried out in the Mexican state of Morelos indicate the presence of Chagas' disease. The aim of this work was to perform a pilot study to detect the presence of antibodies against Trypanosoma cruzi in donors from the Blood Bank at the Regional Hospital of Cuernavaca, Morelos. From March-September 1993, blood samples from 318 donors (284 men and 34 women) were collected. The of age range donors was from 18-45 years. Antibodies against T. cruzi were determined using a commercial ELISA kit. Fifty-four (17%) serum samples had antibodies against T. cruzi: 34 out of 284 men, and 20 out of 34 women were positive (11.9 and 58.8%, respectively). Of the 128 individuals who donated blood more than once, 9 (7%) were positive and had previously donated blood from 1-4 times. Antibodies against Leishmania sp. and T. rangeli were not determined. Based on the results of this study, procedures to detect antibodies against T. cruzi in blood donors and the application of a questionnaire inquiring into risk factors for T. cruzi infection should be implemented.

  12. Anti-Leishmania activity of new ruthenium(II) complexes: Effect on parasite-host interaction.

    PubMed

    Costa, Mônica S; Gonçalves, Yasmim G; Nunes, Débora C O; Napolitano, Danielle R; Maia, Pedro I S; Rodrigues, Renata S; Rodrigues, Veridiana M; Von Poelhsitz, Gustavo; Yoneyama, Kelly A G

    2017-10-01

    Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru II (η 2 -O 2 CR)(dppm) 2 ]PF 6 , with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC 50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC 50 values ranged from 7.52-12.59μM (complex 1); 0.70-3.28μM (complex 2) and 0.52-1.75μM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. In Vitro Inhibition of Leishmania Attachment to Sandfly Midguts and LL-5 Cells by Divalent Metal Chelators, Anti-gp63 and Phosphoglycans.

    PubMed

    Soares, Rodrigo Pedro; Altoé, Ellen Cristina Félix; Ennes-Vidal, Vítor; da Costa, Simone M; Rangel, Elizabeth Ferreira; de Souza, Nataly Araújo; da Silva, Vanderlei Campos; Volf, Petr; d'Avila-Levy, Claudia Masini

    2017-07-01

    Leishmania braziliensis and Leishmania infantum are the causative agents of cutaneous and visceral leishmaniasis, respectively. Several aspects of the vector-parasite interaction involving gp63 and phosphoglycans have been individually assayed in different studies. However, their role under the same experimental conditions was not studied yet. Here, the roles of divalent metal chelators, anti-gp63 antibodies and purified type I phosphoglycans (PGs) were evaluated during in vitro parasite attachment to the midgut of the vector. Parasites were treated with divalent metal chelators or anti-gp63 antibodies prior to the interaction with Lutzomyia longipalpis/Lutzomyia intermedia midguts or sand fly LL-5 cells. In vitro binding system was used to examine the role of PG and gp63 in parallel. Treatment with divalent metal chelators reduced Le. infantum adhesion to the Lu. longipalpis midguts. The most effective compound (Phen) inhibited the binding in both vectors. Similar results were observed in the interaction between both Leishmania species and the cell line LL-5. Finally, parallel experiments using anti-gp63-treated parasites and PG-incubated midguts demonstrated that both approaches substantially inhibited attachment in the natural parasite-vector pairs Le. infantum/Lu. longipalpis and Le. braziliensis/Lu. intermedia. Our results suggest that gp63 and/or PG are involved in parasite attachment to the midgut of these important vectors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    PubMed Central

    Parsons, Marilyn; Worthey, Elizabeth A; Ward, Pauline N; Mottram, Jeremy C

    2005-01-01

    Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs) of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs) and atypical PKs (aPKs) revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been possible to ascribe function

  15. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli.

    PubMed

    Naves, Lucila Langoni; da Silva, Marcos Vinícius; Fajardo, Emanuella Francisco; da Silva, Raíssa Bernardes; De Vito, Fernanda Bernadelli; Rodrigues, Virmondes; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2017-01-01

    Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.

  16. In vitro cytokines profile and ultrastructural changes of microglia and macrophages following interaction with Leishmania.

    PubMed

    Ramos, Patricia Karla Santos; Brito, Maysa de Vasconcelos; Silveira, Fernando Tobias; Salgado, Cláudio Guedes; De Souza, Wanderley; Picanço-Diniz, Cristovam Wanderley; Picanço-Diniz, José Antonio Junior

    2014-07-01

    In the present study, we assessed morphological changes and cytokine production after in vitro interaction with causative agents of American cutaneous leishmaniasis and compared the microglia and macrophage immune responses. Cultures of microglia and macrophages infected with stationary-phase promastigotes of Leishmania (Viannia) shawi, Leishmania (Viannia) braziliensis or Leishmania (Leishmania) amazonensis were evaluated 24, 48 and 72 h after interaction. Macrophages only presented the classical phagocytic process while microglia also displayed large cytoplasmic projections similar to the ruffles described in macropinocytosis. In the macrophage cultures, the percentage of infected cells increased over time, in a fashion that was dependent on the parasite species. In contrast, in microglial cells as the culture time progressed, there was a significant reduction in the percentage of infected cells independent of parasite species. Measurements of cytokines in macrophage cultures 48 h after interactions revealed distinct expression patterns for different parasites, whereas in microglial cultures they were similar for all Leishmania tested species. Taken together, our results suggest that microglia may have a higher phagocytic ability and cytotoxic potential than macrophages for all investigated species. The robust response of microglia against all parasite species may suggest microglia have an important role in the defence against cerebral leishmaniasis.

  17. Detection and identification of Leishmania spp.: application of two hsp70-based PCR-RFLP protocols to clinical samples from the New World.

    PubMed

    Montalvo, Ana M; Fraga, Jorge; Tirado, Dídier; Blandón, Gustavo; Alba, Annia; Van der Auwera, Gert; Vélez, Iván Darío; Muskus, Carlos

    2017-07-01

    Leishmaniasis is highly prevalent in New World countries, where several methods are available for detection and identification of Leishmania spp. Two hsp70-based PCR protocols (PCR-N and PCR-F) and their corresponding restriction fragment length polymorphisms (RFLP) were applied for detection and identification of Leishmania spp. in clinical samples recruited in Colombia, Guatemala, and Honduras. A total of 93 cases were studied. The samples were classified into positive or suspected of leishmaniasis according to parasitological criteria. Molecular amplification of two different hsp70 gene fragments and further RFLP analysis for identification of Leishmania species was done. The detection in parasitologically positive samples was higher using PCR-N than PCR-F. In the total of samples studied, the main species identified were Leishmania panamensis, Leishmania braziliensis, and Leishmania infantum (chagasi). Although RFLP-N was more efficient for the identification, RFLP-F is necessary for discrimination between L. panamensis and Leishmania guyanesis, of great importance in Colombia. Unexpectedly, one sample from this country revealed an RFLP pattern corresponding to Leishmania naiffi. Both molecular variants are applicable for the study of clinical samples originated in Colombia, Honduras, and Guatemala. Choosing the better tool for each setting depends on the species circulating. More studies are needed to confirm the presence of L. naiffi in Colombian territory.

  18. Monitoring the response of patients with cutaneous leishmaniasis to treatment with pentamidine isethionate by quantitative real-time PCR, and identification of Leishmania parasites not responding to therapy.

    PubMed

    Mans, D R A; Kent, A D; Hu, R V; Lai A Fat, E J; Schoone, G J; Adams, E R; Rood, E J; Alba, S; Sabajo, L O A; Lai A Fat, R F; de Vries, H J C; Schallig, H D F H

    2016-08-01

    Leishmania (Viannia) guyanensis is believed to be the principal cause of cutaneous leishmaniasis (CL) in Suriname. This disease is treated with pentamidine isethionate (PI), but treatment failure has increasingly been reported. To evaluate PI for its clinical efficacy, to compare parasite load, and to assess the possibility of treatment failure due to other infecting Leishmania species. Parasite load of patients with CL was determined in skin biopsies using real-time quantitative PCR before treatment and 6 and 12 weeks after treatment. Clinical responses were evaluated at week 12 and compared with parasite load. In parallel, molecular species differentiation was performed. L. (V.) guyanensis was the main infecting species in 129 of 143 patients (about 90%). PI treatment led to a significant decrease (P < 0.001) in parasite counts, and cured about 75% of these patients. Treatment failure was attributable to infections with Leishmania (Viannia) braziliensis, Leishmania (Leishmania) amazonensis and L. (V.) guyanensis (1/92, 1/92 and 22/92 evaluable cases, respectively). There was substantial agreement beyond chance between the parasite load at week 6 and the clinical outcome at week 12, as indicated by the κ value of 0.61. L. (V.) guyanensis is the main infecting species of CL in Suriname, followed by L. (V.) braziliensis and L. (L.) amazonensis. Furthermore, patient response to PI can be better anticipated based on the parasite load 6 weeks after the treatment rather than on parasite load before treatment. © 2015 The Authors Clinical and Experimental Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists, North American Clinical Dermatologic Society and St Johns Dermatological Society.

  19. Susceptibility of promastigotes and intracellular amastigotes from distinct Leishmania species to the calpain inhibitor MDL28170.

    PubMed

    de Sousa Araújo, Pedro Soares; de Oliveira, Simone Santiago Carvalho; d'Avila-Levy, Claudia Masini; Dos Santos, André Luis Souza; Branquinha, Marta Helena

    2018-05-04

    Despite the available drug options, leishmaniasis treatment remains unsatisfactory. The repurposing of calpain inhibitors originally developed for human diseases became an interesting alternative, since Leishmania cells express calpain-related proteins. The susceptibility of six Leishmania species (L. amazonensis, L. braziliensis, L. major, L. mexicana, L. chagasi, and L. donovani) to the calpain inhibitor MDL28170 was determined. Promastigote and intracellular amastigote viability in the presence of MDL28170 was evaluated. MDL28170 was able to reduce promastigote proliferation in a dose-dependent manner for all the parasites. A significant reduction on the general parasite metabolism was detected, as judged by resazurin assay, as well as induced important morphological alterations, including rounding promastigotes and loss of the flagellum. MDL28170 was also able to reduce the number of intracellular amastigotes in RAW macrophages. The susceptibility of both parasite stages (promastigotes and amastigotes) to MDL28170 was similar for all Leishmania species tested. MDL28170 showed a much higher toxicity to Leishmania amastigotes when compared with mammalian macrophages, displaying selectivity index values varying from 13.1 to 39.8. These results suggest that the development of calpain inhibitors may represent an interesting alternative in the treatment of leishmaniasis.

  20. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    PubMed

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.

  1. Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae: Phlebotominae) in the Lençóis Maranhenses National Park, Brazil.

    PubMed

    Pereira-Filho, Adalberto Alves; Fonteles, Raquel Silva; Bandeira, Maria da Conceição Abreu; Moraes, Jorge Luiz Pinto; Rebêlo, José Manuel Macário; Melo, Maria Norma

    2018-02-20

    Sand flies are very common in the region of Lençóis Maranhenses National Park, an important tourist attraction in Brazil. However, the role of some species and their relative importance locally in Leishmania Ross 1903 transmission is unclear. The objective of this study was to identify Leishmania infection in phlebotomine sand flies collected around the Lençóis Maranhenses National Park, an important conservation area and popular international/national tourist destination with a high incidence of leishmaniasis. Sand flies were collected in peridomiciliary areas on the tourist route from September 2012 to August 2013. The captured females were subjected to molecular analyses for the detection of Leishmania DNA. Sand flies were infected with four Leishmania species: Leishmania (Viannia) braziliensis (Vianna, 1911) was found in Lutzomyia whitmani (Antunes and Coutinho, 1939) (2.1%) and Lutzomyia longipalpis (Lutz and Neiva, 1912) (1.7%); Leishmania (Leishmania) infantum (Nicole, 1908) infected Lutzomyia wellcomei (Fraiha, Shaw, and Lainson, 1971) (20%), Lutzomyia sordellii (Shannon and Del Ponte, 1927) (4.3%), Lu. longipalpis (3.7%), and Lu. whitmani (0.8%); Leishmania (Leishmania) amazonensis (Lainson & Shaw, 1972) was found in Lu. whitmani (0.58%), while Leishmania (Viannia) lainsoni infected Lutzomyia evandroi (Costa Lima and Antunes, 1936) (3.4%), Lu. longipalpis (1.06%), and Lu. whitmani (0.29%). The occurrence of these parasites requires control measures to reduce the incidence of cutaneous leishmaniasis and to contain a possible epidemic of visceral leishmaniasis, the most severe form of the disease.

  2. Validation of N-myristoyltransferase as Potential Chemotherapeutic Target in Mammal-Dwelling Stages of Trypanosoma cruzi

    PubMed Central

    Herrera, Linda J.; Brand, Stephen; Santos, Andres; Nohara, Lilian L.; Harrison, Justin; Norcross, Neil R.; Thompson, Stephen; Smith, Victoria; Lema, Carolina; Varela-Ramirez, Armando; Gilbert, Ian H.; Almeida, Igor C.; Maldonado, Rosa A.

    2016-01-01

    Background Trypanosoma cruzi causes Chagas disease, an endemic and debilitating illness in Latin America. Lately, owing to extensive population movements, this neglected tropical disease has become a global health concern. The two clinically available drugs for the chemotherapy of Chagas disease have rather high toxicity and limited efficacy in the chronic phase of the disease, and may induce parasite resistance. The development of new anti-T. cruzi agents is therefore imperative. The enzyme N-myristoyltransferase (NMT) has recently been biochemically characterized, shown to be essential in Leishmania major, Trypanosoma brucei, and T. cruzi¸ and proposed as promising chemotherapeutic target in these trypanosomatids. Methodology/Principal Findings Here, using high-content imaging we assayed eight known trypanosomatid NMT inhibitors, against mammal-dwelling intracellular amastigote and trypomastigote stages and demonstrated that three of them (compounds 1, 5, and 8) have potent anti-proliferative effect at submicromolar concentrations against T. cruzi, with very low toxicity against human epithelial cells. Moreover, metabolic labeling using myristic acid, azide showed a considerable decrease in the myristoylation of proteins in parasites treated with NMT inhibitors, providing evidence of the on-target activity of the inhibitors. Conclusions/Significance Taken together, our data point out to the potential use of NMT inhibitors as anti-T. cruzi chemotherapy. PMID:27128971

  3. Calpains: Potential Targets for Alternative Chemotherapeutic Intervention Against Human Pathogenic Trypanosomatids

    PubMed Central

    M.H, Branquinha; F.A, Marinho; L.S, Sangenito; S.S.C, Oliveira; K.C, Gonçalves; V, Ennes-Vidal; C.M, d’Avila-Levy; A.L.S, Santos

    2013-01-01

    The treatment for both leishmaniasis and trypanosomiasis, which are severe human infections caused by trypanosomatids belonging to Leishmania and Trypanosoma genera, respectively, is extremely limited because of concerns of toxicity and efficacy with the available anti-protozoan drugs, as well as the emergence of drug resistance. Consequently, the urgency for the discovery of new trypanosomatid targets and novel bioactive compounds is particularly necessary. In this context, the investigation of changes in parasite gene expression between drug resistant/sensitive strains and in the up-regulation of virulence-related genes in infective forms has brought to the fore the involvement of calpain-like proteins in several crucial pathophysiological processes performed by trypanosomatids. These studies were encouraged by the publication of the complete genome sequences of three human pathogenic trypanosomatids, Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, which allowed in silico analyses that in turn directed the identification of numerous genes with interesting chemotherapeutic characteristics, including a large family of calpain-related proteins, in which to date 23 genes were assigned as calpains in T. brucei, 40 in T. cruzi and 33 in L. braziliensis. In the present review, we intend to add to these biochemical/biological reports the investigations performed upon the inhibitory capability of calpain inhibitors against human pathogenic trypanosomatids. PMID:23899207

  4. The flagellar protein FLAG1/SMP1 is a candidate for Leishmania-sand fly interaction.

    PubMed

    Di-Blasi, Tatiana; Lobo, Amanda R; Nascimento, Luanda M; Córdova-Rojas, Jose L; Pestana, Karen; Marín-Villa, Marcel; Tempone, Antonio J; Telleria, Erich L; Ramalho-Ortigão, Marcelo; McMahon-Pratt, Diane; Traub-Csekö, Yara M

    2015-03-01

    Leishmaniasis is a serious problem that affects mostly poor countries. Various species of Leishmania are the agents of the disease, which take different clinical manifestations. The parasite is transmitted by sandflies, predominantly from the Phlebotomus genus in the Old World and Lutzomyia in the New World. During development in the gut, Leishmania must survive various challenges, which include avoiding being expelled with blood remnants after digestion. It is believed that attachment to the gut epithelium is a necessary step for vector infection, and molecules from parasites and sand flies have been implicated in this attachment. In previous work, monoclonal antibodies were produced against Leishmania. Among these an antibody was obtained against Leishmania braziliensis flagella, which blocked the attachment of Leishmania panamensis flagella to Phlebotomus papatasi guts. The protein recognized by this antibody was identified and named FLAG1, and the complete FLAG1 gene sequence was obtained. This protein was later independently identified as a small, myristoylated protein and called SMP1, so from now on it will be denominated FLAG1/SMP1. The FLAG1/SMP1 gene is expressed in all developmental stages of the parasite, but has higher expression in promastigotes. The anti-FLAG1/SMP1 antibody recognized the flagellum of all Leishmania species tested and generated the expected band by western blots. This antibody was used in attachment and infection blocking experiments. Using the New World vector Lutzomyia longipalpis and Leishmania infantum chagasi, no inhibition of attachment ex vivo or infection in vivo was seen. On the other hand, when the Old World vectors P. papatasi and Leishmania major were used, a significant decrease of both attachment and infection were seen in the presence of the antibody. We propose that FLAG1/SMP1 is involved in the attachment/infection of Leishmania in the strict vector P. papatasi and not the permissive vector L. longipalpis.

  5. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis.

    PubMed

    da Rosa, Rafael; de Moraes, Milene Höehr; Zimmermann, Lara Almida; Schenkel, Eloir Paulo; Steindel, Mario; Bernardes, Lílian Sibelle Campos

    2017-03-10

    Chagas disease and leishmaniasis are neglected tropical diseases (NTDs) endemic in developing countries. Although there are drugs available for their treatment, efforts on finding new efficacious therapies are continuous. The natural lignans grandisin (1) and veraguensin (2) show activity against trypomastigote T. cruzi and their scaffold has been used as inspiration to design new derivatives with improved potency and chemical properties. We describe here the planning and microwave-irradiated synthesis of 26 isoxazole derivatives based on the structure of the lignans 1 and 2. In addition, the in vitro evaluation against culture trypomastigotes and intracellular amastigotes of T. cruzi and intracellular amastigotes of L. amazonensis and L. infantum is reported. Among the synthesized derivatives, compounds 17 (IC 50  = 5.26 μM for T. cruzi), 29 (IC 50  = 1.74 μM for T. cruzi) and 31 (IC 50  = 1.13 μM for T. cruzi and IC 50  = 5.08 μM for L. amazonensis) were the most active and were also evaluated against recombinant trypanothione reductase of T. cruzi in a preliminary study of their mechanism of action. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Lesion Size Correlates with Leishmania Antigen-Stimulated TNF-Levels in Human Cutaneous Leishmaniasis

    PubMed Central

    Oliveira, Fabiano; Bafica, Andre; Rosato, Andrea B.; Favali, Cecilia B. F.; Costa, Jackson M.; Cafe, Virginia; Barral-Netto, Manoel; Barral, Aldina

    2011-01-01

    Cutaneous leishmaniasis (CL) is a worldwide disease endemic in several regions of the globe. The hallmark of CL is skin ulcers likely driven by efforts of the immune system to control Leishmania growth. Cytokines, such as tumor necrosis factor (TNF) and interferon-gamma can control disease progression in animal models. Nevertheless, the impact of these cytokines in CL ulcer outcome is not well established in humans. In this study, 96 CL patients from an endemic area of Leishmania braziliensis were enrolled for a follow-up study that consisted of clinical and immunological evaluations in a 2-year period. Statistical analysis revealed that healing time (P = 0.029), age (P = 0.002), and TNF levels (P = 0.0002) positively correlate with ulcer size at the time of the first clinical evaluation. Our findings suggest that ulcer size correlates with healing time and TNF levels support the use of TNF inhibitors combined with standard therapy to improve healing in CL patients with severe lesions. PMID:21734128

  7. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi.

    PubMed

    Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant'Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina

    2016-12-01

    Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.

  8. Building protein-protein interaction networks for Leishmania species through protein structural information.

    PubMed

    Dos Santos Vasconcelos, Crhisllane Rafaele; de Lima Campos, Túlio; Rezende, Antonio Mauro

    2018-03-06

    Systematic analysis of a parasite interactome is a key approach to understand different biological processes. It makes possible to elucidate disease mechanisms, to predict protein functions and to select promising targets for drug development. Currently, several approaches for protein interaction prediction for non-model species incorporate only small fractions of the entire proteomes and their interactions. Based on this perspective, this study presents an integration of computational methodologies, protein network predictions and comparative analysis of the protozoan species Leishmania braziliensis and Leishmania infantum. These parasites cause Leishmaniasis, a worldwide distributed and neglected disease, with limited treatment options using currently available drugs. The predicted interactions were obtained from a meta-approach, applying rigid body docking tests and template-based docking on protein structures predicted by different comparative modeling techniques. In addition, we trained a machine-learning algorithm (Gradient Boosting) using docking information performed on a curated set of positive and negative protein interaction data. Our final model obtained an AUC = 0.88, with recall = 0.69, specificity = 0.88 and precision = 0.83. Using this approach, it was possible to confidently predict 681 protein structures and 6198 protein interactions for L. braziliensis, and 708 protein structures and 7391 protein interactions for L. infantum. The predicted networks were integrated to protein interaction data already available, analyzed using several topological features and used to classify proteins as essential for network stability. The present study allowed to demonstrate the importance of integrating different methodologies of interaction prediction to increase the coverage of the protein interaction of the studied protocols, besides it made available protein structures and interactions not previously reported.

  9. Cloning, expression, purification and characterization of triosephosphate isomerase from Trypanosoma cruzi.

    PubMed

    Ostoa-Saloma, P; Garza-Ramos, G; Ramírez, J; Becker, I; Berzunza, M; Landa, A; Gómez-Puyou, A; Tuena de Gómez-Puyou, M; Pérez-Montfort, R

    1997-03-15

    The gene that encodes for triosephosphate isomerase from Trypanosoma cruzi was cloned and sequenced. In T. cruzi, there is only one gene for triosephosphate isomerase. The enzyme has an identity of 72% and 68% with triosephosphate isomerase from Trypanosoma brucei and Leishmania mexicana, respectively. The active site residues are conserved: out of the 32 residues that conform the interface of dimeric triosephosphate isomerase from T. brucei, 29 are conserved in the T. cruzi enzyme. The enzyme was expressed in Escherichia coli and purified to homogeneity. Data from electrophoretic analysis under denaturing techniques and filtration techniques showed that triosephosphate isomerase from T. cruzi is a homodimer. Some of its structural and kinetic features were determined and compared to those of the purified enzymes from T. brucei and L. mexicana. Its circular dichroism spectrum was almost identical to that of triosephosphate isomerase from T. brucei. Its kinetic properties and pH optima were similar to those of T. brucei and L. mexicana, although the latter exhibited a higher Vmax with glyceraldehyde 3-phosphate as substrate. The sensitivity of the three enzymes to the sulfhydryl reagent methylmethane thiosulfonate (MeSO2-SMe) was determined; the sensitivity of the T. cruzi enzyme was about 40 times and 200 times higher than that of the enzymes from T. brucei and L. mexicana, respectively. Triosephosphate isomerase from T. cruzi and L. mexicana have the three cysteine residues that exist in the T. brucei enzyme (positions 14, 39, 126, using the numbering of the T. brucei enzyme); however, they also have an additional residue (position 117). These data suggest that regardless of the high identity of the three trypanosomatid enzymes, there are structural differences in the disposition of their cysteine residues that account for their different sensitivity to the sulfhydryl reagent. The disposition of the cysteine in triosephosphate isomerase from T. cruzi appears to

  10. Canine cutaneous leishmaniasis caused by neotropical Leishmania infantum despite of systemic disease: A case report.

    PubMed

    Cavalcanti, Amanda; Lobo, Rogério; Cupolillo, Elisa; Bustamante, Fábio; Porrozzi, Renato

    2012-12-01

    Visceral leishmaniasis is an anthropozoonosis caused by a protozoan Leishmania infantum (syn. Leishmania chagasi). Here, we report a typical case of canine cutaneous leishmaniasis due to L. infantum infection without any other systemic symptom in one dog in the city of Rio de Janeiro, Brazil. A mongrel female dog was admitted in a veterinary clinic with reports of chronic wounds in the body. Physical examination revealed erosive lesions in the limbs, nasal ulcers, presence of ectoparasites and seborrheic dermatitis. Blood samples and fragments of healthy and injured skin were collected. The complete hemogram revealed aregenerative normocytic normochromic anemia and erythrocyte rouleaux, and biochemical analysis revealed normal renal and hepatic functions. Cytology of the muzzle and skin lesions suggested pyogranulomatous inflammatory process. The histopathology of a skin fragment was performed and revealed suspicion of protozoa accompanied by necrotizing dermatitis. The diagnosis of leishmaniasis was accomplished by positive serology, isolation of Leishmania from the skin lesion, and also by molecular test (PCR targeting the conserved region of Leishmania kDNA). Culture was positive for damaged skin samples. PCR targeting a fragment of Leishmania hsp70 gene was performed employing DNA extracted from damaged skin. RFLP of the amplified hsp70 fragment identified the parasite as L. infantum, instead of Leishmania braziliensis, the main agent of cutaneous leishmaniasis in Rio de Janeiro. Characterization of isolated promastigotes by five different enzymatic systems confirmed the species identification of the etiological agent. Serology was positive by ELISA and rapid test. This case warns to the suspicion of viscerotropic Leishmania in cases of chronic skin lesions and brings the discussion of the mechanisms involved in the parasite tissue tropism. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi

    PubMed Central

    Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant’Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina

    2016-01-01

    Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi. PMID:27984589

  12. Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi.

    PubMed

    de Sá, Amanda Regina Nichi; Steindel, Mário; Demeu, Lara Maria Kalempa; Lückemeyer, Débora Denardin; Grisard, Edmundo Carlos; Neto, Quirino Alves de Lima; de Araújo, Silvana Marques; Toledo, Max Jean de Ornelas; Gomes, Mônica Lúcia

    2013-12-23

    The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.

  13. Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi

    PubMed Central

    2013-01-01

    Background The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. Methods A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. Results The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. Conclusions The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist. PMID:24360167

  14. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    PubMed

    Zampieri, Ricardo Andrade; Laranjeira-Silva, Maria Fernanda; Muxel, Sandra Marcia; Stocco de Lima, Ana Carolina; Shaw, Jeffrey Jon; Floeter-Winter, Lucile Maria

    2016-02-01

    Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol. Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol. HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  15. Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in Leishmania species and are active in vitro against visceral and mucosal leishmaniasis.

    PubMed

    Sánchez-Moreno, M; Gómez-Contreras, F; Navarro, P; Marín, C; Ramírez-Macías, I; Rosales, M J; Campayo, L; Cano, C; Sanz, A M; Yunta, M J R

    2015-07-01

    The in vitro leishmanicidal activity of a series of imidazole-containing phthalazine derivatives 1-4 was tested on Leishmania infantum, Leishmania braziliensis and Leishmania donovani parasites, and their cytotoxicity on J774·2 macrophage cells was also measured. All compounds tested showed selectivity indexes higher than that of the reference drug glucantime for the three Leishmania species, and the less bulky monoalkylamino substituted derivatives 2 and 4 were clearly more effective than their bisalkylamino substituted counterparts 1 and 3. Both infection rate measures and ultrastructural alterations studies confirmed that 2 and 4 were highly leishmanicidal and induced extensive parasite cell damage. Modifications to the excretion products of parasites treated with 2 and 4 were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds 2 and 4 were potent inhibitors of iron superoxide dismutase enzyme (Fe-SOD) in the three species considered, whereas their impact on human CuZn-SOD was low. Molecular modelling suggests that 2 and 4 could deactivate Fe-SOD due to a sterically favoured enhanced ability to interact with the H-bonding net that supports the antioxidant features of the enzyme.

  16. Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon

    PubMed Central

    Zorrilla, Victor; De Los Santos, Maxy B.; Espada, Liz; Santos, Rocío del Pilar; Fernandez, Roberto; Urquia, Albino; Stoops, Craig A.; Ballard, Sarah-Blythe; Lescano, Andres G.; Vásquez, Gissella M.; Valdivia, Hugo O.

    2017-01-01

    . llanosmartinsi had the highest infection rates (8%, 7% and 6%, respectively). We identified Leishmania guyanensis in two Lu. whitmani pools, and L. braziliensis in two Lu. llanosmartinsi pools and one Lu. davisi pool. Conclusions Based on our collections there is high sand fly diversity in Madre de Dios, with differences in sand fly abundance and species composition across sites. We identified 14 sand fly species naturally infected with Leishmania spp., having detected natural infection with L. (V.) guyanensis and L. (V.) braziliensis in three sand fly species. These results suggest the presence of several potential vectors that vary in their spatial and geographical distribution, which could explain the high prevalence of CL cases in this region. PMID:29107954

  17. Distribution and identification of sand flies naturally infected with Leishmania from the Southeastern Peruvian Amazon.

    PubMed

    Zorrilla, Victor; De Los Santos, Maxy B; Espada, Liz; Santos, Rocío Del Pilar; Fernandez, Roberto; Urquia, Albino; Stoops, Craig A; Ballard, Sarah-Blythe; Lescano, Andres G; Vásquez, Gissella M; Valdivia, Hugo O

    2017-11-01

    highest infection rates (8%, 7% and 6%, respectively). We identified Leishmania guyanensis in two Lu. whitmani pools, and L. braziliensis in two Lu. llanosmartinsi pools and one Lu. davisi pool. Based on our collections there is high sand fly diversity in Madre de Dios, with differences in sand fly abundance and species composition across sites. We identified 14 sand fly species naturally infected with Leishmania spp., having detected natural infection with L. (V.) guyanensis and L. (V.) braziliensis in three sand fly species. These results suggest the presence of several potential vectors that vary in their spatial and geographical distribution, which could explain the high prevalence of CL cases in this region.

  18. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania

    PubMed Central

    Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.

    2015-01-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714

  19. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania.

    PubMed

    Lyda, Todd A; Joshi, Manju B; Andersen, John F; Kelada, Andrew Y; Owings, Joshua P; Bates, Paul A; Dwyer, Dennis M

    2015-06-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts.

  20. Identification of Three Classes of Heteroaromatic Compounds with Activity against Intracellular Trypanosoma cruzi by Chemical Library Screening

    PubMed Central

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S.; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis. PMID:19238193

  1. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    PubMed

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  2. Effectiveness of an immunohistochemical protocol for Leishmania detection in different clinical forms of American tegumentary leishmaniasis.

    PubMed

    Marques, Fernanda A; Soares, Rodrigo P; Almeida, Gregório G; Souza, Carolina C; Melo, Maria N; Pinto, Sebastião A; Quixabeira, Valeria B; Pereira, Ledice I; Dorta, Miriam L; Ribeiro-Dias, Fatima; Silveira, Fernando T; Silva, Sydnei M; Gontijo, Celia M; Tafuri, Wagner L

    2017-02-01

    American tegumentary leishmaniasis (ATL) is a neglected disease widely distributed in Latin America. In Brazil, it is caused by different Leishmania species belonging to the Subgenera Viannia and Leishmania. ATL diagnosis is routinely based on clinical, epidemiological, parasitological and immunological (delayed-type hypersensitivity skin test-DTH) evidences. The main objective of this work was to determine the efficacy of a previous immunohistochemical (IHC) method developed by our group. Seventy eight skin biopsies from patients with different ATL clinical forms and origins were evaluated. The method was previously standardized in ATL patients from the municipality of Caratinga, Minas Gerais, Brazil, all infected with Leishmania (V.) braziliensis. Here, it is evaluated in patients from the North, Southeast and Midwest regions of Brazil. Clinical, parasitological (biopsy PCR) and immunological (Montenegro skin test-MST) diagnosis were performed prior to IHC procedure. The IHC procedure detected 70.5% of the cases having a high agreement with MST diagnosis (kappa=0.84). A distinguished contribution of this work is that IHC succeed in diagnosing some negative DTH patients. Those were infected with Leishmania (L.) amazonensis, commonly causing the anergic form of the disease. In conclusion, IHC succeed in detecting ATL caused by different Leishmania species from various geographic regions and clinical status. Although it was not able to detect ATL in all patients, it was better than MST providing an additional tool for the diagnosis of ATL patients. There was no significant correlation between clinical forms and histological features including the presence of necrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Immunopathological characterization of human cutaneous leishmaniasis lesions caused by Leishmania (Viannia) spp. in Amazonian Brazil.

    PubMed

    Castro Gomes, Cláudia Maria; Sousa, Maria Gloria Teixeira; Menezes, Joyce Prieto Bezerra; Batista, Marliane Campos; Lima, Ana Carolina Stocco; Belda, Walter; Bradshaw, Daniel; Gama, Monica Elinor Alves; Laurenti, Márcia Dalastra; Silveira, Fernando Tobias; Corbett, Carlos Eduardo Pereira

    2017-05-01

    American cutaneous leishmaniasis (ACL) is a chronic infectious disease caused by different protozoan species of Leishmania, and it is endemic in both tropical and subtropical countries. Using immunohistochemistry, we investigate the density of CD68 + , lysozyme + , CD1a + , factor XIIIa + , CD4 + , CD8 + , CD56 + , interferon (IFN)-γ + , and inducible NO synthase (iNOS + ) cells. These cells were analyzed from 22 biopsy samples obtained from the lesions of ACL patients, whose infection was caused by Leishmania (Viannia) spp. Histopathological analysis showed dense mononuclear inflammatory infiltration in the dermis, which was composed of lymphocytes, macrophages, plasma cells, and discrete tissue parasitism. Granulomatous reactions were also present in the majority of cases. The density of the activated macrophages was higher than that of inactivated macrophages in the lesions. The density of Langerhans cells (CD1a + ) was lower than that of dermal dendrocytes (factor XIIIa + ). The density of CD8 + T lymphocytes was higher than that of CD4 + T lymphocytes. The cellular density of these immunological markers in relation to the species of Leishmania demonstrated that L. (Viannia) sp. lesions had higher IFN-γ expression than that Leishmania (Viania) braziliensis lesions. The evaluation of these markers, according to disease progression, did not reveal any significant differences. L. (Viannia) sp. infection leads to a favorable immune response in the host, as predominantly represented by lysozyme + , factor XIIIa + , CD8 + T cells, and the expression of (IFN)-γ + at the lesion site.

  4. New Insights on Taxonomy, Phylogeny and Population Genetics of Leishmania (Viannia) Parasites Based on Multilocus Sequence Analysis

    PubMed Central

    Boité, Mariana C.; Mauricio, Isabel L.; Miles, Michael A.; Cupolillo, Elisa

    2012-01-01

    The Leishmania genus comprises up to 35 species, some with status still under discussion. The multilocus sequence typing (MLST)—extensively used for bacteria—has been proposed for pathogenic trypanosomatids. For Leishmania, however, a detailed analysis and revision on the taxonomy is still required. We have partially sequenced four housekeeping genes—glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), mannose phosphate isomerase (MPI) and isocitrate dehydrogenase (ICD)—from 96 Leishmania (Viannia) strains and assessed their discriminatory typing capacity. The fragments had different degrees of diversity, and are thus suitable to be used in combination for intra- and inter-specific inferences. Species-specific single nucleotide polymorphisms were detected, but not for all species; ambiguous sites indicating heterozygosis were observed, as well as the putative homozygous donor. A large number of haplotypes were detected for each marker; for 6PGD a possible ancestral allele for L. (Viannia) was found. Maximum parsimony-based haplotype networks were built. Strains of different species, as identified by multilocus enzyme electrophoresis (MLEE), formed separated clusters in each network, with exceptions. NeighborNet of concatenated sequences confirmed species-specific clusters, suggesting recombination occurring in L. braziliensis and L. guyanensis. Phylogenetic analysis indicates L. lainsoni and L. naiffi as the most divergent species and does not support L. shawi as a distinct species, placing it in the L. guyanensis cluster. BURST analysis resulted in six clonal complexes (CC), corresponding to distinct species. The L. braziliensis strains evaluated correspond to one widely geographically distributed CC and another restricted to one endemic area. This study demonstrates the value of systematic multilocus sequence analysis (MLSA) for determining intra- and inter-species relationships and presents an approach to validate the

  5. Three-dimensional studies of pathogenic peptides from the c-terminal of Trypanosoma cruzi ribosomal P proteins and their interaction with a monoclonal antibody structural model

    PubMed Central

    Martín, Osvaldo A; Villegas, Myriam E; Aguilar, Carlos F

    2009-01-01

    The acidic C-terminal peptides from Trypanosoma cruzi ribosomal P proteins are the major target of the antibody response in patients suffering Chagas chronic heart disease. It has been proposed that the disease is triggered by the cross-reaction of these antibodies with the second extra cellular loop of the β1-adrenoreceptor, brought about by the molecular mimicry between the acidic C-terminal peptides and the receptor's loop. To improve the understanding of the structural basis of the autoimmune response against heart receptors, the 3-dimensional structure of the C-terminal peptides of Trypanosoma cruzi ribosomal proteins P0 (EDDDDDFGMGALF) and P2β (EEEDDDMGFGLFD) were solved using the Electrostaticaly Driven MonteCarlo method. Their structures were compared with the second extra-cellular loop of our homology model of human rhodopsin and the existing experimental NMR structures of the C-terminal peptides from human P0 (EESDDDMGFGLFD) and from Leishmania braziliensis P0 (EEADDDMGFGLFD). Docking of Trypanosoma cruzi peptides P0, P2β and human rhodopsin loop into our anti-P2β monoclonal antibody homology model allowed to explore their interactions. The solution structure of peptides P0 and P2β can be briefly described as a bend. Although the global conformations of the peptides are not identical they shared a common region of four residues (3 to 6) that have a similar structure. The structural alignment of the five peptides also showed a surprising conformational similarity for the same residues. The antibody model and docking studies revealed a most remarkable feature in the active site, a positively charged, narrow and deep cavity where the acidic residues 3 to 6 were accommodated. These results suggest that the most important elements in the molecular peptide recognition by the antibody may be the shape of the loop and the presence of negative charges in positions 3–5 (P0, P2β) or a negative charge in position 4 (rhodopsin loop). This work describes

  6. Occurrence and Probability Maps of Lutzomyia longipalpis and Lutzomyia cruzi (Diptera: Psychodidae: Phlebotominae) in Brazil.

    PubMed

    Andrade-Filho, J D; Scholte, R G C; Amaral, A L G; Shimabukuro, P H F; Carvalho, O S; Caldeira, R L

    2017-09-01

    Leishmaniases are serious diseases caused by trypanosomatid protozoans of the genus Leishmania transmitted by the bite of phlebotomine sand flies. We analyzed records pertaining to Lutzomyia longipalpis (Lutz and Neiva, 1912) and Lutzomyia cruzi (Mangabeira, 1938) in Brazil from the following sources: the collection of phlebotomine sand flies of the Centro de Pesquisas René Rachou/Fiocruz (FIOCRUZ-COLFLEB), the "SpeciesLink" (CRIA) database, from systematic surveys of scientific articles and gray literature (dissertations, theses, and communications), and disease data obtained from the Information System for Notifiable Diseases/Ministry of Health (SINAN/MS). Environmental data and ecological niche modeling (ESMS) using the approach of MaxEnt algorithm produced maps of occurrence probability for both Lu. longipalpis and Lu. cruzi. Lutzomyia longipalpis was found in 229 Brazilian municipalities and Lu. cruzi in 27. The species were sympatric in 16 municipalities of the Central-West region of Brazil. Our results show that Lu. longipalpis is widely distributed and associated with the high number of cases of visceral leishmaniasis reported in Brazil. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Alternative Method for the Mass Rearing of Lutzomyia (Lutzomyia) cruzi (Diptera: Psychodidae) in a Laboratory Setting.

    PubMed

    Oliveira, E F; Fernandes, W S; Oshiro, E T; Oliveira, A G; Galati, E A B

    2015-09-01

    The understanding of the transmission dynamics of Leishmania spp. Ross as well as the epidemiology and spread of leishmaniasis is related to parasite-vector-host interactions. These interactions can be studied using specimens of a sand fly population reared in the laboratory, exposing individuals to experimental infection for the investigation of vector competence and parameters of the vectorial capacity of the species. The present study sought to describe an alternative method for the implantation of a Lutzomyia (Lutzomyia) cruzi colony with wild specimens captured in the municipality of Corumbá, Brazil. With Method 1, engorged females were individualized for oviposition. The eggs were transferred to an acrylic petri dish with a layer of plaster on the bottom, on which food was placed after hatching of the first larvae. With Method 2, females were kept in groups for oviposition in containers, in which soil and food were placed on their bottom for the larvae. In addition, the exposure time of the larvae to light was reduced in comparison with Method 1. With Method 2, a significantly greater number of specimens of Lu. cruzi was obtained. The ratio between the number of emerged adults and the females followed for oviposition was 0.42 with Method 1 and 2.75 with Method 2. The optimization of the rearing conditions for Lu. cruzi will enable the establishment of a colony providing a sufficient number of specimens to develop experimental infection by Leishmania as well as vectorial competence and some parameters of the vectorial capacity of this sand fly. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection

    PubMed Central

    Nogueira, Paula M.; Assis, Rafael R.; Torrecilhas, Ana C.; Saraiva, Elvira M.; Pessoa, Natália L.; Campos, Marco A.; Marialva, Eric F.; Ríos-Velasquez, Cláudia M.; Pessoa, Felipe A.; Secundino, Nágila F.; Rugani, Jerônimo N.; Nieves, Elsa; Turco, Salvatore J.; Melo, Maria N.

    2016-01-01

    The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly. PMID:27508930

  9. Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection.

    PubMed

    Nogueira, Paula M; Assis, Rafael R; Torrecilhas, Ana C; Saraiva, Elvira M; Pessoa, Natália L; Campos, Marco A; Marialva, Eric F; Ríos-Velasquez, Cláudia M; Pessoa, Felipe A; Secundino, Nágila F; Rugani, Jerônimo N; Nieves, Elsa; Turco, Salvatore J; Melo, Maria N; Soares, Rodrigo P

    2016-08-01

    The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.

  10. A Novel Molecular Test to Diagnose Canine Visceral Leishmaniasis at the Point of Care

    PubMed Central

    Castellanos-Gonzalez, Alejandro; Saldarriaga, Omar A.; Tartaglino, Lilian; Gacek, Rosana; Temple, Elissa; Sparks, Hayley; Melby, Peter C.; Travi, Bruno L.

    2015-01-01

    Dogs are the principal reservoir hosts of zoonotic visceral leishmaniasis (VL) but current serological methods are not sensitive enough to detect all subclinically infected animals, which is crucial to VL control programs. Polymerase chain reaction (PCR) methods have greater sensitivity but require expensive equipment and trained personnel, impairing its implementation in endemic areas. We developed a diagnostic test that uses isothermal recombinase polymerase amplification (RPA) to detect Leishmania infantum. This method was coupled with lateral flow (LF) reading with the naked eye to be adapted as a point-of-care test. The L. infantum RPA-LF had an analytical sensitivity similar to real time-PCR, detecting DNA of 0.1 parasites spiked in dog blood, which was equivalent to 40 parasites/mL. There was no cross amplification with dog or human DNA or with Leishmania braziliensis, Leishmania amazonensis, or Trypanosoma cruzi. The test also amplified Leishmania donovani strains (N = 7). In a group of clinically normal dogs (N = 30), RPA-LF detected more subclinical infections than rK39 strip test, a standard serological method (50% versus 13.3% positivity, respectively; P = 0.005). Also, RPA-LF detected L. infantum in noninvasive mucosal samples of dogs with a sensitivity comparable to blood samples. This novel molecular test may have a positive impact in leishmaniasis control programs. PMID:26240156

  11. In Vitro Evaluation of a Soluble Leishmania Promastigote Surface Antigen as a Potential Vaccine Candidate against Human Leishmaniasis

    PubMed Central

    Bahi-Jaber, Narges; Petitdidier, Elodie; Markikou-Ouni, Wafa; Aoun, Karim; Moreno, Javier; Carrillo, Eugenia; Salotra, Poonam; Kaushal, Himanshu; Negi, Narender Singh; Arevalo, Jorge; Falconi-Agapito, Francesca; Privat, Angela; Cruz, Maria; Pagniez, Julie; Papierok, Gérard-Marie; Rhouma, Faten Bel Haj; Torres, Pilar; Lemesre, Jean-Loup; Chenik, Mehdi; Meddeb-Garnaoui, Amel

    2014-01-01

    PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection. PMID:24786587

  12. First Human Cases of Leishmania (Viannia) lainsoni Infection and a Search for the Vector Sand Flies in Ecuador

    PubMed Central

    Kato, Hirotomo; Bone, Abdon E.; Mimori, Tatsuyuki; Hashiguchi, Kazue; Shiguango, Gonzalo F.; Gonzales, Silvio V.; Velez, Lenin N.; Guevara, Angel G.; Gomez, Eduardo A.; Hashiguchi, Yoshihisa

    2016-01-01

    An epidemiological study of leishmaniasis was performed in Amazonian areas of Ecuador since little information on the prevalent Leishmania and sand fly species responsible for the transmission is available. Of 33 clinical specimens from patients with cutaneous leishmaniasis (CL), causative parasites were identified in 25 samples based on cytochrome b gene analysis. As reported previously, Leishmania (Viannia) guyanensis and L. (V.) braziliensis were among the causative agents identified. In addition, L. (V.) lainsoni, for which infection is reported in Brazil, Bolivia, Peru, Suriname, and French Guiana, was identified in patients with CL from geographically separate areas in the Ecuadorian Amazon, corroborating the notion that L. (V.) lainsoni is widely distributed in South America. Sand flies were surveyed around the area where a patient with L. (V.) lainsoni was suspected to have been infected. However, natural infection of sand flies by L. (V.) lainsoni was not detected. Further extensive vector searches are necessary to define the transmission cycle of L. (V.) lainsoni in Ecuador. PMID:27191391

  13. Phenotypic characterization of Leishmania spp. causing cutaneous leishmaniasis in the lower Amazon region, western Pará state, Brazil, reveals a putative hybrid parasite, Leishmania (Viannia) guyanensis × Leishmania (Viannia) shawi shawi

    PubMed Central

    Jennings, Yara Lins; de Souza, Adelson Alcimar Almeida; Ishikawa, Edna Aoba; Shaw, Jeffrey; Lainson, Ralph; Silveira, Fernando

    2014-01-01

    We phenotypically characterized 43 leishmanial parasites from cutaneous leishmaniasis by isoenzyme electrophoresis and the indirect immunofluorescence antibody test (23 McAbs). Identifications revealed 11 (25.6%) strains of Leishmania (V.) braziliensis, 4 (9.3%) of L. (V.) shawi shawi, 7 (16.3%) of L. (V.) shawi santarensis, 6 (13.9%) of L. (V.) guyanensis and L. (V.) lainsoni, 2 (4.7%) of L. (L.) amazonensis, and 7 (16.3%) of a putative hybrid parasite, L. (V.) guyanensis/L. (V.) shawi shawi. McAbs detected three different serodemes of L. (V.) braziliensis: I-7, II-1, and III-3 strains. Among the strains of L. (V.) shawi we identified two populations: one (7 strains) expressing the B19 epitope that was previously considered to be species-specific for L. (V.) guyanensis. We have given this population sub-specific rank, naming it L. (V.) s. santarensis. The other one (4 strains) did not express the B19 epitope like the L. (V.) shawi reference strain, which we now designate as L. (V.) s. shawi. For the first time in the eastern Brazilian Amazon we register a putative hybrid parasite (7 strains), L. (V.) guyanensis/L. (V.) s. shawi, characterized by a new 6PGDH three-band profile at the level of L. (V.) guyanensis. Its PGM profile, however, was very similar to that of L. (V.) s. shawi. These results suggest that the lower Amazon region – western Pará state, Brazil, represents a biome where L. (V.) guyanensis and L. (V.) s. shawi exchange genetic information. PMID:25083790

  14. Identification of Leishmania by Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass Spectrometry Using a Free Web-Based Application and a Dedicated Mass-Spectral Library.

    PubMed

    Lachaud, Laurence; Fernández-Arévalo, Anna; Normand, Anne-Cécile; Lami, Patrick; Nabet, Cécile; Donnadieu, Jean Luc; Piarroux, Martine; Djenad, Farid; Cassagne, Carole; Ravel, Christophe; Tebar, Silvia; Llovet, Teresa; Blanchet, Denis; Demar, Magalie; Harrat, Zoubir; Aoun, Karim; Bastien, Patrick; Muñoz, Carmen; Gállego, Montserrat; Piarroux, Renaud

    2017-10-01

    Human leishmaniases are widespread diseases with different clinical forms caused by about 20 species within the Leishmania genus. Leishmania species identification is relevant for therapeutic management and prognosis, especially for cutaneous and mucocutaneous forms. Several methods are available to identify Leishmania species from culture, but they have not been standardized for the majority of the currently described species, with the exception of multilocus enzyme electrophoresis. Moreover, these techniques are expensive, time-consuming, and not available in all laboratories. Within the last decade, mass spectrometry (MS) has been adapted for the identification of microorganisms, including Leishmania However, no commercial reference mass-spectral database is available. In this study, a reference mass-spectral library (MSL) for Leishmania isolates, accessible through a free Web-based application (mass-spectral identification [MSI]), was constructed and tested. It includes mass-spectral data for 33 different Leishmania species, including species that infect humans, animals, and phlebotomine vectors. Four laboratories on two continents evaluated the performance of MSI using 268 samples, 231 of which were Leishmania strains. All Leishmania strains, but one, were correctly identified at least to the complex level. A risk of species misidentification within the Leishmania donovani , L. guyanensis , and L. braziliensis complexes was observed, as previously reported for other techniques. The tested application was reliable, with identification results being comparable to those obtained with reference methods but with a more favorable cost-efficiency ratio. This free online identification system relies on a scalable database and can be implemented directly in users' computers. Copyright © 2017 American Society for Microbiology.

  15. Identification of six New World Leishmania species through the implementation of a High-Resolution Melting (HRM) genotyping assay.

    PubMed

    Hernández, Carolina; Alvarez, Catalina; González, Camila; Ayala, Martha Stella; León, Cielo Maritza; Ramírez, Juan David

    2014-11-14

    Leishmaniases are tropical zoonotic diseases, caused by parasites from the genus Leishmania. New World (NW) species are related to sylvatic cycles although urbanization processes have been reported in some South American Countries such as Colombia. This eco-epidemiological complexity imposes a challenge to the detection of circulating parasite species, not only related to human cases but also infecting vectors and reservoirs. Currently, no harmonized methods have been deployed to discriminate the NW Leishmania species. Herein, we conducted a systematic and mechanistic High-Resolution Melting (HRM) assay targeted to HSP70 and ITS1. Specific primers were designed that coupled with a HRM analyses permitted to discriminate six NW Leishmania species. In order to validate the herein described algorithm, we included 35 natural isolates obtained from human cases, insect vectors and mammals. Our genotyping assay allowed the correct assignment of the six NW Leishmania species (L. mexicana, L. infantum (chagasi), L. amazonensis, L. panamensis, L. guyanensis and L. braziliensis) based on reference strains. When the algorithm was applied to a set of well-characterized strains by means of PCR-RFLP, MLEE and monoclonal antibodies (MA) we observed a tailored concordance between the HRM and PCR-RFLP/MLEE/MA (KI = 1.0). Additionally, we tested the limit of detection for the HRM method showing that this is able to detect at least 10 equivalent-parasites per mL. This is a rapid and reliable method to conduct molecular epidemiology and host-parasite association studies in endemic areas.

  16. The Leishmania infantum PUF proteins are targets of the humoral response during visceral leishmaniasis

    PubMed Central

    2010-01-01

    Background RNA-binding proteins of the PUF family share a conserved domain consisting of tandemly repeated 36-40 amino acid motifs (typically eight) known as Puf repeats. Proteins containing tandem repeats are often dominant targets of humoral responses during infectious diseases. Thus, we considered of interest to analyze whether Leishmania PUF proteins result antigenic during visceral leishmaniasis (VL). Findings Here, employing whole-genome databases, we report the composition, and structural features, of the PUF family in Leishmania infantum. Additionally, the 10 genes of the L. infantum PUF family were cloned and used to express the Leishmania PUFs in bacteria as recombinant proteins. Finally, the antigenicity of these PUF proteins was evaluated by determining levels of specific antibodies in sera from experimentally infected hamsters. The Leishmania PUFs were all recognized by the sera, even though with different degree of reactivity and/or frequency of recognition. The reactivity of hamster sera against recombinant LiPUF1 and LiPUF2 was particularly prominent, and these proteins were subsequently assayed against sera from human patients. High antibody responses against rLiPUF1 and rLiPUF2 were found in sera from VL patients, but these proteins resulted also recognized by sera from Chagas' disease patients. Conclusion Our results suggest that Leishmania PUFs are targets of the humoral response during L. infantum infection and may represent candidates for serodiagnosis and/or vaccine reagents; however, it should be kept in mind the cross-reactivity of LiPUFs with antibodies induced against other trypanosomatids such as Trypanosoma cruzi. PMID:20180988

  17. Trypanosoma cruzi contains two galactokinases; molecular and biochemical characterization.

    PubMed

    Lobo-Rojas, Ángel E; González-Marcano, Eglys B; Valera-Vera, Edward A; Acosta, Héctor R; Quiñones, Wilfredo A; Burchmore, Richard J S; Concepción, Juan L; Cáceres, Ana J

    2016-10-01

    Two different putative galactokinase genes, found in the genome database of Trypanosoma cruzi were cloned and sequenced. Expression of the genes in Escherichia coli resulted for TcGALK-1 in the synthesis of a soluble and active enzyme, and in the case of TcGALK-2 gene a less soluble protein, with predicted molecular masses of 51.9kDa and 51.3kDa, respectively. The Km values determined for the recombinant proteins were for galactose 0.108mM (TcGALK-1) and 0.091mM (TcGALK-2) and for ATP 0.36mM (TcGALK-1) and 0.1mM (TcGALK-2). Substrate inhibition by ATP (Ki 0.414mM) was only observed for TcGALK-2. Gel-filtration chromatography showed that natural TcGALKs and recombinant TcGALK-1 are monomeric. In agreement with the possession of a type-1 peroxisome-targeting signal by both TcGALKs, they were found to be present inside glycosomes using two different methods of subcellular fractionation in conjunction with mass spectrometry. Both genes are expressed in epimastigote and trypomastigote stages since the respective proteins were immunodetected by western blotting. The T. cruzi galactokinases present their highest (52-47%) sequence identity with their counterpart from Leishmania spp., followed by prokaryotic galactokinases such as those from E. coli and Lactococcus lactis (26-23%). In a phylogenetic analysis, the trypanosomatid galactokinases form a separate cluster, showing an affiliation with bacteria. Epimastigotes of T. cruzi can grow in glucose-depleted LIT-medium supplemented with 20mM of galactose, suggesting that this hexose, upon phosphorylation by a TcGALK, could be used in the synthesis of UDP-galactose and also as a possible carbon and energy source. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.

    PubMed

    McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M

    2017-03-24

    Before 1996 the phlebotomine sand fly Lutzomyia neivai was usually treated as a synonym of the morphologically similar Lutzomyia intermedia, which has long been considered a vector of Leishmania braziliensis, the causative agent of much cutaneous leishmaniasis in South America. This report investigates the likely range changes of both sand fly species in response to a stabilisation climate change scenario (RCP4.5) and a high greenhouse gas emissions one (RCP8.5). Ecological niche modelling was used to identify areas of South America with climates currently suitable for each species, and then the future distributions of these climates were predicted based on climate change scenarios. Compared with the previous ecological niche model of L. intermedia (sensu lato) produced using the GARP algorithm in 2003, the current investigation modelled the two species separately, making use of verified presence records and additional records after 2001. Also, the new ensemble approach employed ecological niche modelling algorithms (including Maximum Entropy, Random Forests and Support Vector Machines) that have been widely adopted since 2003 and perform better than GARP, as well as using a more recent climate change model (HadGEM2) considered to have better performance at higher resolution than the earlier one (HadCM2). Lutzomyia intermedia was shown to be the more tropical of the two species, with its climatic niche defined by higher annual mean temperatures and lower temperature seasonality, in contrast to the more subtropical L. neivai. These different latitudinal ranges explain the two species' predicted responses to climate change by 2050, with L. intermedia mostly contracting its range (except perhaps in northeast Brazil) and L. neivai mostly shifting its range southwards in Brazil and Argentina. This contradicts the findings of the 2003 report, which predicted more range expansion. The different findings can be explained by the improved data sets and modelling methods. Our

  19. In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species.

    PubMed

    Nieto-Meneses, Rocío; Castillo, Rafael; Hernández-Campos, Alicia; Maldonado-Rangel, Armando; Matius-Ruiz, Jeferson B; Trejo-Soto, Pedro Josué; Nogueda-Torres, Benjamín; Dea-Ayuela, Ma Auxiliadora; Bolás-Fernández, Francisco; Méndez-Cuesta, Carlos; Yépez-Mulia, Lilián

    2018-01-01

    The identification of specific therapeutic targets and the development of new drugs against leishmaniasis are urgently needed, since chemotherapy currently available for its treatment has several problems including many adverse side effects. In an effort to develop new antileishmanial drugs, in the present study a series of 28 N-benzyl-1H-benzimidazol-2-amine derivatives was synthesized and evaluated in vitro against Leishmania mexicana promastigotes. Compounds 7 and 8 with the highest antileishmanial activity (micromolar) and lower cytotoxicity than miltefosine and amphotericin B were selected to evaluate their activity against L. braziliensis 9and L. donovani, species causative of mucocutaneous and visceral leishmaniasis, respectively. Compound 7 showed significantly higher activity against L. braziliensis promastigotes than compound 8 and slightly lower than miltefosine. Compounds 7 and 8 had IC 50 values in the micromolar range against the amastigote of L. mexicana and L. braziliensis. However, both compounds did not show better activity against L. donovani than miltefosine. Compound 8 showed the highest SI against both parasite stages of L. mexicana. In addition, compound 8 inhibited 68.27% the activity of recombinant L. mexicana arginase (LmARG), a therapeutic target for the treatment of leishmaniasis. Docking studies were also performed in order to establish the possible mechanism of action by which this compound exerts its inhibitory effect. Compound 8 shows promising potential for the development of more potent antileishmanial benzimidazole derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Detection of Chagas infections using Trypanosoma evansi crude antigen demonstrates high cross-reactions with Trypanosoma cruzi.

    PubMed

    Desquesnes, Marc; Bosseno, Marie-France; Brenière, Simone Frédérique

    2007-07-01

    Antigenic similarities between salivarian trypanosomes are known for a long time, but similarities between salivarian and stercorarian trypanosomes have been very little investigated. Phylogenetically, these genus and species appear to be far. However, in a preliminary work we had shown strong reactions of chagasic human sera using T. evansi antigens in Western-blotting and ELISA. In the current work an ELISA test using T. evansi crude antigens was probed with one hundred and two sera of chagasic Bolivian patients previously diagnosed which presented different pathologies. The sensitivity of the ELISA T. evansi was 92.6% similar to that of ELISA T. cruzi. The specificity evaluated using 20 sera of patients infected by Leishmania sp. reaches a comparable value of that obtained with the T. cruzi immunofluorescent assay. Finally, the sensitivity and the specificity of the ELISA T. evansi were not really different from conventional serology of Chagas. In spite of their taxonomic position in various sections and their old divergence, these observations prove a strong antigenic community between T. cruzi and T. evansi. Consequently, the common antigens which remain to be characterized, could be an alternative source of antigen for the detection of antibodies against T. cruzi. Given that T. evansi seems to have strong antigenic communities with the majority of the pathogenic current trypanosomoses of mammals, it is very attractive to identify and characterize these highly conserved antigens which could be suitable targets to develop tools for diagnosis, prophylaxy and chemotherapy against several human and animal trypanosomoses.

  1. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    PubMed

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  2. Trypanosoma cruzi trans-sialidase: A potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling

    PubMed Central

    Chuenkova, Marina V.; Furnari, Frank B.; Cavenee, Webster K.; Pereira, Miercio A.

    2001-01-01

    Patients infected with Trypanosoma cruzi may remain asymptomatic for decades and show signs of neuroregeneration in the peripheral nervous system (PNS). In the absence of such neuroregeneration, patients may die in part by extensive neuronal destruction in the gastrointestinal tract. Thus, T. cruzi may, despite their invasion of the PNS, directly prevent cell death to keep nerve destruction in check. Indeed, T. cruzi invasion of Schwann cells, their prime target in PNS, suppressed host-cell apoptosis caused by growth-factor deprivation. The trans-sialidase (TS) of T. cruzi and the Cys-rich domain of TS reproduced the antiapoptotic activity of the parasites at doses (≥3.0 nM) comparable or lower than those of bona fide mammalian growth factors. This effect was blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). TS also activated Akt, a downstream effector of PI3K. Ectopic expression of TS in an unrelated parasite, Leishmania major, turned those parasites into activators of Akt in Schwann cells. In contrast, the Cys-rich domain of TS did not block apoptosis in Schwann cells overexpressing dominant-negative Akt or constitutively active PTEN, a negative regulator of PI3K/Akt signaling. The results demonstrate that T. cruzi, through its TS, triggers the survival of host Schwann cells via the PI3K/Akt pathway, suggesting a role for PI3K/Akt in the pathogenesis of Chagas' disease. PMID:11481434

  3. Efficacy of Recombinase Polymerase Amplification to Diagnose Trypanosoma cruzi Infection in Dogs with Cardiac Alterations from an Endemic Area of Mexico.

    PubMed

    Jimenez-Coello, Matilde; Shelite, Thomas; Castellanos-Gonzalez, Alejandro; Saldarriaga, Omar; Rivero, Rocio; Ortega-Pacheco, Antonio; Acevedo-Arcique, Carlos; Amaya-Guardia, Karla; Garg, Nisha; Melby, Peter; Travi, Bruno L

    2018-05-16

    Chagas disease is a lingering Public Health problem in Latin America with ∼5.7 million people infected with Trypanosoma cruzi. Transmission is still taking place in most countries of the Americas, including the United States. Dogs are frequently infected with T. cruzi and its high infection prevalence is associated with increased risk of Chagas disease in humans. The city of Mérida in the Yucatan peninsula is endemic for Chagas disease and canines are frequently infected with T. cruzi. The objective of this study was to evaluate the performance of a qualitative point of care (POC) molecular test (RPA-LF, recombinase polymerase amplification-lateral flow) developed in our laboratory for identifying infected dogs. We used retrospective samples of dogs that came for consultation because of cardiac alterations and proved to be infected with T. cruzi as determined by enzyme-linked immunosorbent assay (ELISA), Western blot, and quantitative PCR (qPCR). The analytical sensitivity indicated that RPA-LF amplified T. cruzi DNA in samples containing almost equal to one to two parasites per reaction. Serial twofold dilutions of T. cruzi epimastigotes showed that the test had 95% (19/20) repeatability at concentrations of two parasites per reaction. The test showed no cross reactivity with human DNA or other protozoan parasites (Trypanosoma rangeli, Leishmania spp., and Plasmodium spp.). RPA-LF had the capacity to amplify all discrete typing units (DTUs I-VI) of T. cruzi that circulate in domestic or extradomestic environments. The RPA-LF had 93.2% (95% confidence interval 87.2-98.1) sensitivity and excellent agreement with qPCR used as gold standard (Cohen's Kappa test = 0.963). ELISA was positive in 96.6% (85/88) of dogs, which together with the molecular tests confirmed the frequent contact with infected triatomine bugs in the city of Mérida. These preliminary results on the diagnostic efficacy of the RPA-LF deserve further large-scale field testing of this POC test

  4. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species

    PubMed Central

    Andrade, Juvana M.; Baba, Elio H.; Machado-de-Avila, Ricardo A.; Chavez-Olortegui, Carlos; Demicheli, Cynthia P.; Frézard, Frédéric

    2016-01-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (SbIII) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased SbIII susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to SbIII exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, SbIII-sodium nitrate or SbIII-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of SbIII alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to SbIII and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated SbIII susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and SbIII. PMID:27161624

  5. Biochemical characterization of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase from Leishmania (Viannia) and its evaluation as a drug target.

    PubMed

    Osorio, Edison; Aguilera, Carolina; Naranjo, Nelson; Marín, Marcel; Muskus, Carlos

    2013-01-01

    Dihydrofolate reductase (DHFR) has been used successfully as a drug target in the area of anti-bacterial, anti-cancer and anti-malarial therapy. Although this bifunctional enzyme is also a potential drug target for treatment of leishmaniasis, there have been no reports on its efficacy against Leishmania (Viannia) species. The gene encoding the bifunctional DHFR and thymidylate synthase (TS) of Le. (V.) braziliensis was isolated and expressed in E. coli. The enzyme was purified and characterized. The inhibitory effects of antifolates and four aporphine alkaloids on its activity were evaluated. The full-length gene consists of a 1560-bp open reading frame encoding a 58 kDa translated peptide containing DHFR and TS domains linked together in a single polypeptide chain. The recombinant DHFR-TS enzyme revealed Km and Vmax values of 55.35 ± 4.02 µ M (mean ± SE) and 0.02 ± 5.34 x 10 -4 µ M/min respectively for dihydrofolic acid (H₂F). The Le. braziliensis rDHFR-TS have Ki values for antimicrobial antifolates in the µM range. Methotrexate (MTX) was a more-potent inhibitor of enzymatic activity (Ki = 22.0 µM) than trimethoprim (Ki = 33 µM) and pyrimethamine (Ki = 68 µM). These Ki values are significantly lower than those obtained for the aporphine alkaloids. The results of the study show the inhibitory effect of antifolate drugs on enzymatic activity, indicating that Le. braziliensis rDHFR-TS could be a model to studying antifolate compounds as potential antiprotozoal drugs.

  6. First description of Leishmania (Viannia) infection in Evandromyia saulensis, Pressatia sp. and Trichophoromyia auraensis (Psychodidae: Phlebotominae) in a transmission area of cutaneous leishmaniasis in Acre state, Amazon Basin, Brazil.

    PubMed

    Araujo-Pereira, Thais de; Pita-Pereira, Daniela de; Boité, Mariana Côrtes; Melo, Myllena; Costa-Rego, Taiana Amancio da; Fuzari, Andressa Alencastre; Brazil, Reginaldo Peçanha; Britto, Constança

    2017-01-01

    Studies on the sandfly fauna to evaluate natural infection indexes are still limited in the Brazilian Amazon, a region with an increasing incidence of cutaneous leishmaniasis. Here, by using a multiplex polymerase chain reaction directed to Leishmania kDNA and hybridisation, we were able to identify L. (Viannia) subgenus in 12 out of 173 sandflies captured in the municipality of Rio Branco, Acre state, revealing a positivity of 6.94%. By sequencing the Leishmania 234 bp-hsp70 amplified products from positive samples, infection by L. (V.) braziliensis was confirmed in five sandflies: one Evandromyia saulensis, three Trichophoromyia auraensis and one Pressatia sp. The finding of L. (Viannia) DNA in two Ev. saulensis corresponds to the first record of possible infection associated with this sandfly. Moreover, our study reveals for the first time in Brazil, Th. auraensis and Pressatia sp. infected by L. (Viannia) parasites.

  7. First description of Leishmania (Viannia) infection in Evandromyia saulensis, Pressatia sp. and Trichophoromyia auraensis (Psychodidae: Phlebotominae) in a transmission area of cutaneous leishmaniasis in Acre state, Amazon Basin, Brazil

    PubMed Central

    de Araujo-Pereira, Thais; de Pita-Pereira, Daniela; Boité, Mariana Côrtes; Melo, Myllena; da Costa-Rego, Taiana Amancio; Fuzari, Andressa Alencastre; Brazil, Reginaldo Peçanha; Britto, Constança

    2017-01-01

    Studies on the sandfly fauna to evaluate natural infection indexes are still limited in the Brazilian Amazon, a region with an increasing incidence of cutaneous leishmaniasis. Here, by using a multiplex polymerase chain reaction directed to Leishmania kDNA and hybridisation, we were able to identify L. (Viannia) subgenus in 12 out of 173 sandflies captured in the municipality of Rio Branco, Acre state, revealing a positivity of 6.94%. By sequencing the Leishmania 234 bp-hsp70 amplified products from positive samples, infection by L. (V.) braziliensis was confirmed in five sandflies: one Evandromyia saulensis, three Trichophoromyia auraensis and one Pressatia sp. The finding of L. (Viannia) DNA in two Ev. saulensis corresponds to the first record of possible infection associated with this sandfly. Moreover, our study reveals for the first time in Brazil, Th. auraensis and Pressatia sp. infected by L. (Viannia) parasites. PMID:28076470

  8. In situ hybridisation for the detection of Leishmania species in paraffin wax-embedded canine tissues using a digoxigenin-labelled oligonucleotide probe

    PubMed Central

    Dinhopl, N.; Mostegl, M. M.; Richter, B.; Nedorost, N.; Maderner, A.; Fragner, K.; Weissenböck, H.

    2011-01-01

    The diagnosis of canine leishmaniosis (CanL) is currently predominantly achieved by cytological or histological identification of amastigotes in biopsy samples, demonstration of specific anti-Leishmania antibodies and PCR-based approaches. All these methods have the advantage of being sensitive and more or less specific; nevertheless, most of them also have disadvantages. A chromogenic in situ hybridisation (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 5.8S rRNA was developed for the detection of all species of Leishmania parasites in routinely paraffin wax-embedded canine tissues. This method was validated in comparison with traditional techniques (histology, PCR), on various tissues from three dogs with histological changes consistent with a florid leishmaniosis. Amastigote forms of Leishmania gave clear signals and were easily identified using ISH. Various tissues from 10 additional dogs with clinical suspicion or/and a positive serological test but without histological presence of amastigotes did not show any ISH signals. Potential cross-reactivity of the probe was ruled out by negative outcome of the ISH against selected protozoa (including the related Trypanosoma cruzi) and fungi. Thus, ISH proved to be a powerful tool for unambiguous detection of Leishmania parasites in paraffin wax-embedded tissues. PMID:21921059

  9. 2-Alkynoic fatty acids inhibit topoisomerase IB from Leishmania donovani.

    PubMed

    Carballeira, Néstor M; Cartagena, Michelle; Sanabria, David; Tasdemir, Deniz; Prada, Christopher F; Reguera, Rosa M; Balaña-Fouce, Rafael

    2012-10-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC(50)=5.3±0.7μM. The potency of LdTopIB inhibition follows the trend 2-ODA>2-HDA>2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC(50)=11.0μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC(50)=48.1μM) and Trypanosoma brucei rhodesiense (IC(50)=64.5μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA>2-HDA>2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB.

    PubMed

    Chowdhury, Somenath Roy; Kumar, Ashish; Godinho, Joseane Lima Prado; De Macedo Silva, Sara Teixeira; Zuma, Aline Araujo; Saha, Sourav; Kumari, Neha; Rodrigues, Juliany Cola Fernandes; Sundar, Shyam; Dujardin, Jean-Claude; Roy, Syamal; De Souza, Wanderley; Mukhopadhyay, Sibabrata; Majumder, Hemanta K

    2017-08-15

    Indole alkaloids possess a large spectrum of biological activities including anti-protozoal action. Here we report for the first time that voacamine, isolated from the plant Tabernaemontana coronaria, is an antiprotozoal agent effective against a large array of trypanosomatid parasites including Indian strain of Leishmania donovani and Brazilian strains of Leishmania amazonensis and Trypanosoma cruzi. It inhibits the relaxation activity of topoisomerase IB of L. donovani (LdTop1B) and stabilizes the cleavable complex. Voacamine is probably the first LdTop1B-specific poison to act uncompetitively. It has no impact on human topoisomerase I and II up to 200μM concentrations. The study also provides a thorough insight into ultrastructural alterations induced in three kinetoplastid parasites by a specific inhibitor of LdTop1B. Voacamine is also effective against intracellular amastigotes of different drug unresponsive field isolates of Leishmania donovani obtained from endemic zones of India severely affected with visceral leishmaniasis. Most importantly, this is the first report demonstrating the efficacy of a compound to reduce the burden of drug resistant parasites, unresponsive to SAG, amphotericin B and miltefosine, in experimental BALB/c mice model of visceral leishmaniasis. The findings cumulatively provide a strong evidence that voacamine can be a promising drug candidate against trypanosomatid infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge

    PubMed Central

    Resende, Lucilene Aparecida; Aguiar-Soares, Rodrigo Dian de Oliveira; Gama-Ker, Henrique; Roatt, Bruno Mendes; de Mendonça, Ludmila Zanandreis; Alves, Marina Luiza Rodrigues; da Silveira-Lemos, Denise; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis; Araújo, Márcio Sobreira Silva; Fujiwara, Ricardo Toshio; Gontijo, Nelder Figueiredo; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro

    2016-01-01

    Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the “LbSapSal” vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with “LbSapSal” is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after “LbSapSal” immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the “LbSapSal” vaccination is a potential tool to control the Leishmania chagasi infection. PMID:27556586

  12. Impact of LbSapSal Vaccine in Canine Immunological and Parasitological Features before and after Leishmania chagasi-Challenge.

    PubMed

    Resende, Lucilene Aparecida; Aguiar-Soares, Rodrigo Dian de Oliveira; Gama-Ker, Henrique; Roatt, Bruno Mendes; Mendonça, Ludmila Zanandreis de; Alves, Marina Luiza Rodrigues; Silveira-Lemos, Denise da; Corrêa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis; Araújo, Márcio Sobreira Silva; Fujiwara, Ricardo Toshio; Gontijo, Nelder Figueiredo; Reis, Alexandre Barbosa; Giunchetti, Rodolfo Cordeiro

    2016-01-01

    Dogs represent the most important domestic reservoir of L. chagasi (syn. L. infantum). A vaccine against canine visceral leishmaniasis (CVL) would be an important tool for decreasing the anxiety related to possible L. chagasi infection and for controlling human visceral leishmaniasis (VL). Because the sand fly salivary proteins are potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in past decades. We investigated the immunogenicity of the "LbSapSal" vaccine (L. braziliensis antigens, saponin as adjuvant, and Lutzomyia longipalpis salivary gland extract) in dogs at baseline (T0), during the post-vaccination protocol (T3rd) and after early (T90) and late (T885) times following L. chagasi-challenge. Our major data indicated that immunization with "LbSapSal" is able to induce biomarkers characterized by enhanced amounts of type I (tumor necrosis factor [TNF]-α, interleukin [IL]-12, interferon [IFN]-γ) cytokines and reduction in type II cytokines (IL-4 and TGF-β), even after experimental challenge. The establishment of a prominent pro-inflammatory immune response after "LbSapSal" immunization supported the increased levels of nitric oxide production, favoring a reduction in spleen parasitism (78.9%) and indicating long-lasting protection against L. chagasi infection. In conclusion, these results confirmed the hypothesis that the "LbSapSal" vaccination is a potential tool to control the Leishmania chagasi infection.

  13. Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species.

    PubMed

    Andrade, Juvana M; Baba, Elio H; Machado-de-Avila, Ricardo A; Chavez-Olortegui, Carlos; Demicheli, Cynthia P; Frézard, Frédéric; Monte-Neto, Rubens L; Murta, Silvane M F

    2016-08-01

    Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Molecular basis of Trypanosoma cruzi and Leishmania interaction with their host(s): exploitation of immune and defense mechanisms by the parasite leading to persistence and chronicity, features reminiscent of immune system evasion strategies in cancer diseases.

    PubMed

    Ouaissi, Ali; Ouaissi, Mehdi

    2005-01-01

    A number of features occurring during host-parasite interactions in Chagas disease caused by the protozoan parasite, Trypanosoma cruzi, and Leishmaniasis, caused by a group of kinetoplastid protozoan parasites are reminiscent of those observed in cancer diseases. In fact,although the cancer is not a single disease, and that T.cruzi and Leishmania are sophisticated eukaryotic parasites presenting a high level of genotypic variability the growth of the parasites in their host and that of cancer cells share at least one common feature, that is their mutual capacity for rapid cell division. Surprisingly, the parasitic diseases and cancers share some immune evasion strategies. Consideration of these immunological alterations must be added to the evaluation of the pathogenic processes. The molecular and functional characterization of virulence factors and the study of their effect on the arms of the immune system have greatly improved understanding of the regulation of immune effectors functions. The purpose of this review is to analyze some of the current data related to the regulatory components or processes originating from the parasite that control or interfere with host cell physiology. Attempts are also made to delineate some similarities between the immune evasion strategies that parasites and tumors employ. The elucidation of the mode of action of parasite virulence factors toward the host cell allow not only provide us with a more comprehensive view of the host-parasite relationships but may also represent a step forward in efforts aimed to identify new target molecules for therapeutic intervention.

  15. Polymerase Chain Reaction Detection of Leishmania kDNA from the Urine of Peruvian Patients with Cutaneous and Mucocutaneous Leishmaniasis

    PubMed Central

    Veland, Nicolas; Espinosa, Diego; Valencia, Braulio Mark; Ramos, Ana Pilar; Calderon, Flor; Arevalo, Jorge; Low, Donald E.; Llanos-Cuentas, Alejandro; Boggild, Andrea K.

    2011-01-01

    We hypothesized that Leishmania kDNA may be present in urine of patients with cutaneous leishmaniasis (CL). Urine samples and standard diagnostic specimens were collected from patients with skin lesions. kDNA polymerase chain reaction (PCR) was performed on samples from patients and 10 healthy volunteers from non-endemic areas. Eighty-six of 108 patients were diagnosed with CL and 18 (21%) had detectable Leishmania Viannia kDNA in the urine. Sensitivity and specificity were 20.9% (95% confidence interval [CI] 12.3–29.5%) and 100%. Six of 8 patients with mucocutaneous involvement had detectable kDNA in urine versus 12 of 78 patients with isolated cutaneous disease (P < 0.001). L. (V.) braziliensis (N = 3), L. (V.) guyanensis (N = 6), and L. (V.) peruviana (N = 3) were identified from urine. No healthy volunteer or patient with an alternate diagnosis had detectable kDNA in urine. Sensitivity of urine PCR is sub-optimal for diagnosis. On the basis of these preliminary data in a small number of patients, detectable kDNA in urine may identify less localized forms of infection and inform treatment decisions. PMID:21460009

  16. Restricted Outbreak of American Tegumentary Leishmaniasis with High Microfocal Transmission

    PubMed Central

    Krolewiecki, Alejandro J.; Gil, José F.; Quipildor, Marcelo; Cajal, Silvana P.; Pravia, Carlos; Juarez, Marisa; Villalpando, Carlos; Locatelli, Fabricio M.; Chanampa, Mariana; Castillo, Gabriela; Oreste, María F.; Hoyos, Carlos L.; Negri, Vanesa; Nasser, Julio R.

    2013-01-01

    Cutaneous leishmaniasis is endemic in Salta, the northwestern province of Argentina. We describe an outbreak involving five recreational hunters whose exposure was limited to several hours in a residual patch of primary forest. All patients presented with typical cutaneous lesions after a mean incubation period of 59 days (range 15–78), and one developed simultaneous mucosal involvement. Polymerase chain reaction analysis of lesions confirmed Leishmania (V.) braziliensis as the etiologic agent in three cases. All patients were cured with anti-Leishmania treatment. Entomologic surveys in the transmission area revealed a predominance of Lutzomyia neivai. This outbreak report confirms a microfocal transmission pattern of tegumentary leishmaniasis in the Americas and based on a well-determined exposure, allows the determination of incubation times for leishmaniasis caused by Leishmania braziliensis. PMID:23339200

  17. Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis.

    PubMed

    Coelho, Eduardo Antonio Ferraz; Costa, Lourena Emanuele; Lage, Daniela Pagliara; Martins, Vívian Tamietti; Garde, Esther; de Jesus Pereira, Nathália Cristina; Lopes, Eliane Gonçalves Paiva; Borges, Luiz Felipe Nunes Menezes; Duarte, Mariana Costa; Menezes-Souza, Daniel; de Magalhães-Soares, Danielle Ferreira; Chávez-Fumagalli, Miguel Angel; Soto, Manuel; Tavares, Carlos Alberto Pereira

    2016-01-15

    Serological diagnostic tests for canine and human leishmaniasis present problems related with their sensitivity and/or specificity. Recently, an immunoproteomic approach performed with Leishmania infantum proteins identified new parasite antigens. In the present study, the diagnostic properties of two of these proteins, cytochrome c oxidase and IgE-dependent histamine-releasing factor, were evaluated for the serodiagnosis of canine visceral (CVL) and human tegumentary (HTL) leishmaniasis. For the CVL diagnosis, sera samples from non-infected dogs living in an endemic or non-endemic area of leishmaniasis, sera from asymptomatic or symptomatic visceral leishmaniasis (VL) dogs, from Leish-Tec(®)-vaccinated dogs, and sera from animals experimentally infected by Trypanosoma cruzi or Ehrlichia canis were used. For the HTL diagnosis, sera from non-infected subjects living in an endemic area of leishmaniasis, sera from active cutaneous or mucosal leishmaniasis patients, as well as those from T. cruzi-infected patients were employed. ELISA assays using the recombinant proteins showed both sensitivity and specificity values of 100% for the serodiagnosis of both forms of disease, with high positive and negative predictive values, showing better diagnostic properties than the parasite recombinant A2 protein or a soluble Leishmania antigen extract. In this context, the two new recombinant proteins could be considered to be used in the serodiagnosis of CVL and HTL. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. LBSapSal-vaccinated dogs exhibit increased circulating T-lymphocyte subsets (CD4+ and CD8+) as well as a reduction of parasitism after challenge with Leishmania infantum plus salivary gland of Lutzomyia longipalpis

    PubMed Central

    2014-01-01

    Background The development of a protective vaccine against canine visceral leishmaniasis (CVL) is an alternative approach for interrupting the domestic cycle of Leishmania infantum. Given the importance of sand fly salivary proteins as potent immunogens obligatorily co-deposited during transmission of Leishmania parasites, their inclusion in an anti-Leishmania vaccine has been investigated in the last few decades. In this context, we previously immunized dogs with a vaccine composed of L. braziliensis antigens plus saponin as the adjuvant and sand fly salivary gland extract (LBSapSal vaccine). This vaccine elicited an increase in both anti-saliva and anti-Leishmania IgG isotypes, higher counts of specific circulating CD8+ T cells, and high NO production. Methods We investigated the immunogenicity and protective effect of LBSapSal vaccination after intradermal challenge with 1 × 107 late-log-phase L. infantum promastigotes in the presence of sand fly saliva of Lutzomyia longipalpis. The dogs were followed for up to 885 days after challenge. Results The LBSapSal vaccine presents extensive antigenic diversity with persistent humoral and cellular immune responses, indicating resistance against CVL is triggered by high levels of total IgG and its subtypes (IgG1 and IgG2); expansion of circulating CD5+, CD4+, and CD8+ T lymphocytes and is Leishmania-specific; and reduction of splenic parasite load. Conclusions These results encourage further study of vaccine strategies addressing Leishmania antigens in combination with proteins present in the saliva of the vector. PMID:24507702

  19. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera.

    PubMed

    Thomas, M C; Longobardo, M V; Carmelo, E; Marañón, C; Planelles, L; Patarroyo, M E; Alonso, C; López, M C

    2001-03-01

    The high variability among strains and isolates of Trypanosoma cruzi and the existence of shared antigenic determinants with other pathogens, particularly with members of the Leishmania genus make difficult the specific diagnosis of Chagas' disease. The data reported in this paper show that the T. cruzi KMP11 protein is an immunodominant antigen highly recognized by the sera from chagasic and leishmaniasis patients. By the use of amino- and carboxyl-terminal truncated KMP11 recombinant proteins and synthetic peptides, evidence is provided that while the sera from chagasic patients recognize linear peptides the sera from patients with visceral leishmaniasis must be predominantly directed against conformational epitopes. We found that a particular linear determinant, located in the carboxyl-terminal region of the protein, is recognized with high specificity and sensitivity only by sera from Chagas' disease patients, suggesting it could be a good candidate for differential serodiagnosis of Chagas' disease.

  20. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera

    PubMed Central

    Thomas, M C; Longobardo, M V; Carmelo, E; Marañón, C; Planelles, L; Patarroyo, M E; Alonso, C; López, M C

    2001-01-01

    The high variability among strains and isolates of Trypanosoma cruzi and the existence of shared antigenic determinants with other pathogens, particularly with members of the Leishmania genus make difficult the specific diagnosis of Chagas' disease. The data reported in this paper show that the T. cruzi KMP11 protein is an immunodominant antigen highly recognized by the sera from chagasic and leishmaniasis patients. By the use of amino- and carboxyl-terminal truncated KMP11 recombinant proteins and synthetic peptides, evidence is provided that while the sera from chagasic patients recognize linear peptides the sera from patients with visceral leishmaniasis must be predominantly directed against conformational epitopes. We found that a particular linear determinant, located in the carboxyl-terminal region of the protein, is recognized with high specificity and sensitivity only by sera from Chagas' disease patients, suggesting it could be a good candidate for differential serodiagnosis of Chagas' disease. PMID:11298135

  1. Trypanosoma cruzi Infection in Neotropical Wild Carnivores (Mammalia: Carnivora): At the Top of the T. cruzi Transmission Chain

    PubMed Central

    Rocha, Fabiana Lopes; Roque, André Luiz Rodrigues; de Lima, Juliane Saab; Cheida, Carolina Carvalho; Lemos, Frederico Gemesio; de Azevedo, Fernanda Cavalcanti; Arrais, Ricardo Corassa; Bilac, Daniele; Herrera, Heitor Miraglia; Mourão, Guilherme; Jansen, Ana Maria

    2013-01-01

    Little is known on the role played by Neotropical wild carnivores in the Trypanosoma cruzi transmission cycles. We investigated T. cruzi infection in wild carnivores from three sites in Brazil through parasitological and serological tests. The seven carnivore species examined were infected by T. cruzi, but high parasitemias detectable by hemoculture were found only in two Procyonidae species. Genotyping by Mini-exon gene, PCR-RFLP (1f8/Akw21I) and kDNA genomic targets revealed that the raccoon (Procyon cancrivorus) harbored TcI and the coatis (Nasua nasua) harbored TcI, TcII, TcIII-IV and Trypanosoma rangeli, in single and mixed infections, besides four T. cruzi isolates that displayed odd band patterns in the Mini-exon assay. These findings corroborate the coati can be a bioaccumulator of T. cruzi Discrete Typing Units (DTU) and may act as a transmission hub, a connection point joining sylvatic transmission cycles within terrestrial and arboreal mammals and vectors. Also, the odd band patterns observed in coatis’ isolates reinforce that T. cruzi diversity might be much higher than currently acknowledged. Additionally, we assembled our data with T. cruzi infection on Neotropical carnivores’ literature records to provide a comprehensive analysis of the infection patterns among distinct carnivore species, especially considering their ecological traits and phylogeny. Altogether, fifteen Neotropical carnivore species were found naturally infected by T. cruzi. Species diet was associated with T. cruzi infection rates, supporting the hypothesis that predator-prey links are important mechanisms for T. cruzi maintenance and dispersion in the wild. Distinct T. cruzi infection patterns across carnivore species and study sites were notable. Musteloidea species consistently exhibit high parasitemias in different studies which indicate their high infectivity potential. Mesocarnivores that feed on both invertebrates and mammals, including the coati, a host that can be

  2. Identification of a RAC/AKT-like gene in Leishmania parasites as a putative therapeutic target in leishmaniasis.

    PubMed

    Varela-M, Rubén E; Ochoa, Rodrigo; Muskus, Carlos E; Muro, Antonio; Mollinedo, Faustino

    2017-10-10

    Leishmaniasis is one of the world's most neglected diseases caused by at least 20 different species of the protozoan parasite Leishmania. Although new drugs have become recently available, current therapy for leishmaniasis is still unsatisfactory. A subgroup of serine/threonine protein kinases named as related to A and C protein kinases (RAC), or protein kinase B (PKB)/AKT, has been identified in several organisms including Trypanosoma cruzi parasites. PKB/AKT plays a critical role in mammalian cell signaling promoting cell survival and is a major drug target in cancer therapy. However, the role of protozoan parasitic PKB/AKT remains to be elucidated. We have found that anti-human AKT antibodies recognized a protein of about 57 kDa in Leishmania spp. parasites. Anti-human phospho-AKT(Thr308) antibodies identified a protein in extracts from Leishmania spp. that was upregulated following parasite exposure to stressful conditions, such as nutrient deprivation or heat shock. Incubation of AKT inhibitor X with Leishmania spp. promastigotes under stressful conditions or with Leishmania-infected macrophages led to parasite cell death. We have identified and cloned a novel gene from Leishmania donovani named Ld-RAC/AKT-like gene, encoding a 510-amino acid protein of approximately 57.6 kDa that shows a 26.5% identity with mammalian AKT1. Ld-RAC/AKT-like protein contains major mammalian PKB/AKT hallmarks, including the typical pleckstrin, protein kinase and AGC kinase domains. Unlike mammalian AKT that contains key phosphorylation sites at Thr308 and Ser473 in the activation loop and hydrophobic motif, respectively, Ld-RAC/AKT-like protein has a Thr residue in both motifs. By domain sequence comparison, we classified AKT proteins from different origins in four major subcategories that included different parasites. Our data suggest that Ld-RAC/AKT-like protein represents a Leishmania orthologue of mammalian AKT involved in parasite stress response and survival, and

  3. UPLC-ESI-QTOF-MS2 characterisation of Cola nitida resin fractions with inhibitory effects on NO and TNF-α released by LPS-activated J774 macrophage and on Trypanosoma cruzi and Leishmania amazonensis.

    PubMed

    Frankenberger, Larissa; Mora, Tamara D; de Siqueira, Carolina D; Filippin-Monteiro, Fabiola B; de Moraes, Milene H; Biavatti, Maique W; Steindel, Mario; Sandjo, Louis P

    2018-05-29

    The resin of Cola nitida is used in western Cameroon as incense for spiritual protection and during ritual ceremonies. This plant secretion has never been investigated although previous chemical and biological studies on other resins have drawn many attentions. The resin fractions which revealed inhibitory effect on nitric oxide (NO) and tumour necrosis factor alpha (TNF-α) released by lipopolysaccharide (LPS)-activated J774 macrophage as well as on intracellular forms of Leishmania amazonensis and Trypanosoma cruzi amastigote were chemically characterised. Moreover, their antiparasitic activities were compared to those of semi-synthetic triterpenes. The anti-inflammatory activity was evaluated by measuring the nitrite production and the TNF-α concentration in the supernatants of LPS-activated macrophages by antigen capture enzyme-linked immunosorbent assay. Moreover, the antiparasitic assay was performed by infecting the host cells (THP-1) in a ratio parasite/cell 10:1 (L. amazonensis) and 2:1 (T. cruzi) and then exposed to the samples. The resin was separated in vacuo by liquid chromatography because of its sticky behaviour and the chemical profiles of the obtained fractions (F1-F4) were established by dereplication based on UPLC-ESI-MS 2 data while semi-synthetic triterpenes were prepared from α-amyrin by oxidation reactions. Fractions F1-F4 inhibited NO and TNF-α almost similarly. However, only F1, F3 and F4 showed promising antiparasitic activities while F2 was moderately active against both parasites. Hence, F1-F4 were exclusively composed of pentacyclic triterpenes bearing oleanane and ursane skeletons. Semi-synthetic compounds revealed no to moderate antiparasitic activity compared to the fractions. Although it will be difficult to prove the interaction resin-spirit, interesting bioactivities were found in the resin fractions. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Phlebotomine sandfly (Diptera: Psychodidae) diversity and their Leishmania DNA in a hot spot of American Cutaneous Leishmaniasis human cases along the Brazilian border with Peru and Bolivia

    PubMed Central

    Teles, Carolina Bioni Garcia; dos Santos, Ana Paula de Azevedo; Freitas, Rui Alves; de Oliveira, Arley Faria José; Ogawa, Guilherme Maerschner; Rodrigues, Moreno Souza; Pessoa, Felipe Arley Costa; Medeiros, Jansen Fernandes; Camargo, Luís Marcelo Aranha

    2016-01-01

    In this study, we identified the phlebotomine sandfly vectors involved in the transmission of American Cutaneous Leishmaniasis (ACL) in Assis Brasil, Acre, Brazil, which is located on the Brazil-Peru-Bolivia frontier. The genotyping of Leishmania in phlebotomines was performed using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. A total of 6,850 sandflies comprising 67 species were captured by using CDC light traps in rural areas of the municipality. Three sandfly species were found in the state of Acre for the first time: Lutzomyia georgii, Lu. complexa and Lu. evangelistai. The predominant species was Lu. auraensis/Lu. ruifreitasi and Lu. davisi (total 59.27%). 32 of 368 pools were positive for the presence of Leishmania DNA (16 pools corresponding to Lu. davisi, and 16 corresponding to Lu. auraensis/Lu. ruifreitasi), with a minimal infection prevalence of 1.85% in Lu. davisi and 2.05% in Lu. auraensis/Lu. ruifreitasi. The Leishmania species found showed maximum identity with L. (Viannia) guyanensis and L. (V.) braziliensis in both phlebotomine species. Based on these results and similar scenarios previously described along the Brazil/Peru/Bolivia tri-border, the studied area must take into consideration the possibility of Lu. davisi and Lu. auraensis/Lu. ruifreitasi as probable vectors of ACL in this municipality. PMID:27304023

  5. Phlebotomine sandfly (Diptera: Psychodidae) diversity and their Leishmania DNA in a hot spot of American Cutaneous Leishmaniasis human cases along the Brazilian border with Peru and Bolivia.

    PubMed

    Teles, Carolina Bioni Garcia; Santos, Ana Paula de Azevedo Dos; Freitas, Rui Alves; Oliveira, Arley Faria José de; Ogawa, Guilherme Maerschner; Rodrigues, Moreno Souza; Pessoa, Felipe Arley Costa; Medeiros, Jansen Fernandes; Camargo, Luís Marcelo Aranha

    2016-06-10

    In this study, we identified the phlebotomine sandfly vectors involved in the transmission of American Cutaneous Leishmaniasis (ACL) in Assis Brasil, Acre, Brazil, which is located on the Brazil-Peru-Bolivia frontier. The genotyping of Leishmania in phlebotomines was performed using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism. A total of 6,850 sandflies comprising 67 species were captured by using CDC light traps in rural areas of the municipality. Three sandfly species were found in the state of Acre for the first time: Lutzomyia georgii, Lu. complexa and Lu. evangelistai. The predominant species was Lu. auraensis/Lu. ruifreitasi and Lu. davisi (total 59.27%). 32 of 368 pools were positive for the presence of Leishmania DNA (16 pools corresponding to Lu. davisi, and 16 corresponding to Lu. auraensis/Lu. ruifreitasi), with a minimal infection prevalence of 1.85% in Lu. davisi and 2.05% in Lu. auraensis/Lu. ruifreitasi. The Leishmania species found showed maximum identity with L. (Viannia) guyanensis and L. (V.) braziliensis in both phlebotomine species. Based on these results and similar scenarios previously described along the Brazil/Peru/Bolivia tri-border, the studied area must take into consideration the possibility of Lu. davisi and Lu. auraensis/Lu. ruifreitasi as probable vectors of ACL in this municipality.

  6. A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major.

    PubMed

    Vickers, Tim J; Greig, Neil; Fairlamb, Alan H

    2004-09-07

    Glyoxalase I forms part of the glyoxalase pathway that detoxifies reactive aldehydes such as methylglyoxal, using the spontaneously formed glutathione hemithioacetal as substrate. All known eukaryotic enzymes contain zinc as their metal cofactor, whereas the Escherichia coli glyoxalase I contains nickel. Database mining and sequence analysis identified putative glyoxalase I genes in the eukaryotic human parasites Leishmania major, Leishmania infantum, and Trypanosoma cruzi, with highest similarity to the cyanobacterial enzymes. Characterization of recombinant L. major glyoxalase I showed it to be unique among the eukaryotic enzymes in sharing the dependence of the E. coli enzyme on nickel. The parasite enzyme showed little activity with glutathione hemithioacetal substrates but was 200-fold more active with hemithioacetals formed from the unique trypanosomatid thiol trypanothione. L. major glyoxalase I also was insensitive to glutathione derivatives that are potent inhibitors of all other characterized glyoxalase I enzymes. This substrate specificity is distinct from that of the human enzyme and is reflected in the modification in the L. major sequence of a region of the human protein that interacts with the glycyl-carboxyl moiety of glutathione, a group that is conjugated to spermidine in trypanothione. This trypanothione-dependent glyoxalase I is therefore an attractive focus for additional biochemical and genetic investigation as a possible target for rational drug design.

  7. Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis

    PubMed Central

    2014-01-01

    Background Two Leishmania major ribosomal proteins L3 (LmL3) and L5 (LmL5) have been described as protective molecules against cutaneous leishmaniasis due to infection with L. major and Leishmania braziliensis in BALB/c mice when immunized with a Th1 adjuvant (non-methylated CpG-oligodeoxynucleotides; CpG-ODN). In the present study we analyzed the cross-protective efficacy of an LmL3-LmL5-CpG ODN combined vaccine against infection with Leishmania amazonensis and Leishmania chagasi (syn. Leishmania infantum) the etiologic agents of different clinical forms of human leishmaniasis in South America. Methods The combined vaccine was administered subcutaneously to BALB/c mice. After immunization the cellular and humoral responses elicited were analyzed. Mice were independently challenged with L. amazonensis and L. chagasi. The size of the cutaneous lesions caused by the infection with the first species, the parasite loads and the immune response in both infection models were analyzed nine weeks after challenge. Results Mice vaccinated with the combined vaccine showed a Th1-like response against LmL3 and LmL5. Vaccinated mice were able to delay lesion development due to L. amazonensis infection and to control parasite loads in the site of infection. A reduction of the parasite burden in the lymph nodes draining the site of infection and in the liver and spleen was observed in the vaccinated mice after a subcutaneous infection with L. chagasi. In both models of infection, protection was correlated to parasite antigen-specific production of IFN-γ and down-regulation of parasite-mediated IL-4 and IL-10 responses. Conclusions The data presented here demonstrate the potential use of L. major L3 and L5 recombinant ribosomal proteins for the development of vaccines against various Leishmania species. PMID:24382098

  8. Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis.

    PubMed

    Ramirez, Laura; Corvo, Laura; Duarte, Mariana C; Chávez-Fumagalli, Miguel A; Valadares, Diogo G; Santos, Diego M; de Oliveira, Camila I; Escutia, Marta R; Alonso, Carlos; Bonay, Pedro; Tavares, Carlos A P; Coelho, Eduardo A F; Soto, Manuel

    2014-01-02

    Two Leishmania major ribosomal proteins L3 (LmL3) and L5 (LmL5) have been described as protective molecules against cutaneous leishmaniasis due to infection with L. major and Leishmania braziliensis in BALB/c mice when immunized with a Th1 adjuvant (non-methylated CpG-oligodeoxynucleotides; CpG-ODN). In the present study we analyzed the cross-protective efficacy of an LmL3-LmL5-CpG ODN combined vaccine against infection with Leishmania amazonensis and Leishmania chagasi (syn. Leishmania infantum) the etiologic agents of different clinical forms of human leishmaniasis in South America. The combined vaccine was administered subcutaneously to BALB/c mice. After immunization the cellular and humoral responses elicited were analyzed. Mice were independently challenged with L. amazonensis and L. chagasi. The size of the cutaneous lesions caused by the infection with the first species, the parasite loads and the immune response in both infection models were analyzed nine weeks after challenge. Mice vaccinated with the combined vaccine showed a Th1-like response against LmL3 and LmL5. Vaccinated mice were able to delay lesion development due to L. amazonensis infection and to control parasite loads in the site of infection. A reduction of the parasite burden in the lymph nodes draining the site of infection and in the liver and spleen was observed in the vaccinated mice after a subcutaneous infection with L. chagasi. In both models of infection, protection was correlated to parasite antigen-specific production of IFN-γ and down-regulation of parasite-mediated IL-4 and IL-10 responses. The data presented here demonstrate the potential use of L. major L3 and L5 recombinant ribosomal proteins for the development of vaccines against various Leishmania species.

  9. Members of a Large Retroposon Family Are Determinants of Post-Transcriptional Gene Expression in Leishmania

    PubMed Central

    Cerqueira, Gustavo Coutinho; Smith, Martin; Rochette, Annie; El-Sayed, Najib M. A; Papadopoulou, Barbara; Ghedin, Elodie

    2007-01-01

    Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis), Trypanosoma brucei (sleeping sickness), and Trypanosoma cruzi (Chagas disease). Analysis of their recently completed genomes confirmed the presence of non–long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements—LmSIDER1 (785 copies) and LmSIDER2 (1,073 copies)—that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are ∼70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3′-untranslated regions (3′UTRs) of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3′UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function. PMID:17907803

  10. Identification, biochemical characterization, and in-vivo expression of the intracellular invertase BfrA from the pathogenic parasite Leishmania major.

    PubMed

    Belaz, Sorya; Rattier, Thibault; Lafite, Pierre; Moreau, Philippe; Routier, Françoise H; Robert-Gangneux, Florence; Gangneux, Jean-Pierre; Daniellou, Richard

    2015-10-13

    The parasitic life cycle of Leishmania includes an extracellular promastigote stage that occurs in the gut of the insect vector. During that period, the sucrose metabolism and more specifically the first glycosidase of this pathway are essential for growth and survival of the parasite. We investigated the expression of the invertase BfrA in the promastigote and amastigote stages of three parasite species representative of the three various clinical forms and of various geographical areas, namely Leishmania major, L. donovani and L. braziliensis. Thereafter, we cloned, overexpressed and biochemically characterized this invertase BfrA from L. major, heterologously expressed in both Escherichia coli and L. tarentolae. For all species, expression levels of BfrA mRNA were correlated to the time of the culture and the parasitic stage (promastigotes > amastigotes). BfrA exhibited no activity when expressed as a glycoprotein in L. tarentolae but proved to be an invertase when not glycosylated, yet owing low sequence homology with other invertases from the same family. Our data suggest that BfrA is an original invertase that is located inside the parasite. It is expressed in both parasitic stages, though to a higher extent in promastigotes. This work provides new insight into the parasite sucrose metabolism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase.

    PubMed

    da Silva, Edson R; Boechat, Nubia; Pinheiro, Luiz C S; Bastos, Monica M; Costa, Carolina C P; Bartholomeu, Juliana C; da Costa, Talita H

    2015-11-01

    Arginase is a glycosomal enzyme in Leishmania that is involved in polyamine and trypanothione biosynthesis. The central role of arginase in Leishmania (Leishmania) amazonensis was demonstrated by the generation of two mutants: one with an arginase lacking the glycosomal addressing signal and one in which the arginase-coding gene was knocked out. Both of these mutants exhibited decreased infectivity. Thus, arginase seems to be a potential drug target for Leishmania treatment. In an attempt to search for arginase inhibitors, 29 derivatives of the [1,2,4]triazolo[1,5-a]pyrimidine system were tested against Leishmania (Leishmania) amazonensis arginase in vitro. The [1,2,4]triazolo[1,5-a]pyrimidine scaffold containing R1  = CF3 exhibited greater activity against the arginase rather than when the substituent R1  = CH3 in the 2-position. The novel compound 2-(5-methyl-2-(trifluoromethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl)hydrazinecarbothioamide (30) was the most potent, inhibiting arginase by a non-competitive mechanism, with the Ki and IC50 values for arginase inhibition estimated to be 17 ± 1 μm and 16.5 ± 0.5 μm, respectively. These results can guide the development of new drugs against leishmaniasis based on [1,2,4]triazolo[1,5-a]pyrimidine derivatives targeting the arginase enzyme. © 2015 John Wiley & Sons A/S.

  12. Molecular identification of Lutzomyia migonei (Diptera: Psychodidae) as a potential vector for Leishmania infantum (Kinetoplastida: Trypanosomatidae).

    PubMed

    Rodrigues, Ana Caroline Moura; Melo, Luciana Magalhães; Magalhães, Rafaela Damasceno; de Moraes, Nélio Batista; de Souza Júnior, Antônio Domingos; Bevilaqua, Claudia Maria Leal

    2016-04-15

    Visceral leishmaniasis (VL) in Brazil is caused by the protozoan Leishmania infantum. This parasite is transmitted by the bite of a female sand fly. The most important sand fly species in VL transmission is Lutzomyia longipalpis. In Fortaleza, the capital of Ceará State, Brazil, the simultaneous occurrence of Lutzomyia migonei and L. longipalpis was detected in localities where VL transmission is observed. The purpose of this study was to determine conclusively if L. migonei can be found naturally infected with L. infantum in key focus in Fortaleza. Using a CDC traps we performed phlebotomine capture during one year. External morphological features and qPCR targeting species-specific gene sequences of Lutzomyia species were used to identify the female phlebotomine sand flies. The molecular identification of the Leishmania species was performed using qPCR targeting species-specific gene sequences of L. infantum and Leishmania braziliensis. The males L. migonei abundance was higher in the rainy season. Humidity and rainfall positively correlated with males L. migonei abundance, while temperature showed a negative correlation. The correlation between the density of L. migonei female with rainfall, relative air humidity, and temperature were not statistically significant. According to the molecular data produced by qPCR amplifications, three positive sand flies were identified as L. longipalpis, and one was identified as L. migonei. The infection rate was 0.35% and 0.18%, respectively. The parasite load was 32,492±2572 L. infantum in L. migonei while the L. longipalpis had parasite loads between 2,444,964.6±116,000 and 6,287,130±124,277. Our findings confirm L. migonei as a potential vector of VL in Fortaleza at a molecular level. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Probing the structure of Leishmania donovani chagasi DHFR-TS: comparative protein modeling and protein-ligand interaction studies.

    PubMed

    Maganti, Lakshmi; Manoharan, Prabu; Ghoshal, Nanda

    2010-09-01

    Dihydrofolate reductase (DHFR) has been used successfully as a drug target in the area of anti-bacterial, anti-cancer and anti-malarial therapy. It also acts as a drug target for Leishmaniasis. Inhibition of DHFR leads to cell death through lack of thymine (nucleotide metabolism). Although the crystal structures of Leishmania major and Trypanosoma cruzi DHFR-thymidylate synthase (TS) have been resolved, to date there is no three-dimensional (3D)-structural information on DHFR-TS of Leishmania donovani chagasi, which causes visceral leishmaniasis. Our aim in this study was to model the 3D structure of L. donovani chagasi DHFR-TS, and to investigate the structural requirements for its inhibition. In this paper we describe a highly refined homology model of L. donovani chagasi DHFR-TS based on available crystallographic structures by using the Homology module of Insight II. Structural refinement and minimization of the generated L. donovani chagasi DHFR-TS model employed the Discover 3 module of Insight II and molecular dynamic simulations. The model was further validated through use of the PROCHECK, Verify_3D, PROSA, PSQS and ERRAT programs, which confirm that the model is reliable. Superimposition of the model structure with the templates L. major A chain, L. major B chain And T. cruzi A chain showed root mean square deviations of 0.69 A, 0.71 A and 1.11 A, respectively. Docking analysis of the L. donovani chagasi DHFR-TS model with methotrexate enabled us to identify specific residues, viz. Val156, Val30, Lys95, Lys75 and Arg97, within the L. donovani chagasi DHFR-TS binding pocket, that play an important role in ligand or substrate binding. Docking studies clearly indicated that these five residues are important determinants for binding as they have strong hydrogen bonding interactions with the ligand.

  14. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    PubMed

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  15. Detection and molecular identification of leishmania RNA virus (LRV) in Iranian Leishmania species.

    PubMed

    Hajjaran, Homa; Mahdi, Maryam; Mohebali, Mehdi; Samimi-Rad, Katayoun; Ataei-Pirkooh, Angila; Kazemi-Rad, Elham; Naddaf, Saied Reza; Raoofian, Reza

    2016-12-01

    Leishmania RNA virus (LRV) was first detected in members of the subgenus Leishmania (Viannia), and later, the virulence and metastasis of the New World species were attributed to this virus. The data on the presence of LRV in Old World species are confined to Leishmania major and a few Leishmania aethiopica isolates. The aim of this study was to survey the presence of LRV in various Iranian Leishmania species originating from patients and animal reservoir hosts. Genomic nucleic acids were extracted from 50 cultured isolates belonging to the species Leishmania major, Leishmania tropica, and Leishmania infantum. A partial sequence of the viral RNA-dependent RNA polymerase (RdRp) gene was amplified, sequenced and compared with appropriate sequences from the GenBank database. We detected the virus in two parasite specimens: an isolate of L. infantum derived from a visceral leishmaniasis (VL) patient who was unresponsive to meglumine antimoniate treatment, and an L. major isolate originating from a great gerbil, Rhombomys opimus. The Iranian LRV sequences showed the highest similarities to an Old World L. major LRV2 and were genetically distant from LRV1 isolates detected in New World Leishmania parasites. We could not attribute treatment failure in VL patient to the presence of LRV due to the limited number of specimens analyzed. Further studies with inclusion of more clinical samples are required to elucidate the potential role of LRVs in pathogenesis or treatment failure of Old World leishmaniasis.

  16. High density of Leishmania major and rarity of other mammals' Leishmania in zoonotic cutaneous leishmaniasis foci, Iran.

    PubMed

    Bordbar, Ali; Parvizi, Parviz

    2014-03-01

    Only Leishmania major is well known as a causative agent of zoonotic cutaneous leishmaniasis (ZCL) in Iran. Our objective was to find Leishmania parasites circulating in reservoir hosts, sand flies and human simultaneously. Sand flies, rodents and prepared smears of humans were sampled. DNA of Leishmania parasites was extracted, and two fragments of ITS-rDNA gene amplified by PCR. RFLP and sequencing were employed to identify Leishmania parasites. Leishmania major and L. turanica were identified unequivocally by targeting and sequencing ITS-rDNA from humans, rodents and sand flies. The new Leishmania species close to gerbilli (GenBank Accession Nos. EF413076; EF413087) was discovered only in sand flies. Based on parasite detection of ITS-rDNA in main and potential reservoir hosts and vectors and humans, we conclude that at least two Leishmania species are common in the Turkmen Sahra ZCL focus. Phylogenetic analysis proved that the new Leishmania is closely related to Leishmania mammal parasites (Leishmania major, Leishmania turanica, Leishmania gerbilli). Its role as a principal agent of ZCL is unknown because it was found only in sand flies. Our findings shed new light on the transmission cycles of several Leishmania parasites in sand flies, reservoir hosts and humans. © 2014 John Wiley & Sons Ltd.

  17. Reproductive biology of the isopod Excirolana braziliensis at the southern edge of its geographical range

    NASA Astrophysics Data System (ADS)

    Martínez, Gastón; Defeo, Omar

    2006-12-01

    A full analysis of the reproductive biology of the isopod Excirolana braziliensis Richardson 1912 was conducted in a sandy beach of Uruguay, located at the southernmost edge of its distributional range in the Atlantic Ocean. Reproductive and recruitment periods of E. braziliensis were concentrated in austral summer. Females with oostegites appeared in November, whereas total biomass, individual sizes and fecundity of ovigerous females peaked between December and January. These concurrent traits were responsible for the significant peak of juveniles in January. The size at maturity was 9.88 mm. Four embryonic developmental stages were described and identified: mean length linearly increased from stages I to III, whereas dry weight exponentially decreased from stages I to IV. The high reproductive output (0.41-0.58), reported for the first time in this isopod, exceeds the rates documented for other isopods. Reproduction of E. braziliensis at the southern edge of its range is semelparous: females produce one brood during the reproductive season, exhaust their energy reserves during incubation, and probably die at the end of the reproductive season. A macroscale comparison suggests that E. braziliensis at the southern edge of its range counteracts its narrow reproductive period by a short incubation period with larger individual mature female and embryo sizes, higher fecundity and a higher percentage of ovigerous females than in subtropical and tropical populations. These extreme reproductive indicators could be attributed to the internal retention of embryos that assures offspring survival, coupled with a high adaptation capability to environmental variations across its range.

  18. Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species.

    PubMed

    Lima, Luciana; Ortiz, Paola A; da Silva, Flávia Maia; Alves, João Marcelo P; Serrano, Myrna G; Cortez, Alane P; Alfieri, Silvia C; Buck, Gregory A; Teixeira, Marta M G

    2012-01-01

    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine

  19. New strategy to improve quality control of Montenegro skin test at the production level.

    PubMed

    Guedes, Deborah Carbonera; Minozzo, João Carlos; Pasquali, Aline Kuhn Sbruzzi; Faulds, Craig; Soccol, Carlos Ricardo; Thomaz-Soccol, Vanete

    2017-01-01

    The production of the Montenegro antigen for skin test poses difficulties regarding quality control. Here, we propose that certain animal models reproducing a similar immune response to humans may be used in the quality control of Montenegro antigen production. Fifteen Cavia porcellus (guinea pigs) were immunized with Leishmania amazonensis or Leishmania braziliensis , and, after 30 days, they were skin tested with standard Montenegro antigen. To validate C. porcellus as an animal model for skin tests, eighteen Mesocricetus auratus (hamsters) were infected with L. amazonensis or L. braziliensis , and, after 45 days, they were skin tested with standard Montenegro antigen. Cavia porcellus immunized with L. amazonensis or L. braziliensis , and hamsters infected with the same species presented induration reactions when skin tested with standard Montenegro antigen 48-72h after the test. The comparison between immunization methods and immune response from the two animal species validated C. porcellus as a good model for Montenegro skin test, and the model showed strong potential as an in vivo model in the quality control of the production of Montenegro antigen.

  20. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.

    PubMed

    Vallejo, G A; Guhl, F; Schaub, G A

    2009-01-01

    Of the currently known 140 species in the family Reduviidae, subfamily Triatominae, those which are most important as vectors of the aetiologic agent of Chagas disease, Trypanosoma cruzi, belong to the tribes Triatomini and Rhodniini. The latter not only transmit T. cruzi but also Trypanosoma rangeli, which is considered apathogenic for the mammalian host but can be pathogenic for the vectors. Using different molecular methods, two main lineages of T. cruzi have been classified, T. cruzi I and T. cruzi II. Within T. cruzi II, five subdivisions are recognized, T. cruzi IIa-IIe, according to the variability of the ribosomal subunits 24Salpha rRNA and 18S rRNA. In T. rangeli, differences in the organization of the kinetoplast DNA separate two forms denoted T. rangeli KP1+ and KP1-, although differences in the intergenic mini-exon gene and of the small subunit rRNA (SSU rRNA) suggest four subpopulations denoted T. rangeli A, B, C and D. The interactions of these subpopulations of the trypanosomes with different species and populations of Triatominae determine the epidemiology of the human-infecting trypanosomes in Latin America. Often, specific subpopulations of the trypanosomes are transmitted by specific vectors in a particular geographic area. Studies centered on trypanosome-triatomine interaction may allow identification of co-evolutionary processes, which, in turn, could consolidate hypotheses of the evolution and the distribution of T. cruzi/T. rangeli-vectors in America, and they may help to identify the mechanisms that either facilitate or impede the transmission of the parasites in different vector species. Such mechanisms seem to involve intestinal bacteria, especially the symbionts which are needed by the triatomines to complete nymphal development and to produce eggs. Development of the symbionts is regulated by the vector. T. cruzi and T. rangeli interfere with this system and induce the production of antibacterial substances. Whereas T. cruzi is only

  1. Effects of nitro-heterocyclic derivatives against Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes.

    PubMed

    Petri e Silva, Simone Carolina Soares; Palace-Berl, Fanny; Tavares, Leoberto Costa; Soares, Sandra Regina Castro; Lindoso, José Angelo Lauletta

    2016-04-01

    Leishmaniasis is an overlooked tropical disease affecting approximately 1 million people in several countries. Clinical manifestation depends on the interaction between Leishmania and the host's immune response. Currently available treatment options for leishmaniasis are limited and induce severe side effects. In this research, we tested nitro-heterocyclic compounds (BSF series) as a new alternative against Leishmania. Its activity was measured in Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes using MTT colorimetric assay. Additionally, we assessed the phosphatidylserine exposure by promastigotes, measured by flow cytometry, as well as nitric oxide production, measured by Griess' method. The nitro-heterocyclic compounds (BSF series) showed activity against L. (L.) infantum promastigotes, inducting the phosphatidylserine exposition by promastigotes, decreasing intracellular amastigotes and increasing oxide nitric production. The selectivity index was more prominent to Leishmania than to macrophages. Compared to amphotericin b, our compounds presented higher IC50, however the selectivity index was more specific to parasite than to amphotericin b. In conclusion, these nitro-heterocyclic compounds showed to be promising as an anti-Leishmania drug, in in vitro studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Anti-striated muscle antibody activity produced by Trypanosoma cruzi.

    PubMed

    Acosta, A M; Sadigursky, M; Santos-Buch, C A

    1983-03-01

    We have previously shown that Trypanosoma cruzi shares antigenic determinants with preparations of the calcium-sequestering adenosine triphosphatase of sarcoplasmic reticulum. The cross-reacting antigen (SRA) is also apparently present on the sarcolemma of cardiac myofibers. Using highly specific reference antisera to either the small membranes of T. cruzi or to a tryptic fragment of striated muscle SRA, it was shown that SRA is present in the striated muscle of animals representative of the evolutionary scale ranging from nonhuman primate to fish. The small membranes of nine different T. cruzi strains isolated from widely divergent areas of the American continents also reacted with the reference antisera. This indicates that SRA is present in these T. cruzi strains and may be prevalent among all T. cruzi strains. The shared T. cruzi-striated muscle antigen, SRA, may be a heteroantigen present in all T. cruzi strains and in the striated muscle of all classes of animals. Immunization of rabbits (three of five) or chickens (five pairs of five pairs) with striated muscle membrane preparations of different classes of animals, particularly those of nonhuman primate, chicken, and turtle, gave rise to IgG anti-allogeneic striated muscle antibody activity. Immunization of rabbits (four of nine) and chickens (five pairs of six pairs) with the small membranes of different T. cruzi strains also produced IgG anti-allogeneic striated muscle. These data indicate that T. cruzi shares cross-immunogenicity with striated muscle SRA. Since SRA is apparently present on the sarcolemma of cardiac myofibers, it may be implicated in the immunopathogenesis of Chagas' disease.

  3. Detection and Characterization of Leishmania (Leishmania) and Leishmania (Viannia) by SYBR Green-Based Real-Time PCR and High Resolution Melt Analysis Targeting Kinetoplast Minicircle DNA

    PubMed Central

    Ceccarelli, Marcello; Galluzzi, Luca; Migliazzo, Antonella; Magnani, Mauro

    2014-01-01

    Leishmaniasis is a neglected disease with a broad clinical spectrum which includes asymptomatic infection. A thorough diagnosis, able to distinguish and quantify Leishmania parasites in a clinical sample, constitutes a key step in choosing an appropriate therapy, making an accurate prognosis and performing epidemiological studies. Several molecular techniques have been shown to be effective in the diagnosis of leishmaniasis. In particular, a number of PCR methods have been developed on various target DNA sequences including kinetoplast minicircle constant regions. The first aim of this study was to develop a SYBR green-based qPCR assay for Leishmania (Leishmania) infantum detection and quantification, using kinetoplast minicircle constant region as target. To this end, two assays were compared: the first used previously published primer pairs (qPCR1), whereas the second used a nested primer pairs generating a shorter PCR product (qPCR2). The second aim of this study was to evaluate the possibility to discriminate among subgenera Leishmania (Leishmania) and Leishmania (Viannia) using the qPCR2 assay followed by melting or High Resolution Melt (HRM) analysis. Both assays used in this study showed good sensitivity and specificity, and a good correlation with standard IFAT methods in 62 canine clinical samples. However, the qPCR2 assay allowed to discriminate between Leishmania (Leishmania) and Leishmania (Viannia) subgenera through melting or HRM analysis. In addition to developing assays, we investigated the number and genetic variability of kinetoplast minicircles in the Leishmania (L.) infantum WHO international reference strain (MHOM/TN/80/IPT1), highlighting the presence of minicircle subclasses and sequence heterogeneity. Specifically, the kinetoplast minicircle number per cell was estimated to be 26,566±1,192, while the subclass of minicircles amplifiable by qPCR2 was estimated to be 1,263±115. This heterogeneity, also observed in canine clinical samples

  4. Should Trypanosoma cruzi be called "cruzi" complex? a review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection.

    PubMed

    Devera, Rodolfo; Fernandes, Octavio; Coura, José Rodrigues

    2003-01-01

    Morpho-biological diversity of Trypanosoma cruzi has been known since Chagas' first works in 1909. Several further studies confirmed the morphological differences among the parasite strains, which were isolated from different reservoirs and vectors, as well as from human beings. In the early sixties, antigenic differences were found in the parasite strains from various sources. These differences, coupled to the observation of regional variations of the disease, led to the proposal of the term cruzi complex to designate the taxon T. cruzi. Since then this protozoan has been typed in distinct biodemes, zymodemes and lineages which were consensually grouped into T. cruzi I, T. cruzi II and into non-grouped strains. T. cruzi genotypic characterization, initially carried out by schizodeme analysis and more recently by various other techniques, has shown a great diversity of the parasite strains. In fact, T. cruzi is formed by groups of heterogeneous sub-population, which present specific characteristics, including distinct histotropism. The interaction of the different infecting clones of the cruzi complex and the human host will determine the morbidity of the disease.

  5. Trypanosoma cruzi and Chagas' Disease in the United States

    PubMed Central

    Bern, Caryn; Kjos, Sonia; Yabsley, Michael J.; Montgomery, Susan P.

    2011-01-01

    Summary: Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and causes potentially life-threatening disease of the heart and gastrointestinal tract. The southern half of the United States contains enzootic cycles of T. cruzi, involving 11 recognized triatomine vector species. The greatest vector diversity and density occur in the western United States, where woodrats are the most common reservoir; other rodents, raccoons, skunks, and coyotes are also infected with T. cruzi. In the eastern United States, the prevalence of T. cruzi is highest in raccoons, opossums, armadillos, and skunks. A total of 7 autochthonous vector-borne human infections have been reported in Texas, California, Tennessee, and Louisiana; many others are thought to go unrecognized. Nevertheless, most T. cruzi-infected individuals in the United States are immigrants from areas of endemicity in Latin America. Seven transfusion-associated and 6 organ donor-derived T. cruzi infections have been documented in the United States and Canada. As improved control of vector- and blood-borne T. cruzi transmission decreases the burden in countries where the disease is historically endemic and imported Chagas' disease is increasingly recognized outside Latin America, the United States can play an important role in addressing the altered epidemiology of Chagas' disease in the 21st century. PMID:21976603

  6. Immunoregulatory Profile of Monocytes from Cutaneous Leishmaniasis Patients and Association with Lesion Size

    PubMed Central

    Vieira, Érica L. M.; Keesen, Tatjana S. L.; Machado, Paulo R.; Guimarães, Luiz H.; Carvalho, Edgar M.; Dutra, Walderez O.; Gollob, Kenneth J.

    2013-01-01

    Leishmaniasis is an important tropical disease composed of several clinical forms that adversely affect millions of people globally. Critical cells involved in the host-Leishmania interaction are monocytes and macrophages, which act to protect against infections due to their ability to both control intracellular infections and regulate the subsequent adaptive immune response. Both soluble factors and cell surface receptors are key in directing the immune response following interaction with pathogens such as Leishmania. Toll like receptors (TLRs) have an essential role in immune responses against infections, but little is known about their role in human infection with Leishmania braziliensis. In this work, we evaluated peripheral blood CD14+ monocytes for expression of immunoregulatory cytokines, co-stimulatory molecules and TLR9 from cutaneous leishmaniasis patients infected with L. braziliensis and non-infected individuals. Our results showed that patients present decreased expression of co-stimulatory molecules, such as CD80 and CD86 following culture with media alone or after stimulus with soluble Leishmania antigen. Interestingly, TLR9 expression was higher after culture with SLA suggesting a role for this molecule in immunoregulation of active disease. Lastly, higher frequencies of TLR9+ monocytes were correlated with greater lesion size. These findings demonstrate a peripheral monocytes profile compatible with important immunoregulatory potential. PMID:23050581

  7. Selective effects of Euterpe oleracea (açai) on Leishmania (Leishmania) amazonensis and Leishmania infantum.

    PubMed

    Da Silva, Bruno José Martins; Souza-Monteiro, José Rogério; Rogez, Herve; Crespo-López, Maria Elena; Do Nascimento, Jose Luiz M; Silva, Edilene O

    2018-01-01

    Leishmania (Leishmania) amazonensis and Leishmania infantum (=Leishmania chagasi) are protozoa that cause American cutaneous and visceral leishmaniasis, respectively. These diseases show a high incidence in developing countries such as Brazil. The treatments used for leishmaniasis are still limited due to their high cost and toxicity. Currently, some natural products are considered an important alternative source of new leishmanicidal agents. Euterpe oleracea Martius, a palm producing black fruits, is frequently consumed in the Amazon region, as a juice, known as açai, with potent antioxidant, anti-inflammatory and anticonvulsant properties. Interestingly, the biological activity of clarified açai juice (EO) on L. (L.) amazonensis and L. infantum (=L. chagasi) is unknown. Therefore, the mechanism of anti-leishmanial action of EO has been evaluated on L. (L.) amazonensis and L. infantum (=L. chagasi). EO reduced the number of promastigotes and caused morphological alterations, increased the production of reactive oxygen species (ROS) and induced cell death phenotypes probably seems by apoptosis in the promastigotes of L. (L.) amazonensis (IC 50  = 1:40) and L. infantum (=L. chagasi) (IC 50  = 1:38). EO also presented activity against Leishmania amastigotes. Treatment with EO for 72 h strongly reduced IL-17 cytokine levels at all tested concentrations and decreased the number of intracellular amastigotes in macrophages infected with L. (L.) amazonensis (IC 50  = 1:30) and L. infantum (=L. chagasi) (IC 50  = 1:38). Additionally, no cytotoxic effect was observed in murine macrophages treated with EO (72 h - CC 50  > 1:1). Our results demonstrated that EO has leishmanicidal activity against two different species that cause American visceral and cutaneous leishmaniasis without cytotoxic effects for the host cell. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Development of a LAMP assay for detection of Leishmania infantum infection in dogs using conjunctival swab samples.

    PubMed

    Gao, Chun-hua; Ding, Dan; Wang, Jun-yun; Steverding, Dietmar; Wang, Xia; Yang, Yue-tao; Shi, Feng

    2015-07-15

    Leishmania infantum infections in dogs play a crucial role in the transmission of pathogens causing visceral leishmaniasis to humans in the Gansu province, northwest China. To be able to control zoonotic transmission of the parasite to humans, a non-invasive loop-mediated isothermal amplification (LAMP) assay to specifically detect L. infantum infections in dogs was developed. The primers used in the LAMP assay were designed to target kinetoplast DNA minicircle sequences of the L. infantum isolate MCAN/CN/90/SC and tested using DNA isolated from promastigotes of different Leishmania species. The LAMP assay was evaluated with conjunctional swab samples obtained from 111 and 33 dogs living in an endemic and a non-endemic region of zoonotic visceral leishmaniasis in the Gansu province, respectively. The LAMP assay was also compared with conventional PCR, ELISA and microscopy using conjunctional swab, serum and bone marrow samples from the dogs, respectively. The LAMP assay detected 1 fg of L. infantum DNA purified from cultured promastigotes which was 10-fold more sensitive than a conventional PCR test using Leishmania genus-specific primers. No cross reaction was observed with DNA isolated from promastigotes of L. donovani, L. major, L. tropica, and L. braziliensis, and the L. infantum reference strain MHOM/TN/80/IPT1. The L. infantum-positive rates obtained for field-collected samples were 61.3%, 58.6%, 40.5% and 10.8% by LAMP, PCR, ELISA and microscopy, respectively. As only one out of the 33 samples from control dogs from the non-endemic region of zoonotic visceral leishmaniasis was positive by the LAMP assay and the PCR test, the observed true negative rate (specificity) was 97% for both methods. This study has shown that the non-invasive, conjunctional swab-based LAMP assay developed was more sensitive in the detection of leishmaniasis in dogs than PCR, ELISA and microscopy. The findings indicate that the LAMP assay is a sensitive and specific method for the

  9. The contribution of the DNA microarray technology to gene expression profiling in Leishmania spp.: a retrospective.

    PubMed

    Alonso, Ana; Larraga, Vicente; Alcolea, Pedro J

    2018-05-07

    The first genome project of any living organism excluding viruses, the gammaproteobacteria Haemophilus influenzae, was completed in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid and artificial chromosome genome libraries had to be sequenced and assembled in silico. Nowadays, no genome is completely assembled actually, because gaps and unassembled contigs are always remaining. However, most represent the whole genome of the organism of origin from a practical point of view. The first genome sequencing projects of trypanosomatid parasites were completed in 2005 following those strategies, and belong to Leishmania major, Trypanosoma cruzi and T. brucei. The functional genomics era rapidly developed on the basis of the microarray technology and has been evolving. In the case of the genus Leishmania, substantial biological information about differentiation in the digenetic life cycle of the parasite has been obtained. Later on, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive, accurate results by using much less resources. This new technology is more advantageous, but does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found on the basis of microarray-based screening and preliminary proof-of-concept tests. Copyright © 2018. Published by Elsevier B.V.

  10. HPLC-DAD phenolic profile, cytotoxic and anti-kinetoplastidae activity of Melissa officinalis.

    PubMed

    Cunha, Francisco; Tintino, Saulo R; Figueredo, Fernando; Barros, Luiz; Duarte, Antonia E; Vega Gomez, Maria Celeste; Coronel, Cathia Cecilia; Rolón, Mírian; Leite, Nadghia; Sobral-Souza, Celestina E; Brito, S V; Waczuc, Emily Pansera; Boligon, Aline Augusti; Athayde, Margareth; Kamdem, Jean Paul; Coutinho, Henrique Douglas Melo; Franco, Jéferson

    2016-09-01

    Context Melissa officinalis subsp. inodora Bornm. (Lamiaceae) has been used since ancient times in folk medicine against various diseases, but it has not been investigated against protozoa. Objective To evaluate the activities of M. officinalis against Leishmania braziliensis, Leishmania infantum and Trypanosoma cruzi as well as its cytotoxicity in fibroblast cell line. Materials and methods The fresh leaves were chopped into 1 cm(2) pieces, washed and macerated with 99.9% of ethanol for 72 h at room temperature. Antiparasitic activity of M. officinalis was accessed by direct counting of cells after serial dilution, while the cytotoxicity of M. officinalis was evaluated in fibroblast cell line (NCTC929) by measuring the reduction of resazurin. The test duration was 24 h. High-performance liquid chromatography (HPLC) was used to characterise the extract. Results The extract at concentrations of 250 and 125 μg/mL inhibited 80.39 and 54.27% of promastigote (LC50  value = 105.78 μg/mL) form of L. infantum, 80.59 and 68.61% of L. brasiliensis (LC50 value  = 110.69 μg/mL) and against epimastigote (LC50 value  = 245.23 μg/mL) forms of T. cruzi with an inhibition of 54.45 and 22.26%, respectively, was observed. The maximum toxicity was noted at 500 μg/mL with 95.41% (LC50  value = 141.01 μg/mL). The HPLC analysis identified caffeic acid and rutin as the major compounds. Discussion The inhibition of the parasites is considered clinically relevant (< 500 μg/mL). Rutin and caffeic acids may be responsible for the antiprotozoal effect of the extract. Conclusion The ethanol extract of M. officinalis can be considered a potential alternative source of natural products with antileishmania and antitrypanosoma activities.

  11. Detection of Trypanosoma cruzi by Polymerase Chain Reaction.

    PubMed

    Márquez, María Elizabeth; Concepción, Juan Luis; González-Marcano, Eglys; Mondolfi, Alberto Paniz

    2016-01-01

    American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods.

  12. First evidence of Leishmania infection in European brown hare (Lepus europaeus) in Greece: GIS analysis and phylogenetic position within the Leishmania spp.

    PubMed

    Tsokana, C N; Sokos, C; Giannakopoulos, A; Mamuris, Z; Birtsas, P; Papaspyropoulos, K; Valiakos, G; Spyrou, V; Lefkaditis, M; Chatzopoulos, D C; Kantere, M; Manolakou, K; Touloudi, A; Burriel, A Rodi; Ferroglio, E; Hadjichristodoulou, C; Billinis, C

    2016-01-01

    Although the existence of a sylvatic transmission cycle of Leishmania spp., independent from the domestic cycle, has been proposed, data are scarce on Leishmania infection in wild mammals in Greece. In this study, we aimed to investigate the presence of Leishmania infection in the European brown hare in Greece, to infer the phylogenetic position of the Leishmania parasites detected in hares in Greece, and to identify any possible correlation between Leishmania infection in hares with environmental parameters, using the geographical information system (GIS). Spleen samples from 166 hares were tested by internal transcribed spacer-1 (ITS-1)-nested PCR for the detection of Leishmania DNA. Phylogenetic analysis was performed on Leishmania sequences from hares in Greece in conjunction with Leishmania sequences from dogs in Greece and 46 Leishmania sequences retrieved from GenBank. The Leishmania DNA prevalence in hares was found to be 23.49 % (95 % confidence interval (CI) 17.27-30.69). The phylogenetic analysis confirmed that the Leishmania sequences from hares in Greece belong in the Leishmania donovani complex. The widespread Leishmania infection in hares should be taken into consideration because under specific circumstances, this species can act as a reservoir host. This study suggests that the role of wild animals, including hares, in the epidemiology of Leishmania spp. in Greece deserves further elucidation.

  13. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    PubMed

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Secretome analysis of Trypanosoma cruzi by proteomics studies.

    PubMed

    Brossas, Jean-Yves; Gulin, Julián Ernesto Nicolás; Bisio, Margarita Maria Catalina; Chapelle, Manuel; Marinach-Patrice, Carine; Bordessoules, Mallaury; Palazon Ruiz, George; Vion, Jeremy; Paris, Luc; Altcheh, Jaime; Mazier, Dominique

    2017-01-01

    Chagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease. To identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener). Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1). Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families. This study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.

  15. Direct detection of Leishmania from clinical samples.

    PubMed

    Waitumbi, John N; Bast, Joshua; Nyakoe, Nancy; Magiri, Charles; Quintana, Miguel; Takhampunya, Ratree; Schuster, Anthony L; Van de Wyngaerde, Marshall T; McAvin, James C; Coleman, Russell E

    2017-01-01

    The ability to rapidly and accurately diagnose leishmaniasis is a military priority. Testing was conducted to evaluate diagnostic sensitivity and specificity of field-expedient Leishmania genus and visceral Leishmania specific dual-fluorogenic, hydrolysis probe (TaqMan), polymerase chain reaction assays previously established for use in vector surveillance. Blood samples of patients with confirmed visceral leishmaniasis and controls without the disease from Baringo District, Kenya, were tested. Leishmania genus assay sensitivity was 100% (14/14) and specificity was 84% (16/19). Visceral Leishmania assay sensitivity was 93% (13/14) and specificity 80% (4/5). Cutaneous leishmaniasis (CL) skin scrapes of patients from Honduras were also evaluated. Leishmania genus assay sensitivity was 100% (10/10). Visceral Leishmania assay specificity was 100% (10/10) from cutaneous leishmaniasis samples; no fluorescence above background was reported. These results show promise in a rapid, sensitive, and specific method for Leishmania direct detection from clinical samples.

  16. Molecular identification of vectors of Leishmania in Colombia: mitochondrial introgression in the Lutzomyia townsendi series.

    PubMed

    Testa, J M; Montoya-Lerma, J; Cadena, H; Oviedo, M; Ready, P D

    2002-12-01

    The identity of the sandfly vectors of Leishmania braziliensis in Valle del Cauca Department, Colombia, was originally given as Lutzomyia townsendi, but then changed to L. youngi, another member of the L. townsendi series (Verrucarum group) with isomorphic females. To identify members of this series in Valle del Cauca, we analyzed the nuclear gene elongation factor-alpha (EF-alpha) and the mitochondrial gene cytochrome b (Cyt b). DNA sequences from the L. verrucarum series (L. columbiana, L. evansi and L. ovallesi) were used as outgroups. Flies from two locations on the western cordillera of the Andes were identified as L. townsendi s.s., according to male morphology and distinctive gene lineages. In the third location, on the central cordillera of the Andes, most specimens were identified as belonging to a geographical population of L. youngi, according to male morphology, an EF-alpha lineage shared with L. youngi from the Venezuelan-type locality, and a distinctive Cyt b sub-lineage. All other specimens were identified as L. youngi with the introgressed Cyt b sequences of L. townsendi. Such interspecific introgression implies that vectorial traits and ecological associations may no longer be viewed as fixed properties of different morphospecies.

  17. Ecology, feeding and natural infection by Leishmania spp. of phlebotomine sand flies in an area of high incidence of American tegumentary leishmaniasis in the municipality of Rio Branco, Acre, Brazil.

    PubMed

    de Ávila, Márcia Moreira; Brilhante, Andreia Fernandes; de Souza, Cristian Ferreira; Bevilacqua, Paula Dias; Galati, Eunice Aparecida Bianchi; Brazil, Reginaldo Peçanha

    2018-01-26

    Phlebotomine sand flies (Diptera: Psychodidae) are insects of medical importance due to their involvement in the zoonotic transmission of Leishmania spp. to vertebrates. The aim of this work was to study the ecology of the sand fly fauna of two types of environments, a rural environment (the Transacreana Road) and an urban park (Horto Florestal Park), both located in the municipality of Rio Branco in the state of Acre, Brazil. Additionally, this study intended to investigate Leishmania infection and blood meal sources of these sand flies using molecular techniques. The sand fly fauna was studied in different environments (i.e. forest and peridomestic environments in a rural area, and an urban forest) using Shannon traps and HP light traps to collect sand fly specimens over 13 consecutive months (December 2014 to January 2016). For investigating natural infection by Leishmania and the source of sand fly blood meals, DNA samples were extracted from female sand flies and subjected to polymerase chain reaction targeting ITS1 and cytb genes. DNA sequencing was subsequently used to identify species of Leishmania and the source of blood meals. A total of 2515 individual sand flies of 43 species were collected and identified, Trichophoromyia auraensis (839; 33.35%), Trichophoromyia spp. (537; 21.35%) and Evandromyia saulensis (187; 7.43%) were more abundant in the rural area (S = 41 species) than in the urban forest. No significant differences were found in species richness between forest and peridomestic environments in the rural area (H = 0.04; P > 0.05), but a larger number of species was found in the forest. Leishmania DNA was sequenced in 13 samples, confirming the presence of L. (V.) braziliensis in Th. auraensis (n = 1), Ev. saulensis (n = 2), Ev. walkeri (n = 1), Ps. llanosmartinsi (n = 1), Pi. nevesi (n = 2), Ps. davisi (n = 1), Ps. ayrozai (n = 1), Pa. aragaoi (n = 1), Ny. antunesi (n = 1) and Ev. infraspinosa (n

  18. Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia).

    PubMed

    Arévalo-Lopéz, Diandra; Nina, Nélida; Ticona, Juan C; Limachi, Ivan; Salamanca, Efrain; Udaeta, Enrique; Paredes, Crispin; Espinoza, Boris; Serato, Alcides; Garnica, David; Limachi, Abigail; Coaquira, Dayana; Salazar, Sarah; Flores, Ninoska; Sterner, Olov; Giménez, Alberto

    2018-04-24

    Thirty-eight Tacana medicinal plant species used to treat skin problems, including leishmania ulcers, skin infections, inflammation and wound healing, were collected in the community of Buena Vista, Bolivia, with the Tacana people. Twenty two species are documented for the first time as medicinal plants for this ethnic group living in the northern area of the Department of La Paz. To evaluate the leishmanicidal effect (IC 50 ) and cytotoxicity (LD 50 ) of the selected plants. To carry out bioguided studies on the active extracts. To assess the potential of Bolivian plant biodiversity associated with traditional knowledge in the discovery of alternative sources to fight leishmaniasis. Seventy three ethanol extracts were prepared from 38 species by maceration and were evaluated in vitro against promastigotes of Leishmania amazonensis and L. braziliensis. Active extracts (IC 50 ≤ 50 μg/mL) were fractionated by chromatography on Silica gel column and the fractions were assessed against the two Leishmania strains. The most active fractions and the crude extracts were evaluated against reference strains of L. amazonensis, L. braziliensis, L. aethiopica, two native strains (L. Lainsoni and L. braziliensis) and for cytotoxicity against HeLa cells. The chromatographic profile of the active fractions was obtained by reverse phase chromatography using HPLC. From the 73 extracts, 39 extracts (53.4%) were inactive and 34 showed activity. Thirteen species were sselected for bioguided studies. The crude extracts and their 36 fractions were evaluated against two Leishmania strains. The most active fraction were tested in a panel of five leishmania strains and for cytotoxicity. The Selective Index (SI = LD 50 /IC 50 ) was calculated, and were generally low. Retention time and UV spectra were recorded for the active fractions by HPLC-DAD using a reverse phase column. Profiles were very different from each other, showing the presence of different compounds. Bolivian traditional

  19. Canine leishmaniosis caused by Leishmania major and Leishmania tropica: comparative findings and serology.

    PubMed

    Baneth, Gad; Yasur-Landau, Daniel; Gilad, Matan; Nachum-Biala, Yaarit

    2017-03-13

    Infection and clinical disease associated with Leishmania major and Leishmania tropica, two common agents of human cutaneous leishmaniosis, have rarely been reported in dogs. This study describes dogs infected with these Leishmania spp. prevalent in the Middle East and North Africa, and compares the serological response of dogs infected with Leishmania infantum, L. major or L. tropica to whole promastigote antigen enzyme-linked immunosorbent assay (ELISA) of each species and to rK39 dipstick. Leishmania major infection in a 5-month-old male dog was associated with alopecic and ulcerative periocular and limb skin lesions which responded to allopurinol treatment. Infection was detected by skin and blood polymerase chain reaction (PCR) and confirmed by DNA sequencing but the dog was seronegative. Leishmania tropica infection was detected in a 3-month-old female dog co-infected with Babesia vogeli and Anaplasma platys and with no skin lesions. PCR and DNA sequencing of the blood and parasite culture were positive for L. tropica. Sera from 11 dogs infected with L. infantum, L. major or L. tropica were reactive with all three Leishmania spp. antigens except for sera from a dog with L. major infection. No significant differences were found between reactivity of dog sera to the antigen of the infecting species, or to the other Leishmania spp. antigens. Sera from dogs infected with L. infantum and L. tropica were positive with the rK39 antigen kit, while dogs with L. major infection were seronegative. Skin lesions in L. major infected dogs from this study and previous reports (n = 2) were ulcerative and located on the muzzle, feet and foot pads and not associated with generalized lymphadenomegaly and splenomegaly. In previous L. tropica infections, skin lesions were proliferative mucocutaneous in young dogs (n = 2), or associated with widespread dermatitis, lymphadenomegaly and splenomegaly in older dogs with similarity to L. infantum infection (n = 2). This

  20. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  1. [Survival of Trypanosoma cruzi in experimentally contaminated drinks].

    PubMed

    Suárez, Diana Carolina; Rey, Ángela Patricia; Orduz, Magda Lorena; Prada, Renzo Leonardo; Tarazona, Zorayda

    2012-01-01

    Trypanosoma cruzi is the causative agent of Chagas disease, transmitted primarily by triatomine insects. However, in 2005, oral transmission was documented in countries where the disease is endemic for Chagas disease. This trend may also occur in Colombia, a situation that motivated epidemiological alerts and the necessity for exploring the risk level of oral, human-to-human infection by T. cruzi. Survival times were established for the T. cruzi strain DS using juices involved in the outbreak of Lebrija County (Cesar, Colombia) in 2008. Survival of the T. cruzi strain was evaluated as defined by vitality (forward movement) and viability (growth in isolation medium Novy, McNeal and Nicolle/liver infusion tryptose). This strain was molecularly characterized as TCLA, isolated from a patient associated with an outbreak in Aguachica County (Santander, very near Lebrija). Its survival was tested in tangerine juice, guava, soursop (guanábana), water and sugar water. The T. cruzi strain DS remained vital in mandarin at room temperature for 72 hr, at refrigerated temperatures for 36 hr;, the soursop (guanábana) for 48 hr at room temperature and 384 hr under refrigeration; and guava at both temperatures 24 hr. This strain was viable 2 and 24 hours post-infection in each of the other juices at the two temperature conditions. The DS T. cruzi strain survived in all drinks for more than 24 hours post-infection, with a survival time of 384 hr in the juice of soursop (guanábana) under refrigeration.

  2. Gluconeogenesis in Leishmania mexicana

    PubMed Central

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-01-01

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. PMID:25288791

  3. Sensitive Molecular Diagnostics for Cutaneous Leishmaniasis.

    PubMed

    Sagi, Orli; Berkowitz, Anat; Codish, Shlomi; Novack, Victor; Rashti, Aviv; Akad, Fouad; Shemer-Avni, Yonat

    2017-01-01

    Rapid diagnosis of cutaneous leishmaniasis (CL) and identification of Leishmania species is highly important for the disease management. In Israel, CL is caused mainly by Leishmania major and Leishmania tropica species. We established an easy to handle point of care lesion-swabbing, combined with a highly sensitive multiplex real time PCR (multiplex qPCR) for accurate and rapid diagnosis of Leishmania species. Using three probes: one general for: Leishmania species, and two specific for L major , and L tropica , we screened 1783 clinical samples collected during two years. Leishmania species was found in 1086 individuals, 1008 L major , and 70 L tropica . Eight samples positive for Leishmania species only, were further tested using a second set of multiplex qPCR developed, and were found positive for Leishmania braziliensis and Leishmania infantum/donovani (2 and 6 samples, concomitantly). Taken together, the test enabled diagnostics and better treatment of Leishmania infections from the Old World (1078 samples) and the New World (8 samples), and the subtyping of the dominant strains in the region, as well as in returning travelers'.

  4. Didelphis marsupialis (common opossum): a potential reservoir host for zoonotic leishmaniasis in the metropolitan region of Belo Horizonte (Minas Gerais, Brazil).

    PubMed

    Schallig, Henk D F H; da Silva, Eduardo S; van der Meide, Wendy F; Schoone, Gerard J; Gontijo, Celia M F

    2007-01-01

    Identification of the zoonotic reservoir is important for leishmaniasis control program. A number of (wild) animal species may serve as reservoir hosts, including the opossum Didelphis marsupialis. A survey carried out in Didelphis specimens (n = 111) from the metropolitan region of Belo Horizonte, an important focus of human leishmaniasis in Brazil, is reported. All animals were serologically tested with indirect fluorescence antibody test (IFAT) and direct agglutination tests (DAT) based on L. (L.) donovani or L. (V.) braziliensis antigen. A sub-population (n = 20) was analyzed with polymerase chain reaction (PCR) for the presence of Leishmania-specific DNA. For species identification, PCR-positive samples were subjected to restriction enzyme fragment polymorphism (RFLP) analysis. Depending on the sero-diagnostic test employed, the sero-prevalence varied between 8.1% (9/111 animals positive with DAT test based on L. braziliensis antigen) and 21.6% (24/111 animals positive with IFAT). Five out of 20 samples analyzed with PCR tested positive for the presence of Leishmania-specific DNA. RFLP analysis revealed that two samples contained L. braziliensis complex DNA, one contained L. donovani complex DNA, and two samples could not be typed with the methodology used. These data suggest a potential role for the opossum as a reservoir host for zoonotic leishmaniasis in the region.

  5. Survival and Transstadial Persistence of Trypanosoma cruzi in the bed bug (Hemiptera: Cimicidae).

    PubMed

    Blakely, Brittny N; Hanson, Stephen F; Romero, Alvaro

    2018-05-04

    Bed bug populations are increasing around the world at an alarming rate and have become a major public health concern. The appearance of bed bug populations in areas where Chagas disease is endemic raises questions about the role of these insects in the transmission of Trypanosoma cruzi, the etiological agent of the disease. In a series of laboratory evaluations, bed bug adults and nymphs were experimentally fed with T. cruzi-infected blood to assess the ability of T. cruzi to survive inside the bed bug and throughout the insect's molting process. Live T. cruzi were observed in gut contents of experimentally infected bed bug adults via light microscopy and the identity of the parasite was confirmed via polymerase chain reaction analysis. T. cruzi persisted at least 97-d postinfection in adult bed bugs. Nymphal stage bed bugs that were infected with T. cruzi maintained the parasite after molting, indicating that transstadial passage of T. cruzi in bed bugs took place. This report provides further evidence of acquisition, maintenance, and for the first time, transstadial persistence of T. cruzi in bed bugs.

  6. Trypanosoma cruzi population dynamics in the Central Ecuadorian Coast.

    PubMed

    Costales, Jaime A; Jara-Palacios, Miguel A; Llewellyn, Martin S; Messenger, Louisa A; Ocaña-Mayorga, Sofía; Villacís, Anita G; Tibayrenc, Michel; Grijalva, Mario J

    2015-11-01

    Chagas disease is the most important parasitic disease in Latin America. The causative agent, Trypanosoma cruzi, displays high genetic diversity and circulates in complex transmission cycles among domestic, peridomestic and sylvatic environments. In Ecuador, Rhodnius ecuadoriensis is known to be the major vector species implicated in T. cruzi transmission. However, across vast areas of Ecuador, little is known about T. cruzi genetic diversity in relation to different parasite transmission scenarios. Fifty-eight T. cruzi stocks from the central Ecuadorian coast, most of them derived from R. ecuadoriensis, were included in the study. All of them were genotyped as T. cruzi discrete typing unit I (DTU TcI). Analysis of 23 polymorphic microsatellite loci through neighbor joining and discriminant analysis of principal components yielded broadly congruent results and indicate genetic subdivision between sylvatic and peridomestic transmission cycles. However, both analyses also suggest that any barriers are imperfect and significant gene flow between parasite subpopulations in different habitats exists. Also consistent with moderate partition and residual gene flow between subpopulations, the fixation index (FST) was significant, but of low magnitude. Finally, the lack of private alleles in the domestic/peridomestic transmission cycle suggests the sylvatic strains constitute the ancestral population. The T. cruzi population in the central Ecuadorian coast shows moderate tendency to subdivision according to transmission cycle. However, connectivity between cycles exists and the sylvatic T. cruzi population harbored by R. ecuadoriensis vectors appears to constitute a source from which the parasite invades human domiciles and their surroundings in this region. We discuss the implications these findings have for the planning, implementation and evaluation of local Chagas disease control interventions. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights

  7. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve

    PubMed Central

    dos Santos, Cyndia Mara Bezerra; Ludwig, Adriana; Kessler, Rafael Luis; Rampazzo, Rita de Cássia Pontello; Inoue, Alexandre Haruo; Krieger, Marco Aurélio; Pavoni, Daniela Parada; Probst, Christian Macagnan

    2018-01-01

    BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins. PMID:29668769

  8. Detection of Leishmania RNA Virus in Leishmania Parasites

    PubMed Central

    Desponds, Chantal; Kuhlmann, F. Matthew; Robinson, John; Hartley, Mary-Anne; Prevel, Florence; Castiglioni, Patrik; Pratlong, Francine; Bastien, Patrick; Müller, Norbert; Parmentier, Laurent; Saravia, Nancy Gore; Beverley, Stephen M.; Fasel, Nicolas

    2013-01-01

    Background Patients suffering from cutaneous leishmaniasis (CL) caused by New World Leishmania (Viannia) species are at high risk of developing mucosal (ML) or disseminated cutaneous leishmaniasis (DCL). After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV) in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence. Methodology/Principal Findings This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2) stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice. Conclusions/Significance We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV

  9. Seroprevalence of Leishmania infection and molecular detection of Leishmania tropica and Leishmania infantum in stray cats of İzmir, Turkey.

    PubMed

    Can, Hüseyin; Döşkaya, Mert; Özdemir, H Gökhan; Şahar, Esra Atalay; Karakavuk, Muhammet; Pektaş, Bayram; Karakuş, Mehmet; Töz, Seray; Caner, Ayşe; Döşkaya, Aysu Değirmenci; İz, Sultan Gülce; Özbel, Yusuf; Gürüz, Yüksel

    2016-08-01

    Leishmaniasis caused by more than 20 species of genus Leishmania is transmitted by the bite of infected phlebotomine sand flies. The studies on Leishmania infection in cats is very few in Turkey and therefore we aimed to screen stray cats living in city of İzmir located in western Turkey using nested PCR targeting kinetoplast DNA and serological techniques (ELISA and IFA). Leishmania DNA positive samples were also studied by ITS1 real time PCR. Whole blood and serum samples were obtained from stray cats (n: 1101) living in different counties of İzmir. In serological assays, a serum sample was considered positive in 1:40 dilution in IFA and for ELISA a serum sample was accepted positive when the absorbance value (AV) exceeded the mean AV + Standard Deviation (SD) of the negative control serum samples. According to the results, the seropositivity rates were 10.8% (119/1101) and 15.2% (167/1101) by in house ELISA and IFA, respectively. Among serology coherent samples, the seropositivity rate was 11.1% (116/1047) as detected by both assays after discordant samples (n: 54) were discarded. Of the 1101 stray cats, six (0.54%) were positive by nested PCR while only one of these six samples was positive by ITS1 real time PCR. During PCR, three controls designated as Leishmania infantum, Leishmania tropica, and Leishmania major were used for species identification. According to nested PCR results, L. tropica was identified in two cats (no.76 and 95). In another cat (no. 269), there were two bands in which one of them was well-matched with L. infantum and the other band had ∼850 bp size which does not match with any controls. Remaining three cats (no. 86, 514, and 622) also had the ∼850 bp atypical band size. ITS1 real time PCR detected L. tropica in only one cat (no. 622) which showed an atypical band size in nested PCR. These results indicated that three cats with only one atypical band (no. 86, 514, and 622) and the cat with mixed infection (no. 269) were

  10. Repeated exposure to Lutzomyia intermedia sand fly saliva induces local expression of interferon-inducible genes both at the site of injection in mice and in human blood.

    PubMed

    Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate

  11. Repeated Exposure to Lutzomyia intermedia Sand Fly Saliva Induces Local Expression of Interferon-Inducible Genes Both at the Site of Injection in Mice and in Human Blood

    PubMed Central

    Weinkopff, Tiffany; de Oliveira, Camila I.; de Carvalho, Augusto M.; Hauyon-La Torre, Yazmin; Muniz, Aline C.; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate

  12. Phylogenetic analysis of HSP70 and cyt b gene sequences for Chinese Leishmania isolates and ultrastructural characteristics of Chinese Leishmania sp.

    PubMed

    Yuan, Dongmei; Qin, Hanxiao; Zhang, Jianguo; Liao, Lin; Chen, Qiwei; Chen, Dali; Chen, Jianping

    2017-02-01

    Leishmaniasis is a worldwide epidemic disease caused by the genus Leishmania, which is still endemic in the west and northwest areas of China. Some viewpoints of the traditional taxonomy of Chinese Leishmania have been challenged by recent phylogenetic researches based on different molecular markers. However, the taxonomic positions and phylogenetic relationships of Chinese Leishmania isolates remain controversial, which need for more data and further analysis. In this study, the heat shock protein 70 (HSP70) gene and cytochrome b (cyt b) gene were used for phylogenetic analysis of Chinese Leishmania isolates from patients, dogs, gerbils, and sand flies in different geographic origins. Besides, for the interesting Leishmania sp. in China, the ultrastructure of three Chinese Leishmania sp. strains (MHOM/CN/90/SC10H2, SD, GL) were observed by transmission electron microscopy. Bayesian trees from HSP70 and cyt b congruently indicated that the 14 Chinese Leishmania isolates belong to three Leishmania species including L. donovani complex, L. gerbilli, and L. (Sauroleishmania) sp. Their identity further confirmed that the undescribed Leishmania species causing visceral Leishmaniasis (VL) in China is closely related to L. tarentolae. The phylogenetic results from HSP70 also suggested the classification of subspecies within L. donovani complex: KXG-918, KXG-927, KXG-Liu, KXG-Xu, 9044, SC6, and KXG-65 belong to L. donovani; Cy, WenChuan, and 801 were proposed to be L. infantum. Through transmission electron microscopy, unexpectedly, the Golgi apparatus were not observed in SC10H2, SD, and GL, which was similar to previous reports of reptilian Leishmania. The statistical analysis of microtubule counts separated SC10H2, SD, and GL as one group from any other reference strain (L. donovani MHOM/IN/80/DD8; L. tropica MHOM/SU/74/K27; L. gerbilli MRHO/CN/60/GERBILLI). The ultrastructural characteristics of Leishmania sp. partly lend support to the phylogenetic inference that

  13. Modeling Immune Response to Leishmania Species Indicates Adenosine As an Important Inhibitor of Th-Cell Activation

    PubMed Central

    Ribeiro, Henrique A. L.; Maioli, Tatiani U.; de Freitas, Leandro M.; Tieri, Paolo; Castiglione, Filippo

    2017-01-01

    Infection by Leishmania protozoan parasites can cause a variety of disease outcomes in humans and other mammals, from single self-healing cutaneous lesions to a visceral dissemination of the parasite. The correlation between chronic lesions and ecto-nucleotidase enzymes activity on the surface of the parasite is addressed here using damage caused in epithelial cells by nitric oxide. In order to explore the role of purinergic metabolism in lesion formation and the outcome of the infection, we implemented a cellular automata/lattice gas model involving major immune characters (Th1 and Th2 cells, IFN-γ, IL-4, IL-12, adenosine−Ado−, NO) and parasite players for the dynamic analysis of the disease progress. The model were analyzed using partial ranking correlation coefficient (PRCC) to indicate the components that most influence the disease progression. Results show that low Ado inhibition rate over Th-cells is shared by L. major and L. braziliensis, while in L. amazonensis infection the Ado inhibition rate over Th-cells reaches 30%. IL-4 inhibition rate over Th-cell priming to Th1 independent of IL-12 are exclusive of L. major. The lesion size and progression showed agreement with published biological data and the model was able to simulate cutaneous leishmaniasis outcomes. The sensitivity analysis suggested that Ado inhibition rate over Th-cells followed by Leishmania survival probability were the most important characteristics of the process, with PRCC of 0.89 and 0.77 respectively. The simulations also showed a non-linear relationship between Ado inhibition rate over Th-cells and lesion size measured as number of dead epithelial cells. In conclusion, this model can be a useful tool for the quantitative understanding of the immune response in leishmaniasis. PMID:28775959

  14. Natural infection of bats with Leishmania in Ethiopia.

    PubMed

    Kassahun, Aysheshm; Sadlova, Jovana; Benda, Petr; Kostalova, Tatiana; Warburg, Alon; Hailu, Asrat; Baneth, Gad; Volf, Petr; Votypka, Jan

    2015-10-01

    The leishmaniases, a group of diseases with a worldwide-distribution, are caused by different species of Leishmania parasites. Both cutaneous and visceral leishmaniasis remain important public health problems in Ethiopia. Epidemiological cycles of these protozoans involve various sand fly (Diptera: Psychodidae) vectors and mammalian hosts, including humans. In recent years, Leishmania infections in bats have been reported in the New World countries endemic to leishmaniasis. The aim of this study was to survey natural Leishmania infection in bats collected from various regions of Ethiopia. Total DNA was isolated from spleens of 163 bats belonging to 23 species and 18 genera. Leishmania infection was detected by real-time (RT) PCR targeting a kinetoplast (k) DNA and internal transcribed spacer one (ITS1) gene of the parasite. Detection was confirmed by sequencing of the PCR products. Leishmania kDNA was detected in eight (4.9%) bats; four of them had been captured in the Aba-Roba and Awash-Methara regions that are endemic for leishmaniasis, while the other four specimens originated from non-endemic localities of Metu, Bedele and Masha. Leishmania isolates from two bats were confirmed by ITS1 PCR to be Leishmania tropica and Leishmania major, isolated from two individual bats, Cardioderma cor and Nycteris hispida, respectively. These results represent the first confirmed observation of natural infection of bats with the Old World Leishmania. Hence, bats should be considered putative hosts of Leishmania spp. affecting humans with a significant role in the transmission. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.

    2015-05-01

    Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and

  16. Leishmania hijacking of the macrophage intracellular compartments.

    PubMed

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  17. Catalase expression impairs oxidative stress-mediated signalling in Trypanosoma cruzi.

    PubMed

    Freire, Anna Cláudia Guimarães; Alves, Ceres Luciana; Goes, Grazielle Ribeiro; Resende, Bruno Carvalho; Moretti, Nilmar Silvio; Nunes, Vinícius Santana; Aguiar, Pedro Henrique Nascimento; Tahara, Erich Birelli; Franco, Glória Regina; Macedo, Andréa Mara; Pena, Sérgio Danilo Junho; Gadelha, Fernanda Ramos; Guarneri, Alessandra Aparecida; Schenkman, Sergio; Vieira, Leda Quercia; Machado, Carlos Renato

    2017-09-01

    Trypanosoma cruzi is exposed to oxidative stresses during its life cycle, and amongst the strategies employed by this parasite to deal with these situations sits a peculiar trypanothione-dependent antioxidant system. Remarkably, T. cruzi's antioxidant repertoire does not include catalase. In an attempt to shed light on what are the reasons by which this parasite lacks this enzyme, a T. cruzi cell line stably expressing catalase showed an increased resistance to hydrogen peroxide (H2O2) when compared with wild-type cells. Interestingly, preconditioning carried out with low concentrations of H2O2 led untransfected parasites to be as much resistant to this oxidant as cells expressing catalase, but did not induce the same level of increased resistance in the latter ones. Also, presence of catalase decreased trypanothione reductase and increased superoxide dismutase levels in T. cruzi, resulting in higher levels of residual H2O2 after challenge with this oxidant. Although expression of catalase contributed to elevated proliferation rates of T. cruzi in Rhodnius prolixus, it failed to induce a significant increase of parasite virulence in mice. Altogether, these results indicate that the absence of a gene encoding catalase in T. cruzi has played an important role in allowing this parasite to develop a shrill capacity to sense and overcome oxidative stress.

  18. Experimental mixed infection of Leishmania (Leishmania) amazonensis and Leishmania (L.) infantum in hamsters (Mesocricetus auratus).

    PubMed

    DE Lima Celeste, Jordanna Luíza; Venuto Moura, Ana Paula; França-Silva, João Carlos; Matos DE Sousa, Gabriela; Oliveira Silva, Soraia; Norma Melo, Maria; Luiz Tafuri, Wagner; Carvalho Souza, Carolina; Monteiro DE Andrade, Hélida

    2017-08-01

    In South America, visceral leishmaniasis is frequently caused by Leishmania infantum and, at an unknown frequency, by Leishmania amazonensis. Therefore, mixed infections with these organisms are possible. Mixed infections might affect the clinical course, immune response, diagnosis, treatment and epidemiology of the disease. Here we describe the clinical course of mixed infections with L. amazonensis and L. infantum in a hamster model. We show that mixed infections are associated with more severe clinical disease than infection with L. amazonensis or L. infantum alone. In spleens with mixed infections, L. infantum outcompeted L. amazonensis in the tissue, but not in culture from tissue. We found increased levels of IgG in animals infected with L. infantum. Although more than 30 bands were revealed in a Western blot, the highest immunogenicity was observed with proteins having molecular masses of 95 and 90 kDa, whereas proteins with molecular masses of lower than 50 kDa were reactive frequently with serum from hamsters infected with L. amazonensis, and proteins with molecular masses of 80 and 70 kDa were reactive only with serum from hamsters infected with L. infantum. This finding has important implications regarding the biology of Leishmania and humoral immune responses to infections with these organisms.

  19. Sympatry influence in the interaction of Trypanosoma cruzi with triatomine.

    PubMed

    Dworak, Elaine Schultz; Araújo, Silvana Marques de; Gomes, Mônica Lúcia; Massago, Miyoko; Ferreira, Érika Cristina; Toledo, Max Jean de Ornelas

    2017-01-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in nature, circulating between triatomine bugs and sylvatic mammals, and has large genetic diversity. Both the vector species and the genetic lineages of T. cruzi present a varied geographical distribution. This study aimed to verify the influence of sympatry in the interaction of T. cruzi with triatomines. Methods: The behavior of the strains PR2256 (T. cruzi II) and AM14 (T. cruzi IV) was studied in Triatoma sordida (TS) and Rhodnius robustus (RR). Eleven fifth-stage nymphs were fed by artificial xenodiagnosis with 5.6 × 103 blood trypomastigotes/0.1mL of each T. cruzi strain. Every 20 days, their excreta were examined for up to 100 days, and every 30 days, the intestinal content was examined for up to 120 days, by parasitological (fresh examination and differential count with Giemsa-stained smears) and molecular (PCR) methods. Rates of infectivity, metacyclogenesis and mortality, and mean number of parasites per insect and of excreted parasites were determined. Sympatric groups RR+AM14 and TS+PR2256 showed higher values of the four parameters, except for mortality rate, which was higher (27.3%) in the TS+AM14 group. General infectivity was 72.7%, which was mainly proven by PCR, showing the following decreasing order: RR+AM14 (100%), TS+PR2256 (81.8%), RR+PR2256 (72.7%) and TS+AM14 (36.4%). Our working hypothesis was confirmed once higher infectivity and vector capacity (flagellate production and elimination of infective metacyclic forms) were recorded in the groups that contained sympatric T. cruzi lineages and triatomine species.

  20. Bed Bugs (Cimex lectularius) as Vectors of Trypanosoma cruzi

    PubMed Central

    Salazar, Renzo; Castillo-Neyra, Ricardo; Tustin, Aaron W.; Borrini-Mayorí, Katty; Náquira, César; Levy, Michael Z.

    2015-01-01

    Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease. PMID:25404068

  1. Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients

    PubMed Central

    Ramírez, Juan Carlos; Cura, Carolina Inés; Moreira, Otacilio da Cruz; Lages-Silva, Eliane; Juiz, Natalia; Velázquez, Elsa; Ramírez, Juan David; Alberti, Anahí; Pavia, Paula; Flores-Chávez, María Delmans; Muñoz-Calderón, Arturo; Pérez-Morales, Deyanira; Santalla, José; Guedes, Paulo Marcos da Matta; Peneau, Julie; Marcet, Paula; Padilla, Carlos; Cruz-Robles, David; Valencia, Edward; Crisante, Gladys Elena; Greif, Gonzalo; Zulantay, Inés; Costales, Jaime Alfredo; Alvarez-Martínez, Miriam; Martínez, Norma Edith; Villarroel, Rodrigo; Villarroel, Sandro; Sánchez, Zunilda; Bisio, Margarita; Parrado, Rudy; Galvão, Lúcia Maria da Cunha; da Câmara, Antonia Cláudia Jácome; Espinoza, Bertha; de Noya, Belkisyole Alarcón; Puerta, Concepción; Riarte, Adelina; Diosque, Patricio; Sosa-Estani, Sergio; Guhl, Felipe; Ribeiro, Isabela; Aznar, Christine; Britto, Constança; Yadón, Zaida Estela; Schijman, Alejandro G.

    2015-01-01

    An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease. PMID:26320872

  2. Serologic survey of antibodies to Trypanosoma cruzi in coyotes and red foxes from Pennsylvania and Tennessee.

    PubMed

    Rosypal, Alexa C; Smith, Trynecia; Alexander, Andrew; Weaver, Melanie; Stewart, Richard; Houston, Allan; Gerhold, Richard; Van Why, Kyle; Dubey, Jitender P

    2014-12-01

    Trypanosoma cruzi is a zoonotic parasite of humans and other mammalian hosts with distribution throughout the Americas. Domestic and wild canine species are reservoirs for human T. cruzi infections. The present study examined the prevalence of antibodies to T. cruzi in wild canids from the United States. Sera from 13 red foxes (Vulpes vulpes) and 263 coyotes (Canis latrans), originating in Pennsylvania and Tennessee, were assayed for antibodies to T. cruzi with immunochromatographic tests. Antibodies to T. cruzi were found in 2 of 276 (0.72%) of all wild canids tested. Both T. cruzi-positive wild canids were coyotes and represented 2 of 21 (9.52%) wild canids assayed from Tennessee. Antibodies to T. cruzi were not detected in red fox. Anti-T. cruzi antibodies were not found in any wild canids from Pennsylvania. These results suggest that coyotes are exposed to T. cruzi in Tennessee but not in Pennsylvania.

  3. The emergence of Leishmania major and Leishmania donovani in southern Turkey.

    PubMed

    Koltas, Ismail S; Eroglu, Fadime; Alabaz, Derya; Uzun, Soner

    2014-03-01

    In southern Turkey, Leishmania tropica and L. infantum are both the causative agents of cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL), respectively. However, L. major and L. donovani were known to exist after the influx of Syrian refugees. Between the years of July 2003 and July 2013, a total of 167 smears and 113 bone marrow samples were taken from CL and VL-suspected cases, respectively. Samples were analysed through real-time PCR and ITS1 DNA sequencing. One hundred and seven 64% (107/167) smears and 56% (63/113) bone marrow samples were positive for leishmaniasis according to the real-time PCR. Three different Leishmania species were found in the 107 CL cases by real-time PCR: 42% (45/107) L. tropica, 36.5% (39/107) L. infantum and 21.5% (23/107) L. major. In addition, three different Leishmania species were identified in the 63 VL cases: 60.3% (38/63) L. infantum, 30.2% (19/63) L. donovani and 9.5% (6/63) L. tropica using real-time PCR. The results of real-time PCR were confirmed with Leishmania ITS1 DNA sequencing. This study revealed that in southern Turkey, L. major and L. donovani were the aetiological agents of CL and VL, respectively. It was assumed that emergence of L. major and L. donovani was due to influx of Syrian refugees, as well as the effects of global warming.

  4. Chronic malnutrition and Trypanosoma cruzi infection in children.

    PubMed

    de Andrade, A L; Zicker, F

    1995-04-01

    The distribution of T. cruzi infection overlaps regions with high prevalence of child malnutrition. We examined the possible association between T. cruzi infection and chronic malnutrition. In a cross-sectional survey conducted among 1900 7-12 year-old schoolchildren in 60 village schools in central Brazil, anthropometric measurements (NCHS) taken from 153 children with at least two positive serological tests for antibodies against T. cruzi (IIF, ELISA, IHA) were compared to two age and sex seronegative matched classmates. Information on children's medical history and socio-economic status (SES) were collected from parents of the participants. Seropositive children had a 2.4-fold risk (95% CI 1.4-4.0) of being stunted (z-score < 2.0 of height-for-age) when compared to uninfected children even after adjusting for confounding variables. Being underweight (z-score < -2.0 of weight-for-age) was also statistically associated with seropositivity to T. cruzi (OR = 2.8, 95% CI 1.4-5.6). No statistical evidence of multiplicative interaction between nutritional status and SES was detected. Further studies on nutrition and metabolism are required to look into a possible physiopathological mechanism for this association.

  5. Trypanosoma cruzi load in synanthropic rodents from rural areas in Chile.

    PubMed

    Yefi-Quinteros, Esteban; Muñoz-San Martín, Catalina; Bacigalupo, Antonella; Correa, Juana P; Cattan, Pedro E

    2018-03-12

    Trypanosoma cruzi is the agent of Chagas disease, a major public health problem in Latin America. Many wild and domestic animals are naturally infected with T. cruzi; rodents are one of the groups which have been consistently detected infected in different countries. The aim of this work was to characterize blood T. cruzi load in naturally infected rodents from a Chagas disease endemic region in Chile. Baited traps were set in domestic and peridomestic areas of rural dwellings. The rodents were anesthetized and blood sampled; DNA was extracted and the parasite load was quantified by T. cruzi satellite DNA real-time PCR assays. Seventy-one rodents of four species, Rattus rattus, Mus musculus, Phyllotis darwini and Octodon degus, were captured; R. rattus was the most abundant species. Fifty-nine samples (83.1%) were T. cruzi-positive and the median value of the parasite load was 2.99 parasite equivalents (par-eq)/ml. The comparison of frequency of infection or parasite load by species showed no differences. However, one R. rattus presented very elevated parasitemia (1644 par-eq/ml). The overall levels of parasitemia were similar to those found in humans in Chile. The high infection levels in exotic and endemic rodents very near to rural settlements increases their relevance as T. cruzi hosts.

  6. The immunology of Leishmania/HIV co-infection.

    PubMed

    Okwor, Ifeoma; Uzonna, Jude Eze

    2013-05-01

    Leishmaniases are emerging as an important disease in human immunodeficiency virus (HIV)-infected persons living in several sub-tropical and tropical regions around the world, including the Mediterranean. The HIV/AIDS pandemic is spreading at an alarming rate in Africa and the Indian subcontinent, areas with very high prevalence of leishmaniases. The spread of HIV into rural areas and the concomitant spread of leishmaniases to suburban/urban areas have helped maintain the occurrence of Leishmania/HIV co-infection in many parts of the world. The number of cases of Leishmania/HIV co-infection is expected to rise owing to the overlapping geographical distribution of the two infections. In Southwestern Europe, there is also an increasing incidence of Leishmania/HIV co-infection (particularly visceral leishmaniasis) in such countries as France, Italy, Spain and Portugal. Studies suggest that in humans, very complex mechanisms involving dysregulation of host immune responses contribute to Leishmania-mediated immune activation and pathogenesis of HIV. In addition, both HIV-1 and Leishmania infect and multiply within cells of myeloid or lymphoid origin, thereby presenting a perfect recipe for reciprocal modulation of Leishmania and HIV-1-related disease pathogenesis. Importantly, because recovery from leishmaniases is associated with long-term persistence of parasites at the primary infection sites and their draining lymph nodes, there is very real possibility that HIV-mediated immunosuppression (due to CD4(+) T cell depletion) could lead to reactivation of latent infections (reactivation leishmaniasis) in immunocompromised patients. Here, we present an overview of the immunopathogenesis of Leishmania/HIV co-infection and the implications of this interaction on Leishmania and HIV disease outcome.

  7. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica

    PubMed Central

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A.; Jiang, Xiong-Jie; Ng, Dennis K. P.

    2016-01-01

    Photodynamic inactivation of Leishmania spp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency against Leishmania tropica promastigotes and axenic amastigotes in vitro. The uptake of these PCs by both Leishmania stages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation of Leishmania spp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitized Leishmania tropica strains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm−2. Quantitative fluorescence assays based on the loss of GFP/CFSE from live Leishmania tropica showed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Leishmania tropica strains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation of Leishmania spp. for use as vaccines or vaccine carriers. PMID:26824938

  8. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    PubMed

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  9. Trypanosoma cruzi Infection Does Not Decrease Survival or Reproduction of the Common Bed Bug, Cimex lectularius.

    PubMed

    Peterson, Jennifer K; Salazar, Renzo; Castillo-Neyra, Ricardo; Borrini-Mayori, Katty; Condori, Carlos; Bartow-McKenney, Casey; Tracy, Dylan; Náquira, César; Levy, Michael Z

    2018-03-01

    Although not presently implicated as a vector of human pathogens, the common bed bug, Cimex lectularius , has been suspected of carrying human pathogens because of its close association with humans and its obligate hematophagy. Recently, we characterized the vectorial competence of C. lectularius for the parasite Trypanosoma cruzi , the causative agent of Chagas disease. We observed that C. lectularius can acquire T. cruzi infection when fed on T. cruzi -carrying mice, and subsequently transmit T. cruzi to uninfected mice. This led us to ask why has C. lectularius not been implicated in the transmission of T. cruzi outside of the laboratory? We hypothesized that T. cruzi reduces C. lectularius fitness (i.e., survival and/or reproduction) as an explanation for why C. lectularius does not to transmit T. cruzi in natural settings. We tested this hypothesis by comparing the survival and reproduction of uninfected and T. cruzi -infected C. lectularius . We observed that T. cruzi had a variable effect on C. lectularius survival and reproduction. There were negligible differences between treatments in juveniles. Infected adult females tended to live longer and produce more eggs. However, no effect was consistent, and infected bugs showed more variation in survival and reproduction metrics than control bugs. We did not observe any negative effects of T. cruzi infection on C. lectularius survival or reproduction, suggesting that decreased fitness in T. cruzi -infected C. lectularius is not why bed bugs have not been observed to transmit T. cruzi in natural settings.

  10. Antiprotozoal activity of Neurolaena lobata.

    PubMed

    Berger, I; Passreiter, C M; Cáceres, A; Kubelka, W

    2001-06-01

    Extracts, fractions and sesquiterpene lactones from Neurolaena lobata (L.) R. Br. (Asteraceae), a traditional medicinal plant from Guatemala, were tested in vitro against Leishmania spp. promastigotes, Trypanosoma cruzi trypomastigotes and epimastigotes and Trichomonas vaginalis trophozoites. The ethanol extract inhibited the parasite growth of L. mexicana, T. cruzi and T. vaginalis significantly. The pure germacranolides 1 and a mixture of 2 and 3, isolated from the ethonal extract, were highly active against L. mexicana and T. cruzi. Copyright 2001 John Wiley & Sons, Ltd.

  11. Interleukin 10–Dominant Immune Response and Increased Risk of Cutaneous Leishmaniasis After Natural Exposure to Lutzomyia intermedia Sand Flies

    PubMed Central

    Carvalho, Augusto M.; Cristal, Juqueline R.; Muniz, Aline C.; Carvalho, Lucas P.; Gomes, Regis; Miranda, José C.; Barral, Aldina; Carvalho, Edgar M.; de Oliveira, Camila I.

    2015-01-01

    Background. Leishmaniasis is caused by parasites transmitted to the vertebrate host by infected sand flies. During transmission, the vertebrate host is also inoculated with sand fly saliva, which exerts powerful immunomodulatory effects on the host's immune response. Methods. We conducted a prospective cohort analysis to characterize the human immune response to Lutzomyia intermedia saliva in 264 individuals, from an area for cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Results. Antibodies were found in 150 individuals (56.8%); immunoglobulin G1 and G4 were the predominant subclasses. Recall responses to salivary gland sonicate showed elevated production of interleukin 10 (IL-10), interleukin 13, interferon γ, CXCL9, and CCL2 compared with controls. CD4+CD25+ T cells, including Foxp3+ cells, were the main source of IL-10. L. braziliensis replication was increased (P < .05) in macrophages cocultured with saliva-stimulated lymphocytes from exposed individuals and addition of anti–IL-10 reverted this effect. Positive correlation between antibody response to saliva and cellular response to Leishmania was not found. Importantly, individuals seropositive to saliva are 2.1 times more likely to develop CL (relative risk, 2.1; 95% confidence interval, 1.07–4.2; P < .05). Conclusions. Exposure to L. intermedia sand flies skews the human immune response, facilitating L. braziliensis survival in vitro, and increases the risk of developing CL. PMID:25596303

  12. IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis.

    PubMed

    Santos, Daniela; Campos, Taís M; Saldanha, Maíra; Oliveira, Sergio C; Nascimento, Mauricio; Zamboni, Dario S; Machado, Paulo R; Arruda, Sérgio; Scott, Phillip; Carvalho, Edgar M; Carvalho, Lucas P

    2018-05-01

    Cutaneous leishmaniasis due to Leishmania braziliensis infection is an inflammatory disease in which skin ulcer development is associated with mononuclear cell infiltrate and high levels of inflammatory cytokine production. Recently, NLRP3 inflammasome activation and IL-1β production have been associated with increased pathology in murine cutaneous leishmaniasis. We hypothesized that cutaneous leishmaniasis patients have increased expression of NLRP3, leading to high levels of IL-1β production. In this article we show high production of IL-1β in biopsy samples and Leishmania antigen-stimulated peripheral blood mononuclear cells from patients infected with L. braziliensis and reduced IL-1β levels after cure. IL-1β production positively correlated with the area of necrosis in lesions and duration of the lesions. The main source of IL-1β was intermediate monocytes (CD14 ++ CD16 + ). Furthermore, our murine experiments show that IL-1β production in response to L. braziliensis was dependent on NLRP3, caspase-1, and caspase-recruiting domain (ASC). Additionally, we observed an increased expression of the NLRP3 gene in macrophages and the NLRP3 protein in intermediate monocytes from cutaneous leishmaniasis patients. These results identify an important role for human intermediate monocytes in the production of IL-1β, which contributes to the immunopathology observed in cutaneous leishmaniasis patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Innate Immunity against Leishmania Infections

    PubMed Central

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  14. Evaluation of immune responses and analysis of the effect of vaccination of the Leishmania major recombinant ribosomal proteins L3 or L5 in two different murine models of cutaneous leishmaniasis.

    PubMed

    Ramírez, Laura; Santos, Diego M; Souza, Ana P; Coelho, Eduardo A F; Barral, Aldina; Alonso, Carlos; Escutia, Marta R; Bonay, Pedro; de Oliveira, Camila I; Soto, Manuel

    2013-02-18

    Four new antigenic proteins located in Leishmania ribosomes have been characterized: S4, S6, L3 and L5. Recombinant versions of the four ribosomal proteins from Leishmania major were recognized by sera from human and canine patients suffering different clinical forms of leishmaniasis. The prophylactic properties of these proteins were first studied in the experimental model of cutaneous leishmaniasis caused by L. major inoculation into BALB/c mice. The administration of two of them, LmL3 or LmL5 combined with CpG-oligodeoxynucleotides (CpG-ODN) was able to protect BALB/c mice against L. major infection. Vaccinated mice showed smaller lesions and parasite burden compared to mice inoculated with vaccine diluent or vaccine adjuvant. Protection was correlated with an antigen-specific increased production of IFN-γ paralleled by a decrease of the antigen-specific IL-10 mediated response in protected mice relative to non-protected controls. Further, it was demonstrated that BALB/c mice vaccinated with recombinant LmL3 or LmL5 plus CpG-ODN were also protected against the development of cutaneous lesions following inoculation of L. braziliensis. Together, data presented here indicate that LmL3 or LmL5 ribosomal proteins combined with Th1 inducing adjuvants, may be relevant components of a vaccine against cutaneous leishmaniasis caused by distinct species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Trypanosoma cruzi Clone Dm28c Draft Genome Sequence

    PubMed Central

    Grisard, Edmundo Carlos; Teixeira, Santuza Maria Ribeiro; de Almeida, Luiz Gonzaga Paula; Stoco, Patricia Hermes; Gerber, Alexandra Lehmkuhl; Talavera-López, Carlos; Lima, Oberdan Cunha; Andersson, Björn

    2014-01-01

    Trypanosoma cruzi affects millions of people worldwide. Clinical variability of Chagas disease can be due to the genetic variability of this parasite, requiring further genome studies. Here we report the genome sequence of the T. cruzi Dm28c clone (TcI), a strain related to the sylvatic cycle of the parasite. PMID:24482508

  16. Broad patterns in domestic vector-borne Trypanosoma cruzi transmission dynamics: synanthropic animals and vector control.

    PubMed

    Peterson, Jennifer K; Bartsch, Sarah M; Lee, Bruce Y; Dobson, Andrew P

    2015-10-22

    Chagas disease (caused by Trypanosoma cruzi) is the most important neglected tropical disease (NTD) in Latin America, infecting an estimated 5.7 million people in the 21 countries where it is endemic. It is one of the NTDs targeted for control and elimination by the 2020 London Declaration goals, with the first goal being to interrupt intra-domiciliary vector-borne T. cruzi transmission. A key question in domestic T. cruzi transmission is the role that synanthropic animals play in T. cruzi transmission to humans. Here, we ask, (1) do synanthropic animals need to be targeted in Chagas disease prevention policies?, and (2) how does the presence of animals affect the efficacy of vector control? We developed a simple mathematical model to simulate domestic vector-borne T. cruzi transmission and to specifically examine the interaction between the presence of synanthropic animals and effects of vector control. We used the model to explore how the interactions between triatomine bugs, humans and animals impact the number and proportion of T. cruzi-infected bugs and humans. We then examined how T. cruzi dynamics change when control measures targeting vector abundance are introduced into the system. We found that the presence of synanthropic animals slows the speed of T. cruzi transmission to humans, and increases the sensitivity of T. cruzi transmission dynamics to vector control measures at comparable triatomine carrying capacities. However, T. cruzi transmission is amplified when triatomine carrying capacity increases with the abundance of syntathoropic hosts. Our results suggest that in domestic T. cruzi transmission scenarios where no vector control measures are in place, a reduction in synanthropic animals may slow T. cruzi transmission to humans, but it would not completely eliminate transmission. To reach the 2020 goal of interrupting intra-domiciliary T. cruzi transmission, it is critical to target vector populations. Additionally, where vector control measures

  17. Seroprevalence of Trypanosoma cruzi in blood donors at the National Blood Transfusion Services--Guyana.

    PubMed

    Bwititi, P T; Browne, J

    2012-09-01

    Blood transfusion is an important transmission route of Trypanosoma cruzi (T cruzi), a major parasitic infection in Central and South America. The limited treatment options are most effective in acute Chagas' infection. At present, there is no current data on the prevalence of T cruzi in the blood donor population of Guyana. This information is necessary to protect the supply of the blood donation programme. This study sought to determine the prevalence of T cruzi in the blood supply at the National Blood Transfusion Services of Guyana with the hope of providing knowledge to the on-going surveillance for Chagas' disease worldwide and therefore address the risk of its spread by blood transfusion. Two commercialized ELISAs utilizing crude or recombinant T cruzi antigens were used to study 2000 blood samples voluntarily donated for the purpose of altruistic or family replacement donation retrospectively. The results showed that approximately 1 in 286 donations tested positive for antibodies to T cruzi. These results indicate that T cruzi continues to be a risk in Guyana and there is a need to continue screening donated blood. Trypanosoma cruzi is a life-long infection and infected persons may be asymptomatic chronic carriers of the disease. Education, housing improvement, and controlled use of insecticides should be introduced to contain Chagas' disease.

  18. Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion

    PubMed Central

    Fernandes, Maria Cecilia; Cortez, Mauro; Flannery, Andrew R.; Tam, Christina; Mortara, Renato A.

    2011-01-01

    Upon host cell contact, the protozoan parasite Trypanosoma cruzi triggers cytosolic Ca2+ transients that induce exocytosis of lysosomes, a process required for cell invasion. However, the exact mechanism by which lysosomal exocytosis mediates T. cruzi internalization remains unclear. We show that host cell entry by T. cruzi mimics a process of plasma membrane injury and repair that involves Ca2+-dependent exocytosis of lysosomes, delivery of acid sphingomyelinase (ASM) to the outer leaflet of the plasma membrane, and a rapid form of endocytosis that internalizes membrane lesions. Host cells incubated with T. cruzi trypomastigotes are transiently wounded, show increased levels of endocytosis, and become more susceptible to infection when injured with pore-forming toxins. Inhibition or depletion of lysosomal ASM, which blocks plasma membrane repair, markedly reduces the susceptibility of host cells to T. cruzi invasion. Notably, extracellular addition of sphingomyelinase stimulates host cell endocytosis, enhances T. cruzi invasion, and restores normal invasion levels in ASM-depleted cells. Ceramide, the product of sphingomyelin hydrolysis, is detected in newly formed parasitophorous vacuoles containing trypomastigotes but not in the few parasite-containing vacuoles formed in ASM-depleted cells. Thus, T. cruzi subverts the ASM-dependent ceramide-enriched endosomes that function in plasma membrane repair to infect host cells. PMID:21536739

  19. Interclonal Variations in the Molecular Karyotype of Trypanosoma cruzi: Chromosome Rearrangements in a Single Cell-Derived Clone of the G Strain

    PubMed Central

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. PMID:23667668

  20. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis.

    PubMed

    Acuña, Stephanie Maia; Aoki, Juliana Ide; Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo Andrade; Fernandes, Juliane Cristina Ribeiro; Muxel, Sandra Marcia; Floeter-Winter, Lucile Maria

    2017-01-01

    Arginase is an enzyme that converts L-arginine to urea and L-ornithine, an essential substrate for the polyamine pathway supporting Leishmania (Leishmania) amazonensis replication and its survival in the mammalian host. L-arginine is also the substrate of macrophage nitric oxide synthase 2 (NOS2) to produce nitric oxide (NO) that kills the parasite. This competition can define the fate of Leishmania infection. The transcriptomic profiling identified a family of oxidoreductases in L. (L.) amazonensis wild-type (La-WT) and L. (L.) amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. We highlighted the identification of an oxidoreductase that could act as nitric oxide synthase-like (NOS-like), due to the following evidences: conserved domain composition, the participation of NO production during the time course of promastigotes growth and during the axenic amastigotes differentiation, regulation dependence on arginase activity, as well as reduction of NO amount through the NOS activity inhibition. NO quantification was measured by DAF-FM labeling analysis in a flow cytometry. We described an arginase-dependent NOS-like activity in L. (L.) amazonensis and its role in the parasite growth. The increased detection of NO production in the mid-stationary and late-stationary growth phases of La-WT promastigotes could suggest that this production is an important factor to metacyclogenesis triggering. On the other hand, La-arg- showed an earlier increase in NO production compared to La-WT, suggesting that NO production can be arginase-dependent. Interestingly, La-WT and La-arg- axenic amastigotes produced higher levels of NO than those observed in promastigotes. As a conclusion, our work suggested that NOS-like is expressed in Leishmania in the stationary growth phase promastigotes and amastigotes, and could be correlated to metacyclogenesis and amastigotes growth in a dependent way to the internal pool of L-arginine and arginase activity.

  1. Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples.

    PubMed

    Besuschio, Susana A; Llano Murcia, Mónica; Benatar, Alejandro F; Monnerat, Severine; Cruz, Israel; Picado, Albert; Curto, María de Los Ángeles; Kubota, Yutaka; Wehrendt, Diana P; Pavia, Paula; Mori, Yasuyoshi; Puerta, Concepción; Ndung'u, Joseph M; Schijman, Alejandro G

    2017-07-01

    This study aimed to assess analytical parameters of a prototype LAMP kit that was designed for detection of Trypanosoma cruzi DNA in human blood. The prototype is based on the amplification of the highly repetitive satellite sequence of T.cruzi in microtubes containing dried reagents on the inside of the caps. The reaction is carried out at 65°C during 40 minutes. Calcein allows direct detection of amplified products with the naked eye. Inclusivity and selectivity were tested in purified DNA from Trypanosoma cruzi stocks belonging to the six discrete typing units (DTUs), in DNA from other protozoan parasites and in human DNA. Analytical sensitivity was estimated in serial dilutions of DNA samples from Sylvio X10 (Tc I) and CL Brener (Tc VI) stocks, as well as from EDTA-treated or heparinized blood samples spiked with known amounts of cultured epimastigotes (CL Brener). LAMP sensitivity was compared after DNA extraction using commercial fiberglass columns or after "Boil & Spin" rapid preparation. Moreover, the same DNA and EDTA-blood spiked samples were subjected to standardized qPCR based on the satellite DNA sequence for comparative purposes. A panel of peripheral blood specimens belonging to Chagas disease patients, including acute, congenital, chronic and reactivated cases (N = 23), as well as seronegative controls (N = 10) were evaluated by LAMP in comparison to qPCR. LAMP was able to amplify DNAs from T. cruzi stocks representative of the six DTUs, whereas it did not amplify DNAs from Leishmania sp, T. brucei sp, T. rangeli KPN+ and KPN-, P. falciparum and non-infected human DNA. Analytical sensitivity was 1x10-2 fg/μL of both CL Brener and Sylvio X10 DNAs, whereas qPCR detected up to 1x 10-1 fg/μL of CL Brener DNA and 1 fg/μl of Sylvio X10 DNA. LAMP detected 1x10-2 parasite equivalents/mL in spiked EDTA blood and 1x10-1 par.eq/mL in spiked heparinized blood using fiberglass columns for DNA extraction, whereas qPCR detected 1x10-2 par.eq./mL in EDTA blood

  2. [Studies on the persistence of the infectivity of Trypanosoma cruzi. II. Persistence of infectivity of T. cruzi in dead bugs (author's transl)].

    PubMed

    Soares, V A; Marsden, P D

    1979-12-01

    Investigations into the viability time of T. cruzi in dead bugs experimentally infected with "Peru" strain showed a maximum of 9 days for Dipetalogaster maximus and 8 for Triatoma infestans maintained at ambient temperature (26 degrees C). On refrigeration survival was increased to 60 days. In routine xenodiagnosis in the refrigerator 90 day survival was noted of both T. cruzi and the vector bug.

  3. Screening for Inhibitors of Essential Leishmania Glucose Transporters

    DTIC Science & Technology

    2010-07-01

    TITLE: Screening for Inhibitors of Essential Leishmania Glucose Transporters PRINCIPAL INVESTIGATOR: Scott M. Landfear, Ph.D...TITLE AND SUBTITLE Screening for Inhibitors of Essential Leishmania Glucose Transporters 5a. CONTRACT NUMBER 5b. GRANT NUMBER...selective inhibitors of the essential glucose transporters of the parasite Leishmania mexicana. Toward this end, a cell growth assay has been

  4. Screening for Inhibitors of Essential Leishmania Glucose Transporters

    DTIC Science & Technology

    2012-07-01

    Leishmania Glucose Transporters PRINCIPAL INVESTIGATOR: Scott M. Landfear, Ph.D. CONTRACTING ORGANIZATION: Oregon Health & Science...3. DATES COVERED 1 JUL 2011 - 30 JUN 2012 4. TITLE AND SUBTITLE Screening for Inhibitors of Essential Leishmania Glucose Transporters...function as selective inhibitors of the essential glucose transporters of the parasite Leishmania mexicana. To identify such compounds, a cell growth

  5. The Leishmania-macrophage interaction: a metabolic perspective.

    PubMed

    Naderer, Thomas; McConville, Malcolm J

    2008-02-01

    Protozoan parasites belonging to the genus Leishmania exhibit a pronounced tropism for macrophages although they have the capacity to infect a variety of other phagocytic and non-phagocytic mammalian cells. Unlike most other intramacrophage pathogens, the major proliferative stage of Leishmania resides in the mature phagolysosomes of these host cells. In this review we highlight some of the strategies utilized by the intracellular amastigote stage of Leishmania to survive in this compartment. Remarkably, and in contrast to many other intracellular pathogens, Leishmania amastigotes have a minimalist surface glycocalyx which may facilitate uptake of essential lipids and promote exposure of phospholipids required for phagocytosis via macrophage apoptotic cell receptors. Leishmania amastigotes also differ from many other intracellular pathogens in having complex nutritional requirements which must be scavenged from the host cell. Amino acids and polyamines appear to be important carbon sources and growth-limiting nutrients, respectively, and their availability to intracellular amastigotes may be regulated by the activation state of host macrophages. Metabolic processes in both the parasite and host cell may thus be crucial determinants of disease outcome.

  6. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    NASA Astrophysics Data System (ADS)

    Stahl, C. V.; Almeida, D. B.; de Thomaz, A. A.; Fontes, A.; Menna-Barreto, R. F. S.; Santos-Mallet, J. R.; Cesar, C. L.; Gomes, S. A. O.; Feder, D.

    2010-02-01

    Many studies have been done in order to verify the possible nanotoxicity of quantum dots in some cellular types. Protozoan pathogens as Trypanosoma cruzi, etiologic agent of Chagas1 disease is transmitted to humans either by blood-sucking triatomine vectors, blood transfusion, organs transplantation or congenital transmission. The study of the life cycle, biochemical, genetics, morphology and others aspects of the T. cruzi is very important to better understand the interactions with its hosts and the disease evolution on humans. Quantum dot, nanocrystals, highly luminescent has been used as tool for experiments in in vitro and in vivo T. cruzi life cycle development in real time. We are now investigating the quantum dots toxicity on T. cruzi parasite cells using analytical methods. In vitro experiments were been done in order to test the interference of this nanoparticle on parasite development, morphology and viability (live-death). Ours previous results demonstrated that 72 hours after parasite incubation with 200 μM of CdTe altered the development of T. cruzi and induced cell death by necrosis in a rate of 34%. QDs labeling did not effect: (i) on parasite integrity, at least until 7 days; (ii) parasite cell dividing and (iii) parasite motility at a concentration of 2 μM CdTe. This fact confirms the low level of cytotoxicity of these QDs on this parasite cell. In summary our results is showing T. cruzi QDs labeling could be used for in vivo cellular studies in Chagas disease.

  7. In vitro additive interaction between ketoconazole and antimony against intramacrophage Leishmania (Leishmania) amazonensis amastigotes.

    PubMed

    Nunes, Débora Cristina de Oliveira; Bispo-da-Silva, Luiz Borges; Napolitano, Danielle Reis; Costa, Mônica Soares; Figueira, Márcia Moura Nunes Rocha; Rodrigues, Renata Santos; Rodrigues, Veridiana de Melo; Yoneyama, Kelly Aparecida Geraldo

    2017-01-01

    Leishmaniasis is a group of diseases caused by protozoa of Leishmania genus. The currently available treatments for this disease are expensive, present high toxicity and are associated to difficulties of healing and parasite resistance. Therefore, the development of strategies for leishmaniasis treatment is indispensable and includes reposition of existing drugs, as well as drug combination therapy. The aim of this study was to assess the nature of ketoconazole and antimony association on the cytotoxic effect against Leishmania (Leishmania) amazonensis amastigotes. The calculated mean sum of fractional 50% inhibitory concentration ([Formula: see text]ΣFIC50) was 2.54 and 1.43 for free and intracellular amastigotes, respectively, values that suggest an additive interaction between ketoconazole and antimony concerning to Leishmania toxicity only in the intramacrophage parasite form. Despite the clinical efficacy of ketoconazole-antimony combination has been shown in the literature, our study is the first to describe the nature of ketoconazole-antimony interaction against L. (L.) amazonensis amastigotes. Moreover, our results point out the need for future in vivo studies to confirm the nature of ketoconazole-antimony interaction and also to determine possible effective dosage regimens related to ketoconazole administration in association with the optimal lower dose of antimony.

  8. Phylogenomic reconstruction supports supercontinent origins for Leishmania.

    PubMed

    Harkins, Kelly M; Schwartz, Rachel S; Cartwright, Reed A; Stone, Anne C

    2016-03-01

    Leishmania, a genus of parasites transmitted to human hosts and mammalian/reptilian reservoirs by an insect vector, is the causative agent of the human disease complex leishmaniasis. The evolutionary relationships within the genus Leishmania and its origins are the source of ongoing debate, reflected in conflicting phylogenetic and biogeographic reconstructions. This study employs a recently described bioinformatics method, SISRS, to identify over 200,000 informative sites across the genome from newly sequenced and publicly available Leishmania data. This dataset is used to reconstruct the evolutionary relationships of this genus. Additionally, we constructed a large multi-gene dataset, using it to reconstruct the phylogeny and estimate divergence dates for species. We conclude that the genus Leishmania evolved at least 90-100 million years ago, supporting a modified version of the Multiple Origins hypothesis that we call the Supercontinent hypothesis. According to this scenario, separate Leishmania clades emerged prior to, and during, the breakup of Gondwana. Additionally, we confirm that reptile-infecting Leishmania are derived from mammalian forms and that the species that infect porcupines and sloths form a clade long separated from other species. Finally, we firmly place the guinea-pig infecting species, Leishmaniaenriettii, the globally dispersed Leishmaniasiamensis, and the newly identified Australian species from a kangaroo, as sibling species whose distribution arises from the ancient connection between Australia, Antarctica, and South America. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Crovirin, a snake venom cysteine-rich secretory protein (CRISP) with promising activity against Trypanosomes and Leishmania.

    PubMed

    Adade, Camila M; Carvalho, Ana Lúcia O; Tomaz, Marcelo A; Costa, Tatiana F R; Godinho, Joseane L; Melo, Paulo A; Lima, Ana Paula C A; Rodrigues, Juliany C F; Zingali, Russolina B; Souto-Padrón, Thaïs

    2014-10-01

    The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania. Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10-2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells. This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases.

  10. Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania

    PubMed Central

    Adade, Camila M.; Carvalho, Ana Lúcia O.; Tomaz, Marcelo A.; Costa, Tatiana F. R.; Godinho, Joseane L.; Melo, Paulo A.; Lima, Ana Paula C. A.; Rodrigues, Juliany C. F.; Zingali, Russolina B.; Souto-Padrón, Thaïs

    2014-01-01

    Background The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania. Methodology/Principal Findings Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10–2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells. Conclusions This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases. PMID:25330220

  11. [Seroprevalence of T. cruzi infection in Canis familiaris, state of Sucre, Venezuela].

    PubMed

    Berrizbeitia, Mariolga; Concepción, Juan Luis; Carzola, Valentina; Rodríguez, Jéssicca; Cáceres, Ana; Quiñones, Wilfredo

    2013-01-01

    Trypanosoma cruzi infection in humans has been extensively studied in Venezuela; however, in reservoirs it has been less investigated. The objective of this study was to determine the seroepidemiology of T. cruzi in the state of Sucre, Venezuela. A cross-sectional and prospective study conducted in 95 towns and 577 dwellings in the 15 municipalies of the state of Sucre, Venezuela, from August to November, 2008. The evaluation of serum samples was performed with the CruziELISA kit and the multiple antigens binding assays (MABA). Furthermore, epidemiological surveys were applied to evaluate the risk factors. A total of dogs (average age of 2, 6 + 2.2 years, 226 males and 137 females) was evaluated. The combination of the ELISA / MABA tests detected 78 positive sera, sixty-nine negative and 10 of inconclusive results. The seroprevalence of the T. cruzi infection in dogs in the state of Sucre, was 22.1% (CI 95%: 20.58-22.4%). No significant statistic association was found between the T. cruzi infection in dogs and the evaluated epidemiological variables: hunting dogs that slept oudoors roaming freely in the populated center, sex of the animal and eating habits. The T. cruzi infection was associated to the age of canines, being significantly higher in the group of 0 to 3 years, when compared with older dogs. The high T. cruzi seroprevalence dected in dogs shows that in this región of Venezuela there prevails an important risk factor of transmissibility of this parasite to human populations.

  12. Seropositivity for Trypanosoma cruzi in domestic dogs from Sonora, Mexico.

    PubMed

    Arce-Fonseca, Minerva; Carrillo-Sánchez, Silvia C; Molina-Barrios, Ramón M; Martínez-Cruz, Mariana; Cedillo-Cobián, Jesús R; Henao-Díaz, Yuly A; Rodríguez-Morales, Olivia

    2017-09-05

    Chagas disease is an important health problem in Latin America due to its incapacitating effects and associated mortality. Studies on seropositivity for Trypanosoma cruzi in Mexican dogs have demonstrated a direct correlation between seropositivity in humans and dogs, which can act as sentinels for the disease in this region. The objective of this study was to determine the seropositivity for T.cruzi infection in dogs from Sonora, a northern borderstate of Mexico. Responsible pet owners were selected at random from an urban area of Empalme municipality, Sonora, Mexico, and from there, 180 dog samples were collected. Anti-T. cruzi antibodies were determined using the enzyme-linked immunosorbent assay (ELISA) method. Reactive ELISA sera were processed by indirect immunofluorescence to confirm the presence of anti-T. cruzi antibodies. For the statistical analysis, chi-square tests were conducted. Dogs' sera showed a seropositivity rate of 4.44%. The rate of seropositivity was not associated with the dogs' age, sex, or socioeconomics pertaining to the geographical area. One sample (1/180, 0.55%) showed the acute state of the disease. The study found a presence of anti-T. cruzi antibodies in dogs in this area, which suggests vector transmission. There is a need for active surveillance programs throughout the state of Sonora and vector control strategies should also be implemented in endemic regions.

  13. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    PubMed

    Vanrell, María Cristina; Losinno, Antonella Denisse; Cueto, Juan Agustín; Balcazar, Darío; Fraccaroli, Laura Virginia; Carrillo, Carolina; Romano, Patricia Silvia

    2017-11-01

    Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  14. The N-myristoylome of Trypanosoma cruzi

    PubMed Central

    Roberts, Adam J.; Fairlamb, Alan H.

    2016-01-01

    Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas’ disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43–0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5–1.7%). PMID:27492267

  15. Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae).

    PubMed

    Dos Santos, Vania A F F M; Leite, Karoline M; da Costa Siqueira, Mariana; Regasini, Luis O; Martinez, Isabel; Nogueira, Camila T; Galuppo, Mariana Kolos; Stolf, Beatriz S; Pereira, Ana Maria Soares; Cicarelli, Regina M B; Furlan, Maysa; Graminha, Marcia A S

    2013-01-15

    The present study describes the leishmanicidal and trypanocidal activities of two quinonemethide triterpenes, maytenin (1) and pristimerin (2), isolated from Maytenus ilicifolia root barks (Celastraceae). The compounds were effective against the Trypanosomatidae Leishmania amazonensis and Leishmania chagasi and Trypanosoma cruzi, etiologic agents of leishmaniasis and Chagas' disease, respectively. The quinonemethide triterpenes 1 and 2 exhibited a marked in vitro leishmanicidal activity against promastigotes and amastigotes with 50% inhibitory concentration (IC(50)) values of less than 0.88 nM. Both compounds showed IC(50) lower than 0.3 nM against Trypanosoma cruzi epimastigotes. The selectivity indexes (SI) based on BALB/c macrophages for L. amazonensis and L. chagasi were 243.65 and 46.61 for (1) and 193.63 and 23.85 for (2) indicating that both compounds presented high selectivity for Leishmania sp. The data here presented suggests that these compounds should be considered in the development of new and more potent drugs for the treatment of leishmaniasis and Chagas' disease.

  16. Evaluation of a prototype flow cytometry test for serodiagnosis of canine visceral leishmaniasis.

    PubMed

    Ker, Henrique Gama; Coura-Vital, Wendel; Aguiar-Soares, Rodrigo Dian de Oliveira; Roatt, Bruno Mendes; das Dores Moreira, Nádia; Carneiro, Cláudia Martins; Machado, Evandro Marques de Menezes; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Giunchetti, Rodolfo Cordeiro; Araújo, Márcio Sobreira Silva; Coelho, Eduardo Antonio Ferraz; da Silveira-Lemos, Denise; Reis, Alexandre Barbosa

    2013-12-01

    Diagnosing canine visceral leishmaniasis (CVL) is a critical challenge since conventional immunoserological tests still present some deficiencies. The current study evaluated a prototype flow cytometry serology test, using antigens and fluorescent antibodies that had been stored for 1 year at 4°C, on a broad range of serum samples. Noninfected control dogs and Leishmania infantum-infected dogs were tested, and the prototype test showed excellent performance in differentiating these groups with high sensitivity, specificity, positive and negative predictive values, and accuracy (100% in all analyses). When the CVL group was evaluated according to the dogs' clinical status, the prototype test showed outstanding accuracy in all groups with positive serology (asymptomatic II, oligosymptomatic, and symptomatic). However, in dogs which had positive results by PCR-restriction fragment length polymorphism (RFLP) but negative results by conventional serology (asymptomatic I), serological reactivity was not observed. Additionally, sera from 40 dogs immunized with different vaccines (Leishmune, Leish-Tec, or LBSap) did not present serological reactivity in the prototype test. Eighty-eight dogs infected with other pathogens (Trypanosoma cruzi, Leishmania braziliensis, Ehrlichia canis, and Babesia canis) were used to determine cross-reactivity and specificity, and the prototype test performed well, particularly in dogs infected with B. canis and E. canis (100% and 93.3% specificities, respectively). In conclusion, our data reinforce the potential of the prototype test for use as a commercial kit and highlight its outstanding performance even after storage for 1 year at 4°C. Moreover, the prototype test efficiently provided accurate CVL serodiagnosis with an absence of false-positive results in vaccinated dogs and minor cross-reactivity against other canine pathogens.

  17. Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria.

    PubMed

    Ramírez-Macías, Inmaculada; Marín, Clotilde; Díaz, Jesús G; Rosales, María José; Gutiérrez-Sánchez, Ramón; Sánchez-Moreno, Manuel

    2012-01-01

    To evaluate the in vitro leishmanicidal activity of nine flavonoid derivatives from Delphinium staphisagria against L. infantum and L. braziliensis. The in vitro activity of compounds 1-9 was assayed on extracellular promastigote and axenic amastigote forms and on intracellular amastigote forms of the parasites. Infectivity and cytotoxicity tests were carried on J774.2 macrophage cells using Glucantime as the reference drug. The mechanisms of action were analysed performing metabolite excretion and transmission electronic microscope ultrastructural alteration studies. Nine flavonoids showed leishmanicidal activity against promastigote as well as amastigote forms of Leishmania infantum and L. braziliensis. These compounds were nontoxic to mammalian cells and were effective at similar concentrations up to or lower than that of the reference drug (Glucantime). The results showed that 2(″)-acetylpetiolaroside (compound 8) was clearly the most active. This study has demonstrated that flavonoid derivatives are active against L. infantum and L. braziliensis.

  18. Leishmania infections: Molecular targets and diagnosis.

    PubMed

    Akhoundi, Mohammad; Downing, Tim; Votýpka, Jan; Kuhls, Katrin; Lukeš, Julius; Cannet, Arnaud; Ravel, Christophe; Marty, Pierre; Delaunay, Pascal; Kasbari, Mohamed; Granouillac, Bruno; Gradoni, Luigi; Sereno, Denis

    2017-10-01

    Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Aspects of the ecology of phlebotomine sand flies (Diptera: Psychodidae) in the Private Natural Heritage Reserve Sanctuary Caraça.

    PubMed

    Tonelli, Gabriel Barbosa; Tanure, Aline; Rêgo, Felipe Dutra; Carvalho, Gustavo Mayr de Lima; Simões, Taynãna César; Andrade Filho, José Dilermando

    2017-01-01

    Leishmaniases are a set of parasitic diseases of zoonotic origin that are transmitted by sandfly vectors in wild, rural and urban environments. Their distribution is dependent not only the distribution of vectors, but also on the distribution of mammalian reservoirs. Only by understanding the transmission cycle of these diseases, such as knowing the participating vectors and reservoirs, can one can understand the epidemiology and ecological relationships of leishmaniases. Ecotourism has become an important area of economic growth in Brazil. One of the most visited tourist attractions in the state of Minas Gerais, the Reserva Particular do Patrimônio Natural Santuário do Caraça (RPPNSC) is located in the Quadrilátero Ferrífero. The aim of this study was to contribute to the control of leishmaniasis among tourists of the RPPNPC by surveying its sand fly fauna and testing for the presence of Leishmania DNA in females. Twenty-five CDC light traps were exposed on 7 trails of the RPPNPC where samples were collected bimonthly for a year, starting in June 2013. A total of 376 specimens of 18 species and 10 genera of sandflies were captured. The predominant species were Psychodopygus lloydi (72.34%) and Pintomyia monticola (5.59%). HaeIII restriction enzyme detected and characterized Leishmania braziliensis DNA in 2 of the samples for an infection rate of 0.7% (2/266). Recent studies found specimens of Ps. lloyd infected with Leishmania braziliensis elsewhere in Minas Gerais, which may be an indication that this species is involved in the transmission of Leishmania in this state.

  20. Prevalence of Trypanosoma cruzi and Other Trypanosomatids in Frequently-Hunted Wild Mammals from the Peruvian Amazon.

    PubMed

    Morales, E Angelo; Mayor, Pedro; Bowler, Mark; Aysanoa, Esar; Pérez-Velez, Erika S; Pérez, Jocelyn; Ventocilla, Julio A; Baldeviano, G Christian; Lescano, Andrés G

    2017-11-01

    To better understand the ecology of Trypanosoma cruzi in the northeastern Peruvian Amazon, we evaluated the prevalence of T. cruzi and other trypanosomatids in four orders of wild mammals hunted and consumed by inhabitants of three remote indigenous communities in the Peruvian Amazon. Of 300 wild mammals sampled, 115 (38.3%) were infected with trypanosomatids and 15 (5.0%) with T. cruzi. The prevalence of T. cruzi within each species was as follows: large rodents ( Cuniculus paca , 5.5%; Dasyprocta spp., 2.6%), edentates ( Dasypus novemcinctus , 4.2%), and carnivores with higher prevalence ( Nasua nasua , 18.8%). The high prevalence of T. cruzi and other trypanosomatids in frequently hunted wild mammals suggests a sizeable T. cruzi sylvatic reservoir in remote Amazonian locations.

  1. Leishmania vaccines: progress and problems.

    PubMed

    Kedzierski, L; Zhu, Y; Handman, E

    2006-01-01

    Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world resulting in an estimated 12 million new cases each year. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective due to the emergence of drug resistance. Leishmaniasis is considered one of a few parasitic diseases likely to be controllable by vaccination. The relatively uncomplicated leishmanial life cycle and the fact that recovery from infection renders the host resistant to subsequent infection indicate that a successful vaccine is feasible. Extensive evidence from studies in animal models indicates that solid protection can be achieved by immunisation with protein or DNA vaccines. However, to date no such vaccine is available despite substantial efforts by many laboratories. Advances in our understanding of Leishmania pathogenesis and generation of host protective immunity, together with the completed Leishmania genome sequence open new avenues for vaccine research. The major remaining challenges are the translation of data from animal models to human disease and the transition from the laboratory to the field. This review focuses on advances in anti-leishmania vaccine development over the recent years and examines current problems hampering vaccine development and implementation.

  2. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity.

    PubMed

    da Rocha, Cláudia Quintino; Queiroz, Emerson Ferreira; Meira, Cássio Santana; Moreira, Diogo Rodrigo Magalhães; Soares, Milena Botelho Pereira; Marcourt, Laurence; Vilegas, Wagner; Wolfender, Jean-Luc

    2014-06-27

    The nonpolar fraction of an aqueous ethanol extract of the roots of Arrabidaea brachypoda, a Brazilian medicinal plant, demonstrated significant in vitro activity against Trypanosoma cruzi, the parasite responsible for Chagas disease. Targeted isolation of the active constituents led to the isolation of three new dimeric flavonoids (1-3), and their structures were elucidated using UV, NMR, and HRMS analysis, as well as by chemical derivatization. The anti-T. cruzi activity and cytotoxicity toward mammalian cells were determined for these substances. Compound 1 exhibited no activity toward T. cruzi, while flavonoids 2 and 3 exhibited selective activity against these trypomastigotes. Compounds 2 and 3 inhibited the parasite invasion process and its intracellular development in host cells with similar potencies to benznidazole. In addition, compound 2 reduced the blood parasitemia of T. cruzi-infected mice. This study has revealed that these two dimeric flavonoids represent potential anti-T. cruzi lead compounds for further drug development.

  3. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species.

    PubMed

    Da Silva, B J M; Da Silva, R R P; Rodrigues, A P D; Farias, L H S; Do Nascimento, J L M; Silva, E O

    2016-03-01

    Leishmaniasis are a neglected group of emerging diseases that have been found in 98 countries and are caused by protozoa of the genus Leishmania. The therapy for leishmaniasis causes several side effects and leads to drug-resistant strains. Natural products from plants have exhibited activities against Leishmania in various experimental models. Physalis angulata is a widely used plant in popular medicine, and in the literature it has well-documented leishmanicidal activity. However, its mechanism of action is still unknown. Thus, this study aims to evaluate the mechanism driving the leishmanicidal activity of an aqueous extract of P. angulata root (AEPa). AEPa was effective against both promastigotes and intracellular amastigote forms of Leishmania amazonensis. This effect was mediated by an increase of reactive oxygen species (ROS), but not of nitric oxide (NO). The increased production of ROS induces cell death by phenotypes seems by apoptosis cell death in Leishmania, but not autophagy or necrosis. In addition, morphological analysis of macrophages showed that AEPa induced a high number of cytoplasmic projections, increased the volume of cytoplasm and number of vacuoles, caused cytoskeleton alterations and resulted in high spreading ability. AEPa also promoted superoxide anion (O2(-)) production in both uninfected macrophages and those infected with Leishmania. Therefore, these results revealed that AEPa causes cell death by phenotypes seems by apoptosis cell death in L. amazonensis and modulates macrophage activation through morphofunctional alterations and O2(-) generation to induce Leishmania death. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Quantification of anti-Leishmania antibodies in saliva of dogs.

    PubMed

    Cantos-Barreda, Ana; Escribano, Damián; Bernal, Luis J; Cerón, José J; Martínez-Subiela, Silvia

    2017-08-15

    Detection of serum anti-Leishmania antibodies by quantitative or qualitative techniques has been the most used method to diagnose Canine Leishmaniosis (CanL). Nevertheless, saliva may represent an alternative to blood because it is easy to collect, painless and non-invasive in comparison with serum. In this study, two time-resolved immunofluorometric assays (TR-IFMAs) for quantification of anti-Leishmania IgG2 and IgA antibodies in saliva were developed and validated and their ability to distinguish Leishmania-seronegative from seropositive dogs was evaluated. The analytical study was performed by evaluation of assay precision, sensitivity and accuracy. In addition, serum from 48 dogs (21 Leishmania-seropositive and 27 Leishmania-seronegative) were analyzed by TR-IFMAs. The assays were precise, with an intra- and inter-assay coefficients of variation lower than 11%, and showed high level of accuracy, as determined by linearity under dilution (R 2 =0.99) and recovery tests (>88.60%). Anti-Leishmania IgG2 antibodies in saliva were significantly higher in the seropositive group compared with the seronegative (p<0.0001), whereas no significant differences for anti-Leishmania IgA antibodies between both groups were observed. Furthermore, TR-IFMA for quantification of anti-Leishmania IgG2 antibodies in saliva showed higher differences between seropositive and seronegative dogs than the commercial assay used in serum. In conclusion, TR-IFMAs developed may be used to quantify anti-Leishmania IgG2 and IgA antibodies in canine saliva with an adequate precision, analytical sensitivity and accuracy. Quantification of anti-Leishmania IgG2 antibodies in saliva could be potentially used to evaluate the humoral response in CanL. However, IgA in saliva seemed not to have diagnostic value for this disease. For future studies, it would be desirable to evaluate the ability of the IgG2 assay to detect dogs with subclinical disease or with low antibody titers in serum and also to study

  5. CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi

    PubMed Central

    Peng, Duo; Kurup, Samarchith P.; Yao, Phil Y.; Minning, Todd A.

    2014-01-01

    ABSTRACT Trypanosoma cruzi is a protozoan parasite of humans and animals, affecting 10 to 20 million people and innumerable animals, primarily in the Americas. Despite being the largest cause of infection-induced heart disease worldwide, even among the neglected tropical diseases (NTDs) T. cruzi is considered one of the least well understood and understudied. The genetic complexity of T. cruzi as well as the limited set of efficient techniques for genome engineering contribute significantly to the relative lack of progress in and understanding of this pathogen. Here, we adapted the CRISPR-Cas9 system for the genetic engineering of T. cruzi, demonstrating rapid and efficient knockout of multiple endogenous genes, including essential genes. We observed that in the absence of a template, repair of the Cas9-induced double-stranded breaks (DSBs) in T. cruzi occurs exclusively by microhomology-mediated end joining (MMEJ) with various-sized deletions. When a template for DNA repair is provided, DSB repair by homologous recombination is achieved at an efficiency several orders of magnitude higher than that in the absence of CRISPR-Cas9-induced DSBs. We also demonstrate the high multiplexing capacity of CRISPR-Cas9 in T. cruzi by knocking down expression of an enzyme gene family consisting of 65 members, resulting in a significant reduction of enzymatic product with no apparent off-target mutations. Lastly, we show that Cas9 can mediate disruption of its own coding sequence, rescuing a growth defect in stable Cas9-expressing parasites. These results establish a powerful new tool for the analysis of gene functions in T. cruzi, enabling the study of essential genes and their functions and analysis of the many large families of related genes that occupy a substantial portion of the T. cruzi genome. PMID:25550322

  6. Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil.

    PubMed

    Ribeiro, Aline Rimoldi; Lima, Luciana; de Almeida, Larissa Aguiar; Monteiro, Joana; Moreno, Cláudia Jassica Gonçalves; Nascimento, Juliana Damieli; de Araújo, Renato Freitas; Mello, Fernanda; Martins, Luciamáre Perinetti Alves; Graminha, Márcia Aparecida Silva; Teixeira, Marta Maria Geraldes; Silva, Marcelo Sousa; Steindel, Mário; da Rosa, João Aristeu

    2018-02-01

    Chagas disease affects between six and seven million people. Its etiological agent, Trypanosoma cruzi , is classified into six discrete typing units (DTUs). The biological study of 11 T. cruzi strains presented here included four parameters: growth kinetics, parasitemia curves, rate of macrophage infection, and serology to evaluate IgM, total IgG, IgG1, IgG2a, and IgG3. Sequencing of small subunit of ribosomal RNA (SSU rRNA)was performed and the T. cruzi strains were classified into three DTUs. When their growth in liver infusion tryptose medium was represented in curves, differences among the strains could be noted. The parasitemia profile varied among the strains from the TcI, TcII, and TcIII groups, and the 11 T. cruzi strains produced distinct parasitemia levels in infected BALB/c. The TcI group presented the highest rate of macrophage infection by amastigotes, followed by TcII and TcIII. Reactivity to immunoglobulins was observed in the TcI, TcII, and TcIII; all the animals infected with the different strains of T. cruzi showed anti- T. cruzi antibodies. The molecular study presented here resulted in the classification of the T. cruzi strains into the TcI (Bolivia, T lenti, Tm, SC90); TcII (Famema, SC96, SI8, Y); and TcIII (QMM3, QMM5, SI5) groups. These biological and molecular results from 11 T. cruzi strains clarified the factors involved in the biology of the parasite and its hosts. The collection of triatomine (vector) species, and the study of geographic distribution, as well as biological and molecular characterization of the parasite, will contribute to the reporting and surveillance measures in Brazilian states.

  7. American cutaneous leishmaniasis triggered by electrocoagulation.

    PubMed

    Martins, Sofia Sales; Santos, Adriana de Oliveira; Lima, Beatriz Dolabela; Gomes, Ciro Martins; Sampaio, Raimunda Nonata Ribeiro

    2018-01-01

    Cutaneous leishmaniasis is usually transmitted by infected phlebotomine sand fly bites that initiate local cutaneous lesions. Few reports in the literature describe other modes of transmission. We report a case of a previously healthy 59-year-old woman who underwent electrocoagulation to remove seborrheic keratosis confirmed by dermatoscopy. Three months later, a skin fragment tested positive for Leishmania culture; the parasite was identified as L. (V.) braziliensis. Trauma may generate inflammatory cascades that favor Leishmania growth and lesion formation in previously infected patients. American cutaneous leishmaniasis is a dynamic disease with unclear pathophysiology because of continually changing environments, demographics, and human behaviors.

  8. Diterpenoids from Azorella compacta (Umbelliferae) active on Trypanosoma cruzi.

    PubMed

    Araya, Jorge E; Neira, Iván; da Silva, Solange; Mortara, Renato A; Manque, Patricio; Cordero, Esteban; Sagua, Hernán; Loyola, Alberto; Bórquez, Jorge; Morales, Glauco; González, Jorge

    2003-04-01

    The anti-Trypanosoma cruzi activity of natural products isolated from Azorella compacta was evaluated, with particular emphasis on their effect against intracellular amastigotes. Five diterpenoids from A. compacta derived from mulinane and azorellane were isolated and identified. Only two products, named azorellanol (Y-2) and mulin-11,3-dien-20-oic acid (Y-5), showed trypanocidal activity against all stages of T. cruzi including intracellular amastigotes. At 10 M, these compounds displayed a strong lytic activity. It ranged from 88.4 0.6 to 99.0 1 % for all strains and stages evaluate, with an IC50 /18 h values of 20-84 M and 41-87 M, respectively. The development of intracellular amastigotes was also inhibited by nearly 60% at 25 M. The trypanocidal molecules Y-2 and Y-5 did show different degrees of cytotoxicity depending on the cell line tested, with an IC50 /24 h ranging from 33.2 to 161.2 M. We evaluated the effect of diterpenoids against intracellular T. cruzi forms by immunofluorescent identification of a specific membrane molecular marker (Ssp-4 antigen) of the T. cruzi amastigote forms. The accuracy and reproducibility of the measurements were found to be outstanding when examined by confocal microscopy.

  9. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models.

    PubMed

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; Carmona e Ferreira, Renata; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-12-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3'-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.

  10. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

    PubMed Central

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; e Ferreira, Renata Carmona; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-01-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  11. Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis

    NASA Astrophysics Data System (ADS)

    Cardoso, Ricardo S.; Defeo, Omar

    2004-11-01

    Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.

  12. Avian antibodies (IgY) against Trypanosoma cruzi: Purification and characterization studies.

    PubMed

    Grando, Thirssa H; Baldissera, Matheus D; de Sá, Mariângela F; do Carmo, Guilherme M; Porto, Bianca Carolina Z; Aguirre, Gisele S V; Azevedo, Maria Isabel; de Jesus, Francielli P K; Santurio, Janio M; Sagrillo, Michele R; Stefani, Lenita Moura; Monteiro, Silvia Gonzalez

    2017-10-01

    Trypanosoma cruzi is a flagellated protozoan belonging to the Trypanosomatidae family, the etiologic agent of Chagas disease. Currently, there is neither a licensed vaccine nor effective treatment, characterizing an unmet clinical need. The IgY refers to the egg yolk immunoglobulin (Y=yolk) and its production and use are subjects of many studies due to the diversity of its diagnostic and therapeutic applications. Several researchers have shown that the use of specific IgY may prevent and/or control infectious and parasitic diseases. Based on these evidences, the aim of this study was to immunize chickens with trypomastigotes of T. cruzi in order to produce highly effective and pure antibodies (IgY), as well as extract, characterize, quantify, and verify cytotoxic effects of IgY anti-T. cruzi. After the induction of IgY production by chickens, the eggs were collected and the IgY was extracted by method of precipitation of polyethylene glycol 6000. The IgY anti-T. cruzi characterization was performed using polyacrylamide gel electrophoresis (SDS-PAGE), western-blot and enzyme-linked immunosorbent assay (ELISA). Moreover, the cytotoxic or proliferative effects of IgY anti-T. cruzi was verified by MTT assay. The concentration of IgY in yolk was 8.41±1.47mg/mL. The characterization of IgY reveled bands of stained peptides with molecular weight between 75 and 50kDa and 37 and 25kDa. In the ELISA test was observed that there was antigen-antibody reaction throughout the sample period. The concentrations of 1, 5 and 10mg/mL of IgY anti-T. cruzi presented no cytotoxic of proliferative effects in mononuclear and VERO cells in vitro. The results indicated that T. cruzi is able to generate a high production of specific immunoglobulins in chickens, it did not cause damage to the cell membrane and no proliferative effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Molecular genotyping of Trypanosoma cruzi for lineage assignment and population genetics.

    PubMed

    Messenger, Louisa A; Yeo, Matthew; Lewis, Michael D; Llewellyn, Martin S; Miles, Michael A

    2015-01-01

    Trypanosoma cruzi, the etiological agent of Chagas disease, remains a major public health problem in Latin America. Infection with T. cruzi is lifelong and can lead to a spectrum of pathological sequelae ranging from subclinical to lethal cardiac and/or gastrointestinal complications. Isolates of T. cruzi can be assigned to six genetic lineages or discrete typing units (DTUs), which are broadly associated with disparate ecologies, transmission cycles, and geographical distributions. This extensive genetic diversity is also believed to contribute to the clinical variation observed among chagasic patients. Unravelling the population structure of T. cruzi is fundamental to understanding Chagas disease epidemiology, developing control strategies, and resolving the relationship between parasite genotype and clinical prognosis. To date, no single, widely validated, genetic target allows unequivocal resolution to DTU-level. In this chapter we present standardized methods for strain DTU assignment using PCR-restriction fragment length polymorphism analysis (PCR-RFLP) and nuclear multilocus sequence typing (MLST). PCR-RFLPs have the advantages of simplicity and reproducibility, requiring limited expertise and few laboratory consumables. MLST data are more laborious to generate but more informative; DNA sequences are readily transferable between research groups and amenable to recombination detection and intra-lineage analyses. We also recommend a mitochondrial (maxicircle) MLST scheme and a panel of 28 microsatellite loci for higher resolution population genetics studies. Due to the scarcity of T. cruzi in blood and tissue, all of these genotyping techniques have limited sensitivity when applied directly to clinical or biological specimens, particularly when targets are single (MLST) or low copy number (PCR-RFLPs). We therefore describe essential protocols to isolate parasites, derive biological clones, and extract T. cruzi genomic DNA from field and clinical samples.

  14. Cryopreservation of Leishmania Species in Manisa Province.

    PubMed

    Çavuş, İbrahim; Ocak, Fulya; Kaya, Tuğba; Özbilgin, Ahmet

    2017-09-01

    It was aimed to assess the success of the cryopreservation process which is carried out in order to preserve the genetic material and the virulence of the Leishmania species that are an important health problem in our region. Leishmania tropica, L. infantum, L. major, and L. donovani strains in Novy-MacNeal-Nicolle (NNN) medium in MCBU were used. Promastigotes cultured in the NNN medium were transferred to RPMI 1640 medium; promastigotes in the logarithmic phase were washed three times with PBS, and 15% dimethylsulfoxide (DMSO) was added. Leishmania species were transferred to 12 separate tubes. The tubes were stored at -86°C for one night by placing them in Coolcell boxes. The tubes were transferred into a liquid nitrogen tank. One cryotube per Leishmania strain is thawed monthly and cultured in NNN medium. For the duration of study it was observed that each Leishmania isolate preserved 60-65% of their viability and entered the logarithmic phase on the 7th day following the inoculation in the NNN medium. Abnormalities in the structures and movements of the promastigotes were not observed in microscopic examinations. The following conclusions were made: cryopreservation is important for studies planned related to leishmaniasis and cryopreservation with DMSO is successful.

  15. Trypanosoma cruzi infection in captive Neotropical primates in the Brazilian Amazon.

    PubMed

    Bahia, Michele; de Nazaré Leite Barros, Flávia; Magalhães-Matos, Paulo Cesar; de Souza Gonçalves, Thamirys; Chiesorin Neto, Laerzio; Oliveira Faria, Diogo Cesar Lagroteria; Aparecida Romeiro, Sandra; Barros Monteiro, Frederico Ozanan; Góes-Cavalcante, Gustavo; Scofield, Alessandra

    2017-02-01

    The aim of this study was to detect the infection by Trypanosoma cruzi in captive Neotropical primates in the Brazilian Amazon. From February 2013 to July 2014, 112 blood samples were collected from Neotropical primates from the Amazonas, Amapá, and Pará States, north of Brazil. The subjects belonged to the families Cebidae (N = 59), Atelidae (N = 41), Callitrichidae (N = 5), Pitheciidae (N = 4), and Aotidae (N = 3). Blood smears also were examined for the presence of trypomastigotes by optical microscopy. For the detection of T. cruzi DNA, a Nested-PCR with primers TCZ1/TCZ2 and TCZ3/TCZ4 was performed. T. cruzi DNA was detected in 12.5% (14/112) of Neotropical primates examined. Positive samples were detected in 16%, 12.5%, and 11.11% of the different species of primates sampled from the Amapá, Pará, and Amazonas states, respectively. The analysis of the blood smears did not reveal trypomastigote forms of T. cruzi. In conclusion, Neotropical primates kept in captivity were infected by T. cruzi in the studied areas. We recommend that a health management protocol be put into place to prevent the transmission of infectious agents among captive populations, captive and wild populations, and between NHPs and the technicians who handle these animals. © 2016 Wiley Periodicals, Inc.

  16. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    PubMed

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  17. Understanding serine proteases implications on Leishmania spp lifecycle.

    PubMed

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analytical sensitivity and specificity of a loop-mediated isothermal amplification (LAMP) kit prototype for detection of Trypanosoma cruzi DNA in human blood samples

    PubMed Central

    Besuschio, Susana A.; Llano Murcia, Mónica; Benatar, Alejandro F.; Monnerat, Severine; Cruz, Israel; Picado, Albert; Curto, María de los Ángeles; Kubota, Yutaka; Wehrendt, Diana P.; Pavia, Paula; Mori, Yasuyoshi; Puerta, Concepción; Ndung'u, Joseph M.

    2017-01-01

    This study aimed to assess analytical parameters of a prototype LAMP kit that was designed for detection of Trypanosoma cruzi DNA in human blood. The prototype is based on the amplification of the highly repetitive satellite sequence of T.cruzi in microtubes containing dried reagents on the inside of the caps. The reaction is carried out at 65°C during 40 minutes. Calcein allows direct detection of amplified products with the naked eye. Inclusivity and selectivity were tested in purified DNA from Trypanosoma cruzi stocks belonging to the six discrete typing units (DTUs), in DNA from other protozoan parasites and in human DNA. Analytical sensitivity was estimated in serial dilutions of DNA samples from Sylvio X10 (Tc I) and CL Brener (Tc VI) stocks, as well as from EDTA-treated or heparinized blood samples spiked with known amounts of cultured epimastigotes (CL Brener). LAMP sensitivity was compared after DNA extraction using commercial fiberglass columns or after “Boil & Spin” rapid preparation. Moreover, the same DNA and EDTA-blood spiked samples were subjected to standardized qPCR based on the satellite DNA sequence for comparative purposes. A panel of peripheral blood specimens belonging to Chagas disease patients, including acute, congenital, chronic and reactivated cases (N = 23), as well as seronegative controls (N = 10) were evaluated by LAMP in comparison to qPCR. LAMP was able to amplify DNAs from T. cruzi stocks representative of the six DTUs, whereas it did not amplify DNAs from Leishmania sp, T. brucei sp, T. rangeli KPN+ and KPN-, P. falciparum and non-infected human DNA. Analytical sensitivity was 1x10-2 fg/μL of both CL Brener and Sylvio X10 DNAs, whereas qPCR detected up to 1x 10−1 fg/μL of CL Brener DNA and 1 fg/μl of Sylvio X10 DNA. LAMP detected 1x10-2 parasite equivalents/mL in spiked EDTA blood and 1x10-1 par.eq/mL in spiked heparinized blood using fiberglass columns for DNA extraction, whereas qPCR detected 1x10-2 par.eq./mL in EDTA

  19. An overview on Leishmania vaccines: A narrative review article.

    PubMed

    Rezvan, Hossein; Moafi, Mohammad

    2015-01-01

    Leishmaniasis is one of the major health problems and categorized as a class I disease (emerging and uncontrolled) by World Health Organization (WHO), causing highly significant morbidity and mortality. Indeed, more than 350 million individuals are at risk of Leishmania infection, and about 1.6 million new cases occur causing more than 50 thousands death annually. Because of the severe toxicity and drug resistance, present chemotherapy regimen against diverse forms of Leishmania infections is not totally worthwhile. However, sound immunity due to natural infection, implies that vigor cellular immunity against Leishmania parasites, via their live, attenuated or killed forms, can be developed in dogs and humans. Moreover, genetically conserved antigens (in most of Leishmania species), and components of sand fly saliva confer potential immunogenic molecules for Leishmania vaccination. Vaccines successes in animal studies and some clinical trials clearly justify more researches and investments illuminating opportunities in suitable vaccine designation.

  20. An overview on Leishmania vaccines: A narrative review article

    PubMed Central

    Rezvan, Hossein; Moafi, Mohammad

    2015-01-01

    Leishmaniasis is one of the major health problems and categorized as a class I disease (emerging and uncontrolled) by World Health Organization (WHO), causing highly significant morbidity and mortality. Indeed, more than 350 million individuals are at risk of Leishmania infection, and about 1.6 million new cases occur causing more than 50 thousands death annually. Because of the severe toxicity and drug resistance, present chemotherapy regimen against diverse forms of Leishmania infections is not totally worthwhile. However, sound immunity due to natural infection, implies that vigor cellular immunity against Leishmania parasites, via their live, attenuated or killed forms, can be developed in dogs and humans. Moreover, genetically conserved antigens (in most of Leishmania species), and components of sand fly saliva confer potential immunogenic molecules for Leishmania vaccination. Vaccines successes in animal studies and some clinical trials clearly justify more researches and investments illuminating opportunities in suitable vaccine designation. PMID:25992245

  1. Pathways of iron acquisition and utilization in Leishmania

    PubMed Central

    Flannery, Andrew R.; Renberg, Rebecca L.; Andrews, Norma W.

    2013-01-01

    Iron is essential for many metabolic pathways, but is toxic in excess. Recent identification of the ferric iron reductase LFR1, the ferrous iron transporter LIT1, and the heme transporter LHR1 greatly advanced our understanding of how Leishmania parasites acquire iron and regulate its uptake. LFR1 and LIT1 have close orthologs in plants, and are required for Leishmania virulence. Consistent with the lack of heme biosynthesis in trypanosomatids, LHR1 and LABCG5, a protein involved in heme salvage from hemoglobin, seem essential for Leishmania survival. LFR1, LIT1 and LHR1 are upregulated under low iron availability, in agreement with the need to prevent excessive iron uptake. Future studies should clarify how Leishmania interacts with the iron homeostasis machinery of its host cell, the macrophage. PMID:23962817

  2. Procaspase-activating compound-1 induces apoptosis in Trypanosoma cruzi.

    PubMed

    de Castro, Emanuella; Reus, Thamile Luciane; de Aguiar, Alessandra Melo; Ávila, Andrea Rodrigues; de Arruda Campos Brasil de Souza, Tatiana

    2017-12-01

    Some therapeutics for parasitic, cardiac and neurological diseases activate apoptosis. Therefore, the study of apoptotic proteins in pathogenic organisms is relevant. However, the molecular mechanism of apoptosis in unicellular organisms remain elusive, despite morphological evidence of its occurrence. In Trypanosoma cruzi, the causative agent of Chagas disease, metacaspase 3 (TcMCA3), seems to have a key role in parasite apoptosis. Accordingly, this work provides data concerning TcMCA3 regulation through its interaction with procaspase-activating compound 1 (PAC-1), a procaspase 3 activator. Indeed, PAC-1 reduced T. cruzi epimastigote viability with an IC 50 of 14.12 µM and induced loss of mitochondrial potential and exposure of phosphatidylserine, features of the apoptotic process. Notwithstanding, those PAC-1-inducible effects were not conserved in metacyclic trypomastigotes. Moreover, PAC-1 reduced the viability of mammalian cells with a greater IC 50 (25.70 µM) compared to T. cruzi epimastigotes, indicating distinct modes of binding between caspases and metacaspases. To shed light on the selectivity of metacaspases and caspases, we determined the structural features related to the PAC-1 binding sites in both types of proteins. These data are important for improving the understanding of the apoptosis pathway in T. cruzi so that TcMCA3 could be better targeted with future pharmaceuticals.

  3. Genetic profiling of Trypanosoma cruzi directly in infected tissues using nested PCR of polymorphic microsatellites.

    PubMed

    Valadares, Helder Magno Silva; Pimenta, Juliana Ramos; de Freitas, Jorge Marcelo; Duffy, Tomás; Bartholomeu, Daniella C; Oliveira, Riva de Paula; Chiari, Egler; Moreira, Maria da Consolação Vieira; Filho, Geraldo Brasileiro; Schijman, Alejandro Gabriel; Franco, Glória Regina; Machado, Carlos Renato; Pena, Sérgio Danilo Junho; Macedo, Andréa Mara

    2008-06-01

    The investigation of the importance of the genetics of Trypanosoma cruzi in determining the clinical course of Chagas disease will depend on precise characterisation of the parasites present in the tissue lesions. This can be adequately accomplished by the use of hypervariable nuclear markers such as microsatellites. However the unilocal nature of these loci and the scarcity of parasites in chronic lesions make it necessary to use high sensitivity PCR with nested primers, whose design depends on the availability of long flanking regions, a feature not hitherto available for any known T. cruzi microsatellites. Herein, making use of the extensive T. cruzi genome sequence now available and using the Tandem Repeats Finder software, it was possible to identify and characterise seven new microsatellite loci--six composed of trinucleotide (TcTAC15, TcTAT20, TcAAT8, TcATT14, TcGAG10 and TcCAA10) and one composed of tetranucleotide (TcAAAT6) motifs. All except the TcCAA10 locus were physically mapped onto distinct intergenic regions of chromosome III of the CL Brener clone contigs. The TcCAA10 locus was localised within a hypothetical protein gene in the T. cruzi genome. All microsatellites were polymorphic and useful for T. cruzi genetic variability studies. Using the TcTAC15 locus it was possible to separate the strains belonging to the T. cruzi I lineage (DTU I) from those belonging to T. cruzi II (DTU IIb), T. cruzi III (DTU IIc) and a hybrid group (DTU IId, IIe). The long flanking regions of these novel microsatellites allowed construction of nested primers and the use of full nested PCR protocols. This strategy enabled us to detect and differentiate T. cruzi strains directly in clinical specimens including heart, blood, CSF and skin tissues from patients in the acute and chronic phases of Chagas disease.

  4. Trypanosoma cruzi Detection in Colombian Patients with a Diagnosis of Esophageal Achalasia.

    PubMed

    Panesso-Gómez, Santiago; Pavia, Paula; Rodríguez-Mantilla, Iván Enrique; Lasso, Paola; Orozco, Luis A; Cuellar, Adriana; Puerta, Concepción J; Mendoza de Molano, Belén; González, John M

    2018-03-01

    Achalasia is a motility disorder of the esophagus that might be secondary to a chronic Trypanosoma cruzi infection. Several studies have investigated esophageal achalasia in patients with Chagas disease (CD) in Latin America, but no related studies have been performed in Colombia. The goals of the present study were to determine the presence of anti- T. cruzi antibodies in patients with esophageal achalasia who visited a referral hospital in Bogotá, Colombia, and to detect the presence of the parasite and its discrete typing units (DTUs). This cross-sectional study was conducted in adult patients (18-65 years old) who were previously diagnosed with esophageal achalasia and from whom blood was drawn to assess antibodies against T. cruzi using four different serological tests. Trypanosoma cruzi DNA was detected by conventional polymerase chain reaction (cPCR) and quantitative polymerase chain reaction (qPCR). In total, 38 patients, with an average age of 46.6 years (standard deviation of ±16.2) and comprising 16 men and 22 women, were enrolled. Five (13.15%) patients were found to be positive for anti- T. cruzi antibodies by indirect immunofluorescence assay (IFA), and two patients who were negative according to IFA were reactive by both enzyme-linked immunosorbent assay and immunoblot (5.3%). Parasite DNA was detected in two of these seven patients by cPCR and in one of these by qPCR. The parasite DTU obtained was TcI. In summary, this study identified T. cruzi in Colombian patients with esophageal achalasia, indicating that digestive compromise could also be present in patients with chronic CD.

  5. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation.

    PubMed

    Medina, Tiago Silva; Oliveira, Gabriela Gonçalves; Silva, Maria Cláudia; David, Bruna Araújo; Silva, Grace Kelly; Fonseca, Denise Morais; Sesti-Costa, Renata; Frade, Amanda Farage; Baron, Monique Andrade; Ianni, Barbara; Pereira, Alexandre Costa; Chevillard, Christophe; Cunha-Neto, Edécio; Marin-Neto, José Antonio; Silva, João Santana

    2017-01-01

    The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi -induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi . Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi -induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi -induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi -infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively

  6. Enzyme-linked immunosorbent assay for IgA antibodies to Trypanosoma cruzi in congenital infection.

    PubMed

    Di Pentima, M C; Edwards, M S

    1999-02-01

    With the aim of achieving earlier diagnosis of congenital Trypanosoma cruzi infection, we assessed the usefulness of detecting specific IgA antibody by an ELISA. We evaluated 12 pregnant women chronically infected with T. cruzi, their newborn infants, and three additional neonates with parasitemia at birth. The IgA-specific antibody was detected by adapting the procedure for use of a commercial IgG ELISA, the Hemagen Chagas' Kit (Hemagen Diagnostics, Inc., Waltham, MA). Trypanosoma cruzi-specific IgA was detected in 10 (83%) of 12 mothers at delivery, in one of three parasitemic infants, and one of 12 newborns of the chronically infected women. Testing of 13 infants at six months of age revealed IgA in seven infants (54%), of whom four also had persistent T. cruzi-specific IgG. Detection of T. cruzi-specific IgA could provide a criterion for diagnosis of congenital infection in the absence of detectable parasitemia.

  7. Prevalence and risk factors associated with Leishmania infection in Trang Province, southern Thailand.

    PubMed

    Manomat, Jipada; Leelayoova, Saovanee; Bualert, Lertwut; Tan-Ariya, Peerapan; Siripattanapipong, Suradej; Mungthin, Mathirut; Naaglor, Tawee; Piyaraj, Phunlerd

    2017-11-01

    Autochthonous cutaneous and visceral leishmaniasis (VL) caused by Leishmania martiniquensis and Leishmania siamensis have been considered emerging infectious diseases in Thailand. The disease burden is significantly underestimated, especially the prevalence of Leishmania infection among HIV-positive patients. A cross-sectional study was conducted to determine the prevalence and risk factors associated with Leishmania infection among patients with HIV/AIDS living in Trang province, southern Thailand, between 2015 and 2016. Antibodies against Leishmania infection were assayed using the direct agglutination test (DAT). DNA of Leishmania was detected by ITS1-PCR using the buffy coat. Species of Leishmania were also identified. Of 724 participants, the prevalence of Leishmania infection was 25.1% (182/724) using either DAT or PCR assays. Seroprevalence of Leishmania infection was 18.5% (134/724), while Leishmania DNA detected by the PCR method was 8.4% (61/724). Of these, 24.9% (180/724) were asymptomatic, whereas 0.3% (2/724) were symptomatic VL and VL/CL (cutaneous leishmaniasis). At least five species were identified: L. siamensis, L. martiniquensis, L. donovani complex, L. lainsoni, and L. major. Multivariate analysis showed that CD4+ levels <500 cells/μL and living in stilt houses were independently associated with Leishmania infection. Those who were PCR positive for Leishmania DNA were significantly associated with a detectable viral load, whereas non-injection drug use (NIDU) and CD4+ levels <500 cells/μL were potential risk factors of Leishmania seropositivity. A magnitude of the prevalence of underreporting Leishmania infection among Thai patients with HIV was revealed in this study. Effective public health policy to prevent and control disease transmission is urgently needed.

  8. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    PubMed

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites. Published by Elsevier Inc.

  9. Leishmania Hijacks Myeloid Cells for Immune Escape

    PubMed Central

    Martínez-López, María; Soto, Manuel; Iborra, Salvador; Sancho, David

    2018-01-01

    Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited. PMID:29867798

  10. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection.

    PubMed

    Pacheco-Lugo, Lisandro; Díaz-Olmos, Yirys; Sáenz-García, José; Probst, Christian Macagnan; DaRocha, Wanderson Duarte

    2017-06-01

    New opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the transient transfection conducted through conventional methods. The Amaxa nucleofector device was systematically tested in the present study in order to improve the electroporation conditions in the epimastigote forms of T. cruzi. The transfection efficiency was quantified using the green fluorescent protein (GFP) as reporter gene followed by cell survival assessment. The herein used nucleofection parameters have increased the survival rates (>90%) and the transfection efficiency by approximately 35%. The small amount of epimastigotes and DNA required for the nucleofection can turn the method adopted here into an attractive tool for high throughput screening (HTS) applications, and for gene editing in parasites where genetic manipulation tools remain relatively scarce. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Arginase activity of Leishmania isolated from patients with cutaneous leishmaniasis.

    PubMed

    Badirzadeh, A; Taheri, T; Abedi-Astaneh, F; Taslimi, Y; Abdossamadi, Z; Montakhab-Yeganeh, H; Aghashahi, M; Niyyati, M; Rafati, S

    2017-09-01

    Cutaneous leishmaniasis (CL) is one of the most important vector-borne parasitic diseases, highly endemic in Iran, and its prevalence is increasing all over the country. Arginase (ARG) activity in isolated Leishmania parasites from CL patients is yet to be explored. This study aimed to compare the ARG activity of isolated Leishmania promastigotes from CL patients with a standard strain of Leishmania major and its influences on the disease pathogenesis. We recruited 16 confirmed CL patients from Qom Province, in central Iran; after detection of Leishmania species using PCR-RFLP, we assessed the levels of ARG in the isolated promastigotes and determined the parasites' growth rate. Only L. major was identified from CL patients. The level of ARG activity in the isolated Leishmania promastigotes from CL patients was significantly higher than that obtained from the standard strain of L. major. No significant correlations between ARG activity and lesion size, number or duration were observed; in contrast, a significant negative correlation was seen between ARG level and Leishmania' growth rate. The obtained results suggest that increased ARG expression and activity in the isolated Leishmania promastigotes might contribute to the higher parasite infectivity and play a major role in the pathogenicity of the CL. © 2017 John Wiley & Sons Ltd.

  12. Targeted Screening Strategies to Detect Trypanosoma cruzi Infection in Children

    PubMed Central

    Levy, Michael Z.; Kawai, Vivian; Bowman, Natalie M.; Waller, Lance A.; Cabrera, Lilia; Pinedo-Cancino, Viviana V.; Seitz, Amy E.; Steurer, Frank J.; Cornejo del Carpio, Juan G.; Cordova-Benzaquen, Eleazar; Maguire, James H.; Gilman, Robert H.; Bern, Caryn

    2007-01-01

    Background Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy. Methods and Findings We performed a serological survey in children 2–18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4–7.9]) children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC) plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children. Conclusions We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings. PMID:18160979

  13. Leishmania cell surface prohibitin: role in host-parasite interaction.

    PubMed

    Jain, Rohit; Ghoshal, Angana; Mandal, Chitra; Shaha, Chandrima

    2010-04-01

    Proteins selectively upregulated in infective parasitic forms could be critical for disease pathogenesis. A mammalian prohibitin orthologue is upregulated in infective metacyclic promastigotes of Leishmania donovani, a parasite that causes visceral leishmaniasis. Leishmania donovani prohibitin shares 41% similarity with mammalian prohibitin and 95-100% within the genus. Prohibitin is concentrated at the surface of the flagellar and the aflagellar pole, the aflagellar pole being a region through which host-parasite interactions occur. Prohibitin is attached to the membrane through a GPI anchor. Overexpression of wild-type prohibitin increases protein surface density resulting in parasites with higher infectivity. However, parasites overexpressing a mutant prohibitin with an amino acid substitution at the GPI anchor site to prevent surface expression through GPI-link show lesser surface expression and lower infective abilities. Furthermore, the presence of anti-prohibitin antibodies during macrophage-Leishmania interaction in vitro reduces infection. The cognate binding partner for Leishmania prohibitin on the host cell appears to be macrophage surface HSP70, siRNA mediated downregulation of which abrogates the capability of the macrophage to bind to parasites. Leishmania prohibitin is able to generate a strong humoral response in visceral leishmaniasis patients. The above observations suggest that prohibitin plays an important role in events leading to Leishmania-host interaction.

  14. Calcein+/PI- as an early apoptotic feature in Leishmania.

    PubMed

    Basmaciyan, Louise; Azas, Nadine; Casanova, Magali

    2017-01-01

    Although leishmaniases are responsible for high morbidity and mortality all over the world, no really satisfying treatment exists. Furthermore, the corresponding parasite Leishmania undergoes a very characteristic form of programmed cell death. Indeed, different stimuli can induce morphological and biochemical apoptotic-like features. However, the key proteins involved in mammal apoptosis, such as caspases and death receptors, are not encoded in the genome of this parasite. Currently, little is known about Leishmania apoptosis, notably owing to the lack of specific tools for programmed cell death analysis in these parasites. Furthermore, there is a need for a better understanding of Leishmania programmed cell death in order (i) to better understand the role of apoptosis in unicellular organisms, (ii) to better understand apoptosis in general through the study of an ancestral eukaryote, and (iii) to identify new therapeutic targets against leishmaniases. To advance understanding of apoptosis in Leishmania, in this study we developed a new tool based on the quantification of calcein and propidium iodide by flow cytometry. This double labeling can be employed to distinguish early apoptosis, late apoptosis and necrosis in Leishmania live cells with a very simple and rapid assay. This paper should, therefore, be of interest for people working on Leishmania and related parasites.

  15. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: study protocol

    PubMed Central

    2013-01-01

    Background Trypanosoma cruzi has been divided into Discrete Typing Units I and non-I (II-VI). T. cruzi I is predominant in Mexico and Central America, while non-I is predominant in most of South America, including Argentina. Little is known about congenital transmission of T. cruzi I. The specific aim of this study is to determine the rate of congenital transmission of T. cruzi I compared to non-I. Methods/design We are conducting a prospective study to enroll at delivery, 10,000 women in Argentina, 7,500 women in Honduras, and 13,000 women in Mexico. We are measuring transmitted maternal T. cruzi antibodies by performing two rapid tests in cord blood (Stat-Pak, Chembio, Medford, New York, and Trypanosoma Detect, InBios, Seattle, Washington). If at least one of the results is positive, we are identifying infants who are congenitally infected by performing parasitological examinations on cord blood and at 4–8 weeks, and serological follow-up at 10 months. Serological confirmation by ELISA (Wiener, Rosario, Argentina) is performed in cord and maternal blood, and at 10 months. We also are performing T. cruzi standard PCR, real-time quantitative PCR and genotyping on maternal venous blood and on cord blood, and serological examinations on siblings. Data are managed by a Data Center in Montevideo, Uruguay. Data are entered online at the sites in an OpenClinica data management system, and digital pictures of data forms are sent to the Data Center for quality control. Weekly reports allow for rapid feedback to the sites. Trial registration Observational study with ClinicalTrials.gov Identifier NCT01787968 PMID:24119247

  16. TRANSCRIPTIONAL INHIBITION OF INTERLEUKIN-12 PROMOTER ACTIVITY IN LEISHMANIA SPP.-INFECTED MACROPHAGES

    PubMed Central

    Jayakumar, Asha; Widenmaier, Robyn; Ma, Xiaojing; McDowell, Mary Ann

    2009-01-01

    To establish and persist within a host, Leishmania spp. parasites delay the onset of cell-mediated immunity by suppressing interleukin-12 (IL-12) production from host macrophages. Although it is established that Leishmania spp.-infected macrophages have impaired IL-12 production, the mechanisms that account for this suppression remain to be completely elucidated. Using a luciferase reporter assay assessing IL-12 transcription, we report here that Leishmania major, Leishmania donovani, and Leishmania chagasi inhibit IL-12 transcription in response to interferon-gamma, lipopolysaccharide, and CD40 ligand and that Leishmania spp. lipophosphoglycan, phosphoglycans, and major surface protein are not necessary for inhibition. In addition, all the Leishmania spp. strains and life-cycle stages tested inhibited IL-12 promoter activity. Our data further reveal that autocrine-acting host factors play no role in the inhibitory response and that phagocytosis signaling is necessary for inhibition of IL-12. PMID:18372625

  17. The Prevalence of Trypanosoma cruzi, the Causal Agent of Chagas Disease, in Texas Rodent Populations.

    PubMed

    Aleman, Adriana; Guerra, Trina; Maikis, Troy J; Milholland, Matthew T; Castro-Arellano, Ivan; Forstner, Michael R J; Hahn, Dittmar

    2017-03-01

    Rodent species were assessed as potential hosts of Trypanosoma cruzi, the etiologic agent of Chagas disease, from five sites throughout Texas in sylvan and disturbed habitats. A total of 592 rodents were captured, resulting in a wide taxonomic representation of 11 genera and 15 species. Heart samples of 543 individuals were successfully analyzed by SybrGreen-based quantitative PCR (qPCR) targeting a 166 bp fragment of satellite DNA of T. cruzi. Eight rodents representing six species from six genera and two families were infected with T. cruzi. This is the first report of T. cruzi in the pygmy mouse (Baiomys taylori) and the white-footed mouse (Peromyscus leucopus) for the USA. All infected rodents were from the southernmost site (Las Palomas Wildlife Management Area). No differences in pathogen prevalence existed between disturbed habitats (5 of 131 tested; 3.8%) and sylvan habitats (3 of 40 tested; 7.5%). Most positives (n = 6, 16% prevalence) were detected in late winter with single positives in both spring (3% prevalence) and fall (1% prevalence). Additionally, 30 Triatoma insects were collected opportunistically from sites in central Texas. Fifty percent of these insects, i.e., 13 T. gerstaeckeri (68%), and two T. lecticularia (100%) were positive for T. cruzi. Comparative sequence analyses of 18S rRNA of samples provided identical results with respect to detection of the presence or absence of T. cruzi and assigned T. cruzi from rodents collected in late winter to lineage TcI. T. cruzi from Triatoma sp. and rodents from subsequent collections in spring and fall were different, however, and could not be assigned to other lineages with certainty.

  18. The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment.

    PubMed

    Jansen, Ana Maria; Xavier, Samanta C C; Roque, André Luiz R

    2015-11-01

    In this study, we report and discuss the results generated from over 20 years of studies of the Trypanosoma cruzi sylvatic transmission cycle. Our results have uncovered new aspects and reviewed old concepts on issues including reservoirs, true generalist species, association of mammalian species with distinct discrete typing units - DTUs, distribution of T. cruzi genotypes in the wild, mixed infections, and T. cruzi transmission ecology. Using parasitological and serological tests, we examined T. cruzi infection in 7,285 mammalian specimens from nine mammalian orders dispersed all over the Brazilian biomes. The obtained T. cruzi isolates were characterized by mini-exon gene sequence polymorphism and PCR RFLP to identify DTUs. Infection by T. cruzi was detected by serological methods in 20% of the examined animals and isolated from 41% of those infected, corresponding to 8% of all the examined mammals. Each mammal taxon responded uniquely to T. cruzi infection. Didelphis spp. are able to maintain high and long-lasting parasitemias (positive hemocultures) caused by TcI but maintain and rapidly control parasitemias caused by TcII to almost undetectable levels. In contrast, the tamarin species Leontopithecus rosalia and L. chrysomelas maintain long-lasting and high parasitemias caused by TcII similarly to Philander sp. The coati Nasua nasua maintains high parasitemias by both parental T. cruzi DTUs TcI or TcII and by TcII/TcIV (formerly Z3) at detectable levels. Wild and domestic canidae seem to display only a short period of reservoir competence. T. cruzi infection was demonstrated in the wild canid species Cerdocyon thous and Chrysocyon brachyurus, and positive hemoculture was obtained in one hyper carnivore species (Leopardus pardalis), demonstrating that T. cruzi transmission is deeply immersed in the trophic net. T. cruzi DTU distribution in nature did not exhibit any association with a particular biome or habitat. TcI predominates throughout (58% of the T. cruzi

  19. Sand fly captures with Disney traps in area of occurrence of Leishmania (Leishmania) amazonensis in the state of Mato Grosso do Sul, mid-western Brazil.

    PubMed

    Dorval, Maria Elizabeth Cavalheiros; Alves, Tulia Peixoto; Cristaldo, Geucira; Rocha, Hilda Carlos da; Alves, Murilo Andrade; Oshiro, Elisa Teruya; Oliveira, Alessandra Gutierrez de; Brazil, Reginaldo Peçanha; Galati, Eunice Aparecida Bianchi; Cunha, Rivaldo Venancio da

    2010-01-01

    The work was conducted to study phlebotomine fauna (Diptera: Psychodidae) and aspects of American cutaneous leishmaniasis transmission in a forested area where Leishmania (Leishmania) amazonensis occurs, situated in the municipality of Bela Vista, State of Mato Grosso do Sul, Brazil. The captures were conducted with modified Disney traps, using hamster (Mesocricetus auratus) as bait, from May 2004 to January 2006. Ten species of phlebotomine sandflies were captured: Brumptomyia avellari, Brumptomyia brumpti, Bichromomyia flaviscutellata, Evandromyia bourrouli, Evandromyia lenti, Lutzomyia longipalpis, Psathyromyia campograndensis, Psathyromyia punctigeniculata, Psathyromyia shannoni and Sciopemyia sordellii. The two predominant species were Ev bourrouli (57.3%) and Bi flaviscutellata (41.4%), present at all sampling sites. Two of the 36 hamsters used as bait presented natural infection with Leishmania. The parasite was identified as Leishmania (Leishmania) amazonensis. Analysis of the results revealed the efficiency of Disney traps for capturing Bichromomyia flaviscutellata and the simultaneous presence of both vector and the Leishmania species transmitted by the same can be considered a predictive factor of the occurrence of leishmaniasis outbreaks for the human population that occupies the location.

  20. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  1. The Increase in Mannose Receptor Recycling Favors Arginase Induction and Trypanosoma Cruzi Survival in Macrophages

    PubMed Central

    Garrido, Vanina V.; Dulgerian, Laura R.; Stempin, Cinthia C.; Cerbán, Fabio M.

    2011-01-01

    The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular

  2. Landscape ecology of Trypanosoma cruzi in the southern Yucatan Peninsula.

    PubMed

    López-Cancino, Sury Antonio; Tun-Ku, Ezequiel; De la Cruz-Felix, Himmler Keynes; Ibarra-Cerdeña, Carlos Napoleón; Izeta-Alberdi, Amaia; Pech-May, Angélica; Mazariegos-Hidalgo, Carlos Jesús; Valdez-Tah, Alba; Ramsey, Janine M

    2015-11-01

    Landscape interactions of Trypanosoma cruzi (Tc) with Triatoma dimidiata (Td) depend on the presence and relative abundance of mammal hosts. This study analyzed a landscape adjacent to the Calakmul Biosphere Reserve, composed of conserved areas, crop and farming areas, and the human community of Zoh Laguna with reported Chagas disease cases. Sylvatic mammals of the Chiroptera, Rodentia, and Marsupialia orders were captured, and livestock and pets were sampled along with T. dimidiata in all habitats. Infection by T. cruzi was analyzed using mtDNA markers, while lineage and DTU was analyzed using the mini-exon. 303 sylvatic specimens were collected, corresponding to 19 species during the rainy season and 114 specimens of 18 species during dry season. Five bats Artibeus jamaicensis, Artibeus lituratus, Sturnira lilium, Sturnira ludovici, Dermanura phaeotis (Dp) and one rodent Heteromys gaumeri were collected in the three habitats. All but Dp, and including Carollia brevicauda and Myotis keaysi, were infected with predominately TcI in the sylvatic habitat and TcII in the ecotone. Sigmodon hispidus was the rodent with the highest prevalence of infection by T. cruzi I and II in ecotone and domestic habitats. Didelphis viginiana was infected only with TcI in both domestic and sylvatic habitats; the only two genotyped human cases were TcII. Two main clades of T. cruzi, lineages I (DTU Ia) and II (DTU VI), were found to be sympatric (all habitats and seasons) in the Zoh-Laguna landscape, suggesting that no species-specific interactions occur between the parasite and any mammal host, in any habitat. We have also found mixed infections of the two principal T. cruzi clades in individuals across modified habitats, particularly in livestock and pets, and in both haplogroups of T. dimidiata. Results are contradictory to the dilution hypothesis, although we did find that most resilient species had an important role as T. cruzi hosts. Our study detected some complex trends in

  3. Effects of habitat fragmentation on wild mammal infection by Trypanosoma cruzi.

    PubMed

    Vaz, V C; D'Andrea, P S; Jansen, A M

    2007-11-01

    Expansion of human activities frequently results in habitat fragmentation, a phenomenon that has been widely recognized in the last decades as one of the major threats to world's biodiversity. The transformation of a continuous forest into a fragmented area results in a hyper-dynamic landscape with unpredictable consequences to overall ecosystem health. The effect of the fragmentation process on Trypanosoma cruzi infection among small wild mammals was studied in an Atlantic Rain Forest landscape. Comparing continous forest to fragmented habitat, marsupials were less abundant than rodents in the continuous landscape. An overall decrease in small wild mammal richness was observed in the smaller fragments. An anti-T. cruzi seroprevalence of 18% (82/440) was deteced by immunofluorescence assay. Moreover, this seroprevalence was higher in the fragmented habitat than in the continuous forest. According to the collected data, 3 main factors seem to modulate infection by T. cruzi in small wild mammals: (i) habitat fragmentation; (ii) biodiversity loss; (iii) increase of marsupial abundance in mammal communities. Furthermore, an extremely mild controlled infection by T. cruzi was detected since no patent parasitaemia could be detected in fresh blood samples, and no parasites were isolated by haemoculture.

  4. Phylogenetic position of Leishmania isolates from Khyber Pakhtunkhwa province of Pakistan.

    PubMed

    Khan, Nazma Habib; Messenger, Louisa A; Wahid, Sobia; Sutherland, Colin J

    2016-08-01

    Several species of the genus Leishmania are causative agents of cutaneous leishmaniasis in Pakistan. This study aimed to determine phylogenetic placement of Leishmania species causing cutaneous leishmaniasis in Khyber Pakhtunkhwa province, Pakistan (34 Leishmania tropica, 3 Leishmania infantum), in-relation to species from other geographical areas using gene sequences encoding cytochrome b (cytb) and internal transcribed spacer 2 (its2). Based on cytochrome b sequence analysis, L. tropica strains from Pakistan and other geographical regions were differentiated into two genotype groups, A and B. Within the province, five distinct L. tropica genotypes were recognized; two in group A, three in group B. Two L. infantum isolates from the province were closely associated with both Afro-Eurasian and American species of the Leishmania donovani complex, including Leishmania chagasi, L. infantum and L. donovani from Sudan and Ethiopia; while a third L. infantum isolate could not be differentiated from visceralizing Kenyan and Indian L. donovani. We observed apposite phylogenetic placement of CL-causing L. tropica and L. infantum from Khyber Pakhtunkhwa. Affinities ascribed to Leishmania spp. From the region are valuable in tracing potential importation of leishmaniasis. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Ebi3 Prevents Trypanosoma cruzi-Induced Myocarditis by Dampening IFN-γ-Driven Inflammation

    PubMed Central

    Medina, Tiago Silva; Oliveira, Gabriela Gonçalves; Silva, Maria Cláudia; David, Bruna Araújo; Silva, Grace Kelly; Fonseca, Denise Morais; Sesti-Costa, Renata; Frade, Amanda Farage; Baron, Monique Andrade; Ianni, Barbara; Pereira, Alexandre Costa; Chevillard, Christophe; Cunha-Neto, Edécio; Marin-Neto, José Antonio; Silva, João Santana

    2017-01-01

    The identification of anti-inflammatory mediators can reveal important targetable molecules capable of counterbalancing Trypanosoma cruzi-induced myocarditis. Composed of Ebi3 and IL-27p28 subunits, IL-27 is produced by myeloid cells and is able to suppress inflammation by inducing IL-10-producing Tr1 cells, thus emerging as a potential candidate to ameliorate cardiac inflammation induced by T. cruzi. Although IL-27 has been extensively characterized as a suppressive cytokine that prevents liver immunopathogenesis after T. cruzi infection, the mechanisms underlying its effects on T. cruzi-induced myocarditis remain largely unknown. Here, wild-type (WT) and Ebi3-deficient animals were intraperitoneally infected with trypomastigotes of T. cruzi Y strain and used to evaluate the potential anti-inflammatory properties of Ebi3 during T. cruzi infection. The survival rates of mice were daily recorded, the frequency of inflammatory cells was analyzed by flow cytometry and inflammatory mediators were measured by ELISA, real-time PCR and PCR array. We reported that T. cruzi-induced myocarditis was prevented by Ebi3. Stressors mainly recognized by TLR2 and TLR4 receptors on myeloid cells were essential to trigger IL-27p28 production. In addition, Ebi3 regulated IFN-γ-mediated myocarditis by promoting an anti-inflammatory environment through IL-10, which was most likely produced by Tr1 cells rather than classical regulatory T cells (Tregs), in the heart tissue of T. cruzi-infected animals. Furthermore, in vivo IFN-γ blockade ameliorated the host survival without compromising the parasite control in the bloodstream. In humans, IL-27p28 was correlated with cardiac protection during Chagas disease. Patients with mild clinical forms of the disease produced high levels of IL-27p28, whereas lower levels were found in those with severe forms. In addition, polymorphic sites at Ebi3 gene were associated with severe cardiomyopathy in patients with Chagas disease. Collectively, we

  6. A genomic scale map of genetic diversity in Trypanosoma cruzi

    PubMed Central

    2012-01-01

    Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs): TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the population, providing an

  7. Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador.

    PubMed

    Quiroga, Cristina; Cevallos, Varsovia; Morales, Diego; Baldeón, Manuel E; Cárdenas, Paúl; Rojas-Silva, Patricio; Ponce, Patricio

    2017-11-07

    The detection and identification of natural infections in sand flies by Leishmania protozoan species in endemic areas is a key factor in assessing the risk of leishmaniasis and in designing prevention and control measures for this infectious disease. In this study, we analyzed the Leishmania DNA using nuclear ribosomal internal transcript spacer (ITS) sequences. Parasite DNA was extracted from naturally infected, blood-fed sand flies collected in nine localities considered leishmaniasis-endemic foci in Ecuador.The species of parasites identified in sand flies were Leishmania major-like, Leishmania naiffi, Leishmania mexicana, Leishmania lainsoni, and "Leishmania sp. siamensis". Sand fly specimens of Brumptomyia leopoldoi, Mycropigomyia cayennensis, Nyssomyia yuilli yuilli, Nyssomyia trapidoi, Pressatia triacantha, Pressatia dysponeta, Psychodopygus carrerai carrerai, Psychodopygus panamensis, and Trichophoromyia ubiquitalis were found positive for Leishmania parasite. These findings contribute to a better understanding of the epidemiology and transmission dynamics of the disease in high-risk areas of Ecuador. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador

    PubMed Central

    Cevallos, Varsovia; Morales, Diego; Baldeón, Manuel E; Cárdenas, Paúl; Rojas-Silva, Patricio; Ponce, Patricio

    2017-01-01

    Abstract The detection and identification of natural infections in sand flies by Leishmania protozoan species in endemic areas is a key factor in assessing the risk of leishmaniasis and in designing prevention and control measures for this infectious disease. In this study, we analyzed the Leishmania DNA using nuclear ribosomal internal transcript spacer (ITS) sequences. Parasite DNA was extracted from naturally infected, blood-fed sand flies collected in nine localities considered leishmaniasis-endemic foci in Ecuador. The species of parasites identified in sand flies were Leishmania major-like, Leishmania naiffi, Leishmania mexicana, Leishmania lainsoni, and “Leishmania sp. siamensis”. Sand fly specimens of Brumptomyia leopoldoi, Mycropigomyia cayennensis, Nyssomyia yuilli yuilli, Nyssomyia trapidoi, Pressatia triacantha, Pressatia dysponeta, Psychodopygus carrerai carrerai, Psychodopygus panamensis, and Trichophoromyia ubiquitalis were found positive for Leishmania parasite. These findings contribute to a better understanding of the epidemiology and transmission dynamics of the disease in high-risk areas of Ecuador. PMID:28981860

  9. Geographical, landscape and host associations of Trypanosoma cruzi DTUs and lineages.

    PubMed

    Izeta-Alberdi, Amaia; Ibarra-Cerdeña, Carlos N; Moo-Llanes, David A; Ramsey, Janine M

    2016-12-07

    The evolutionary history and ecological associations of Trypanosoma cruzi, the need to identify genetic markers that can distinguish parasite subpopulations, and understanding the parasite's evolutionary and selective processes have been the subject of a significant number of publications since 1998, the year when the first DNA sequence analysis for the species was published. The current analysis systematizes and re-analyzes this original research, focusing on critical methodological and analytical variables and results that have given rise to interpretations of putative patterns of genetic diversity and diversification of T. cruzi lineages, discrete typing units (DTUs), and populations, and their associations with hosts, vectors, and geographical distribution that have been interpreted as evidence for parasite subpopulation specificities. Few studies use hypothesis-driven or quantitative analysis for T. cruzi phylogeny (16/58 studies) or phylogeography (10/13). Among these, only one phylogenetic and five phylogeographic studies analyzed molecular markers directly from tissues (i.e. not from isolates). Analysis of T. cruzi DTU or lineage niche and its geographical projection demonstrate extensive sympatry among all clades across the continent and no significant niche differences among DTUs. DTU beta-diversity was high, indicating diverse host assemblages across regions, while host dissimilarity was principally due to host species turnover and to a much lesser degree to nestedness. DTU-host order specificities appear related to trophic or microenvironmental interactions. More rigorous study designs and analyses will be required to discern evolutionary processes and the impact of landscape modification on population dynamics and risk for T. cruzi transmission to humans.

  10. ABCG-like transporter of Trypanosoma cruzi involved in benznidazole resistance: gene polymorphisms disclose inter-strain intragenic recombination in hybrid isolates.

    PubMed

    Franco, Jaques; Ferreira, Renata C; Ienne, Susan; Zingales, Bianca

    2015-04-01

    Benznidazole (BZ) is one of the two drugs for Chagas disease treatment. In a previous study we showed that the Trypanosoma cruzi ABCG-like transporter gene, named TcABCG1, is over-expressed in parasite strains naturally resistant to BZ and that the gene of TcI BZ-resistant strains exhibited several single nucleotide polymorphisms (SNPs) as compared to the gene of CL Brener BZ-susceptible strain. Here we report the sequence of TcABCG1 gene of fourteen T. cruzi strains, with diverse degrees of BZ sensitivity and belonging to different discrete typing units (DTUs) and Tcbat group. Although DTU-specific SNPs and amino acid changes were identified, no direct correlation with BZ-resistance phenotype was found. Thus, it is plausible that the transporter abundance is a determinant factor for drug resistance, as pointed out above. Sequence data were used for Bayesian phylogenies and network genealogy analysis. The network showed a high degree of reticulation suggesting genetic exchange between the parasites. TcI and TcII clades were clearly separated. Tcbat sequences were close to TcI. A fourth clade clustered TcABCG1 haplotypes of TcV, TcVI and TcIII strains, with closer proximity to TcI. Analysis of the recombination patterns indicated that hybrid strains contain haplotypes that are mosaics most likely derived by intragenic recombination of parental sequences. The data confirm that TcII and TcIII as the parentals of TcV and TcVI DTUs. Since genetic fingerprint of TcI was found in TcIII, we sustain the previously proposed "Two Hybridization model" for the origin of hybrid strains. Among the twenty best BLASTP hits in databases, orthologues of TcABCG1 transporter were found in Leishmania spp. and African trypanosomes, though their function remains undescribed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    PubMed

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development. © 2016 John Wiley & Sons Ltd.

  12. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    PubMed Central

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  13. Natural infection of Ctenodactylus gundi by Leishmania major in Tunisia.

    PubMed

    Ghawar, Wissem; Bettaieb, Jihène; Salem, Sadok; Snoussi, Mohammed-Ali; Jaouadi, Kaouther; Yazidi, Rihab; Ben-Salah, Afif

    2018-01-01

    Incriminating new rodent species, as reservoir hosts of Leishmania parasites is crucial for understanding the transmission cycle of cutaneous leishmaniasis in Tunisia. Ctenodactylus (C.) gundi was previously described as extremely abundant in all Tunisian Leishmania (L.) tropica foci in south Tunisia besides its presence in L. major endemic area. The aim of this study was to detect Leishmania species parasites among C. gundi in two endemic regions in Tunisia: Sidi Bouzid and Tataouine. Total DNA was isolated from the spleens and the livers of 92C. gundi. Leishmaniasis clinical manifestations were detected among 11 rodents (12%). Leishmania parasites were detected in 30 (32.6%) rodents using direct exam method. Leishmania DNA was detected in 40 (43.5%) C. gundi by combining results among spleens and livers using ITS1-PCR. Positive samples were confirmed to be L. major except for only one specimen which was L. tropica. These results demonstrated, for the first time, the high natural infection rate of C. gundi with L. major parasites in Tunisia. Hence, C. gundi should be considered as potential reservoir host of Leishmania parasites causing cutaneous leishmaniasis in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  14. Leishmania and the macrophage: a multifaceted interaction.

    PubMed

    Podinovskaia, Maria; Descoteaux, Albert

    2015-01-01

    Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host-parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.

  15. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants

    PubMed Central

    Fretes, Ricardo E.; Kemmerling, Ulrike

    2012-01-01

    Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi) crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms. PMID:22701129

  16. Analysis of kinetoplast cytochrome b gene of 16 Leishmania isolates from different foci of China: different species of Leishmania in China and their phylogenetic inference

    PubMed Central

    2013-01-01

    Background Leishmania species belong to the family Trypanosomatidae and cause leishmaniasis, a geographically widespread disease that infects humans and other vertebrates. This disease remains endemic in China. Due to the large geographic area and complex ecological environment, the taxonomic position and phylogenetic relationship of Chinese Leishmania isolates remain uncertain. A recent internal transcribed spacer 1 and cytochrome oxidase II phylogeny of Chinese Leishmania isolates has challenged some aspects of their traditional taxonomy as well as cladistics hypotheses of their phylogeny. The current study was designed to provide further disease background and sequence analysis. Methods We systematically analyzed 50 cytochrome b (cyt b) gene sequences of 19 isolates (16 from China, 3 from other countries) sequenced after polymerase chain reaction (PCR) using a special primer for cyt b as well as 31 sequences downloaded from GenBank. After alignment, the data were analyzed using the maximum parsimony, Bayesian and netwok methods. Results Sequences of six haplotypes representing 10 Chinese isolates formed a monophyletic group and clustered with Leishmania tarentolae. The isolates GS1, GS7, XJ771 of this study from China clustered with other isolates of Leishmania donovani complex. The isolate JS1 was a sister to Leishmania tropica, which represented an L. tropica complex instead of clustering with L. donovani complex or with the other 10 Chinese isolates. The isolates KXG-2 and GS-GER20 formed a monophyletic group with Leishmania turanica from central Asia. In the different phylogenetic trees, all of the Chinese isolates occurred in at least four groups regardless of geographic distribution. Conclusions The undescribed Leishmania species of China, which are clearly causative agents of canine leishmaniasis and human visceral leishmaniasis and are related to Sauroleishmania, may have evolved from a common ancestral parasite that came from the Americas and may have

  17. Antimicrobial activity of synthetic bornyl benzoates against Trypanosoma cruzi

    PubMed Central

    Corrêa, P R C; Miranda, R R S; Duarte, L P; Silva, G D F; Filho, S A Vieira; Okuma, A A; Carazza, F; Morgado-Díaz, J A; Pinge-Filho, P; Yamauchi, L M; Nakamura, C V; Yamada-Ogatta, S F

    2012-01-01

    We report here for the first time the in vitro effects of (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl-3′,4′,5′-trimethoxy benzoate (1) and (1S,2R,4S)-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-yl benzoate (2) on the growth and ultrastructure of Trypanosoma cruzi. These two synthetic compounds exerted an antiproliferative effect on the epimastigote forms of the parasite. The ICs50/72h of two synthetic L-bornyl benzoates, 1 and 2, was 10.1 and 12.8 μg/ml, respectively. Both compounds were more selective against epimastigotes than HEp-2 cells. Ultrastructural analysis revealed intense cytoplasmic vacuolization and the appearance of cytoplasmic materials surrounded by membranes. The treatment of peritoneal macrophages with compounds 1 and 2 caused a significant decrease in the number of T. cruzi-infected cells. L-Bornyl benzoate derivatives may serve as a potential source for the development of more effective and safer chemotherapeutic agents against T. cruzi infections. PMID:22943546

  18. Glyceraldehyde 3-phosphate dehydrogenase-telomere association correlates with redox status in Trypanosoma cruzi.

    PubMed

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA.

  19. Glyceraldehyde 3-Phosphate Dehydrogenase-Telomere Association Correlates with Redox Status in Trypanosoma cruzi

    PubMed Central

    Pariona-Llanos, Ricardo; Pavani, Raphael Souza; Reis, Marcelo; Noël, Vincent; Silber, Ariel Mariano; Armelin, Hugo Aguirre; Cano, Maria Isabel Nogueira; Elias, Maria Carolina

    2015-01-01

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a classical metabolic enzyme involved in energy production and plays a role in additional nuclear functions, including transcriptional control, recognition of misincorporated nucleotides in DNA and maintenance of telomere structure. Here, we show that the recombinant protein T. cruzi GAPDH (rTcGAPDH) binds single-stranded telomeric DNA. We demonstrate that the binding of GAPDH to telomeric DNA correlates with the balance between oxidized and reduced forms of nicotinamide adenine dinucleotides (NAD+/NADH). We observed that GAPDH-telomere association and NAD+/NADH balance changed throughout the T. cruzi life cycle. For example, in replicative epimastigote forms of T. cruzi, which show similar intracellular concentrations of NAD+ and NADH, GAPDH binds to telomeric DNA in vivo and this binding activity is inhibited by exogenous NAD+. In contrast, in the T. cruzi non-proliferative trypomastigote forms, which show higher NAD+ concentration, GAPDH was absent from telomeres. In addition, NAD+ abolishes physical interaction between recombinant GAPDH and synthetic telomere oligonucleotide in a cell free system, mimicking exogenous NAD+ that reduces GAPDH-telomere interaction in vivo. We propose that the balance in the NAD+/NADH ratio during T. cruzi life cycle homeostatically regulates GAPDH telomere association, suggesting that in trypanosomes redox status locally modulates GAPDH association with telomeric DNA. PMID:25775131

  20. Surveillance of Trypanosoma cruzi transmission by serological screening of schoolchildren.

    PubMed Central

    de Andrade, A. L.; Zicker, F.; Luquetti, A. O.; Oliveira, R. M.; Silva, S. A.; Souza, J. M.; Martelli, C. M.

    1992-01-01

    The seroprevalence of Trypanosoma cruzi infection among children is a sensitive indicator for assessing the effectiveness of programmes for control of Chagas disease. In this study we report the result of a cross-sectional serological survey carried out among schoolchildren living in a poor rural area in central Brazil. Eluates of blood collected on filter-paper were tested for anti-T. cruzi antibodies using immunofluorescence, haemagglutination, and enzyme-linked immunosorbent assays. The overall seroprevalence of T. cruzi infection was 7.9%, which compared with the findings of the national survey carried out in 1975-80 indicates that a twofold-to-threefold reduction in prevalence has occurred over the last 10 years. This is consistent with a reduction of transmission in the area, probably related to vector control efforts. Based on our results, the incidence of new cases was estimated to be 44 per annum in the study region. In rural areas with a scattered population, surveillance of T. cruzi transmission by serological screening of children at school entry is more practical and economical than entomological evaluation for assessing both the risk of transmission in the community and the efficacy of vector control measures. A sample size of around 1000 schoolchildren is sufficient to detect prevalences as low as 2%, and such an approach would be practical and applicable to most areas where Chagas disease is endemic. PMID:1464149

  1. Temporal variation in Trypanosoma cruzi lineages from the native rodent Octodon degus in semiarid Chile.

    PubMed

    Botto-Mahan, Carezza; Rojo, Gemma; Sandoval-Rodríguez, Alejandra; Peña, Fabiola; Ortiz, Sylvia; Solari, Aldo

    2015-11-01

    Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi and transmitted by triatomine insects to several mammalian species acting as reservoir hosts. In the present study, we assess T. cruzi-prevalence and DTU composition of the endemic rodent Octodon degus from a hyper-endemic area of Chagas disease in Chile. Parasite detection is performed by PCR assays on blood samples of individuals captured in the austral summers of 2010-2013. The infection level in rodents differed in the summers of these four years between 18% and 70%. Overall, infected O. degus showed similar T. cruzi-DTU composition (TcI, TcII, TcV and TcVI lineages) among years, corresponding to single and mixed infection, but the relative importance of each DTU changed among years. In 2013, we detected that only three out of the four T. cruzi-DTU found in O. degus were present in the endemic triatomine Mepria spinolai. We suggest that O. degus, an abundant long-lived rodent, is an important native reservoir of T. cruzi in the wild transmission cycle of Chagas disease and it is able to maintain all the T. cruzi-DTUs described in semiarid Chile. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Leishmaniasis in the major endemic region of Plurinational State of Bolivia: Species identification, phylogeography and drug susceptibility implications.

    PubMed

    Bilbao-Ramos, Pablo; Dea-Ayuela, M Auxiliadora; Cardenas-Alegría, Oscar; Salamanca, Efraín; Santalla-Vargas, José Antonio; Benito, Cesar; Flores, Ninoska; Bolás-Fernández, Francisco

    2017-12-01

    The Plurinational State of Bolivia is one of the Latin American countries with the highest prevalence of leishmaniasis, highlighting the lowlands of the Department of La Paz where about 50% of the total cases were reported. The control of the disease can be seriously compromised by the intrinsic variability of the circulating species that may limit the efficacy of treatment while favoring the emergence of resistance. Fifty-five isolates of Leishmania from cutaneous and mucocutaneous lesions from patients living in different provinces of the Department of La Paz were tested. Molecular characterization of isolates was carried out by 3 classical markers: the rRNA internal transcribed spacer 1 (ITS-1), the heat shock protein 70 (HSP70) and the mitochondrial cytochrome b (Cyt-b). These markers were amplified by PCR and their products digested by the restriction endonuclease enzymes AseI and HaeIII followed by subsequent sequencing of Cyt-b gene and ITS-1 region for subsequent phylogenetic analysis. The combined use of these 3 markers allowed us to assign 36 isolates (65.5%) to the complex Leishmania (Viannia) braziliensis, 4 isolates (7, 27%) to L. (Viannia) lainsoni. and the remaining 15 isolates (23.7%) to a local variant of L. (Leishmania) mexicana. Concerning in vitro drug susceptibility the amastigotes from all isolates where highly sensitive to Fungizone ® (mean IC 50 between 0.23 and 0.5μg/mL) whereas against Glucantime ® the sensitivity was moderate (mean IC 50 ranging from 50.84μg/mL for L. (V.) braziliensis to 18.23μg/mL for L. (L.) mexicana. L. (V.) lainsoni was not sensitive to Glucantime ® . The susceptibility to miltefosine was highly variable among species isolates, being L. (L.) mexicana the most sensitive, followed by L. (V.) braziliensis and L. (V.) lainsoni (mean IC 50 of 8.24μg/mL, 17.85μg/mL and 23.28μg/mL, respectively). Copyright © 2017. Published by Elsevier B.V.

  3. Genome mining offers a new starting point for parasitology research.

    PubMed

    Lv, Zhiyue; Wu, Zhongdao; Zhang, Limei; Ji, Pengyu; Cai, Yifeng; Luo, Shiqi; Wang, Hongxi; Li, Hao

    2015-02-01

    Parasites including helminthes, protozoa, and medical arthropod vectors are a major cause of global infectious diseases, affecting one-sixth of the world's population, which are responsible for enormous levels of morbidity and mortality important and remain impediments to economic development especially in tropical countries. Prevalent drug resistance, lack of highly effective and practical vaccines, as well as specific and sensitive diagnostic markers are proving to be challenging problems in parasitic disease control in most parts of the world. The impressive progress recently made in genome-wide analysis of parasites of medical importance, including trematodes of Clonorchis sinensis, Opisthorchis viverrini, Schistosoma haematobium, S. japonicum, and S. mansoni; nematodes of Brugia malayi, Loa loa, Necator americanus, Trichinella spiralis, and Trichuris suis; cestodes of Echinococcus granulosus, E. multilocularis, and Taenia solium; protozoa of Babesia bovis, B. microti, Cryptosporidium hominis, Eimeria falciformis, E. histolytica, Giardia intestinalis, Leishmania braziliensis, L. donovani, L. major, Plasmodium falciparum, P. vivax, Trichomonas vaginalis, Trypanosoma brucei and T. cruzi; and medical arthropod vectors of Aedes aegypti, Anopheles darlingi, A. sinensis, and Culex quinquefasciatus, have been systematically covered in this review for a comprehensive understanding of the genetic information contained in nuclear, mitochondrial, kinetoplast, plastid, or endosymbiotic bacterial genomes of parasites, further valuable insight into parasite-host interactions and development of promising novel drug and vaccine candidates and preferable diagnostic tools, thereby underpinning the prevention and control of parasitic diseases.

  4. Trypanosoma cruzi Meningoencephalitis in a Patient with Acquired Immunodeficiency Syndrome

    PubMed Central

    Yasukawa, Kosuke; Patel, Shital M.; Flash, Charlene A.; Stager, Charles E.; Goodman, Jerry C.; Woc-Colburn, Laila

    2014-01-01

    As a result of global migration, a significant number of people with Trypanosoma cruzi infection now live in the United States, Canada, many countries in Europe, and other non-endemic countries. Trypanosoma cruzi meningoencephalitis is a rare cause of ring-enhancing lesions in patients with acquired immunodeficiency syndrome (AIDS) that can closely mimic central nervous system (CNS) toxoplasmosis. We report a case of CNS Chagas reactivation in an AIDS patient successfully treated with benznidazole and antiretroviral therapy in the United States. PMID:24891470

  5. Testing of Experimental Compounds for Efficacy Against Leishmania.

    DTIC Science & Technology

    1990-10-31

    quinolines, pyridines, heavey metal complexes, berberine derivatives, and pyrazine or quinazoline inhibitors of dihydrofolate reductase. were among those...Quinolines, pyridines, and heavy metal complexes (for example sulfonamides) were active while pyrazine or quinazoline inhibitors of dihydrofolate...braziliensis panamensis 8-aminoquinolines pyridines dihydrofolate reductase inhibitors rAce For]"..toa T ] NTAISOeaO.&. 0Stkia:.oouned Id SJut If leaat i

  6. Immunological Identification of Trypanosoma cruzi Lineages in Human Infection Along the Endemic Area

    PubMed Central

    Risso, Marikena G.; Sartor, Paula A.; Burgos, Juan M.; Briceño, Luis; Rodríguez, Eva M.; Guhl, Felipe; Chavez, Omar Triana; Espinoza, Berta; Monteón, Victor M.; Russomando, Graciela; Schijman, Alejandro G.; Bottasso, Oscar A.; Leguizamón, Maria Susana

    2011-01-01

    Genotyping studies show a polarized geographic distribution of Trypanosoma cruzi lineages in humans. Here, we assessed their distribution along Latin America through an immunological approach we designated Western blot (WB) assay with Trypomastigote small-surface antigen (TSSA) I and TSSA II (TSSA-WB). These antigens are expressed by T. cruzi I (TCI; now TcI) and T. cruzi II (TCII; reclassified as TcII to TcVI) parasites. TSSA-WB showed good concordance with genotyping tests. An unexpected frequency of TSSA II recognition was observed in Colombia, Venezuela, and Mexico (northern region of Latin America). In Argentina and Paraguay (southern region), immunophenotyping confirmed the already reported TCII (TcII to TcVI) dominance. The lineage distribution between these regions showed significant difference but not among countries within them (except for Colombia and Venezuela). TSSA-WB shows TCII emergence in the northern region where TCI was reported as dominant or even as the unique T. cruzi lineage infecting humans. PMID:21212206

  7. Differentiation of Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis using BccI for hsp70 PCR-RFLP.

    PubMed

    Montalvo Alvarez, Ana Margarita; Nodarse, Jorge Fraga; Goodridge, Ivón Montano; Fidalgo, Lianet Monzote; Marin, Marcel; Van Der Auwera, Gert; Dujardin, Jean-Claude; Bernal, Iván Darío Velez; Muskus, Carlos

    2010-05-01

    Leishmania panamensis and Leishmania guyanensis are two species of the subgenus Viannia that are genetically very similar. Both parasites are usually associated with cutaneous leishmaniasis, but also have the potential to cause the mucocutaneous form of the disease. In addition, the study of foci and consequently the identification of vectors and probable reservoirs involved in transmission require a correct differentiation between both species, which is important at epidemiological level. We explored the possibility of identifying these species by using restriction fragment length polymorphisms (RFLP) in the gene coding for heat-shock protein 70 (hsp70). Previously, an hsp70 PCR-RFLP assay proved to be very effective in differentiating other Leishmania species when HaeIII is used as restriction enzyme. Based on hsp70 sequences analysis, BccI was found to generate species-specific fragments that can easily be recognized by agarose gel electrophoresis. Using the analysis of biopsies, scrapings, and parasite isolates previously grouped in a cluster comprising both L. panamensis and L. guyanensis, we showed that our approach allowed differentiation of both entities. This offers the possibility not only for identification of parasites in biological samples, but also to apply molecular epidemiology in certain countries of the New World, where several Leishmania species could coexist. Copyright 2009 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  8. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru.

    PubMed

    Alroy, Karen A; Huang, Christine; Gilman, Robert H; Quispe-Machaca, Victor R; Marks, Morgan A; Ancca-Juarez, Jenny; Hillyard, Miranda; Verastegui, Manuela; Sanchez, Gerardo; Cabrera, Lilia; Vidal, Elisa; Billig, Erica M W; Cama, Vitaliano A; Náquira, César; Bern, Caryn; Levy, Michael Z

    2015-05-01

    Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2-18.0%), 19.8% (95% CI: 12.7-28.7%) and 3.3% (95% CI: 1.4-6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6-24.7%) among participants < 15 years, suggesting recent transmission. Increasing age, positive triatomines in a participant's house, and ownership of a T. cruzi positive guinea pig were independent correlates of T. cruzi infection. Only one species of triatomine was found, Panstrongylus lignarius, formerly P. herreri. Approximately forty percent (39.9%, 95% CI: 33.2-46.9%) of surveyed households were infested with this vector and 14.9% (95% CI: 10.4-20.5%) had at least one triatomine positive for T. cruzi. The cardiac abnormality of right bundle branch block was rare, but only identified in seropositive individuals. Our research documents a substantial prevalence of T. cruzi infection in Cutervo and highlights a need for greater attention and vector control efforts in northern Peru.

  9. Prevalence and Transmission of Trypanosoma cruzi in People of Rural Communities of the High Jungle of Northern Peru

    PubMed Central

    Alroy, Karen A.; Huang, Christine; Gilman, Robert H.; Quispe-Machaca, Victor R.; Marks, Morgan A.; Ancca-Juarez, Jenny; Hillyard, Miranda; Verastegui, Manuela; Sanchez, Gerardo; Cabrera, Lilia; Vidal, Elisa; Billig, Erica M. W.; Cama, Vitaliano A.; Náquira, César; Bern, Caryn; Levy, Michael Z.

    2015-01-01

    Background Vector-borne transmission of Trypanosoma cruzi is seen exclusively in the Americas where an estimated 8 million people are infected with the parasite. Significant research in southern Peru has been conducted to understand T. cruzi infection and vector control, however, much less is known about the burden of infection and epidemiology in northern Peru. Methodology A cross-sectional study was conducted to estimate the seroprevalence of T. cruzi infection in humans (n=611) and domestic animals [dogs (n=106) and guinea pigs (n=206)] in communities of Cutervo Province, Peru. Sampling and diagnostic strategies differed according to species. An entomological household study (n=208) was conducted to identify the triatomine burden and species composition, as well as the prevalence of T. cruzi in vectors. Electrocardiograms (EKG) were performed on a subset of participants (n=90 T. cruzi infected participants and 170 age and sex-matched controls). The seroprevalence of T. cruzi among humans, dogs, and guinea pigs was 14.9% (95% CI: 12.2 – 18.0%), 19.8% (95% CI: 12.7- 28.7%) and 3.3% (95% CI: 1.4 – 6.9%) respectively. In one community, the prevalence of T. cruzi infection was 17.2% (95% CI: 9.6 - 24.7%) among participants < 15 years, suggesting recent transmission. Increasing age, positive triatomines in a participant's house, and ownership of a T. cruzi positive guinea pig were independent correlates of T. cruzi infection. Only one species of triatomine was found, Panstrongylus lignarius, formerly P. herreri. Approximately forty percent (39.9%, 95% CI: 33.2 - 46.9%) of surveyed households were infested with this vector and 14.9% (95% CI: 10.4 - 20.5%) had at least one triatomine positive for T. cruzi. The cardiac abnormality of right bundle branch block was rare, but only identified in seropositive individuals. Conclusions Our research documents a substantial prevalence of T. cruzi infection in Cutervo and highlights a need for greater attention and vector

  10. Trypanosoma cruzi infection in Didelphis marsupialis in Santa Catarina and Arvoredo Islands, southern Brazil.

    PubMed

    Grisard, E C; Carvalho-Pinto, C J; Scholz, A F; Toma, H K; Schlemper, B R; Steindel, M

    2000-01-01

    Between 1984 and 1993 the prevalence of the Trypanosoma cruzi infection in opossums (Didelphis marsupialis) was studied in Santa Catarina and Arvoredo Islands, State of Santa Catarina, Brazil. The association of the triatomine bug Panstrongylus megistus with opossums nests and the infection rate of these triatomines by T. cruzi was also studied. Thirteen different locations were studied in Santa Catarina Island (SCI), in which 137 D. marsupialis were collected. Sixty two opossums were collected at the Arvoredo Island (AI), located 12 miles north from SCI. All captured animals were submitted to parasitological examinations that revealed the presence of T. cruzi in 21.9% of the opossums captured in SCI and 45.2% among opossums captured in the AI. The presence of P. megistus was detected in most of the D. marsupialis nests collected in the SCI, however, in the non-inhabited AI only eight triatomines were collected during the whole study. The presence of T. cruzi-infected D. marsupialis associated with P. megistus in human dwellings in the SCI, and the high infection rate of D. marsupilais by T. cruzi in the absence of a high vector density are discussed.

  11. Antileishmanial activities of dihydrochalcones from piper elongatum and synthetic related compounds. Structural requirements for activity.

    PubMed

    Hermoso, Alicia; Jiménez, Ignacio A; Mamani, Zulma A; Bazzocchi, Isabel L; Piñero, José E; Ravelo, Angel G; Valladares, Basilio

    2003-09-01

    Two dihydrochalcones (1 and 2) were isolated from Piper elongatum Vahl by activity-guided fractionation against extracellular promastigotes of Leishmania braziliensis in vitro. Their structures were elucidated by spectral analysis, including homonuclear and heteronuclear correlation NMR experiments. Derivatives 3-7 and 20 synthetic related compounds (8-27) were also assayed to establish the structural requirements for antileishmanial activity. Compounds 1-11 that proved to be more active that ketoconazol, used as positive control, were further assayed against promastigotes of Leishmania tropica and Leishmania infantum. Compounds 7 and 11, with a C(6)-C(3)-C(6) system, proved to be the most promising compounds, with IC(50) values of 2.98 and 3.65 microg/mL, respectively, and exhibited no toxic effect on macrophages (around 90% viability). Correlation between the molecular structures and antileishmanial activity is discussed in detail.

  12. Mechanism of interaction of sitamaquine with Leishmania donovani.

    PubMed

    Coimbra, E S; Libong, D; Cojean, S; Saint-Pierre-Chazalet, M; Solgadi, A; Le Moyec, L; Duenas-Romero, A M; Chaminade, P; Loiseau, P M

    2010-12-01

    This study focuses on the mechanism of interaction of sitamaquine with Leishmania donovani membranes, and its accumulation within the parasites. A biomimetic model of the outer layer of a Leishmania plasma membrane was used to examine the interactions of sitamaquine with lipids. The plasma membranes of L. donovani promastigotes were depleted of sterol using cholesterol oxidase, in order to assess the importance of sterols in drug-membrane interactions. Sterols were quantified and sitamaquine susceptibility was assessed using the MTT test. Kinetics of sitamaquine accumulation and efflux were measured under different conditions. Sitamaquine interacts first with phospholipid anionic polar head groups and then with phospholipid acyl chains to insert within biological membranes and accumulates rapidly in the Leishmania cytosol according to a sterol-independent process. The rapid sitamaquine efflux observed was related to an energy-dependent mechanism since the intracellular amount of sitamaquine was enhanced three times in the absence of glucose and the efflux was inhibited in energy-depleted conditions. (1)H NMR analysis of motile lipid showed that sitamaquine did not affect lipid trafficking in Leishmania. We propose that sitamaquine rapidly accumulates in Leishmania by diffusion along an electrical gradient and is concentrated in the cytosol by an energy- and sterol-independent process. The affinity of sitamaquine for membranes was transitory and an energy-dependent efflux was demonstrated, suggesting the presence of an as yet uncharacterized transporter.

  13. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells

    PubMed Central

    Benatar, Alejandro F.; García, Gabriela A.; Bua, Jacqeline; Cerliani, Juan P.; Postan, Miriam; Tasso, Laura M.; Scaglione, Jorge; Stupirski, Juan C.; Toscano, Marta A.

    2015-01-01

    Background Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection. Methodology and Principal Findings Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain. Conclusion/Significance Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions. PMID:26451839

  14. [Comparison of conventional and non-conventional serological tests for the diagnosis of imported Chagas disease in Spain].

    PubMed

    Flores-Chávez, María; Cruz, Israel; Rodríguez, Mercedes; Nieto, Javier; Franco, Elena; Gárate, Teresa; Cañavate, Carmen

    2010-05-01

    Trypanosoma cruzi infection is a major imported parasitic disease in Spain, because of the increase of immigrants from endemic areas. Since the laboratory diagnosis during the chronic phase is based on detection of anti-T. cruzi IgG antibodies, our aims were to compare 10 tests for determining anti-T. cruzi antibodies, to assess their cross-reactivity with related diseases, and to evaluate the rk39-ELISA and IFAT-Leishmania tests as tools for the differential diagnosis of leishmaniasis due to Leishmania infantum. A total of 223 sera were tested: 40 had been previously characterized by Qpanel, and 183 were obtained from the serum library of the Parasitology Department, Centro Nacional de Microbiología (66 chagasic, 97 healthy, 30 visceral leishmaniasis, and 30 malaria). Samples were examined using in-house IFAT and ELISA, 5 commercial ELISAs (Certest/Abbot Laboratories/BiosChile; Ortho Clinical Diagnostics; BLK Diagnostic; bioMérieux; and Biokit), particle gel agglutination (ID-PaGIA), and two immunochromatographic assays (Operon and CTK Biotech). The last 4 tests are based in recombinant antigens (non-conventional tests). The IFAT and ELISAs showed a sensitivity of 97% to 100%. The immunochromatographic tests had somewhat lower sensitivity (92%-96%). All non-conventional tests presented a smaller number of cross-reactions. Leishmania-Rk39-ELISA did not show cross-reactivity with chagasic sera. In general, our results confirm the data obtained by other authors. The sensitivity of ELISA is higher than other tests; therefore, these techniques would be the most appropriate for screening of T. cruzi infection. A suitable approach is the combination of a test using total antigen with another based on either recombinant antigens or synthetic peptides. (c) 2009 Elsevier España, S.L. All rights reserved.

  15. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists.

    PubMed

    Balcazar, Darío E; Vanrell, María Cristina; Romano, Patricia S; Pereira, Claudio A; Goldbaum, Fernando A; Bonomi, Hernán R; Carrillo, Carolina

    2017-04-01

    Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT

  16. The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists

    PubMed Central

    Balcazar, Darío E.; Vanrell, María Cristina; Romano, Patricia S.; Pereira, Claudio A.; Goldbaum, Fernando A.; Bonomi, Hernán R.; Carrillo, Carolina

    2017-01-01

    Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for

  17. First molecular detection of Leishmania tarentolae-like DNA in Sergentomyia minuta in Spain.

    PubMed

    Bravo-Barriga, Daniel; Parreira, Ricardo; Maia, Carla; Blanco-Ciudad, Juan; Afonso, Maria Odete; Frontera, Eva; Campino, Lenea; Pérez-Martín, Juan Enrique; Serrano Aguilera, Francisco Javier; Reina, David

    2016-03-01

    Phlebotomine sand flies (Diptera, Psychodidae) are vectors of multiple Leishmania species, among which Leishmania infantum stands out as a being frequently pathogenic to humans and dogs in Mediterranean countries. In this study, Sergentomyia minuta sand flies were collected using CDC miniature light traps in different 431 biotopes from Southwest Spain. A total of 114 females were tested for the presence of Leishmania DNA by targeting ITS-1 and cyt-B sequences by PCR. Leishmania DNA was detected in one S. minuta. Characterization of the obtained DNA sequences by phylogenetic analyses revealed close relatedness with Leishmania tarentolae Wenyon, 1921 as well as with both human and canine pathogenic strains of Asian origin (China), previously described as Leishmania sp. To our knowledge, this is the first report of phlebotomine sand flies naturally infected with L. tarentolae-like in Spain. The possible infection of sand flies with novel Leishmania species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniosis is endemic.

  18. From genomes to vaccines: Leishmania as a model.

    PubMed Central

    Almeida, Renata; Norrish, Alan; Levick, Mark; Vetrie, David; Freeman, Tom; Vilo, Jaak; Ivens, Alasdair; Lange, Uta; Stober, Carmel; McCann, Sharon; Blackwell, Jenefer M

    2002-01-01

    The 35 Mb genome of Leishmania should be sequenced by late 2002. It contains approximately 8500 genes that will probably translate into more than 10 000 proteins. In the laboratory we have been piloting strategies to try to harness the power of the genome-proteome for rapid screening of new vaccine candidate. To this end, microarray analysis of 1094 unique genes identified using an EST analysis of 2091 cDNA clones from spliced leader libraries prepared from different developmental stages of Leishmania has been employed. The plan was to identify amastigote-expressed genes that could be used in high-throughput DNA-vaccine screens to identify potential new vaccine candidates. Despite the lack of transcriptional regulation that polycistronic transcription in Leishmania dictates, the data provide evidence for a high level of post-transcriptional regulation of RNA abundance during the developmental cycle of promastigotes in culture and in lesion-derived amastigotes of Leishmania major. This has provided 147 candidates from the 1094 unique genes that are specifically upregulated in amastigotes and are being used in vaccine studies. Using DNA vaccination, it was demonstrated that pooling strategies can work to identify protective vaccines, but it was found that some potentially protective antigens are masked by other disease-exacerbatory antigens in the pool. A total of 100 new vaccine candidates are currently being tested separately and in pools to extend this analysis, and to facilitate retrospective bioinformatic analysis to develop predictive algorithms for sequences that constitute potentially protective antigens. We are also working with other members of the Leishmania Genome Network to determine whether RNA expression determined by microarray analyses parallels expression at the protein level. We believe we are making good progress in developing strategies that will allow rapid translation of the sequence of Leishmania into potential interventions for disease

  19. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA.

    PubMed

    Shender, Lisa A; Lewis, Michael D; Rejmanek, Daniel; Mazet, Jonna A K

    2016-01-01

    Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Triatoma protracta populations in California are frequently infected with T. cruzi. Our data extend

  20. Molecular Diversity of Trypanosoma cruzi Detected in the Vector Triatoma protracta from California, USA

    PubMed Central

    Shender, Lisa A.; Lewis, Michael D.; Rejmanek, Daniel; Mazet, Jonna A. K.

    2016-01-01

    Background Trypanosoma cruzi, causative agent of Chagas disease in humans and dogs, is a vector-borne zoonotic protozoan parasite that can cause fatal cardiac disease. While recognized as the most economically important parasitic infection in Latin America, the incidence of Chagas disease in the United States of America (US) may be underreported and even increasing. The extensive genetic diversity of T. cruzi in Latin America is well-documented and likely influences disease progression, severity and treatment efficacy; however, little is known regarding T. cruzi strains endemic to the US. It is therefore important to expand our knowledge on US T. cruzi strains, to improve upon the recognition of and response to locally acquired infections. Methodology/Principle Findings We conducted a study of T. cruzi molecular diversity in California, augmenting sparse genetic data from southern California and for the first time investigating genetic sequences from northern California. The vector Triatoma protracta was collected from southern (Escondido and Los Angeles) and northern (Vallecito) California regions. Samples were initially screened via sensitive nuclear repetitive DNA and kinetoplast minicircle DNA PCR assays, yielding an overall prevalence of approximately 28% and 55% for southern and northern California regions, respectively. Positive samples were further processed to identify discrete typing units (DTUs), revealing both TcI and TcIV lineages in southern California, but only TcI in northern California. Phylogenetic analyses (targeting COII-ND1, TR and RB19 genes) were performed on a subset of positive samples to compare Californian T. cruzi samples to strains from other US regions and Latin America. Results indicated that within the TcI DTU, California sequences were similar to those from the southeastern US, as well as to several isolates from Latin America responsible for causing Chagas disease in humans. Conclusions/Significance Triatoma protracta populations

  1. Performance of commercially available serological diagnostic tests to detect Leishmania infantum infection on experimentally infected dogs.

    PubMed

    Rodríguez-Cortés, Alhelí; Ojeda, Ana; Todolí, Felicitat; Alberola, Jordi

    2013-01-31

    Leishmania infantum (syn. Leishmania chagasi) is the etiological agent of a widespread serious zoonotic disease that affects both humans and dogs. Prevalence and incidence of the canine infection are important parameters to determine the risk and the ways to control this reemergent zoonosis. Unfortunately, there is not a gold standard test for Leishmania infection. Our aim was to assess the operative validity of commercial tests used to detect antibodies to Leishmania in serum samples from experimental infections. Three ELISA tests (LEISCAN(®) Leishmania ELISA Test, INGEZIM(®) LEISHMANIA, and INGEZIM(®) LEISHMANIA VET), three immunochromatographic tests (INGEZIM(®) LEISHMACROM, SNAP(®) Leishmania, and WITNESS(®) Leishmania), and one IFAT were evaluated. LEISCAN(®) Leishmania ELISA test achieved the highest sensitivity and accuracy (both 0.98). Specificity was 1 for all tests except for IFAT. All tests but IFAT obtained a positive predictive value of 1, while the maximum negative predictive value was achieved by LEISCAN(®) Leishmania ELISA Test (0.93). The best positive likelihood ratio was obtained by INGEZIM(®) LEISHMANIA VET (30.26), while the best negative likelihood ratio was obtained by LEISCAN(®) Leishmania ELISA Test (0.02). The highest diagnostic odds ratio was achieved by LEISCAN(®) Leishmania ELISA Test (729.00). The largest area under the ROC curve was obtained by LEISCAN(®) Leishmania ELISA Test (0.981). Quantitative ELISA based tests performmed better than qualitative tests ("Rapid Tests"), and the test best suited to detect Leishmania in infected dogs and to provide clinically useful information was LEISCAN(®) Leishmania ELISA Test. This and other results point also to the need of revising the status of IFAT as a gold standard for the diagnosis of leishmaniasis. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    PubMed

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  3. Regional Variation in the Correlation of Antibody and T-Cell Responses to Trypanosoma cruzi

    PubMed Central

    Martin, Diana L.; Marks, Morgan; Galdos-Cardenas, Gerson; Gilman, Robert H.; Goodhew, Brook; Ferrufino, Lisbeth; Halperin, Anthony; Sanchez, Gerardo; Verastegui, Manuela; Escalante, Patricia; Naquira, Cesar; Levy, Michael Z.; Bern, Caryn

    2014-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Central and South America. Geographic variations in the sensitivity of serologic diagnostic assays to T. cruzi may reflect differences in T. cruzi exposure. We measured parasite-specific T-cell responses among seropositive individuals in two populations from South America with widely varying antibody titers against T. cruzi. Antibody titers among seropositive individuals were significantly lower in Arequipa, Peru compared with Santa Cruz, Bolivia. Similarly, the proportion of seropositive individuals with positive T-cell responses was lower in Peru than Bolivia, resulting in overall lower frequencies of interferon-γ (IFNγ)-secreting cells from Peruvian samples. However, the magnitude of the IFNγ response was similar among the IFNγ responders in both locations. These data indicate that immunological discrepancies based on geographic region are reflected in T-cell responses as well as antibody responses. PMID:24710614

  4. Familial Analysis of Seropositivity to Trypanosoma cruzi and of Clinical Forms of Chagas Disease

    PubMed Central

    Silva-Grecco, Roseane L.; Balarin, Marly A. S.; Correia, Dalmo; Prata, Aluízio; Rodrigues, Virmondes

    2010-01-01

    A cross-sectional study was carried out in Água Comprida, MG, Brazil, a region previously endemic to Chagas disease whose vectorial transmission was interrupted around 20 year ago. A total of 998 individuals were examined for anti-Trypanosoma cruzi antibodies. Seropositivity was observed in 255 subjects (25.5%), and 743 subjects were negative. Forty-one families with 5–80 individuals with similar environmental conditions were selected for familial analysis. In 15 families, seropositivity to T. cruzi was observed in > 50% of individuals. The segregation analysis confirmed family aggregation for the seropositivity to the T. cruzi. Heart commitment was the major clinical form observed, and in six families, > 50% of the individuals display cardiopathy that may be attributed to T. cruzi infection. Our results support the hypothesis that there is a family aggregation for the seropositivity but without the effect of one major gene. PMID:20064994

  5. Immunization with antigenic extracts of Leishmania associated with Montanide ISA 763 adjuvant induces partial protection in BALB/c mice against Leishmania (Leishmania) amazonensis infection.

    PubMed

    Cargnelutti, Diego Esteban; Salomón, María Cristina; Celedon, Verónica; García Bustos, María Fernanda; Morea, Gastón; Cuello-Carrión, Fernando Darío; Scodeller, Eduardo Alberto

    2016-02-01

    A proper adjuvant has a relevant role in vaccine formulations to generate an effective immune response. In this study, total Leishmania antigen (TLA) formulated with Montanide ISA 763 or R848 as adjuvants were evaluated as a first generation Leishmania vaccine in a murine model. Immunization protocols were tested in BALB/c mice with a subcutaneous prime/boost regimen with an interval of 3 weeks. Mice immunized with unadjuvanted TLA and phosphate-buffered saline (PBS) served as control groups. On Day 21 and Day 36 of the protocol, we evaluated the humoral immune response induced by each formulation. Fifteen days after the boost, the immunized mice were challenged with 1 × 10(5) promastigotes of Leishmania (Leishmania) amazonensis in the right footpad (RFP). The progress of the infection was followed for 10 weeks; at the end of this period, histopathological studies were performed in the RFP. Vaccines formulated with Montanide ISA 763 generated an increase in the production of immunoglobulin G (IgG; p < 0.05) compared with the control group. There were no statistically significant differences in IgG1 production between the study groups. However, immunization with TLA-Montanide ISA 763 resulted in an increase in IgG2a compared to the unadjuvanted control (p < 0.001). Also noteworthy was the fact that a significant reduction in swelling and histopathological damage of the RFP was recorded with the Montanide ISA 763 formulation. We conclude that the immunization of BALB/c mice with a vaccine formulated with TLA and Montanide ISA 763 generated a protective immune response against L. (L.) amazonensis, characterized by an intense production of IgG2a. Copyright © 2014. Published by Elsevier B.V.

  6. Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani

    PubMed Central

    Joshi, Sumit; Yadav, Narendra K.; Rawat, Keerti; Tripathi, Chandra Dev P.; Jaiswal, Anil K.; Khare, Prashant; Tandon, Rati; Baharia, Rajendra K.; Das, Sanchita; Gupta, Reema; Kushawaha, Pramod K.; Sundar, Shyam; Sahasrabuddhe, Amogh A.; Dube, Anuradha

    2016-01-01

    Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL). Eighteen Th1 stimulatory proteins were identified through proteomic analysis of this subfraction, out of which 15 were developed as recombinant proteins. In the present work, we have evaluated these 15 recombinant proteins simultaneously for their comparative cellular responses in treated Leishmania patients and hamsters. Six proteins viz. elongation factor-2, enolase, aldolase, triose phosphate isomerase, protein disulfide isomerase, and p45 emerged as most immunogenic as they produced a significant lymphoproliferative response, nitric oxide generation and Th1 cytokine response in PBMCs and lymphocytes of treated Leishmania patients and hamsters respectively. The results suggested that these proteins may be exploited for developing a successful poly-protein and/or poly-epitope vaccine against VL. PMID:27047452

  7. Trypanosoma cruzi meningoencephalitis in a patient with acquired immunodeficiency syndrome.

    PubMed

    Yasukawa, Kosuke; Patel, Shital M; Flash, Charlene A; Stager, Charles E; Goodman, Jerry C; Woc-Colburn, Laila

    2014-07-01

    As a result of global migration, a significant number of people with Trypanosoma cruzi infection now live in the United States, Canada, many countries in Europe, and other non-endemic countries. Trypanosoma cruzi meningoencephalitis is a rare cause of ring-enhancing lesions in patients with acquired immunodeficiency syndrome (AIDS) that can closely mimic central nervous system (CNS) toxoplasmosis. We report a case of CNS Chagas reactivation in an AIDS patient successfully treated with benznidazole and antiretroviral therapy in the United States. © The American Society of Tropical Medicine and Hygiene.

  8. Cost-Effectiveness of Blood Donation Screening for Trypanosoma cruzi in Mexico

    PubMed Central

    Sánchez-González, Gilberto; Figueroa-Lara, Alejandro; Elizondo-Cano, Miguel; Wilson, Leslie; Novelo-Garza, Barbara; Valiente-Banuet, Leopoldo; Ramsey, Janine M.

    2016-01-01

    An estimated 2 million inhabitants are infected with Chagas disease in Mexico, with highest prevalence coinciding with highest demographic density in the southern half of the country. After vector-borne transmission, Trypanosoma cruzi is principally transmitted to humans via blood transfusion. Despite initiation of serological screening of blood donations or donors for T. cruzi since 1990 in most Latin American countries, Mexico only finally included mandatory serological screening nationwide in official Norms in 2012. Most recent regulatory changes and segmented blood services in Mexico may affect compliance of mandatory screening guidelines. The objective of this study was to calculate the incremental cost-effectiveness ratio for total compliance of current guidelines from both Mexican primary healthcare and regular salaried worker health service institutions: the Secretary of Health and the Mexican Institute for Social Security. We developed a bi-modular model to analyze compliance using a decision tree for the most common screening algorithms for each health institution, and a Markov transition model for the natural history of illness and care. The incremental cost effectiveness ratio based on life-years gained is US$ 383 for the Secretary of Health, while the cost for an additional life-year gained is US$ 463 for the Social Security Institute. The results of the present study suggest that due to incomplete compliance of Mexico’s national legislation during 2013 and 2014, the MoH has failed to confirm 15,162 T. cruzi infections, has not prevented 2,347 avoidable infections, and has lost 333,483 life-years. Although there is a vast difference in T. cruzi prevalence between Bolivia and Mexico, Bolivia established mandatory blood screening for T.cruzi in 1996 and until 2002 detected and discarded 11,489 T. cruzi -infected blood units and prevented 2,879 potential infections with their transfusion blood screening program. In the first two years of Mexico

  9. Cost-Effectiveness of Blood Donation Screening for Trypanosoma cruzi in Mexico.

    PubMed

    Sánchez-González, Gilberto; Figueroa-Lara, Alejandro; Elizondo-Cano, Miguel; Wilson, Leslie; Novelo-Garza, Barbara; Valiente-Banuet, Leopoldo; Ramsey, Janine M

    2016-03-01

    An estimated 2 million inhabitants are infected with Chagas disease in Mexico, with highest prevalence coinciding with highest demographic density in the southern half of the country. After vector-borne transmission, Trypanosoma cruzi is principally transmitted to humans via blood transfusion. Despite initiation of serological screening of blood donations or donors for T. cruzi since 1990 in most Latin American countries, Mexico only finally included mandatory serological screening nationwide in official Norms in 2012. Most recent regulatory changes and segmented blood services in Mexico may affect compliance of mandatory screening guidelines. The objective of this study was to calculate the incremental cost-effectiveness ratio for total compliance of current guidelines from both Mexican primary healthcare and regular salaried worker health service institutions: the Secretary of Health and the Mexican Institute for Social Security. We developed a bi-modular model to analyze compliance using a decision tree for the most common screening algorithms for each health institution, and a Markov transition model for the natural history of illness and care. The incremental cost effectiveness ratio based on life-years gained is US$ 383 for the Secretary of Health, while the cost for an additional life-year gained is US$ 463 for the Social Security Institute. The results of the present study suggest that due to incomplete compliance of Mexico's national legislation during 2013 and 2014, the MoH has failed to confirm 15,162 T. cruzi infections, has not prevented 2,347 avoidable infections, and has lost 333,483 life-years. Although there is a vast difference in T. cruzi prevalence between Bolivia and Mexico, Bolivia established mandatory blood screening for T.cruzi in 1996 and until 2002 detected and discarded 11,489 T. cruzi -infected blood units and prevented 2,879 potential infections with their transfusion blood screening program. In the first two years of Mexico's mandated

  10. High Throughput Screening for Anti–Trypanosoma cruzi Drug Discovery

    PubMed Central

    Alonso-Padilla, Julio; Rodríguez, Ana

    2014-01-01

    The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti–T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti–T. cruzi drug entities in the near future, are reviewed here. PMID:25474364

  11. High throughput screening for anti-Trypanosoma cruzi drug discovery.

    PubMed

    Alonso-Padilla, Julio; Rodríguez, Ana

    2014-12-01

    The discovery of new therapeutic options against Trypanosoma cruzi, the causative agent of Chagas disease, stands as a fundamental need. Currently, there are only two drugs available to treat this neglected disease, which represents a major public health problem in Latin America. Both available therapies, benznidazole and nifurtimox, have significant toxic side effects and their efficacy against the life-threatening symptomatic chronic stage of the disease is variable. Thus, there is an urgent need for new, improved anti-T. cruzi drugs. With the objective to reliably accelerate the drug discovery process against Chagas disease, several advances have been made in the last few years. Availability of engineered reporter gene expressing parasites triggered the development of phenotypic in vitro assays suitable for high throughput screening (HTS) as well as the establishment of new in vivo protocols that allow faster experimental outcomes. Recently, automated high content microscopy approaches have also been used to identify new parasitic inhibitors. These in vitro and in vivo early drug discovery approaches, which hopefully will contribute to bring better anti-T. cruzi drug entities in the near future, are reviewed here.

  12. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis

    PubMed Central

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection. PMID:26513474

  13. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis.

    PubMed

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.

  14. Clinical and epidemiological features of chronic Trypanosoma cruzi infection in patients with HIV/AIDS in Buenos Aires, Argentina.

    PubMed

    Benchetrit, Andrés Guillermo; Fernández, Marisa; Bava, Amadeo Javier; Corti, Marcelo; Porteiro, Norma; Martínez Peralta, Liliana

    2018-02-01

    Trypanosoma cruzi reactivation in HIV patients is considered an opportunistic infection, usually with a fatal outcome. The aim of this study was to describe the epidemiological and clinical features of T. cruzi infection in HIV patients and to compare these findings between patients with and without Chagas disease reactivation. The medical records of T. cruzi-HIV co-infected patients treated at the Muñiz Infectious Diseases Hospital from January 2005 to December 2014 were reviewed retrospectively. Epidemiological and clinical features were assessed and compared between patients with and without Chagas disease reactivation. The medical records of 80 T. cruzi-HIV co-infected patients were reviewed. The most likely route of T. cruzi infection was vector-borne (32/80 patients), followed by intravenous drug use (12/80). Nine of 80 patients had reactivation. Patients without reactivation had a significantly higher CD4 T-cell count at diagnosis of T. cruzi infection (144 cells/μl vs. 30 cells/μl, p=0.026). Chagas disease serology was negative in two of nine patients with reactivation. Serological assays for T. cruzi infection may be negative in severely immunocompromised patients. Direct parasitological techniques should be performed in the diagnosis of patients for whom there is a suspicion of T. cruzi reactivation. HIV patients with a lower CD4 count are at higher risk of reactivation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Seroprevalence of CANINE LEISHMANIASIS AND American trypanosomiasis in dogs from Grenada, West Indies

    USDA-ARS?s Scientific Manuscript database

    Canine leishmaniasis and American trypanosomiasis (AT) are caused by related hemoflagellated parasites, Leishmania spp. and Trypanosoma cruzi, which share several common host species. Dogs are reservoirs for human infections with both pathogens. We determined the prevalence of antibodies to Leishman...

  16. In vitro activity of Tridax procumbens against promastigotes of Leishmania mexicana.

    PubMed

    Martín-Quintal, Zhelmy; Moo-Puc, Rosa; González-Salazar, Francisco; Chan-Bacab, Manuel J; Torres-Tapia, Luis W; Peraza-Sánchez, Sergio R

    2009-04-21

    Tridax procumbens is an active herb against leishmaniasis. Leishmaniasis is a group of diseases caused by Leishmania protozoa. We investigated the antileishmanial activity of Tridax procumbens extracts and a pure compound against promastigotes of Leishmania mexicana, the causative agent of cutaneous leishmaniasis in the New World. Extracts and (3S)-16,17-didehydrofalcarinol (1) were obtained by chromatographic methods from Tridax procumbens, and the latter identified by spectroscopic analysis. The effect of these extracts and 1 on the growth inhibition of promastigotes of Leishmania mexicana was evaluated. In order to test the safety of extracts and 1, mammalian cells were treated with them, and cell viability was assessed using trypan blue and MTT. We demonstrated that extracts of Tridax procumbens and 1 showed a pronounced activity against Leishmania mexicana. The methanol extract inhibited promastigotes growth of Leishmania mexicana with a 50% inhibitory concentration (IC(50)) of 3 microg/ml, while oxylipin 1 exhibited the highest inhibition at IC(50)=0.478 microg/ml. In this study we report the biological activity of extracts and (3S)-16,17-didehydrofalcarinol (1), obtained from Tridax procumbens, on the promastigote form of Leishmania mexicana, with no effect upon mammalian cells.

  17. Proteases and phosphatases during Leishmania-macrophage interaction: paving the road for pathogenesis.

    PubMed

    Gómez, María Adelaida; Olivier, Martin

    2010-01-01

    The outcome of Leishmania infection depends both on host and pathogen factors. Macrophages, the specialized host cells for uptake and intracellular development of Leishmania, play a central role in the control of infection. Leishmania has evolved strategies to downregulate host cell functions, largely mediated by the parasite-induced activation of macrophage protein tyrosine phosphatases (PTPs). We have recently identified PTP1B and TCPTP as two additional PTPs engaged upon Leishmania infection and have unraveled an intimate interaction between the Leishmania surface protease GP63 and host PTPs, which mediates a mechanism of cleavage-dependent PTP activation. Here we discuss new perspectives for GP63-mediated parasite virulence and propose putative mechanisms of GP63 internalization into host macrophages and access to intracellular substrates.

  18. Trypanosoma cruzi strains from triatomine collected in Bahia and Rio Grande do Sul, Brazil.

    PubMed

    Ribeiro, Aline Rimoldi; Mendonça, Vagner José; Alves, Renata Tomé; Martinez, Isabel; Araújo, Renato Freitas de; Mello, Fernanda; da Rosa, João Aristeu

    2014-04-01

    Collection of triatomines in domestic, peridomestic and sylvatic environments in states of Bahia and Rio Grande do Sul, Northeastern and Southern Brazil respectively, and isolation of Trypanosoma cruzi strains. First, the captured triatomines were identified using insect identification keys, then their intestinal content was examined by abdominal compression, and the samples containing trypanosomatid forms were inoculated in LIT medium and Swiss mice. Six triatomine species were collected in cities in Bahia, namely Panstrongylus geniculatus (01), Triatoma melanocephala (11), T. lenti (94), T. pseudomaculata (02), T. sherlocki (26) and T. sordida (460), and two in cities in Rio Grande do Sul, namely T. circummaculata (11) and T. rubrovaria (115). Out of the specimens examined, T. cruzi was isolated from 28 triatomine divided into four different species: T. melanocephala (one), T. lenti (one), T. rubrovaria (16) and T. sordida (10). Their index of natural infection by T. cruzi was 6.4%. The isolation of T. cruzi strains from triatomines found in domestic and peridomestic areas shows the potential risk of transmission of Chagas disease in the studied cities. The maintenance of those T. cruzi strains in laboratory is intended to promote studies that facilitate the understanding of the parasite-vector-host relationship.

  19. Trypanosoma cruzi strains from triatomine collected in Bahia and Rio Grande do Sul, Brazil

    PubMed Central

    Ribeiro, Aline Rimoldi; Mendonça, Vagner José; Alves, Renata Tomé; Martinez, Isabel; de Araújo, Renato Freitas; Mello, Fernanda; da Rosa, João Aristeu

    2014-01-01

    OBJECTIVE Collection of triatomines in domestic, peridomestic and sylvatic environments in states of Bahia and Rio Grande do Sul, Northeastern and Southern Brazil respectively, and isolation of Trypanosoma cruzi strains. METHODS First, the captured triatomines were identified using insect identification keys, then their intestinal content was examined by abdominal compression, and the samples containing trypanosomatid forms were inoculated in LIT medium and Swiss mice. RESULTS Six triatomine species were collected in cities in Bahia, namely Panstrongylus geniculatus (01), Triatoma melanocephala (11), T. lenti (94), T. pseudomaculata (02), T. sherlocki (26) and T. sordida (460), and two in cities in Rio Grande do Sul, namely T. circummaculata (11) and T. rubrovaria (115). Out of the specimens examined, T. cruzi was isolated from 28 triatomine divided into four different species: T. melanocephala (one), T. lenti (one), T. rubrovaria (16) and T. sordida (10). Their index of natural infection by T. cruzi was 6.4%. CONCLUSIONS The isolation of T. cruzi strains from triatomines found in domestic and peridomestic areas shows the potential risk of transmission of Chagas disease in the studied cities. The maintenance of those T. cruzi strains in laboratory is intended to promote studies that facilitate the understanding of the parasite-vector-host relationship. PMID:24897051

  20. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.

    PubMed

    Arias, Diego G; Piñeyro, María Dolores; Iglesias, Alberto A; Guerrero, Sergio A; Robello, Carlos

    2015-04-29

    Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi. T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi

  1. Galectin-3: A Friend but Not a Foe during Trypanosoma cruzi Experimental Infection.

    PubMed

    da Silva, Aline A; Teixeira, Thaise L; Teixeira, Samuel C; Machado, Fabrício C; Dos Santos, Marlus A; Tomiosso, Tatiana C; Tavares, Paula C B; Brígido, Rebecca T E Silva; Martins, Flávia Alves; Silva, Nadjania S de Lira; Rodrigues, Cassiano C; Roque-Barreira, Maria C; Mortara, Renato A; Lopes, Daiana S; Ávila, Veridiana de Melo Rodrigues; da Silva, Claudio V

    2017-01-01

    Trypanosoma cruzi interacts with host cells, including cardiomyocytes, and induces the production of cytokines, chemokines, metalloproteinases, and glycan-binding proteins. Among the glycan-binding proteins is Galectin-3 (Gal-3), which is upregulated after T. cruzi infection. Gal-3 is a member of the lectin family with affinity for β-galactose containing molecules; it can be found in both the nucleus and the cytoplasm and can be either membrane-associated or secreted. This lectin is involved in several immunoregulatory and parasite infection process. Here, we explored the consequences of Gal-3 deficiency during acute and chronic T. cruzi experimental infection. Our results demonstrated that lack of Gal-3 enhanced in vitro replication of intracellular parasites, increased in vivo systemic parasitaemia, and reduced leukocyte recruitment. Moreover, we observed decreased secretion of pro-inflammatory cytokines in spleen and heart of infected Gal-3 knockout mice. Lack of Gal-3 also led to elevated mast cell recruitment and fibrosis of heart tissue. In conclusion, galectin-3 expression plays a pivotal role in controlling T. cruzi infection, preventing heart damage and fibrosis.

  2. Prevalence and Seroprevalence of Trypanosoma cruzi Infection in a Military Population in Texas.

    PubMed

    Webber, Bryant J; Pawlak, Mary T; Valtier, Sandra; Daniels, Candelaria C; Tully, Charla C; Wozniak, Edward J; Roachell, Walter D; Sanchez, Francisco X; Blasi, Audra A; Cropper, Thomas L

    2017-11-01

    Recent biosurveillance findings at Joint Base San Antonio (JBSA), a large military installation located in south-central Texas, indicate the potential for vector-borne human Chagas disease. A cross-sectional study was conducted to determine the prevalence and seroprevalence of Trypanosoma cruzi infection in highest risk subpopulations on the installation, including students and instructors who work and sleep in triatomine-endemic field settings. Real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and indirect immunofluorescent antibody assay were performed on enrolled subjects ( N = 1,033), none of whom tested positive for T. cruzi or anti- T. cruzi antibodies. Current countermeasures used during field training on JBSA appear to be sufficient for preventing autochthonous human Chagas disease.

  3. Circulation of Tc Ia discrete type unit Trypanosoma cruzi in Yucatan Mexico.

    PubMed

    Monteón, Victor; Triana-Chávez, Omar; Mejía-Jaramillo, Ana; Pennignton, Pamela; Ramos-Ligonio, Ángel; Acosta, Karla; Lopez, Ruth

    2016-06-01

    The etiologic agent Trypanosoma cruzi (Tc) has been grouped into six discrete type units (DTU I-VI); within DTU-I exists four subgroups defined Ia-Id. In Colombia, the genotype Ia is associated with human infection and domiciliated Rhodnius vector. In the Yucatan Peninsula of Mexico, the main vector involved in T. cruzi transmission is Triatoma dimidiata predominantly via sylvatic and peridomiciliated cycles. In this study, multiple sequence analysis of mini-exon intergenic regions of T. cruzi isolates obtained from T. dimidiata in the Yucatan Peninsula of Mexico revealed they belonged to Tc Ia DTU along with two additional Mexican strains located 1,570 km away from Yucatan. In conclusion Tc Ia circulates in the Yucatan peninsula in T. dimidiata vector and likewise in the northwest region of Mexico.

  4. The early implementation of Trypanosoma cruzi antibody screening of donors and donations within England: preempting a problem.

    PubMed

    Kitchen, Alan D; Hewitt, Patricia E; Chiodini, Peter L

    2012-09-01

    Trypanosoma cruzi is a parasitic infection endemic in Central and Southern America, but is spreading into nonendemic countries with migration of infected individuals from endemic countries. The parasite is transmitted by transfusion or transplantation and donation screening is performed routinely in endemic countries to prevent transmission. In situations where migrants from endemic countries have settled in nonendemic countries and present as donors (blood or other cellular products), intervention is required to prevent transfusion or transplantation transmission. A screening program for T. cruzi was developed and has been used successfully for over 10 years that includes donor selection and donation screening. Donor selection criteria to identify specific risk of T. cruzi infection were developed together with laboratory screening of donations for T. cruzi antibodies and the subsequent confirmation of screen reactivity. Since the introduction of T. cruzi screening in England in 1998, a total of 38,585 donors and donations have been screened for T. cruzi antibodies, of which 223 were repeat reactive on screening and referred for confirmation: 206 confirmed negative, 14 inconclusive, and three positive. Since the move in 2005 from donor qualification to donation release testing, 15,536 donations were collected and screened, of which 15,499 (99.8%) were T. cruzi antibody negative and released to inventory. An effective program to minimize risk of the transmission of T. cruzi infection via donations has been developed and implemented. Not only does the program minimize risk of transmission, it also minimizes the cumulative, and needless, loss of donors and donations that would ensue if permanent donor deferral alone was adopted. © 2012 American Association of Blood Banks.

  5. Trypanosoma Cruzi Cyp51 Inhibitor Derived from a Mycobacterium Tuberculosis Screen Hit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chiung-Kuang; Doyle, Patricia S.; Yermalitskaya, Liudmila V.

    2009-02-18

    The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas disease chemotherapy is sterol 14{alpha}-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51{sub Mt}), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51{sub Mt}. Subsequent assays against the CYP51 orthologuemore » in T. cruzi, CYP51{sub Tc}, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. CYP51{sub Mt}-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51{sub Tc}. Enzyme sterol 14{alpha}-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas disease therapy. We previously

  6. Virulence of Trypanosoma cruzi in Açai ( Euterpe oleraceae Martius) Pulp following Mild Heat Treatment.

    PubMed

    Barbosa, Rodrigo Labello; Pereira, Karen Signori; Dias, Viviane Liotti; Schmidt, Flávio Luis; Alves, Delma Pegolo; Guaraldo, Ana Maria Aparecida; Passos, Luiz Augusto Corrêa

    2016-10-01

    Outbreaks of acute Chagas disease (ACD) in northern Brazil can be caused by the ingestion of unprocessed açai pulp contaminated with Trypanosoma cruzi . The aim of this study was to determine the minimum thermal process required to inactivate T. cruzi in açai pulp. Trypomastigotes (100,000) of T. cruzi Y strain were added to 0.15 M NaCl or açai pulp and continuously mixed while being heat treated at 37 to 49°C for up to 1 h. When necessary, parasites were separated from açai pulp by forced sieving. Inocula were administrated intraperitoneally in inbred immunodeficient C.B-17-Prkdc scid /Pas Unib mice, and the recipients were monitored for parasitemia and mortality. Mice received prophylactic antibiotic therapy by using cephalexin to prevent bacterial infection from the açai pulp. T. cruzi retained its virulence in 0.15 M NaCl and açai pulp at 44 ± 0.1°C for 10 min and at 43 ± 0.1°C for 20 min, respectively, causing ACD and death in mice up to 24 days after infection. Incubation of açai pulp inoculum above 43°C for 20 min neutralized T. cruzi virulence, thereby preventing ACD and death in murine recipients. The heating of açai pulp above 43°C for 20 min is a practical and effective measure to prevent foodborne ACD caused by T. cruzi .

  7. Geographical Distribution of Trypanosoma cruzi Genotypes in Venezuela

    PubMed Central

    Carrasco, Hernán J.; Segovia, Maikell; Llewellyn, Martin S.; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E.; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A.; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A.; Feliciangeli, M. Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela. PMID:22745843

  8. Geographical distribution of Trypanosoma cruzi genotypes in Venezuela.

    PubMed

    Carrasco, Hernán J; Segovia, Maikell; Llewellyn, Martin S; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A; Feliciangeli, M Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI - TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela.

  9. Studies on the sand fly fauna (Diptera: Psychodidae) in high-transmission areas of cutaneous leishmaniasis in the Republic of Suriname

    PubMed Central

    2013-01-01

    Background Sand flies (Diptera: Psychodidae) are the vectors of Leishmania parasites, the causative agents of leishmaniasis. Cutaneous leishmaniasis is an increasing public health problem in the Republic of Suriname and is mainly caused by Leishmania (Vianna) guyanensis, but L. (V.) braziliensis, L. (L.) amazonensis, and L. (V.) naiffi also infect humans. Transmission occurs predominantly in the forested hinterland of the country. Information regarding the potential vectors of leishmaniasis in Suriname is limited. This study aims to broaden the knowledge about vectors involved in the transmission of cutaneous leishmaniasis in Suriname. For this purpose, sand flies were characterized in various foci of cutaneous leishmaniasis in the country, the districts of Para, Brokopondo, and Sipaliwini. Methods Sand flies were collected in areas around mining plots and villages using CDC light traps in the period between February 2011 and March 2013. They were categorized by examination of the spermathecea (females) and the external genitalia (males). Results A total of 2,743 sand fly specimens belonging to 34 different species were captured, including four species (Lutzomyia aragaoi, Lu. ayrozai, Lu. damascenoi, and Lu. sordellii) that had never before been described for Suriname. Five percent of the catch comprised Lu. squamiventris sensu lato, one female of which was positive with L. (V.) braziliensis and was captured in a gold mining area in Brokopondo. Other sand fly species found positive for Leishmania parasites were Lu. trichopyga, Lu. ininii, and Lu. umbratilis, comprising 32, 8, and 4%, respectively, of the catch. These were captured at gold mining areas in Brokopondo and Sipaliwini, but the Leishmania parasites they had ingested could not be identified due to insufficient amounts of DNA. Conclusions The sand fly fauna in Suriname is highly diverse and comprises Lutzomyia species capable of transmitting Leishmania parasites. Four new Lutzomyia species have been found

  10. Anti-Trypanosoma, anti-Leishmania and cytotoxic activities of natural products from Psidium brownianum Mart. ex DC. and Psidium guajava var. Pomifera analysed by LC-MS.

    PubMed

    de Souza, Celestina Elba Sobral; da Silva, Ana Raquel Pereira; Gomez, Maria Celeste Vega; Rolóm, Míriam; Coronel, Cathia; da Costa, José Galberto Martins; Sousa, Amanda K; Rolim, Larissa A; de Souza, Francisco Hugo Sobral; Coutinho, Henrique Douglas Melo

    2017-12-01

    Neglected diseases are those that are prevalent in developing countries, even with a rich biodiversity. These diseases still persist because of the lack of scientific studies, government negligence or failures of the public health system. This study aims to identify the composition of extracts and fractions from Psidium brownianum and Psidium guajava through LC-MS, to evaluate its in vitro anti-parasitic and cytotoxic activity against Trypanosoma cruzi, Leishmania brasiliensis and L. infantum epismastigote and promastigote forms, as well as mammalian cells. The results showed the presence of chemical constituents in the two Psidium species as quercetin, myricetin and gallic acid derivatives. The P. brownianum extract and fractions showed low toxicity at all tested concentrations and all samples were effective at the concentration of 1000μg/mL against the parasites, with the extract being the most efficient against the L. infantum promastigote form. The ethanolic extract, and the flavonoid and tannic fractions, from P. guajava showed low toxicity for the fibroblasts. All samples showed effectiveness at the highest concentration tested and the extract was more effective against the promastigote forms tested. The results showed that the species Psidium brownianum and Psidium guajava demonstrated an anti-parasitic activity against the T. cruzi, L. brasiliensis and L. infantum parasite cell lines indicating these species as an alternative therapy given their efficacy in the in vitro assays performed, opening the possibility for new biological studies to further this knowledge through in vivo assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Use of FTA cards for direct sampling of patients' lesions in the ecological study of cutaneous leishmaniasis.

    PubMed

    Kato, Hirotomo; Cáceres, Abraham G; Mimori, Tatsuyuki; Ishimaru, Yuka; Sayed, Amal S M; Fujita, Megumi; Iwata, Hiroyuki; Uezato, Hiroshi; Velez, Lenin N; Gomez, Eduardo A L; Hashiguchi, Yoshihisa

    2010-10-01

    The FTA card (Whatman) was assessed for its utility as a molecular epidemiological tool in collecting samples from patients with leishmaniasis in Peru because the card has a variety of merits; it is less invasive for patients and easy to handle for both physicians and other medical personnel for sample collection or diagnosis, in addition to its simplicity and easy countrywide and/or intercountry transportation for analysis. Samples were collected from 132 patients suspected of having leishmaniasis, and Leishmania species were successfully identified in samples from 81 patients in 15 departments of Peru by cytochrome b and mannose phosphate isomerase gene analyses. Of these, 61.7% were identified as Leishmania (Viannia) peruviana, 22.2% as L. (V.) braziliensis, 12.3% as L. (V.) guyanensis, 2.5% as L. (V.) shawi, and 1.2% as L. (V.) lainsoni. The three predominant species, L. (V.) peruviana, L. (V.) braziliensis, and L. (V.) guyanensis, were mainly found in the Andean highlands, in the tropical rainforest, and in northern and central rainforest regions, respectively. This is the first time L. (V.) shawi has been identified outside Brazil. The present study showed that the FTA card will be a useful tool for the ecological study of different forms of leishmaniasis. Furthermore, collecting samples directly from patients' lesions by using the FTA card eliminates (i) the possibility of contamination of Leishmania isolates during short- and/or long-term passages of culture in vitro in each laboratory and (ii) pain and suffering of patients from taking samples by skin biopsy.

  12. Use of FTA Cards for Direct Sampling of Patients' Lesions in the Ecological Study of Cutaneous Leishmaniasis ▿

    PubMed Central

    Kato, Hirotomo; Cáceres, Abraham G.; Mimori, Tatsuyuki; Ishimaru, Yuka; Sayed, Amal S. M.; Fujita, Megumi; Iwata, Hiroyuki; Uezato, Hiroshi; Velez, Lenin N.; Gomez, Eduardo A. L.; Hashiguchi, Yoshihisa

    2010-01-01

    The FTA card (Whatman) was assessed for its utility as a molecular epidemiological tool in collecting samples from patients with leishmaniasis in Peru because the card has a variety of merits; it is less invasive for patients and easy to handle for both physicians and other medical personnel for sample collection or diagnosis, in addition to its simplicity and easy countrywide and/or intercountry transportation for analysis. Samples were collected from 132 patients suspected of having leishmaniasis, and Leishmania species were successfully identified in samples from 81 patients in 15 departments of Peru by cytochrome b and mannose phosphate isomerase gene analyses. Of these, 61.7% were identified as Leishmania (Viannia) peruviana, 22.2% as L. (V.) braziliensis, 12.3% as L. (V.) guyanensis, 2.5% as L. (V.) shawi, and 1.2% as L. (V.) lainsoni. The three predominant species, L. (V.) peruviana, L. (V.) braziliensis, and L. (V.) guyanensis, were mainly found in the Andean highlands, in the tropical rainforest, and in northern and central rainforest regions, respectively. This is the first time L. (V.) shawi has been identified outside Brazil. The present study showed that the FTA card will be a useful tool for the ecological study of different forms of leishmaniasis. Furthermore, collecting samples directly from patients' lesions by using the FTA card eliminates (i) the possibility of contamination of Leishmania isolates during short- and/or long-term passages of culture in vitro in each laboratory and (ii) pain and suffering of patients from taking samples by skin biopsy. PMID:20720027

  13. Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study.

    PubMed

    Ramírez, Juan David; Hernández, Carolina; León, Cielo M; Ayala, Martha S; Flórez, Carolina; González, Camila

    2016-06-22

    Leishmaniases are tropical zoonotic diseases, caused by kinetoplastid parasites from the genus Leishmania. New World (NW) species are related to sylvatic cycles although urbanization processes have been reported in some South American Countries such as Colombia. Currently, few studies show the relative distribution of Leishmania species related to cutaneous Leishmaniasis (CL) in South America due to the lack of accurate surveillance and public health systems. Herein, we conducted a systematic estimation of the Leishmania species causing CL in Colombia from 1980 to 2001 via molecular typing and isoenzymes. A total of 327 Leishmania isolates from humans, sandflies and reservoirs were typed as L. panamensis 61.3% (201), L. braziliensis 27.1% (88), L. lainsoni 0.6% (2), L. guyanensis 0.9% (3), L. infantum chagasi 4% (12), L. equatoriensis 0.6% (2), L. mexicana 2.1% (8), L. amazonensis 2.8% (9) and L. colombiensis 0.6% (2). This is the first report of two new Leishmania species circulating in Colombia and suggests the need to convince the Colombian government about the need to deploy and standardize tools for the species identification to provide adequate management to individuals suffering this pathology.

  14. Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study

    PubMed Central

    Ramírez, Juan David; Hernández, Carolina; León, Cielo M.; Ayala, Martha S.; Flórez, Carolina; González, Camila

    2016-01-01

    Leishmaniases are tropical zoonotic diseases, caused by kinetoplastid parasites from the genus Leishmania. New World (NW) species are related to sylvatic cycles although urbanization processes have been reported in some South American Countries such as Colombia. Currently, few studies show the relative distribution of Leishmania species related to cutaneous Leishmaniasis (CL) in South America due to the lack of accurate surveillance and public health systems. Herein, we conducted a systematic estimation of the Leishmania species causing CL in Colombia from 1980 to 2001 via molecular typing and isoenzymes. A total of 327 Leishmania isolates from humans, sandflies and reservoirs were typed as L. panamensis 61.3% (201), L. braziliensis 27.1% (88), L. lainsoni 0.6% (2), L. guyanensis 0.9% (3), L. infantum chagasi 4% (12), L. equatoriensis 0.6% (2), L. mexicana 2.1% (8), L. amazonensis 2.8% (9) and L. colombiensis 0.6% (2). This is the first report of two new Leishmania species circulating in Colombia and suggests the need to convince the Colombian government about the need to deploy and standardize tools for the species identification to provide adequate management to individuals suffering this pathology. PMID:27328969

  15. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland

    USGS Publications Warehouse

    Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.

    1958-01-01

    Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.

  16. Protective immunity against Trypanosoma cruzi provided by oral immunization with Phytomonas serpens: role of nitric oxide.

    PubMed

    Pinge-Filho, P; Peron, J P S; de Moura, T R; Menolli, R A; Graça, V K; Estevão, D; Tadokoro, C E; Jankevicius, J V; Rizzo, L V

    2005-01-31

    We have previously demonstrated that Phytomonas serpens, a tomato parasite, shares antigens with Trypanosoma cruzi, the protozoa that causes Chagas' disease. These antigens are recognized by human sera and induce protective immunity in Balb/c mice. In the present study, inducible nitric oxide synthase (iNOS) knockout (KO) mice and C57BL/6 mice treated with the nitric oxide inhibitor, aminoguanidine (AG, 50 mg kg(-1)) infected with T. cruzi, were used to demonstrate the role of nitric oxide (NO) to host protection against T. cruzi infection achieved by oral immunization with live P. serpens. A reduction in parasitaemia and an increase in survival were observed in C57BL/6 infected mice and previously immunized with P. serpens, when compared to non-immunized mice. iNOS (KO) mice immunized and C57BL/6 immunized and treated with AG presented parasitaemia and mortality rates comparable to those of infected and non-immunized mice. By itself, immunization with P. serpens did not induce inflammation in the myocardium, but C57BL/6 mice so immunized showed fewer amastigotes nests in the heart following an acute T. cruzi infection than those in non-immunized mice. These results suggest that protective immunity against T. cruzi infection induced by immunization with P. serpens is dependent upon enhanced NO production during the acute phase of T. cruzi infection.

  17. Inhibition of poly(ADP-ribose) polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite.

    PubMed

    Vilchez Larrea, Salomé C; Haikarainen, Teemu; Narwal, Mohit; Schlesinger, Mariana; Venkannagari, Harikanth; Flawiá, Mirtha M; Villamil, Silvia H Fernández; Lehtiö, Lari

    2012-01-01

    Poly(ADP-ribosylation) is a post-translational covalent modification of proteins catalyzed by a family of enzymes termed poly(ADP-ribose) polymerases (PARPs). In the human genome, 17 different genes have been identified that encode members of the PARP superfamily. Poly (ADP-ribose) metabolism plays a role in a wide range of biological processes. In Trypanosoma cruzi, PARP enzyme appears to play a role in DNA repair mechanisms and may also be involved in controlling the different phases of cell growth. Here we describe the identification of potent inhibitors for T. cruzi PARP with a fluorescence-based activity assay. The inhibitors were also tested on T. cruzi epimastigotes, showing that they reduced ADP-ribose polymer formation in vivo. Notably, the identified inhibitors are able to reduce the growth rate of T. cruzi epimastigotes. The best inhibitor, Olaparib, is effective at nanomolar concentrations, making it an efficient chemical tool for chacterization of ADP-ribose metabolism in T. cruzi. PARP inhibition also decreases drastically the amount of amastigotes but interestingly has no effect on the amount of trypomastigotes in the cell culture. Knocking down human PARP-1 decreases both the amount of amastigotes and trypomastigotes in cell culture, indicating that the effect would be mainly due to inhibition of human PARP-1. The result suggests that the inhibition of PARP could be a potential way to interfere with T. cruzi infection.

  18. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs

    PubMed Central

    Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV–LACK, rCDV–TSA, and rCDV–LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV–LACK showed markedly smaller nodules without ulceration. Although the rCDV–TSA- and rCDV–LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV–LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs. PMID:26162094

  19. Cloning and characterization of a DNA polymerase beta gene from Trypanosoma cruzi.

    PubMed

    Venegas, Juan A; Aslund, Lena; Solari, Aldo

    2009-06-01

    A gene coding for a DNA polymerase beta from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpol beta), using the information from eight peptides of the T. cruzi beta-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-pol beta with mitochondrial pol beta and pol beta-PAK from other trypanosomatids was between 68-80% and 22-30%, respectively. Miranda Tc-pol beta protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata pol beta, which suggests that the TcI-pol beta plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.

  20. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host.

    PubMed

    Kessler, Rafael Luis; Contreras, Víctor Tulio; Marliére, Newmar Pinto; Aparecida Guarneri, Alessandra; Villamizar Silva, Luz Helena; Mazzarotto, Giovanny Augusto Camacho Antevere; Batista, Michel; Soccol, Vanete Thomaz; Krieger, Marco Aurelio; Probst, Christian Macagnan

    2017-06-01

    Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle in which four distinct developmental forms alternate between the insect vector and the mammalian host. It is assumed that replicating epimastigotes present in the insect gut are not infective to mammalian host, a paradigm corroborated by the widely acknowledged fact that only this stage is susceptible to the complement system. In the present work, we establish a T. cruzi in vitro and in vivo epimastigogenesis model to analyze the biological aspects of recently differentiated epimastigotes (rdEpi). We show that both trypomastigote stages of T. cruzi (cell-derived and metacyclic) are able to transform into epimastigotes (processes termed primary and secondary epimastigogenesis, respectively) and that rdEpi have striking properties in comparison to long-term cultured epimastigotes: resistance to complement-mediated lysis and both in vitro (cell culture) and in vivo (mouse) infectivity. Proteomics analysis of all T. cruzi stages reveled a cluster of proteins that were up-regulated only in rdEpi (including ABC transporters and ERO1), suggesting a role for them in rdEpi virulence. The present work introduces a new experimental model for the study of host-parasite interactions, showing that rdEpi can be infective to the mammalian host. © 2017 John Wiley & Sons Ltd.

  1. Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Bin; Department of Parasitology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582; Hiromatsu, Kenji, E-mail: khiromatsu@fukuoka-u.ac.jp

    2010-02-12

    Cytotoxic CD8{sup +} T cells are particularly important to the development of protective immunity against the intracellular protozoan parasite, Trypanosoma cruzi, the etiological agent of Chagas disease. We have developed a new effective strategy of genetic immunization by activating CD8{sup +} T cells through the ubiquitin-fusion degradation (UFD) pathway. We constructed expression plasmids encoding the amastigote surface protein-2 (ASP-2) of T. cruzi. To induce the UFD pathway, a chimeric gene encoding ubiquitin fused to ASP-2 (pUB-ASP-2) was constructed. Mice immunized with pUB-ASP-2 presented lower parasitemia and longer survival period, compared with mice immunized with pASP-2 alone. Depletion of CD8{sup +}more » T cells abolished protection against T. cruzi in mice immunized with pUB-ASP-2 while depletion of CD4{sup +} T cells did not influence the effective immunity. Mice deficient in LMP2 or LMP7, subunits of immunoproteasomes, were not able to develop protective immunity induced. These results suggest that ubiquitin-fused antigens expressed in antigen-presenting cells were effectively degraded via the UFD pathway, and subsequently activated CD8{sup +} T cells. Consequently, immunization with pUB-ASP-2 was able to induce potent protective immunity against infection of T. cruzi.« less

  2. Limited antigenic variation in the Trypanosoma cruzi candidate vaccine antigen TSA-1.

    PubMed

    Knight, J M; Zingales, B; Bottazzi, M E; Hotez, P; Zhan, B

    2014-12-01

    Chagas disease (American trypanosomiasis caused by Trypanosoma cruzi) is one of the most important neglected tropical diseases in the Western Hemisphere. The toxicities and limited efficacies of current antitrypanosomal drugs have prompted a search for alternative technologies such as a therapeutic vaccine comprised of T. cruzi antigens, including a recombinant antigen encoding the N-terminal 65 kDa portion of Trypomastigote surface antigen-1 (TSA-1). With at least six known genetically distinct T. cruzi lineages, variability between the different lineages poses a unique challenge for the development of broadly effective therapeutic vaccine. The variability across the major lineages in the current vaccine candidate antigen TSA-1 has not previously been addressed. To assess the variation in TSA-1, we cloned and sequenced TSA-1 from several different T. cruzi strains representing three of the most clinically relevant lineages. Analysis of the different alleles showed limited variation in TSA-1 across the different strains and fit with the current theory for the evolution of the different lineages. Additionally, minimal variation in known antigenic epitopes for the HLA-A 02 allele suggests that interlineage variation in TSA-1 would not impair the range and efficacy of a vaccine containing TSA-1. © 2014 John Wiley & Sons Ltd.

  3. Seroprevalence of Trypanosoma cruzi among eleven potential reservoir species from six states across the southern United States.

    PubMed

    Brown, Emily L; Roellig, Dawn M; Gompper, Matthew E; Monello, Ryan J; Wenning, Krista M; Gabriel, Mourad W; Yabsley, Michael J

    2010-10-01

    Trypanosoma cruzi, the causative agent of Chagas' disease, is a substantial public health concern in Latin America. Although rare in humans and domestic animals in the United States, T. cruzi is commonly detected in some wildlife species, most commonly raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana). To increase our understanding of the reservoir host species range and geographic distribution, 11 species of mammals from six states spanning the known range of T. cruzi (Arizona, California, Florida, Georgia, Missouri, and Virginia) were tested for antibodies to T. cruzi using indirect immunofluorescent antibody testing. In addition, culture isolation attempts were conducted on a limited number of animals from Georgia and Florida. Evidence of T. cruzi was found in every state except California; however, low numbers of known reservoirs were tested in California. In general, the highest seroprevalence rates were found in raccoons (0-68%) and opossums (17-52%), but antibodies to T. cruzi were also detected in small numbers of striped skunks (Mephitis mephitis) from Arizona and Georgia, bobcats (Lynx rufus) from Georgia, two coyotes (Canis latrans) from Georgia and Virginia, and a ringtail (Bassariscus astutus) from Arizona. Culture-based prevalence rates for raccoons were significantly greater than those for opossums; however, seroprevalences of raccoons and opossums from several geographic locations in Georgia and Florida were not different, indicating that exposure rates of these two species are similar within these areas. For both raccoons and opossums, seroprevalence was significantly higher in females than in males. No difference was detected in seroprevalence between adults and juveniles and between animals caught in urban and rural locations. Our results indicate that T. cruzi prevalence varies by host species, host characteristics, and geographic region and provides data to guide future studies on the natural history of T. cruzi in the

  4. Emerging Chagas disease: trophic network and cycle of transmission of Trypanosoma cruzi from palm trees in the Amazon.

    PubMed Central

    Teixeira, A. R.; Monteiro, P. S.; Rebelo, J. M.; Argañaraz, E. R.; Vieira, D.; Lauria-Pires, L.; Nascimento, R.; Vexenat, C. A.; Silva, A. R.; Ault, S. K.; Costa, J. M.

    2001-01-01

    A trophic network involving molds, invertebrates, and vertebrates, ancestrally adapted to the palm tree (Attalaea phalerata) microhabitat, maintains enzootic Trypanosoma cruzi infections in the Amazonian county Paço do Lumiar, state of Maranhão, Brazil. We assessed seropositivity for T. cruzi infections in the human population of the county, searched in palm trees for the triatomines that harbor these infections, and gathered demographic, environmental, and socioeconomic data. Rhodnius pictipes and R. neglectus in palm-tree frond clefts or in houses were infected with T. cruzi (57% and 41%, respectively). Human blood was found in 6.8% of R. pictipes in houses, and 9 of 10 wild Didelphis marsupialis had virulent T. cruzi infections. Increasing human population density, rain forest deforestation, and human predation of local fauna are risk factors for human T. cruzi infections. PMID:11266300

  5. Modeled structure of trypanothione reductase of Leishmania infantum.

    PubMed

    Singh, Bishal K; Sarkar, Nandini; Jagannadham, M V; Dubey, Vikash K

    2008-06-30

    Trypanothione reductase is an important target enzyme for structure-based drug design against Leishmania. We used homology modeling to construct a three-dimensional structure of the trypanothione reductase (TR) of Leishmania infantum. The structure shows acceptable Ramachandran statistics and a remarkably different active site from glutathione reductase(GR). Thus, a specific inhibitor against TR can be designed without interfering with host (human) GR activity.

  6. Ecological Aspects of Phlebotomine Sand Flies (Diptera, Psychodidae, Phlebotominae) in Areas of American Cutaneous Leishmaniasis, in the Municipality of Paraty, Rio de Janeiro, Brazil. I-Index of Abundance by Location and Type of Capture.

    PubMed

    Vieira, V R; Azevedo, A C R; Alves, J R C; Guimarães, A E; Aguiar, G M

    2015-09-01

    The description of the first and autochthonous case of diffuse cutaneous leishmaniasis in the municipality of Paraty, State of Rio de Janeiro, brought the interest of this study. Sand flies were captured over a 3-yr period. Using manual suction tubes, sand flies were collected from the inner and outer walls of homes, in the living spaces of domestic animals, and in Shannon light traps, which were set up outside homes and in the forest. CDC light traps were installed inside homes, around the exterior of the houses, and along the divide and within the forest. A total of 102,937 sand flies were collected, representing 23 species--three from the genus Brumptomyia and 20 from the genus Lutzomyia. Of these, six species, Lutzomyia intermedia, Lutzomyia fischeri, Lutzomyia migonei, Lutzomyia whitmani, and Lutzomyia pessoai have already been recorded as being naturally infected by Leishmania braziliensis, and one species, Lutzomyia ayrozai, by Leishmania naiffi. Lu. intermedia is the vector of Le. braziliensis in the study area, particularly inside the homes and on the exterior of the houses. Lu. fischeri can also act as vector of Le. braziliensis in domestic environments and particularly in the wild. The third-ranked Lu. migonei was the most abundant in kennels, suggesting its canine affinity. Lu. whitmani, ranked fourth, still has characteristics indicative of the wild, but with a significant number located on the edge of the forest, suggesting a selection process of adaptation to the anthropic environment. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Prevalence of Trypanosoma Cruzi antibodies in blood donors from the Sao Paulo State, Brazil, between 2012 and 2014.

    PubMed

    Slavov, Svetoslav Nanev; Otaguiri, Katia Kaori; Pinto, Mariana Tomazini; Valente, Vanderléia Bárbaro; Ubiali, Eugênia Maria Amorim; Covas, Dimas Tadeu; Kashima, Simone

    2017-03-31

    American tripanosomiasis (Chagas disease), the second most neglected disease in the world, is caused by the protozoan parasite Trypanosoma cruzi. Though natural transmission by insect vectors has been controlled, there is significant risk of T. cruzi transmission by blood transfusion in non-endemic regions, generally due to immigration processes from endemic areas. The objective of this study was to evaluate anti-T. cruzi seroprevalence in blood donors from the western part of São Paulo State, Brazil, by serologic and immunofluorescence confirmation tests for the period between 2012 and 2014. Currently, this region is regarded as a non-endemic area for Chagas disease. The confirmed overall T. cruzi seroprevalence among blood donors was 0.10%, which can be considered low compared to other Brazilian regions. Nevertheless, the distribution of the anti-T. cruzi antibodies within the examined region was uneven, and some areas of significantly higher prevalence were observed. We could consider two tendencies in the prevalence of T. cruzi: (i) residual older undiagnosed cases from São Paulo State, and (ii) immigration from endemic Brazilian or South American regions. The discordance obtained for T. cruzi prevalence by serologic and immunofluorescence methods demonstrates that more specific routine diagnosis is needed to diminish the cost of the assays and the loss of blood supply once all seropositive blood bags are immediately discarded.

  8. Comparative pathogenicity in Swiss mice of Trypanosoma cruzi IV from northern Brazil and Trypanosoma cruzi II from southern Brazil.

    PubMed

    Meza, Sheila Karina Lüders; Kaneshima, Edilson Nobuyoshi; Silva, Sueli de Oliveira; Gabriel, Maristela; de Araújo, Silvana Marques; Gomes, Mônica Lúcia; Monteiro, Wuelton Marcelo; Barbosa, Maria das Graças Vale; Toledo, Max Jean de Ornelas

    2014-11-01

    The geographical heterogeneity of Chagas disease (ChD) is mainly caused by genetic variability of the etiological agent Trypanosoma cruzi. Our hypothesis was that the pathogenicity for mice may vary with the genetic lineage (or Discrete Typing Unit - DTU) of the parasite. To test this hypothesis, parasitological and histopathological evaluations were performed in mice inoculated with strains belonging to the DTU T. cruzi IV (TcIV) from the State of Amazonas (northern Brazil), or the DTU T. cruzi II (TcII) from the State of Paraná (southern Brazil). Groups of 10 Swiss mice were inoculated with eight strains of TcIV obtained from acute cases (7) from two outbreaks of orally acquired ChD, and from the triatomine Rhodnius robustus (1) from Amazonas; and three strains of TcII obtained from chronic patients in Paraná. We evaluated the pre-patent period, patent period, maximum peak of parasitemia, day of maximum peak of parasitemia, area under the parasitemia curve, inflammatory process, and tissue parasitism in the acute phase. TcIV was less virulent than TcII, and showed significantly (p < 0.005) lower parasitemia levels. Although the levels of tissue parasitism did not differ statistically, mice infected with TcIV displayed significantly (p < 0.001) fewer inflammatory processes than mice infected with TcII. This supported the working hypothesis, since TcIV from Amazonas was less pathogenic than TcII from Paraná; and agreed with the lower severity of human cases of ChD in the Amazon region. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. RIPK1 and PGAM5 Control Leishmania Replication through Distinct Mechanisms.

    PubMed

    Farias Luz, Nivea; Balaji, Sakthi; Okuda, Kendi; Barreto, Aline Silva; Bertin, John; Gough, Peter J; Gazzinelli, Ricardo; Almeida, Roque P; Bozza, Marcelo T; Borges, Valeria M; Chan, Francis Ka-Ming

    2016-06-15

    Leishmaniasis is an important parasitic disease found in the tropics and subtropics. Cutaneous and visceral leishmaniasis affect an estimated 1.5 million people worldwide. Despite its human health relevance, relatively little is known about the cell death pathways that control Leishmania replication in the host. Necroptosis is a recently identified form of cell death with potent antiviral effects. Receptor interacting protein kinase 1 (RIPK1) is a critical kinase that mediates necroptosis downstream of death receptors and TLRs. Heme, a product of hemoglobin catabolism during certain intracellular pathogen infections, is also a potent inducer of macrophage necroptosis. We found that human visceral leishmaniasis patients exhibit elevated serum levels of heme. Therefore, we examined the impact of heme and necroptosis on Leishmania replication. Indeed, heme potently inhibited Leishmania replication in bone marrow-derived macrophages. Moreover, we found that inhibition of RIPK1 kinase activity also enhanced parasite replication in the absence of heme. We further found that the mitochondrial phosphatase phosphoglycerate mutase family member 5 (PGAM5), a putative downstream effector of RIPK1, was also required for inhibition of Leishmania replication. In mouse infection, both PGAM5 and RIPK1 kinase activity are required for IL-1β expression in response to Leishmania However, PGAM5, but not RIPK1 kinase activity, was directly responsible for Leishmania-induced IL-1β secretion and NO production in bone marrow-derived macrophages. Collectively, these results revealed that RIPK1 and PGAM5 function independently to exert optimal control of Leishmania replication in the host. Copyright © 2016 by The American Association of Immunologists, Inc.

  10. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies

    PubMed Central

    Akhoundi, Mohammad; Kuhls, Katrin; Cannet, Arnaud; Votýpka, Jan; Marty, Pierre; Delaunay, Pascal; Sereno, Denis

    2016-01-01

    Background The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Methodology and Principal Findings Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? Conclusions and Significance We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they

  11. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies.

    PubMed

    Akhoundi, Mohammad; Kuhls, Katrin; Cannet, Arnaud; Votýpka, Jan; Marty, Pierre; Delaunay, Pascal; Sereno, Denis

    2016-03-01

    The aim of this study is to describe the major evolutionary historical events among Leishmania, sandflies, and the associated animal reservoirs in detail, in accordance with the geographical evolution of the Earth, which has not been previously discussed on a large scale. Leishmania and sandfly classification has always been a controversial matter, and the increasing number of species currently described further complicates this issue. Despite several hypotheses on the origin, evolution, and distribution of Leishmania and sandflies in the Old and New World, no consistent agreement exists regarding dissemination of the actors that play roles in leishmaniasis. For this purpose, we present here three centuries of research on sandflies and Leishmania descriptions, as well as a complete description of Leishmania and sandfly fossils and the emergence date of each Leishmania and sandfly group during different geographical periods, from 550 million years ago until now. We discuss critically the different approaches that were used for Leishmana and sandfly classification and their synonymies, proposing an updated classification for each species of Leishmania and sandfly. We update information on the current distribution and dispersion of different species of Leishmania (53), sandflies (more than 800 at genus or subgenus level), and animal reservoirs in each of the following geographical ecozones: Palearctic, Nearctic, Neotropic, Afrotropical, Oriental, Malagasy, and Australian. We propose an updated list of the potential and proven sandfly vectors for each Leishmania species in the Old and New World. Finally, we address a classical question about digenetic Leishmania evolution: which was the first host, a vertebrate or an invertebrate? We propose an updated view of events that have played important roles in the geographical dispersion of sandflies, in relation to both the Leishmania species they transmit and the animal reservoirs of the parasites.

  12. First report of natural infection of a bush dog (Speothos venaticus) with Leishmania (Leishmania) chagasi in Brazil.

    PubMed

    Figueiredo, F B; Gremião, I D F; Pereira, S A; Fedulo, L P; Menezes, R C; Balthazar, D A; Schubach, T M P; Madeira, M F

    2008-02-01

    We report here the first known case of natural infection of a bush dog with Leishmania (Leishmania) chagasi in Brazil. The specimen was captured in the wild in the State of Mato Grosso and is currently being held in captivity at Fundação Jardim Zoológico, Rio de Janeiro, Brazil. The leishmaniasis was diagnosed by culture of promastigote forms in intact skin fragments and their characterization by isoenzyme electrophoresis. This report calls attention to the parasitological and etiological control of certain zoonoses, such as leishmaniasis, in wild animals kept in captivity, especially when animals are exchanged between zoos in Brazil.

  13. Development of a Trypanosoma cruzi strain typing assay using MS2 peptide spectral libraries (Tc-STAMS2)

    PubMed Central

    de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Avila, Carla Cristi; Teixeira, Marta M. G.; Larsen, Martin R.

    2018-01-01

    Background Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. Methods/Principal findings The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. Conclusions and significance This is the first study that develops a MS

  14. Development of a Trypanosoma cruzi strain typing assay using MS2 peptide spectral libraries (Tc-STAMS2).

    PubMed

    de Oliveira, Gilberto Santos; Kawahara, Rebeca; Rosa-Fernandes, Livia; Mule, Simon Ngao; Avila, Carla Cristi; Teixeira, Marta M G; Larsen, Martin R; Palmisano, Giuseppe

    2018-04-01

    Chagas disease also known as American trypanosomiasis is caused by the protozoan Trypanosoma cruzi. Over the last 30 years, Chagas disease has expanded from a neglected parasitic infection of the rural population to an urbanized chronic disease, becoming a potentially emergent global health problem. T. cruzi strains were assigned to seven genetic groups (TcI-TcVI and TcBat), named discrete typing units (DTUs), which represent a set of isolates that differ in virulence, pathogenicity and immunological features. Indeed, diverse clinical manifestations (from asymptomatic to highly severe disease) have been attempted to be related to T.cruzi genetic variability. Due to that, several DTU typing methods have been introduced. Each method has its own advantages and drawbacks such as high complexity and analysis time and all of them are based on genetic signatures. Recently, a novel method discriminated bacterial strains using a peptide identification-free, genome sequence-independent shotgun proteomics workflow. Here, we aimed to develop a Trypanosoma cruzi Strain Typing Assay using MS/MS peptide spectral libraries, named Tc-STAMS2. The Tc-STAMS2 method uses shotgun proteomics combined with spectral library search to assign and discriminate T. cruzi strains independently on the genome knowledge. The method is based on the construction of a library of MS/MS peptide spectra built using genotyped T. cruzi reference strains. For identification, the MS/MS peptide spectra of unknown T. cruzi cells are identified using the spectral matching algorithm SpectraST. The Tc-STAMS2 method allowed correct identification of all DTUs with high confidence. The method was robust towards different sample preparations, length of chromatographic gradients and fragmentation techniques. Moreover, a pilot inter-laboratory study showed the applicability to different MS platforms. This is the first study that develops a MS-based platform for T. cruzi strain typing. Indeed, the Tc-STAMS2 method

  15. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador.

    PubMed

    Wong, Yim Yan; Sornosa Macias, Karen Jeniffer; Guale Martínez, Doris; Solorzano, Luis F; Ramirez-Sierra, Maria Jesus; Herrera, Claudia; Dumonteil, Eric

    2016-07-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.

  17. Leishmania donovani chaperonin 10 regulates parasite internalization and intracellular survival in human macrophages.

    PubMed

    Colineau, Lucie; Clos, Joachim; Moon, Kyung-Mee; Foster, Leonard J; Reiner, Neil E

    2017-06-01

    Protozoa of the genus Leishmania infect macrophages in their mammalian hosts causing a spectrum of diseases known as the leishmaniases. The search for leishmania effectors that support macrophage infection is a focus of significant interest. One such candidate is leishmania chaperonin 10 (CPN10) which is secreted in exosomes and may have immunosuppressive properties. Here, we report for the first time that leishmania CPN10 localizes to the cytosol of infected macrophages. Next, we generated two genetically modified strains of Leishmania donovani (Ld): one strain overexpressing CPN10 (CPN10+++) and the second, a CPN10 single allele knockdown (CPN10+/-), as the null mutant was lethal. When compared with the wild-type (WT) parental strain, CPN10+/- Ld showed higher infection rates and parasite loads in human macrophages after 24 h of infection. Conversely, CPN10+++ Ld was associated with lower initial infection rates. This unexpected apparent gain-of-function for the knockdown could have been explained either by enhanced parasite internalization or by enhanced intracellular survival. Paradoxically, we found that CPN10+/- leishmania were more readily internalized than WT Ld, but also displayed significantly impaired intracellular survival. This suggests that leishmania CPN10 negatively regulates the rate of parasite uptake by macrophages while being required for intracellular survival. Finally, quantitative proteomics identified an array of leishmania proteins whose expression was positively regulated by CPN10. In contrast, many macrophage proteins involved in innate immunity were negatively regulated by CPN10. Taken together, these findings identify leishmania CPN10 as a novel effector with broad based effects on macrophage cell regulation and parasite survival.

  18. Trypanosoma cruzi-induced depressive-like behavior is independent of meningoencephalitis but responsive to parasiticide and TNF-targeted therapeutic interventions.

    PubMed

    Vilar-Pereira, Glaucia; Silva, Andrea Alice da; Pereira, Isabela Resende; Silva, Rafael Rodrigues; Moreira, Otacílio Cruz; de Almeida, Luciana Rodrigues; de Souza, Amanda Santos; Rocha, Monica Santos; Lannes-Vieira, Joseli

    2012-10-01

    Inflammatory cytokines and microbe-borne immunostimulators have emerged as triggers of depressive behavior. Behavioral alterations affect patients chronically infected by the parasite Trypanosoma cruzi. We have previously shown that C3H/He mice present acute phase-restricted meningoencephalitis with persistent central nervous system (CNS) parasitism, whereas C57BL/6 mice are resistant to T. cruzi-induced CNS inflammation. In the present study, we investigated whether depression is a long-term consequence of acute CNS inflammation and a contribution of the parasite strain that infects the host. C3H/He and C57BL/6 mice were infected with the Colombian (type I) and Y (type II) T. cruzi strains. Forced-swim and tail-suspension tests were used to assess depressive-like behavior. Independent of the mouse lineage, the Colombian-infected mice showed significant increases in immobility times during the acute and chronic phases of infection. Therefore, T. cruzi-induced depression is independent of active or prior CNS inflammation. Furthermore, chronic depressive-like behavior was triggered only by the type I Colombian T. cruzi strain. Acute and chronic T. cruzi infection increased indoleamine 2,3-dioxygenase (IDO) expression in the CNS. Treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine abrogated the T. cruzi-induced depressive-like behavior. Moreover, treatment with the parasiticide drug benznidazole abrogated depression. Chronic T. cruzi infection of C57BL/6 mice increased tumor necrosis factor (TNF) expression systemically but not in the CNS. Importantly, TNF modulators (anti-TNF and pentoxifylline) reduced immobility. Therefore, direct or indirect parasite-induced immune dysregulation may contribute to chronic depressive disorder in T. cruzi infection, which opens a new therapeutic pathway to be explored. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The aggressive call of Dendropsophus cruzi (Pombal Bastos, 1998) (Anura; Hylidae) in Central Brazil.

    PubMed

    Andreani, Tainà Lucas; Oliveira, Seixas Rezende; Guerra, VinÍcius; Bastos, RogÉrio Pereira; De Morais, Alessandro Ribeiro

    2018-02-13

    Dendropsophus cruzi (Pombal Bastos, 1998) is a small hylid (male snout-to-vent length = 16.3-19.4 mm; female SVL = 21.3-25.0 mm) that is allocated in the D. microcephalus group (Faivovich et al. 2005). It is commonly found in Open and forested areas from Central Brazil to Provincia Velasco, Departamento de Santa Cruz, Bolivia (Frost 2017; Tessarolo et al. 2016). Pombal Bastos (1998) described the advertisement call of D. cruzi as a single pulsed note. Posteriorly, studies uncovered relationships between dominant frequency variation in the advertisement calls of D. cruzi and variation in the SVL and mass of males (Bastos et al. 2003), as well as the existence of a clinal geographic pattern in the variation of acoustic parameters of these calls (Tessarolo et al. 2016). However, the acoustic communication in anurans is usually mediated by more than one vocalization type (Toledo et al. 2015). Due the importance of call types in the social context of anurans (e.g., Reichert 2011; Forti et al. 2017), we expand the vocal repertoire of D. cruzi by describing its aggressive call.

  20. Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine.

    PubMed

    Basombrio, M A

    1990-07-01

    Guinea pigs are natural reservoirs of Chagas' disease. Domestic breeding and local trade of these animals are common practices among andean communities in South America. Infection by Trypanosoma cruzi occurs when the animals live in triatomine-infested houses or yards. The preventive effect of a vaccine consisting of cultured T. cruzi killed by freezing and thawing plus saponin was tested both in mice and in the guinea pig ecosystem. Resistance against T. cruzi challenge in mice was improved by increasing the trypomastigote/epimastigote ratio in live attenuated vaccines but not in killed parasite vaccines. Although the killing of attenuated parasites sharply reduced their immunogenicity for mice, a protective effect against natural T. cruzi infection was detected in guinea pigs. A total of 88 guinea pigs were vaccinated in four intradermal sites on three occasions. Eighty controls received similar inoculations of culture medium plus saponin. All animals were kept in a triatomine-infested yard. Parasitemia was studied with the capillary microhematocrit method. After an exposure time averaging 4 months, natural T. cruzi infection occurred in 55% (44/80) of the controls and in 33% (29/88) of the vaccinated group (P less than 0.01). The number of highly parasitemic guinea pigs was also significantly decreased (6/80 vs 0/88, P less than 0.01). Thus, immunizing protocols which are only partially protective against artificial callenge with T. cruzi may nevertheless constrain the exchange of parasites between natural hosts and vectors.

  1. Leishmania, microbiota and sand fly immunity.

    PubMed

    Telleria, Erich Loza; Martins-da-Silva, Andrea; Tempone, Antonio Jorge; Traub-Csekö, Yara Maria

    2018-06-20

    In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.

  2. Trypanosoma cruzi infection induced changes in the innervation, structure and function of the murine bladder.

    PubMed

    Boczko, Judd; Tar, Moses; Melman, Arnold; Jelicks, Linda A; Wittner, Murray; Factor, Stephen M; Zhao, Dazhi; Hafron, Jason; Weiss, Louis M; Tanowitz, Herbert B; Christ, George J

    2005-05-01

    The involvement of the lower urinary tract in chronic Chagas' disease has received little attention. Therefore, we investigated pathology and functional alterations in the bladder of Trypanosoma cruzi infected mice. CD1 mice were infected with 5 x 10 T. cruzi trypomastigotes of the Brazil strain of T. cruzi. At day 100 after infection bladder structure and function were examined by pathological evaluation, magnetic resonance imaging and cystometric studies. The bladder in infected mice weighed more and were large, dilated, deformed, friable and thin walled compared with control mice. Magnetic resonance imaging confirmed these observations. Inflammation, fibrosis and ganglionitis was observed. Cystometric studies revealed that baseline, threshold and micturition pressures were increased in infected mice. Bladder overactivity and decreased bladder compliance were also noted in infected mice. There were no detectable differences in bladder capacity, micturition volume or residual volume between infected and uninfected mice. Bladder abnormalities may be a more common clinical sequelae of T. cruzi infection than previously appreciated.

  3. Enhancing effects of gamma interferon on phagocytic cell association with and killing of Trypanosoma cruzi

    NASA Technical Reports Server (NTRS)

    Wirth, J. J.; Kierszenbaum, F.; Sonnenfeld, G.; Zlotnik, A.

    1985-01-01

    Results are reported from a study of the influence gamma interferon (GIFN) and interleukin 2 (IL2) have on the capability of P388D1 cells and mouse resident peritoneal macrophages (MPM) to attach to the blood-resident parasites Trypanosoma cruzi and kill them. Cultures of trypomastigote forms of the Tulahuen strain of T. cruzi grown in bovine serum were introduced into peritoneal cells of mice, along with P388D1 cells incubated with GIFN, IL2 and both. Control cells were also maintained. Statistical analysis were then performed on data on counts of the number of dead T. Cruzi cells. The GIFN enhanced the interaction of MPM and P388D1 cells with the surface of T. Cruzi, provided the interaction was given over 12 hr to take place. A depression of the cytotoxicity of P388D1 cells was attributed to mediation by H2O2, an effect partially offset by incubation with the lymphokine GIFN.

  4. Oral Exposure to Phytomonas serpens Attenuates Thrombocytopenia and Leukopenia during Acute Infection with Trypanosoma cruzi

    PubMed Central

    da Silva, Rosiane V.; Malvezi, Aparecida D.; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H.; Yamauchi, Lucy M.; Yamada-Ogatta, Sueli F.; Rizzo, Luiz V.; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease. PMID:23844182

  5. Oral exposure to Phytomonas serpens attenuates thrombocytopenia and leukopenia during acute infection with Trypanosoma cruzi.

    PubMed

    da Silva, Rosiane V; Malvezi, Aparecida D; Augusto, Leonardo da Silva; Kian, Danielle; Tatakihara, Vera Lúcia H; Yamauchi, Lucy M; Yamada-Ogatta, Sueli F; Rizzo, Luiz V; Schenkman, Sergio; Pinge-Filho, Phileno

    2013-01-01

    Mice infected with Trypanosoma cruzi, the agent of Chagas disease, rapidly develop anemia and thrombocytopenia. These effects are partially promoted by the parasite trans-sialidase (TS), which is shed in the blood and depletes sialic acid from the platelets, inducing accelerated platelet clearance and causing thrombocytopenia during the acute phase of disease. Here, we demonstrate that oral immunization of C57BL/6 mice with Phytomonas serpens, a phytoflagellate parasite that shares common antigens with T. cruzi but has no TS activity, reduces parasite burden and prevents thrombocytopenia and leukopenia. Immunization also reduces platelet loss after intraperitoneal injection of TS. In addition, passive transfer of immune sera raised in mice against P. serpens prevented platelet clearance. Thus, oral exposure to P. serpens attenuates the progression of thrombocytopenia induced by TS from T. cruzi. These findings are not only important for the understanding of the pathogenesis of T. cruzi infection but also for developing novel approaches of intervention in Chagas disease.

  6. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    PubMed Central

    Paes, Marcia Cristina; Cosentino-Gomes, Daniela; de Souza, Cíntia Fernandes; Nogueira, Natália Pereira de Almeida; Meyer-Fernandes, José Roberto

    2011-01-01

    Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology. PMID:22007287

  7. Habitat Management to Reduce Human Exposure to Trypanosoma cruzi and Western Conenose Bugs (Triatoma protracta).

    PubMed

    Shender, Lisa; Niemela, Michael; Conrad, Patricia; Goldstein, Tracey; Mazet, Jonna

    2016-09-01

    Chagas disease, which manifests as cardiomyopathy and severe gastrointestinal dysfunction, is caused by Trypanosoma cruzi, a vector-borne parasite. In California, the vector Triatoma protracta frequently colonizes woodrat (Neotoma spp.) lodges, but may also invade nearby residences, feeding upon humans and creating the dual risk of bite-induced anaphylaxis and T. cruzi transmission. Our research aimed to assess T. cruzi presence in woodrats in a previously unstudied northern California area, statistically evaluate woodrat microhabitat use with respect to vegetation parameters, and provide guidance for habitat modifications to mitigate public health risks associated with Tr. protracta exposure. Blood samples from big-eared woodrats (N. macrotis) trapped on rural private properties yielded a T. cruzi prevalence of 14.3%. Microhabitat analyses suggest that modifying vegetation to reduce understory density within a 40 meter radius of human residences might minimize woodrat lodge construction within this buffer area, potentially decreasing human exposure to Tr. protracta.

  8. Trends of T. cruzi infection based on data from blood bank screening.

    PubMed

    Zicker, F; Martelli, C M; de Andrade, A L; Almeida e Silva, S

    1990-01-01

    Between October 1988 and April 1989 a cross-sectional survey was carried out in six out of eight blood banks of Goiánia, Central Brazil. Subjects attending for first-time blood donation in the mornings of the study period (n = 1358) were interviewed and screened for T. cruzi infection as a part of a major study among blood donors. Tests to anti-T. cruzi antibodies were performed, simultaneously, by indirect hemagglutination test (IHA) and complement fixation test (CFT). A subject was considered seropositive when any one of the two tests showed a positive result. Information on age, sex, place of birth, migration and socio-economic level was recorded. Results from this survey were compared with seroprevalence rates obtained in previous studies in an attempt to analyse trend of T. cruzi infection in an endemic urban area. The overall seroprevalence of T. cruzi infection among first-time donors was found to be 3.5% (95% confidence interval 2.5%-4.5%). The seroprevalence rate increased with age up to 45 years and then decreased. Migrants from rural areas had higher seroprevalence rates than subjects from urban counties (1.8%-16.2% vs. 0%-3.6%). A four fold decrease in prevalence rates was observed when these rates were compared with those of fifteen years ago. Two possible hypotheses to explain this difference were suggested: 1. a cohort effect related with the decrease of transmission in rural areas and/or 2. a differential proportion of people of rural origin among blood donors between the two periods. The potential usefulness of blood banks as a source of epidemiological information to monitor trends of T. cruzi infection in an urban adult population was stressed.

  9. Leishmania mexicana Gp63 cDNA Using Gene Gun Induced Higher Immunity to L. mexicana Infection Compared to Soluble Leishmania Antigen in BALB/C

    PubMed Central

    Rezvan, H; Rees, R; Ali, SA

    2011-01-01

    Background Leishmaniasis is a worldwide disease prevalent in tropical and sub tropical countries. Many attempts have been made and different strategies have been approached to develop a potent vaccine against Leishmania. DNA immunisation is a method, which is shown to be effective in Leishmania vaccination. Leishmania Soluble Antigen (SLA) has also recently been used Leishmania vaccination. Methods The immunity generated by SLA and L. mexicana gp63 cDNA was compared in groups of 6 mice, which were statistically analysed by student t- test with the P-value of 0.05. SLA was administered by two different methods; intramuscular injection and injection of dendritic cells (DCs) loaded with SLA. L. mexicana gp63 cDNA was administered by the gene gun. Results Immunisation of BALB/c mice with L. mexicana gp63 resulted in high levels of Th1-type immune response and cytotoxic T lymphocytes (CTL) activity, which were accompanied with protection induced by the immunisation against L. mexicana infection. In contrast, administration of SLA, produced a mixed Th1/Th2-type immune responses as well as a high level of CTL activity but did not protect mice from the infection. Conclusion The results indicate higher protection by DNA immunisation using L. mexicana gp63 cDNA compared to SLA, which is accompanied by a high level of Th1 immune response. However, the CTL activity does not necessarily correlate with the protection induced by the vaccine. Also, gene gun immunisation is a potential approach in Leishmania vaccination. These findings would be helpful in opening new windows in Leishmania vaccine research. PMID:22347315

  10. Leishmania (Viannia) naiffi: rare enough to be neglected?

    PubMed

    Fagundes-Silva, Giselle Aparecida; Romero, Gustavo Adolfo Sierra; Cupolillo, Elisa; Yamashita, Ellen Priscila Gadelha; Gomes-Silva, Adriano; Guerra, Jorge Augusto de Oliveira; Da-Cruz, Alda Maria

    2015-09-01

    In the Brazilian Amazon, American tegumentary leishmaniasis (ATL) is endemic and presents a wide spectrum of clinical manifestations due, in part, to the circulation of at least seven Leishmania species. Few reports of Leishmania (Viannia) naiffi infection suggest that its occurrence is uncommon and the reported cases present a benign clinical course and a good response to treatment. This study aimed to strengthen the clinical and epidemiological importance of L. (V.) naiffi in the Amazon Region (Manaus, state of Amazonas) and to report therapeutic failure in patients infected with this species. Thirty Leishmania spp samples isolated from cutaneous lesions were characterised by multilocus enzyme electrophoresis. As expected, the most common species was Leishmania (V.) guyanensis (20 cases). However, a relevant number of L. (V.) naiffi patients (8 cases) was observed, thus demonstrating that this species is not uncommon in the region. No patient infected with L. (V.) naiffi evolved to spontaneous cure until the start of treatment, which indicated that this species may not have a self-limiting nature. In addition, two of the patients experienced a poor response to antimonial or pentamidine therapy. Thus, either ATL cases due to L. (V.) naiffi cannot be as uncommon as previously thought or this species is currently expanding in this region.

  11. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    PubMed

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  12. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buarque, Diego S.; Spindola, Leticia M.N.; Martins, Rafael M.

    2011-09-23

    Highlights: {yields} Tigutcystatin inhibits Trypanosoma cruzi cysteine proteases with high specificity. {yields} Tigutcystatin expression is up-regulated in response to T. cruzi infection. {yields} It is the first cysteine proteases inhibitor characterized from a triatomine insect. -- Abstract: The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatinmore » was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K{sub i} = 3.29 nM) and human cathepsin L (K{sub i} = 3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.« less

  13. In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells.

    PubMed

    Geraldo, M M; Costa, C R; Barbosa, F M C; Vivanco, B C; Gonzaga, W F K M; Novaes E Brito, R R; Popi, A F; Lopes, J D; Xander, P

    2016-06-01

    Leishmaniasis is caused by Leishmania parasites that infect several cell types. The promastigote stage of Leishmania is internalized by phagocytic cells and transformed into the obligate intracellular amastigote form. B-1 cells are a subpopulation of B cells that are able to differentiate in vitro and in vivo into mononuclear phagocyte-like cells with phagocytic properties. B-1 cells use several receptors for phagocytosis, such as the mannose receptor and third complement receptor. Leishmania binds to the same receptors on macrophages. In this study, we demonstrated that phagocytes derived from B-1 cells (B-1 CDP) were able to internalize promastigotes of L. (L.) amazonensis in vitro. The internalized promastigotes differentiated into amastigotes. Our results showed that the phagocytic index was higher in B-1 CDP compared to peritoneal macrophages and bone marrow-derived macrophages. The in vivo phagocytic ability of B-1 cells was also demonstrated. Parasites were detected inside purified B-1 cells after intraperitoneal infection with L. (L.) amazonensis promastigotes. Intraperitoneal stimulation with the parasites led to an increase in both IL-10 and TNF-α. These results highlight the importance of studying B-1 CDP cells as phagocytic cells that can participate and contribute to immunity to parasites. © 2016 John Wiley & Sons Ltd.

  14. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice.

    PubMed

    Borborema, Samanta Etel Treiger; Osso, João Alberto; Andrade, Heitor Franco de; Nascimento, Nanci do

    2013-08-01

    Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime®) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, ¹²²Sb and ¹²⁴Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.

  15. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.

    PubMed

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-12-11

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*

    PubMed Central

    Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha

    2015-01-01

    Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792

  17. The sylvatic transmission cycle of Trypanosoma cruzi in a rural area in the humid Chaco of Argentina.

    PubMed

    Alvarado-Otegui, J A; Ceballos, L A; Orozco, M M; Enriquez, G F; Cardinal, M V; Cura, C; Schijman, A G; Kitron, U; Gürtler, R E

    2012-10-01

    Little is known about the sylvatic transmission cycle of Trypanosoma cruzi in the Gran Chaco ecoregion. We conducted surveys to identify the main sylvatic hosts of T. cruzi, parasite discrete typing units and vector species involved in Pampa del Indio, a rural area in the humid Argentinean Chaco. A total of 44 mammals from 14 species were captured and examined for infection by xenodiagnosis and polymerase chain reaction amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR). Ten (22.7%) mammals were positive by xenodiagnosis or kDNA-PCR. Four of 11 (36%) Didelphis albiventris (white-eared opossums) and six of nine (67%) Dasypus novemcinctus (nine-banded armadillos) were positive by xenodiagnosis and or kDNA-PCR. Rodents, other armadillo species, felids, crab-eating raccoons, hares and rabbits were not infected. Positive animals were highly infectious to the bugs that fed upon them as determined by xenodiagnosis. All positive opossums were infected with T. cruzi I and all positive nine-banded armadillos with T. cruzi III. Extensive searches in sylvatic habitats using 718 Noireau trap-nights only yielded Triatoma sordida whereas no bug was collected in 26 light-trap nights. Four armadillos or opossums fitted with a spool-and-line device were successfully tracked to their refuges; only one Panstrongylus geniculatus was found in an armadillo burrow. No sylvatic triatomine was infected with T. cruzi by microscopical examination or kDNA-PCR. Our results indicate that two independent sylvatic transmission cycles of T. cruzi occur in the humid Chaco. The putative vectors of both cycles need to be identified conclusively. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The sylvatic transmission cycle of Trypanosoma cruzi in a rural area in the humid Chaco of Argentina

    PubMed Central

    Alvarado-Otegui, J.A.; Ceballos, L.A.; Orozco, M.M.; Enriquez, G.F.; Cardinal, M.V.; Cura, C.; Schijman, A.G.; Kitron, U.; Gürtler, R.E.

    2012-01-01

    Little is known about the sylvatic transmission cycle of Trypanosoma cruzi in the Gran Chaco ecoregion. We conducted surveys to identify the main sylvatic hosts of T. cruzi, parasite discrete typing units and vector species involved in Pampa del Indio, a rural area in the humid Argentinean Chaco. A total of 44 mammals from 14 species was captured and examined for infection by xenodiagnosis and polymerase chain reaction amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR). Ten (22.7%) mammals were positive by xenodiagnosis or kDNA-PCR. Four of 11 (36%) Didelphis albiventris (white-eared opossums) and six of nine (67%) Dasypus novemcinctus (nine-banded armadillos) were positive by xenodiagnosis and or kDNA-PCR. Rodents, other armadillo species, felids, crab-eating raccoons, hares and rabbits were not infected. Positive animals were highly infectious to the bugs that fed upon them as determined by xenodiagnosis. All positive opossums were infected with T. cruzi I and all positive nine-banded armadillos with T. cruzi III. Extensive searches in sylvatic habitats using 718 Noireau trap-nights only yielded Triatoma sordida whereas no bug was collected in 26 light-trap nights. Four armadillos or opossums fitted with a spool-and-line device were successfully tracked to their refuges; only one Panstrongylus geniculatus was found in an armadillo burrow. No sylvatic triatomine was infected with T. cruzi by microscopical examination or kDNA-PCR. Our results indicate that two independent sylvatic transmission cycles of T. cruzi occur in the humid Chaco. The putative vectors of both cycles need to be identified conclusively. PMID:22771688

  19. Preparation of live attenuated leishmania parasites by using laser technology

    NASA Astrophysics Data System (ADS)

    Hussain, Nabiha; Alkhouri, Hassan; Haddad, Shaden

    2018-05-01

    Leishmaniasis is a parasitic disease of humans, affecting the skin, mucosal and/or internal organs, caused by flagellate protozoa Leishmania of the Trypanosomatidae family. Leishmania would be one for which a vaccine could be developed with relative ease. Many studies mount an effective response that resolves the infection and confers solid immunity to reinfection and suggesting that infection may be a prerequisite for immunological memory. Genetically altered live attenuated parasites with controlled infectivity could achieve such immunological memory. Recent concepts include use of genetically modified live-attenuated Leishmania parasites, and proteomics approach for the search of a cross-protective leishmanial vaccine that would ideally protect against both cutaneous and visceral forms of the disease. No licensed vaccine is available till date against any form of leishmaniasis. The present study evaluated role of laser technology in development of a safe live Leishmania vaccine, a vaccine is a biological preparation that improves immunity to a particular disease, and is often made from weakened or killed forms of LPs. The parasite culture was expanded in RPMI 1640 medium with 10% fetal calf serum (FCS) and grown until stationary phase for experiments. 80 samples of leishmania promastigotes (Culture media of LPs) were exposed to Nd:YAG laser (wavelength 1064 nm, single spot or double) with different outputs powers (7w, 100 Hz, 99.03w/cm2, 0.99 J/cm2 and 8 w, 100 Hz, 113.18w/cm2 1.13J/cm2)) for suitable exposer times. The effect of semiconductor laser (wavelength 810 nm, 7w, 2000 Hz, 99.03w/cm2, 0.05 J/cm2) or (7 w, 500 Hz, 99.03 w/cm2, 0.2J/cm2) single spot or double with long exposure times. The viability of Leishmania parasites was measured using XTT method; viable parasites were decreased with long exposure times. XTT test referred both these wavelengths were effective in killing percentage of Leishmania promastigotes, the remaining were devoid flagellum that

  20. Trypanosoma cruzi: sequence of phagocytosis and cytotoxicity by human polymorphonuclear leucocytes.

    PubMed Central

    Rimoldi, M T; Cardoni, R L; Olabuenaga, S E; de Bracco, M M

    1981-01-01

    We have studied the relationship between phagocytosis and cytotoxicity of human polymorphonuclear leucocytes (PMN) to sensitized Trypanosoma cruzi. Assays were done simultaneously using [3H]-uridine labelled epimastigotes as target cells. Phagocytosis was evaluated by the uptake and cytotoxicity by the release of parasite associated [3H]-uridine. Both reactions reached maximum levels at the same effector- to target-cell ratio and antibody concentration. Uptake of epimastigotes by PMN was highest at 30 min and intracellular disruption and release of parasite debris took place later. In conditions that precluded repeated uptake of sensitized radiolabelled T. cruzi, the release profile of [3H]-uridine from PMN that contained intracellular parasites was similar to that of the standard cytotoxic assay. However, as the ingestion phase was separated from the release step, no lag in the onset of the reaction was observed. Although we cannot rule out extracellular killing, the results of this study demonstrate that the bulk of damaged T. cruzi epimastigotes had been previously internalized by the PMN. PMID:7016743

  1. Monocyte Chemotactic Protein 1 in Plasma from Soluble Leishmania Antigen-Stimulated Whole Blood as a Potential Biomarker of the Cellular Immune Response to Leishmania infantum

    PubMed Central

    Ibarra-Meneses, Ana V.; Sanchez, Carmen; Alvar, Jorge; Moreno, Javier; Carrillo, Eugenia

    2017-01-01

    New biomarkers are needed to identify asymptomatic Leishmania infection as well as immunity following vaccination or treatment. With the aim of finding a robust biomarker to assess an effective cellular immune response, monocyte chemotactic protein 1 (MCP-1) was examined in plasma from soluble Leishmania antigen (SLA)-stimulated whole blood collected from subjects living in a Leishmania infantum-endemic area. MCP-1, expressed 110 times more strongly than IL-2, identified 87.5% of asymptomatic subjects and verified some asymptomatic subjects close to the cutoff. MCP-1 was also significantly elevated in all patients cured of visceral leishmaniasis (VL), unlike IL-2, indicating the specific memory response generated against Leishmania. These results show MCP-1 to be a robust candidate biomarker of immunity that could be used as a marker of cure and to both select and follow the population in vaccine phase I–III human clinical trials with developed rapid, easy-to-use field tools. PMID:29033933

  2. Distribution and pathogenicity of Trypanosoma cruzi isolated from peridomestic populations of Triatoma infestans and Triatoma guasayana from rural western Argentina

    PubMed Central

    Lauricella, Marta A; Stariolo, Raúl L; Riarte, Adelina R; Segura, Elsa L; Gürtler, Ricardo E

    2011-01-01

    We assessed the distribution of Trypanosoma cruzi infection in peridomestic triatomines collected manually at a district-wide scale in rural villages around Olta, western Argentina, and typed the isolated strains according to their pathogenicity to laboratory mice. Of 1623 triatomines examined, only 14 (0.9%) were infected with T. cruzi based on microscopical examination of feces. The prevalence of T. cruzi infection was 0.8% in Triatoma infestans, 2.3% in T. guasayana, and nil in T. garciabesi, T. platensis, and T. eratyrusiformis. Local transmission occurred in kitchens, store-rooms and goat corrals or nearby, though at very low levels. T. cruzi was detected by at least one parasitological method in 11 (79%) of 14 microscope-positive bugs. Hemoculture was the most sensitive method (67%) followed by culture of organ homogenates, histopathology or xenodiagnosis of inoculated suckling mice (55-58%), and culture of microscope-positive bug feces (46%). The evidence suggests that most of the isolated T. cruzi strains would be myotropic type III. Our study establishes for the first time that peridomestic, microscope-positive T. guasayana nymphs were actually infected with T. cruzi, and may be implicated as a putative secondary vector of T. cruzi in domestic or peridomestic sites. PMID:16021298

  3. Trypanosome species, including Trypanosoma cruzi, in sylvatic and peridomestic bats of Texas, USA.

    PubMed

    Hodo, Carolyn L; Goodwin, Chloe C; Mayes, Bonny C; Mariscal, Jacqueline A; Waldrup, Kenneth A; Hamer, Sarah A

    2016-12-01

    In contrast to other mammalian reservoirs, many bat species migrate long-distances and have the potential to introduce exotic pathogens to new areas. Bats have long been associated with blood-borne protozoal trypanosomes of the Schizotrypanum subgenus, which includes the zoonotic parasite Trypanosoma cruzi, agent of Chagas disease. Another member of the subgenus, Trypanosoma dionisii, infects bats of Europe and South America, and genetic similarities between strains from the two continents suggest transcontinental movement of this parasite via bats. Despite the known presence of diverse trypanosomes in bats of Central and South America, and the presence of T. cruzi-infected vectors and wildlife in the US, the role of bats in maintaining and dispersing trypanosomes in the US has not yet been reported. We collected hearts and blood from 8 species of insectivorous bats from 30 counties across Texas. Using PCR and DNA sequencing, we tested 593 bats for trypanosomes and found 1 bat positive for T. cruzi (0.17%), 9 for T. dionisii (1.5%), and 5 for Blastocrithidia spp. (0.8%), a group of insect trypanosomes. The T. cruzi-infected bat was carrying TcI, the strain type associated with human disease in the US. In the T. dionisii-infected bats, we detected three unique variants associated with the three infected bat species. These findings represent the first report of T. cruzi in a bat in the US, of T. dionisii in North America, and of Blastocrithidia spp. in mammals, and underscore the importance of bats in the maintenance of trypanosomes, including agents of human and animal disease, across broad geographic locales. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. DO COMMERCIAL SEROLOGIC TESTS FOR TRYPANOSOMA CRUZI INFECTION DETECT MEXICAN STRAINS IN WOMEN AND NEWBORNS?

    PubMed Central

    Gamboa-León, Rubi; Gonzalez-Ramirez, Claudia; Padilla-Raygoza, Nicolas; Sosa-Estani, Sergio; Caamal-Kantun, Alejandra; Buekens, Pierre; Dumonteil, Eric

    2012-01-01

    We sought to determine the serological test that could be used for Trypanosoma cruzi seroprevalence studies in Mexico, where lineage I predominates. In a previous study among pregnant women and their newborns in the states of Yucatan and Guanajuato, we reported a 0.8–0.9% of prevalence for T. cruzi–specific antibodies by Stat-Pak and Wiener ELISA. We have expanded this study here by performing an additional non-commercial ELISA and confirming the seropositives with Western blot, using whole antigens of a local parasite strain. We found a seroprevalence of 0.6% (3/500) in Merida and 0.4% in Guanajuato (2/488). The 5 seropositive umbilical cord samples reacted to both non-commercial ELISA and Western blot tests, and only 1 of the maternal samples was not reactive to non-commercial ELISA. A follow-up of the newborns at 10 mo was performed in Yucatan to determine the presence of T. cruzi antibodies in children as evidence of congenital infection. None of the children was seropositive. One newborn from an infected mother died at 2 wk of age of cardiac arrest, but T. cruzi infection was not confirmed. The T. cruzi seroprevalence data obtained with both commercial tests (Stat-Pak and ELISA Wiener) are similar to those from non-commercial tests using a local Mexican strain of T. cruzi. PMID:21506787

  5. Genotype diversity of Trypanosoma cruzi in small rodents and Triatoma sanguisuga from a rural area in New Orleans, Louisiana.

    PubMed

    Herrera, Claudia P; Licon, Meredith H; Nation, Catherine S; Jameson, Samuel B; Wesson, Dawn M

    2015-02-24

    Chagas disease is an anthropozoonosis caused by the protozoan parasite Trypanosoma cruzi that represents a major public health problem in Latin America. Although the United States is defined as non-endemic for Chagas disease due to the rarity of human cases, the presence of T. cruzi has now been amply demonstrated as enzootic in different regions of the south of the country from Georgia to California. In southeastern Louisiana, a high T. cruzi infection rate has been demonstrated in Triatoma sanguisuga, the local vector in this area. However, little is known about the role of small mammals in the wild and peridomestic transmission cycles. This study focused on the molecular identification and genotyping of T. cruzi in both small rodents and T. sanguisuga from a rural area of New Orleans, Louisiana. DNA extractions were prepared from rodent heart, liver, spleen and skeletal muscle tissues and from cultures established from vector feces. T. cruzi infection was determined by standard PCR using primers specific for the minicircle variable region of the kinetoplastid DNA (kDNA) and the highly repetitive genomic satellite DNA (satDNA). Genotyping of discrete typing units (DTUs) was performed by amplification of mini-exon and 18S and 24Sα rRNA genes and subsequent sequence analysis. The DTUs TcI, TcIV and, for the first time, TcII, were identified in tissues of mice and rats naturally infected with T. cruzi captured in an area of New Orleans, close to the house where the first human case of Chagas disease was reported in Louisiana. The T. cruzi infection rate in 59 captured rodents was 76%. The frequencies of the detected DTUs in such mammals were TcI 82%, TcII 22% and TcIV 9%; 13% of all infections contained more than one DTU. Our results indicate a probable presence of a considerably greater diversity in T. cruzi DTUs circulating in the southeastern United States than previously reported. Understanding T. cruzi transmission dynamics in sylvatic and peridomestic cycles

  6. Verbascoside Inhibits Promastigote Growth and Arginase Activity of Leishmania amazonensis.

    PubMed

    Maquiaveli, Claudia C; Lucon-Júnior, João F; Brogi, Simone; Campiani, Giuseppe; Gemma, Sandra; Vieira, Paulo C; Silva, Edson R

    2016-05-27

    Verbascoside (1) is a phenylethanoid glycoside that has antileishmanial activity against Leishmania infantum and Leishmania donovani. In this study, we verified the activity of 1 on Leishmania amazonensis and arginase inhibition. Compound 1 showed an EC50 of 19 μM against L. amazonensis promastigotes and is a competitive arginase inhibitor (Ki = 0.7 μM). Docking studies were performed to assess the interaction of 1 with arginase at the molecular level. Arginase is an enzyme of the polyamine biosynthesis pathway that is important to parasite infectivity, and the results of our study suggest that 1 could be useful to develop new approaches for treating leishmaniasis.

  7. Dissecting Leishmania infantum Energy Metabolism - A Systems Perspective

    PubMed Central

    Subramanian, Abhishek; Jhawar, Jitesh; Sarkar, Ram Rup

    2015-01-01

    Leishmania infantum, causative agent of visceral leishmaniasis in humans, illustrates a complex lifecycle pertaining to two extreme environments, namely, the gut of the sandfly vector and human macrophages. Leishmania is capable of dynamically adapting and tactically switching between these critically hostile situations. The possible metabolic routes ventured by the parasite to achieve this exceptional adaptation to its varying environments are still poorly understood. In this study, we present an extensively reconstructed energy metabolism network of Leishmania infantum as an attempt to identify certain strategic metabolic routes preferred by the parasite to optimize its survival in such dynamic environments. The reconstructed network consists of 142 genes encoding for enzymes performing 237 reactions distributed across five distinct model compartments. We annotated the subcellular locations of different enzymes and their reactions on the basis of strong literature evidence and sequence-based detection of cellular localization signal within a protein sequence. To explore the diverse features of parasite metabolism the metabolic network was implemented and analyzed as a constraint-based model. Using a systems-based approach, we also put forth an extensive set of lethal reaction knockouts; some of which were validated using published data on Leishmania species. Performing a robustness analysis, the model was rigorously validated and tested for the secretion of overflow metabolites specific to Leishmania under varying extracellular oxygen uptake rate. Further, the fate of important non-essential amino acids in L. infantum metabolism was investigated. Stage-specific scenarios of L. infantum energy metabolism were incorporated in the model and key metabolic differences were outlined. Analysis of the model revealed the essentiality of glucose uptake, succinate fermentation, glutamate biosynthesis and an active TCA cycle as driving forces for parasite energy metabolism

  8. In silico studies on tryparedoxin peroxidase of Leishmania infantum: structural aspects.

    PubMed

    Singh, Bishal Kumar; Dubey, Vikash Kumar

    2009-09-01

    Tryparedoxin peroxidase (TryP) is a key enzyme of the trypanothione-dependent metabolism for removal of oxidative stress in leishmania. These enzymes function as antioxidants through their peroxidase and peroxynitrite reductase activities. Inhibitors of this enzyme are presumed to be antilesihmania drugs and structural studies are prerequisite of rational drug design. We have constructed three dimensional structure of TryP of Leishmania infantum using comparative modeling. Structural analysis reveals several interesting features. Moreover, it shows remarkable structural difference with human host glutathione peroxidase, an enzyme involved in similar function and TryP from Leishmania major.

  9. Genotoxicity and antileishmanial activity evaluation of Physalis angulata concentrated ethanolic extract.

    PubMed

    Nogueira, Renata Campos; Rocha, Vinicius Pinto Costa; Nonato, Fabiana Regina; Tomassini, Therezinha Coelho Barbosa; Ribeiro, Ivone Maria; dos Santos, Ricardo Ribeiro; Soares, Milena Botelho Pereira

    2013-11-01

    Antileishmanial in vitro tests, as well as Ames and micronucleus assays were performed with a concentrated ethanolic extract of Physalis angulata (EEPA) RESULTS: EEPA did not present mutagenic effect in Salmonella typhimurium strains at concentration reaching 3000 μg/plate and did not induce mutagenic effects after two oral administrations with a 24h interval at a dose level of 2000 mg/kg. EEPA presented antileishmanial activity and presented an IC₅₀ value of 5.35 ± 2.50 μg/mL and 4.50 ± 1.17 μg/mL against Leishmania amazonensis and Leishmania braziliensis promastigotes, respectively. In the cytotoxicity test against macrophages, the EEPA had a LC₅₀ of 6.14 ± 0.59 μg/mL. Importantly, the IC₅₀ against L. amazonensis intracellular amastigotes was 1.23 ± 0.11 μg/mL. EEPA extract is non-mutagenic and presented a promising pharmacological effect against Leishmania parasites. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Risk factors associated with Trypanosoma cruzi exposure in domestic dogs from a rural community in Panama

    PubMed Central

    Saldaña, Azael; Calzada, José E; Pineda, Vanessa; Perea, Milixa; Rigg, Chystrie; González, Kadir; Santamaria, Ana Maria; Gottdenker, Nicole L; Chaves, Luis F

    2015-01-01

    Chagas disease, caused by Trypanosoma cruzi infection, is a zoonosis of humans, wild and domestic mammals, including dogs. In Panama, the main T. cruzi vector is hodnius pallescens, a triatomine bug whose main natural habitat is the royal palm, Attalea butyracea. In this paper, we present results from three T. cruzi serological tests (immunochromatographic dipstick, indirect immunofluorescence and ELISA) performed in 51 dogs from 24 houses in Trinidad de Las Minas, western Panama. We found that nine dogs were seropositive (17.6% prevalence). Dogs were 1.6 times more likely to become T. cruzi seropositive with each year of age and 11.6 times if royal palms where present in the peridomiciliary area of the dog's household or its two nearest neighbours. Mouse-baited-adhesive traps were employed to evaluate 12 peridomestic royal palms. All palms were found infested with R. pallescens with an average of 25.50 triatomines captured per palm. Of 35 adult bugs analysed, 88.6% showed protozoa flagellates in their intestinal contents. In addition, dogs were five times more likely to be infected by the presence of an additional domestic animal species in the dog's peridomiciliary environment. Our results suggest that interventions focused on royal palms might reduce the exposure to T. cruzi infection. PMID:26560985

  11. Risk factors associated with Trypanosoma cruzi exposure in domestic dogs from a rural community in Panama.

    PubMed

    Saldaña, Azael; Calzada, José E; Pineda, Vanessa; Perea, Milixa; Rigg, Chystrie; González, Kadir; Santamaria, Ana Maria; Gottdenker, Nicole L; Chaves, Luis F

    2015-11-01

    Chagas disease, caused by Trypanosoma cruzi infection, is a zoonosis of humans, wild and domestic mammals, including dogs. In Panama, the main T. cruzi vector is Rhodnius pallescens, a triatomine bug whose main natural habitat is the royal palm, Attalea butyracea. In this paper, we present results from three T. cruzi serological tests (immunochromatographic dipstick, indirect immunofluorescence and ELISA) performed in 51 dogs from 24 houses in Trinidad de Las Minas, western Panama. We found that nine dogs were seropositive (17.6% prevalence). Dogs were 1.6 times more likely to become T. cruzi seropositive with each year of age and 11.6 times if royal palms where present in the peridomiciliary area of the dog's household or its two nearest neighbours. Mouse-baited-adhesive traps were employed to evaluate 12 peridomestic royal palms. All palms were found infested with R. pallescens with an average of 25.50 triatomines captured per palm. Of 35 adult bugs analysed, 88.6% showed protozoa flagellates in their intestinal contents. In addition, dogs were five times more likely to be infected by the presence of an additional domestic animal species in the dog's peridomiciliary environment. Our results suggest that interventions focused on royal palms might reduce the exposure to T. cruzi infection.

  12. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains

    PubMed Central

    Peterson, Jennifer K.; Graham, Andrea L.; Dobson, Andrew P.; Chávez, Omar Triana

    2015-01-01

    The effect of a parasite on the life history of its vector is important for understanding and predicting disease transmission. Chagas disease agent Trypanosoma cruzi is a generalist parasite that is diverse across scales from its genetic diversity to the 100s of mammal and vector species it infects. Its vertebrate hosts show quite variable responses to infection, however, to date there are no studies looking at how T. cruzi variability might result in variable outcomes in its invertebrate host. Therefore, we investigated the effect of different T. cruzi I strains on Rhodnius prolixus survival and development. We found significant variation between insects infected with different strains, with some strains having no effect, as compared with uninfected insects, and others with significantly lower survival and development. We also found that different variables had varying importance between strains, with the effect of time postinfection and the blood:weight ratio of the infective meal significantly affecting the survival of insects infected with some strains, but not others. Our results suggest that T. cruzi can be pathogenic not only to its vertebrate hosts but also to its invertebrate hosts. PMID:26078316

  13. Regulation and spatial organization of PCNA in Trypanosoma brucei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. bruceimore » (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.« less

  14. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi.

    PubMed

    Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Dos Santos, Jamyle Andrade Ferreira; Moreira, Diogo Rodrigo Magalhães; Nogueira, Renata Campos; Tomassini, Therezinha Coelho Barbosa; Ribeiro, Ivone Maria; de Souza, Claudia Valeria Campos; Ribeiro Dos Santos, Ricardo; Soares, Milena Botelho Pereira

    2015-10-15

    The current treatment of Chagas disease, endemic in Latin America and emerging in several countries, is limited by the frequent side effects and variable efficacy of benznidazole. Natural products are an important source for the search for new drugs. Considering the great potential of natural products as antiparasitic agents, we investigated the anti-Trypanosoma cruzi activity of a concentrated ethanolic extract of Physalis angulata (EEPA). Cytotoxicity to mammalian cells was determined using mouse peritoneal macrophages. The antiparasitic activity was evaluated against axenic epimastigote and bloodstream trypomastigote forms of T. cruzi, and against amastigote forms using T. cruzi-infected macrophages. Cell death mechanism was determined in trypomastigotes by flow cytometry analysis after annexin V and propidium iodide staining. The efficacy of EEPA was examined in vivo in an acute model of infection by monitoring blood parasitaemia and survival rate 30 days after treatment. The effect against trypomastigotes of EEPA and benznidazole acting in combination was evaluated. EEPA effectively inhibits the epimastigote growth (IC50 2.9 ± 0.1 µM) and reduces bloodstream trypomastigote viability (EC50 1.7 ± 0.5 µM). It causes parasite cell death by necrosis. EEPA impairs parasite infectivity as well as amastigote development in concentrations noncytotoxic to mammalian cells. In mice acutely-infected with T. cruzi, EEPA reduced the blood parasitaemia in 72.7%. When combined with benznidazole, EEPA showed a synergistic anti-T. cruzi activity, displaying CI values of 0.8 ± 0.07 at EC50 and 0.83 ± 0.1 at EC90. EEPA has antiparasitic activity against T. cruzi, causing cell death by necrosis and showing synergistic activity with benznidazole. These findings were reinforced by the observed efficacy of EEPA in reducing parasite load in T. cruzi-mice. Therefore, this represents an important source of antiparasitic natural products. Copyright © 2015 Elsevier GmbH. All rights

  15. Congenital Trypanosoma cruzi Transmission in Santa Cruz, Bolivia

    PubMed Central

    Bern, Caryn; Verastegui, Manuela; Gilman, Robert H.; LaFuente, Carlos; Galdos-Cardenas, Gerson; Calderon, Maritza; Pacori, Juan; Abastoflor, Maria del Carmen; Aparicio, Hugo; Brady, Mark F.; Ferrufino, Lisbeth; Angulo, Noelia; Marcus, Sarah; Sterling, Charles; Maguire, James H.

    2017-01-01

    Background We conducted a study of congenital Trypanosoma cruzi infection in Santa Cruz, Bolivia. Our objective was to apply new tools to identify weak points in current screening algorithms, and find ways to improve them. Methods Women presenting for delivery were screened by rapid and conventional serological tests. For infants of infected mothers, blood specimens obtained on days 0, 7, 21, 30, 90, 180, and 270 were concentrated and examined microscopically; serological tests were performed for the day 90, 180, and 270 specimens. Maternal and infant specimens, including umbilical tissue, were tested by polymerase chain reaction (PCR) targeting the kinetoplast minicircle and by quantitative PCR. Results Of 530 women, 154 (29%) were seropositive. Ten infants had congenital T. cruzi infection. Only 4 infants had positive results of microscopy evaluation in the first month, and none had positive cord blood microscopy results. PCR results were positive for 6 (67%) of 9 cord blood and 7 (87.5%) of 8 umbilical tissue specimens. PCR-positive women were more likely to transmit T. cruzi than were seropositive women with negative PCR results (P < .05). Parasite loads determined by quantitative PCR were higher for mothers of infected infants than for seropositive mothers of uninfected infants (P < .01). Despite intensive efforts, only 58% of at-risk infants had a month 9 specimen collected. Conclusions On the basis of the low sensitivity of microscopy in cord blood and high rate of loss to follow-up, we estimate that current screening programs miss one-half of all infected infants. Molecular techniques may improve early detection. PMID:19877966

  16. A alpha-glycerophosphate dehydrogenase is present in Trypanosoma cruzi glycosomes.

    PubMed

    Concepcion, J L; Acosta, H; Quiñones, W; Dubourdieu, M

    2001-07-01

    alpha-glycerophosphate dehydrogenase (alpha-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance.

  17. Trypanosoma cruzi: in vitro morphological alterations induced by actinomycin D.

    PubMed

    Zaverucha do Valle, Tânia; Calabrese, Kátia S; Côrte-Real, Suzana; Baetas, Wagner C; Gonçalves da Costa, Sylvio C

    2003-02-01

    Actinomycin (ActD) is an antibiotic that binds DNA, preventing transcription. When a Trypanosoma cruzi infection in mice is treated with this drug, the parasite loses its ability to multiply, enabling protection. In this study, axenic cultured T. cruzi parasites were exposed to different concentrations of ActD (10, 20, and 50 microg/ml), all of them being able to inhibit growth and to alter the mobility. Nevertheless, the parasites remained alive and motile for at least 14 days. Scanning electron microscopy of trypomastigotes treated with 10 microg/ml of ActD for 24 h showed a modification in their morphology which suggests a change in the parasite cytoskeleton. Copyright 2003 S. Karger AG, Basel

  18. Localization and phosphorylation of Plasmodium falciparum nicotinamide/nicotinate mononucleotide adenylyltransferase (PfNMNAT) in intraerythrocytic stages.

    PubMed

    Nieto, Carlos A; Sánchez, Lina M; Sánchez, Diana M; Díaz, Gonzalo J; Ramírez, María H

    2018-04-11

    Nicotinamide adenine dinucleotide (NAD+) is an essential molecule in the energy metabolism of living beings, and it has various cellular functions. The main enzyme in the biosynthesis of this nucleotide is nicotinamide/nicotinate mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1/18) because it is the convergence point for all known biosynthetic pathways. NMNATs have divergences in both the number of isoforms detected and their distribution, depending on the organism. In the laboratory of basic research in biochemistry (LIBBIQ: acronym in Spanish) the NMNATs of protozoan parasites (Leishmania braziliensis, Plasmodium falciparum, Trypanosoma cruzi, and Giardia duodenalis) have been studied, analysing their catalytic properties through the use of proteins. Recombinants and their cellular distribution essentially. In 2014, O'Hara et al. determined the cytoplasmic localization of NMNAT of P. falciparum, using a transgene coupled to GFP, however, the addition of labels to the study protein can modify several of its characteristics, including its sub-cellular localization. This study confirms the cytoplasmic localization of this protein in the parasite through recognition of the endogenous protein in the different stages of the asexual life cycle. Additionally, the study found that PfNMNAT could be a phosphorylation target at serine, tyrosine and threonine residues, and it shows variations during the asexual life cycle. These experiments confirmed that the parasite is situated in the cytoplasm, fulfilling the required functions of NAD+ in this compartment, the PfNMNAT is regulated in post-transcription processes, and can be regulated by phosphorylation in its residues.

  19. First finding of Trypanosoma cruzi II in vampire bats from a district free of domestic vector-borne transmission in Northeastern Argentina.

    PubMed

    Argibay, Hernán D; Orozco, M Marcela; Cardinal, M Victoria; Rinas, Miguel A; Arnaiz, María; Mena Segura, Carlos; Gürtler, Ricardo E

    2016-09-01

    Establishing the putative links between sylvatic and domestic transmission cycles of Trypanosoma cruzi, the etiological agent of Chagas disease, is of public health relevance. We conducted three surveys to assess T. cruzi infection in wild mammals from a rural and a preserved area in Misiones Province, Northeastern Argentina, which had recently been declared free of vector- and blood-borne transmission of human T. cruzi infection. A total of 200 wild mammals were examined by xenodiagnosis (XD) and/or polymerase chain reaction (PCR) amplification of the hyper-variable region of kinetoplast DNA minicircles of T. cruzi (kDNA-PCR). The overall prevalence of T. cruzi infection was 8%. Nine (16%) of 57 Didelphis albiventris opossums and two (7%) of 29 Desmodus rotundus vampire bats were positive by both XD and kDNA-PCR. Additionally, one D. rotundus positive for T. cruzi by kDNA-PCR tested positive by satellite-DNA-PCR (SAT-DNA-PCR). The T. cruzi-infected bats were captured indoors and in the yard of a vacant dwelling. All D. albiventris were infected with TcI and both XD-positive D. rotundus by TcII. Fifty-five opossum cubs within the marsupium were negative by XD. The mean infectiousness to the vector was 62% in D. albiventris and 50% in D. rotundus. Mice experimentally infected with a parasite isolate from a vampire bat displayed lesions typically caused by T. cruzi. Our study documents the presence of the genotype TcII in a sylvatic host for the first time in Argentina, and the occurrence of two transmission cycles of T. cruzi in a district free of domestic vector-borne transmission.

  20. Molecular detection of Leishmania infantum and Leishmania tropica in rodent species from endemic cutaneous leishmaniasis areas in Morocco.

    PubMed

    Echchakery, Mohamed; Chicharro, Carmen; Boussaa, Samia; Nieto, Javier; Carrillo, Eugenia; Sheila, Ortega; Moreno, Javier; Boumezzough, Ali

    2017-10-02

    Leishmaniasis remains a major public health problem in African nations, including Morocco, where little is known about the vertebrate reservoirs involved in the causal parasites' transmission cycles. The present study investigates the role of rodent species as potential reservoirs of Leishmania spp. in central Morocco, where both L. tropica and L. infantum have been reported. Rodents were caught from 22 sites in central Morocco, by using Sherman metal traps, and identified morphologically. For each specimen, genomic DNA was extracted from different tissues using the Speed Tools DNA extraction Kit. Then, samples were PCR-analyzed, targeting the SSU rRNA gene to detect Leishmania spp. DNA, followed by amplification of the internal transcribed spacer 1 (ITS1) and its sequencing to identify the species. A total of 197 rodents belonging to ten species were captured and identified: Rattus rattus (40.61%), Mus musculus (25.38%), Apodemus sylvaticus (8.63%), Mus spretus (7.11%), Meriones shawi (5.58%), Rattus norvegicus (4.57%), Meriones libycus (3.05%), Mastomys erythroleucus (2.03%), Gerbillus campestris (2.03%) and Lemniscomys barbarus (1.01%). Molecular analysis revealed the presence of Leishmania species in 18 specimens: six R. rattus (out of 80 captured; 7.5%), 11 M. musculus (out of 50 captured; 22%), and one R. norvegicus (out of 9 captured; 11.11%). To the best of our knowledge, L. infantum and L. tropica were identified in rodent species for the first time in Morocco. These findings suggest that rodent species may be involved in L. infantum and L. tropica transmission cycles in this country but that further studies are needed to confirm their role as reservoirs of Leishmania species in Morocco.