Science.gov

Sample records for cryogenic cables

  1. Solid-cryogen-stabilized, cable-in-conduit (CIC) superconducting cables

    NASA Astrophysics Data System (ADS)

    Voccio, J. P.; Michael, P. C.; Bromberg, L.; Hahn, S.

    2015-12-01

    This paper considers the use of a solid cryogen as a means to stabilize, both mechanically and thermally, magnesium diboride (MgB2) superconducting strands within a dual-channel cable-in-conduit (CIC) cable for use in AC applications, such as a generator stator winding. The cable consists of two separate channels; the outer channel contains the superconducting strands and is filled with a fluid (liquid or gas) that becomes solid at the device operating temperature. Several options for fluid will be presented, such as liquid nitrogen, hydrocarbons and other chlorofluorocarbons (CFCs) that have a range of melting temperatures and volumetric expansions (from solid at operating temperature to fixed volume at room temperature). Implications for quench protection and conductor stability, enhanced through direct contact with the solid cryogen, which has high heat capacity and thermal conductivity (compared with helium gas), will be presented. Depending on the cryogen, the conductor will be filled initially either with liquid at atmospheric conditions or a gas at high pressure (∼100 atm). After cooldown, the cryogen in the stranded-channel will be solid, essentially locking the strands in place, preventing strand motion and degradation due to mechanical deformation while providing enhanced thermal capacity for stability and protection. The effect of cryogen porosity is also considered. The relatively high heat capacity of solid cryogens at these lower temperatures (compared to gaseous helium) enhances the thermal stability of the winding. During operation, coolant flow through the open inner channel will minimize pressure drop.

  2. Performance Testing of a Cryogenic Refrigeration System for HTS Cables

    NASA Astrophysics Data System (ADS)

    Lee, R. C.; Dada, A.; Garcia, E. L.; Ringo, S. M.

    2006-04-01

    A novel Cryogenic Refrigeration System (CRS) has been developed to provide the refrigeration for an in-grid 350 m HTS cable demonstration in Albany NY. Refrigeration is provided by a closed cycle refrigerator (cryocooler) with a nominal cooling capacity of 6 kW at 70 K. The CRS is designed to meet both the stringent operating and reliability criteria necessary for the utility industry, while demonstrating the commercial requirements of a cost effective and compact design. Integral to the operation of the CRS is the continuous monitoring and control provided by BOC's remote operations infrastructure. The skid mounted CRS has been installed at host utility Niagara Mohawk's site in Albany. Field trials of the CRS and its remote operation were conducted prior to the HTS cable installation using a simulated heat load. A wide variety of operating conditions and modes of operation were tested, including back up and accelerated recovery from fault current conditions. This paper describes the integrated system design and field testing results.

  3. Experimental Studies on Cryogenic System for 22.9 KV Hts Cable Sytem

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, H. S.; Kim, D. L.; Ryoo, H. S.; Kim, C. D.; Kim, D. H.; Lee, S. K.; Hwang, S. D.

    2008-03-01

    In terms of high transmission capacity with lower voltage, a high temperature superconducting (HTS) cable system is a very attractive challenge for utilities. However, the concomitant cryogenic system for the HTS cable system is one of the tantalizing problems in the operation. The reliability and maintainability of cryogenic system are the key issues to apply it to the real electric power grid. Korea Electric Power Corporation (KEPCO) is making an attempt to verify the applicability of the HTS cable system to improve the efficiency of electric power industry. Since May 2006, a 22.9-kV, 50-MVA, 3-phase, 100-m class HTS cable system with an open cooling system has been operated at the KEPCO Gochang test yard. Concurrently, another HTS cable verification test with the same electrical specification and an hybrid cooling system has been carried out by LS Cable (LSC) Ltd in close proximity to the KEPCO's HTS cable system within Gochang test yard. KEPCO conducts the operation of the open cooling system, and is evaluating the hybrid system of LSC with respect to facility performance and usability. This paper compares the cryogenic performance of both HTS cable systems and discusses cooling test results such as step response.

  4. Magnesium Diboride Flexible Flat Cables for Cryogenic Electronics

    NASA Astrophysics Data System (ADS)

    Yung, Chris S.; Moeckly, Brian H.

    2011-06-01

    Magnesium diboride (MgB2) thin films are a potential alternative to low-temperature superconductors (LTS) due to a higher critical temperature (Tc) of approximately 39 K. The reactive evaporation deposition technique also affords relatively simple growth of MgB2 films on flexible substrates compared to high-temperature superconductors (HTS). We have designed and fabricated a cable architecture consisting of MgB2 traces on flexible yttria-stabilized zirconia (YSZ) compatible with commercially available connectors or direct wirebonds. Key performance metrics such as critical current density (Jc) and Tc are measured and compared. We discuss thermal conductivity and passivation schemes for these cables.

  5. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Sohn, S. H.; Yang, H. S.; Hwang, S. D.; Kim, D. L.; Ryoo, H. S.; Choi, H. O.

    2010-11-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  6. Cryogenic Thermal Studies on Terminations for Helium Gas Cooled Superconducting Cables

    NASA Astrophysics Data System (ADS)

    Kim, Chul Han; Kim, Sung-Kyu; Graber, Lukas; Pamidi, Sastry V.

    Details of the design of terminations for testing a superconducting DC monopole cable cooled with gaseous helium are presented. The termination design includes a liquid nitrogen chamber to reduce heat influx into the helium section through current leads. Thermal studies on the assembly of the two terminations and a 1 m or 30 m cable cryostat were performed at variable mass flow rates of helium gas. Measurements of temperature profile for the test system without the superconducting cable showed temperature rise between 5 K and 20 K depending on the mass flow rate. The temperature profile across the test system was used to estimate the heat load from different components of the system. Results with and without the liquid nitrogen in current lead section were compared to estimate the savings provided by the liquid nitrogen on the head of the helium circulation system. Suggestions for improving the design to enable fully gas cooled terminations are presented.

  7. Rectangular configuration improves superconducting cable

    NASA Technical Reports Server (NTRS)

    Foss, M.; Laverick, C.; Lobell, G.

    1968-01-01

    Superconducting cable for a cryogenic electromagnet with improved mechanical and thermal properties consists of a rectangular cross-sectioned combination of superconductor and normal conductor. The conductor cable has superconductors embedded in a metallic coating with high electrical and mechanical conductivity at liquid helium temperatures.

  8. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  9. Rigid cable support for blind installations

    NASA Technical Reports Server (NTRS)

    Abbott, J. R.

    1977-01-01

    Mechanical support structure, originally designed for use with electrical cables, can support hydraulic, pneumatic, and cryogenic lines where bends are required, assemblies are inaccessible, and conduits are impractical. Support is also light in weight and offers means of damping vibration.

  10. Cable Economics.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    A guide to the economic factors that influence cable television systems is presented. Designed for local officials who must have some familiarity with cable operations in order to make optimum decisions, the guide analyzes the financial framework of a cable system, not only from the operators viewpoint, but also from the perspective of the…

  11. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  12. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    The Federal Communications Commission (FCC) presents a brief description of cable television and explains some basic regulations pertaining to it. The history of cable regulation covers the initial jurisdiction, economic considerations of the regulation, court tests, and the holding of public hearings. The major provisions of new cable rules are…

  13. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOEpatents

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  14. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOEpatents

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  15. Cable compliance

    NASA Technical Reports Server (NTRS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-01-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  16. Cable compliance

    NASA Astrophysics Data System (ADS)

    Kerley, J.; Eklund, W.; Burkhardt, R.; Rossoni, P.

    1992-06-01

    The object of the investigation was to solve mechanical problems using cable-in-bending and cable-in-torsion. These problems included robotic contacts, targets, and controls using cable compliance. Studies continued in the use of cable compliance for the handicapped and the elderly. These included work stations, walkers, prosthetic knee joints, elbow joints, and wrist joints. More than half of these objects were met, and models were made and studies completed on most of the others. It was concluded that the many different and versatile solutions obtained only opened the door to many future challenges.

  17. Thermal management of long-length HTS cable systems

    SciTech Connect

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  18. Superconductor cable

    DOEpatents

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  19. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  20. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  1. Cable Television.

    ERIC Educational Resources Information Center

    Federal Communications Commission, Washington, DC.

    This report provides information about cable television and the Federal Communications Commission's (FCC) responsibilities in regulating its operation. The initial jurisdiction and rules covered in this report pertain to the court test, public hearing, certificate of compliance, franchising, signal carriage, leapfrogging, access and origination…

  2. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  3. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  4. CABLE CONNECTOR

    DOEpatents

    Caller, J.M.

    1962-05-01

    An electrical connector is designed for utilization in connection with either round or flat coaxial cables. The connector comprises a bayonet-type coupling arrangement with a splined movable locking sleeve adapted to lock together components of the connector. A compression spring is attached to one of the connector components and functions to forcibly separate mating components when the locking sleeve is in an unlocked condition so as to minimize the possibility of leaving the conductors electrically coupled. (AEC)

  5. Superconductor cable

    DOEpatents

    Smith, Jr., Darrell F.; Lake, Bill L.; Ballinger, Ronald G.

    1988-01-01

    A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.

  6. Research on insulation design method of a cold dielectric type superconducting cable

    NASA Astrophysics Data System (ADS)

    Kwag, D. S.; Choi, J. W.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    2008-09-01

    It is important that study on cryogenic electrical insulation design to develop the cold dielectric (CD) type high temperature superconducting (HTS) cable because the cable is operated under the high-voltage environment in cryogenic temperature. Therefore, this paper describes a design method for the electrical insulation layer of the CD type HTS cable adopting the partial discharge (PD)-free design under ac stress, based on the experimental results such a partial discharge inception stress (PDIE) and V- t characteristics, and an impulse breakdown strength of liquid nitrogen (LN 2)/laminated polypropylene paper (LPP) composite insulation system in which the mini-model cable is immersed into pressurized LN 2.

  7. Armored spring-core superconducting cable and method of construction

    DOEpatents

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  8. Heat loss analysis of a 10 kA warm dielectric HTS DC cable

    NASA Astrophysics Data System (ADS)

    Dai, Shaotao; Xiao, Liye; Teng, Yuping; Song, Naihao; Gao, Zhiyuan; Zhu, Zhiqing; Liang, Xueming; Cao, Zhicheng; Zhang, Dong; Ma, Tao; Zhang, Hongen; Lin, Liangzhen

    2014-09-01

    A 10 kA/360 m warm-dielectric high-temperature superconducting direct current (DC) power cable system (10 kA cable), supported jointly the Chinese government and industrial enterprise, was developed and has been operating as a branch circuit to transmit power for a 320 kA aluminum electrolyzing production line for more than 10 months at an industrial plant in central China. Both the 10 kA cable and its supporting system of the cable system are introduced. The cryogenic system for the 10 kA cable adopts closed loop and the sub-cooled liquid nitrogen is forced to flow inside by a pump. The design of corrugated cryogenic envelope pipe is modularized and every independent module has two standardized joints, which makes it easy to integrate with the other pipes and the terminations. The heat loss sources and the structure including both the termination and the cryogenic envelope pipe of the 10 kA cable are discussed. The total heat loss of the 10 kA cable excluding the loss of cryogenic pipe for liquid nitrogen backward flowing is designed to be less than 1698 W at 10 kA, and the heat loss was compared and discussed with that of the aluminum bar. The field test and commissioning of the cable show that the 10 kA cable performs steadily and its heat loss is less than the expected value.

  9. Cable Television Service; Cable Television Relay Service.

    ERIC Educational Resources Information Center

    Federal Register, 1972

    1972-01-01

    The rules and regulations of the Federal Communications Commission (FCC) concerning cable television service and cable relay service are presented along with the comments of the National Cable Television Association, the National Association of Broadcasters, the Association of Maximum Service Telecasters, and a major group of program suppliers.…

  10. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  11. RHIC cryogenics

    NASA Astrophysics Data System (ADS)

    Iarocci, M. A.; Brown, D.; Sondericker, J.; Wu, K. C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A.

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  12. Seismic cable compass system

    SciTech Connect

    Burrage, E.C.

    1984-11-06

    An apparatus for determining the azimuthal direction of a marine streamer cable at selected points along the cable. The apparatus comprises a pod that is clamped to the cable and contains a gimbaled magnetic compass and mean for establishing two-way communication between the pod and the cable.

  13. Cable Tensiometer for Aircraft

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  14. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  15. Cryogenic shutter

    NASA Astrophysics Data System (ADS)

    Barney, Richard D.; Magner, Thomas J.

    1992-07-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  16. Marine cable location system

    SciTech Connect

    Zachariadis, R.G.

    1984-05-01

    An acoustic positioning system locates a marine cable at an exploration site, such cable employing a plurality of hydrophones at spaced-apart positions along the cable. A marine vessel measures water depth to the cable as the vessel passes over the cable and interrogates the hydrophones with sonar pulses along a slant range as the vessel travels in a parallel and horizontally offset path to the cable. The location of the hydrophones is determined from the recordings of water depth and slant range.

  17. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  18. Cable load sensing device

    DOEpatents

    Beus, Michael J.; McCoy, William G.

    1998-01-01

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  19. Cable load sensing device

    SciTech Connect

    Beus, M.J.; McCoy, W.G.

    1996-12-31

    Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable no-load condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.

  20. Preliminary ageing tests on a superconducting cable dilectric

    SciTech Connect

    Pearmain, A J; Forsyth, E B; Kosaki, M; Thomas, R A

    1980-01-01

    New dielectric tapes were developed for a superconducting, flexible, ac power cable. Preliminary aging tests were performed. Tests show that the proposed system withstood frequency accelerated aging at a cable stress of 10 MV/m for an equivalent 60 Hz time period of te 531 days under the cryogenic conditions of the proposed cable. The partial discharge inception stress for a helium density of 110 kg/m/sup 3/ declined from 12.3 MV/m at the beginning of aging to 7.1 MV/m at the end. This was thought to be due to the erosion of the vapor-deposited aluminum layer on the screen tapes. Although the dielectric tapes were exposed to partial discharge activity for almost the whole period of the test, there was no significant deterioration of the tapes. This suggests that damage due to discharges must be less at cryogenic temperatures.

  1. Cutting Edge Cable Management.

    ERIC Educational Resources Information Center

    Peach, Roger

    1997-01-01

    Describes how one school district was able to efficiently install fragile telecommunication cabling throughout its high school and save thousands of dollars. Discusses solutions to some common cable-management problems. (GR)

  2. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  3. Vertex Detector Cable Considerations

    SciTech Connect

    Cooper, William E.; /Fermilab

    2009-02-01

    Vertex detector cable requirements are considered within the context of the SiD concept. Cable material should be limited so that the number of radiation lengths represented is consistent with the material budget. In order to take advantage of the proposed accelerator beam structure and allow cooling by flow of dry gas, 'pulsed power' is assumed. Potential approaches to power distribution, cable paths, and cable design for operation in a 5 T magnetic field are described.

  4. Marine cable location system

    SciTech Connect

    Ottsen, H.; Barker, Th.

    1985-04-23

    An acoustic positioning system for locating a marine cable at an exploration site employs a plurality of acoustic transponders, each having a characteristic frequency, at spaced-apart positions along the cable. A marine vessel measures the depth to the transponders as the vessel passes over the cable and measures the slant range from the vessel to each of the acoustic transponders as the vessel travels in a parallel and horizontally offset path to the cable.

  5. Colleges and Cable Franchising.

    ERIC Educational Resources Information Center

    Glenn, Neal D.

    After noting issues of audience appeal and financial and philosophical support for educational broadcasting, this paper urges community colleges to play an active role in the process of cable franchising. The paper first describes a cable franchise as a contract between a government unit and the cable television (CATV) company which specifies what…

  6. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  7. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  8. Cables and fire hazards

    NASA Technical Reports Server (NTRS)

    Zanelli, C.; Philbrick, S.; Beretta, G.

    1986-01-01

    Besides describing the experiments conducted to develop a nonflammable cable, this article discusses several considerations regarding other hazards which might result from cable fires, particularly the toxicity and opacity of the fumes emitted by the burning cable. In addition, this article examines the effects of using the Oxygen Index as a gauge of quality control during manufacture.

  9. Modeling vibration response and damping of cables and cabled structures

    NASA Astrophysics Data System (ADS)

    Spak, Kaitlin S.; Agnes, Gregory S.; Inman, Daniel J.

    2015-02-01

    In an effort to model the vibration response of cabled structures, the distributed transfer function method is developed to model cables and a simple cabled structure. The model includes shear effects, tension, and hysteretic damping for modeling of helical stranded cables, and includes a method for modeling cable attachment points using both linear and rotational damping and stiffness. The damped cable model shows agreement with experimental data for four types of stranded cables, and the damped cabled beam model shows agreement with experimental data for the cables attached to a beam structure, as well as improvement over the distributed mass method for cabled structure modeling.

  10. Electronically controlled cable wrapper

    DOEpatents

    Young, T.M.

    1982-08-17

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  11. Electronically controlled cable wrapper

    DOEpatents

    Young, Thomas M.

    1984-01-01

    A spindle assembly engages and moves along a length of cable to be wrapped with insulating tape. Reels of insulating tape are mounted on a outer rotatable spindle which revolves around the cable to dispense insulating tape. The rate of movement of the spindle assembly along the length of the cable is controlled by a stepper motor which is programmably synchronized to the rate at which rotatable spindle wraps the cable. The stepper motor drives a roller which engages the cable and moves the spindle assembly along the length of the cable as it is being wrapped. The spindle assembly is mounted at the end of an articulated arm which allows free movement of the spindle assembly and allows the spindle assembly to follow lateral movement of the cable.

  12. Application of Superconducting Power Cables to DC Electric Railway Systems

    NASA Astrophysics Data System (ADS)

    Ohsaki, Hiroyuki; Lv, Zhen; Sekino, Masaki; Tomita, Masaru

    For novel design and efficient operation of next-generation DC electric railway systems, especially for their substantial energy saving, we have studied the feasibility of applying superconducting power cables to them. In this paper it is assumed that a superconducting power cable is applied to connect substations supplying electric power to trains. An analysis model line was described by an electric circuit, which was analyzed with MATLAB-Simulink. From the calculated voltages and currents of the circuit, the regenerative brake and the energy losses were estimated. In addition, assuming the heat loads of superconducting power cables and the cryogenic efficiency, the energy saving of the total system was evaluated. The results show that the introduction of superconducting power cables could achieve the improved use of regenerative brake, the loss reduction, the decreased number of substations, the reduced maintenance, etc.

  13. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1990-10-01

    The cable is the heart of a superconducting accelerator magnet. Since the initial development of the Rutherford Cable more than twenty years ago, many improvements in manufacturing techniques have increased the current carrying capacity. When the Tevatron cable was specified fifteen years ago the current carrying capacity was 1800 A/mm{sup 2} at a field of 5.3T. During the intervening years it has been increased to 3000 A/mm{sup 2}. These improvements were due to refinements in the fabrication of the strands and the formation of the cable from the strands. The metallurgists were able to impart significant gains in performance by improving the homogeneity of the conductor. The engineers and technicians who designed and built the modern cabling machines made an enormous contribution by significantly reducing the degradation of wire performance that occurs when the wire was cabled. The fact that these gains were made while increasing the speed of cabling is one of the technological advances that made accelerators like the SSC possible. This article describes the cabling machines that were built to manufacture the cable for the full scale SSC prototype magnets and the low beta quadrupoles for the Fermilab Tevatron. This article also presents a compendium of the knowledge that was gained in the struggle to make high performance cable to exacting dimensional standards and at the throughput needed for the SSC. The material is an important part of the technology transfer from the Department of energy Laboratories to Industry.

  14. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  15. Cable Tester Box

    NASA Technical Reports Server (NTRS)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  16. Cable suspended windmill

    NASA Technical Reports Server (NTRS)

    Farmer, Moses G. (Inventor)

    1990-01-01

    A windmill is disclosed which includes an airframe having an upwind end and a downwind end. The first rotor is rotatably connected to the airframe, and a generator is supported by the airframe and driven by the rotor. The airframe is supported vertically in an elevated disposition by poles which extend vertically upwardly from the ground and support cables which extend between the vertical poles. Suspension cables suspend the airframe from the support cable.

  17. Cable fault locator research

    NASA Astrophysics Data System (ADS)

    Cole, C. A.; Honey, S. K.; Petro, J. P.; Phillips, A. C.

    1982-07-01

    Cable fault location and the construction of four field test units are discussed. Swept frequency sounding of mine cables with RF signals was the technique most thoroughly investigated. The swept frequency technique is supplemented with a form of moving target indication to provide a method for locating the position of a technician along a cable and relative to a suspected fault. Separate, more limited investigations involved high voltage time domain reflectometry and acoustical probing of mine cables. Particular areas of research included microprocessor-based control of the swept frequency system, a microprocessor based fast Fourier transform for spectral analysis, and RF synthesizers.

  18. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Demko, Jonathan A; Ellis, Alvin R; Gouge, Michael J; James, David Randy; Tuncer, Enis

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  19. Test Results for a 25 Meter Prototype Fault Current Limiting Hts Cable for Project Hydra

    NASA Astrophysics Data System (ADS)

    Rey, C. M.; Duckworth, R. C.; Demko, J. A.; Ellis, A.; James, D. R.; Gouge, M. J.; Tuncer, E.

    2010-04-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its HTS cable test facility. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture between Southwire and nkt cables. System integration and HTS wire were provided by American Superconductor Corporation who was the overall team leader of the project. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ˜200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3-Φ) HTS Triax™ design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase (7967 V phase-to-ground) and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  20. A simplified generic cryostat thermal model for predicting cryogen mass and lifetime. [of cryogenic space telescopes

    NASA Technical Reports Server (NTRS)

    Birur, G. C.; Tsuyuki, G. T.

    1992-01-01

    This study presents a simple generic cryostat thermal model developed for predicting cryogen mass and the lifetime of cryogenic space telescopes. The model is based on a lumped parameter representation of eight nodes and over 35 conductors. The major telescope Dewar components represented as nodes are the main cryogen tank, the three vapor-cooled shields, the outer shell, barrel baffle, and the barrel baffle heat exchanger. The input to the model consists of the vapor-cooled shield, support straps and instrument cable geometry, and the cryostat heat loads from the instrument and through the aperture. The predictions from the model were compared with those from the more detailed models of IRAS, COBE, and SIRTF. Correlation of the helium flow rates of the IRAS and COBE Dewars was 12 percent above the actual flight or ground test data and for SIRTF it was less than 2 percent of the prediction from the detailed model.

  1. Cryogenic vacuumm RF feedthrough device

    DOEpatents

    Wu, Genfa; Phillips, Harry Lawrence

    2008-12-30

    A cryogenic vacuum rf feedthrough device comprising: 1) a probe for insertion into a particle beam; 2) a coaxial cable comprising an inner conductor and an outer conductor, a dielectric/insulating layer surrounding the inner conductor, the latter being connected to the probe for the transmission of higher mode rf energy from the probe; and 3) a high thermal conductivity stub attached to the coaxial dielectric about and in thermal contact with the inner conductor which high thermal conductivity stub transmits heat generated in the vicinity of the probe efficiently and radially from the area of the probe and inner conductor all while maintaining useful rf transmission line characteristics between the inner and outer coaxial conductors.

  2. Cable Diagnostic Focused Initiative

    SciTech Connect

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  3. COPPER CABLE RECYCLING TECHNOLOGY

    SciTech Connect

    Chelsea Hubbard

    2001-05-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D&D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D&D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness of separating

  4. Submarine cable route survey

    SciTech Connect

    Herrouin, G.; Scuiller, T.

    1995-12-31

    The growth of telecommunication market is very significant. From the beginning of the nineties, more and more the use of optical fiber submarine cables is privileged to that of satellites. These submarine telecommunication highways require accurate surveys in order to select the optimum route and determine the cable characteristics. Advanced technology tools used for these surveys are presented along with their implementation.

  5. Cable Television and Education.

    ERIC Educational Resources Information Center

    Stern, Joseph L.

    Cable television can augment educational broadcast services and also provide a level of individualized educational services not possible with either broadcasting or classroom audiovisual aids. The extra channels provided by cable television allow the following extra services for education: 1) broadcast of a multitude of programs, including delayed…

  6. Multistrand superconductor cable

    DOEpatents

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  7. Study of materials and adhesives for superconducting cable feedthroughs

    NASA Astrophysics Data System (ADS)

    Perin, A.; Jareño, R. Macias; Metral, L.

    2002-05-01

    Powering superconducting magnets requires the use of cryogenic feedthroughs for the superconducting cables capable of withstanding severe thermal, mechanical and electrical operating conditions. Such feedthroughs shall provide the continuity of the superconducting circuit while ensuring a hydraulic separation at cryogenic temperature. A study about the adhesive and polymers required for the production of thermal shock resistant feedthroughs is presented. The strength of the busbar to adhesive joints was first investigated by compression/shear tests as well as pin-and-collar tests performed with four epoxy adhesives. After the selection of the most appropriate adhesive, pin-and-collar tests were performed with four different polymers. Based on the results, a superconducting cable feedthrough for 6 busbars of 6 kA and 12 busbars of 120 A was constructed and successfully tested.

  8. Multistrand superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easil

  9. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  10. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  11. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  12. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  13. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  14. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No cable... cable system must be designed so that there will be no hazardous change in cable tension throughout...

  15. Cable and Line Inspection Mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  16. Cable and line inspection mechanism

    NASA Technical Reports Server (NTRS)

    Ross, Terence J. (Inventor)

    2003-01-01

    An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.

  17. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  18. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government’s financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  19. Correction coil cable

    DOEpatents

    Wang, S.T.

    1994-11-01

    A wire cable assembly adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies for the Superconducting Super Collider. The correction coil cables have wires collected in wire array with a center rib sandwiched therebetween to form a core assembly. The core assembly is surrounded by an assembly housing having an inner spiral wrap and a counter wound outer spiral wrap. An alternate embodiment of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable on a particle tube in a particle tube assembly. 7 figs.

  20. Bringing Cable into the Classroom.

    ERIC Educational Resources Information Center

    Blubaugh, Donelle

    1999-01-01

    Cable TV may be an educationally and fiscally sound way to inspire active learning. Creative TV applications help teachers address potentially disabling social and emotional factors. The Cable in the Classroom program offers over 80,000 eligible schools free cable connections, free basic monthly cable service, and copyright clearances for off-air…

  1. Cryogenic wind tunnels. III

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    Specific problems pertaining to cryogenic wind tunnels, including LN(2) injection, GN(2) exhaust, thermal insulation, and automatic control are discussed. Thermal and other physical properties of materials employed in these tunnels, properties of cryogenic fluids, storage and transfer of liquid nitrogen, strength and toughness of metals and nonmetals at low temperatures, and material procurement and qualify control are considered. Safety concerns with cryogenic tunnels are covered, and models for cryogenic wind tunnels are presented, along with descriptions of major cryogenic wind-tunnel facilities the United States, Europe, and Japan. Problems common to wind tunnels, such as low Reynolds number, wall and support interference, and flow unsteadiness are outlined.

  2. Progress and status of cryogenic refrigeration system for project Hydra

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Catseman, F.; Tilleman, H.; Henderson, N.

    2015-12-01

    In the last two decades, HTS cables have been successfully demonstrated around the world, preparing HTS power cables for a full commercial introduction. Among the demonstration projects, circulating subcooled liquid nitrogen to maintain the HTS cable at operating temperature is a widely adopted approach. In this approach, the cooling systems are absolutely critical to the successful operation of the HTS cables. This paper describes the progress and status of the cryogenic refrigeration system designed and manufactured for project Hydra, which is a project jointly funded by the U.S. Department of Homeland Security Science and Technology Directorate, American Superconductor and Consolidated Edison Company of New York, Inc. American Superconductor is leading the team supported by Con Edison, Ultera, Altran Solutions, and DH Industries. The cable is an inherently fault current limiting HTS cable, approximately 200 m long and designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be installed and energized near New York City. The refrigeration system was designed and manufactured by DH Industries. This paper provides details on the successful factory acceptance testing completed in November 2014.

  3. Infiniband Based Cable Comparison

    SciTech Connect

    Minich, Makia

    2007-07-01

    As Infiniband continues to be more broadly adopted in High Performance Computing (HPC) and datacenter applications, one major challenge still plagues implementation: cabling. With the transition to DDR (double data rate) from SDR (single datarate), currently available Infiniband implementations such as standard CX4/IB4x style copper cables severely constrain system design (10m maximum length for DDR copper cables, thermal management due to poor airflow, etc.). This paper will examine some of the options available and compare performance with the newly released Intel Connects Cables. In addition, we will take a glance at Intel's dual-core and quad-core systems to see if core counts have noticeable effect on expected IO patterns.

  4. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  5. Robotic Arm Biobarrier Cable

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing.

    To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Flat conductor cable survey

    NASA Technical Reports Server (NTRS)

    Swanson, C. R.; Walker, G. L.

    1973-01-01

    Design handbook contains data and illustrations concerned with commercial and Government flat-conductor-cable connecting and terminating hardware. Material was obtained from a NASA-sponsored industry-wide survey of approximately 150 companies and Government agencies.

  7. End moldings for cable dielectrics

    DOEpatents

    Roose, Lars D.

    2000-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  8. Low-Heat-Leak Electrical Leads For Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hooker, Matthew W.

    1994-01-01

    Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.

  9. Magnet cable manufacturing

    SciTech Connect

    Royet, J.

    1985-07-01

    The superconducting magnets used in the construction of particle accelerators are mostly built from flat, multistrand cables with rectangular or keystoned cross sections. The superconducting strands are mostly circular but a design of a cable made of preflattened wires was proposed a few years ago under the name of Berkeley flat; such cable shows some interesting characteristics. Another design consists of a few smaller precabled wires (e.g. 6 around 1). This configuration allows smaller filaments and a better transposition of the current elements. The Superconducting Super Collider project involves the largest amount of superconducting cable ever envisaged for a single machine. Furthermore, the design calls for exceptional accuracy and improved characteristics of the cable. A part of the SSC research and development program is focused on these important questions. In this paper we emphasize the difference between the conventional cabling and wires with superconducting. A new concept for the tooling will be introduced as well as the necessary characteristics of a specialized cabler. 5 figs.

  10. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be...

  11. Metal boot permits fabrication of hermetically sealed splices in metal sheathed instrumentation cables

    NASA Technical Reports Server (NTRS)

    Chambers, G.

    1966-01-01

    Metal boot splices hard sheathed instrumentation cables used with high temperature strain gages and thermocouples. Silver brazing the conductors together, hermetically seals the splice. This boot is a highly reliable sealed splice which is equally effective at cryogenic temperatures, high temperatures, nuclear environments, and combinations of the above.

  12. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  13. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable... or broken under load....

  14. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable... or broken under load....

  15. Cable-Dispensing Cart

    NASA Technical Reports Server (NTRS)

    Bredberg, Alan S.

    2003-01-01

    A versatile cable-dispensing cart can support as many as a few dozen reels of cable, wire, and/or rope. The cart can be adjusted to accommodate reels of various diameters and widths, and can be expanded, contracted, or otherwise reconfigured by use of easily installable and removable parts that can be carried onboard. Among these parts are dispensing rods and a cable guide that enables dispensing of cables without affecting the direction of pull. Individual reels can be mounted on or removed from the cart without affecting the other reels: this feature facilitates the replacement or reuse of partially depleted reels, thereby helping to reduce waste. Multiple cables, wires, or ropes can be dispensed simultaneously. For maneuverability, the cart is mounted on three wheels. Once it has been positioned, the cart is supported by rubber mounts for stability and for prevention of sliding or rolling during dispensing operations. The stability and safety of the cart are enhanced by a low-center-of-gravity design. The cart can readily be disassembled into smaller units for storage or shipping, then reassembled in the desired configuration at a job site.

  16. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  17. 103. CABLES ENTERING CABLE TRAY SHED AT EAST OF LSB; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. CABLES ENTERING CABLE TRAY SHED AT EAST OF LSB; OXIDIZER APRON AND LAUNCH PAD IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. 34. BARGE LOADING PIER, DETAIL SHOWING CABLE CAR TRACKS, CABLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BARGE LOADING PIER, DETAIL SHOWING CABLE CAR TRACKS, CABLE CARS AND WALKWAYS. LOOKING TOWARD THE EAST END FROM THE WEST END - Pennsylvania Railroad, Canton Coal Pier, Clinton Street at Keith Avenue (Canton area), Baltimore, Independent City, MD

  19. Improved Connector Shell for Cable Shields

    NASA Technical Reports Server (NTRS)

    Prisk, A. L.; Rotta, J. W., Jr.

    1983-01-01

    Cable connector shell improves electrostatic and electromagnetic shielding by electrically connecting cable braid around entire circumference. Connector cable braid is slipped over ferrule and sleeve is slipped over braid, clamping it tightly to shell. Connector shell completely shields cable conductors.

  20. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  1. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  2. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  3. 14 CFR 23.689 - Cable systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must... in cable tension throughout the range of travel under operating conditions and temperature...

  4. Correction coil cable

    DOEpatents

    Wang, Sou-Tien

    1994-11-01

    A wire cable assembly (10, 310) adapted for the winding of electrical coils is taught. A primary intended use is for use in particle tube assemblies (532) for the superconducting super collider. The correction coil cables (10, 310) have wires (14, 314) collected in wire arrays (12, 312) with a center rib (16, 316) sandwiched therebetween to form a core assembly (18, 318 ). The core assembly (18, 318) is surrounded by an assembly housing (20, 320) having an inner spiral wrap (22, 322) and a counter wound outer spiral wrap (24, 324). An alternate embodiment (410) of the invention is rolled into a keystoned shape to improve radial alignment of the correction coil cable (410) on a particle tube (733) in a particle tube assembly (732).

  5. Coaxial cable cutter

    DOEpatents

    Hall, Leslie C.; Hedges, Robert S.

    1990-04-10

    A cutting device is provided which is useful in trimming the jackets from semi-rigid coaxial cables and wire having a cutting bit and support attached to movable jaws. A thumbpiece is provided to actuate the opening of the jaws for receiving the cable to be trimmed, and a spring member is provided to actuate the closing of the jaws when thumbpiece is released. The cutting device utilizes one moving part during the cutting operation by using a rolling cut action. The nature of the jaws allows the cutting device to work in space having clearances less than 0.160 inches.

  6. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  7. Space Flight Cable Model Development

    NASA Technical Reports Server (NTRS)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  8. High acceleration cable deployment system

    NASA Technical Reports Server (NTRS)

    Canning, T. N.; Barns, C. E.; Murphy, J. P.; Gin, B.; King, R. W. (Inventor)

    1981-01-01

    A deployment system that will safely pay one cable from a ballistic forebody when the forebody is separated from an afterbody (to which the cable is secured and when the separation is marked by high acceleration and velocity) is described.

  9. Pyrotechnic-actuated cable release

    NASA Technical Reports Server (NTRS)

    Hanson, R. W.

    1968-01-01

    Remote, unattended means has been designed and reduced to practice that retains and then releases an attached load by means of a restrained cable. The cable is released by an electrical impulse on signal.

  10. Cabling design for phased arrays

    NASA Technical Reports Server (NTRS)

    Kruger, I. D.; Turkiewicz, L.

    1972-01-01

    The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.

  11. Sealing Mechanical Cryogenic Coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1985-01-01

    Metal bellows used to seal Vuilleumier and Stirling-cycle cryogenic coolers, replacing sliding seals that failed after only 3,000 hours of service. Metal bellows, incorporated in displacer design provide nonrubbing dynamic seal. Lifetime of cryogenic cooler no longer limited by loss of sealing material and by deterioration of regenerators due to clogging by seal debris.

  12. Cryogenic storage devices

    SciTech Connect

    Pelloux-gervais, P.

    1982-02-09

    The present invention relates to a device for the cryogenic storing of products. In a tank, canisters are suspended via rods, and these rods rest on the rim of the tank via retaining heads. The invention is applicable to the cryogenic storage of seeds, semen, vegetable substances, etc.

  13. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  14. MOSFET's for Cryogenic Amplifiers

    NASA Technical Reports Server (NTRS)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  15. Cables and connectors: A compilation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A technological compilation on devices and techniques for various types of electrical cables and connections is presented. Data are reported under three sections: flat conductor cable technology, newly developed electrical connectors, and miscellaneous articles and information on cables and connector techniques.

  16. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  17. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  18. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  19. Handbook for photovoltaic cabling

    SciTech Connect

    Klein, D. N.

    1980-08-01

    This volume, originally written as part of the Interim Performance Criteria Document Development Implementation Plan and Procedures for Photovoltaic Energy Systems, is an analysis of the several factors to be considered in selecting cabling for photovoltaic purposes. These factors, correspoonding to chapter titles, are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

  20. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  1. Flat conductor cable applications

    NASA Technical Reports Server (NTRS)

    Angele, W.

    1972-01-01

    Some of the numerous applications of flat conductor cable (FCC) systems are briefly described. Both government and commercial uses were considered, with applications designated as either aerospace, military, or commercial. The number and variety of ways in which FCC is being applied and considered for future designs are illustrated.

  2. Pediatrics and Cable Television.

    ERIC Educational Resources Information Center

    Wallerstein, Edward; And Others

    The Department of Community Medicine of the Mount Sinai School of Medicine (New York City), in cooperation with the TelePrompTer Corporation and with funding from the Health Services and Mental Health Administration of the Department of Health, Education, and Welfare, has developed a bidirectional television system using coaxial cable which links…

  3. Urban Cable Systems.

    ERIC Educational Resources Information Center

    Mason, William F.; And Others

    Analysis of demographic, social, municipal and commercial characteristics of Washington, D.C., indicate that a sophisticated three-stage cable television (CATV) system could be economically viable. The first stage would provide one-way CATV service offering 30 video channels and local program origination at a monthly fee of $3.50. The second stage…

  4. Operating experience with the southwire 30-meter high-temperature superconducting power cable

    NASA Astrophysics Data System (ADS)

    Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.

    2002-05-01

    Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.

  5. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  6. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  7. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  8. 30 CFR 77.601 - Trailing cables or portable cables; temporary splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables or portable cables; temporary... OF UNDERGROUND COAL MINES Trailing Cables § 77.601 Trailing cables or portable cables; temporary splices. Temporary splices in trailing cables or portable cables shall be made in a workmanlike manner...

  9. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections...

  10. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be made... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power...

  11. Internal coaxial cable seal system

    DOEpatents

    Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.

    2006-07-25

    The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  12. Flat conductor cable commercialization project

    NASA Technical Reports Server (NTRS)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  13. Disposable telemetry cable deployment system

    DOEpatents

    Holcomb, David Joseph

    2000-01-01

    A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

  14. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  15. Cryogenic activities at ESTEC

    NASA Astrophysics Data System (ADS)

    Jewell, C. I.

    1989-05-01

    Although the main present cryogenic activity in ESTEC revolves around the preparation of ISO for launch in 1993, many other activities such as Meteosat second generation, FIRST, GRASP, QUASAT, and X-ray detection using bolometers all require some form of cooling to 80 K or less. ESTEC, in an effort to overcome the major constraint of lifetime when using the solution of cryogens is currently involved in the study and development of two mechanical coolers for work in the temperature ranges of 80 and 4 K are based on a Stirling cycle. This paper gives an overview of ESTEC cryogenic interests with an emphasis on the above mechanical coolers.

  16. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  17. Development of Inspection Robots for Bridge Cables

    PubMed Central

    Kim, Se-Hoon; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented. PMID:24459453

  18. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  19. High conductance surge cable

    DOEpatents

    Murray, Matthew M.; Wilfong, Dennis H.; Lomax, Ralph E.

    1998-01-01

    An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

  20. High conductance surge cable

    DOEpatents

    Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

    1998-12-08

    An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

  1. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  2. Cable coupling lightning transient qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.

  3. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  4. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  5. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  6. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  7. Tapping the television cable.

    PubMed

    Clarke, M; Findlay, A; Canac, J F; Vergez, A

    1996-01-01

    Immediate access to patient data is essential to support good clinical decision making and support. However, away from the surgery, the doctor is currently unable to have any access to the clinical database. Solutions exist to support remote access, such as modems or radio data networks, but these are slow, with typical speeds in the 2-10 kbaud region. We propose a novel solution, to use the TV cable already installed in many homes. Using this technology, a suitably equipped computer (RF modern) is capable of connecting at speeds in excess of 500 kbaud and will run applications in exactly the same way as if connected to a surgery network: the cable TV becomes a LAN, but on a metropolitan scale. Brunel University, in collaboration with the Cable Corporation, has been piloting such a network. Issues include not only levels of service, but also security on the network and access, since the data are being effectively received in every home. However, close scrutiny of channel use can create closed networks reserved for specific users. The technology involves use of an RF modem to transmit data on a reverse channel (based at 16 MHz) on each subnet to a router at the head end of the cable network. This frequency translates the packet and retransmits it to all the subnets on a forward channel (based at 178 MHz). Each channel occupies the bandwidth normally allocated to one TV channel. Access is based on a modified CSMA/CD protocol, so treating the cable network as single multiple access network. The modem comes as a standard card installed in a PC and appears much as an ethernet card, but at reduced speed. With an NDIS driver it is quite able to support almost any network software, and has successfully demonstrated Novell and TCP/IP. We describe the HomeWorker network and the results from a pilot study being undertaken to determine the performance of the system and its impact on working practice. PMID:9375105

  8. Non-Intrusive Cable Tester

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor)

    1999-01-01

    A cable tester is described for low frequency testing of a cable for faults. The tester allows for testing a cable beyond a point where a signal conditioner is installed, minimizing the number of connections which have to be disconnected. A magnetic pickup coil is described for detecting a test signal injected into the cable. A narrow bandpass filter is described for increasing detection of the test signal. The bandpass filter reduces noise so that a high gain amplifier provided for detecting a test signal is not completely saturate by noise. To further increase the accuracy of the cable tester, processing gain is achieved by comparing the signal from the amplifier with at least one reference signal emulating the low frequency input signal injected into the cable. Different processing techniques are described evaluating a detected signal.

  9. Effects of Cryogenic Temperatures on Spacecraft Internal Dielectric Discharges

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale c.; Schneider, Todd A.; Vaughn, Jason A.

    2009-01-01

    Abstract Most calculations of internal dielectric charging on spacecraft use tabulated values of material surface and bulk conductivities, dielectric constants, and dielectric breakdown strengths. Many of these properties are functions of temperature, and the temperature dependences are not well known. At cryogenic temperatures, where it is well known that material conductivities decrease dramatically, it is an open question as to the timescales over which buried charge will dissipate and prevent the eventual potentially disastrous discharges of dielectrics. In this paper, measurements of dielectric charging and discharging for cable insulation materials at cryogenic temperatures (approx. 90 K) are presented using a broad spectrum electron source at the NASA Marshall Space Flight Center. The measurements were performed for the James Webb Space Telescope (JWST), which will orbit at the Earth-Sun L2 point, and parts of which will be perennially at temperatures as low as 40 K. Results of these measurements seem to show that Radiation Induced Conductivity (RIC) under cryogenic conditions at L2 will not be sufficient to allow charges to bleed off of some typical cable insulation materials even over the projected JWST lifetime of a dozen years or more. After the charging and discharging measurements are presented, comparisons are made between the material conductivities that can be inferred from the measured discharges and conductivities calculated from widely used formulae. Furthermore, the measurement-inferred conductivities are compared with extrapolations of recent measurements of materials RIC and dark conductivities performed with the charge-storage method at Utah State University. Implications of the present measurements are also given for other spacecraft that may operate at cryogenic temperatures, such as probes of the outer planets or the permanently dark cratered areas on the moon. The present results will also be of interest to those who must design or

  10. Superconducting flat tape cable magnet

    DOEpatents

    Takayasu, Makoto

    2015-08-11

    A method for winding a coil magnet with the stacked tape cables, and a coil so wound. The winding process is controlled and various shape coils can be wound by twisting about the longitudinal axis of the cable and bending following the easy bend direction during winding, so that sharp local bending can be obtained by adjusting the twist pitch. Stack-tape cable is twisted while being wound, instead of being twisted in a straight configuration and then wound. In certain embodiments, the straight length should be half of the cable twist-pitch or a multiple of it.

  11. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  12. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  13. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Breaking trailing cable and power cable....607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections to junction boxes shall not be made or broken under load....

  14. Cryogenic capability for equation-of-state measurements on the Sandia Z pulsed radiation source

    SciTech Connect

    Hanson, D.L.; Johnston, R.R.; Asay, J.R.

    1998-02-01

    Experimental cryogenic capabilities are essential for the study of ICF high-gain target and weapons effects issues involving dynamic materials response at low temperatures. The authors are developing a general purpose cryogenic target system for precision radiation driven EOS and shock physics experiments at liquid helium temperatures on the Sandia Z pulsed radiation source. Cryogenic sample cooling in the range of 6--30 K is provided by a liquid helium cryostat and an active temperature control system. The cryogenic target assembly is capable of condensing liquid deuterium samples from the gas phase at about 20 K, as well as cooling solid samples such as beryllium and CH ablators for ICF. The target assembly will also include the capability to use various shock diagnostics, such as VISAR interferometry and fiber-optic-coupled shock breakout diagnostics. They are characterizing the thermal and optical performance of the system components in an off-line cryogenic test facility and have designed an interface to introduce the cryogenic transfer lines, gas lines, and sensor cables into the Z vacuum section. Survivability of high-value cryogenic components in the destructive post-implosion environment of Z is a major issue driving the design of this cryogenic target system.

  15. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  16. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 52. View of sitdown cable car, cable way, and stream ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View of sit-down cable car, cable way, and stream gaging station, looking southeast. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  18. 51. View of sitdown cable car and cable way for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of sit-down cable car and cable way for stream gaging, looking west. Photo by Robin Lee Tedder, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  19. 4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. The Future of Cable Communications in Libraries

    ERIC Educational Resources Information Center

    Kenney, Brigette L.

    1976-01-01

    Cable technology, the regulatory framework, and the cable industry's economic situation are examined. It is proposed that libraries engage in informational activities using the cable which are different from those presently undertaken. (Author)

  1. Put Your Cable Wiring to the Test.

    ERIC Educational Resources Information Center

    Day, C. William

    2001-01-01

    Discusses why schools and universities should use testing procedures in any wire bid specification for cable wiring and also know how experienced the installers are in testing and installing structured cabling systems. Key cabling terms are included. (GR)

  2. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  3. Cable Television and the University.

    ERIC Educational Resources Information Center

    Lyman, Richard

    Universities contain powerful blocs of resistance to new educational technology, perhaps especially to television. University attitudes and structures as well as faculty ignorance, apathy, and resistance affect the development of cable television. No one seems to speak with great confidence and precision about the educational potential of cable.…

  4. A Glossary of Cable Terms.

    ERIC Educational Resources Information Center

    Cable Television Information Center, Washington, DC.

    Prepared as part of the ongoing series of publications designed to assist local and state government policy makers with cable television planning and decision-making, this glossary updates the document originally published in 1972. It contains definitions of terms frequently encountered in matters concerning cable television. (DGC)

  5. Heart catheter cable and connector

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Cota, F. L.; Sandler, H.

    1972-01-01

    Ultraminiature catheter cables that are stiff enough for intravenous insertion yet flexible at the tip, sterilizable, and economical are fabricated entirely from commercially available parts. Assembly includes air passageway for reference pressures and coaxial cable for transmission of signals from the tip of catheter.

  6. Cryogenic process simulation

    SciTech Connect

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems.

  7. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  8. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  9. Photonic-powered cable assembly

    SciTech Connect

    Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

    2014-06-24

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  10. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  11. Polyamide 66 as a Cryogenic Dielectric

    SciTech Connect

    Tuncer, Enis; Polyzos, Georgios; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Messman, Jamie M; Aytug, Tolga

    2009-01-01

    Improvements in superconductor and cryogenic technologies enable novel power apparatus, \\eg, cables, transformers, fault current limiters, generators, \\etc, with better device characteristics than their conventional counterparts. In these applications electrical insulation materials play an important role in system weight, footprint (size), and voltage level. The trend in the electrical insulation material selection has been to adapt or to employ conventional insulation materials to these new systems. However, at low temperatures, thermal contraction and loss of mechanical strength in many materials make them unsuitable for superconducting power applications. In this paper, a widely used commercial material was characterized as a potential cryogenic dielectric. The material is used in ``oven bag'' a heat-resistant polyamide (nylon) used in cooking (produced by Reynolds\\textregistered, Richmond, VA, USA). It is first characterized by Fourier transform infrared and x-ray diffraction techniques and determined to be composed of polyamide 66 (PA66) polymer. Secondly the complex dielectric permittivity and dielectric breakdown strength of the PA66 films are investigated. The dielectric data are then compared with data reported in the literature. A comparison of dielectric strength with a widely used high-temperature superconductor electrical insulation material, polypropylene-laminated paper (PPLP\\texttrademark\\ a product of Sumitomo Electric Industries, Japan), is provided. It is observed that the statistical analysis of the PA66 films yields 1\\% failure probability at $127\\ \\kilo\\volt\\milli\\meter^{-1}$; this value is approximately $46\\ \\kilo\\volt\\milli\\meter^{-1}$ higher than PPLP\\texttrademark. It is concluded that PA66 may be a good candidate for cryogenic applications. Finally, a summary of dielectric properties of some of the commercial tape insulation materials and various polymers is also provided.

  12. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  13. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  14. Unique Cryogenic Welded Structures

    NASA Astrophysics Data System (ADS)

    Yushchenko, K. A.; Monko, G. G.

    2004-06-01

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  15. Unique Cryogenic Welded Structures

    SciTech Connect

    Yushchenko, K.A.; Monko, G.G.

    2004-06-28

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  16. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  17. The quench experiment on long length cable-in-conduit conductor (QUELL) in SULTAN

    SciTech Connect

    Anghel, A.

    1995-03-01

    A description of the QUELL experiment at the SULTAN facility, its objectives and plan is given. After reviewing the quench properties of the Cable in Conduit Conductors and a short review of the theoretical background foreseen for the interpretation of the experimental results, information are given concerning the QUELL sample layout, quench sensors, cryogenic system, power supplies, current bus, current leads and data acquisition system. A detailed test plan and information on the experiment time schedule are also presented.

  18. Verification tests of a 66 kV HTSC cable system for practical use (first cooling tests)

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Kato, T.; Yumura, H.; Watanabe, M.; Ashibe, Y.; Ohkura, K.; Suzawa, C.; Hirose, M.; Isojima, S.; Matsuo, K.; Honjo, S.; Mimura, T.; Kuramochi, T.; Takahashi, Y.; Suzuki, H.; Okamoto, T.

    2002-10-01

    Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. have been jointly developing elementary technologies for an high temperature superconducting (HTSC) cable system, such as conductor wound with HTSC wires, thermal insulation pipes, terminations and so on. Verification tests of a 100 m HTSC cable system integrating these elementary technologies have been conducted in collaboration with Central Research Institute of Electric Power Industry (CRIEPI) to verify its long term electric and cryogenic properties. The cable conductor is composed of four layers of Bi-2223 wires wound spirally around a former. Polypropylene laminated paper impregnated with liquid nitrogen is adopted as cable insulation for its properties of high insulation strength and low dielectric loss. HTSC wires are also wound around the electrical insulation to form an electrical and magnetic shield. To reduce heat invasion from ambient temperature part, multi-layer insulation is wound between the co-axial stainless corrugated pipes where high vacuum is maintained. The cable was partially installed into a ∅ 150 mm duct and formed in a U-shape. Each end has a splitter box and three terminations. The cable and the terminations are cooled using two separate sets of a pressurized and sub-cooled liquid nitrogen cooling system. The cable has been developed and laid at CRIEPI's test site and long-term tests have been under way since June, 2001. This paper presents the design of the cable and some results of the first cooling tests.

  19. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  20. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  1. Compact cryogenic inductors

    SciTech Connect

    Singh, S.K.; Carr, W.J. Jr.; Fagan, T.J. Jr.; Hordubay, T.D.; Chuboy, H.L. . Science and Technology Center)

    1994-07-01

    Power systems requiring power levels as high as a few megawatts to a few gigawatts for periods of several microseconds to several milliseconds with repetitive frequencies of a few hertz to a few kilohertz are being considered for potential space applications. The impulsive nature of the power presents the opportunity to use inductive energy storage techniques for pulse duty to enhance economic and practical considerations. An inductors must be efficient, lightweight, and reliable, and it must have high energy density if it is to be used in space based power systems. Cryogenic inductors are best studied for such an application. Parametric analyses of the two potential types of cryogenic inductors (superconducting and hyperconducting reveal that the hyperconducting (high purity aluminum)) inductor would be significantly lighter and achieve higher energy densities without the added penalty of a helium refrigeration system, thus resulting in improved overall system reliability. The lightweight hyperconducting cryogenic inductor technology is, however, in its infancy. This paper describes the required technology base which would allow the eventual application of the lightweight cryogenic inductor in space power systems, and also conclusively demonstrates the underlying principles.

  2. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  3. Cable Bacteria in Freshwater Sediments

    PubMed Central

    Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  4. Cable Bacteria in Freshwater Sediments.

    PubMed

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage. PMID:26116678

  5. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    SciTech Connect

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

    2014-01-29

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  6. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  7. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  8. Construction and 1st Experiment of the 500-meter and 1000-meter DC Superconducting Power Cable in Ishikari

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.

    Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.

  9. Robot cable-compliant devices

    NASA Technical Reports Server (NTRS)

    Kerley, James J., Jr. (Inventor)

    1990-01-01

    A cable compliant robotic joint includes two U configuration cross section brackets with their U cross sections lying in different planes, one of their brackets being connected to a robot arm and the other to a tool. Additional angle brackets are displaced from the other brackets at corners of the robotic joint. All the brackets are connected by cable segments which lie in one or more planes which are perpendicular to the direction of tool travel as it approaches a work object. The compliance of the joint is determined by the cable segment characteristics, such as their length, material, angle, stranding, pretwisting, and prestressing.

  10. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, E.B.; Muller, A.C.

    1983-07-15

    The present invention is a cable which, although constructed from inexpensive polyolefin tapes and using typical impregnating oils, furnishes high voltage capability up to 765 kV, and has such excellent dielectric characteristics and heat transfer properties that it is capable of operation at capacities equal to or higher than presently available cables at a given voltage. This is accomplished by using polyethylene, polybutene or polypropylene insulating tape which has been specially processed to attain properties which are not generally found in these materials, but are required for their use in impregnated electrical cables. Chief among these properties is compatibility with impregnating oil.

  11. 14 CFR 25.689 - Cable systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cable systems. 25.689 Section 25.689 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting,...

  12. Cable Modem Technology Implementation: Challenges and Prospects.

    ERIC Educational Resources Information Center

    Littman, Marlyn Kemper

    1998-01-01

    Describes cable modem technology (i.e., an external device that facilitates high-speed access to the Internet via the same network configuration employed for cable television). Examples of cable field trials carried out in collaboration with educational user communities are presented, and cable technical capabilities, advantages, and constraints…

  13. Program for Space Shuttle Payload Cabling

    NASA Technical Reports Server (NTRS)

    Schultz, Roger D.; Saxon, C. Rogers

    1987-01-01

    EXCABL is expert-system computer program developed to route electrical cables in Space Shuttle Orbiter payload bay for each mission. Automates cable-routing process and provides data for cable-installation documents. Automation increased speed and accuracy of payload-integration process, and expert system codifies knowledge cabling experts have acquired. Written in ART.

  14. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  15. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  16. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  17. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  18. 14 CFR 27.1365 - Electric cables.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  19. Cable in Connecticut; a Citizen's Handbook.

    ERIC Educational Resources Information Center

    Cleland, Margaret

    This handbook for Connecticut cable television consumers addresses a variety of topics, including: (1) a definition of cable television services; (2) the public stake in cable television; (3) program variety; (4) pay cable service; (5) public satellites; (6) government regulation; (7) proposed regulation; (8) role of the Connecticut Public…

  20. 47 CFR 32.2422 - Underground cable.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (a) This account shall include the original cost of underground cable installed in conduit and of... cable. This subsidiary record category shall include the original cost of optical fiber cable and other.... (2) Metallic cable. This subsidiary record category shall include the original cost of single...

  1. Cable Television: Citizen Participation in Planning.

    ERIC Educational Resources Information Center

    Yin, Robert K.

    The historical background of citizen participation in local affairs and its relevance at the onset of community concern about cable television are briefly discussed in this report. The participation of citizens, municipal officials, and cable operators in laying the groundwork for a cable system as well as the pros and cons of cable television as…

  2. 105. VIEW NORTH FROM SLC3W CABLE TUNNEL INTO CABLE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    105. VIEW NORTH FROM SLC-3W CABLE TUNNEL INTO CABLE VAULT AND SLC-3E CABLE TUNNEL. NOTE WOODEN PLANKING ON FLOOR OF TUNNEL AND CABLE TRAYS LINING TUNNEL WALLS. STAIRS ON EAST WALL OF CABLE VAULT LEAD INTO LANDLINE INSTRUMENTATION ROOM. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. Flexible Ceramic-Insulated Cable

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.

    1988-01-01

    Cable withstands heat, radiation, and oxidation. Ceramic beads electrically insulate copper conductor from sheath of copper tape. Also suitable for furnaces, nuclear reactors, and robots operating in hot, radioactive environments.

  4. Process of modifying a cable end

    DOEpatents

    Roose, L.D.

    1995-08-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves. 5 figs.

  5. Process of modifying a cable end

    DOEpatents

    Roose, Lars D.

    1995-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  6. Effects of shields on cables

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Aircraft wiring subjected to rapidly changing electromagnetic fields was considered. The ways in which shielded cables reduce surge voltages were studied along with the ways in which common practice regarding the use of shields may be at variance with the use required for the control of lightning effects. Courses in which this apparent conflict of use may be resolved were suggested. Noise currents flowing on shields of cables related to the noise signals coupled onto signal conductors were also investigated.

  7. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, Eric B.; Muller, Albert C.

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  8. Fully synthetic taped insulation cables

    SciTech Connect

    Forsyth, E. B.; Muller, A. C.

    1984-12-11

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  9. Nuclear instrumentation cable end seal

    DOEpatents

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  10. Cryogenic thermal diodes

    NASA Astrophysics Data System (ADS)

    Paulsen, Brandon R.; Batty, J. C.; Agren, John

    2000-01-01

    Space based cryogenic thermal management systems for advanced infrared sensor platforms are a critical failure mode to the spacecraft missions they are supporting. Recent advances in cryocooler technologies have increased the achievable cooling capacities and decreased the operating temperatures of these systems, but there is still a fundamental need for redundancy in these systems. Cryogenic thermal diodes act as thermal switches, allowing heat to flow through them when in a conduction mode and restricting the flow of heat when in an isolation mode. These diodes will allow multiple cryocoolers to cool a single infrared focal plane array. The Space Dynamics Laboratory has undertaken an internal research and development effort to develop this innovative technology. This paper briefly describes the design parameters of several prototype thermal diodes that were developed and tested. .

  11. Cryogenic mirror analysis

    NASA Technical Reports Server (NTRS)

    Nagy, S.

    1988-01-01

    Due to extraordinary distances scanned by modern telescopes, optical surfaces in such telescopes must be manufactured to unimaginable standards of perfection of a few thousandths of a centimeter. The detection of imperfections of less than 1/20 of a wavelength of light, for application in the building of the mirror for the Space Infrared Telescope Facility, was undertaken. Because the mirror must be kept very cold while in space, another factor comes into effect: cryogenics. The process to test a specific morror under cryogenic conditions is described; including the follow-up analysis accomplished through computer work. To better illustrate the process and analysis, a Pyrex Hex-Core mirror is followed through the process from the laser interferometry in the lab, to computer analysis via a computer program called FRINGE. This analysis via FRINGE is detailed.

  12. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  13. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  14. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  15. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  16. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  17. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  18. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis; Harvey, III, Albert Destrehan; Vinegar, Harold J.

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  19. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  20. The Cryogenic Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

    1995-01-01

    The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

  1. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  2. Cryogenic turbopump bearing materials

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    1989-01-01

    Materials used for modern cryogenic turbopump bearings must withstand extreme conditions of loads and speeds under marginal lubrication. Naturally, these extreme conditions tend to limit the bearing life. It is possible to significantly improve the life of these bearings, however, by improving the fatigue and wear resistance of bearing alloys, and improving the strength, liquid oxygen compatibility and lubricating ability of the bearing cage materials. Improved cooling will also help to keep the bearing temperatures low and hence prolong the bearing life.

  3. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  4. Experiments on Cryogenic Complex Plasma

    SciTech Connect

    Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M.

    2009-11-10

    Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

  5. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  6. D0 Cryogenic System Superconducting Solenoid Platform I/O

    SciTech Connect

    Markley, D.; /Fermilab

    1997-10-09

    The Dzero detector is scheduled for a major upgrade between 1996 and 1999. This note describes the specifications and configuration of the physical Input/Output devices and instrumentation of the 2 Tesla Superconducting Solenoid. The Solenoid and the VLPC cryostats both reside on the detector platform and are cooled by the Dzero Helium Refrigerator. The cryogenic process control s for these two components will be an extension of the TI565 programmable logic controller system used for other Dzero cryogenic controls. Two Input/Output Bases will be installed on the Dzero detector platform near the cryo corner. These I/O bases will handle all the sensor input and process control output devices from the Solenoid and VLPC cryostats. Having the I/O bases installed on the detector platform makes the connecting cabl ing to the platform much easier . All the instruments are wired directly to the I/O base. The bases have only one communications network cabl e that must be routed off the platform to the South side of the Dzero building.

  7. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  8. Flat conductor cable design, manufacture, and installation

    NASA Technical Reports Server (NTRS)

    Angele, W.; Hankins, J. D.

    1973-01-01

    Pertinent information for hardware selection, design, manufacture, and quality control necessary for flat conductor cable interconnecting harness application is presented. Comparisons are made between round wire cable and flat conductor cable. The flat conductor cable interconnecting harness systems show major cost, weight, and space savings, plus increased system performance and reliability. The design application section includes electrical characteristics, harness design and development, and a full treatise on EMC considerations. Manufacturing and quality control sections pertain primarily to the developed conductor-contact connector system and special flat conductor cable to round wire cable transitions.

  9. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  10. Thermal insulation performance of flexible piping for use in HTS power cables

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Demko, J. A.

    2002-05-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 kelvin (K) are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  11. High Voltage Testing of a 5-meter Prototype Triaxial HTS Cable

    SciTech Connect

    Sauers, Isidor; James, David Randy; Ellis, Alvin R; Tuncer, Enis; Pace, Marshall O; Gouge, Michael J; Demko, Jonathan A; Lindsay, David T

    2007-01-01

    High voltage tests were performed on a 5-m long prototype triaxial HTS cable (supplied by Ultera) at ORNL in preparation for installation of a 200-m HTS cable of the same design at the AEP utility substation in Columbus, Ohio. The triaxial design comprises three concentric phases and shield around a common former with the phase to phase dielectric at cryogenic temperature. Advantages of this design include increased current density, a reduced amount of HTS tape needed, and reduced heat load. The phase to phase voltage will be 13.2 kVrms (7.6 kVrms to ground). Preliminary testing was done on half-scale and full-scale terminations which successfully passed AC withstand, partial discharge, and impulse tests. High voltage tests conducted on the 5-m cable with the cable straight and after bending 90 degrees were ac withstand to 39 kVrms, partial discharge inception, and a minimum of 10 positive and 10 negative lightning waveform impulses at 110 kV. Phase to phase insulation was tested by applying high voltage to each phase one at a time with all the other phases grounded. Partial discharge data will be presented. The 5-m prototype triaxial HTS cable passed all the HV tests performed, with a PD inception voltage significantly above the required voltage.

  12. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  13. Thermal conductance at millikelvin temperatures of woven ribbon cable with phosphor-bronze clad superconducting wires

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Ventura, Guglielmo; Martelli, Valentina; Holland, Wayne S.

    2010-08-01

    Woven Nomex® ribbon cables made up with superconducting niobium-titanium wire are used at millikelvin temperatures in many large cryogenic instruments. It is important to know how much heat in transmitted down such cables. However, the conductivity of the materials used is not well known. Another problem is that the wires are normally clad with alloys which exhibit some magnetism. This is a potential problem for instruments employing superconducting detectors. A safe non-magnetic alternative to the usual materials is phosphor-bronze clad niobium-titanium wiring. However, there is little experience with such wires. We have therefore measured the conductance of a ribbon cable made up with these wires. The measured values are in good agreement with our predictions, suggesting that the values we have used to model the cable are sufficiently accurate, and could therefore be used to predict the performance of ribbon cables using other cladding materials, so long as the conductivity of the cladding is reasonably well known. As part of our analysis, we consider the likely variation in thermal conductivity values for C51000 phosphor bronze caused by legitimate variations in composition.

  14. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  15. Umbilical cable recovery load analysis

    NASA Astrophysics Data System (ADS)

    Yan, Shu-wang; Jia, Zhao-lin; Feng, Xiao-wei; Li, Shi-tao

    2013-06-01

    Umbilical cable is a kind of integrated subsea cable widely used in the exploration and exploitation of oil and gas field. The severe ocean environment makes great challenges to umbilical maintenance and repair work. Damaged umbilical is usually recovered for the regular operation of the offshore production system. Analysis on cables in essence is a two-point boundary problem. The tension load at the mudline must be known first, and then the recovery load and recovery angle on the vessel can be solved by use of catenary equation. The recovery analysis also involves umbilical-soil interaction and becomes more complicated. Calculation methods for recovery load of the exposed and buried umbilical are established and the relationship between the position of touch down point and the recovery load as well as the recovery angle and recovery load are analyzed. The analysis results provide a theoretical reference for offshore on-deck operation.

  16. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  17. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  18. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  19. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  20. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  1. FRIB cryogenic distribution system

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D.; Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F.

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  2. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  3. Kodak AMSD Cryogenic Test Plans

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  4. Equalization of data transmission cable

    NASA Technical Reports Server (NTRS)

    Zobrist, G. W.

    1975-01-01

    The paper describes an equalization approach utilizing a simple RLC network which can obtain a maximum slope of -12dB/octave for reshaping the frequency characteristics of a data transmission cable, so that data may be generated and detected at the receiver. An experimental procedure for determining equalizer design specifications using distortion analysis is presented. It was found that for lengths of 16 PEV-L cable of up to 5 miles and data transmission rates of up to 1 Mbs, the equalization scheme proposed here is sufficient for generation of the data with acceptable error rates.

  5. Online Cable Tester and Rerouter

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

  6. Ames Lab 101: Reinventing the Power Cable

    SciTech Connect

    Russell, Alan

    2013-09-27

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

  7. Data Base On Cables And Connectors

    NASA Technical Reports Server (NTRS)

    Bowen, Arlen R.; Oliver, John D.

    1995-01-01

    Report describes Connector Adapter Cable Information Data Base (CONNAID) computer program, managing data base containing necessary information concerning electrical connectors, breakout boxes, adapter cables, backshells, and pertinent torque specifications for engineering project.

  8. Debris protection cover assembly for cable connectors

    NASA Technical Reports Server (NTRS)

    Yovan, Roger D. (Inventor)

    1999-01-01

    A protective cover assembly for an end of a cable connector having a cable housing that encloses a plurality of connective pins or sockets and that satisfies all requirements for space applications. A connector body flange is formed at the extremity of a cable and is positioned so that it may register with a corresponding connector body flange on the end of a companion cable to which a connection is to be made, one cable end having cable lead pins and the companion cable end having lead sockets with which the pins register. A latch mechanism having a latch housing is received in the connector body flange and a crank connected to a manually rotatable cap actuates a spring-loaded latch element that is engageable with a connector body flange to secure or to release the cover assembly with the simple twisting motion of the cap, thereby simplifying the task of effecting coupling and decoupling of the cable ends.

  9. New sensitive seismic cable with imbedded geophones

    NASA Astrophysics Data System (ADS)

    Pakhomov, Alex; Pisano, Dan; Goldburt, Tim

    2005-10-01

    Seismic detection systems for homeland security applications are an important additional layer to perimeter and border protection and other security systems. General Sensing Systems has been developing low mass, low cost, highly sensitive geophones. These geophones are being incorporated within a seismic cable. This article reports on the concept of a seismic sensitive cable and seismic sensitive ribbon design. Unlike existing seismic cables with sensitivity distributed along their lengths, the GSS new cable and ribbon possesses high sensitivity distributed in several points along the cable/ribbon with spacing of about 8-12 to 100 meters between geophones. This cable/ribbon is highly suitable for design and installation in extended perimeter protection systems. It allows the use of a mechanical cable layer for high speed installation. We show that any installation mistakes in using the GSS seismic sensitive cable/ribbon have low impact on output seismic signal value and detection range of security systems.

  10. Ames Lab 101: Reinventing the Power Cable

    ScienceCinema

    Russell, Alan

    2014-06-04

    Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear