Science.gov

Sample records for cryogenic composite detectors

  1. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  2. Cryogenic Detectors (Narrow Field Instruments)

    NASA Astrophysics Data System (ADS)

    Hoevers, H.; Verhoeve, P.

    Two cryogenic imaging spectrometer arrays are currently considered as focal plane instruments for XEUS. The narrow field imager 1 (NFI 1) will cover the energy range from 0.05 to 3 keV with an energy resolution of 2 eV, or better, at 500 eV. A second narrow field imager (NFI 2) covers the energy range from 1 to 15 keV with an energy resolution of 2 eV (at 1 keV) and 5 eV (at 7 keV), creating some overlap with part of the NFI 1 energy window. Both narrow field imagers have a 0.5 arcmin field of view. Their imaging capabilities are matched to the XEUS optics of 2 to 5 arcsec leading to 1 arcsec pixels. The detector arrays will be cooled by a closed cycle system comprising a mechanical cooler with a base temperature of 2.5 K and either a low temperature 3He sorption pump providing the very low temperature stage and/or an Adiabatic Demagnetization Refrigerator (ADR). The ADR cooler is explicitly needed to cool the NFI 2 array. The narrow field imager 1} Currently a 48 times 48 element array of superconducting tunnel junctions (STJ) is envisaged. Its operating temperature is in the range between 30 and 350 mK. Small, single Ta STJs (20-50 mum on a side) have shown 3.5 eV (FWHM) resolution at E = 525 eV and small arrays have been successfully demonstrated (6 times 6 pixels), or are currently tested (10 times 12 pixels). Alternatively, a prototype Distributed Read-Out Imaging Device (DROID), consisting of a linear superconducting Ta absorber of 20 times 100 mum2, including a 20 times 20 mum STJ for readout at either end, has shown a measured energy resolution of 2.4 eV (FWHM) at E = 500 eV. Simulations involving the diffusion properties as well as loss and tunnel rates have shown that the performance can be further improved by slight modifications in the geometry, and that the size of the DROIDS can be increased to 0.5-1.0 mm without loss in energy resolution. The relatively large areas and good energy resolution compared to single STJs make DROIDS good candidates for the

  3. Background reduction in cryogenic detectors

    SciTech Connect

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  4. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  5. Sensor and Instrumentation Development for Cryogenic Detectors

    NASA Astrophysics Data System (ADS)

    Allen, Nicholas; Febbraro, Micheal; Pain, Steven; Aidala, Christine; Lesser, Ezra; White, Aaron

    2015-10-01

    In the study of nuclear science, there is an ever increasing need for better efficiency and resolution in In nuclear sciences, new detectors with improved detection efficiency and energy resolution are constantly needed to drive experimental discovery and accuracy. Certain cryogenic liquids, particularly liquid noble gases such as Argon and Xenon, are very sensitive to energy deposited by ionizing particles and have many other useful properties for detector development. Developing these cryogenic liquids to operate with known detection methods offers exciting opportunities for experimental setups and has a wide variety of uses with regards to nuclear studies, such as gamma ray, neutron, and neutrino detection. However, operating at such low temperatures presents many complications when trying to effectively control and maintain detectors. In this poster, I will present some of the equipment and systems developed for particular low temperature applications. This will include the use of platinum resistance thermometers, capacitance-based liquid level sensors, and various systems used to regulate fluid flow for cryogenic detector systems.

  6. Termosyphon cryogenic system for RED-100 detector

    NASA Astrophysics Data System (ADS)

    Sosnovtsev, V.; Tolstukhin, I.; Shakirov, A.; Shafigullin, R.

    2016-02-01

    A cryogenic system based on a two-phase closed tubular thermosyphon with 12 mm diameter copper tube is developed. It was used for thermal stabilization of the liquid xenon emission detector RED-100. The nitrogen refrigerant cooled down with a free-boiling liquid nitrogen bath has been used. It was shown that the system supports the RED100 operation at temperature 166 K with accuracy ±1K.

  7. Status of the cryogenic payload system for the KAGRA detector

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Chen, D.; Hagiwara, A.; Kajita, T.; Miyamoto, T.; Suzuki, T.; Sakakibara, Y.; Tanaka, H.; Yamamoto, K.; Tomaru, T.

    2016-05-01

    KAGRA is a large scale cryogenic gravitational wave telescope currently under construction in Japan. The detector is located 200 m underground in the Kamioka mine and will employ cryogenic technologies to achieve high sensitivity. The mirrors of the interferometer will be in the form of multiple pendulums and the final stages will employ cryogenic sapphire suspension system operating at 20 Kelvin. In this paper we report the ongoing activities of the cryogenic payload group involved in the design and fabrication of the cryogenic payload system for the KAGRA detector

  8. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  9. Cryogenic 3-D Detectors for Solar Physics

    NASA Astrophysics Data System (ADS)

    Stern, R. A.; Martinez-Galarce, D.; Rausch, A.; Shing, L.; Deiker, S.; Boerner, P.; Metcalf, T.; Cabrera, B.; Leman, S. W.; Brink, P.; Irwin, K.; Alexander, D.

    2005-05-01

    Cryogenic microcalorimeters operating in the sub-Kelvin temperature range provide non-dispersive energy resolution at optical through gamma ray energies (e.g, E/Δ E ~ 1500 at 6 keV). Microcalorimeters also have high time resolution (msec or better), and can be made into imaging arrays through SQUID multiplexing of individual pixels or employing position sensitive detector structures. The application of such "3-D" detector technology to solar physics will lead to significant advances in our understanding of magnetic reconnection in the Sun, including X-ray jet phenomena, and active region heating and dynamics. An Explorer-class solar mission within the next 5-10 years, based upon these detectors, is rapidly becoming technically feasible. LMSAL currently has an internally funded laboratory research program to investigate TES (Transition Edge Sensor) microcalorimeters; we recently saw our first X-ray photons using TES detectors supplied by NIST. In addition, we have recently been funded by NASA to begin work with NIST on position-sensitive X-ray strip detectors for solar physics applications. Finally, we are collaborating with with Stanford and NIST on a solar sounding rocket. In this presentation, we will discuss the current status of these programs and their applicability to future Explorer missions and Roadmap missions such as RAM.

  10. Linear cryogenic coolers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Riabzev, S.; Avishay, N.; Oster, D.; Tuitto, A.

    2012-06-01

    In spite of a wide spreading the uncooled night vision technologies, the cooled systems are still known to be superior in terms of working ranges, resolution and ability to recognize/track fast moving objects in dynamic infrared scenes. Recent technological advances allowed development and fielding of high temperature infrared detectors working up to 200K while showing performances typical for their 77K predecessors. The direct benefits of using such detectors are the lowering of the optical, cooling and packaging constraints resulting in smaller and cost effective optics, electronics and mechanical cryocooler. The authors are formulating requirements and general vision of prospective ultra-compact, long life, lightweight, power efficient, acoustically and dynamically quiet linear cryogenic cooler towards forthcoming infrared imagers. In particular, the authors are revealing the outcomes of the feasibility study and discuss downscaling options.

  11. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-03-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  12. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  13. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Battaglia, N.; Wollack, E. J.; Allison, R.; Austermann, J.; Baildon, T.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  14. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  15. Review of Dark Matter Direct Detection Using Cryogenic Detectors

    SciTech Connect

    Brink, P.L.; /SLAC

    2012-06-13

    The direct detection of the Universe's Dark Matter is one of the key questions in particle astrophysics. Cryogenic based detectors offer advantages in low radioactive backgrounds, target mass, sensitivity to the small energy depositions and rejection of possible background sources. I will summarize the main experimental approaches, including both cryogenic crystal and liquid targets and the options pursued for their signal readout. Recent advances from around the world and prospects for future proposed experiments will be discussed.

  16. Development of cryogenic installations for large liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Adamowski, M.; Bremer, J.; Geynisman, M.; Hentschel, S.; Montanari, D.; Nessi, M.; Norris, B.

    2015-12-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these installations (parts per trillion of oxygen equivalent contamination). This paper gives an overview of the installations involved in these cryogenic projects, describes the functional demands made to these cryogenic systems and presents the initial studies on which these future cryogenic systems will be based.

  17. Scientific Applications and Promise of Cryogenic Detector Arrays

    NASA Astrophysics Data System (ADS)

    Moseley, Samuel Harvey

    2009-12-01

    During the past year, the first results from a new generation of instruments based on kilopixel-scale arrays of cryogenic detectors have been released. I will review the history of low temperature detector arrays which has enabled this development, the science which has driven this rapid progress, describe the instruments now in operation and their initial scientific results, and speculate on the developments we may see in the next decade.

  18. Scientific Applications and Promise of Cryogenic Detector Arrays

    SciTech Connect

    Moseley, Samuel Harvey

    2009-12-16

    During the past year, the first results from a new generation of instruments based on kilopixel-scale arrays of cryogenic detectors have been released. I will review the history of low temperature detector arrays which has enabled this development, the science which has driven this rapid progress, describe the instruments now in operation and their initial scientific results, and speculate on the developments we may see in the next decade.

  19. Acoustic composition sensor for cryogenic gas mixtures

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    1991-01-01

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  20. Reinforcing Liner For Composite Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Burgeson, John E.

    1990-01-01

    Proposed fiber-reinforced liner for graphite/epoxy fuel tank prevents metal-foil leakage barrier from detaching at low temperatures. Consists of epoxy containing fibers of Spectra 1000. Tank holds inner layers of foil, adhesive, and proposed liner. Liner much thinner than shell, adds little weight, and subtracts little volume. Lined composite tank used to hold liquids from room temperature to cryogenic temperatures. Not suitable for oxygen, because organic materials in liner oxidized quickly.

  1. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  2. High-energy resolution alpha spectrometry using cryogenic detectors.

    PubMed

    Leblanc, E; Coron, N; Leblanc, J; de Marcillac, P; Bouchard, J; Plagnard, J

    2006-01-01

    Applications such as environment monitoring implying alpha emitters activity measurement associated with isotope identification, require high-energy resolution detectors. Conventional silicon detectors are inexpensive therefore widely used, although intrinsically limited in energy resolution. Thermal detection principle of cryogenic detectors introduces a breakthrough in alpha particle measurement. For the first time, spectra with 5.5 keV FWHM energy resolution have been obtained for several external alpha emitting sources using a copper-germanium bolometer specially developed for alpha spectrometry. PMID:16618545

  3. SuperCDMS Detector Readout Cryogenic Hardware

    NASA Astrophysics Data System (ADS)

    Seitz, D. N.; Ahmed, Z.; Akerib, D. S.; Arrenberg, S.; Bailey, C. N.; Balakishiyeva, D.; Baudis, L.; Bauer, D. A.; Beaty, J.; Brink, P. L.; Bruch, T.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Clark, K.; Cooley, J.; Cushman, P.; DeJongh, F.; Dragowsky, M. R.; Duong, L.; Figueroa-Feliciano, E.; Filippini, J.; Fritts, M.; Golwala, S. R.; Grant, D. R.; Hall, J.; Hennings-Yeomans, R.; Hertel, S.; Homgren, D.; Hsu, L.; Huber, M. E.; Kamaev, O.; Kiveni, M.; Kos, M.; Leman, S. W.; Mahapatra, R.; Mandic, V.; Moore, D.; McCarthy, K. A.; Mirabolfathi, N.; Nelson, H.; Novak, L.; Ogburn, R. W.; Pyle, M.; Qiu, X.; Ramberg, E.; Rau, W.; Reisetter, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Serfass, B.; Sundqvist, K. M.; Tomada, A.; Wang, G.; Wikus, P.; Yellin, S.; Yoo, J.; Young, B. A.

    2009-12-01

    SuperCDMS employs 1-inch thick germanium crystals operated below 50mK in a dilution cryostat. Each detector produces ionization and phonon signals. Ionization signals are amplified by JFETs operating at 150K within an assembly mounted on the 4K cryostat stage. These high impedance signals are carried to the FETs by superconducting "vacuum coaxes" which minimize thermal conductivity, stray capacitance, and microphonics. Transition edge sensors produce low-impedance phonon signals, amplified by SQUID arrays mounted on a 600mK stage. Detectors are mounted in a six-sided wiring configuration called a "tower", which carries signals from 40mK to 4K. A flex circuit 3 meters in length carries amplified signals for each detector from 4K to a vacuum bulkhead. We describe the methods used to support the detectors, wiring and amplifier elements at various thermal stages, minimizing electrical noise and thermal loads.

  4. Investigation of woven composites as potential cryogenic tank materials

    NASA Astrophysics Data System (ADS)

    Islam, Md. S.; Melendez-Soto, E.; Castellanos, A. G.; Prabhakar, P.

    2015-12-01

    In this paper, carbon fiber and Kevlar® fiber woven composites were investigated as potential cryogenic tank materials for storing liquid fuel in spacecraft or rocket. Towards that end, both carbon and Kevlar® fiber composites were manufactured and tested with and without cryogenic exposure. The focus was on the investigation of the influence of initial cryogenic exposure on the degradation of the composite. Tensile, flexural and inter laminar shear strength (ILSS) tests were conducted, which indicate that Kevlar® and carbon textile composites are potential candidates for use under cryogenic exposure.

  5. Flexible composite radiation detector

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  6. Intercomparison of cryogenic radiometers using silicon trap detectors

    NASA Astrophysics Data System (ADS)

    Lassila, A.; Hofer, H.; Ikonen, E.; Liedquist, L.; Stock, K. D.; Varpula, T.

    1997-02-01

    An intercomparison of cryogenic radiometers of HUT/VTT (Finland), PTB (Germany) and SP (Sweden) using silicon trap detectors was performed. Also results of monitoring of the responsivities of trap detectors over a 6 year period are presented. It was noticed that several non-idealities can undermine the agreement between results of calibrations. The non-uniformity of the responsivity of trap detectors made the results sensitive to alignment and beam size. The nonlinearity of some trap detectors was found to be large. The average relative differences in the results of the laboratories, when all known corrections are applied, are 0957-0233/8/2/003/img9 for HUT-PTB, 0957-0233/8/2/003/img10 for SP-PTB and 0957-0233/8/2/003/img11 for SP-HUT, with standard uncertainties of 0957-0233/8/2/003/img12 and 0957-0233/8/2/003/img13, respectively.

  7. Unlined Reuseable Filament Wound Composite Cryogenic Tank Testing

    NASA Technical Reports Server (NTRS)

    Murphy, A. W.; Lake, R. E.; Wilkerson, C.

    1999-01-01

    An unlined reusable filament wound composite cryogenic tank was tested at the Marshall Space Flight Center using LH2 cryogen and pressurization to 320 psig. The tank was fabricated by Phillips Laboratory and Wilson Composite Group, Inc., using an EnTec five-axis filament winder and sand mandrels. The material used was IM7/977-2 (graphite/epoxy).

  8. Effects of ionizing radiation on cryogenic infrared detectors

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  9. Effects of ionizing radiation on cryogenic infrared detectors

    NASA Astrophysics Data System (ADS)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  10. Effects Of Ionizing Radiation On Cryogenic Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Moseley, S. H.; Lakew, B.; Silverberg, R. F.

    1988-04-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. We report here on ionizing radiation tests carried out on all the DIRBE photodetectors. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  11. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  12. Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

    2000-01-01

    The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

  13. CALDER: Cryogenic light detectors for background-free searches

    NASA Astrophysics Data System (ADS)

    Cardani, L.; Bellini, F.; Casali, N.; Castellano, M. G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Di Domizio, S.; Tomei, C.; Vignati, M.

    2015-08-01

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α's. LUCIFER, a project based on ZnSe scintillating bolometers for the study of 82Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ's. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  14. Improving Thick Germanium Detectors: Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Epstein, Paulette; Mahapatra, Rupak; CDMS at Texas A&M University Team

    2011-10-01

    Texas A&M University is working on improving the current production rate, quality, and reproducibility of fabricated detectors, specifically for the Cryogenic Dark Matter Search (CDMS) to detect particles called WIMPs (Weakly Interacting Massive Particles). An automated sputtering system is used to deposit amorphous silicon and high quality tungsten and aluminum thin-films on 3 inch by 1 inch germanium substrates to demonstrate repeatable depositions with desired properties, such as, accurate thickness, desirable critical temperature, and good sensitivity at low energy. These techniques can then be used in the future to improve detectors, not only for the search for Dark Matter, but for other areas of research in nuclear and particle physics. Funded by DOE and NSF-REU Program.

  15. Optimizing Cryogenic Detectors for Low-Mass WIMP Searches

    NASA Astrophysics Data System (ADS)

    Arnaud, Q.; Billard, J.; Juillard, A.

    2016-07-01

    This paper describes the methodology and results from a study dedicated to the optimization of cryogenic detectors for low-mass WIMP searches. Considering a data-driven background model from the EDELWEISS-III experiment, and two analysis methods, namely profile likelihood and boosted decision tree, we indentify the main experimental constraints and performances that have to be improved. We found that there is a clear difference in how to optimize the detector setup whether focusing on WIMPs with masses below 5 GeV or above. Finally, in the case of a hundred-kg scale experiment, we discuss the requirements to probe most of the parameter space region delimited by the ultimate neutrino bound below 6 GeV.

  16. Monte Carlo of Cryogenic Dark Matter Search large germanium detectors

    NASA Astrophysics Data System (ADS)

    Leman, Steven; McCarty, Kevin; Cabrera, Blas; Pyle, Matthew; Sundqvist, Kyle; Sadoulet, Bernard

    2010-02-01

    A description of the Cryogenic Dark Matter Search (CDMS) detector Monte Carlo (MC) is given along with a comparison to calibration data obtained in 3" diameter, 1" thick [100] germanium crystals. Prompt phonons are generated from electron-recoil interactions along with Luke phonons created by charges as they drift through the crystal via our ionization channels' electric field. The MC phonon transport is described by quasidiffusion, which includes anisotropic propagation, isotope scattering and anharmonic decay, until the phonons are absorbed in either the Transition Edge Sensor based phonon channels or lost in surface interactions. Charge creation is a powerful discriminator for electron-recoil and nuclear-recoil events and also surface interaction rejection. Unlike holes, electrons transports obliquely to the electric field in our detectors due to the germanium [100] crystal orientation and the indirect semiconductor band structure. We are improving the agreement between MC and calibration data in different detector designs, which provides a powerful consistency test of our phonon and charge models. )

  17. CALDER: Cryogenic light detectors for background-free searches

    SciTech Connect

    Cardani, L.; Bellini, F.; Casali, N.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Vignati, M.; Castellano, M. G.; Colantoni, I.; Di Domizio, S.; Tomei, C.

    2015-08-17

    The development of background-free detectors is essential for experiments searching for rare events. Bolometers, that are among the most competitive devices for the study of neutrino-less double beta decay (0νDBD) and Dark Matter interactions, suffer from the absence of techniques that allow to identify the nature of the interacting particles. This limit can be overcome by coupling the bolometer to an independent device for the measurement of the light emitted by interactions, as the combined read-out of the bolometric and light signals allows to identify and reject particles different from those of interest. CUORE, the most advanced bolometric experiment for 0νDBD searches, could disentangle the electrons produced by 0νDBD from the dangerous background due to α particles, by measuring the (tiny) Cherenkov light emitted by electrons and not by α’s. LUCIFER, a project based on ZnSe scintillating bolometers for the study of {sup 82}Se 0νDBD, would be competitive also in the search of Dark Matter interactions if equipped with light detectors that allow to distinguish and reject the background due to electrons and γ’s. These advances require cryogenic detectors characterized by noise lower than 20 eV, large active area, wide temperature range of operation, high radio-purity and ease in fabricating hundreds of channels. The CALDER collaboration aims to develop such detectors by exploiting the superb energy resolution and natural multiplexed read-out provided by Kinetic Inductance Detectors.

  18. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  19. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    SciTech Connect

    Frank, M.; Mears, C.A.; Labov, S.E.; Benner, W.H.

    1999-11-30

    An ultra-high-mass time-of-flight mass spectrometer is described which uses a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as ``stop'' detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al{sub 2}O{sub 3}-Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  20. Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.

  1. Split-Stirling Cryogenic Refrigerators For Detector Cooling

    NASA Astrophysics Data System (ADS)

    Lehrfeld, Daniel

    1983-08-01

    Unfortunately, for user and manufacturer both, the closed-cycle cryogenic cooler to date has deserved its reputation as the "weak-link" in IR systems. When the cooler requires service at intervals of a few hundred hours at best, the quality of the system it serves is unfairly diminished. This paper addresses technological advances in the art of Stirling-cycle coolers which will increasingly cause that image of military cryocoolers to change for the better. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (tne first all-linear, military, production cooler) developed in Holland, is explained. Three new machines are discussed. Both 1/4 watt and 1 watt (nominal capacity) at 80°K linear-resonant, free-dispLacer Stirling coolers designed for thousands of hours of service-free operation are examined. The third machine is an advanced 1/4 watt at 80°K Stirling cooler incorporating the same component improvements in its free-displacer while utilizing a crankshaft-driven compressor. All three are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars. The technologies of linear-resonant compressor and free-displacer expanders as embodied in these machines is discussed in sufficient detail that the reasons for their superior performance will he clear.

  2. Facesheet Delamination of Composite Sandwich Materials at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Odegard, Gregory M.; Herring, Helen M.

    2003-01-01

    The next generation of space transportation vehicles will require advances in lightweight structural materials and related design concepts to meet the increased demands on performance. One potential source for significant structural weight reduction is the replacement of traditional metallic cryogenic fuel tanks with new designs for polymeric matrix composite tanks. These new tank designs may take the form of thin-walled sandwich constructed with lightweight core and composite facesheets. Life-time durability requirements imply the materials must safely carry pressure loads, external structural loads, resist leakage and operate over an extremely wide temperature range. Aside from catastrophic events like tank wall penetration, one of the most likely scenarios for failure of a tank wall of sandwich construction is the permeation of cryogenic fluid into the sandwich core and the subsequent delamination of the sandwich facesheet due to the build-up of excessive internal pressure. The research presented in this paper was undertaken to help understand this specific problem of core to facesheet delamination in cryogenic environments and relate this data to basic mechanical properties. The experimental results presented herein provide data on the strain energy release rate (toughness) of the interface between the facesheet and the core of a composite sandwich subjected to simulated internal pressure. A unique test apparatus and associated test methods are described and the results are presented to highlight the effects of cryogenic temperature on the measured material properties.

  3. Thermal-Mechanical Cyclic Test of a Composite Cryogenic Tank for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Messinger, Ross; Pulley, John

    2003-01-01

    This viewgraph presentation provides an overview of thermal-mechanical cyclic tests conducted on a composite cryogenic tank designed for reusable launch vehicles. Topics covered include: a structural analysis of the composite cryogenic tank, a description of Marshall Space Flight Center's Cryogenic Structure Test Facility, cyclic test plans and accomplishments, burst test and analysis and post-testing evaluation.

  4. Applicability Study of Composite Laminates to the Cryogenic Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Ishikawa, T.

    2002-01-01

    Extensive application of light weight composite materials is one of the major technical challenges for drastic reduction of structural weight of the planned reusable launch vehicles (RLV) and space planes. Cryogenic propellant tanks are the dominating structural components of the vehicle structure and thus the application of carbon fiber reinforced plastics (CFRP) to these components is one of the most promising but challenging technologies for achieving the aimed goal of weight reduction. Research effort has been made to scrutinize the cryogenic mechanical performance of currently available candidates of CFRP material systems suitable for use under cryogenic conditions. Seven different types of material systems of CFRP are chosen and are experimentally and analytically evaluated to discuss their applicability to the liquid propellant tanks and to provide basic information for material selections. Static tensile tests were conducted with quasi-isotropic laminates to acquire static strengths, both under cryogenic and room temperatures. The development of matrix cracks and free-edge delaminations were also experimentally investigated and were compared with the numerical calculations. Interlaminar fracture toughness at cryogenic temperature was also evaluated to investigate the damage susceptibility of the materials. The decrease in matrix crack onset stresses observed in the laminate performance experiments suggested that the propellant leakage may be a key issue when applying CFRP to the propellant tanks, as well as the durability concern. Thus the propellant leakage under matrix crack accumulation was simulated by the gas helium leakage tests. Leakage model was also developed and successfully applied to the prediction of the propellant leakage. Preliminary results of adhesive joint tests under cryogenic conditions will also be referred to.

  5. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Villa, E.; Aja, B.; de la Fuente, L.; Artal, E.

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.

  6. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.

    PubMed

    Villa, E; Aja, B; de la Fuente, L; Artal, E

    2016-01-01

    This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature. PMID:26827340

  7. Cryogenic detectors below 100 mK for X-ray measurements in metrology

    PubMed

    Bobin; Leblanc; Bouchard; Coron; Cassette; Leblanc; de Marcillac P; Plagnard

    2000-03-01

    Due to the intrinsic performances of cryogenic detectors such as energy resolution, LPRI has decided to use these devices to improve the quality of the radioactive measurements usually obtained with classical semiconductor detectors. A bolometer with a 10 microg tin absorber has been developed at IAS (Institut d'Astrophysique Spatiale) and has been tested in the cryogenic installation of LPRI; an energy resolution (full width half maximum, FWHM) of 39 eV has been obtained on the Kalpha line of Mn. Besides these good spectrometry results, an absolute activity measurement using bolometers is proposed by adapting an absorber geometry for 4 pi counting. PMID:10724382

  8. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  9. Durability Characterization of Advanced Polymeric Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, T. S.

    2001-01-01

    The next generation of reusable launch vehicles will require technology development in several key areas. Of these key areas, the development of polymeric composite cryogenic fuel tanks promises to present one of the most difficult technical challenges. It is envisioned that a polymer matrix composite (PMC) tank would be a large shell structure capable of containing cryogenic fuels and carrying a range of structural loads. The criteria that will be imposed on such a design include reduced weight, conformal geometry, and impermeability. It is this last criterion, impermeability, that will provide the focus of this paper. The essence of the impermeability criterion is that the tank remains leak free throughout its design lifetime. To address this criterion, one of the first steps is to conduct a complete durability assessment of the PMC materials. At Langley Research Center, a durability assessment of promising new polyimide-based PMCs is underway. This durability program has focused on designing a set of critical laboratory experiments that will determine fundamental material properties under combined thermal-mechanical loading at cryogenic temperatures. The test program provides measurements of lamina and laminate properties, including strength, stiffness, and fracture toughness. The performance of the PMC materials is monitored as a function of exposure conditions and aging time. Residual properties after exposure are measured at cryogenic temperatures and provide quantitative values of residual strength and stiffness. Primary degradation mechanisms and the associated damage modes are measured with both destructive and nondestructive techniques. In addition to mechanical properties, a range of physical properties, such as weight, glass transition, and crack density, are measured and correlated with the test conditions. This paper will report on the progress of this research program and present critical results and illustrative examples of current findings.

  10. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  11. Cryogenic Detectors for Rare Alpha Decay Search: A New Approach

    NASA Astrophysics Data System (ADS)

    Casali, N.; Dubovik, A.; Nagorny, S.; Nisi, S.; Orio, F.; Pattavina, L.; Pirro, S.; Schäffner, K.; Tupitsyna, I.; Yakubovskaya, A.

    2016-08-01

    The detection of ^{148}Sm alpha decay with a precise measured half-life of ( {6.4_{-1.3}^{+1.2} }) × 10^{15}y and a Q-value of 1987.3 ± 0.5 keV was achieved by a new experimental approach, where a conventional ZnWO4 scintillating crystal doped with enriched ^{148}Sm isotope is operated as a cryogenic scintillating bolometer (phonon and light channel) at mK-temperatures.

  12. Composite polycrystalline semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Schieber, M.; Zuck, A.; Marom, G.; Khakhan, O.; Roth, M.; Alfassi, Z. B.

    2007-08-01

    Composite polycrystalline semiconductor detectors bound with different binders, both inorganic molten glasses, such as B 2O 3, PbO/B 2O 3, Bi 2O 3/PbO, and organic polymeric binders, such as isotactic polypropylene (iPP), polystyrene or nylon-6, and coated with different metal electrodes were tested at room temperature for α-particles and very weak thermal neutron sources. The detector materials tested were natural occurring hexagonal BN and cubic LiF, where both are not containing enriched isotopes of 10B or 6Li. The radiation sources were 5.5 MeV α's from 241Am, 5.3 MeV from 210Po and also 4.8 MeV from 226Ra. Some of these detectors were also tested with thermal neutrons from very weak 227Ac 9Be, 241Am- 10Be sources and also from a weak 238Pu+ 9Be and somewhat stronger 252Cf sources. The neutrons were thermalized with paraffin. Despite very low signal to noise ratio of only ˜2, the neutrons could be counted by subtracting the noise from the signal.

  13. Evaluation of high temperature superconductive thermal bridges for space borne cryogenic detectors

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    Infrared sensor satellites are used to monitor the conditions in the earth's upper atmosphere. In these systems, the electronic links connecting the cryogenically cooled infrared detectors to the significantly warmer amplification electronics act as thermal bridges and, consequently, the mission lifetimes of the satellites are limited due to cryogenic evaporation. High-temperature superconductor (HTS) materials have been proposed by researchers at the National Aeronautics and Space Administration Langley's Research Center (NASA-LaRC) as an alternative to the currently used manganin wires for electrical connection. The potential for using HTS films as thermal bridges has provided the motivation for the design and the analysis of a spaceflight experiment to evaluate the performance of this superconductive technology in the space environment. The initial efforts were focused on the preliminary design of the experimental system which allows for the quantitative comparison of superconductive leads with manganin leads, and on the thermal conduction modeling of the proposed system. Most of the HTS materials were indicated to be potential replacements for the manganin wires. In the continuation of this multi-year research, the objectives of this study were to evaluate the sources of heat transfer on the thermal bridges that have been neglected in the preliminary conductive model and then to develop a methodology for the estimation of the thermal conductivities of the HTS thermal bridges in space. The Joule heating created by the electrical current through the manganin wires was incorporated as a volumetric heat source into the manganin conductive model. The radiative heat source on the HTS thermal bridges was determined by performing a separate radiant interchange analysis within a high-T(sub c) superconductor housing area. Both heat sources indicated no significant contribution on the cryogenic heat load, which validates the results obtained in the preliminary conduction

  14. Cryogenic phonon-scintillation detectors with PMT readout for rare event search experiments

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, J.; Mikhailik, V. B.; Kraus, H.

    2016-06-01

    Cryogenic phonon-scintillation detectors (CPSD) for rare event search experiments require reliable, efficient and robust photon detectors that can resolve individual photons in a scintillation event. We report on a cryogenic detector containing a scintillating crystal, equipped with an NTD-Ge phonon sensor and a photon detector based on a low-temperature photomultiplier tube (PMT) that is powered by a Cockcroft-Walton generator. Here we present results from the characterisation of two detector modules, one with CaWO4, the other with CaMoO4 as scintillator. The energy resolutions (FWHM) at 122.1 keV for the scintillation/PMT channel are 19.9% and 29.7% respectively for CaWO4 and CaMoO4 while the energy resolutions (FWHM) for the phonon channels are 2.17 keV (1.8%) and 0.97 keV (0.79%). These characteristics compare favourably with other CPSDs currently used in cryogenic rare-event search experiments. The detection module with PMT readout benefits from the implementation of a well-understood, reliable, and commercially available component and improved time resolution, while retaining the major advantages of conventional CPSD, such as high sensitivity, resolving power and discrimination ability.

  15. Conceptual design of a cryogenic test bench system for millimeter wavelength detectors

    NASA Astrophysics Data System (ADS)

    Ventura, S.; Ferrusca, D.; Ibarra-Medel, E.

    2014-07-01

    We present the design of a cryogenic system for testing different technologies of millimeter wavelength detectors. The proposed design is developed at the Astronomical Instrumentation Laboratory for Millimeter Wavelength at the National Institute of Astrophysics, Optics and Electronics, in México. The cryogenic system is integrated by a closed cycle pulse tube cooler with a 4 Kelvin 12 inches cold plate and a He-4/He-3 fridge and would be able to characterize KIDs (Kinetic Inductor Detectors), TES (Transition Edge Sensors) or semiconductor bolometers using a thermal link to a 250 mK stage. Readout electronics will be installed at the 4 Kelvin cold plate along with connectors and cables for the thermometry. In this paper we present a preliminary 3D model design which its main goal is to use efficiently the limited space in the cryostat with emphasis on the interchangeability for installing each time any of the three different detector technologies in the same cold plate; results for the thermal calculations and finite-element modeling are also shown. The system would allow, with some minor changes, to replace the He-4/He-3 fridge by a dilution fridge in order to reach temperatures about 100 mK to have more flexibility in the detector testing. The importance of the cryogenic test bench relies in the need for an easier and quicker characterization of detectors arrays as part of the research for the development of instruments for millimeter telescopes.

  16. Development of a Navigator and Imaging Techniques for the Cryogenic Dark Matter Search Detectors

    SciTech Connect

    Wilen, Chris; /Carleton Coll. /KIPAC, Menlo Park

    2011-06-22

    This project contributes to the detection of flaws in the germanium detectors for the Cryogenic Dark Matter Search (CDMS) experiment. Specifically, after imaging the detector surface with a precise imaging and measuring device, they developed software to stitch the resulting images together, applying any necessary rotations, offsets, and averaging, to produce a smooth image of the whole detector that can be used to detect flaws on the surface of the detector. These images were also tiled appropriately for the Google Maps API to use as a navigation tool, allowing viewers to smoothly zoom and pan across the detector surface. Automated defect identification can now be implemented, increasing the scalability of the germanium detector fabrication.

  17. Composite, Cryogenic, Conformal, Common Bulkhead, Aerogel-Insulated Tank (CBAT) Materials and Processing Methodologies

    NASA Technical Reports Server (NTRS)

    Kovach, Michael P.; Roberts, J. Keith; Finckenor, Jeffrey L.; McMahon, William M.; Clinton, R. G., Jr. (Technical Monitor)

    2000-01-01

    A viewgraph presentation outlines the current status and future activities of the composite, cryogenic, conformal, common bulkhead, aerogel-insulated tank (CBAT). Each term (composite, cryogenic, conformal, etc.) is explained. The fabrication method for the CBAT is described, including challenges and their solutions. Near term and long term goals are discussed.

  18. Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    SciTech Connect

    Leman, S.W.; Cabrera, B.; McCarthy, K.A.; Pyle, M.; Resch, R.; Sadoulet, B.; Sundqvist, K.M.; Brink, P.L.; Cherry, M.; Do Couto E Silva, E.; Figueroa-Feliciano, E.; Mirabolfathi, N.; Serfass, B.; Tomada, A.; /Stanford U., Phys. Dept.

    2012-06-04

    We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

  19. Cryogenic SiGe ASICs for readout and multiplexing of superconducting detector arrays

    NASA Astrophysics Data System (ADS)

    Voisin, F.; Prêle, D.; Bréelle, E.; Piat, M.; Sou, G.; Klisnick, G.; Redon, M.

    2008-07-01

    This paper presents an ultra low noise instrumentation based on cryogenic electronic integrated circuits (ASICs : Application Specific Integrated Circuits). We have designed successively two ASICs in standard BiCMOS SiGe 0.35 μm technology that have proved to be operating at cryogenic temperatures. The main functions of these circuits are the readout and the multiplexing of SQUID/TES arrays. We report the cryogenic operation of a first ASIC version dedicated to the readout of a 2×4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low noise (0.2 nV/√Hz) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented. We finally report on the development of a second version of this circuit to readout a 3×8 detectors array with improved noise performances and upgraded functionalities.

  20. Cryogenic SiGe ASICs for readout and multiplexing of superconducting detector arrays

    NASA Astrophysics Data System (ADS)

    Sou, G.; Klisnick, G.; Redon, M.; Voisin, F.; Prêle, D.; Bréelle, E.; Piat, M.

    2009-11-01

    This paper presents an ultra low noise instrumentation based on cryogenic electronic integrated circuits (ASICs: Application Specific Integrated Circuits). We have designed successively two ASICs in standard BiCMOS SiGe 0.35 μm technology that have proved to be operating at cryogenic temperatures. The main functions of these circuits are the readout and the multiplexing of TES/SQUID arrays. We report the cryogenic operation of a first ASIC version dedicated to the readout of a 2 × 4 pixel demonstrator array. We particularly emphasize on the development and the test phases of an ultra low white noise (0.2 nV/sqrtHz) cryogenic amplifier designed with two multiplexed inputs. The cryogenic SiGe amplifier coupled to a SQUID in a FLL operating at 4.2 K is also presented. We finally report on the development of a second version of this circuit to readout a 3 × 8 detectors array with improved noise performances and upgraded functionalities.

  1. EVALUATION OF SILICON DIODES AS IN-SITU CRYOGENIC FIELD EMISSION DETECTORS FOR SRF CAVITY DEVELOPMENT

    SciTech Connect

    Ari Palczewski, Rongli Geng

    2012-07-01

    We performed in-situ cryogenic testing of four silicon diodes as possible candidates for field emission (FE) monitors of superconducting radio frequency (SRF) cavities during qualification testing and in accelerator cryo-modules. We evaluated diodes from 2 companies - from Hamamatsu corporation model S1223-01; and from OSI Optoelectronics models OSD35-LR-A, XUV-50C, and FIL-UV20. The measurements were done by placing the diodes in superfluid liquid helium near the top of a field emitting 9-cell cavity during its vertical test. For each diode, we will discuss their viability as a 2K cryogenic detector for FE mapping of SRF cavities and the directionality of S1223-01 in such environments. We will also present calibration curves between the diodes and JLab's standard radiation detector placed above the Dewar's top plate.

  2. An HEMT-Based Cryogenic Charge Amplifier for Sub-kelvin Semiconductor Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Phipps, A.; Sadoulet, B.; Juillard, A.; Jin, Y.

    2016-07-01

    We present the design and noise performance of a fully cryogenic (T=4 K) high-electron mobility transistor (HEMT)-based charge amplifier for readout of sub-kelvin semiconductor radiation detectors. The amplifier is being developed for use in direct detection dark matter searches such as the cryogenic dark matter search and will allow these experiments to probe weakly interacting massive particle masses below 10 GeV/c^2 while retaining background discrimination. The amplifier dissipates ≈ 1 mW of power and provides an open loop voltage gain of several hundreds. The measured noise performance is better than that of JFET-based charge amplifiers and is dominated by the noise of the input HEMT. An optimal filter calculation using the measured closed loop noise and typical detector characteristics predicts a charge resolution of σ _q=106 eV (35 electrons) for leakage currents below 4 × 10^{-15} A.

  3. Analysis of defect formation in semiconductor cryogenic bolometric detectors created by heavy dark matter

    NASA Astrophysics Data System (ADS)

    Lazanu, Ionel; Ciurea, Magdalena Lidia; Lazanu, Sorina

    2013-04-01

    The cryogenic detectors in the form of bolometers are presently used for different applications, in particular for very rare or hypothetical events associated with new forms of matter, specifically related to searches for dark matter. In the detection of particles with a semiconductor as target and detector, usually two signals are measured: ionization and heat. The amplification of the thermal signal is obtained with the prescriptions from the Luke-Neganov effect. The energy deposited in the semiconductor lattice as stable defects in the form of Frenkel pairs at cryogenic temperatures, following the interaction of a dark matter particle, is evaluated and consequences for measured quantities are discussed. This contribution is included in the energy balance of the Luke effect. Applying the present model to germanium and silicon, we found that for the same incident weakly interacting massive particle the energy deposited in defects in germanium is about twice the value for silicon.

  4. Specification and Design of the SBRC-190: A Cryogenic Multiplexer for Far Infrared Photoconductor Detectors

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Young, E. T.; Wolf, J.; Asbrock, J. F.; Lum, N.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Arrays of far-infrared photoconductor detectors operate at a few degrees Kelvin and require electronic amplifiers in close proximity. For the electronics, a cryogenic multiplexer is ideal to avoid the large number of wires associated with individual amplifiers for each pixel, and to avoid adverse effects of thermal and radiative heat loads from the circuitry. For low background applications, the 32 channel CRC 696 CMOS device was previously developed for SIRTF, the cryogenic Space Infrared Telescope Facility. For higher background applications, we have developed a similar circuit, featuring several modifications: (a) an AC coupled, capacitive feedback transimpedence unit cell, to minimize input offset effects, thereby enabling low detector biases, (b) selectable feedback capacitors to enable operation over a wide range of backgrounds, and (c) clamp and sample & hold output circuits to improve sampling efficiency, which is a concern at the high readout rates required. We describe the requirements for and design of the new device.

  5. Cryogenic single-chip electron spin resonance detector

    NASA Astrophysics Data System (ADS)

    Gualco, Gabriele; Anders, Jens; Sienkiewicz, Andrzej; Alberti, Stefano; Forró, László; Boero, Giovanni

    2014-10-01

    We report on the design and characterization of a single-chip electron spin resonance detector, operating at a frequency of about 20 GHz and in a temperature range extending at least from 300 K down to 4 K. The detector consists of an LC oscillator formed by a 200 μm diameter single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K, the oscillator has a frequency noise of 20 Hz/Hz1/2 at 100 kHz offset from the 20 GHz carrier. At 4 K, the frequency noise is about 1 Hz/Hz1/2 at 10 kHz offset. The spin sensitivity measured with a sample of DPPH is 108 spins/Hz1/2 at 300 K and down to 106 spins/Hz1/2 at 4 K.

  6. Focal-plane optimization for detector noise limited performance in cryogenic Fourier transform spectrometer /FTS/ sensors

    NASA Technical Reports Server (NTRS)

    Mcguirk, M.; Logan, L.

    1980-01-01

    A study was performed to determine the optimum focal plane configuration including optics, filters and detector-preamplifier selection. The configuration was optimized particularly with respect to minimizing the noise level, but fabrication considerations for a cryogenic environment were also taken into account. The noise terms from source, background, detector electronics and charged particle radiation were quantitatively evaluated. It appears that noise equivalent spectral radiance less than 10 to the -11th W/sq cm per sr per kayser can be achieved between 2.5 and 20 microns.

  7. Environmental testing of high Tc superconductive thermal isolators for space-borne cryogenic detector systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall

    1992-01-01

    Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

  8. A measurement of the beta spectrum of 63Ni using a new type of cryogenic detector

    NASA Astrophysics Data System (ADS)

    Gaistkell, R. J.; Angrave, L. C.; Booth, N. E.; Hahn, A. D.; Salmon, G. L.; Swift, A. M.

    1996-02-01

    A precision measurement of the beta spectrum of 63Ni has been performed using a new type of cryogenic particle detector. This is the first nuclear physics experiment using this technique, and we discuss the principles of the method, its advantages and its shortcomings. Careful studies of detector stability, calibration, pulse pile-up and systematics have made it possible to collect large numbers of events (∼ 10 8) over long periods (∼ 28 days). The measurement is consistent with no 17 keV/c 2 neutrino admixture, giving a preferred value of (-0.05 ± 0.31)%.

  9. Quantum Efficiency for Electron-Hole Pair Generation by Infrared Irradiation in Germanium Cryogenic Detectors

    NASA Astrophysics Data System (ADS)

    Domange, J.; Broniatowski, A.; Olivieri, E.; Chapellier, M.; Dumoulin, L.

    2009-12-01

    A study is made of the quantum efficiency of a coplanar grid ionization/heat Ge detector operated at cryogenic temperatures for dark matter search. Carrier generation is performed with infra-red LEDs of different wavelengths (1.30, 1.45, and 1.65 μm) near the optical bandgap of germanium. The corresponding quantum efficiency is obtained from an analysis of the Joule (Luke-Neganov) effect. This investigation is part of a program to optimize the reset procedure of the detectors in the Edelweiss-II dark matter search experiment at the Modane Underground Laboratory.

  10. Cryogenic Temperature Effects on Performance of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Hui, David; Dutta, P. K.

    2003-01-01

    The objective of this study is to evaluate the low temperature behavior of polymer composites down to the cryogenic temperature range. This would be accomplished by study of its behavior in several ways. First we would study the microfracture growth by observing the acoustic emission as the temperature is lowered. We would also note any damage growth by ultrasonic velocity testing applying the pulse echo method. Effects of such low temperature would then be studied by examining the shear properties by the short beam shear test, and also the fracture toughness properties over a wide range of strain rate and temperature. At present these studies are continuing. The limited data obtained from these studies are reported in this report.

  11. Design of a Prototype Cryogenic Chamber and Characterization of a High Purity Germanium Detector

    NASA Astrophysics Data System (ADS)

    Hossain, Abu Hena Muhammad Nazir

    Germanium detectors are the best choice for gamma ray spectrometry because of their good energy resolution and high efficiency compared to any other gamma rays spectrometers. Due to their high sensitivity and good energy resolution, these kinds of detector have a range of application. There is a significant number of particles detection experiments going on which used germanium detectors all around the world. These also have applications in non-proliferation and medical diagnosis. Thus, germanium detectors have a wide range of applications both research and industry. The Center for Ultra-Low Background Experiment in the Dakotas (CUBED) at the University of South Dakota is developing the facilities to fabricate germanium detectors. It is requires to characterize the germanium detector properties, especially electrical properties. In this project I design and developed a cryogenic chamber for the CUBED group which is able to rest any type of radiation detectors of different sizes and shapes. The cryostat chamber is able to provide low pressure and low temperature for the testing of the germanium detector sample. Leakage current measurements have been done for several detector samples by using this cryostat chamber. Several kinds of electrical properties such as depletion voltage, breakdown voltage, electronics noise, impurity concentration etc. can be derived from these experiments in the future.

  12. Layered composite thermal insulation system for nonvacuum cryogenic applications

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.

    2016-03-01

    A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum-jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum-jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal

  13. Development of a scintillation light detector for a cryogenic rare-event-search experiment

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; So, J. H.; Kang, C. S.; Kim, G. B.; Kim, S. R.; Lee, J. H.; Lee, M. K.; Yoon, W. S.; Kim, Y. H.

    2015-06-01

    We developed a light detector to measure scintillation light from a crystal utilized in heat and light measurements at low temperatures for a rare-event-search experiment. A 2-in. Ge wafer was used as the light absorber, while a metallic magnetic calorimeter was employed to read out the temperature increase of the absorber. The light detector was tested at 25-100 mK using a cryogen-free adiabatic demagnetization refrigerator. The performance in terms of energy resolution, rise time and signal amplitude was measured using radioactive sources with a consideration of the absorption position on the wafer. The light detector was used to measure the scintillation light of a CaMoO4 crystal at mK temperatures. We also discuss for the potential application of this detector in a neutrinoless double-beta decay experiment.

  14. Sensitivity of sodium iodide cryogenic scintillation-phonon detectors to WIMP signals

    NASA Astrophysics Data System (ADS)

    Clark, M.; Nadeau, P.; Di Stefano, P. C. F.; Lanfranchi, J.-C.; Roth, S.; von Sivers, M.; Yavin, I.

    2016-05-01

    There is great interest in performing dark matter direct detection experiments using alkali halides such as NaI to test the DAMA/LIBRA claim. Cryogenic scintillation-phonon detectors measure both scintillation light and phonons to provide event-by-event discrimination between particles interacting with nuclei and particles interacting with electrons. An alkali halide scintillation-phonon detector could test the DAMA/LIBRA claim in a model-independent way using a similar material with added background discrimination. We present simulations of such detectors to determine their possible sensitivity to both annual modulation and particle interaction signals. We find that a 5 kg detector array could test the modulation reported by DAMA/LIBRA within 2 years using a likelihood-ratio test.

  15. Autonomous Cryogenic Leak Detector for Improving Launch Site Operations

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy

    2013-01-01

    NASA, military, and commercial satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. This project has developed a tapered optical fiber sensor for detecting hydrogen. The invention involves incorporating chemical indicators on the tapered end of an optical fiber using organically modified silicate nanomaterials. The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and qualify various mission-critical chemicals. Historically, hydrogen, helium, nitrogen, oxygen, and argon are the first five gases of HGDL focus. The use of these cryogenic fluids in the area of propulsion offers challenges. Due to their extreme low temperatures, these fluids induce contraction of the materials they contact, a potential cause of leakage. Among them, hydrogen is of particular concern. Small sensors are needed in multiple locations without adding to the structural weight. The most vulnerable parts of the engine are the connection flanges on the transfer lines, which have to support cycles of large thermal amplitude. The thermal protection of the engine provides a closed area, increasing the likelihood of an explosive atmosphere. Thus, even a small leak represents an unacceptable hazardous condition during loading operations, in flight, or after an aborted launch. Tapered fibers were first fabricated from 1/1.3-mm core/cladding (silica/ plastic) optical fibers. Typically a 1-ft (approx. 30- cm) section of the 1-mm fiber is cut from the bundle and marked with a pen into five 2-.-in. (.5.7-cm) sections. A propane torch is applied at every alternate mark to burn the jacket and soften the glass core. While the core is softening, the two ends of the fiber are pulled apart slowly to create fine tapers of .- to .-in. (.6- to 12-mm) long on the 1-mm optical fiber. Following this, the non-tapered ends of the fibers are polished to a 0.3-micron finish

  16. Feasibility of Carbon Fiber/PEEK Composites for Cryogenic Fuel Tank Applications

    NASA Astrophysics Data System (ADS)

    Doyle, K.; Doyle, A.; O Bradaigh, C. M.; Jaredson, D.

    2012-07-01

    This paper investigates the feasibility of CF/PEEK composites for manufacture of cryogenic fuel tanks for Next Generation Space Launchers. The material considered is CF/PEEK tape from Suprem SA and the proposed manufacturing process for the fuel tank is Automated Tape Placement. Material characterization was carried out on test laminates manufactured in an autoclave and also by Automated Tape Placement with in-situ consolidation. The results of the two processes were compared to establish if there is any knock down in properties for the automated tape placement process. A permeability test rig was setup with a helium leak detector and the effect of thermal cycling on the permeability properties of CF/PEEK was measured. A 1/10th scale demonstrator was designed and manufactured consisting of a cylinder manufactured by automated tape placement and an upper dome manufactured by autoclave processing. The assembly was achieved by Amorphous Interlayer Bonding with PEI.

  17. Stress Analysis and Permeability Testing of Cryogenic Composite Feed Line

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip

    1999-01-01

    For the next generation Single-Stage-To-Orbit (SSTO) Reusable Launch Vehicle (RLV), the use of advanced composite materials is highly desirable and critical to the success of the mission. NASA Marshall Space Flight Center (MSFC) has been working with the aerospace industry for many years to develop and demonstrate the cryogenic composite propellant tanks and feed lines technologies. A 50.8-mm diameter composite feed line for the Clipper Graham (DCY.A) was developed and tested. The purpose of the program is to demonstrate the LH2 permeability, composite to composite and metal joints, as well as composite flange interface of the composite feed line. Stress analysis and permeability testing have been performed on this article. Recently, a larger composite feed line design is being investigated and developed at MSFC for potential use in future RLV. The diameter of the feed line is 203 mm and the overall length is approximately 2.2 meters. This one piece unlined feed line consists of three straight tubular sections joined by two 90 degree elbows. The material chosen is IM7/977-3 prepreg fabric. The lay-up pattern is [0/90, plus or minus 45]s and is built up to 18 plies to the flanges at both ends. A preliminary stress analysis has been conducted to identify potential critical stresses and to develop the finite element analysis (FEA) capability of composite feed lines. As expected, the critical stresses occurred at the rims of some flange holes and the onset of the tapered tubular sections. Further analysis is required to determine the loads, flange deflection, vibration, and combined maximum loads. Two permeability-testing apparatuses were also designed for both flat panel specimens and curved feed line sections after impact damage. A larger permeant gas exposed area is required to accurately determine the effect of impact damage on the permeability of the feed line materials. The flat panel tester was fabricated and assembled. Three test coupons were made of graphite

  18. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    NASA Technical Reports Server (NTRS)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  19. Modeling Icy Saturnian Satellite Compositions Using Cryogenic Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dalton, James B.

    2006-09-01

    Surface compositions among the icy Saturnian satellites range from nearly pure water ice at Mimas and Tethys to dark, nitrile-laced compounds at Phoebe and Dione. New measurements from the Cassini Visual and Infrared Mapping Spectrometer (VIMS) coupled with laboratory measurements of relevant compounds at cryogenic temperatures, are beginning to reveal some of the subtle variations in compounds on these worlds. By comparing spectral observations for each of these moons to the others, inferences may be drawn which help to reveal their varying formation histories. Spectral modeling of Tethys observations, for example, indicates a surface dominated by water ice with only small contributions by other materials such as carbon dioxide or amorphous carbon; yet, requires an unusual mixture of grain sizes ranging from less than ten microns to as much as 2.5 millimeters in diameter. At the other extreme, Phoebe has been shown to exhibit much clearer evidence (cf. Clark et al., 2005) for a host of compounds, including iron-bearing materials, carbon dioxide, nitriles, and organics. Comparison of Cassini VIMS spectra of Phoebe, Dione, and Hyperion indicate many of the same spectral features. Mapping of these spectral features using automated feature extraction algorithms, cryogenic laboratory reflectance measurements, and standard Hapke reflectance models allows insights into the nature and distribution of these materials on the icy Saturnian satellites. In addition, this exercise allows examination of the methods and suggests ways in which the models might be improved. These include improved formulations of phase and scattering functions, as well as laboratory investigations of both pure compounds and mixtures.

  20. Characteristics of CMOS Light Detectors at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Christian, James; Johnson, Erik; Stapels, Christopher; Linsay, Paul; Miskimen, Rory; Crabb, Donald; Augustine, Frank

    2008-10-01

    Advancing nuclear and high-energy physics often requires experiments conducted in harsh environments, such as a liquid helium bath and a superconducting magnet at several Tesla. These experiments need improved sensors that operate in these conditions. Improvements in detector technology used in extreme environments can improve the data quality and allow new designs for experiments that operate under these conditions. Solid-State Photomultipliers (SSPM), a device built from a monolithic array of photodiodes, can be used in these environments where traditional PMTs may not operate. Measurements of the diode properties at low temperatures down to 5 K are used to determine the potential of CMOS SSPMs in these environments. At temperatures below 60 K, extensive after pulsing is observed, which renders the Geiger photodiodes in the SSPM nonfunctional for biases above breakdown. In proportional mode operation, below the reverse bias breakdown, the photodiodes show a linear response to incident light with a relatively large gain and can be used at temperatures near 5 K.

  1. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA.

    PubMed

    Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro

    2016-03-01

    KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported. PMID:27036793

  2. Characterization of the room temperature payload prototype for the cryogenic interferometric gravitational wave detector KAGRA

    NASA Astrophysics Data System (ADS)

    Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro

    2016-03-01

    KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.

  3. Stability of the spectral responsivity of cryogenically cooled InSb infrared detectors

    SciTech Connect

    Theocharous, Evangelos

    2005-10-10

    The spectral responsivity of two cryogenically cooled InSb detectors was observed to drift slowly with time. The origin of these drifts was investigated and was shown to occur due to a water-ice thin film that was deposited onto the active areas of the cold detectors. The presence of the ice film (which is itself a dielectric film) modifies the transmission characteristics of the antireflection coatings deposited on the active areas of the detectors, thus giving rise to the observed drifts. The magnitude of the drifts was drastically reduced by evacuating the detector dewars while baking them at 50 deg. C for approximately 48 h. All InSb detectors have antireflection coatings to reduce the Fresnel reflections and therefore enhance their spectral responsivity. This work demonstrates that InSb infrared detectors should be evacuated and baked at least annually and in some cases (depending on the quality of the dewar and the measurement uncertainty required) more frequently. These observations are particularly relevant to InSb detectors mounted in dewars that use rubber O rings since the ingress of moisture was found to be particularly serious in this type of dewar.

  4. Cryogenic Loop Heat Pipes for the Cooling of Small Particle Detectors at CERN

    NASA Astrophysics Data System (ADS)

    Pereira, H.; Haug, F.; Silva, P.; Wu, J.; Koettig, T.

    2010-04-01

    The loop heat pipe (LHP) is among the most effective heat transfer elements. Its principle is based on a continuous evaporation/condensation process and its passive nature does not require any mechanical devices such as pumps to circulate the cooling agent. Instead a porous wick structure in the evaporator provides the capillary pumping forces to drive the fluid [1]. Cryogenic LHP are investigated as potential candidates for the cooling of future small-scale particle detectors and upgrades of existing ones. A large spectrum of cryogenic temperatures can be covered by choosing appropriate working fluids. For high luminosity upgrades of existing experiments installed at the Large Hadron Collider (LHC) (TOTEM) and planned ones (FP420) [2-3] being in the design phase, radiation-hard solutions are studied with noble gases as working fluids to limit the radiolysis effect on molecules detrimental to the functioning of the LHP. The installation compactness requirement of experiments such as the CAST frame-store CCD detector cooling system impels also the design of a compact shaped LHP [4]. This paper reports on the design and experimental results of a general purpose LHP for temperatures as low as 110 K, for which the performances were measured using a Gifford-McMahon (GM) cooler as the cold source, combination envisaged for the cooling of future particle detectors.

  5. Development of Cryogenic Readout Electronics for Sensitive Far-Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Watabe, Toyoki; Shibai, Hiroshi; Hirao, Takanori; Nagata, Hirohisa; Hibi, Yasunori; Kawada, Mitsunobu; Nakagawa, Takao; Noda, Manabu

    We have successfully developed low-noise, low-power cryogenic readout electronics (CRE) for sensitive far-infrared detectors operated at low temperatures. The CRE must be mounted besides of the detector, and thus, it must be operated at cryogenic temperatures. The reasons of that are to avoid electrical interferences to the high-impedance portion between the detector itself and the CRE, and to minimize the stray capacitance that may decrease the read-out gain. The goals of the CRE performance are the operation temperature can be down to 2K, the noise level is 2µV/√Hz at 1Hz, the power consumption is 10µW/channel, and the open-loop gain of differential amplifier is over 1000. We have so far manufactured the CRE four times, and evaluated the performances at 4.2K. The present performance achieved is nearly acceptable for the far-infrared sensor of the next Japanese infrared astronomical satellite, ASTRO-F.

  6. Detector Simulation and WIMP Search Analysis for the Cryogenic Dark Matter Search Experiment

    SciTech Connect

    McCarthy, Kevin

    2013-06-01

    Astrophysical and cosmological measurements on the scales of galaxies, galaxy clusters, and the universe indicate that 85% of the matter in the universe is composed of dark matter, made up of non-baryonic particles that interact with cross-sections on the weak scale or lower. Hypothetical Weakly Interacting Massive Particles, or WIMPs, represent a potential solution to the dark matter problem, and naturally arise in certain Standard Model extensions. The Cryogenic Dark Matter Search (CDMS) collaboration aims to detect the scattering of WIMP particles from nuclei in terrestrial detectors. Germanium and silicon particle detectors are deployed in the Soudan Underground Laboratory in Minnesota. These detectors are instrumented with phonon and ionization sensors, which allows for discrimination against electromagnetic backgrounds, which strike the detector at rates orders of magnitude higher than the expected WIMP signal. This dissertation presents the development of numerical models of the physics of the CDMS detectors, implemented in a computational package collectively known as the CDMS Detector Monte Carlo (DMC). After substantial validation of the models against data, the DMC is used to investigate potential backgrounds to the next iteration of the CDMS experiment, known as SuperCDMS. Finally, an investigation of using the DMC in a reverse Monte Carlo analysis of WIMP search data is presented.

  7. Cryogenic SiGe integrated circuits for superconducting nanowire single photon detector readout

    NASA Astrophysics Data System (ADS)

    Bardin, Joseph C.; Ravindran, Prasana; Chang, Su-Wei; Mohamed, Charif; Kumar, Raghavan; Stern, Jeffrey A.; Shaw, Matthew D.; Russell, Damon; Marsili, Francesco; Resta, Giovanni; Farr, William H.

    2014-05-01

    There is a growing interest in developing systems employing large arrays of SNSPDs. To make such instruments practical, it is desirable to perform signal processing before transporting the detector outputs to room temperature. We present a cryogenic eight-channel pixel combiner circuit designed to amplify, digitize, edge detect, and combine the output signals of an array of eight SNSPDs. The circuit has been fabricated and measurement results agree well with expectation. The paper will conclude with a summary of ongoing work and future directions.

  8. Thermostabilization System Based on Two-phase Closed Cryogenic Thermosyphon for RED100 Detector

    NASA Astrophysics Data System (ADS)

    Bolozdynya, A. I.; Efremenko, Yu. V.; Khromov, V. A.; Shafigullin, R. R.; Shakirov, A. V.; Sosnovtsev, V. V.; Tolstukhin, I. A.

    The RED 100 emission detector requires thermostabilization at about 100K. The heat transfer characteristics of a two-phase closed cryogenic thermosyphon made of copper pipe and bellow flex hoses with nitrogen fluid have been investigated. The thermosyphon consists of sealed pipe enclosed in a vacuum jacket and uses a free-boiling liquid nitrogen pool as a cooling machine. The system is very flexible and can provide heat transfer rate up to 100 W in the temperature range of 80-100 K.

  9. Composite propulsion feedlines for cryogenic space vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Laintz, D. J.; Phillips, J. M.

    1973-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.

  10. MPPC versus MRS APD in two-phase Cryogenic Avalanche Detectors

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Shemyakina, E.; Sokolov, A.; Bondar, A.; Buzulutskov, A.; Dolgov, A.; Shemyakina, E.; Sokolov, A.

    2015-04-01

    Two-phase Cryogenic Avalanche Detectors (CRADs) with combined THGEM/GAPD multiplier have become an emerging potential technique for dark matter search and coherent neu\\-tri\\-no-nucleus scattering experiments. In such a multiplier the THGEM hole avalanches are optically recorded in the Near Infrared (NIR) using a matrix of Geiger-mode APDs (GAPDs). To select the proper sensor, the performances of six GAPD types manufactured by different companies, namely by Hamamatsu (MPPCs), CPTA (MRS APDs) and SensL (SiPMs), have been comparatively studied at cryogenic temperatures when operated in two-phase CRADs in Ar at 87 K. While the GAPDs with ceramic packages failed to operate properly at cryogenic temperatures, those with plastic packages, namely MPPC S10931-100P and MRS APD 149-35, showed satisfactory performances at 87 K. In addition, MPPC S10931-100P turned out to be superior in terms of the higher detection efficiency, lower noise rate, lower pixel quenching resistor and better characteristics reproducibility.

  11. Invited review article: physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors.

    PubMed

    Leman, Steven W

    2012-09-01

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models. PMID:23020355

  12. Invited Review Article: Physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors

    SciTech Connect

    Leman, Steven W.

    2012-09-15

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

  13. Invited Review Article: Physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors

    NASA Astrophysics Data System (ADS)

    Leman, Steven W.

    2012-09-01

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

  14. Characterization of photo-multiplier tubes for the Cryogenic Avalanche Detector

    NASA Astrophysics Data System (ADS)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Sokolov, A.

    2015-10-01

    New Cryogenic Avalanche Detector (CRAD) with ultimate sensitivity, that will be able to detect one primary electron released in the cryogenic liquid, is under development in the Laboratory of Cosmology and Particle Physics of the Novosibirsk State University jointly with the Budker Institute of Nuclear Physics. The CRAD will use two sets of cryogenic PMTs in order to get trigger signal either from primary scintillations in liquid Ar or from secondary scintillations in high field gap above the liquid. Two types of cryogenic PMTs produced by Hamamatsu Photonics were tested and the results are presented in this paper. Low background 3 inch PMT R11065-10 demonstrated excellent performance according to its specifications provided by the producer. The gain measured with single electron response (SER) in liquid Ar reached 107, dark count rate rate did not exceed 300 Hz and pulse height resolution of single electron signals was close to 50%(FWHM). However, two R11065-10 PMTs out of 7 tested stopped functioning after several tens minutes of operation immersed completely into liquid Ar. The remaining 5 devices and one R11065-MOD were operated successfully for several hours each with all the parameters according to the producer specifications. Compact 2 inch PMT R6041-506-MOD with metal-channel dynode structure is a candidate for side wall PMT system that will look at electroluminescence in high field region above liquid. Four of these PMTs were tested in liquid Ar and demonstrated gain up to 2× 107, dark count rate rate below 100 Hz and pulse height resolution of single electron signals of about 110% (FWHM).

  15. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments

    SciTech Connect

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; Hahn, Robert von; Klinkhamer, Vincent; Vogel, Stephen; Wolf, Andreas; Krantz, Claude; Novotný, Oldřich; Schippers, Stefan

    2015-02-15

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK’s Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  16. Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter

    NASA Astrophysics Data System (ADS)

    Foerster, N.; Broniatowski, A.; Eitel, K.; Marnieros, S.; Paul, B.; Piro, M.-C.; Siebenborn, B.

    2016-02-01

    The detectors of the direct dark matter search experiment EDELWEISS consist of high-purity germanium crystals operated at cryogenic temperatures ({{<}20 mK} ) and low electric fields ({{<}1 V/cm} ). The surface discrimination is based on the simultaneous measurement of the charge amplitudes on different sets of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in combination with time-resolved measurements using an EDELWEISS-type detector in a test cryostat at ground level. We show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.

  17. Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter

    NASA Astrophysics Data System (ADS)

    Foerster, N.; Broniatowski, A.; Eitel, K.; Marnieros, S.; Paul, B.; Piro, M.-C.; Siebenborn, B.

    2016-08-01

    The detectors of the direct dark matter search experiment EDELWEISS consist of high-purity germanium crystals operated at cryogenic temperatures (mathrm {{<}20 mK}) and low electric fields (mathrm {{<}1 V/cm}). The surface discrimination is based on the simultaneous measurement of the charge amplitudes on different sets of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in combination with time-resolved measurements using an EDELWEISS-type detector in a test cryostat at ground level. We show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.

  18. Reliable cool-down of GridPix detectors for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Schön, R.; Schmitz, J.; Smits, S.; Bilevych, Y.; van Bakel, N.

    2015-04-01

    In this paper we present thermal cycling experiments of GridPix radiation imaging detectors, in view of a potential application in a cryogenic experiment. The robustness of the GridPix detector is studied for various grid designs, as well as various mechanical and thermal surroundings. The grid design variations had insignificant effect on the grid strength. A low cool-down rate as well as good thermal contact are crucial for the durability of the grid. Further, additional strengthening at the grid edges proved necessary to maintain the integrity of the structure during thermal cycling, which was done using globtop adhesive. The combination of these measures led to 100% survival rate after thermal cycling down to -130 °C.

  19. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-02-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz} . We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  20. The Cryogenic AntiCoincidence Detector Project for ATHENA+: An Overview Up to the Present Status

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Piro, L.; Colasanti, L.; Lotti, S.; Natalucci, L.; Bagliani, D.; Biasotti, M.; Gatti, F.; Torrioli, G.; Barbera, M.; Mineo, T.; Perinati, E.

    2014-09-01

    ATHENA+ is a space mission proposal for the next ESA L2-L3 slot. One of the focal plane instruments is the X-ray integral field unit (X-IFU) working in the energy range 0.3-10 keV. It is a multi-array based on TES detectors aimed at characterizing faint or diffuse sources (e.g. WHIM or galaxy outskirt). The X-IFU will be able to achieve the required sensitivity if a low background is guaranteed. The studies performed by GEANT4 simulations depict a scenario where the use of an active anticoincidence (AC) is mandatory to reduce the background expected in L2 orbit down to the goal level of 0.005 cts cm s keV. This is possible using a cryogenic anticoincidence (CryoAC) detector placed within a proper optimized environment surrounding the X-IFU. We propose a 2 2 array of microcalorimeter detectors made by silicon absorber (each of about 1 cm and 300 m thick) and sensed by an Ir TES. In order to better understand the involved physics and optimize the performance, we have produced several samples featured by different absorber areas, TES size, and QPs Al collectors. Here we will discuss, as a review, the obtained results and the related impact to the final detector design.

  1. Towards Background-Limited Kinetic Inductance Detectors for a Cryogenic Far-Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Fyhrie, A.; Glenn, J.; Wheeler, J.; Day, P.; Eom, B. H.; Leduc, H.; Skrutskie, M.

    2016-08-01

    Arrays of tens of thousands of sensitive far-infrared detectors coupled to a cryogenic 4-6 m class orbital telescope are needed to trace the assembly of galaxies over cosmic time. The sensitivity of a 4 Kelvin telescope observing in the far-infrared (30-300 \\upmu m) would be limited by zodiacal light and Galactic interstellar dust emission, and require broadband detector noise equivalent powers (NEPs) in the range of 3× 10^{-19} W/√{Hz}. We are fabricating and testing 96 element arrays of lumped-element kinetic inductance detectors (LEKIDs) designed to reach NEPs near this level in a low-background laboratory environment. The LEKIDs are fabricated with aluminum: the low normal-state resistivity of Al permits the use of very thin wire-grid absorber lines (150 nm) for efficient absorption of radiation, while the small volumes enable high sensitivities because quasiparticle densities are high. Such narrow absorption lines present a fabrication challenge, but we deposit TiN atop the Al to increase the robustness of the detectors and achieve a 95 % yield. We present the design of these Al/TiN bilayer LEKIDs and preliminary sensitivity measurements at 350 \\upmu m optically loaded by cold blackbody radiation.

  2. Development of a cryogenic radiation detector for mapping radio frequency superconducting cavity field emissions

    SciTech Connect

    Danny Dotson; John Mammosser

    2005-05-01

    Field emissions in a super conducting helium cooled RF cavity and the production of radiation (mostly X-Rays) have been measured externally on cryomodules at Jefferson Lab since 1991. External measurements are limited to radiation energies above 100 keV due to shielding of the stainless steel cryogenic body. To measure the onset of and to map field emissions from a superconducting cavity requires the detecting instrument be inside the shield and within the liquid Helium. Two possible measurement systems are undergoing testing at JLab. A CsI detector array set on photodiodes and an X-Ray film camera with a fixed aperture. Several devices were tested in the cell with liquid Helium without success. The lone survivor, a CsI array, worked but saturated at high power levels due to backscatter. The array was encased in a lead shield with a slit opening set to measure the radiation emitted directly from the cell eliminating a large portion of the backscatter. This is a work in progress and te sting should be complete before the PAC 05. The second system being tested is passive. It is a shielded box with an aperture to expose radiation diagnostic film located inside to direct radiation from the cell. Developing a technique for mapping field emissions in cryogenic cells will assist scientists and engineers in pinpointing any surface imperfections for examination.

  3. Split-Stirling, linear-resonant, cryogenic refrigerators for detector cooling

    NASA Astrophysics Data System (ADS)

    Lehrfeld, D.

    1983-12-01

    For the past decade, military IR systems have preferred to see cryogenic coolers provided as split units; separating the functions of compressor and cold-end for system packaging and vibration isolation reasons. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Two new split-cycle machines are discussed. They provided 1/4 watt and 1 watt (nominal capacity) at 80 K and 85 K respectively. These linear-resonant, free-displacer Stirling coolers are designed for thousands of hours of service-free operation. They are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars, respectively.

  4. Split-Stirling, linear-resonant, cryogenic refrigerators for detector cooling

    NASA Technical Reports Server (NTRS)

    Lehrfeld, D.

    1983-01-01

    For the past decade, military IR systems have preferred to see cryogenic coolers provided as split units; separating the functions of compressor and cold-end for system packaging and vibration isolation reasons. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Two new split-cycle machines are discussed. They provided 1/4 watt and 1 watt (nominal capacity) at 80 K and 85 K respectively. These linear-resonant, free-displacer Stirling coolers are designed for thousands of hours of service-free operation. They are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars, respectively.

  5. Large scale xenon purification using cryogenic distillation for dark matter detectors

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Bao, L.; Hao, X. H.; Ju, Y. L.; Pushkin, K.; He, M.

    2014-11-01

    A high efficiency cryogenic distillation system for removal of radioactive krypton-85 (85Kr) from commercially available xenon (Xe) has been designed, developed and assessed to meet the requirements of high sensitivity, low background dark matter detection experiments. The concentration of krypton (Kr) in a commercial xenon product can be decreased from 10-9 to 10-12 mol/mol based on the theoretical design and simulation. The experimental measurements showed that the concentration of krypton was decreased to 10-11 mol/mol with 99% xenon collection efficiency at maximum flow rate of 5 kg/h. Over 500 kg of xenon has been purified using this system, which has been used as the detection medium in project Panda X, the first dark matter detector developed in China.

  6. Foam/Aerogel Composite Materials for Thermal and Acoustic Insulation and Cryogen Storage

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2011-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  7. Foam/aerogel composite materials for thermal and acoustic insulation and cryogen storage

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Weiser, Erik S. (Inventor); Sass, Jared P. (Inventor)

    2010-01-01

    The invention involves composite materials containing a polymer foam and an aerogel. The composite materials have improved thermal insulation ability, good acoustic insulation, and excellent physical mechanical properties. The composite materials can be used, for instance, for heat and acoustic insulation on aircraft, spacecraft, and maritime ships in place of currently used foam panels and other foam products. The materials of the invention can also be used in building construction with their combination of light weight, strength, elasticity, ability to be formed into desired shapes, and superior thermal and acoustic insulation power. The materials have also been found to have utility for storage of cryogens. A cryogenic liquid or gas, such as N.sub.2 or H.sub.2, adsorbs to the surfaces in aerogel particles. Thus, another embodiment of the invention provides a storage vessel for a cryogen.

  8. Micromechanics, fracture mechanics and gas permeability of composite laminates for cryogenic storage systems

    NASA Astrophysics Data System (ADS)

    Choi, Sukjoo

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to ½. When the transverse crack propagates to a stiffer layer normal to a ply-direction, the singularity becomes less than ½ and vice versa. Finite element analysis is performed to evaluate fracture toughness of a laminated beam subjected to the fracture load measured by the fracture experiment at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the variation of fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property which is independent to temperature changes. The experimental analysis is performed to investigate the

  9. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to

  10. GaAs cryogenic readout electronics for high impedance detector arrays for far-infrared and submillimeter wavelength region

    NASA Astrophysics Data System (ADS)

    Nagata, H.; Matsuo, H.; Hibi, Y.; Kobayashi, J.; Nakahashi, M.; Ikeda, H.; Fujiwara, M.

    2009-11-01

    We have been developing cryogenic readout integrate circuits (ROICs) for high impedance submillimeter and far-infrared detectors: Our ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. We designed ROICs consisting of analog readouts and digital circuits for 32-element SIS photon detectors fabricated in RIKEN. The analog readout is ac-coupled capacitive transimpedance amplifier (CTIA), which is composed of the two-stage amplifier. Some initial test results of the ac-coupled CTIA gave us the following performance; open loop gain of >740, power consumption ≈1.4 μW. The input referred noise is ≈4 μV/ √{Hz} at 1 Hz. These results suggest that low power and high sensitive cryogenic readout electronics are successfully developed for high impedance detectors.

  11. Thermal/Mechanical Response and Damage Growth in Polymeric Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2002-01-01

    In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 both before and after aging at cryogenic temperatures. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimen ply lay-ups, [0](sub 12), [90](sub 12), [+/-45](sub 3S), [+/-25](sub 3s) and [45,90(sub 3),-45,0(sub 3),-45,90(sub 3),45]. Specimens were preconditioned with one set of coupons being isothermally aged for 555 hours at -184 C in an unloaded state. Another set of corresponding coupons were mounted in constant displacement fixtures such that a constant uniaxial strain was applied to the specimens for 555 hours at -184 C. The measured lamina level properties indicated that cryogenic temperatures have an appreciable influence on behavior, and residual stress calculations based on lamination theory showed that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material due to aging at cryogenic temperatures.

  12. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  13. The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

    NASA Astrophysics Data System (ADS)

    Macculi, Claudio; Piro, Luigi; Cea, Donatella; Colasanti, Luca; Lotti, Simone; Natalucci, Lorenzo; Gatti, Flavio; Bagliani, Daniela; Biasotti, Michele; Corsini, Dario; Pizzigoni, Giulio; Torrioli, Guido; Barbera, Marco; Mineo, Teresa; Perinati, Emanuele

    2014-07-01

    "The Hot and Energetic Universe" is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called "Integral field spectroscopy", by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5' in diameter) with an angular resolution of 5" and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy in the 0.2-12 keV range. Some goals is the detection of faint and diffuse sources as Warm Hot Intergalactic Medium (WHIM) or galaxies outskirts. To reach its challenging scientific aims, it is necessary to shield efficiently the X-IFU instrument against background induced by external particles: the goal is 0.005 cts/cm^2/s/keV. This scientific requirement can be met by using an active Cryogenic AntiCoincidence (CryoAC) detector placed very close to X-IFU (~ 1 mm below). This is shown by our GEANT4 simulation of the expected background at L2 orbit. The CryoAC is a TES based detector as the X-IFU sharing with it thermal and mechanical interfaces, so increasing the Technology Readiness Level (TRL) of the payload. It is a 2x2 array of microcalorimeter detectors made by Silicon absorber (each of about 80 mm^2 and 300 μm thick) and sensed by an Ir TES. This choice shows that it is possible to operate such a detector in the so-called athermal regime which gives a response faster than the X-IFU (< 30 μs), and low energy threshold (above few keV). Our consortium has developed and tested several samples, some of these also featured by the presence of Al-fins to efficiently collect the athermal phonons, and increased x-ray absorber area (up to 1 cm^2). Here the results of deep test

  14. Evaluation of Microcracking in Two Carbon-Fiber/Epoxy-Matrix Composite Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Hodge, A. J.

    2001-01-01

    Two graphite/epoxy cryogenic pressure vessels were evaluated for microcracking. The X-33 LH2 tank lobe skins were extensively examined for microcracks. Specimens were removed from the inner skin of the X-33 tank for tensile testing. The data obtained from these tests were used to model expected microcrack density as a function of stress. Additionally, the laminate used in the Marshall Space Flight Center (MSFC) Composite Conformal, Cryogenic, Common Bulkhead, Aerogel-Insulated Tank (CBAT) was evaluated. Testing was performed in an attempt to predict potential microcracking during testing of the CBAT.

  15. The cryogenic bonding evaluation at the metallic-composite interface of a composite overwrapped pressure vessel with additional impact investigation

    NASA Astrophysics Data System (ADS)

    Clark, Eric A.

    A bonding evaluation that investigated the cryogenic tensile strength of several different adhesives/resins was performed. The test materials consisted of 606 aluminum test pieces adhered to a wet-wound graphite laminate in order to simulate the bond created at the liner-composite interface of an aluminum-lined composite overwrapped pressure vessel. It was found that for cryogenic applications, a flexible, low modulus resin system must be used. Additionally, the samples prepared with a thin layer of cured resin -- or prebond -- performed significantly better than those without. It was found that it is critical that the prebond surface must have sufficient surface roughness prior to the bonding application. Also, the aluminum test pieces that were prepared using a surface etchant slightly outperformed those that were prepared with a grit blast surface finish and performed significantly better than those that had been scored using sand paper to achieve the desired surface finish. An additional impact investigation studied the post impact tensile strength of composite rings in a cryogenic environment. The composite rings were filament wound with several combinations of graphite and aramid fibers and were prepared with different resin systems. The rings were subjected to varying levels of Charpy impact damage and then pulled to failure in tension. It was found that the addition of elastic aramid fibers with the carbon fibers mitigates the overall impact damage and drastically improves the post-impact strength of the structure in a cryogenic environment.

  16. Characterization of zero-bias microwave diode power detectors at cryogenic temperature.

    PubMed

    Giordano, Vincent; Fluhr, Christophe; Dubois, Benoît; Rubiola, Enrico

    2016-08-01

    We present the characterization of commercial tunnel diode low-level microwave power detectors at room and cryogenic temperatures. The sensitivity as well as the output voltage noise of the tunnel diodes is measured as functions of the applied microwave power. We highlight strong variations of the diode characteristics when the applied microwave power is higher than a few microwatts. For a diode operating at 4 K, the differential gain increases from 1000 V/W to about 4500 V/W when the power passes from -30 dBm to -20 dBm. The diode white noise floor is equivalent to a Noise Equivalent Power of 0.8 pW/Hz and 8 pW/Hz at 4 K and 300 K, respectively. Its flicker noise is equivalent to a relative amplitude noise power spectral density Sα(1 Hz) = - 120 dB/Hz at 4 K. Flicker noise is 10 dB higher at room temperature. PMID:27587142

  17. High-accuracy X-ray detector calibration based on cryogenic radiometry

    NASA Astrophysics Data System (ADS)

    Krumrey, M.; Cibik, L.; Müller, P.

    2010-06-01

    Cryogenic electrical substitution radiometers (ESRs) are absolute thermal detectors, based on the equivalence of electrical power and radiant power. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2 %, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity is used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3 %. For some silicon photodiodes, the photocurrent is not linear with the incident radiant power.

  18. A vertical accelerometer for cryogenics implementation in third-generation gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Frasconi, F.; Majorana, E.; Naticchioni, L.; Paoletti, F.; Perciballi, M.

    2014-01-01

    The design of third-generation gravitational-wave detectors requires dedicated sensors to perform very accurate measurements of the residual motion of mechanical components cooled down at cryogenic temperatures and accommodated close to the test masses. For this reason, we developed a vertical accelerometer prototype derived by the classical scheme widely used in Virgo seismic suspension control. Thermal contractions are the main concern when cooling down such a device and the calibration check at low temperature, in the absence of commercial sensors working in parallel, plays a crucial role. The accelerometer was conceived to be used at low frequencies (0.3-3 Hz) in a quite specific environment, where the noise produced by cryocoolers has to be suppressed. However, it can be easily operated over a wider frequency band, up to ˜100 Hz. The achieved sensitivity is ˜10-8 m s-2 below 3 Hz. During 2013, the device was successfully installed in the KAGRA cryostat, where it was tested at low temperatures down to 8 K and provided the measurement of vertical vibrational modes of the inner thermal shield.

  19. Numerical Modeling, Thermomechanical Testing, and NDE Procedures for Prediction of Microcracking Induced Permeability of Cryogenic Composites

    NASA Technical Reports Server (NTRS)

    Noh, Jae; Whitcomb, John; Oh, Bongtaek; Lagoudas, Dimitris; Maslov, Konstatin; Ganpatyre, Atul; Kinra, Vikram

    2003-01-01

    Reusable Space Vehicles will include light cryogenic composite fuel tanks that must not leak excessively even after multiple launches. Damage in cryogenic composite fuel tanks induced during manufacturing and advanced by thermomechanical cycling can accelerate leakage of the propellant. Whether the leakage exceeds tolerable levels depends on many factors, including pressure gradients, microcrack density, other damage such as delamination, connectivity of the cracks, residual stresses from manufacture, service-induced stresses from thermal and mechanical loads, and composite lay-up. Although it is critical to experimentally characterize permeability during various thermal and mechanical load histories, optimal design depends on having analytical models that can predict the effect of various parameters on performance. Our broad goal is to develop such models that are experimentally validated by destructive and non-destructive evaluation means.

  20. Evaluation of neutron background in cryogenic Germanium target for WIMP direct detection when using reactor neutrino detector as neutron veto

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Lan, Jieqin; Bai, Ying; Gao, Weiwei

    2016-09-01

    A direct WIMP (Weakly Interacting Massive Particle) detector with a neutron veto system is designed to better reject neutrons. An experimental configuration is studied in the present paper: 984 Ge modules are placed inside a reactor neutrino detector. In order to discriminate between nuclear and electron recoil, both ionization and heat signatures are measured using cryogenic germanium detectors in this detection. The neutrino detector is used as a neutron veto device. The neutron background for the experimental design has been estimated using the Geant4 simulation. The results show that the neutron background can decrease to O(0.01) events per year per tonne of high purity Germanium. We calculate the sensitivity to spin-independent WIMP-nucleon elastic scattering. An exposure of one tonne × year could reach a cross-section of about 2×10-11 pb.

  1. Carrier Transport and Related Effects in Detectors of the Cryogenic Dark Matter Search

    SciTech Connect

    Sundqvist, Kyle Michael

    2012-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring signals from deposited charge and the energy in nonequilibrium phonons created by particle interactions in intrinsic germanium crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier scattering is dominated by the spontaneous emission of Luke-Neganov phonons due to zeropoint fluctuations of the lattice ions. Drift fields are maintained at only a few V/cm, else these emitted phonons would dominate the phonons of the original interaction. The dominant systematic issues with CDMS detectors are due to the effects of space charge accumulation. It has been an open question how space charge accrues, and by which of several potential recombination and ionization processes. In this work, we have simulated the transport of electrons and holes in germanium under CDMS conditions. We have implemented both a traditional Monte Carlo technique based on carrier energy, followed later by a novel Monte Carlo algorithm with scattering rates defined and sampled by vector momentum. This vector-based method provides for a full anisotropic simulation of carrier transport including free-fight acceleration with an anisotropic mass, and anisotropic scattering rates. With knowledge of steady state carrier dynamics as a function of applied field, the results of our Monte Carlo simulations allow us to make a wide variety of predictions for energy dependent processes for both electrons and holes. Such processes include carrier capture by charged impurities, neutral impurities, static

  2. Carrier Transport and Related Effects in Detectors of the Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle Michael

    The Cryogenic Dark Matter Search (CDMS) is searching for weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring signals from deposited charge and the energy in non-equilibrium phonons created by particle interactions in intrinsic germanium crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier scattering is dominated by the spontaneous emission of Luke-Neganov phonons due to zero-point fluctuations of the lattice ions. Drift fields are maintained at only a few V/cm, else these emitted phonons would dominate the phonons of the original interaction. The dominant systematic issues with CDMS detectors are due to the effects of space charge accumulation. It has been an open question how space charge accrues, and by which of several potential recombination and ionization processes. In this work, we have simulated the transport of electrons and holes in germanium under CDMS conditions. We have implemented both a traditional Monte Carlo technique based on carrier energy, followed later by a novel Monte Carlo algorithm with scattering rates defined and sampled by vector momentum. This vector-based method provides for a full anisotropic simulation of carrier transport including free-flight acceleration with an anisotropic mass, and anisotropic scattering rates. With knowledge of steady state carrier dynamics as a function of applied field, the results of our Monte Carlo simulations allow us to make a wide variety of predictions for energy dependent processes for both electrons and holes. Such processes include carrier capture by charged

  3. Particle tracking at cryogenic temperatures: the Fast Annihilation Cryogenic Tracking (FACT) detector for the AEgIS antimatter gravity experiment

    NASA Astrophysics Data System (ADS)

    Storey, J.; Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A.; Bonomi, G.; Braunig, P.; Bremer, J.; Brusa, R.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Derking, H.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Ferragut, R.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Haider, S.; Hogan, S.; Holmestad, H.; Huse, T.; Jordan, E. J.; Kawada, J.; Kellerbauer, A.; Kimura, M.; Krasnicky, D.; Lagomarsino, V.; Lehner, S.; Magnani, A.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Riccardi, C.; Røhne, O. M.; Rosenberger, S.; Rotondi, A.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Spacek, M.; Strojek, I. M.; Subieta, M.; Testera, G.; Vaccarone, R.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.

    2015-02-01

    The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.

  4. Permeability and flammability study of composite sandwich structures for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures

  5. Mechanical properties of heterophase polymer blends of cryogenically fractured soy flour composite filler and poly(styrene-butadiene)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reinforcement effect of cryogenically fractured soy Flour composite filler in soft polymer was investigated in this study. Polymer composites were prepared by melt-mixing polymer and soy flour composite fillers in an internal mixer. Soy flour composite fillers were prepared by blending aqueous dis...

  6. Cryogenic deformation of high temperature superconductive composite structures

    DOEpatents

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  7. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism.

    PubMed

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-10

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes. PMID:18327285

  8. Hydrogen Permeability of Polymer Matrix Composites at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Gates, Thomas S

    2005-01-01

    This paper presents experimental methods and results of an ongoing study of the correlation between damage state and hydrogen gas permeability of laminated composite materials under mechanical strains and thermal loads. A specimen made from IM-7/977-2 composite material has been mechanically cycled at room temperature to induce microcrack damage. Crack density and tensile modulus were observed as functions of number of cycles. Damage development was found to occur most quickly in the off-axis plies near the outside of the laminate. Permeability measurements were made after 170,000 cycles and 430,000 cycles. Leak rate was found to depend on applied mechanical strain, crack density, and test temperature.

  9. Polymeric compositions and their method of manufacture. [forming filled polymer systems using cryogenics

    NASA Technical Reports Server (NTRS)

    Moser, B. G.; Landel, R. F. (Inventor)

    1972-01-01

    Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation.

  10. Thermal/Mechanical Durability of Polymer-Matrix Composites in Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Whitley, Karen S.; Grenoble, Ray W.; Bandorawalla, Tozer

    2003-01-01

    In order to increase the reliability of the next generation of space transportation systems, the mechanical behavior of polymeric-matrix composite (PMC) materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon fiber polymeric composite, IM7/PETI-5 as a function of temperature and aging. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different specimens ply lay-ups. Specimens were preconditioned with one set of coupons being isothermally aged for 576 hours at -184 C, in an unloaded state. Another set of corresponding coupons were mounted in constant strain fixtures such that a constant uniaxial strain was applied to the specimens for 576 hours at -184 C. A third set was mechanically cycled in tension at -184 C. The measured properties indicated that temperature, aging, and loading mode can all have significant influence on performance. Moreover, this influence is a strong function of laminate stacking sequence. Thermal-stress calculations based on lamination theory predicted that the transverse tensile ply stresses could be quite high for cryogenic test temperatures. Microscopic examination of the surface morphology showed evidence of degradation along the exposed edges of the material because of aging at cryogenic temperatures. ________________

  11. Lightweight thermally efficient composite feedlines for the space tug cryogenic propulsion system

    NASA Technical Reports Server (NTRS)

    Spond, D. E.

    1975-01-01

    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and nonvacuum jacketed concepts, and incorporate the latest technological developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts are evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. Design concepts were proved in a subscale test program. Detail design was completed on the most promising composite feedline concept and an all-metal feedline. Three full scale curved composite feedlines and one all-metal feedline assembly were fabricated and subjected to a test program representative of flight hardware qualification. The test results show that composite feedline technology is fully developed. Composite feedlines are ready for space vehicle application and offer significant reduction in weights over the conventional all-metal feedlines presently used.

  12. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  13. Cryogenic Silicon Detectors with Implanted Contacts for the Detection of Visible Photons Using the Neganov-Trofimov-Luke Effect

    NASA Astrophysics Data System (ADS)

    Defay, X.; Mondragon, E.; Willers, M.; Langenkämper, A.; Lanfranchi, J.-C.; Münster, A.; Zöller, A.; Wawoczny, S.; Steiger, H.; Hitzler, F.; Bruhn, C.; Schönert, S.; Potzel, W.; Chapellier, M.

    2016-07-01

    There is a common need in astroparticle experiments such as direct dark matter detection, double-beta decay without emission of neutrinos [0 ν β β ] and coherent neutrino nucleus scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Trofimov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Trofimov-Luke Effect light detector with an electric field configuration designed to improve the charge collection within the semiconductor.

  14. Development of a cryogenic GaAs AC-coupled CTIA readout for far-infrared and submillimeter detectors

    NASA Astrophysics Data System (ADS)

    Nagata, Hirohisa; Kobayashi, Jun; Matsuo, Hiroshi; Hibi, Yasunori; Nakahashi, Misato; Ikeda, Hirokazu; Fujiwara, Mikio

    2008-07-01

    We have been developing cryogenic readout integrated circuits (ROICs) for sensitive detectors at far-infrared and submillimeter wavelengths: The ROICs are constructed from SONY GaAs-JFETs, which have excellent performance even at less than 1 K. In addition, it is suitable device for ultra low background applications because of the extremely low gate leakage current. In the spring of 2008, we have designed and fabricated 4-ch AC-coupled capacitive transimpedance amplifiers and several basic digital circuits giving multiplex function for 32-element SIS photon detector array. The expected performance of the amplifier is as follows; open loop gain of >2000, power consumption <1.5 μW, and input referred noise ~ 1 μV/√Hz@1Hz. A summary of this 2008's experimental production and initial test results are presented in this paper.

  15. Cryogenic Silicon Detectors with Implanted Contacts for the Detection of Visible Photons Using the Neganov-Trofimov-Luke Effect

    NASA Astrophysics Data System (ADS)

    Defay, X.; Mondragon, E.; Willers, M.; Langenkämper, A.; Lanfranchi, J.-C.; Münster, A.; Zöller, A.; Wawoczny, S.; Steiger, H.; Hitzler, F.; Bruhn, C.; Schönert, S.; Potzel, W.; Chapellier, M.

    2016-02-01

    There is a common need in astroparticle experiments such as direct dark matter detection, double-beta decay without emission of neutrinos [0 ν β β ] and coherent neutrino nucleus scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Trofimov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Trofimov-Luke Effect light detector with an electric field configuration designed to improve the charge collection within the semiconductor.

  16. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  17. Methods and Piezoelectric Imbedded Sensors for Damage Detection in Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert; Ooi, Teng K.

    2004-01-01

    New methods for structural health monitoring are being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. A variety of damage detection methods and different Sensors are employed in the different composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency, impedance measurements, and pulse echoing techniques of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage. These results are furthermore compared with previous work using externally mounted sensors. Results and optimized methods from this work can then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2" generation reusable launch vehicle using composites as a structural element.

  18. Inductively coupled plasma etching of HgCdTe IRFPAs detectors at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Zhang, S.; Hu, X. N.; Ding, R. J.; He, L.

    2016-05-01

    To fabricate various advanced structures with HgCdTe material, the Inductively Coupled Plasma enhanced Reactive Ion Etching system is indispensable. However, due to low damage threshold and complicated behaviors of mercury in HgCdTe, the lattice damage and induced electrical conversion is very common. According to the diffusion model during etching period, the mercury interstitials, however, may not diffuse deep into the material at cryogenic temperature. In this report, ICP etching of HgCdTe at cryogenic temperature was implemented. The etching system with cryogenic assembly is provided by Oxford Instrument. The sample table was cooled down to 123K with liquid nitrogen. The mask of SiO2 with a contact layer of ZnS functioned well at this temperature. The selectivity and etching velocity maintained the same as reported in the etching of room temperature. Smooth and clean surfaces and profiles were achieved with an optimized recipe.

  19. Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics.

    PubMed

    Furuse, Hiroaki; Kawanaka, Junji; Miyanaga, Noriaki; Saiki, Taku; Imasaki, Kazuo; Fujita, Masayuki; Takeshita, Kenji; Ishii, Shinya; Izawa, Yasukazu

    2011-01-31

    We report on a novel amplifier configuration concept for a 10 kW laser system using a zig-zag optical path based on a cryogenic Yb:YAG Total-Reflection Active-Mirror (TRAM) laser. The laser material is a compact composite ceramic, in which three Yb:YAG TRAMs are combined in series to increase the output power. Output powers of up to 214 W with a slope efficiency of 63% have been demonstrated for CW operation, even at a quite low pump intensity of less than 170 W/cm2. Further scaling could achieve output powers of more than 10 kW. PMID:21369064

  20. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.

    PubMed

    Zapata, Luis E; Lin, Hua; Calendron, Anne-Laure; Cankaya, Huseyin; Hemmer, Michael; Reichert, Fabian; Huang, W Ronny; Granados, Eduardo; Hong, Kyung-Han; Kärtner, Franz X

    2015-06-01

    A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth. PMID:26030570

  1. Thermoelectric infrared detectors with improved mechanical stability for the composite infrared spectrometer (CIRS) far-infrared focal plane

    NASA Astrophysics Data System (ADS)

    Fettig, Rainer; Lakew, Brook; Brasunas, John C.; Crooke, Julie A.; Hakun, Claef F.; Orloff, Jon

    1998-09-01

    The Composite InfraRed Spectrometer (CIRS) instrument aboard the Cassini spacecraft en route to Saturn is a cryogenic spectrometer with far-infrared (FIR) and mid-infrared channels. The CIRS FIR focal plane, which covers the spectral range of 10 - 600 cm-1, consists of focusing optics and an output polarizer/analyzer that splits the output radiation according to polarization. The reflected and transmitted components are focused by concentrating cones onto thermoelectric detectors. These thermoelectric detectors consist of a gold black absorber on top of a gold foil that is welded to a thermoelement consisting of two semiconductor pyramids. After the detectors were integrated into the focal plane assembly and the CIRS instrument, the detectors proved to be extremely susceptible to two environmental survivability conditions: acoustics and airflow. Several changes were investigated to improve the integrity of the detectors including detector airflow geometry, structural changes to the detectors, and more intensive screening methods. The geometry of the air paths near the sensing elements was modified. Two structural modifications were implemented to improve the stability of the sensing elements. These were changes in the geometry of the thermoelectric pyramids by ion milling, and a change in the gold foil thickness. New screening methods, centrifuge and modulated force testing, were developed to select the most rugged detectors. Although several methods gave significant improvements to the detector's stability, the modification that allowed the detectors to meet the environmental survivability requirements was the change in the geometry of the air paths near the sensing elements.

  2. Experimental results on the thermal contact resistance of G-10CR composites at cryogenic temperatures

    SciTech Connect

    Phelan, P.E.; Mei, S.

    1999-07-01

    The composite material G-10CR, an epoxy resin laminate reinforced with glass filaments, is widely used in cryogenic structures, especially where thermal insulation is required. The thermal contact resistance, or its inverse, the thermal contact conductance, at a G-10CR/G-10CR interface has not previously been investigated at cryogenic temperatures. Consequently, an experimental apparatus was designed and constructed to permit measurements of the thermal contact conductance over a temperature range from 10 to 300 K, while enabling a controlled contact pressure to be applied. Such measurements for these composite materials indicated that the fiber orientation, plays a crucial role in determining the thermal contact conductance, which is greatest in the warp direction, where the glass fibers offer a high-thermal-conductance path for heat flow in parallel to the epoxy matrix. Typical results demonstrating the effect of fiber orientation on thermal contact conductance are displayed. The dimensionless contact conductance was shown to vary with dimensionless contact pressure with a power-law exponent near 0.28, in broad agreement with other data reported for graphite fiber composites.

  3. Ion detection with a cryogenic detector compared to a microchannel plate detector in MALDI TOF-MS

    SciTech Connect

    Benner, W H; Frank, M; Labov, S; Westmacott, G; Zhong, F

    1999-06-29

    Detection of molecular ions in mass spectrometry is typically accomplished by an ion colliding with a surface and then amplifying the emitted secondary electrons. It is well established that the secondary electron yield decreases as the mass of the primary ion increases [1-3], thus limiting the detection efficiency of large molecular ions. One way around this limitation is to use secondary ion detectors because the emission efficiency of secondary ions does not seem to decrease for increasing primary ion mass [1]. However this technique has limitations in timing resolution because of the mass spread of the emitted secondary ions. To find other ways around high mass detection limitations it is important to understand existing mechanisms of detection and to explore alternative detector types. To this end, a superconducting tunnel junction (STJ) detector was used in measuring the secondary electron emission efficiency, se, for a MCP detector. STJ detectors are energy sensitive and do not rely on secondary emission to produce a signal. Using a linear MALDI-TOF mass spectrometer, a STJ detector is mounted directly behind the hole in an annular MCP detector. This mounting arrangement allows ions to be detected simultaneously by each detector. The STJ detector sits in a liquid helium cryostat and is operated at 1.3 K to minimize thermal noise (see [4,5] for more details). Primary ions passing through the center hole of the MCP detector collide with the 0.04 mm{sup 2} STJ surface and generate a detector-pulse that is approximately proportional to the ion's total energy. A mask with a small hole in it was placed in front of the MCP detector so that the MCP and STJ detectors have approximately the same effective active areas. The ion beam diameter near the MCP is over 2.5 cm (measured with a MCP-phosphorus screen detector) and the axial separation of the two detectors is about 4 mm. Both detectors were operated in pulse-counting mode and set to have the same effective

  4. Tensile deformation mechanisms of an in-situ Ti-based metallic glass matrix composite at cryogenic temperature.

    PubMed

    Bai, J; Li, J S; Qiao, J W; Wang, J; Feng, R; Kou, H C; Liaw, P K

    2016-01-01

    Remarkable tensile ductility was first obtained in an in-situ Ti-based bulk metallic glass (BMG) composite at cryogenic temperature (77 K). The novel cryogenic tensile plasticity is related to the effective accommodation of ductile body-centered cubic dendrites at 77 K, characteristic of the prevailing slip bands and dislocations, as well as lattice disorder, which can effectively hinder the propagation of critical shear bands. The greatly increased yield strength of dendrites contributes to the high yield strength of composite at 77 K. A trend of stronger softening is observed at low temperature, and a criterion is proposed to understand the softening behavior. The current research could also provide a guidance to the promising cryogenic application of these new advanced BMG composites. PMID:27576728

  5. Tensile deformation mechanisms of an in-situ Ti-based metallic glass matrix composite at cryogenic temperature

    PubMed Central

    Bai, J.; Li, J. S.; Qiao, J. W.; Wang, J.; Feng, R.; Kou, H. C.; Liaw, P. K.

    2016-01-01

    Remarkable tensile ductility was first obtained in an in-situ Ti-based bulk metallic glass (BMG) composite at cryogenic temperature (77 K). The novel cryogenic tensile plasticity is related to the effective accommodation of ductile body-centered cubic dendrites at 77 K, characteristic of the prevailing slip bands and dislocations, as well as lattice disorder, which can effectively hinder the propagation of critical shear bands. The greatly increased yield strength of dendrites contributes to the high yield strength of composite at 77 K. A trend of stronger softening is observed at low temperature, and a criterion is proposed to understand the softening behavior. The current research could also provide a guidance to the promising cryogenic application of these new advanced BMG composites. PMID:27576728

  6. Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Tseng, Kevin

    2003-01-01

    One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.

  7. Thermal/Mechanical Response of a Polymer Matrix Composite at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2003-01-01

    In order for polymeric-matrix composites to be considered for use as structural materials in the next generation of space transportation systems, the mechanical behavior of these materials at cryogenic temperatures must be investigated. This paper presents experimental data on the residual mechanical properties of a carbon-fiber polymeric composite, IM7/PETI-5, both before and after aging. Both tension and compression modulus and strength were measured at room temperature, -196C, and -269 C on five different laminate configurations. One set of specimens was aged isothermally for 576 hours at -184 C in an unconstrained state. Another set of corresponding specimens was aged under constant uniaxial strain for 576 hours at -184 C. Based on the experimental data presented, it is shown that trends in stiffness and strength that result from changes in temperature are not always smooth and consistent. Moreover, it is shown that loading mode and direction are significant for both stiffness and strength, and aging at cryogenic temperature while under load can alter the mechanical properties of pristine, un-aged laminates made of IM7/PETI-5 material.

  8. Composite,Cryogenic, Conformal, Common Bulkhead, Aerogel-Insulated Tank (CBAT)

    NASA Technical Reports Server (NTRS)

    Roberts, J. K.; Kovach, M. P.; McMahon, W. M.; Finckenor, J. L.

    2001-01-01

    The objective of the Composite, Cryogenic, Conformal, Common Bulkhead, Aerogel-insulated Tank (CBAT) Program is to evaluate the potential for using various new technologies in next generation Reusable Launch Vehicles (RLVs) through design, fabrication, and testing of a subscale system. The new technologies include polymer matrix composites (PMCs), conformal propellant storage, common bulkhead packaging, and aerogel insulation. The National Aeronautics and Space Administration (NASA) and Thiokol Propulsion from Cordant Technologies are working together to develop a design and the processing methodologies which will allow integration of these technologies into a single structural component assembly. Such integration will significantly decrease subsystem weight and reduce shape, volume, and placement restrictions, thereby enhancing overall launch system performance. This paper/presentation focuses on the challenges related to materials and processes that were encountered and overcome during this program to date.

  9. Minimizing Superficial Thermal Injury Using Bilateral Cryogen Spray Cooling During Laser Reshaping of Composite Cartilage Grafts

    PubMed Central

    Chang, Cheng-Jen; Cheng, Sally M.H.; Chiu, Lynn L.; Wong, Brian J.F.; Ting, Keen

    2014-01-01

    Composite cartilage grafts were excised from New Zealand rabbit ears. Flat composite grafts (of cartilage and overlying skin graft on both surfaces) were obtained from each ear and cut into a rectangle measuring 50 mm by 25 mm (x by y) with an average thickness of approximately 1.3 mm (z), skin included. Specimens were manually deformed with a jig and maintained in this new position during laser illumination. The composite cartilage grafts were illuminated on the concave surface with an Nd:YAG laser (1,064 nm, 3 mm spot) at 10 W, 20 W, 30 W, 40 W, 50 W. Cryogen spray cooling (CSC) was applied to both exterior (convex) and interior (concave) surfaces of the tissue to reduce thermal injury to the grafts. CSC was delivered: (1) in controlled applications (cryogen released when surface reached 40°C, and (2) receiving only laser at above wattage, no CSC [representing the control group]. The specimens were maintained in a deformation for 15 minutes after illumination and serially examined for 14 days. The control group with no CSC caused injury to all specimens, ranging from minor to full thickness epidermal thermal injury. Although most levels of laser and CSC yielded a high degree of reshaping over an acute time period, after 14 days specimens exposed to 30 W, 40 W, 50 W retained shape better than those treated at 10 W and 20 W. The specimens exposed to 50 W with controlled CSC retained its new shape to the highest degree over all others, and thermal injury was minimal. In conclusion, combinations of laser and CSC parameters were effective and practical for the reshaping of composite cartilage grafts. Lasers Surg. PMID:18727025

  10. Cryogenic thermoelectric (QVD) detectors: Emerging technique for fast single-photon counting and non-dispersive energy characterization

    NASA Astrophysics Data System (ADS)

    Gulian, A.; Wood, K.; van Vechten, D.; Fritz, G.

    2004-09-01

    ''QVD'' detectors are based on thermoelectric heat-to-voltage (Q → V) conversion and digital (V → D) readout. We have devised and analyzed the performance of QVD detectors with several different sensor designs that enable use of high thermoelectric figure of merit samples, be they of thin film, bulk crystal, or whisker form. Our first QVD devices had the well-studied material Au-Fe as thin film sensors. More recently, we have confirmed the literature reports of substantially higher Seebeck coefficient at cryogenic temperatures in lanthanum (cerium) hexaborides. We have also investigated the kinetic properties of La(Ce)B6 crystals with different La-Ce ratios. Currently we are exploring prototype devices based on bulk single-crystalline sensors. These include a successfully tested candidate with a sharp-end hexaboride sensor and small-size bismuth absorber - a whisker prototype. In theory, QVD sensors are competitive with superconducting tunnel junction (STJ) and transition edge sensor (TES) devices in energy resolution ability. However, QVD sensors ought to be able to respond at very much faster rates than these competitors; the lanthanum-cerium hexaboride sensors are expected to reach rates of 100 MHz counting rates for UV/optical photons. In addition to traditional astrophysical applications, these detectors can be applied to the tasks of quantum computing and communication.

  11. An experiment to distinguish between diffusive and specular surfaces for thermal radiation in cryogenic gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kimura, Nobuhiro; Suzuki, Toshikazu; Yamamoto, Kazuhiro; Tokoku, Chihiro; Uchiyama, Takashi; Kuroda, Kazuaki

    2015-07-01

    In cryogenic gravitational-wave detectors, one of the most important issues is the fast cooling of their mirrors and keeping them cool during operation to reduce thermal noise. For this purpose, the correct estimation of thermal-radiation heat transfer through the pipe-shaped radiation shield is vital to reduce the heat load on the mirrors. However, the amount of radiation heat transfer strongly depends on whether the surfaces reflect radiation rays diffusely or specularly. Here, we propose an original experiment to distinguish between diffusive and specular surfaces. This experiment has clearly shown that the examined diamond-like carbon-coated surface is specular. This result emphasizes the importance of suppressing the specular reflection of radiation in the pipe-shaped shield.

  12. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    PubMed

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China. PMID:24517821

  13. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  14. Cryogenic Property Measurements on Icy Compositions with Application to Solar System Ices

    NASA Astrophysics Data System (ADS)

    Hays, C.; Castillo-Rogez, J.; Barmatz, M.; Mitchell, K.

    2007-08-01

    grains). Post-synthesis microstructural characterization will be performed using Cryogenic Optical Microscopy integrating a cross-polarizer to analyze thin sections, and a Cryogenic Scanning Electron Microscope. Mechanical property measurements on solid specimens will be performed between 80 and 270 K with a cryogenically cooled Instron measurement system. Compression measurements will be conducted as a function of temperature, strain-rate, microstructural length scale and orientation. The time dependent viscous response will be measured by performing creep measurements over the same range of temperatures. Using low-frequency cyclic loading, the dissipation factor will be measured at frequencies approaching satellite orbital frequencies. We will report preliminary mechanical property measurements of Antarctic glacial specimens at cryogenic temperatures. Fluids. In order to improve our understanding of effusive cryovolcanism, the rheological properties of liquid and mixed (slurry) materials will be measured between 80 and 300 K using a cryogenically cooled Brookfield rotational rheometer. We will report preliminary measurements of the temperature dependence of the viscous response for several compositions in the Methanol-Water System. Also, we will describe an experiment designed to measure methane wetting on water ice. These experiments will be carried out in order to explore the effects of the presence of methane lakes on Titan's surface. We are developing the capability to investigate more complex materials relevant to surface processes on Titan, including methane-ethane phase studies, hydrocarbons such as acetylene and benzene, as well as tholins and clathrates, which should exhibit a range of rheological and mechanical properties from fast-moving fluids to glacial creep. Acknowledgements: Most of the research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National

  15. The ITER pre-compression rings – A first in cryogenic composite technology

    SciTech Connect

    Rajainmaki, Hannu; Fanthome, John; Losasso, Marcello; Rodriguez, Jesus; Evans, David; Diaz, Victor

    2014-01-27

    The ITER Pre-Compression Rings represent one of the heaviest composite structures ever manufactured as a single piece and the largest - the outer diameter will be above 5.5 meters - intended for use in a cryogenic environment. With a cross section of 337 mm × 288 mm, each item will weigh more than 3,000 kg. A development program, based on filament wound and dry wound S2 glass unidirectional fibers, the latter processed by VARTM, was completed on one fifth scale rings, and these materials and techniques were shown to be satisfactory. The paper describes how a technology applied to build up primary structures of European launchers is being accommodated to produce the ITER Pre-Compression Rings, fulfilling its extremely challenging requirements. In addition, we will describe how the structural analysis is correlated with the test results of scaled down rings, as well as how the pre-compression rings’ manufacturing process will be qualified.

  16. Development of Low-Noise High Value Chromium Silicide Resistors for Cryogenic Detector Applications

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Babu, Sachi; Monroy, Carlos; Darren, C.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    Extremely high sensitivity detectors, such as silicon bolometers are required in many NASA missions for detection of photons from the x-ray to the far infrared regions. Typically, these detectors are cooled to well below the liquid helium (LHe) temperature (4.2 K) to achieve the maximum detection performance. As photoconductors, they are generally operated with a load resistor and a pre-set bias voltage, which is then coupled to the input gate of a source-follower Field Effect Transistor (FET) circuit. It is imperative that the detector system signal to noise performance be limited by the noise of the detector and not by the noise of the external components. The load resistor value is selected to optimize the detector performance. These two criteria tend to be contradictory in that these detectors require load resistors in the hundreds of megaohms, which leads to a higher Johnson noise. Additionally, the physical size of the resistor must be small for device integration as required by such missions as the NASA High Resolution Airborne Wide-Band Camera (HAWC) instrument and the Submillimeter High Angular Resolution Camera (SHARC) for the Caltech Submillimeter Observatory (CSO). We have designed, fabricated and characterized thin film resistors using a CrSi/TiW/Al metal system on optical quality quartz substrates. The resistor values range from 100 megaohms to over 650 megaohms and are Johnson noise limited at LHe temperatures. The resistor film is sputtered with a sheet resistance ranging from 300 ohms to 1600 ohms and the processing sequence developed for these devices allows for chemically fine tuning the sheet resistance in-situ. The wafer fabrication process was of sufficiently high yield (>80%) providing clusters of good resistors for integrated multiple detector channels, a very important feature in the assembly of these two instruments.

  17. Cryogenic-Compatible Winchester Connector Mount and Retaining System for Composite Tubes

    NASA Technical Reports Server (NTRS)

    Pontius, James; McGuffey, Douglas

    2011-01-01

    A connector retainer and mounting system has been designed to replace screw-mounting of Winchester connectors. Countersunk screws are normally used to secure connectors to structures, and to keep them from coming apart. These screws are normally put into threaded or through-holes in metallic structures. This unique retainer is designed such that integral posts keep the connector halves retained, and a groove permits a cable tie to be fastened around the retainer and composite tube, thus securing the connector to the structure. The system is compatible for use on cryogenic (and conventional) bonded composite tube assemblies. Screws and tapped/through-holes needed to retain and mount Winchester connectors cannot be used on blind-access composite tubes. This system allows for rapid installation, removal, low-molecular-outgassing materials, and particulate-free installation and removal. Installation and/or changes late in the integration, and test flow with limited access in a cleanroom environment are possible. No sanding or bonding is needed.

  18. Cryogenic detector development at LLNL: ultraviolet x-ray, gamma-ray and biomolecule spectroscopy

    SciTech Connect

    Labov, S.E.; Frank, M.; le Grand, J.B.

    1997-08-12

    We are developing low-temperature detectors for optical, ultraviolet, X-ray, and gamma-ray spectroscopy, and for biomolecular mass spectrometry. We present development work on these detectors and materials analysis and biomolecular mass spectrometry. We have measured thin-film Nb/Al/Al2O3/AlNb superconducting tunnel junction (STJ) X-ray detectors in the 0.2 to 1 keV band with a range of different junction sizes and aluminum film thicknesses. In one case, we have achieved the statistical limit to the energy resolution of 13 eV FWHM at 227 eV with an output count rate of 20,600 cts/s.

  19. Cryogenic Wide-Area Light Detectors for Neutrino and Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Di Domizio, S.; Bagni, R.; Battistelli, E. S.; Bellini, F.; Bucci, C.; Calvo, M.; Cardani, L.; Castellano, M. G.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; D'Addabbo, A.; de Bernardis, P.; Masi, S.; Pinci, D.; Vignati, M.

    2014-09-01

    Large-mass arrays of bolometers proved to be good detectors for neutrinoless double beta decay (0DBD) and dark matter searches. CUORE and LUCIFER are bolometric 0DBD experiments that will start to take data in 2015 at Laboratori Nazionali del Gran Sasso in Italy. The sensitivity of CUORE could be increased by removing the background due to particles, by detecting the small amount of Čerenkov light (100 eV) emitted by the s' signal and not by s. LUCIFER could be extended to detect also dark matter, provided that the background from / particles (100 eV of scintillation light) is discriminated from nuclear recoils of about 10 keV energy (no light). We have recently started to develop light detectors for CUORE, LUCIFER and similar bolometric experiments. The aim is to obtain detectors with an active area of (the face of bolometric crystals), operating at 10 mK, and with an energy resolution at the baseline below 20 eV RMS. We have chosen to develop phonon-mediated detectors with KID sensors. We are currently testing the first prototypes.

  20. Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes.

    PubMed

    Enya, Keigo; Nakagawa, Takao; Kaneda, Hidehiro; Onaka, Takashi; Ozaki, Tuyoshi; Kume, Masami

    2007-04-10

    We report on the microscopic surface structure of carbon-fiber-reinforced silicon carbide (C/SiC) composite mirrors that have been improved for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and other cooled telescopes. The C/SiC composite consists of carbon fiber, silicon carbide, and residual silicon. Specific microscopic structures are found on the surface of the bare C/SiC mirrors after polishing. These structures are considered to be caused by the different hardness of those materials. The roughness obtained for the bare mirrors is 20 nm rms for flat surfaces and 100 nm rms for curved surfaces. It was confirmed that a SiSiC slurry coating is effective in reducing the roughness to 2 nm rms. The scattering properties of the mirrors were measured at room temperature and also at 95 K. No significant change was found in the scattering properties through cooling, which suggests that the microscopic surface structure is stable with changes in temperature down to cryogenic values. The C/SiC mirror with the SiSiC slurry coating is a promising candidate for the SPICA telescope. PMID:17384720

  1. An investigation into the impact of cryogenic environment on mechanical stresses in FRP composites

    NASA Astrophysics Data System (ADS)

    Fifo, O.; Basu, B.

    2015-07-01

    Fibre reinforced polymer (FRP) composites are fast becoming a highly utilised engineering material for high performance applications due to their light weight and high strength. Carbon fibre and other high strength fibres are commonly used in design of aerospace structures, wind turbine blades, etc. and potentially for propellant tanks of launch vehicles. For the aforementioned fields of application, stability of the material is essential over a wide range of temperature particularly for structures in hostile environments. Many studies have been conducted, experimentally, over the last decade to investigate the mechanical behaviour of FRP materials at varying subzero temperature. Likewise, tests on aging and cycling effect (room to low temperature) on the mechanical response of FRP have been reported. However, a relatively lesser focused area has been the mechanical behaviour of FRP composites under cryogenic environment. This article reports a finite element method of investigating the changes in the mechanical characteristics of an FRP material when temperature based analysis falls below zero. The simulated tests are carried out using a finite element package with close material properties used in the cited literatures. Tensile test was conducted and the results indicate that the mechanical responses agree with those reported in the literature sited.

  2. Canister cryogenic system for cooling germanium semiconductor detectors in borehole and marine probes

    USGS Publications Warehouse

    Boynton, G.R.

    1975-01-01

    High resolution intrinsic and lithium-drifted germanium gamma-ray detectors operate at about 77-90 K. A cryostat for borehole and marine applications has been designed that makes use of prefrozen propane canisters. Uses of such canisters simplifies cryostat construction, and the rapid exchange of canisters greatly reduces the time required to restore the detector to full holding-time capability and enhances the safety of a field operation where high-intensity 252Cf or other isotopic sources are used. A holding time of 6 h at 86 K was achieved in the laboratory in a simulated borehole probe in which a canister 3.7 cm diameter by 57 cm long was used. Longer holding times can be achieved by larger volume canisters in marine probes. ?? 1975.

  3. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the

  4. Optimizing the design and analysis of cryogenic semiconductor dark matter detectors for maximum sensitivity

    SciTech Connect

    Pyle, Matt Christopher

    2012-01-01

    In this thesis, we illustrate how the complex E- field geometry produced by interdigitated electrodes at alternating voltage biases naturally encodes 3D fiducial volume information into the charge and phonon signals and thus is a natural geometry for our next generation dark matter detectors. Secondly, we will study in depth the physics of import to our devices including transition edge sensor dynamics, quasi- particle dynamics in our Al collection fins, and phonon physics in the crystal itself so that we can both understand the performance of our previous CDMS II device as well as optimize the design of our future devices. Of interest to the broader physics community is the derivation of the ideal athermal phonon detector resolution and it's T3 c scaling behavior which suggests that the athermal phonon detector technology developed by CDMS could also be used to discover coherent neutrino scattering and search for non-standard neutrino interaction and sterile neutrinos. These proposed resolution optimized devices can also be used in searches for exotic MeV-GeV dark matter as well as novel background free searches for 8GeV light WIMPs.

  5. Damping characteristics of composite petal structure for an 8-m diameter telescope at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Carrier, Alain C.; Romney, Bruce; Mihara, Roger

    2004-10-01

    Concerns have been raised in the engineering community about the potentially extremely low levels of structural damping in structures at cryogenic temperatures. Experiments conducted on material coupons have shown that material damping at those temperatures can be orders of magnitude lower than that at room temperature. Whether structural damping in built-up structures at those temperatures can be that low is unknown, but if it was, the telescope resonances could exacerbate microdynamics originating from the structure itself and residual vibrations propagating from the instrument module to the telescope. Since the effect of those vibrations might not be compensated for optically, the observatory might not meet its wavefront and jitter error budgets. The structural damping characteristics of built-up structures in the micrometer to nanometer regime and at cryogenic temperatures are to a large extent unknown. Characterization on structures traceable to future flight designs is therefore necessary to develop an understanding of these characteristics, as well as devise means to mitigate those effects. To address those concerns and to reduce the technical risks in these areas, Lockheed Martin tested the dynamics characteristics of its Single Petal Testbed (SPT) flight-like petal structure at full-scale, from room temperature down to -175C (98K). The SPT was designed by the Lockheed Martin Advanced Technology Center and fabricated by Programmed Composites Inc. Significant changes in dynamics characteristics with temperature were observed, but primarily in mode shapes as opposed to modal frequencies and modal dampings. The modal damping remained fairly constant throughout the temperature range and, to the extent changes could be detected, the trends were more towards an increase than a decrease in damping at 98K, which was highly unexpected. A detailed analysis of these results extracted from dynamics tests conducted during the cool down portion of the last thermal cycle

  6. A cryogenic monitor system for the Liquid Argon Calorimeter in the SLD detector

    SciTech Connect

    Fox, M.J.; Fox, J.D.

    1988-10-01

    This paper describes the monitoring electronics system design for the Liquid Argon Calorimeter (LAC) portion of the SLD detector. This system measures temperatures and liquid levels inside the LAC cryostat and transfers the results over a fiber-optic serial link to an external monitoring computer. System requirements, unique design constraints, and detailed analog, digital and software designs are presented. Fault tolerance and the requirement for a single design to work in several different operating environments are discussed. 4 refs., 3 figs., 1 tab.

  7. High-precision CTE measurement of hybrid C/SiC composite for cryogenic space telescopes

    NASA Astrophysics Data System (ADS)

    Enya, K.; Yamada, N.; Imai, T.; Tange, Y.; Kaneda, H.; Katayama, H.; Kotani, M.; Maruyama, K.; Naitoh, M.; Nakagawa, T.; Onaka, T.; Suganuma, M.; Ozaki, T.; Kume, M.; Krödel, M. R.

    2012-01-01

    This paper presents highly precise measurements of thermal expansion of a "hybrid" carbon-fiber reinforced silicon carbide composite, HB-Cesic® - a trademark of ECM, in the temperature region of ˜310-10 K. Whilst C/SiC composites have been considered to be promising for the mirrors and other structures of space-borne cryogenic telescopes, the anisotropic thermal expansion has been a potential disadvantage of this material. HB-Cesic® is a newly developed composite using a mixture of different types of chopped, short carbon-fiber, in which one of the important aims of the development was to reduce the anisotropy. The measurements indicate that the anisotropy was much reduced down to 4% as a result of hybridization. The thermal expansion data obtained are presented as functions of temperature using eighth-order polynomials separately for the horizontal (XY-) and vertical (Z-) directions of the fabrication process. The average CTEs and their dispersion (1σ) in the range 293-10 K derived from the data for the XY- and Z-directions were 0.805 ± 0.003 × 10-6 K-1 and 0.837 ± 0.001 × 10-6 K-1, respectively. The absolute accuracy and the reproducibility of the present measurements are suggested to be better than 0.01 × 10-6 K-1 and 0.001 × 10-6 K-1, respectively. The residual anisotropy of the thermal expansion was consistent with our previous speculation regarding carbon-fiber, in which the residual anisotropy tended to lie mainly in the horizontal plane.

  8. Cryogenic shutter

    NASA Astrophysics Data System (ADS)

    Barney, Richard D.; Magner, Thomas J.

    1992-07-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  9. Mechanical performance of graphite and aramid-reinforced composites at cryogenic temperatures

    SciTech Connect

    Kasen, M.B.

    1982-01-01

    The low thermal conductivity of graphite-reinforced epoxy laminates in the 77-4 K range combined with high strength and modulus suggests that it is possible to fabricate thermal isolation supports more efficient than those which use metals. This study details the effect of cryogenic temperatures on two types of graphite-reinforced epoxy-matrix laminates. One is fabricated with fibers of intermediate strength and intermediate modulus; the other is fabricated with a fiber of lower strength but high modulus. Results of tests on a composite laminate reinforced with an aramid fiber are also presented. The study evaluates the uniaxial longitudinal strength and moduli (6 ply), the uniaxial transverse strength and moduli (15 ply), uniaxial longitudinal and transeverse compressive strength (30 ply), and in-plane shear strength and moduli (45 degrees, 10 ply). Tables and graphs are included. The study confirms that off-the-shelf laminates developed for room-temperature service are viable engineering materials for use at 4 K.

  10. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy

    PubMed Central

    2016-01-01

    The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets—all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere. PMID:26878061

  11. Cryogenic EBSD reveals structure of directionally solidified ice–polymer composite

    SciTech Connect

    Donius, Amalie E.; Obbard, Rachel W.; Burger, Joan N.; Hunger, Philipp M.; Baker, Ian; Doherty, Roger D.; Wegst, Ulrike G.K.

    2014-07-01

    Despite considerable research efforts on directionally solidified or freeze-cast materials in recent years, little fundamental knowledge has been gained that links model with experiment. In this contribution, the cryogenic characterization of directionally solidified polymer solutions illustrates, how powerful cryo-scanning electron microscopy combined with electron backscatter diffraction is for the structural characterization of ice–polymer composite materials. Under controlled sublimation, the freeze-cast polymer scaffold structure is revealed and imaged with secondary electrons. Electron backscatter diffraction fabric analysis shows that the ice crystals, which template the polymer scaffold and create the lamellar structure, have a-axes oriented parallel to the direction of solidification and the c-axes perpendicular to it. These results indicate the great potential of both cryo-scanning electron microscopy and cryo-electron backscatter diffraction in gaining fundamental knowledge of structure–property–processing correlations. - Highlights: • Cryo-SEM of freeze-cast polymer solution reveals an ice-templated structure. • Cryo-EBSD reveals the ice crystal a-axis to parallel the solidification direction. • The honeycomb-like polymer phase favors columnar ridges only on one side. • Combining cryo-SEM with EBSD links solidification theory with experiment.

  12. A Search for Low-Mass Dark Matter with the Cryogenic Dark Matter Search and the Development of Highly Multiplexed Phonon-Mediated Particle Detectors

    NASA Astrophysics Data System (ADS)

    Moore, David Craig

    2012-06-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ˜10 GeV and spin-independent scattering cross sections of 10--41--10 --40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ˜10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲ 12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5--9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳ 1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while maintaining

  13. A search for low-mass dark matter with the cryogenic dark matter search and the development of highly multiplexed phonon-mediated particle detectors

    SciTech Connect

    Moore, David Craig

    2012-01-01

    A wide variety of astrophysical observations indicate that approximately 85% of the matter in the universe is nonbaryonic and nonluminous. Understanding the nature of this "dark matter" is one of the most important outstanding questions in cosmology. Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter since they would be thermally produced in the early universe in the correct abundance to account for the observed relic density of dark matter. If WIMPs account for the dark matter, then rare interactions from relic WIMPs should be observable in terrestrial detectors. Recently, unexplained excess events in the DAMA/LIBRA, CoGeNT, and CRESST-II experiments have been interpreted as evidence of scattering from WIMPs with masses ~10 GeV and spin-independent scattering cross sections of 10-41-10-40 cm2. The Cryogenic Dark Matter Search (CDMS II) attempts to identify WIMP interactions using an array of cryogenic germanium and silicon particle detectors located at the Soudan Underground Laboratory in northern Minnesota. In this dissertation, data taken by CDMS II are reanalyzed using a 2 keV recoil energy threshold to increase the sensitivity to WIMPs with masses ~10 GeV. These data disfavor an explanation for the DAMA/LIBRA, CoGeNT, and CRESST-II results in terms of spin-independent elastic scattering of WIMPs with masses ≲12 GeV, under standard assumptions. At the time of publication, they provided the strongest constraints on spin-independent elastic scattering from 5-9 GeV, ruling out previously unexplored parameter space. To detect WIMPs or exclude the remaining parameter space favored by the most popular models will ultimately require detectors with target masses ≳1 ton, requiring an increase in mass by more than two orders of magnitude over CDMS II. For cryogenic detectors such as CDMS, scaling to such large target masses will require individual detector elements to be fabricated more quickly and cheaply, while

  14. Neganov-Luke amplified cryogenic light detectors for the background discrimination in neutrinoless double beta decay search with TeO2 bolometers

    NASA Astrophysics Data System (ADS)

    Willers, M.; Feilitzsch, F. v.; Gütlein, A.; Münster, A.; Lanfranchi, J.-C.; Oberauer, L.; Potzel, W.; Roth, S.; Schönert, S.; Sivers, M. v.; Wawoczny, S.; Zöller, A.; Giuliani, A.

    2015-03-01

    We demonstrate that Neganov-Luke amplified cryogenic light detectors with Transition Edge Sensor read-out can be applied for the background suppression in cryogenic experiments searching for the neutrinoless double beta decay of 130Te with TeO2 based bolometers. Electron and gamma induced events can be discriminated from α events by detecting the Cherenkov light produced by the β particles emitted in the decay. We use the Cherenkov light produced by events in the full energy peak of 208Tl and by events from a 147Sm source to show that at the Q-value of the neutrinoless double beta decay of 130Te (Qβ β = 2.53 MeV), a separation of e-/γ events from α events can be achieved on an event-by-event basis with practically no reduction in signal acceptance.

  15. Cryogenic Interlaminar Fracture Properties of Woven Glass/Epoxy Composite Laminates Under Mixed-Mode I/III Loading Conditions

    NASA Astrophysics Data System (ADS)

    Miura, Masaya; Shindo, Yasuhide; Takeda, Tomo; Narita, Fumio

    2013-08-01

    We characterize the combined Mode I and Mode III delamination fracture behavior of woven glass fiber reinforced polymer (GFRP) composite laminates at cryogenic temperatures. The eight-point bending plate (8PBP) tests were conducted at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K) using a new test fixture. A three-dimensional finite element analysis was also performed to calculate the energy release rate distribution along the delamination front, and the delamination fracture toughnesses were evaluated for various mixed-mode I/III ratios. Furthermore, the microscopic examinations of the fracture surfaces were carried out with scanning electron microscopy (SEM), and the mixed-mode I/III delamination fracture mechanisms in the woven GFRP laminates at cryogenic temperatures were assessed. The fracture properties were then correlated with the observed characteristics.

  16. Cryogenic Infrared Reflectance Spectra of Organic Ices and Their Relevance to the Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Curchin, John; Clark, R. N.; Hoefen, T. M.

    2006-09-01

    In order to properly interpret reflectance spectra of Titan's surface, laboratory spectra of candidate materials for comparative analysis is needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics at cryotemperatures at visible to near infrared wavelengths. Measurement of reflectance is required for characterizing weak features not seen in transmittance. Such features may be important in remote sensing of planetary surfaces. The USGS Spectroscopy Laboratory uses Nicolet FT-IR and ASD field spectrometers in combination with cryogenic chambers to acquire reflectance spectra of organic ices at approximately 80-90 ºK in a wavelength range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of major organic molecules including those with hydrogen-carbon, carbon-carbon (single, double and triple bonds), carbon-oxygen, oxygen-hydrogen, carbon-nitrogen, and nitrogen-hydrogen bonds. Because most organic compounds belong to families with similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. Only by measuring spectral reflectance of the pure laboratory ices from the visible through the near and mid-infrared can absorption bands unique to each be observed, cataloged and compared to planetary reflectance data. We present here spectra of organic ices belonging to eight families, the alkanes, cycloalkanes, alkenes, alkynes, aromatics, nitriles, amines, and cyanides. Many of these compounds are predicted to coat the surface of Titan and indeed, a number of atmospheric windows, particularly at 5 microns, have allowed their identification with VIMS (Clark et al., DPS 2006, this volume). The spectral properties of these materials have applications to other solar system surfaces and remote sensing of terrestrial

  17. THERMAL-MECHANICAL RESPONSE OF CRACKED SATIN WEAVE CFRP COMPOSITES AT CRYOGENIC TEMPERATURES

    SciTech Connect

    Watanabe, S.; Shindo, Y.; Narita, F.; Takeda, T.

    2008-03-03

    This paper examines the thermal-mechanical response of satin weave carbon fiber reinforced polymer (CFRP) laminates with internal and/or edge cracks subjected to uniaxial tension load at cryogenic temperatures. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. Two-dimentional generalized plane strain finite element models are developed to study the effects of residual thermal stresses and cracks on the mechanical behavior of CFRP woven laminates. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.

  18. Thermal-Mechanical Response of Cracked Satin Weave CFRP Composites at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Shindo, Y.; Narita, F.; Takeda, T.

    2008-03-01

    This paper examines the thermal-mechanical response of satin weave carbon fiber reinforced polymer (CFRP) laminates with internal and/or edge cracks subjected to uniaxial tension load at cryogenic temperatures. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. Two-dimentional generalized plane strain finite element models are developed to study the effects of residual thermal stresses and cracks on the mechanical behavior of CFRP woven laminates. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.

  19. Distributed sensing of Composite Over-wrapped Pressure Vessel using Fiber-Bragg Gratings at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2005-01-01

    Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.

  20. Distributed Sensing of Composite Over-wrapped Pressure Vessel Using Fiber-Bragg Gratings at Ambient and Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Grant, Joseph

    2004-01-01

    Fiber Bragg gratings are use to monitor the structural properties of composite pressure vessels. These gratings optically inscribed into the core of a single mode fiber are used as a tool to monitor the stress strain relation in laminate structure. The fiber Bragg sensors are both embedded within the composite laminates and bonded to the surface of the vessel with varying orientations with respect to the carbon fiber in the epoxy matrix. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 2800 psi. This is done at both ambient and cryogenic temperatures using water and liquid nitrogen. The recorded response is compared with the response from conventional strain gauge also present on the vessel. Additionally, several vessels were tested that had been damaged to simulate different type of events, such as cut tow, delimitation and impact damage.

  1. Voltage-Assisted Calorimetric Detection of Gamma Interactions in a Prototype Cryogenic Ge Detector of the EDELWEISS Collaboration for Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Broniatowski, A.; Piro, M.-C.; Marnieros, S.; Bergé, L.; Dumoulin, L.; Chapellier, M.

    2016-07-01

    As a part of an R&D program to improve the sensitivity of its detectors to low-mass (<10 GeV) weakly interacting massive particles, the Edelweiss dark matter collaboration is developing cryogenic ionization-and-heat coplanar grid germanium detectors, operated in a high-bias mode where advantage is taken of the voltage-assisted amplification of the ionization signals for enhanced sensitivity to low-energy (detector, capable of sustaining collection voltages up to 180 V with a corresponding gain of 60 in the heat measurement channel for electron recoil interactions. Event populations are analyzed based on ionization and heat data and on computer modeling of the detector signals, and a tentative interpretation of the results for the heat resolution is presented, involving athermal ballistic phonon losses in the device with consequent fluctuations in the thermometer response to the energy deposit of a particle.

  2. Voltage-Assisted Calorimetric Detection of Gamma Interactions in a Prototype Cryogenic Ge Detector of the EDELWEISS Collaboration for Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Broniatowski, A.; Piro, M.-C.; Marnieros, S.; Bergé, L.; Dumoulin, L.; Chapellier, M.

    2016-07-01

    As a part of an R&D program to improve the sensitivity of its detectors to low-mass (<10 GeV) weakly interacting massive particles, the Edelweiss dark matter collaboration is developing cryogenic ionization-and-heat coplanar grid germanium detectors, operated in a high-bias mode where advantage is taken of the voltage-assisted amplification of the ionization signals for enhanced sensitivity to low-energy (detector, capable of sustaining collection voltages up to 180 V with a corresponding gain of 60 in the heat measurement channel for electron recoil interactions. Event populations are analyzed based on ionization and heat data and on computer modeling of the detector signals, and a tentative interpretation of the results for the heat resolution is presented, involving athermal ballistic phonon losses in the device with consequent fluctuations in the thermometer response to the energy deposit of a particle.

  3. Voltage-Assisted Calorimetric Detection of Gamma Interactions in a Prototype Cryogenic Ge Detector of the EDELWEISS Collaboration for Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Broniatowski, A.; Piro, M.-C.; Marnieros, S.; Bergé, L.; Dumoulin, L.; Chapellier, M.

    2016-02-01

    As a part of an R&D program to improve the sensitivity of its detectors to low-mass (< 10 GeV) weakly interacting massive particles, the Edelweiss dark matter collaboration is developing cryogenic ionization-and-heat coplanar grid germanium detectors, operated in a high-bias mode where advantage is taken of the voltage-assisted amplification of the ionization signals for enhanced sensitivity to low-energy (< a few keV) interactions. First results of \\upgamma calibration experiments are presented for a 200 g prototype detector, capable of sustaining collection voltages up to 180 V with a corresponding gain of 60 in the heat measurement channel for electron recoil interactions. Event populations are analyzed based on ionization and heat data and on computer modeling of the detector signals, and a tentative interpretation of the results for the heat resolution is presented, involving athermal ballistic phonon losses in the device with consequent fluctuations in the thermometer response to the energy deposit of a particle.

  4. Composition of a Cryogenic Sea Studied by the Titan Mare Explorer

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Stofan, E.; Trainer, M. G.

    2012-04-01

    The Titan Mare Explorer (TiME) mission that proposes to operate from the surface of Ligeia Mare (Fig. 1) is one of the finalists in the latest Discovery small mission competition. One of the TiME instruments is a Neutral Mass Spectrometer that would sample gas from a volatilized sample of this cryogenic sea. Although this Titan sea may be principally ethane (Cordier et al., 2009), the mixing ratios of methane, ethane, propane, and more complex hydrocarbons and nitriles in Ligeia Mare is unknown and their measurement is one of the motivations for this mission. We will describe the approach to securing these measurements including methods developed and tested to robustly sample the cryogenic fluid. Figure 1. Ligeia Mare (credit NASA/JPL). References: Cordier, D., Mousis, O., Lunine, J.I., Lavvas, P., and Vuiton, V. The Astrophysical Journal 707 (2009) L128.

  5. High Pressure Composite Overwrapped Pressure Vessel (COPV) Development Tests at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle

    2008-01-01

    Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.

  6. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited)

    SciTech Connect

    Kyrala, G. A.; Kline, J. L.; Dixit, S.; Glenzer, S.; Kalantar, D.; Bradley, D.; Izumi, N.; Meezan, N.; Landen, O. L.; Callahan, D.; Weber, S. V.; Holder, J. P.; Glenn, S.; Edwards, M. J.; Bell, P.; Kimbrough, J.; Koch, J.; Prasad, R.; Suter, L.; Kilkenny, J.

    2010-10-15

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 {mu}m and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  7. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    PubMed

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules. PMID:21034014

  8. Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi

    2006-01-01

    Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

  9. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  10. Metallic Permeation Barrier for Cryogenic Composite Propellant Storage and Transfer Applications

    NASA Astrophysics Data System (ADS)

    Drescher, O.; Njuhovic, E.; Glode, S.; Persson, J.; Altstadt, V.

    2012-07-01

    Mass savings for cryogenic transfer and storage applications using fibre-reinforced polymers (FRP) is a key approach at MAGNA STEYR’s Aerospace division. The permeable nature of FRP materials requires an impermeable metallic barrier; its development forms the herein presented project. The described results are the outcome of a comprehensive two-dimensional (2-D) sample test programme defining the essential sub-processes of the metallisation before entering the three-dimensional (3- D) component test and furthermore the demonstrator verification phase.

  11. FaceSheet Push-off Tests to Determine Composite Sandwich Toughness at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Herring, Helen M.

    2001-01-01

    A new novel test method, associated analysis, and experimental procedures are developed to investigate the toughness of the facesheet-to-core interface of a sandwich material at cryogenic temperatures. The test method is designed to simulate the failure mode associated with facesheet debonding from high levels of gas pressure in the sandwich core. The effects of specimen orientation are considered, and the results of toughness measurements are presented. Comparisons are made between room and liquid nitrogen (-196 C) test temperatures. It was determined that the test method is insensitive to specimen facesheet orientation and strain energy release rate increases with a decrease in the test temperature.

  12. Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.

  13. Cryogenic Optical Performance of the Cassini Composite Infrared Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope's image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the image performance requirement of 80% encircled energy within a 432 microns diameter circle.

  14. Cryogenic (70K) measurement of an all-composite 2-meter diameter mirror

    NASA Technical Reports Server (NTRS)

    Catanzaro, B.; Connell, S.; Mimovich, M.; Backovsky, S.; Williams, G.; Thomas, James A.; Barber, D.; Johnston, R.; Hylton, J.; Dodson, K.; Cohen, E.

    2001-01-01

    The Herschel Space observatory (formerly known as FIRST) consists of a 3.5 m space telescope. In order to develop lightweight telescope technology suitable for this mission, COI designed and fabricated aspherical, f/1 2 m aperture prototype primary mirror using solely carbon fiber reinforced polypmer (CFR) materials. To assess the performance of this technology, optical metrology of the mirror surface was performed from ambient to an intended operational temperature for IR-telescopes of 70K. Testing was performed horizontally in a cryogenic vacuum chamber at Arnold Engineering Development Center (AEDC), Tennessee.

  15. The Cryogenic AntiCoincidence Detector for the ATHENA X-IFU: Design Aspects by Geant4 Simulation and Preliminary Characterization of the New Single Pixel

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Orlando, A.; Torrioli, G.

    2016-01-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015-2025, scheduled to be launched on 2028 at L2 orbit. One of the two planned focal plane instruments is the X-ray Integral Field Unit (X-IFU), which will be able to perform simultaneous high-grade energy spectroscopy and imaging over the 5 arcmin FoV by means of a kilo-pixel array of transition-edge sensor (TES) microcalorimeters, coupled to a high-quality X-ray optics. The X-IFU sensitivity is degraded by the particle background, induced by primary protons of both solar and cosmic rays' origin and secondary electrons. A Cryogenic AntiCoincidence (CryoAC) TES-based detector, located < 1 mm below the TES array, will allow the mission to reach the background level that enables its scientific goals. The CryoAC is a 4-pixel detector made of Silicon absorbers sensed by Iridium TESs. We currently achieve a TRL = 3-4 at the single-pixel level. We have designed and developed two further prototypes in order to reach TRL = 4. The design of the CryoAC has been also optimized using the Geant4 simulation tool. Here we will describe some results from the Geant4 simulations performed to optimize the design and preliminary test results from the first of the two detectors, 1 cm2 area, made of 65 Ir TESs.

  16. The Cryogenic AntiCoincidence Detector for the ATHENA X-IFU: Design Aspects by Geant4 Simulation and Preliminary Characterization of the New Single Pixel

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Argan, A.; D'Andrea, M.; Lotti, S.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Orlando, A.; Torrioli, G.

    2016-08-01

    The ATHENA observatory is the second large-class ESA mission, in the context of the Cosmic Vision 2015-2025, scheduled to be launched on 2028 at L2 orbit. One of the two planned focal plane instruments is the X-ray Integral Field Unit (X-IFU), which will be able to perform simultaneous high-grade energy spectroscopy and imaging over the 5 arcmin FoV by means of a kilo-pixel array of transition-edge sensor (TES) microcalorimeters, coupled to a high-quality X-ray optics. The X-IFU sensitivity is degraded by the particle background, induced by primary protons of both solar and cosmic rays' origin and secondary electrons. A Cryogenic AntiCoincidence (CryoAC) TES-based detector, located <1 mm below the TES array, will allow the mission to reach the background level that enables its scientific goals. The CryoAC is a 4-pixel detector made of Silicon absorbers sensed by Iridium TESs. We currently achieve a TRL = 3-4 at the single-pixel level. We have designed and developed two further prototypes in order to reach TRL = 4. The design of the CryoAC has been also optimized using the Geant4 simulation tool. Here we will describe some results from the Geant4 simulations performed to optimize the design and preliminary test results from the first of the two detectors, 1 cm2 area, made of 65 Ir TESs.

  17. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  18. Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

    SciTech Connect

    Driscoll, Donald D.; /Case Western Reserve U.

    2004-01-01

    The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS data run at the Stanford Underground Facility with a total of 119 livedays of data. The preliminary results presented are based on the

  19. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  20. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    SciTech Connect

    Reuben Walter Ogburn, IV

    2008-06-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have analyzed all data from the two runs together in a single

  1. The Effect of the Variability in the Isotopic Composition of Gases on Top-Accuracy Cryogenic Temperature Standards and Remedies

    SciTech Connect

    Pavese, F.

    2006-04-27

    In the cryogenic range, temperature standards are based on the measurement of phase transitions of substances that are gaseous at room temperature. For total uncertainty budgets today approaching, for the most accurate realizations, 50 {mu}K, the effect of different isotopic compositions in the samples measured can become so large as to be the leading component of the total uncertainty budget.The variability of the isotopic composition is a well-known issue and is regularly monitored and reviewed by bodies such as the IUPAC. However, these data cover the whole spectrum of the variability observed on the earth. The actual variability that can be observed when buying commercial substances could be smaller to such an extent to alleviate or eliminate the practical problem, or could instead remain relevant. Only recently attention has been paid to the latter problem and the results were partially unexpected. This paper briefly reviews the modern analytical and thermal techniques, the resulting present knowledge and problems, and some recent solutions.

  2. Evaluation of cryogenic insulation materials and composites for use in nuclear radiation environments

    NASA Technical Reports Server (NTRS)

    Bullock, R. E.

    1972-01-01

    The following subjects are studied: (1) composite materials tests; (2) test of liquid level sensors and fission couples; (3) test of valve-seal materials; (4) boron epoxy composites; (5) radiation analysis of explosive materials and bifuels for RNS applications; and (6) test of thermal insulation.

  3. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two-tower runs of CDMS-II at Soudan

    NASA Astrophysics Data System (ADS)

    Ogburn, Reuben Walter, IV

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identity of the dark matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a "halo" because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ("ZIP") detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, we must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detectors, and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the first two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as "Run 118," with six detectors (1 kg Ge, 65.2 live days before cuts) and "Run 119," with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). We have analyzed all data from the two runs together in a single

  4. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  5. Faraday rotation of cobalt ferrite nanoparticle polymer composite films at cryogenic temperatures.

    PubMed

    Demir, Veysi; Gangopadhyay, Palash; Norwood, Robert A; Peyghambarian, Nasser

    2014-04-01

    This paper investigates the behavior of the Verdet constant for cobalt ferrite (CoFe₂O₄) nanoparticles polymer composite films at low temperatures using a 532 nm laser source. An experimental setup for Faraday rotation (FR) at low temperatures is introduced and FRs were measured at various temperatures. Verdet constants were deduced from the paramagnetic model for terbium gallium garnet glass where ~4× improvement was observed at 40° K for CoFe₂O₄ composite film. PMID:24787165

  6. Neutron detector using lithiated glass-scintillating particle composite

    SciTech Connect

    Wallace, Steven; Stephan, Andrew C.; Dai, Sheng; Im, Hee-Jung

    2009-09-01

    A neutron detector composed of a matrix of scintillating particles imbedded in a lithiated glass is disclosed. The neutron detector detects the neutrons by absorbing the neutron in the lithium-6 isotope which has been enriched from the natural isotopic ratio to a commercial ninety five percent. The utility of the detector is optimized by suitably selecting scintillating particle sizes in the range of the alpha and the triton. Nominal particle sizes are in the range of five to twenty five microns depending upon the specific scintillating particle selected.

  7. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  8. Mechanical loss of a multilayer tantala/silica coating on a sapphire disk at cryogenic temperatures: Toward the KAGRA gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Hirose, Eiichi; Craig, Kieran; Ishitsuka, Hideki; Martin, Iain W.; Mio, Norikatsu; Moriwaki, Shigenori; Murray, Peter G.; Ohashi, Masatake; Rowan, Sheila; Sakakibara, Yusuke; Suzuki, Toshikazu; Waseda, Kouichi; Watanabe, Kyohei; Yamamoto, Kazuhiro

    2014-11-01

    We report the results of a new experimental setup to measure the mechanical loss of coating layers on a thin sapphire disk at cryogenic temperatures. Some of the authors previously reported that there was no temperature dependence of the mechanical loss from a multilayer tantala/silica coating on a sapphire disk, both before and after heat treatment, although some reports indicate that Ta2O5 and SiO2 layers annealed at 600 °C have loss peaks near 20 K. Since KAGRA—the Japanese gravitational-wave detector, currently under construction—will be operated at 20 K and have coated sapphire mirrors, it is very important to clarify the mechanical loss behavior of tantala/silica coatings around this temperature. We carefully investigate a tantala/silica-coated sapphire disk with the new setup, anneal the disk, and then investigate the annealed disk. We find that there is no distinct loss peak both before and after annealing under particular conditions. The mechanical loss for the unannealed disk at 20 K is about 5 ×10-4 , as previously reported, while that for the annealed disk is approximately 6.4 ×10-4 .

  9. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  10. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    SciTech Connect

    Cabrera, Blas; Gratta, Giorgio

    2013-08-30

    Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performance period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector

  11. Monte Carlo Comparisons to a Cryogenic Dark Matter Search Detector with Low Transition-Edge-Sensor Transition Temperature

    SciTech Connect

    Leman, S.W.; McCarthy, K.A.; Brink, P.L.; Cabrera, B.; Cherry, M.; Silva, E.Do Couto E; Figueroa-Feliciano, E.; Kim, P.; Mirabolfathi, N.; Pyle, M.; Resch, R.; Sadoulet, B.; Serfass, B.; Sundqvist, K.M.; Tomada, A.; Young, B.A.; /Santa Clara U.

    2012-06-05

    We present results on phonon quasidiffusion and Transition Edge Sensor (TES) studies in a large, 3-inch diameter, 1-inch thick [100] high purity germanium crystal, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare calibration data with results from a Monte Carlo which includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels. The phonon energy is then parsed into TES based phonon readout channels and input into a TES simulator.

  12. Development of Lightweight Material Composites to Insulate Cryogenic Tanks for 30-Day Storage in Outer Space

    NASA Technical Reports Server (NTRS)

    Krause, D. R.

    1972-01-01

    A conceptual design was developed for an MLI system which will meet the design constraints of an ILRV used for 7- to 30-day missions. The ten tasks are briefly described: (1) material survey and procurement, material property tests, and selection of composites to be considered; (2) definition of environmental parameters and tooling requirements, and thermal and structural design verification test definition; (3) definition of tanks and associated hardware to be used, and definition of MLI concepts to be considered; (4) thermal analyses, including purge, evacuation, and reentry repressurization analyses; (5) structural analyses (6) thermal degradation tests of composite and structural tests of fastener; (7) selection of MLI materials and system; (8) definition of a conceptual MLI system design; (9) evaluation of nondestructive inspection techniques and definition of procedures for repair of damaged areas; and (10) preparation of preliminary specifications.

  13. Bolometric detector on the basis of single-wall carbon nanotube/polymer composite

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.

    2008-10-01

    Infrared imaging sensors that operate without cryogenic cooling have the potential to provide the military or civilian users with infrared vision capabilities packaged in a camera of extremely small size, weight and power consumption. We present here the uncooled bolometric sensor on the basis of single-walled carbon nanotubes (SWNTs) polymer composite with enhanced sensitivity. The voltage responsivity of device working at room temperatures exceeds 150 V/W. The absorption coefficient of single-wall carbon nanotubes was increased by involving Forster type energy transfer from polymer film to dispersed SWNT. The temperature gradient of resistivity was substantially improved by chemical functionalization of SWNT.

  14. Vacuum jacketed composite propulsion feedlines for cryogenic launch and space vehicles, volume 1. [development of glass fiber composite for strength and protection from handling damage

    NASA Technical Reports Server (NTRS)

    Spond, D. E.; Laintz, D. J.; Hall, C. A.; Dulaigh, D. E.

    1974-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong, and has a low thermal flux. The inside commodity flow line and the outside vacuum jacket were fabricated using this method. Several types of vacuum jackets were fabricated and tested at operating temperatures from 294 to 21 K (+70 to minus 423 F) and operating pressure up to 69 N/cm2 (100 psi). The primary objective of the program was to develop vacuum jacket concepts, using previously developed concepts for the inner line. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included convolution of thin metallic sections up to 46 cm (18 in.) in diameter, design and fabrication of an extremely lightweight tension membrane concept for the vacuum jacket, and analytical tools that predict the failure mode and levels.

  15. ZnO/Ag nanowires composite film ultraviolet photoconductive detector

    NASA Astrophysics Data System (ADS)

    Guodong, Yan; Minqiang, Wang; Zhi, Yang

    2015-08-01

    ZnO/Ag nanowires (NWs) film ultraviolet (UV) detector was fabricated by a simple and low-cost solution-processed method. In order to prepare this device, Ag NWs network was first spin-coated on glass substrate as a transparent conducting electrode, then ZnO NWs arrays were grown vertically on the Ag NWs network based on the hydrothermal method. This UV detector exhibited an excellent detection performance with large on/off ratio and short response time. Several process and working parameters were particularly investigated to analyze the relationship between structure and performance, which include growth time of ZnO NWs array, spin speed of Ag NWs network and working temperature. This UV photoconductive detector is based on two kinds of one-dimension nanomaterials, and it was regarded as a compromise between high performance with large area, low voltage and low cost. Project supported by the National Natural Science Foundation of China (Nos. 61176056, 91323303, 91123019), the 111 Program (No. B14040), and the Open Projects from the Institute of Photonics and Photo-Technology, Provincial Key Laboratory of Photoelectronic Technology, Northwest University, China.

  16. Detectors

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Allander, Krag

    2002-01-01

    The apparatus and method provide techniques through which both alpha and beta emission determinations can be made simultaneously using a simple detector structure. The technique uses a beta detector covered in an electrically conducting material, the electrically conducting material discharging ions generated by alpha emissions, and as a consequence providing a measure of those alpha emissions. The technique also offers improved mountings for alpha detectors and other forms of detectors against vibration and the consequential effects vibration has on measurement accuracy.

  17. MCP-based photodetectors for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Dharmapalan, R.; Mane, A.; Byrum, K.; Demarteau, M.; Elam, J.; May, E.; Wagner, R.; Walters, D.; Xia, L.; Xie, J.; Zhao, H.

    2016-02-01

    The Argonne MCP-based photo detector is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein 6 cm × 6 cm sized detectors are made at Argonne National Laboratory. We have successfully built and tested our first detectors for pico-second timing and few mm spatial resolution. We discuss our efforts to customize these detectors to operate in a cryogenic environment. Initial plans aim to operate in liquid argon. We are also exploring ways to mitigate wave length shifting requirements and also developing bare-MCP photodetectors to operate in a gaseous cryogenic environment.

  18. Inspection of composite materials with an advanced ultrasonic flaw detector

    NASA Astrophysics Data System (ADS)

    Yamamoto, W.

    The structures and shapes of the composite material products are described. Methods of ultrasonic wave detection are described. New damage detection equipment for laminate and honeycomb structures is addressed.

  19. Mass composition sensitivity of combined arrays of water cherenkov and scintillation detectors in the EeV range

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier G.; Engel, Ralph; Roth, Markus

    2016-02-01

    We consider an array of scintillation detectors combined with an array of water Cherenkov detectors designed to simultaneously measure the cosmic-ray primary mass composition and energy spectrum at energies around 1EeV. In this work we investigate the sensitivity to primary mass composition of such combined arrays. The water Cherenkov detectors are arranged in a triangular grid with fixed 750m spacing and the configuration of the scintillation detectors is changed to study the impact of different configurations on the sensitivity to mass composition. We show that the performance for composition determination can be compared favorably to that of fluorescence measurements after the difference in duty cycles is considered.

  20. Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Takeda, Tomo; Miura, Masaya; Shindo, Yasuhide; Narita, Fumio

    2013-12-01

    We investigate the cryogenic delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode II/III fatigue loading. Fatigue delamination tests were conducted with six-point bending plate (6PBP) specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), and the delamination growth rate data for various mixed-mode ratios of Modes II and III were obtained. The energy release rate was evaluated using the three-dimensional finite element method. In addition, the fatigue delamination growth mechanisms were characterized by scanning electron microscopic observations of the specimen fracture surfaces.

  1. Cryogenic optical testing of SiC mirrors for ASTRO-F and C/SiC composite mirrors for SPICA

    NASA Astrophysics Data System (ADS)

    Kaneda, Hidehiro; Nakagawa, Takao; Enya, Keigo; Onaka, Takashi

    2004-06-01

    Light-weight mirrors are developed for two Japanese infrared astronomical missions, ASTRO-F and SPICA. ASTRO-F is scheduled for launch in 2005, while the target year for launch of SPICA is 2010. The mirrors of the ASTRO-F telescope are made of a sandwich-type silicon carbide (SiC) material, comprising porous core and CVD coat of SiC on the surface. Cryogenic measurements of the ASTRO-F primary mirror and telescope assembly were performed extensively. As for the SPICA telescope, which has an aperture of 3.5-m diameter, carbon-fiber-reinforced SiC (C/SiC composite), as well as SiC, is one of the promising candidates for mirror material. C/SiC composite spherical test mirrors of 160-mm diameter has recently been manufactured and tested. This paper presents the experimental results of the cryogenic performance obtained for the sandwich-type SiC mirrors and the C/SiC composite mirrors.

  2. Development of dual solid cryogens for high reliability refrigeration system

    NASA Technical Reports Server (NTRS)

    Caren, R. P.; Coston, R. M.

    1967-01-01

    High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.

  3. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  4. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  5. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  6. RHIC cryogenics

    NASA Astrophysics Data System (ADS)

    Iarocci, M. A.; Brown, D.; Sondericker, J.; Wu, K. C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A.

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  7. Cryogenics for the superconducting module test facility

    SciTech Connect

    Klebaner, A.L.; Theilacker, J.C.; /Fermilab

    2006-01-01

    A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

  8. Cryogenically cooled detector pin mount

    SciTech Connect

    Hunt, Jr., William E; Chrisp, Michael P

    2014-06-03

    A focal plane assembly facilitates a molybdenum base plate being mounted to another plate made from aluminum. The molybdenum pin is an interference fit (press fit) in the aluminum base plate. An annular cut out area in the base plate forms two annular flexures.

  9. Development and characterization of a neutron detector based on a lithium glass-polymer composite

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Nattress, J.; Kukharev, V.; Foster, A.; Meddeb, A.; Trivelpiece, C.; Ounaies, Z.; Jovanovic, I.

    2015-06-01

    We report on the fabrication and characterization of a neutron scintillation detector based on a Li-glass-polymer composite that utilizes a combination of pulse height and pulse shape discrimination (PSD) to achieve high gamma rejection. In contrast to fast neutron detection in a PSD medium, we combine two scintillating materials that do not possess inherent neutron/gamma PSD properties to achieve effective PSD/pulse height discrimination in a composite material. Unlike recoil-based fast neutron detection, neutron/gamma discrimination can be robust even at low neutron energies due to the high Q-value neutron capture on 6Li. A cylindrical detector with a 5.05 cm diameter and 5.08 cm height was fabricated from scintillating 1 mm diameter Li-glass rods and scintillating polyvinyltoluene. The intrinsic efficiency for incident fission neutrons from 252Cf and gamma rejection of the detector were measured to be 0.33% and less than 10-8, respectively. These results demonstrate the high selectivity of the detector for neutrons and provide motivation for prototyping larger detectors optimized for specific applications, such as detection and event-by-event spectrometry of neutrons produced by fission.

  10. Geometric optimization of a neutron detector based on a lithium glass-polymer composite

    NASA Astrophysics Data System (ADS)

    Mayer, M.; Nattress, J.; Trivelpiece, C.; Jovanovic, I.

    2015-06-01

    We report on the simulation and optimization of a neutron detector based on a glass-polymer composite that achieves high gamma rejection. Lithium glass is embedded in polyvinyltoluene in three geometric forms: disks, rods, and spheres. Optimal shape, geometric configuration, and size of the lithium glass fragments are determined using Geant4 simulations. All geometrical configurations maintain an approximate 7% glass to polymer mass ratio. Results indicate a 125-mm diameter as the optimal detector size for initial prototype design achieving a 10% efficiency for the thermalization of incident fission neutrons from 252Cf. The geometrical features of a composite detector are shown to have little effect on the intrinsic neutron efficiency, but a significant effect on the gamma rejection is observed. The sphere geometry showed the best overall performance with an intrinsic neutron efficiency of approximately 6% with a gamma rejection better than 10-7 for 280-μm diameter spheres. These promising results provide a motivation for prototype composite detector development based on the simulated designs.

  11. Spectroscopic micro-tomography of metallic-organic composites by means of photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Jakubek, J.; Vavrik, D.

    2015-12-01

    The presumed capabilities of photon counting detectors have aroused major expectations in several fields of research. In the field of nuclear imaging ample benefits over standard detectors are to be expected from photon counting devices. First of all a very high contrast, as has by now been verified in numerous experiments. The spectroscopic capabilities of photon counting detectors further allow material decomposition in computed tomography and therefore inherently adequate beam hardening correction. For these reasons measurement setups featuring standard X-ray tubes combined with photon counting detectors constitute a possible replacement of the much more cost intensive tomographic setups at synchrotron light-sources. The actual application of photon counting detectors in radiographic setups in recent years has been impeded by a number of practical issues, above all by restrictions in the detectors size. Currently two tomographic setups in Czech Republic feature photon counting large-area detectors (LAD) fabricated in Prague. The employed large area hybrid pixel-detector assemblies [1] consisting of 10×10/10×5 Timepix devices have a surface area of 143×143 mm2 / 143×71,5 mm2 respectively, suitable for micro-tomographic applications. In the near future LAD devices featuring the Medipix3 readout chip as well as heavy sensors (CdTe, GaAs) will become available. Data analysis is obtained by a number of in house software tools including iterative multi-energy volume reconstruction.In this paper tomographic analysis of of metallic-organic composites is employed to illustrate the capabilities of our technology. Other than successful material decomposition by spectroscopic tomography we present a method to suppress metal artefacts under certain conditions.

  12. Composite Cryotank Technologies and Demonstration Project

    NASA Video Gallery

    The Composite Cryogenic Propellant Tank project will develop and ground demonstrate large-scale composite cryogenic propellant tanks applicable to heavy-lift launch vehicles, propellant depots, and...

  13. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    NASA Astrophysics Data System (ADS)

    Jandejsek, I.; Jakubek, J.; Jakubek, M.; Prucha, P.; Krejci, F.; Soukup, P.; Turecek, D.; Vavrik, D.; Zemlicka, J.

    2014-05-01

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements.

  14. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  15. LUX Cryogenics and Circulation

    NASA Astrophysics Data System (ADS)

    Bradley, Adam

    2012-10-01

    LUX is a new dark matter direct detection experiment being carried out at the Sanford Underground Research Facility, at the renewed Homestake mine in Lead, SD. The detector's large size supports effective internal shielding from natural radioactivity of the surrounding materials and environment. The LUX detector consists of a cylindrical vessel containing 350 kg of liquid xenon (LXe) cooled down and maintained at 175-K operating temperature using a novel cryogenic system. We report the efficiency of our thermosyphon-based cooling system, as well as the efficiency of a unique internal heat exchanger with standard gas phase purification using a heated getter, which allows for very high flow purification without requiring large cooling power. Such systems are required for multi-ton scale up.

  16. Comparison of Two Cryogenic Radiometers at NIST

    PubMed Central

    Houston, Jeanne M.; Livigni, David J.

    2001-01-01

    Two cryogenic radiometers from NIST, one from the Optical Technology Division and the other from the Optoelectronics Division, were compared at three visible laser wavelengths. For this comparison, each radiometer calibrated two photodiode trap detectors for spectral responsivity. The calibration values for the two trap detectors agreed within the expanded (k = 2) uncertainties. This paper describes the measurement and results of this comparison.

  17. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  18. AMoRE: Collaboration for searches for the neutrinoless double-beta decay of the isotope of {sup 100}Mo with the aid of {sup 40}Ca{sup 100}MoO{sub 4} as a cryogenic scintillation detector

    SciTech Connect

    Khanbekov, N. D.

    2013-09-15

    The AMoRE (Advanced Mo based Rare process Experiment) Collaboration is planning to employ {sup 40}Ca{sup 100}MoO{sub 4} single crystals as a cryogenic Scintillation detector for studying the neutrinoless double-beta decay of the isotope {sup 100}Mo. A simultaneous readout of phonon and scintillation signals is performed in order to suppress the intrinsic background. The planned sensitivity of the experiment that would employ 100 kg of {sup 40}Ca{sup 100}MoO{sub 4} over five years of data accumulation would be T{sub 1/2}{sup 0{nu}} = 3 Multiplication-Sign 10{sup 26} yr, which corresponds to values of the effective Majorana neutrino mass in the range of Left-Pointing-Angle-Bracket m{sub {nu}} Right-Pointing-Angle-Bracket {approx} 0.02-0.06 eV.

  19. The cryogenic challenge: status of the KAGRA project

    NASA Astrophysics Data System (ADS)

    Flaminio, Raffaele; KAGRA Collaboration

    2016-05-01

    The KAGRA project is building a gravitational wave detector inside the Kamioka mine (Japan). The detector is based on a laser interferometer with arms 3 km in length. In addition to its underground location the detector will be characterized by its mirrors made of sapphire and operated at cryogenic temperature. This paper describes the status of the construction at the site and gives an overview of the developments ongoing to prepare the cryogenic operation.

  20. Constraints on Vesta's elemental composition: Fast neutron measurements by Dawn's gamma ray and neutron detector

    PubMed Central

    Lawrence, David J; Peplowski, Patrick N; Prettyman, Thomas H; Feldman, William C; Bazell, David; Mittlefehldt, David W; Reedy, Robert C; Yamashita, Naoyuki

    2013-01-01

    Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vesta's hydrogen is due to long-term delivery of carbonaceous chondrite material. PMID:26074718

  1. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  2. Cryogenic materials selection, availability, and cost considerations

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1983-01-01

    The selection of structural alloys, composite materials, solder alloys, and filler materials for use in cryogenic models is discussed. In particular, materials testing programs conducted at Langley are described.

  3. Adapting British gas LNG facilities to varying gas compositions: The SELEXOL {reg_sign} process and cryogenic separation

    SciTech Connect

    Dewing, R.A.; Waring, S.; Burns, D.

    1996-12-31

    The original design of the UK National Transmission System (NTS) included five peak shave LNG storage sites strategically located around the country. They now form part of the Storage business that offers gas services to gas transportation companies-these include non British Gas companies as well as other parts of British Gas itself. At these sites, natural gas can be taken from the NTS at the request of the gas transportation companies, treated to cryogenic specifications, and liquefied for storage. LNG can then be re-vaporized and re-injected into the NTS or local mains as required. In this way the whole NTS does not have to be sized for peak rates and increases in demand can be met very quickly. Each peak-shave site was originally designed to handle natural gas with CO{sub 2} levels of up to 1 mol% and with ethane and higher hydrocarbon (C{sub 2}+) levels that needed only limited reduction. However, as different natural gas reservoirs came on stream in the early 1990`s the level of CO{sub 2} and C{sub 2}+ in the NTS network began to rise, and significant modifications were required at four of the five LNG sites. 3 refs., 2 figs., 2 tabs.

  4. An anti-neutrino detector to monitor nuclear reactor's power and fuel composition

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; DeVita, R.; Firpo, G.; Neuhold, P.; Osipenko, M.; Piombo, D.; Ricco, G.; Ripani, M.; Taiuti, M.

    2010-05-01

    In this contribution, we present the expected performance of a new detector to measure the absolute energy-integrated flux and the energy spectrum of anti-neutrinos emitted by a nuclear power plant. The number of detected anti-neutrino is a direct measure of the power while from the energy spectrum is possible to infer the evolution in time of the core isotopic composition. The proposed method should be sensitive to a sudden change in the core burn-up as caused, for instance, by a fraudulent subtraction of plutonium. The detector, a 130×100×100 cm3 cube with 1 m3 active volume, made by plastic scintillator wrapped in thin Gd foils, is segmented in 50 independent optical channels read, side by side, by a pair of 3 in. photomultipliers. Anti-neutrino interacts with hydrogen contained in the plastic scintillator via the neutron inverse β- decay ( ν¯p→e+n). The high segmentation of the detector allows to reduce the background from other reactions by detecting independent hits for the positron, the two photons emitted in the e+e- annihilation and the neutron.

  5. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  6. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    SciTech Connect

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  7. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  8. Cryogenic skirt support post

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Buckles, W. E.

    The cold masses of cryostats having vertical axes, like vertical pressure vessels, can be effectively supported by means of a cylindrical skirt that wraps concentrically around the cold mass. The skirt is a cryogenic support post connected at its upper end to the cold mass and at its lower end to the cryostat vacuum vessel. A heat intercept connection to an intermediate temperature refrigeration source can be employed to control heat leak. The support post consists of a composite; e.g. epoxy fibreglass, or cylinder with bolted or thermal interference fit end connections. The support post, being a single element support, simplifies cryostat assembly and alignment. The composite cylinder, with a relatively large diameter, lends itself to structural soundness and stability under both static and dynamic loading conditions. Its relatively long length and intermediate temperature heat intercept allows low heat leak to the cold mass. The details of the design of a cryogenic skirt support post as applied to a superconducting magnetic energy storage cryostat are presented. Included are support post fabrication, cryostat assembly, and predicted structural and thermal performance. Fabrication of and operational experiences with a prototype support post assembly are discussed.

  9. Effect of Matrix Modification on Interlaminar Shear Strength of Glass Fibre Reinforced Epoxy Composites at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Li, Jingwen; Huang, Chuanjun; Li, Laifeng

    In order to investigate the effect of the matrix variability on the interlaminar shear strength (ILSS) of glass fiber reinforced composites at 77K, three kinds of modifiers were employed to diethyl toluene diamine (DETD) cured diglycidyl ether of bisphenol F (DGEBF) epoxy resin system. The woven glass fiber reinforced composites were fabricated by vacuum pressure impregnation (VPI). The ILSS at 77 K was studied and the results indicated that introduction of modifiers used in this study can enhance the ILSS of composite at 77 K. A maximum of 14.87% increase was obtained by addition of 10 wt% IPBE into the epoxy matrix. Furthermore, scanning electron microscopy (SEM) was used to investigate the fracture mechanism and strengthening effect.

  10. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  11. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  12. Status of the Cryogen-Free Cryogenic System for the CUORE Experiment

    NASA Astrophysics Data System (ADS)

    Nucciotti, A.; Alessandria, F.; Ameri, M.; Bucci, C.; Bersani, A.; Canonica, L.; Cereseto, R.; Ceruti, G.; Cremonesi, O.; Dally, A.; Datskov, V.; Dossena, S.; Ejzak, L.; Faverzani, M.; Ferri, E.; Franceschi, A.; Gregerson, G.; Heeger, K.; Ligi, C.; Napolitano, T.; Orlandi, D.; Sisti, M.; Taffarello, L.; Tatananni, L.; Wise, T.; Woodcraft, A.

    2011-11-01

    The CUORE detector will be made of 988 TeO2 crystals and will need a base temperature lower than 10 mK in order to meet the performance specifications. To cool the CUORE detector a large cryogen-free cryostat with five pulse tubes and one specially designed high-power dilution refrigerator has been designed. The detector assembly has a total mass of about 1.5 ton and uses a vibration decoupling suspension system. Because of the stringent requirements regarding radioactivity, about 12 tons of lead shielding need to be cooled to 4 K and below, and only a limited number of construction materials are acceptable. The eight retractable radioactive sources for detector calibration and about 2600 signal wires add further complexity to the system. The many stringent and contrasting requirements together with the overall large size made the design of the CUORE cryogenic system a real mechanical and cryogenic engineering challenge. The cryogenic system is expected to be fully operational in the Gran Sasso Laboratory in July 2013. We report here about the current status of the cryogenic system construction, which has started about one year.

  13. Cryogenic immersion microscope

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  14. Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan

    NASA Astrophysics Data System (ADS)

    Mitchell, Karl L.; Barmatz, Martin B.; Jamieson, Corey S.; Lorenz, Ralph D.; Lunine, Jonathan I.

    2015-03-01

    The complex dielectric constants of liquids methane and ethane were measured at 90 K and 14.1 GHz, close to the frequency of the Cassini RADAR. The liquid ethane loss tangent is far greater than that of liquid methane, facilitating discrimination by remote sensing. The results suggest a methane-dominated composition for the northern sea, Ligeia Mare, on the basis of a recent loss tangent determination using Cassini RADAR altimetry. This contrasts a previous far higher loss tangent for the southern lake, Ontario Lacus, which is inconsistent with simple mixtures of methane and ethane. The apparent nonequilibrium methane-to-ethane ratio of Ligeia Mare can be explained by poor admixture of periodically cycled methane with a deeper ethane-rich alkanofer system, consistent with obliquity-driven volatile cycling, sequestration of ethane from the hydrocarbon cycle by incorporation into crustal clathrate hydrates, or periodic flushing of Ligeia Mare into adjacent Kraken Mare by fresh rainfall.

  15. Basic cryogenics and materials

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insulatants, seals, and fiber reinforced composites.

  16. Quantum-limited Terahertz detection without liquid cryogens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this contract, we have successfully designed, fabricated and tested a revolutionary new type of detector for Terahertz (THz) radiation, the tunable antenna-coupled intersubband Terahertz (TACIT) detector. The lowest-noise THz detectors used in the astrophysics community require cooling to temperatures below 4K. This deep cryogenic requirement forces satellites launched for THz- observing missions to include either large volumes of liquid Helium, complex cryocoolers, or both. Cryogenic requirements thus add significantly to the cost, complexity and mass of satellites and limit the duration of their missions. It hence desirable to develop new detector technologies with less stringent cryogenic requirements. Such detectors will not only be important in space-based astrophysics, but also respond to a growing demand for THz technology for earth-based scientific and commercial applications.

  17. A probe for neutron activation analysis in a drill hole using 252Cf, and a Ge(Li) detector cooled by a melting cryogen

    USGS Publications Warehouse

    Tanner, A.B.; Moxham, R.M.; Senftle, F.E.; Baicker, J.A.

    1972-01-01

    A sonde has been built for high-resolution measurement of natural or neutron-induced gamma rays in boreholes. The sonde is 7.3 cm in diameter and about 2.2 m in length and weighs about 16 kg. The lithium-compensated germanium semiconductor detector is stabilized at -185 to -188??C for as much as ten hours by a cryostatic reservoir containing melting propane. During periods when the sonde is not in use the propane is kept frozen by a gravity-fed trickle of liquid nitrogen from a reservoir temporarily attached to the cryostat section. A 252Cf source, shielded from the detector, may be placed in the bottom section of the sonde for anlysis by measurement of neutron-activation or neutron-capture gamma rays. Stability of the cryostat with changing hydrostatic pressure, absence of vibration, lack of need for power to the cryostat during operation, and freedom of orientation make the method desirable for borehole, undersea, space, and some laboratory applications. ?? 1972.

  18. Cryogenic wind tunnels. III

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    Specific problems pertaining to cryogenic wind tunnels, including LN(2) injection, GN(2) exhaust, thermal insulation, and automatic control are discussed. Thermal and other physical properties of materials employed in these tunnels, properties of cryogenic fluids, storage and transfer of liquid nitrogen, strength and toughness of metals and nonmetals at low temperatures, and material procurement and qualify control are considered. Safety concerns with cryogenic tunnels are covered, and models for cryogenic wind tunnels are presented, along with descriptions of major cryogenic wind-tunnel facilities the United States, Europe, and Japan. Problems common to wind tunnels, such as low Reynolds number, wall and support interference, and flow unsteadiness are outlined.

  19. Estimation of mammary gland composition using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Ihori, Akiko; Okamoto, Chizuru; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Nakajima, Ai; Kato, Misa; Kodera, Yoshie

    2016-03-01

    Energy resolved photon-counting mammography is a new technology, which counts the number of photons that passes through an object, and presents it as a pixel value in an image of the object. Silicon semiconductor detectors are currently used in commercial mammography. However, the disadvantage of silicon is the low absorption efficiency for high X-ray energies. A cadmium telluride (CdTe) series detector has a high absorption efficiency over a wide energy range. In this study, we proposed a method to estimate the composition of the mammary gland using a CdTe series detector as a photon-counting detector. The fact that the detection rate of breast cancer in mammography is affected by mammary gland composition is now widely accepted. Assessment of composition of the mammary gland has important implications. An important advantage of our proposed technique is its ability to discriminate photons using three energy bins. We designed the CdTe series detector system using the MATLAB simulation software. The phantom contains nine regions with the ratio of glandular tissue and adipose varying in increments of 10%. The attenuation coefficient for each bin's energy was calculated from the number of input and output photons possessed by each. The evaluation results obtained by plotting the attenuation coefficient μ in a three-dimensional (3D) scatter plot show that the plots had a regular composition order congruent with that of the mammary gland. Consequently, we believe that our proposed method can be used to estimate the composition of the mammary gland.

  20. D0 Cryogenic System Operator Training

    SciTech Connect

    Markley, D.; /Fermilab

    1991-11-30

    D0 is a collider detector. It will be operating and doing physics at the same time as CDP, therefore it has been decided to train CDP operators to operate and respond to the D0 cryogenic control system. A cryogenic operator will be required to be in residence at D0, during the cooldown and liquid Argon fill of any of the calorimeters. The cryogenic system at D0 is designed to be unmanned during steady state operation. CDP operations has 2 man cryogenic shifts 24 hours a day. It is intended that CDP operators monitor the D0 cryogenic systems, evaluate and respond to alarms, and notify a D0 cryo expert in the event of an unusual problem. A D0 cryogenic system view node has been installed at CDP to help facilitate these goals. It should be noted that even though the CDP view node is a fully operational node it is intended that it be more of an information node and is therefore password protected. The D0 cryo experts may reassess the use of the CDP node at a later date based on experience and operating needs. This engineering note outlines the format of the training and testing given to the CDP operators to make them qualified D0 operators.

  1. Cryogenic Neutron Spectrometer Development

    SciTech Connect

    Niedermayr, T; Hau, I D; Friedrich, S; Burger, A; Roy, U N; Bell, Z W

    2006-03-08

    Cryogenic microcalorimeter detectors operating at temperatures around {approx}0.1 K have been developed for the last two decades, driven mostly by the need for ultra-high energy resolution (<0.1%) in X-ray astrophysics and dark matter searches [1]. The Advanced Detector Group at Lawrence Livermore National Laboratory has developed different cryogenic detector technologies for applications ranging from X-ray astrophysics to nuclear science and non-proliferation. In particular, we have adapted cryogenic detector technologies for ultra-high energy resolution gamma-spectroscopy [2] and, more recently, fast-neutron spectroscopy [3]. Microcalorimeters are essentially ultra-sensitive thermometers that measure the energy of the radiation from the increase in temperature upon absorption. They consist of a sensitive superconducting thermometer operated at the transition between its superconducting and its normal state, where its resistance changes very rapidly with temperature such that even the minute energies deposited by single radiation quanta are sufficient to be detectable with high precision. The energy resolution of microcalorimeters is fundamentally limited by thermal fluctuations to {Delta}E{sub FWHM} {approx} 2.355 (k{sub B}T{sup 2}C{sub abs}){sup 1/2}, and thus allows an energy below 1 keV for neutron spectrometers for an operating temperature of T {approx} 0.1 K . The {Delta}E{sub FWHM} does not depend on the energy of the incident photon or particle. This expression is equivalent to the familiar (F{var_epsilon}E{sub {gamma}}){sup 1/2} considering that an absorber at temperature T contains a total energy C{sub abs}T, and the associated fluctuation are due to variations in uncorrelated (F=1) phonons ({var_epsilon} = k{sub B}T) dominated by the background energy C{sub abs}T >> E{gamma}. The rationale behind developing a cryogenic neutron spectrometer is the very high energy resolution combined with the high efficiency. Additionally, the response function is simple

  2. JWST NIRSpec Cryogenic Light Shield Mechanism

    NASA Technical Reports Server (NTRS)

    Hale, Kathleen; Sharma, Rajeev

    2006-01-01

    The focal plane detectors for the Near-Infrared Spectrometer (NIRSpec) instrument on the James Webb Space Telescope (JWST) require a light tight cover for calibration along with an open field-of-view during ground performance testing within a cryogenic dewar. In order to meet the light attenuation requirements and provide open and closed fields of view without breaking vacuum, a light shield mechanism was designed. This paper describes the details of the light shield mechanism design and test results. Included is information on the labyrinth light path design, motor capability and performance, dry film lubrication, mechanism control, and mechanism cryogenic performance results.

  3. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  4. Cryogenic fluid management experiment trunnion fatigue verification

    NASA Technical Reports Server (NTRS)

    Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.; Kasper, H. J.

    1983-01-01

    A subcritical liquid hydrogen orbital storage and transfer experiment was designed for flight in the Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy trunnion mounts. This composite material was selected for the trunnions since it provides desirable strength, weight and thermal characteristics for supporting cryogenic tankage. An experimental program was conducted to provide material property and fatigue data for S-glass epoxy composite materials at ambient and liquid hydrogen temperatures and to verify structural integrity of the CFME trunnion supports.

  5. Metals for cryogenic applications. (Latest citations from Metadex). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning technology and development of metals for cryogenic applications. The processing, mechanical properties, and compositions of specific alloys are detailed. Applications include aircraft, rockets, spacecraft, and equipment used to store and transport cryogenic fluids. (Contains a minimum of 172 citations and includes a subject term index and title list.)

  6. Metals for cryogenic applications. (Latest citations from METADEX). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning technology and development of metals for cryogenic applications. The processing, mechanical properties, and compositions of specific alloys are detailed. Applications include aircraft, rockets, spacecraft, and equipment used to store and transport cryogenic fluids. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  8. COMBINED GAMMA-RAY AND NEUTRON DETECTOR FOR MEASURING THE CHEMICAL COMPOSITION OF AIRLESS PLANETARY BODIES.

    SciTech Connect

    Lawrence, David J. ,; Barraclough, B. L.; Feldman, W. C.; Prettyman, T. H.; Wiens, R. C.

    2001-01-01

    Galactic cosmic rays (GCR) constant1,y itnpinge all planetary bodies and produce characteristic gamma-ray lines and leakage neutrons as reaction products. Together with gamma-ray lines produced by radioactive decay, these nuclear emissions provide a powerful technique for remotely measuring the chemical composition of airless planetary surfaces. While lunar gamma-ray spectroscopy was first demonstrated with Apollo Gamma-Ray measurements, the full value of combined gamma-ray and neutron spectroscopy was shown for the first time with the Lunar Prospector Gamma-Ray (LP-GRS) and Neutron Spectrometers (LP-NS). Any new planetary mission will likely have the requirement that instrument mass and power be kept to a minimum. To satisfy such requirements, we have been designing a GR/NS instrument which combines all the functionality of the LP-GRS and LP-NS for a fraction of the mass and power. Specifically, our design uses a BGO scintillator crystal to measure gamma-rays from 0.5-10 MeV. A borated plastic scintillator and a lithium gliiss scintillator are used to separately measure thermal, epithermal, and fast neutrons as well as serve as an anticoincidence shield for the BGO. All three scintillators are packaged together in a compact phoswich design. Modifications to this design could include a CdZnTe gamma-ray detector for enhanced energy resolution at low energies (0.5-3 MeV). While care needs to be taken to ensure that an adequate count rate is achieved for specific mission designs, previous mission successes demonstrate that a cornbined GR/NS provides essential information about planetary surfaces.

  9. Fabrication and characterization of a lithium-glass-based composite neutron detector

    NASA Astrophysics Data System (ADS)

    Rich, G. C.; Kazkaz, K.; Martinez, H. P.; Gushue, T.

    2015-09-01

    A novel composite, scintillating material intended for neutron detection and composed of small (1.5 mm) cubes of KG2-type lithium glass embedded in a matrix of scintillating plastic has been developed in the form of a 2.2 in.-diameter, 3.1 in.-tall cylindrical prototype loaded with (5.82±0.02)% lithium glass by mass. The response of the material when exposed to 252Cf fission neutrons and various γ-ray sources has been studied; using the charge-integration method for pulse shape discrimination, good separation between neutron and γ-ray events is observed and intrinsic efficiencies of (1.15±0.16)×10-2 and (2.28±0.21)×10-4 for 252Cf fission neutrons and 60Co γ rays are obtained; an upper limit for the sensitivity to 137Cs γ rays is determined to be < 3.70 ×10-8. The neutron/γ discrimination capabilities are improved in circumstances when a neutron capture signal in the lithium glass can be detected in coincidence with a preceding elastic scattering event in the plastic scintillator; with this coincidence requirement, the intrinsic efficiency of the prototype detector for 60Co γ rays is (2.42±0.61)×10-6 while its intrinsic efficiency for unmoderated 252Cf fission neutrons is (4.31±0.59)×10-3. Through use of subregion-integration ratios in addition to the coincidence requirement, the efficiency for γ rays from 60Co is reduced to (7.15±4.10)×10-7 while the 252Cf fission neutron efficiency becomes (2.78±0.38)×10-3.

  10. Future development in cryogenic techniques for space

    NASA Astrophysics Data System (ADS)

    Wanner, M.

    1992-12-01

    The detection of faint electromagnetic radiation in space astronomy and astrophysics requires very low temperatures to improve the signal to noise ratio of the very sensitive detectors in order to reduce the electronic noise of the detector amplifiers and finally to suppress the self emission of infrared radiation of the telescope itself. To provide such a cryogenic environment in space, both open and closed loop cooling systems using different cryogens are in use, thereby covering the whole temperature range from about 80K down to 1.8K. Future applications such as highly sensitive bolometers or SQUID's will ask for temperatures down to the subKelvin range. Such temperatures can be achieved by sophisticated low temperature cooling stages. Cryogenic cooling in space basically relies on the same cooling principles as in the laboratory. However the systems in general have to be specifically designed and new components have to be developed to match the cryogenic infrastructure to the specific demands of the optical instrument, the requirements from the satellite and the constraints imposed by the space environment.

  11. Development of a cryogenic microcalorimeter

    NASA Astrophysics Data System (ADS)

    Junkin, David Stuart

    The motivation for this project has been to measure β-decay using a low background detector which encapsulated the β source (4π coverage). It was realized that the ideal detector for this measurement was a microcalorimeter (a small cryogenic detector consisting of an absorber, thermistor and thermal link). Presently microcalorimeters are an active area of research and development because of possible applications in weak interaction physics, x-ray astronomy and dark matter searches. The development of such a detector requires an interdisciplinary effort involving nuclear physics, solid state physics, electronics, and statistical mechanics. We have designed, constructed and characterized microcalorimeters employing two types of thermistors (AuxGe(x-1) and P:Si). In the process we constructed a dilution refrigerator, assembled the necessary electronics, and built a data acquisition and analysis system based on networked desktop computers. This stage of the project has concluded by characterizing the performance of the AuxGe(x-1) based microcalorimeters by measuring /alpha s and low energy /gamma s. The measured energy spectra have been compared to theoretical predictions, and the linearity of the devices has been tested. Future work will permit these devices to be used to measure β spectra.

  12. Cryogenic storage devices

    SciTech Connect

    Pelloux-gervais, P.

    1982-02-09

    The present invention relates to a device for the cryogenic storing of products. In a tank, canisters are suspended via rods, and these rods rest on the rim of the tank via retaining heads. The invention is applicable to the cryogenic storage of seeds, semen, vegetable substances, etc.

  13. Sealing Mechanical Cryogenic Coolers

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1985-01-01

    Metal bellows used to seal Vuilleumier and Stirling-cycle cryogenic coolers, replacing sliding seals that failed after only 3,000 hours of service. Metal bellows, incorporated in displacer design provide nonrubbing dynamic seal. Lifetime of cryogenic cooler no longer limited by loss of sealing material and by deterioration of regenerators due to clogging by seal debris.

  14. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  15. MOSFET's for Cryogenic Amplifiers

    NASA Technical Reports Server (NTRS)

    Dehaye, R.; Ventrice, C. A.

    1987-01-01

    Study seeks ways to build transistors that function effectively at liquid-helium temperatures. Report discusses physics of metaloxide/semiconductor field-effect transistors (MOSFET's) and performances of these devices at cryogenic temperatures. MOSFET's useful in highly sensitive cryogenic preamplifiers for infrared astronomy.

  16. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  17. Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors.

    PubMed

    Toraman, Hilal E; Dijkmans, Thomas; Djokic, Marko R; Van Geem, Kevin M; Marin, Guy B

    2014-09-12

    The detailed compositional characterization of plastic waste pyrolysis oil was performed with comprehensive two-dimensional GC (GC×GC) coupled to four different detectors: a flame ionization detector (FID), a sulfur chemiluminescence detector (SCD), a nitrogen chemiluminescence detector (NCD) and a time of flight mass spectrometer (TOF-MS). The performances of different column combinations were assessed in normal i.e. apolar/mid-polar and reversed configurations for the GC×GC-NCD and GC×GC-SCD analyses. The information obtained from the four detectors and the use of internal standards, i.e. 3-chlorothiophene for the FID and the SCD and 2-chloropyridine for the NCD analysis, enabled the identification and quantification of the pyrolysis oil in terms of both group type and carbon number: hydrocarbon groups (n-paraffins, iso-paraffins, olefins and naphthenes, monoaromatics, naphthenoaromatics, diaromatics, naphthenodiaromatics, triaromatics, naphthenotriaromatics and tetra-aromatics), nitrogen (nitriles, pyridines, quinolines, indole, caprolactam, etc.), sulfur (thiols/sulfides, thiophenes/disulfides, benzothiophenes, dibenzothiophenes, etc.) and oxygen containing compounds (ketones, phenols, aldehydes, ethers, etc.). Quantification of trace impurities is illustrated for indole and caprolactam. The analyzed pyrolysis oil included a significant amount of nitrogen containing compounds (6.4wt%) and to a lesser extent sulfur containing compounds (0.6wt%). These nitrogen and sulfur containing compounds described approximately 80% of the total peak volume for respectively the NCD and SCD analysis. TOF-MS indicated the presence of the oxygen containing compounds. However only a part of the oxygen containing compounds (2.5wt%) was identified because of their low concentrations and possible overlap with the complex hydrocarbon matrix as no selective detector or preparative separation for oxygen compounds was used. PMID:25064537

  18. Signal processing in cryogenic particle detection

    NASA Astrophysics Data System (ADS)

    Yuryev, Y. N.; Jang, Y. S.; Kim, S. K.; Lee, K. B.; Lee, M. K.; Lee, S. J.; Yoon, W. S.; Kim, Y. H.

    2011-04-01

    We describe a signal-processing program for a data acquisition system for cryogenic particle detectors. The program is based on an optimal-filtering method for high-resolution measurement of calorimetric signals with a significant amount of noise of unknown origin and non-stationary behavior. The program was applied to improve the energy resolution of the alpha particle spectrum of an 241Am source.

  19. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  20. Superparamagnetic Luminescent MOF@Fe₃O₄/SiO₂ Composite Particles for Signal Augmentation by Magnetic Harvesting as Potential Water Detectors.

    PubMed

    Wehner, Tobias; Mandel, Karl; Schneider, Michael; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-03-01

    Herein, we present the generation of a novel complex particle system consisting of superparamagnetic Fe3O4/SiO2 composite microparticle cores, coated with luminescent metal-organic frameworks (MOFs) of the constitution (∞)(2)[Ln2Cl6(bipy)3]·2bipy (bipy = 4,4′-bipyridine) that was achieved by intriguing reaction conditions including mechanochemistry. The novel composites combine the properties of both constituents: superparamagnetism and luminescence. The magnetic properties can be exploited to magnetically collect the particles from dispersions in fluids and, by gathering them at one spot, to augment the luminescence originating from the MOF modification on the particles. The luminescence can be influenced by chemical compounds, e.g., by quenching observed for low concentrations of water. Thus, the new composite systems present an innovative concept of property combination that can be potentially used for the detection of water traces in organic solvents as a magnetically augmentable, luminescent water detector. PMID:26860449

  1. Cryogenic activities at ESTEC

    NASA Astrophysics Data System (ADS)

    Jewell, C. I.

    1989-05-01

    Although the main present cryogenic activity in ESTEC revolves around the preparation of ISO for launch in 1993, many other activities such as Meteosat second generation, FIRST, GRASP, QUASAT, and X-ray detection using bolometers all require some form of cooling to 80 K or less. ESTEC, in an effort to overcome the major constraint of lifetime when using the solution of cryogens is currently involved in the study and development of two mechanical coolers for work in the temperature ranges of 80 and 4 K are based on a Stirling cycle. This paper gives an overview of ESTEC cryogenic interests with an emphasis on the above mechanical coolers.

  2. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  3. Cryogenics for HL-LHC

    NASA Astrophysics Data System (ADS)

    Tavian, L.; Brodzinski, K.; Claudet, S.; Ferlin, G.; Wagner, U.; van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This chapter will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  4. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

  5. The influence of composition, annealing treatment, and texture on the fracture toughness of Ti-5Al-2.5Sn plate at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Vanstone, R. H.; Shannon, J. L., Jr.; Pierce, W. S.; Low, J. R., Jr.

    1977-01-01

    The plane strain fracture toughness K sub Ic and conventional tensile properties of two commercially produced one-inch thick Ti-5Al-2.5Sn plates were determined at cryogenic temperatures. One plate was extra-low interstitial (ELI) grade, the other normal interstitial. Portions of each plate were mill annealed at 1088 K (1500 F) followed by either air cooling or furnace cooling. The tensile properties, flow curves, and K sub Ic of these plates were determined at 295 K (room temperature), 77 K (liquid nitrogen temperature), and 20 K (liquid hydrogen temperature).

  6. Reflectance Spectra of Titan Tholins at Cryogenic Temperatures and Implications for Compositional Interpretation of Red Objects in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Dalton, J. B.

    2002-01-01

    We report the visual and near-infrared (0.4-2.5 micron) laboratory bi-directional reflectance of Titan tholin at cryogenic temperatures (approx. 100-300 K). When compared with room temperature measurements, the visual and near-infrared color of Titan tholin becomes slightly redder by approx. 5% at low temperatures in the 0.4-1.3 micron region. We estimate the influence of these colr changes on the interpretation of the Centaur Pholus and find that the modest color changes will not significantly alter existing interpretations.

  7. Detector Arrays For Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1988-01-01

    Paper describes status of program for developing integrated infrared detectors for astronomy. Program covers variety of detectors, including extrinsic silicon, extrinsic germanium, and indium antimonide devices with hybrid silicon multiplexers. Paper notes for arrays to reach background noise limit in cryogenic telescope, continued reductions in readout noise and dark current needed.

  8. Aerogel Blanket Insulation Materials for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  9. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  10. A Supra-Thermal Energetic Particle detector (STEP) for composition measurements in the range approximately 20 keV/nucleon to 1 MeV/nucleon

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.

    1981-01-01

    A detector system is described, employing a time-of-flight versus residual energy technique which allows measurement of particle composition (H-Fe), energy spectral and anisotropies in an energy range unaccessible with previously flown sensors. Applications of this method to measurements of the solar wind ion composition are discussed.

  11. A supra-thermal energetic particle detector /STEP/ for composition measurements in the range of about 20 keV/nucleon to 1 MeV/nucleon

    NASA Technical Reports Server (NTRS)

    Mason, G. M.; Gloeckler, G.

    1981-01-01

    A novel detector system is described, employing a time-of-flight versus residual energy technique which allows measurement of particle composition (H-Fe), energy spectra and anisotropies in an energy range unaccessible with previously flown sensors. Applications of this method to measurements of the solar wind ion composition are also discussed.

  12. Cryogenic Feedthrough Test Rig

    NASA Technical Reports Server (NTRS)

    Skaff, Antony

    2009-01-01

    The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

  13. Cryogenic thermal control technology summaries

    NASA Technical Reports Server (NTRS)

    Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

    1974-01-01

    A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

  14. History, status and future applications of spaceborne cryogenic systems

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1982-01-01

    Cryogenic cooling is employed for an increasing number of space instruments. Cryogenic cooling is needed to provide the required detector response, reduce preamplifier noise, and/or reduce background radiation. Cryogenic cooling is required by instruments employed for applications missions, gamma-ray and X-ray astronomy, cosmic ray measurements, space surveillance, IR astronomy, relativity measurements, superconductivity devices, and basic research experiments. The cooling is provided with the aid of radiant coolers, stored solid cryogen coolers, stored liquid-helium coolers, mechanical coolers, He-3 coolers, adiabatic demagnetization, refrigeration, and higher temperature adsorption and magnetic systems. Radiant coolers will continue to find widespread application for low cooling-load/high-temperature situation. It is pointed out that a long-lifetime closed-cycle, mechanical cooler is one of the most critical space technological needs.

  15. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  16. Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Akutsu, Tomotada; Chen, Dan; Khalaidovski, Aleksandr; Kimura, Nobuhiro; Koike, Shigeaki; Kume, Tatsuya; Kuroda, Kazuaki; Suzuki, Toshikazu; Tokoku, Chihiro; Yamamoto, Kazuhiro

    2014-11-01

    KAGRA is a project to construct a cryogenic interferometric gravitational wave detector in Japan. Its mirrors and the lower parts of the suspension systems will be cooled to 20 K in order to reduce thermal noise, one of the fundamental noise sources. One of the key features of KAGRA's cooling system is that it will keep the mirrors cooled without introducing vibration. This paper describes the current status of the design, manufacture and testing of the KAGRA cooling system.

  17. Overview of RICOR tactical cryogenic refrigerators for space missions

    NASA Astrophysics Data System (ADS)

    Riabzev, Sergey; Filis, Avishai; Livni, Dorit; Regev, Itai; Segal, Victor; Gover, Dan

    2016-05-01

    Cryogenic refrigerators represent a significant enabling technology for Earth and Space science enterprises. Many of the space instruments require cryogenic refrigeration to enable the use of advanced detectors to explore a wide range of phenomena from space. RICOR refrigerators involved in various space missions are overviewed in this paper, starting in 1994 with "Clementine" Moon mission, till the latest ExoMars mission launched in 2016. RICOR tactical rotary refrigerators have been incorporated in many space instruments, after passing qualification, life time, thermal management testing and flight acceptance. The tactical to space customization framework includes an extensive characterization and qualification test program to validate reliability, the design of thermal interfacing with a detector, vibration export control, efficient heat dissipation in a vacuum environment, robustness, mounting design, compliance with outgassing requirements and strict performance screening. Current RICOR development is focused on dedicated ultra-long-life, highly reliable, space cryogenic refrigerator based on a Pulse Tube design

  18. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  19. Hybrid Cryogenic Tank Construction and Method of Manufacture Therefor

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2011-01-01

    A lightweight, high-pressure cryogenic tank construction includes an inner layer comprising a matrix of fiber and resin suitable for cryogenic use. An outer layer in intimate contact with the inner layer provides support of the inner layer, and is made of resin composite. The tank is made by placing a fiber preform on a mandrel and infusing the preform with the resin. The infused preform is then encapsulated within the outer layer.

  20. Cryogenic process simulation

    SciTech Connect

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems.

  1. Cryogenic wind tunnels. II

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1987-01-01

    The application of the cryogenic concept to various types of tunnels including Ludwieg tube tunnel, Evans clean tunnel, blowdown, induced-flow, and continuous-flow fan-driven tunnels is discussed. Benefits related to construction and operating costs are covered, along with benefits related to new testing capabilities. It is noted that cooling the test gas to very low temperatures increases Reynolds number by more than a factor of seven. From the energy standpoint, ambient-temperature fan-driven closed-return tunnels are considered to be the most efficient type of tunnel, while a large reduction in the required tunnel stagnation pressure can be achieved through cryogenic operation. Operating envelopes for three modes of operation for a cryogenic transonic pressure tunnel with a 2.5 by 2.5 test section are outlined. A computer program for calculating flow parameters and power requirements for wind tunnels with operating temperatures from saturation to above ambient is highlighted.

  2. Cryogenic engineering and superconductor technology; Proceedings of the 14th International Cryogenic Engineering Conference and International Cryogenic Materials Conference, Kiev, Ukraine, June 8-12, 1992

    NASA Astrophysics Data System (ADS)

    Komarek, P.; Rizzuto, C.

    Consideration is given to application concepts of small regenerative cryocoolers in superconducting magnet systems, thermoelectric materials for Peltier cryogenic coolers, closed-cycle liquid helium refrigerators, built-in cryogenic control fixtures with electric drive, large cryogenic helium systems for superconducting magnets, low temperature adsorptive hydrogen isotope separation, cryogenic thermometry for space testing systems, performance of parallel flow He-II heat exchangers, and transient heat transfer to liquid helium at a 100 Hz pulsed heat load. Also discussed are He II cooling of a large superconducting magnet system, a computer code for simulation of thermal processes during quench in superconducting magnet windings, quench energies of multistable composite superconductors, a superconducting hydrogen-cooled switch on Nb-Sn tape, a gravity radiometer with coupled superconducting suspensions, new design of RSFQ logic family, and high-temperature Josephson junctions and their applications.

  3. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  4. Improved epoxy resin for constructing cryogenic filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Molho, R.; Soffer, L. M.

    1971-01-01

    Mechanical properties of new resin at cryogenic temperatures are substantially improved over similar composite structures utilizing conventional resins, while properties at ambient temperature are identical to conventional resin composites.

  5. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  6. Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

    2001-01-01

    An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

  7. Unique Cryogenic Welded Structures

    NASA Astrophysics Data System (ADS)

    Yushchenko, K. A.; Monko, G. G.

    2004-06-01

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  8. Unique Cryogenic Welded Structures

    SciTech Connect

    Yushchenko, K.A.; Monko, G.G.

    2004-06-28

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  9. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  10. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  11. Development of ultrathin, dimensionally stable composites for the Superconducting Super Collider (SSC) elementary particle detectors

    SciTech Connect

    Thompson, T.C.; Miller, W.O. ); Gieske, J.H. )

    1992-01-01

    The Los Alamos National Laboratory (LANL) Mechanical Engineering and Electronics Division, in partnership with Sandia National Laboratories and Programmed Composites, is advancing the development of thin-walled, high modulus short-fiber compression-molded composite materials fabrication. In this paper, we investigate component uniformity, structural integrity, thermal conductivity, and radiation resistance; discuss the scanning-electron microscopic inspection of the graphite fiber distribution and orientation, and describe the process used in selecting the reinforcement fiber length and modulus and for choosing the hydrophobic, cyanate-ester resin.

  12. High modulus filament wound vessels for cryogenic containers in spacecraft.

    NASA Technical Reports Server (NTRS)

    Simon, R. A.; Lark, R. F.

    1973-01-01

    Compared to metallic vessels, filament-wound vessels for containment of cryogens and high pressure gases offer high potential weight savings for NASA spacecraft applications. Since carbon fiber/epoxy resin composites exhibit high strength-to-density ratios, high-cycle fatigue life, and excellent strain compatibility with internal metallic liners, filament-wound carbon fiber/epoxy resin composites were evaluated for application to cryogenic internal pressure vessels. Compared to room temperature values, the cryogenic strengths of the composites were reduced by about 15% at -423 F (with the exception of one composite) while moduli increased as much as 25%. Filament-wound carbon fiber/epoxy resin vessel specimens, made by three fabricators, defined and solved problems in the processing of these friable high-modulus fibers into structurally efficient vessel specimens.

  13. Mechanics of composites at elevated and cryogenic temperatures; Proceedings of the Symposium, ASME Applied Mechanics Conference, Columbus, OH, June 16-19, 1991

    NASA Astrophysics Data System (ADS)

    Singhal, S. N.; Jones, W. F.; Herakovich, C. T.

    The present conference discusses thermomechanical response prediction for metal-matrix composites (MMCs), the effect of the matrix constitutive model on MMC residual thermal stresses, high temperature gradient effects on laminate stiffness and stress distribution, a micromechanical thermal stress analysis for space structure composites, and the mechanical behavior of SCS-6/Ti-6-4 MMC at elevated temperature. Also discussed are the computational micromechanics of woven composites, a macroscopic strength criterion for tridirectional fiber composites, the effects of heat flow on stress singularities at the interface crack, the ductility of a continuous fiber-reinforced Al-matrix MMC, the thermal buckling of symmetrically laminated composite plates, and the interfacial mechanics of SiC fiber reinforced reaction-bonded Si3N4.

  14. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  15. Robust Multilayer Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Scholtens, B. E.

    2008-03-01

    New requirements for thermal insulation include robust Multilayer insulation (MLI) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  16. Understanding the composition of nucleon spin with the PHENIX detector at RHIC

    SciTech Connect

    Deshpande, Abhay

    2015-01-12

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has just finished 14 years of operation. A significant fraction of these operating years were with polarized proton collisions at 62.4, 200, and 500 GeV center of mass, investigating various aspects of nucleon spin through longitudinal and transversely polarized collisions. These data have helped to address some of the most puzzling and fundamental questions in quantum chromodynamics including: what fraction of the nucleon’s spin originates in the gluon’s helicity contribution?, how polarized are the sea quarks?, and what if any, is the evidence for transverse motion of quarks in polarized protons? These questions have been addressed by the PHENIX detector collaboration. We present in this review highlights of the PHENIX results and discuss their impact.

  17. Understanding the composition of nucleon spin with the PHENIX detector at RHIC

    DOE PAGESBeta

    Deshpande, Abhay

    2015-01-12

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has just finished 14 years of operation. A significant fraction of these operating years were with polarized proton collisions at 62.4, 200, and 500 GeV center of mass, investigating various aspects of nucleon spin through longitudinal and transversely polarized collisions. These data have helped to address some of the most puzzling and fundamental questions in quantum chromodynamics including: what fraction of the nucleon’s spin originates in the gluon’s helicity contribution?, how polarized are the sea quarks?, and what if any, is the evidence for transverse motion of quarks inmore » polarized protons? These questions have been addressed by the PHENIX detector collaboration. We present in this review highlights of the PHENIX results and discuss their impact.« less

  18. Cryogenics Research and Engineering Experience

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2013-01-01

    Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

  19. Valve for cryogenic service

    DOEpatents

    Worwetz, H.A.

    1975-09-02

    This patent relates to a valve for use with a liquefied gas at cryogenic temperatures in which a pair of joined knife edges are bellows controlled to contact an indium alloy seat in an annular slot when flow is to be stopped. The sealing alloy may be renewed by heating in situ. (auth)

  20. Compact cryogenic inductors

    SciTech Connect

    Singh, S.K.; Carr, W.J. Jr.; Fagan, T.J. Jr.; Hordubay, T.D.; Chuboy, H.L. . Science and Technology Center)

    1994-07-01

    Power systems requiring power levels as high as a few megawatts to a few gigawatts for periods of several microseconds to several milliseconds with repetitive frequencies of a few hertz to a few kilohertz are being considered for potential space applications. The impulsive nature of the power presents the opportunity to use inductive energy storage techniques for pulse duty to enhance economic and practical considerations. An inductors must be efficient, lightweight, and reliable, and it must have high energy density if it is to be used in space based power systems. Cryogenic inductors are best studied for such an application. Parametric analyses of the two potential types of cryogenic inductors (superconducting and hyperconducting reveal that the hyperconducting (high purity aluminum)) inductor would be significantly lighter and achieve higher energy densities without the added penalty of a helium refrigeration system, thus resulting in improved overall system reliability. The lightweight hyperconducting cryogenic inductor technology is, however, in its infancy. This paper describes the required technology base which would allow the eventual application of the lightweight cryogenic inductor in space power systems, and also conclusively demonstrates the underlying principles.

  1. High Power Cryogenic Targets

    SciTech Connect

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  2. Effect of cryogenic treatment on nickel-titanium endodontic instruments

    PubMed Central

    Kim, J. W.; Griggs, J. A.; Regan, J. D.; Ellis, R. A.; Cai, Z.

    2005-01-01

    Aim To investigate the effects of cryogenic treatment on nickel-titanium endodontic instruments. The null hypothesis was that cryogenic treatment would result in no changes in composition, microhardness or cutting efficiency of nickel-titanium instruments. Methodology Microhardness was measured on 30 nickel-titanium K-files (ISO size 25) using a Vicker’s indenter. Elemental composition was measured on two instruments using X-ray spectroscopy. A nickel-titanium bulk specimen was analysed for crystalline phase composition using X-ray diffraction. Half of the specimens to be used for each analysis were subjected to a cryogenic treatment in liquid nitrogen (−196 °C) for either 3 s (microhardness specimens) or 10 min (other specimens). Cutting efficiency was assessed by recording operator choice using 80 nickel-titanium rotary instruments (ProFile® 20, .06) half of which had been cryogenically treated and had been distributed amongst 14 clinicians. After conditioning by preparing four corresponding canals, each pair of instruments were evaluated for cutting efficiency by a clinician during preparation of one canal system in vitro. A Student’s t-test was used to analyse the microhardness data, and a binomial test was used to analyse the observer choice data. Composition data were analysed qualitatively. Results Cryogenically treated specimens had a significantly higher microhardness than the controls (P < 0.001; β > 0.999). Observers showed a preference for cryogenically treated instruments (61%), but this was not significant (P = 0.21). Both treated and control specimens were composed of 56% Ni, 44% Ti, 0% N (by weight) with a majority in the austenite phase. Conclusions Cryogenic treatment resulted in increased microhardness, but this increase was not detected clinically. There was no measurable change in elemental or crystalline phase composition. PMID:15910471

  3. CESAR: Cryogenic Electronics for Space Applications

    NASA Astrophysics Data System (ADS)

    Revéret, V.; de la Broïse, X.; Fermon, C.; Pannetier-Lecoeur, M.; Pigot, C.; Rodriguez, L.; Sauvageot, J.-L.; Jin, Y.; Marnieros, S.; Bouchier, D.; Putzeys, J.; Long, Y.; Kiss, C.; Kiraly, S.; Barbera, M.; Lo Cicero, U.; Brown, P.; Carr, C.; Whiteside, B.

    2014-08-01

    Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far.

  4. Cryogenics for ground based and space-borne instrumentation

    NASA Astrophysics Data System (ADS)

    Duband, L.

    In many space sciences project cryogenic detectors are essential for the accomplishment of the scientific objectives, offering unique advantages and unmatched performance. In addition several other components such as the optics can benefit from a cryogenic cooling which reduces the radiative loading. The Service des Basses Températ- ures (SBT) of CEA Grenoble has been involved in space cryogenics for over 20 years now and features a dedicated laboratory, the Cryocoolers and Space Cryogenics group. Various cryocoolers have been developed in the past and our fields of activity focus now on four main technologies: sorption coolers, multistage pulse tubes, adiabatic demagnetization refrigerators (ADR), and cryogenic loop heat pipes. In addition work on two new concepts for ground based dilution refrigerators is also ongoing. Finally developments on various key technologies such as the heat switches, the suspension or structural systems are also carried out. These developments are mainly funded by the European Space Agency (ESA) or by the Centre National d'Études Spatiales (CNES). In this paper we mostly give an overview of the developments carried out at SBT along with several examples of other relevant systems. We use space cryogenics as a thread. However these coolers or techniques can be used on ground, particularly on remote locations where liquid cryogen are unavailable and/or where maintenance must be limited to a strict minimum. In this case they can be simplified and take advantage of on ground resources, and their cost can be significantly reduced. For most of these systems the common feature is the absence of any moving parts or any friction, which guarantees a very good reliability and make them very good candidates for space borne instruments requiring cryogenic temperatures.

  5. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  6. Low-Heat-Leak Electrical Leads For Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hooker, Matthew W.

    1994-01-01

    Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.

  7. ERTS-C (Landsat 3) cryogenic heat pipe experiment definition

    NASA Technical Reports Server (NTRS)

    Brennan, P. J.; Kroliczek, E. J.

    1975-01-01

    A flight experiment designed to demonstrate current cryogenic heat pipe technology was defined and evaluated. The experiment package developed is specifically configured for flight aboard an ERTS type spacecraft. Two types of heat pipes were included as part of the experiment package: a transporter heat pipe and a thermal diode heat pipe. Each was tested in various operating modes. Performance data obtained from the experiment are applicable to the design of cryogenic systems for detector cooling, including applications where periodic high cooler temperatures are experienced as a result of cyclic energy inputs.

  8. Modular, Rapid Propellant Loading System/Cryogenic Testbed

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter, Sr.; Jumper, Kevin

    2012-01-01

    The Cryogenic Test Laboratory (CTL) at Kennedy Space Center (KSC) has designed, fabricated, and installed a modular, rapid propellant-loading system to simulate rapid loading of a launch-vehicle composite or standard cryogenic tank. The system will also function as a cryogenic testbed for testing and validating cryogenic innovations and ground support equipment (GSE) components. The modular skid-mounted system is capable of flow rates of liquid nitrogen from 1 to 900 gpm (approx equals 3.8 to 3,400 L/min), of pressures from ambient to 225 psig (approx equals 1.5 MPa), and of temperatures to -320 F (approx equals -195 C). The system can be easily validated to flow liquid oxygen at a different location, and could be easily scaled to any particular vehicle interface requirements

  9. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  10. Electrical Model of a Carbon-Polymer Composite (CPC) Collision Detector

    PubMed Central

    Kruusamäe, Karl; Punning, Andres; Aabloo, Alvo

    2012-01-01

    We present a study of an electrical model of electromechanically active carbon-polymer composite (CPC) with carbide-derived carbon (CDC) electrodes. The major focus is on investigation of surface electrode behavior upon external bending of the material. We show that electrical impedance measured from the surface of the CDC-based CPC can be used to determine the curvature of the material and, hence, the tip displacement of a CPC laminate in a cantilever configuration. It is also shown that by measuring surface signals in the process of an actuator’s work-cycle, we obtain a self-sensing collision-detecting CPC actuator that can be considered as a counterpart of biomimetic vibrissae. PMID:22438747

  11. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  12. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  13. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  14. Cryogenic mirror analysis

    NASA Technical Reports Server (NTRS)

    Nagy, S.

    1988-01-01

    Due to extraordinary distances scanned by modern telescopes, optical surfaces in such telescopes must be manufactured to unimaginable standards of perfection of a few thousandths of a centimeter. The detection of imperfections of less than 1/20 of a wavelength of light, for application in the building of the mirror for the Space Infrared Telescope Facility, was undertaken. Because the mirror must be kept very cold while in space, another factor comes into effect: cryogenics. The process to test a specific morror under cryogenic conditions is described; including the follow-up analysis accomplished through computer work. To better illustrate the process and analysis, a Pyrex Hex-Core mirror is followed through the process from the laser interferometry in the lab, to computer analysis via a computer program called FRINGE. This analysis via FRINGE is detailed.

  15. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  16. Flexible cryogenic conduit

    SciTech Connect

    Brindza, P.D.; Wines, R.R.; Takacs, J.J.

    1999-12-21

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  17. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis; Harvey, III, Albert Destrehan; Vinegar, Harold J.

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  18. Stirling cycle cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P.

    1983-06-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  19. Cryogenic thermal diodes

    NASA Astrophysics Data System (ADS)

    Paulsen, Brandon R.; Batty, J. C.; Agren, John

    2000-01-01

    Space based cryogenic thermal management systems for advanced infrared sensor platforms are a critical failure mode to the spacecraft missions they are supporting. Recent advances in cryocooler technologies have increased the achievable cooling capacities and decreased the operating temperatures of these systems, but there is still a fundamental need for redundancy in these systems. Cryogenic thermal diodes act as thermal switches, allowing heat to flow through them when in a conduction mode and restricting the flow of heat when in an isolation mode. These diodes will allow multiple cryocoolers to cool a single infrared focal plane array. The Space Dynamics Laboratory has undertaken an internal research and development effort to develop this innovative technology. This paper briefly describes the design parameters of several prototype thermal diodes that were developed and tested. .

  20. Stirling cycle cryogenic cooler

    NASA Technical Reports Server (NTRS)

    Gasser, M. G.; Sherman, A.; Studer, P. A.; Daniels, A.; Goldowsky, M. P. (Inventor)

    1983-01-01

    A long lifetime Stirling cycle cryogenic cooler particularly adapted for space applications is described. It consists of a compressor section centrally aligned end to end with an expansion section, and respectively includes a reciprocating compressor piston and displacer radially suspended in interconnecting cylindrical housings by active magnetic bearings and has adjacent reduced clearance regions so as to be in noncontacting relationship therewith and wherein one or more of these regions operate as clearance seals. The piston and displacer are reciprocated in their housings by linear drive motors to vary the volume of respectively adjacent compression and expansion spaces which contain a gaseous working fluid and a thermal regenerator to effect Stirling cycle cryogenic cooling.

  1. A test setup for the characterization of far-infrared filters under cryogenic conditions

    NASA Astrophysics Data System (ADS)

    Birkmann, Stephan M.; Grözinger, Ulrich; Stegmaier, Jutta; Krause, Oliver; Pitz, Eckhard; Lemke, Dietrich

    2006-06-01

    The characterization and calibration of far-infrared (FIR) detectors is a delicate task that requires good knowledge of the incident flux and its spectral composition. In many test setups the FIR flux to the detectors is provided by means of an external or internal black body and a set of cold attenuation, band pass, and blocking filters. For scientific instruments (e.g. PACS aboard ESA's Herschel satellite) band pass and blocking filters are used to achieve the desired spectral throughput either as order sorting filters in spectrometers or for selecting a wavelength range in imaging cameras. In all cases a detailed knowledge of the spectral transmittance of the used filters is mandatory for an accurate calibration of the system. We have build a test platform that allows to measure the transmission of cold (T ~ 4K) filters in the far-infrared. The setup uses a dual grating monochromator with excellent spectral purity and a resolution up to 800, which is operated under a dry nitrogen atmosphere to eliminate water vapor absorption bands. An Si-bolometer is used as detector and is read out by a cryogenic low noise trans-impedance amplifier circuit with common mode rejection and a warm electronics using a lock-in amplifier and a 22 bit analog-to-digital converter. A cryogenic filter slider in the setup allows for differential measurements between filters and the use of cold order sorting filters. We present initial results for FIR cut-on and attenuation filters, demonstrating that our setup is suited to measure transmissions as low as 10 -4 over the covered wavelength range.

  2. Cryogenic readout electronics for astronomical applications

    NASA Astrophysics Data System (ADS)

    Dierickx, B.; Vermeiren, J.; Cos, S.; Faymonville, R.; Lemke, D.

    1992-12-01

    The development of the cold readout electronics for the ISOPHOT focal plane experiment on the ISO (Infrared Space Observatory) is reported. For this low background application, custom designed highly sensitive integrating charge amplifiers are used for the readout of the extrinsic IR detectors. The use of CMOS circuits allows the multiplexing and readout of a large number of detectors at the detector temperature, with a very low power dissipation. The CMOS readout amplifier/multiplexer for deep cryogenic operation is discussed. The device is able to interface directly with extrinsic photoconductive detectors cooled down to the 1.8 to 10K range. In order to observe faint objects under low light level conditions the integration capacitor is 80 fF, featuring a saturation at 1 million charge carriers for an output voltage swing of 2 V and a noise level of 0.5 mV root mean square in nondestructive readout mode. With this circuit coupled to detectors with a responsivity of around 5 to 10 A/W, it is possible to reach noise equivalent power values of 10 to the minus 17th power W/square root of Hz. The multiplexer can be operated with only 10 wires for the supplies, and the clocking of the circuits.

  3. Cryogenic turbopump bearing materials

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    1989-01-01

    Materials used for modern cryogenic turbopump bearings must withstand extreme conditions of loads and speeds under marginal lubrication. Naturally, these extreme conditions tend to limit the bearing life. It is possible to significantly improve the life of these bearings, however, by improving the fatigue and wear resistance of bearing alloys, and improving the strength, liquid oxygen compatibility and lubricating ability of the bearing cage materials. Improved cooling will also help to keep the bearing temperatures low and hence prolong the bearing life.

  4. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  5. The Cryogenic Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

    1995-01-01

    The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

  6. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  7. The state-of-the-art of cryogenic thermometry and signal conditioners and their potential for standardized space hardware

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The possibility of standard low temperature detector(s) for use in upcoming cryogenically cooled satellite and Space Shuttle payloads were investigated. These payloads operate from .3 kelvin to 300 kelvin. Standard detectors were selected and matching signal conditioning equipment compatible with the selected detector, typical spacecraft voltages, typical spacecraft telemetry systems, and the radiation encountered by a typical Earth orbiting spacecraft. Work statements to better define and advance detector performance were presented.

  8. Cryogenic evaluation of epoxy bond strength

    NASA Astrophysics Data System (ADS)

    Albritton, N.; Young, W.

    The purpose of the work presented here was to determine methods of optimizing the adhesion of a particular epoxy (CTD-101K, Composite Technology Development Inc.) to a particular nickel-based alloy substrate (Incoloy ® 908, Inco Alloys International) for cryogenic applications. Initial efforts were focused on surface preparation of the substrate material via various mechanical and chemical cleaning techniques. Test samples, fabricated to simulate the conduit-to-insulation interface, were put through a mock heat treat and vacuum/pressure impregnation process. Samples were compression/shear load tested to compare the bond strengths at room temperature and liquid nitrogen temperature. The resulting data indicate that acid etching creates a higher bond strength than the other tested techniques and that the bond formed is stronger at cryogenic temperatures than at room temperature. A description of the experiment along with the resulting data is presented here.

  9. Vapor cooled current lead for cryogenic electrical equipment

    DOEpatents

    Vansant, James H.

    1983-01-01

    Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

  10. Low thermal flux glass-fiber tubing for cryogenic service.

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Pharo, T. J., Jr.; Phillips, J. M.

    1972-01-01

    Study of thin metallic liners which provide leak-free service in cryogenic propulsion plumbing systems and are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The composite tube is lightweight, strong, and has a very low thermal flux. The resultant reduced boiloff of stored cryogenic propellants yields a substantial weight savings for long-term missions (seven days or greater). Twelve styles of tubing ranging from 1/2 to 5 in. in diameter were fabricated and tested with excellent results for most of the concepts at operating temperatures from +70 to -423 F and operating pressures up to 3000 psi.

  11. Superconducting THz Camera with GaAs-JFET Cryogenic Readout Electronics

    NASA Astrophysics Data System (ADS)

    Matsuo, Hiroshi; Hibi, Yasunori; Suzuki, Toyoaki; Naruse, Masato; Noguchi, Takashi; Sekimoto, Yutaro; Uzawa, Yoshinori; Nagata, Hirohisa; Ikeda, Hirokazu; Ariyoshi, Seiichiro; Otani, Chiko; Nitta, Tom; Qi-jun, Yao, Fujiwara, Mikio

    2009-12-01

    We describe the development of large format array of superconducting tunnel junction detectors that is readout by SONY GaAs-JFET cryogenic integrated circuits. High quality SIS photon detectors have high dynamic impedance that can be readout by low gate leakage GaAs-JFET circuits. Our imaging array design, with niobium SIS photon detectors and GaAs-JFET cryogenics electronics, uses integrating amplifiers, multiplexers and shift-registers to readout large number of pixels that is similar to CMOS digital cameras. We have designed and fabricated GaAs-JFET cryogenic integrated circuits, such as AC-coupled capacitive trans-impedance amplifier, multiplexers with sample-and-holds and shift-registers, for 32-channel readout module. The Advanced Technology Center of National Astronomical Observatory of Japan have started extensive development program for large format array of SIS photon detectors.

  12. Surface Tension Confines Cryogenic Liquid

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.; Schein, Michael E.

    1989-01-01

    New type of Dewar provides passive, constant-temperature cryogenic cooling for scientific instruments under normal-to low-gravity conditions. Known as Surface-Tension-Contained Liquid Cryogen Cooler (STCLCC), keeps liquid cryogen in known location inside the Dewar by trapping liquid inside spongelike material. Unique sponge material fills most of volume of inner tank. Sponge is all-silica, open-cell material similar to that used for Space Shuttle thermal-protection tiles.

  13. Experiments on Cryogenic Complex Plasma

    SciTech Connect

    Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M.

    2009-11-10

    Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

  14. SRF Test Areas Cryogenic System Controls Graphical User Interface

    SciTech Connect

    DeGraff, B.D.; Ganster, G.; Klebaner, A.; Petrov, A.D.; Soyars, W.M.; /Fermilab

    2011-06-09

    Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users.

  15. Precision Cryogenic Dilatometer

    NASA Technical Reports Server (NTRS)

    Dudik, Matthew; Halverson, Peter; Levine-West, Marie; Marcin, Martin; Peters, Robert D.; Shaklan, Stuart

    2005-01-01

    A dilatometer based on a laser interferometer is being developed to measure mechanical creep and coefficients of thermal expansion (CTEs) of materials at temperatures ranging from ambient down to 15 K. This cryogenic dilatometer has been designed to minimize systematic errors that limit the best previously available dilatometers. At its prototype stage of development, this cryogenic dilatometer yields a strain measurement error of 35 ppb or 1.7 ppb/K CTE measurement error for a 20-K thermal load, for low-expansion materials in the temperature range from 310 down to 30 K. Planned further design refinements that include a provision for stabilization of the laser and addition of a high-precision sample-holding jig are expected to reduce the measurement error to 5-ppb strain error or 0.3-ppb/K CTE error for a 20-K thermal load. The dilatometer (see figure) includes a common-path, differential, heterodyne interferometer; a dual-frequency, stabilized source bench that serves as the light source for the interferometer; a cryogenic chamber in which one places the material sample to be studied; a cryogenic system for cooling the interior of the chamber to the measurement temperature; an ultra-stable alignment stage for positioning the chamber so that the sample is properly positioned with respect to the interferometer; and a data-acquisition and control system. The cryogenic chamber and the interferometer portion of the dilatometer are housed in a vacuum chamber on top of a vibration isolating optical table in a cleanroom. The sample consists of two pieces a pillar on a base both made of the same material. Using reflections of the interferometer beams from the base and the top of the pillar, what is measured is the change in length of the pillar as the temperature in the chamber is changed. In their fundamental optical and electronic principles of operation, the laser light source and the interferometer are similar to those described in Common-Path Heterodyne

  16. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  17. Characterization of IRAS doped silicon detectors

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Data are presented from a range of operating conditions which include background photo flux, operating temperature, and frequency. Each detector is equipped with a load resistor, a cryogenic field effect transistor preamplifier, and a temperature sensor. Data are also presented of detector signal, noise spectra, noise equivalent power, and spectral response.

  18. Space Cryogenics Workshop, 10th, Cleveland, OH, June 18-20, 1991, Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The present workshop on cryogenics discusses the anomalous on-orbit behavior of the Cosmic Background Explorer Dewar, the SHOOT orbital operations, cooling options for Astromag, and space IR telescope facility mission and cryogenic design. Attention is given to the design of a spaceworthy adiabatic demagnetization refrigerator, the evaluation of metal hydride compressors for applications in Joule-Thomson cryocoolers, diaphragm Stirling cryocooler developments, and a computer simulation model for Stirling refrigerators. Topics addressed include low-gravity thermal stratification of liquid helium on SHOOT, a screening program to select a resin for gravity probe-B composites, a simplified generic cryostat thermal model for predicting cryogen mass and lifetime, and the effect of gas mass flux on cryogenic liquid jet breakup. Also discussed are damping criteria for thermal acoustic oscillations in slush and liquid hydrogen systems, an STS-based cryogenic fluid management experiment, and the design and testing of a cryogenic mixer pump.

  19. Electromechanical Materials for Cryogenic Use

    NASA Technical Reports Server (NTRS)

    Leidinger, Peter; Pilgrim, Steven M.

    1996-01-01

    Electromechanical materials can be used in smart sensor and actuator devices. Yet none performing at low temperatures are available. To meet this need, Pb((MgNi)(1/3)Ta(2/3))03 was synthesized as an electrostrictive ceramic for applications in cryogenic environments. Employing the columbite precursor route, samples with 0% to 100% Ni substitution for Mg were prepared, but only samples with Ni-substitutions less than or equal to 20% yielded primarily the desired perovskite phase. For these compositions the temperature of highest permittivity decreased linearly with increasing Ni content to yield a minimum value of -124 C for 20% Ni-substitution. This composition showed good relaxor dielectric behavior with a maximum relative permittivity of 5890 at 1 kHz. Additionally, in samples with excess MgO, the magnitude of permittivity doubled. In this effort, Pb((MgNi)(1/3)Ta(2/3))03 (PMNiTa) was fabricated to lower its transition temperature by substituting Ni for Mg successively.

  20. A versatile detector system to measure the change states, mass compositions and energy spectra of interplanetary and magnetosphere ions

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1977-01-01

    An instrument is described for measuring the mass and charge state composition as well as the energy spectra and angular distributions of 0.5 to 350 kev/charge ions in interplanetary space and in magnetospheres of planets such as Jupiter and earth. Electrostatic deflection combined with a time-of-flight and energy measurement allows three-parameter analysis of output signals from which the mass, charge states, and energy are determined. Post-acceleration by 30 kV extends the energy range of the detector system into the solar wind and magnetosphere plasma regime. Isotopes of H and He are easily resolved as are individual elements up to Ne and the dominant elements up to and including Fe. This instrument has an extremely large dynamic range in intensity and is sensitive to rare elements even in the presence of high intensity radiation, and is adapted for interplanetary, deep-space, and out-of-the-ecliptic missions, as well as for flights on spacecraft orbiting Jupiter and earth.

  1. Research on the traceability of absolute optical fiber power to cryogenic radiometer

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Li, Jianwei; Gan, Haiyong; Zhang, Zhixin

    2015-10-01

    Optical fiber power is an important physical quantity for optical fiber communication measurement. Currently, the absolute optical fiber power is traceable to absolute radiometer, such as electrically calibrated radiometer, and cryogenic radiometer. For optical fiber power transfer, the primary standard of NIM is the cryogenic radiometer that has an uncertainty of 2 parts in 104. Because most cryogenic radiometers are designed to be used with collimated beams rather than divergent beams from an optical fiber; therefore transfer standards should be well designed for optical power measurement using the beam geometry correction. We designed a trap detector using for optical fiber power transfer. One can omit the beam geometry correction from an optical fiber using his design. We present a fiber power measurement using a planar detector compared with this trap detector, which are traceable to the primary standard (cryogenic radiometer). The difference between the comparison shows that the trap detector is suitable for absolute fiber power measurement, meanwhile optical fiber power transfer using planar detectors should be corrected when transferred from cryogenic radiometer.

  2. Cryogenic Cooling for Myriad Applications-A STAR Is Born

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

  3. Microminiature linear split Stirling cryogenic cooler for portable infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Vilenchik, H.; Riabzev, S.; Pundak, N.

    2007-04-01

    Novel tactics employed in carrying out military and antiterrorist operations call for the development of a new generation of warfare, among which sophisticated portable infrared (IR) imagers for surveillance, reconnaissance, targeting and navigation play an important role. The superior performance of such imagers relies on novel optronic technologies and maintaining the infrared focal plane arrays at cryogenic temperatures using closed cycle refrigerators. Traditionally, rotary driven Stirling cryogenic engines are used for this purpose. As compared to their military off-theshelf linear rivals, they are lighter, more compact and normally consume less electrical power. Latest technological advances in industrial development of high-temperature (100K) infrared detectors initialized R&D activity towards developing microminiature cryogenic coolers, both of rotary and linear types. On this occasion, split linearly driven cryogenic coolers appear to be more suitable for the above applications. Their known advantages include flexibility in the system design, inherently longer life time, low vibration export and superior aural stealth. Moreover, recent progress in designing highly efficient "moving magnet" resonant linear drives and driving electronics enable further essential reduction of the cooler size, weight and power consumption. The authors report on the development and project status of a novel Ricor model K527 microminiature split Stirling linear cryogenic cooler designed especially for the portable infrared imagers.

  4. Cryogenic Flow Sensor

    NASA Technical Reports Server (NTRS)

    Justak, John

    2010-01-01

    An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

  5. Cryogenic insulation development

    NASA Technical Reports Server (NTRS)

    Leonhard, K. E.

    1972-01-01

    Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

  6. Cryogenic support member

    DOEpatents

    Niemann, Ralph C.; Gonczy, John D.; Nicol, Thomas H.

    1987-01-01

    A cryogenic support member is comprised of a non-metallic rod having a depression in at least one end and a metallic end connection assembled to the rod. The metallic end connection comprises a metallic plug which conforms to the shape and is disposed in the depression and a metallic sleeve is disposed over the rod and plug. The plug and the sleeve are shrink-fitted to the depression in the rod to form a connection good in compression, tension and bending.

  7. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  8. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  9. Cryogenic Propellant Scavenging

    NASA Technical Reports Server (NTRS)

    Louie, B.; Kemp, N. J.; Daney, D. E.

    1985-01-01

    A detailed description of a computer model that has been developed for assessing the feasibility of low g cryogen propellant scavenging from the space shuttle External Tank (ET) is given. Either pump-assisted or pressure-induced propellant transfer may be selected. The program will accept a wide range of input variables, including the fuel to be transferred (LOX or LH2), heat leaks, tank temperatures, and piping and equipment specifications. The model has been parametrically analyzed to determine initial design specification for the system.

  10. FRIB cryogenic distribution system

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D.; Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F.

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  11. Kodak AMSD Cryogenic Test Plans

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  12. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2015-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  13. An FPGA-based instrumentation platform for use at deep cryogenic temperatures.

    PubMed

    Conway Lamb, I D; Colless, J I; Hornibrook, J M; Pauka, S J; Waddy, S J; Frechtling, M K; Reilly, D J

    2016-01-01

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications. PMID:26827335

  14. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.; Pauka, S. J.; Waddy, S. J.; Frechtling, M. K.; Reilly, D. J.

    2016-01-01

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  15. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  16. Performance of the SBRC 190, a cryogenic multiplexer for photoconductor arrays

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie L.; Koerber, C. T.; Mason, C. G.; Simpson, J. P.; Moore, E. M.; Witteborn, F. C.; Farhoomand, J.; Erickson, E. F.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The SBRC 190 cryogenic readouts were developed for use with far-infrared arrays of Ge:Sb and Ge:Ga photoconductor detectors. The SBRC 190 provides an AC-coupled CTIA (capacitance transimpedance amplifier) unit cell for each detector and multiplexes up to 32 detectors. This paper presents our test results characterizing and optimizing the performance of these novel devices. We will discuss their basic behavior in addition to describing the trade-offs inherent in different sampling strategies.

  17. Characterization of SiPM for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Cervi, T.; Bonesini, M.; Falcone, A.; Menegolli, A.; Raselli, G. L.; Rossella, M.; Simonetta, M.; Torti, M.

    2016-07-01

    The development of detectors based on liquefied noble gas (LAr, LXe) is mandatory for experiments dedicated to study physics beyond the Standard Model. For this purpose, it is fundamental to detect the Vacuum Ultra Violet (VUV) scintillation light, produced after the passage of ionizing particles inside the detector sensitive volume, to be used for trigger, timing and calorimetric purposes. Besides the traditional cryogenic Photo-Multiplier Tubes (PMTs), one possibility is to adopt Silicon Photo-Multipliers (SiPMs). We present a comparison of the performance of a SiPM (mod. ASD-NUV3S-P Low Afterpulse) at various cryogenic temperatures, from 60 K up to room temperature, with particular emphasis on the LAr and LXe temperatures. SiPM were characterized in terms of breakdown voltage, gain, pulse shape response, dark count rate and correlated noise.

  18. A lens-coupled scintillation counter in cryogenic environment

    NASA Astrophysics Data System (ADS)

    Stoykov, A.; Scheuermann, R.; Amato, A.; Bartkowiak, M.; Konter, J. A.; Rodriguez, J.; Sedlak, K.

    2011-02-01

    In this work we present an elegant solution for a scintillation counter to be integrated into a cryogenic system. Its distinguishing feature is the absence of a continuous light guide coupling the scintillation and the photodetector parts, operating at cryogenic and room temperatures respectively. The prototype detector consists of a plastic scintillator with glued-in wavelength-shifting fiber located inside a cryostat, a Geiger-mode Avalanche Photodiode (G-APD) outside the cryostat, and a lens system guiding the scintillation light re-emitted by the fiber to the G-APD through optical windows in the cryostat shields. With a 0.8 mm diameter multiclad fiber and a 1 mm active area G-APD the coupling efficiency of the ``lens light guide" is about 50 %. A reliable performance of the detector down to 3 K is demonstrated.

  19. Cryogenics maintenance strategy

    NASA Astrophysics Data System (ADS)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  20. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  1. Cryogenic fluid management experiment

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.

    1981-01-01

    The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.

  2. Performance of multiplexed SQUID readout for Cryogenic Sensor Arrays

    NASA Astrophysics Data System (ADS)

    Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Martinis, John M.; Reintsema, C. D.; Allen, C. A.; Bergman, D. I.; Moseley, S. H.; Shafer, R.

    2000-04-01

    We report on the implementation of a multiplexer that uses superconducting quantum interference devices (SQUIDs) to read out low-impedance cryogenic detectors. Using prototype chips, a circuit was built which interfaces eight input SQUID channels with a close-packed array of eight transition-edge sensor (TES) infrared bolometers. Circuit elements were measured and crosstalk specifications are reported. Digital feedback is employed to flux-lock a single element in the array of SQUIDs.

  3. Ferritic Fe-Mn alloy for cryogenic applications

    DOEpatents

    Hwang, Sun-Keun; Morris, Jr., John W.

    1979-01-01

    A ferritic, nickel-free alloy steel composition, suitable for cryogenic applications, which consists essentially of about 10-13% manganese, 0.002-0.01% boron, 0.1-0.5% titanium, 0-0.05% aluminum, and the remainder iron and incidental impurities normally associated therewith.

  4. Cryogenic treatment of steels. (Latest citations from Metadex). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations concerning the use of cryogenic temperatures to improve the properties of steels. Stainless steels, tool steels, electrical steels, and metal matrix composites are discussed. Citations cover fatigue life, wear resistance, tool life, and increased high temperature ductility. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Cryogenic treatment of steels. (Latest citations from Metadex). Published Search

    SciTech Connect

    1998-03-01

    The bibliography contains citations concerning the use of cryogenic temperatures to improve the properties of steels. Stainless steels, tool steels, electrical steels, and metal matrix composites are discussed. Citations cover fatigue life, wear resistance, tool life, and increased high temperature ductility. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Composite Tank Technologies Development

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    The need for cryogenic fuel tanks continues to expand, and research at NASA Marshall Space Flight Center (MSFC) is addressing these needs. This viewgraph presentation provides an overview of composite tank development, including tank testing, cryogenic materials research, tank liners, and dual-walled tanks, at MSFC.

  7. Cryogenic Vacuum Insulation for Vessels and Piping

    NASA Technical Reports Server (NTRS)

    Kogan, A.; Fesmire, J.; Johnson, W.; Minnick, J.

    2010-01-01

    Cryogenic vacuum insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Three areas of consideration are vital to achieve the optimum result: materials, representative test conditions, and engineering approach for the particular application. Deficiency in one of these three areas can prevent optimum performance and lead to severe inefficiency. Materials of interest include micro-fiberglass, multilayer insulation, and composite arrangements. Cylindrical liquid nitrogen boil-off calorimetry methods were used. The need for standard thermal conductivity data is addressed through baseline testing. Engineering analysis and design factors such as layer thickness, density, and practicality are also considered.

  8. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  9. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  10. Cryogenic grinding technology for traditional Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Li, Shimo; Ge, Shuangyan; Huang, Zhongping; Wang, Qun; Zhao, Haoping; Pan, Huaiyu

    The fundamental principle of cryogenic grinding (cryogrinding) for Chinese herbal medicine is similar to that of grinding methods for conventional materials, but the compositions are very complex, containing aromatics of high volatility, oils and fats, which are easily oxidized. Using liquid nitrogen or liquid air as the cryogen, all of these thermosensitive Chinese herbal medicines can be ground below their brittle temperature. The colour and other properties of the products of cryo-grinding will not be changed and the flavour and nutrition of the medicines will not be lost.

  11. Cryogenic Chamber for Servo-Hydraulic Materials Testing

    NASA Technical Reports Server (NTRS)

    Francis, John J.; Tuttle, James

    2009-01-01

    A compact cryogenic test chamber can be cooled to approximately 5 to 6 Kelvin for materials testing. The system includes a temperature controller and multiple sensors to measure specimen temperature at different locations. The testing chamber provides a fast and easy method to perform materials testing at lower than liquid nitrogen temperature (77 K). The purpose of the chamber is to cool a composite lap shear specimen to approximately 20 K so that tensile test force and displacement data may be acquired at this cryogenic temperature range.

  12. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  13. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  14. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  15. Cryogenic expansion machine

    DOEpatents

    Pallaver, Carl B.; Morgan, Michael W.

    1978-01-01

    A cryogenic expansion engine includes intake and exhaust poppet valves each controlled by a cam having adjustable dwell, the valve seats for the valves being threaded inserts in the valve block. Each cam includes a cam base and a ring-shaped cam insert disposed at an exterior corner of the cam base, the cam base and cam insert being generally circular but including an enlarged cam dwell, the circumferential configuration of the cam base and cam dwell being identical, the cam insert being rotatable with respect to the cam base. GI CONTRACTUAL ORIGIN OF THE INVENTION The invention described herein was made in the course of, or under, a contract with the UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION.

  16. Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Jones, David

    2011-01-01

    The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

  17. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

    1983-01-04

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

  18. Cryogenic cooler apparatus

    DOEpatents

    Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.

    1983-01-01

    A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

  19. Cryogenic system for COMET experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi

    2016-07-01

    Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.

  20. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  1. Detectors for Tomorrow's Instruments

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  2. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants dimethylmethylphosphonate and diisopropylmethylphosponate.

    PubMed

    Hopkins, A R; Lewis, N S

    2001-03-01

    Arrays of conducting polymer composite vapor detectors have been evaluated for performance in the presence of the nerve agent simulants dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP). Limits of detection for DMMP on unoptimized carbon black/ organic polymer composite vapor detectors in laboratory air were estimated to be 0.047-0.24 mg m(-3). These values are lower than the EC50 value (where EC50 is the airborne concentration sufficient to induce severe effects in 50% of those exposed for 30 min) for the nerve agents sarin (methylphosphonofluoridic acid, 1-methylethyl ester) and soman (methylphosphonofluoridic acid, 1,2,2-trimethylpropyl ester), which has been established as approximately 0.8 mg m(-3). Arrays of these vapor detectors were easily able to resolve signatures due to exposures to DMMP from those due to DIMP or due to a variety of other test analytes (including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar, and tetrahydrofuran) in a laboratory air background. In addition, DMMP at 27 mg m(-3) could be detected and differentiated from the signatures of the other test analytes in the presence of backgrounds of potential interferences, including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar, and tetrahydrofuran, even when these interferents were present in much higher concentrations than that of the DMMP or DIMP being detected. PMID:11289432

  3. Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants Dimethylmethylphosphonate and Diisopropy

    NASA Astrophysics Data System (ADS)

    Hopkins, Alan R.; Lewis, Nathan S.

    2002-06-01

    Arrays of conducting polymer composite vapor detectors have been evaluated for performance in the presence of the nerve agent simulants dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP). Limits of detection for DMMP on unoptimized carbon black-organic polymer composite vapor detectors in laboratory air were estimated to be 0.047-0.24 mg m-3. These values are lower than the EC50 value for the nerve agents sarin (methylphosphonofluoridic acid, (1-methylethyl) ester) and soman, which have been established as equals 0.8 mg m-3. Arrays of these vapor detectors were easily able to resolve signatures due to exposures to DMMP from those due to DIMP or due to a variety of other test analytes in a laboratory air background. In addition, DMMP at 27 mg m-3 could be detected and differentiated from the signatures of the other test analytes in the presence of backgrounds of potential interferents in the background ambient, including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar and tetrahydrofuran, even when these interferents were present in much higher concentrations than that of the DMMP or DIMP being detected.

  4. Introduction to cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    The background to the evolution of the cryogenic wind tunnel is outlined, with particular reference to the late 60's/early 70's when efforts were begun to re-equip with larger wind tunnels. The problems of providing full scale Reynolds numbers in transonic testing were proving particularly intractible, when the notion of satisfying the needs with the cryogenic tunnel was proposed, and then adopted. The principles and advantages of the cryogenic tunnel are outlined, along with guidance on the coolant needs when this is liquid nitrogen, and with a note on energy recovery. Operational features of the tunnels are introduced with reference to a small low speed tunnel. Finally the outstanding contributions are highlighted of the 0.3-Meter Transonic Cryogenic Tunnel (TCT) at NASA Langley Research Center, and its personnel, to the furtherance of knowledge and confidence in the concept.

  5. SPICA sub-Kelvin cryogenic chains

    NASA Astrophysics Data System (ADS)

    Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.

    2012-04-01

    SPICA, a Japanese led mission, is part of the JAXA future science program and is planned for launch in 2018. SPICA will perform imaging and spectroscopic observations in the mid- and far-IR waveband, and is developing instrumentation spanning the 5-400 μm range. The SPICA payload features several candidate instruments, some of them requiring temperature down to 50 mK. This is currently the case for SAFARI, a core instrument developed by a European-based consortium, and BLISS proposed by CALTECH/JPL in the US. SPICA's distinctive feature is to actively cool its telescope to below 6 K. In addition, SPICA is a liquid cryogen free satellite and all the cooling will be provided by radiative cooling (L2 orbit) down to 30 K and by mechanical coolers for lower temperatures. The satellite will launch warm and slowly equilibrate to its operating temperatures once in orbit. This warm launch approach makes it possible to eliminate a large liquid cryogen tank and to use the mass saved to launch a large diameter telescope (3.2 m). This 4 K cooled telescope significantly reduces its own thermal radiation, offering superior sensitivity in the infrared region. The cryogenic system that enables this warm launch/cooled telescope concept is a key issue of the mission. This cryogenic chain features a number of cooling stages comprising passive radiators, Stirling coolers and several Joule Thomson loops, offering cooling powers at typically 20, 4.5, 2.5 and 1.7 K. The SAFARI and BLISS detectors require cooling to temperatures as low as 50 mK. The instrument coolers will be operated from these heat sinks. They are composed of a small demagnetization refrigerator (ADR) pre cooled by either a single or a double sorption cooler, respectively for SAFARI and BLISS. The BLISS cooler maintains continuous cooling at 300 mK and thus suppresses the thermal equilibrium time constant of the large focal plane. These hybrid architectures allow designing low weight coolers able to reach 50 mK. Because

  6. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  7. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  8. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  9. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  10. Latest developments in cryogenic safety

    NASA Astrophysics Data System (ADS)

    Webster, T. J.

    1983-03-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  11. Latest developments in cryogenic safety

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1983-01-01

    The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

  12. Cryogenic controls for Fermilab's SRF cavities and test facility

    SciTech Connect

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

    2007-07-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  13. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  14. Statistical Analysis of Yarn Feature Parameters in C/Epoxy Plain-Weave Composite Using Micro CT with High-Resolution Lens-Coupled Detector

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Zhong-wei

    2016-08-01

    C/Epoxy plain-weave composite is difficult to clear imaging in Micro CT with flat panel detector due to the similar atomic numbers of component materials. To solve this problem, a new Micro CT equipment with high-resolution lens-coupled detector is used to reconstruct 3D images of C/Epoxy. Slice data correction with ellipse projection is used to acquire real yarn normal cross-section information. A reference period method suitable for plain-weave composite is then detailed to evaluate statistical properties of yarn feature parameters. In the process of determination of real extreme slices, dislocation phenomenon existed in the laminated composite is discovered. Several possible reasons caused this phenomenon are discussed. Systematic trends, standard deviations and correlation lengths of stochastic deviations with original and corrected data are evaluated respectively by the application of reference period method. The statistical results show that mean out-of-plane yarn waviness, semi-axes, cross-section area and aspect ratio exhibit periodic characteristics, and the maximum effect of slice data correction on all statistical properties of feature parameters is twist angle.

  15. Statistical Analysis of Yarn Feature Parameters in C/Epoxy Plain-Weave Composite Using Micro CT with High-Resolution Lens-Coupled Detector

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Wang, Zhong-wei

    2016-02-01

    C/Epoxy plain-weave composite is difficult to clear imaging in Micro CT with flat panel detector due to the similar atomic numbers of component materials. To solve this problem, a new Micro CT equipment with high-resolution lens-coupled detector is used to reconstruct 3D images of C/Epoxy. Slice data correction with ellipse projection is used to acquire real yarn normal cross-section information. A reference period method suitable for plain-weave composite is then detailed to evaluate statistical properties of yarn feature parameters. In the process of determination of real extreme slices, dislocation phenomenon existed in the laminated composite is discovered. Several possible reasons caused this phenomenon are discussed. Systematic trends, standard deviations and correlation lengths of stochastic deviations with original and corrected data are evaluated respectively by the application of reference period method. The statistical results show that mean out-of-plane yarn waviness, semi-axes, cross-section area and aspect ratio exhibit periodic characteristics, and the maximum effect of slice data correction on all statistical properties of feature parameters is twist angle.

  16. A cryogenic slab CO laser

    SciTech Connect

    Ionin, Andrei A; Kozlov, A Yu; Seleznev, L V; Sinitsyn, D V

    2009-03-31

    A compact capacitive transverse RF-discharge-pumped slab CO laser with cryogenically cooled electrodes, which operates both in the cw and repetitively pulsed regimes, is fabricated. The laser operation is studied in the free running multifrequency regime at the vibrational - rotational transitions of the fundamental (V + 1 {yields} V) vibrational bands of the CO molecule in the spectral region from 5.1 to 5.4 {mu}m. Optimal operation conditions (gas mixture composition and pressure, RF pump parameters) are determined. It is shown that only gas mixtures with a high content of oxygen (up to 20% with respect to the concentration of CO molecules) can be used as an active medium of this laser. It is demonstrated that repetitively pulsed pumping is more efficient compared to cw pumping. In this case, quasi-cw lasing regime can be obtained. The maximum average output power of {approx}12 W was obtained for this laser operating on fundamental bands and its efficiency achieved {approx}14 %. The frequency-selective operation regime of the slab RF-discharge-pumped CO laser was realised at {approx} 100 laser lines in the spectral region from 5.0 to 6.5 {mu}m with the average output power of up to several tens of milliwatts in each line. Lasing at the transitions of the first vibrational overtone (V + 2 {yields} V) of the CO molecule is obtained in the spectral region from 2.5 to 3.9 {mu}m. The average output power of the overtone laser achieved 0.3 W. All the results were obtained without the forced gas mixture exchange in the discharge chamber. Under fixed experimental conditions, repetitively pulsed lasing (with fluctuations of the output characteristics no more than {+-}10 %) was stable for more than an hour. (lasers)

  17. Flat structure cooled detector assembly

    NASA Astrophysics Data System (ADS)

    Reeb, Nathalie; Coutures, Bernard; Gerin, Nicolas; Reale, S.; Guille, B.

    1994-07-01

    Long wavelength IR detectors need to be cooled at cryogenic temperature to achieve high performances. This specific need makes it difficult to integrate the detector because of high cost of dewar and cooling device designed to fulfill severe vibration conditions. A new era for IR detection could begin with flat structures allowing intrinsic vibration resistance for detectors to be plugged on electronics board. Sofradir has carried out a study about feasibility of detector dewar assembly including a flat Joule-Thomson cooler with porous heat exchanger in cooperation with Air Liquide. The aim of this paper is to put forward the interest of such a product. The very good results achieved demonstrate a promising future for such flat structure detector assembly.

  18. Subminiature infrared detector translation stage

    NASA Technical Reports Server (NTRS)

    Bell, Alan D.

    1989-01-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  19. D0 Cryogenic System Superconducting Solenoid Platform I/O

    SciTech Connect

    Markley, D.; /Fermilab

    1997-10-09

    The Dzero detector is scheduled for a major upgrade between 1996 and 1999. This note describes the specifications and configuration of the physical Input/Output devices and instrumentation of the 2 Tesla Superconducting Solenoid. The Solenoid and the VLPC cryostats both reside on the detector platform and are cooled by the Dzero Helium Refrigerator. The cryogenic process control s for these two components will be an extension of the TI565 programmable logic controller system used for other Dzero cryogenic controls. Two Input/Output Bases will be installed on the Dzero detector platform near the cryo corner. These I/O bases will handle all the sensor input and process control output devices from the Solenoid and VLPC cryostats. Having the I/O bases installed on the detector platform makes the connecting cabl ing to the platform much easier . All the instruments are wired directly to the I/O base. The bases have only one communications network cabl e that must be routed off the platform to the South side of the Dzero building.

  20. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    SciTech Connect

    Khusainov, A. K.; Iwanczyk, J. S.; Patt, B. E.; Prirogov, A. M.; Vo, Duc T.

    2001-01-01

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  1. Cryogenic wafer-level MWIR camera: laboratory demonstration

    NASA Astrophysics Data System (ADS)

    Druart, G.; De La Barrière, F.; Chambon, M.; Guérineau, N.; Lasfargues, G.; Fendler, M.

    2013-06-01

    We present a compact infrared cryogenic multichannel camera with a wide field of view equal to 120°. By merging the optics with the detector, the concept has to be compatible with both cryogenic constraints and wafer-level fabrication. For this, we take advantage of the progress in micro-optics to design a multichannel optical architecture directly integrated on the detector. This wafer-level camera uses state of art microlenses with a high sag height. The additional mass of the optics is sufficiently small to be compatible with the cryogenic environment of the Dewar. The performance of this camera will be discussed. Its characterization has been carried out in terms of modulation transfer function and noise equivalent temperature difference (NETD). The optical system is limited by the diffraction. By cooling the optics, we achieve a very low NETD equal to 15 mK compared with traditional infrared cameras. A postprocessing algorithm that aims at reconstructing a well-sampled image from the set of undersampled raw subimages produced by the camera is proposed and validated on experimental images.

  2. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  3. Cryogenic Electric Motor Tested

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  4. Dual Cryogenic Capacitive Density Sensor

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

    2009-01-01

    A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

  5. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  6. Cryogenic, polar lunar observatories

    NASA Technical Reports Server (NTRS)

    Burke, J. D.

    1988-01-01

    In a geological vein, it is noted that some permanently shadowed regions on the Moon could provide natural passive cooling environments for astronomical detectors. A telescope located in one of the low, dark, polar regions could operate with only passive cooling at 40 K or perhaps lower, depending on how well it could be insulated from the ground and surrounded by radiation shields to block heat and light from any nearby warm or illuminated objects.

  7. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  8. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  9. Experimental Observations on Material Damping at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Peng, Chia-Yen; Levine, Marie; Shido, Lillian; Leland, Robert

    2004-01-01

    This paper describes a unique experimental facility designed to measure damping of materials at cryogenic temperatures for the Terrestrial Planet Finder (TPF) mission at the Jet Propulsion Laboratory. The test facility removes other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device. Damping data reported herein are obtained for materials (Aluminum, Aluminum/Terbium/Dysprosium, Titanium, Composites) vibrating in free-free bending modes with low strain levels (< 10(exp -6) ppm). The fundamental frequencies of material samples are ranged from 14 to 202 Hz. To provide the most beneficial data relevant to TPF-like precision optical space missions, the damping data are collected from room temperatures (around 293 K) to cryogenic temperatures (below 40 K) at unevenly-spaced intervals. More data points are collected over any region of interest. The test data shows a significant decrease in viscous damping at cryogenic temperatures. The cryogenic damping can be as low as 10(exp -4) %, but the amount of the damping decrease is a function of frequency and material. However, Titanium 15-3-3-3 shows a remarkable increase in damping at cryogenic temperatures. It demonstrates over one order of magnitude increase in damping in comparison to Aluminum 6061-T6. Given its other properties (e.g., good stiffness and low conductivity) this may prove itself to be a good candidate for the application on TPF. At room temperatures, the test data are correlated well with the damping predicted by the Zener theory. However, large discrepancies at cryogenic temperatures between the Zener theory and the test data are observed.

  10. Different ways of reducing vibrations induced by cryogenic instruments

    NASA Astrophysics Data System (ADS)

    Lizon, J. L.; Jakob, G.; de Marneffe, B.; Preumont, A.

    2010-07-01

    The infrared instruments and most of the detectors have to be operated at cryogenics temperatures. Today, this is generally achieved using mechanical coolers. Compared to traditional nitrogen systems, these coolers, which large implementation started 15 years ago, have the advantage of reducing considerably the operation effort at the observatories. Depending of the technology, these coolers are all generating a level of vibration which in most of the cases is not compatible with the extremely high stability requirement of the large size telescope. This paper described different ways which have been used at ESO to reduce the vibration caused by the large IR instruments. We show how we reached the goal to have the cryogenic instruments so quiet that they do not affect the operation of the interferometry mode of the VLT. The last section of the paper reports on a unique system based on a counter vibration principle.

  11. Overflow sensor for cryogenic-fluid vessels

    NASA Technical Reports Server (NTRS)

    Tener, W. M.

    1972-01-01

    Overflow sensor for cryogenic fluid vessels has been designed by winding electrical resistance element on porous tubular coil form. Form is positioned in overflow vent of cryogenic fluid vessel where it can differentiate vapor from liquid at same temperature.

  12. Design of the PIXIE cryogenic system

    NASA Astrophysics Data System (ADS)

    DiPirro, M.; Fixsen, D.; Kogut, A.; Li, X.; Marquardt, J.; Shirron, P.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to study the polarization of the remnant cosmic microwave background with the goal of finding and understanding primordial gravity waves. The instrument has been designed to capture this information across the entire sky by rejecting foreground signals and suppressing systematic error by multiple differencing methods. The instrument operates at a temperature very close to the cosmic microwave background of 2.7 K, while the detectors operate at 0.1 K. The PIXIE cryogenic system provides this in low Earth orbit by making use of three subsystems. Lightweight, simply deployed shields provide protection against the Earth and Sun while passively cooling wiring and instrument supports at 150 K. A mechanical cryocooler precools wires and supports at 68, 17, and 4.5 K while its compressors operate at room temperature. And finally two adiabatic demagnetization refrigerators cool the instrument from 4.5 to 2.7 K and cool the detectors to 0.1 K. Staged cooling in this manner allows a thermodynamically efficient use of relatively mature technologies that can be fully demonstrated before flight.

  13. X-, γ, β-ray detector windows of composite material replacing beryllium in the 4.2-420 K temperature range

    NASA Astrophysics Data System (ADS)

    Rimbert, J. N.; Testard, O. A.

    1986-10-01

    A new multilayer composite material has been elaborated to produce windows with a good vacuum tightness and high nuclear radiation transmission. This material can advantageously substitute beryllium, because of the difficulties associated with the fabrication of thin laminated beryllium windows without chemical impurities, because of the lack of resistance to atmospheric corrosion and the high cost of these windows. The composite windows are made of thin high purity aluminium barriers (0.15-0.56 μm total thickness) interleaved in structural polyimid films (down to 56 μm total thickness). Its main physical properties are: yield stress (1.2×10 8 Pa), temperature range ( 1ˇK to 420 K) . helium gas porosity (10 -3 cm 3(STP) m -2 atm -1 d -1), optically opaque. The X or γ-ray transmission performance tests have been compared with those for beryllium. They show that the standard multi-interlaminar barrier (MIB) material of 168 μm thickness is equivalent to 500 μm Be for energies lower than 10 keV and to 200 μm Be for energies higher than 100 keV. The windows thus developed have a modular aspect and adapt themselves to various specifications (cryostats, scintillation detectors, semiconductor detectors, X-ray proportional counters, etc.).

  14. D0 Silicon Upgrade: Cryogenic Line Routing: Refrigerator to VLPC Cryostats & Solenoid

    SciTech Connect

    Rucinski, Russ; /Fermilab

    1994-10-04

    This engineering note documents the proposed cryogenic line routing from the liquid helium (LHe) refrigeration plant to the detector solenoid and VLPC cryostats. Many figures are included to aid in understanding the route. As an appendix, I include some general comments relevant to the topic. Also listed are a number of routing options that were considered before the proposed route was finalized.

  15. Other cryogenic wind tunnel projects

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.

    1989-01-01

    The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

  16. The CLAS Cherenkov detector

    SciTech Connect

    G. Adams; V. Burkert; R. Carl; T. Carstens; V. Frolov; L. Houghtlin; G. Jacobs; M. Kossov; M. Klusman; B. Kross; M. Onuk; J. Napolitano; J. W. Price; C. Riggs; Y. Sharabian; A. Stavinsky; L. C. Smith; W. A. Stephens; P. Stoler; W. Tuzel; K. Ullrich; A. Vlassovc; A. Weisenberger; M. Witkowski; B. Wojtekhowski; P. F. Yergin; C. Zorn

    2001-06-01

    The design, construction, and performance of the CLAS Cerenkov threshold gas detector at Jefferson Lab is described. The detector consists of 216 optical modules. Each module consists of 3 adjustable mirrors, of lightweight composite construction, a Winston light collecting cone, a 5-inch photomultiplier tube, and specially designed magnetic shielding.

  17. Low thermal flux glass-fiber tubing for cryogenic service

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Spond, D. E.

    1977-01-01

    This paper describes analytical techniques, fabrication development, and test results for composite tubing that has many applications in aerospace and commercial cryogenic installations. Metal liner fabrication is discussed in detail with attention given to resistance-welded liners, fusion-welded liners, chem-milled tubing liners, joining tube liners and end fittings, heat treatment and leak checks. Composite overwrapping, a second method of tubing fabrication, is also discussed. Test programs and analytical correlation are considered along with composite tubing advantages such as minimum weight, thermal efficiency and safety and reliability.

  18. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  19. Cryogenic thermal diode heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

  20. A piezoelectric cryogenic heat switch

    NASA Astrophysics Data System (ADS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-06-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS.

  1. Optical Cryogenic Tank Level Sensor

    NASA Technical Reports Server (NTRS)

    Duffell, Amanda

    2005-01-01

    Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

  2. A piezoelectric cryogenic heat switch.

    PubMed

    Jahromi, Amir E; Sullivan, Dan F

    2014-06-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS. PMID:24985863

  3. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars

  4. Status of the isophot detector development

    NASA Technical Reports Server (NTRS)

    Wolf, J.; Lemke, D.; Burgdorf, M.; Groezinger, U.; Hajduk, CH.

    1989-01-01

    ISOPHOT is one of the four focal plane experiments of the European Space Agency's Infrared Space Observatory (ISO). Scheduled for a 1993 launch, it will operate extrinsic silicon and germanium photoconductors at low temperature and low background during the longer than 18 month mission. These detectors cover the wavelength range from 2.5 to 200 microns and are used as single elements and in arrays. A cryogenic preamplifier was developed to read out a total number of 223 detector pixels.

  5. Current Progress on the Design and Analysis of the JWST ISIM Bonded Joints for survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Kaprelion, Charles; Kunt, Cengiz; Proebstle, Joel; Rodini, Ben; Young, Daniel; Bartoszyk, Andrew

    2005-01-01

    Viewgraphs on the material characterization and design of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) metal/composite bonded joints for its survivability at cryogenic temperatures is presented.

  6. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  7. Basic cryogenics and materials. Phase 1

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insultants, seals, and fiber reinforced composites.

  8. Cryogenic glass-filament-wound tank evaluation

    NASA Technical Reports Server (NTRS)

    Morris, E. E.; Landes, R. E.

    1971-01-01

    High-pressure glass-filament-wound fluid storage vessels with thin aluminum liners were designed, fabricated, and tested at ambient and cryogenic temperatures which demonstrated the feasibility of producing such vessels as well as high performance and light weight. Significant developments and advancements were made in solving problems associated with the thin metal liners in the tanks, including liner bonding to the overwrap and high strain magnification at the vessel polar bosses. The vessels had very high burst strengths, and failed in cyclic fatigue tests by local liner fracture and leakage without structural failure of the composite tank wall. The weight of the tanks was only 40 to 55% of comparable 2219-T87 aluminum and Inconel 718 tanks.

  9. Ice detector

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1988-01-01

    An ice detector is provided for the determination of the thickness of ice on the outer surface on an object (e.g., aircraft) independently of temperature or the composition of the ice. First capacitive gauge, second capacitive gauge, and temperature gauge are embedded in embedding material located within a hollowed out portion of the outer surface. This embedding material is flush with the outer surface to prevent undesirable drag. The first capacitive gauge, second capacitive gauge, and the temperature gauge are respectively connected to first capacitive measuring circuit, second capacitive measuring circuit, and temperature measuring circuit. The geometry of the first and second capacitive gauges is such that the ratio of the voltage outputs of the first and second capacitance measuring circuits is proportional to the thickness of ice, regardless of ice temperature or composition. This ratio is determined by offset and dividing circuit.

  10. Cryogenic switched MOSFET characterization

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Both p channel and n channel enhancement mode MOSFETs can be readily switched on and off at temperatures as low as 2.8 K so that switch sampled readout of a VLWIR Ge:Ga focal plane is electronically possible. Noise levels as low as 100 rms electrons per sample (independent of sample rate) can be achieved using existing p channel MOSFETs, at overall rates up to 30,000 samples/second per multiplexed channel (e.g., 32 detectors at a rate of almost 1,000 frames/second). Run of the mill devices, including very low power dissipation n channel FETs would still permit noise levels of the order of 500 electrons/sample.

  11. The Cryogenic Digital Readout Module with GaAs JFET ICs

    NASA Astrophysics Data System (ADS)

    Hibi, Yasunori; Matsuo, Hiroshi; Nagata, Hirohisa; Ikeda, Hirokazu; Fujiwara, Mikio

    2009-12-01

    In general, it is known that n-type GaAs JFETs offer good cryogenic performance. This makes them suitable for use with high impedance cryogenic detectors. We designed several kinds of integrated circuits (ICs) with n-type GaAs JFETs and demonstrated their performance at cryogenic temperatures. Our AC-coupled capacitive trans-impedance amplifiers (CTIA) showed good performance. In particular, the input offset voltages were less than +/-0.5 mV. The voltage hold time of the sample-and-holds was more than 0.1 seconds. The maximum clock speed of the NAND type shift-registers was 100 kHz or greater. Power dissipations of each circuit are 0.1-3 μW per one unit. These properties express the possibility to realize the multi-channel cryogenic digital readout system. We have fabricated 16-channel AC coupled CTIAs, 32:1 multiplexers with sample-and-holds, 32-channel shift-registers, and 32-channel voltage distributors. We describe plans for using this technology in the near future to build a 32-channel cryogenic digital readout module. This module should be very useful for low temperature detectors with high impedance.

  12. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  13. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  14. Ames Research Center cryogenics program

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1987-01-01

    Viewgraphs describe the Ames Research Center's cryogenics program. Diagrams are given of a fluid management system, a centrifugal pump, a flow meter, a liquid helium test facility, an extra-vehicular activity coupler concept, a dewar support with passive orbital disconnect, a pulse tube refrigerator, a dilution refrigerator, and an adiabatic demagnetization cooler.

  15. Dust Charge in Cryogenic Environment

    SciTech Connect

    Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O.

    2008-09-07

    Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.

  16. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  17. Operation of large cryogenic systems

    SciTech Connect

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab.

  18. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  19. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  20. Level Sensor for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Schroff, R. A.

    1983-01-01

    Hot wire sensor combined with voltage-comparator circuit monitors liquid level in cryogenic-fluid storage tanks. Sensor circuit adaptable to different liquids and sensors. Constant-current source drives current through sensing probe and fixed resistor. Voltage comparator circuits interpret voltage drops to tell whether probe is immersed in liquid and is current in probe.

  1. Fast response cryogen level sensor

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, J. B.; Maier, L. C.

    1981-01-01

    Liquid level in cryogenic tank or pipe, or amount of gas trapped in pipeline flow, is monitored electronically by cylindrical capacitive sensor. Changes in liquid level between concentric tubes of capacitor change its impedance, varying current in drive circuit. Since it is oriented parallel to direction of liquid flow, sensor presents little resistance to moving fluid.

  2. Cryogenic MMIC Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Gaier, T.; Fernandez, J.; Erickson, N.; Wielgus, J.

    2000-01-01

    Monolithic (MMIC) and discrete transistor (MIC) low noise amplifiers are compared on the basis of performance, cost, and reliability. The need for cryogenic LNA's for future large microwave arrays for radio astronomy is briefly discussed and data is presented on a prototype LNA for the 1 to 10 GZH range along with a very wideband LNA for the 1 to 60 GHz range.

  3. Effects of Co and Al Contents on Cryogenic Mechanical Properties and Hydrogen Embrittlement for Austenitic Alloys

    SciTech Connect

    Li, X.Y.; Ma, L.M.; Li, Y.Y.

    2004-06-28

    The effects of Co and Al content on ambient and cryogenic mechanical properties, microstructure and hydrogen embrittlement of a high strength precipitate-strengthened austenitic alloy (Fe-Ni-Cr-Mo system) had been investigated with temperature range from 293K to 77 K. Hydrogen embrittlement tests were conducted using the method of high pressure thermal hydrogen charging. It was found that increasing Co content can cause increasing in ambient and cryogenic ductility, but has less effect on ultimate tensile strength. When Co content is 9.8%, obvious decrease was found in cryogenic yield strength. Increasing Al content can result in decreasing ambient and cryogenic ductility and severe hydrogen embrittlement, but slight increase in cryogenic yield strength. Increasing Co content, reducing Al content, and decreasing test temperature tend to decrease the hydrogen embrittlement tendency for the alloys. This work showed that the alloy with composition of Fe-31%Ni-15%Cr-5%Co-4.5%Mo-2.4%Ti-0.3%Al-0.3%Nb-0.2%V has the superior cryogenic mechanical properties and lower hydrogen embrittlement tendency, is a good high strength cryogenic hydrogen-resistant material.

  4. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  5. Sources of Cryogenic Data and Information

    NASA Astrophysics Data System (ADS)

    Mohling, R. A.; Hufferd, W. L.; Marquardt, E. D.

    It is commonly known that cryogenic data, technology, and information are applied across many military, National Aeronautics and Space Administration (NASA), and civilian product lines. Before 1950, however, there was no centralized US source of cryogenic technology data. The Cryogenic Data Center of the National Bureau of Standards (NBS) maintained a database of cryogenic technical documents that served the national need well from the mid 1950s to the early 1980s. The database, maintained on a mainframe computer, was a highly specific bibliography of cryogenic literature and thermophysical properties that covered over 100 years of data. In 1983, however, the Cryogenic Data Center was discontinued when NBS's mission and scope were redefined. In 1998, NASA contracted with the Chemical Propulsion Information Agency (CPIA) and Technology Applications, Inc. (TAI) to reconstitute and update Cryogenic Data Center information and establish a self-sufficient entity to provide technical services for the cryogenic community. The Cryogenic Information Center (CIC) provided this service until 2004, when it was discontinued due to a lack of market interest. The CIC technical assets were distributed to NASA Marshall Space Flight Center and the National Institute of Standards and Technology. Plans are under way in 2006 for CPIA to launch an e-commerce cryogenic website to offer bibliography data with capability to download cryogenic documents.

  6. Cryogenic method for measuring nuclides and fission gases

    DOEpatents

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  7. Generation and reception of ultrasonic guided waves in composite plates using conformable piezoelectric transmitters and optical-fiber detectors.

    PubMed

    Gachagan, A; Hayward, G; McNab, A; Reynolds, P; Pierce, S G; Philp, W R; Culshaw, B

    1999-01-01

    A condition monitoring nondestructive evaluation (NDE) system, combining the generation of ultrasonic Lamb waves in thin composite plates and their subsequent detection using an embedded optical fiber system is described. The acoustic source is of low profile with respect to the composite plate thickness, surface conformable, and able to efficiently launch a known Lamb wave mode, at operating frequencies between 100 and 500 kHz, over typical propagation distances of 100 to 500 mm. It incorporates both piezocomposite technology and interdigital design techniques to generate the fundamental symmetrical Lamb wave mode in both metallic and carbon-fiber composite plates. Linear systems and finite element modeling techniques have been used to evaluate the operation of the transducer structure, and this is supplemented by experimental verification of the simulated data. An optical fiber, either bonded to the surface or embedded across the length of the composite plate samples, is used to detect the propagating ultrasonic Lamb waves. Single mode silica fiber has been used in conjunction with a portable 633 nm Mach-Zehnder interferometer for signal demodulation and subsequent data acquisition. This hybrid system is shown to generate and detect the fundamental symmetrical Lamb wave (s(0)) in both carbon-fiber and glass-fiber reinforced composite plates. Importantly, the system signal-to-noise ratio (SNR) associated with the acoustic source compares favorably with s(0) Lamb wave generation using a conventional transducer and angled perspex wedge arrangement. PMID:18238400

  8. Design and construction of the structure of the DEMONSTRATOR of the CALIFA detector for R3B-FAIR using carbon-fiber composites

    NASA Astrophysics Data System (ADS)

    Casarejos, E.; Alvarez-Pol, H.; Cortina-Gil, D.; Durán, I.; Iglesias, A.; Izquierdo, P.; Yañez, P.; Vilán, J. A.

    2014-03-01

    In this paper we describe the DEMONSTRATOR structures and active units (PETALs) developed for the detector CALIFA of the experiment R3B - FAIR. The design is based in the CALIFA BARREL mechanical solutions, but adapted to the characteristics of the PETALs, namely in what concerns the load distribution during setup and service. The R&D program defined the materials and procedures for both producing the pieces of carbon fiber (CF) composites as well as the mounting of the bundles to make an alveolar structure. The procedures also include a quality control program to ensure the dimensional properties of the CF assemblies. We are also developing the use of tomographic imaging analysis for this quality program, that will be of mayor interest in the construction of the future CALIFA CF-structure.

  9. The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire

    NASA Astrophysics Data System (ADS)

    Haughian, K.; Douglas, R.; van Veggel, A. A.; Hough, J.; Khalaidovski, A.; Rowan, S.; Suzuki, T.; Yamamoto, K.

    2015-04-01

    Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa.

  10. CUORE: Cryogenic challenges and prospects for a future upgrade

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Cuore Collaboration

    2015-10-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale bolometric experiment searching for the 0 νββ decay in 130Te. It consists of a closely packed array of 988 TeO2 crystals (5 × 5 × 5 cm3 each) and will be hosted in one of the largest cryostats ever constructed to reach a base temperature of ~10 mK. With a background goal of 10 c/keV/ton/y and an expected energy resolution of ~5 keV in the region of interest, CUORE has the potential to probe the effective Majorana neutrino mass down to 50-130 meV (90 % C.L). A natural follow-up to CUORE would be a ton-scale bolometric experiment which can be sensitive to the effective mass of ~10 meV, covering the entire inverted hierarchy region of the mass spectrum. CUPID (CUORE Upgrade with Particle ID) is a proposed next-generation bolometric experiment which aims to use the CUORE cryogenic infrastructure in conjunction with new detector technologies and novel background mitigation techniques. After briefly outlining the design of CUORE with a focus on its novel cryogenic system, an overview of the current status of CUORE commissioning effort would be presented. The talk will then delve on some of the R&D activities which are being actively pursued under the CUPID framework.

  11. Performances of the Planck-HFI cryogenic thermal control system

    NASA Astrophysics Data System (ADS)

    Leroy, Christophe; Arondel, Antoine; Bernard, Jean-Philippe; Carfantan, Hervé; Dumesnil, Cydalise; Fourmond, Jean-Jacques; Guyot, Guy; Lamarre, Jean-Michel; Pajot, François; Piat, Michel; Puget, Jean-Loup; Trouilhet, Jean-Francois; Varesi, Sylvain

    2006-06-01

    The core of the High Frequency Instrument (HFI) on-board the Planck satellite consists of 52 bolometric detectors cooled at 0.1 Kelvin. In order to achieve such a low temperature, the HFI cryogenic architecture consists in several stages cooled using different active coolers. These generate weak thermal fluctuations on the HFI thermal stages. Without a dedicated thermal control system these fluctuations could produce unwanted systematic effects, altering the scientific data. The HFI thermal architecture allows to minimise these systematic effects, thanks to passive and active control systems described in this paper. The passive and active systems are used to damp the high and low frequency fluctuations respectively. The last results regarding the tests of the HFI passive and active thermal control systems are presented here. The thermal transfer functions measurement between active coolers and HFI cryogenic stages will be presented first. Then the stability of the temperatures obtained on the various cryogenic stages with PID regulations systems will be checked through analysis of their power spectrum density.

  12. The cryogenic readout system with GaAs JFETs for multi-pixel cameras

    NASA Astrophysics Data System (ADS)

    Hibi, Y.; Matsuo, H.; Nagata, H.; Ikeda, H.; Fujiwara, M.

    2010-11-01

    Our purpose is to realize a multi-pixel sub-millimeter/terahertz camera with the superconductor - insulator - superconductor photon detectors. These detectors must be cooled below 1 K. Since these detectors have high impedance, signal amplifiers of each pixel must be setting aside of them for precise signal readout. Therefore, it is desirable that the readout system work well even in cryogenic temperature. We selected the n-type GaAs JFETs as cryogenic circuit elements. From our previous studies, the n-type GaAs JFETs have good cryogenic properties even when those power dissipations are low. We have designed several kinds of integration circuits (ICs) and demonstrated their performance at cryogenic temperature. Contents of ICs are following; AC coupled trans-impedance amplifiers, voltage distributors for suppressing input offset voltage of AC coupled CTIAs, multiplexers with sample-and holds, and shift-registers for controlling multiplex timing. The power dissipation of each circuit is 0.5 to 3 micro watts per channel. We also have designed and manufactured 32-channel multi-chip-modules with these ICs. These modules can make 32- channel input photo current signals into one or two serial output voltage signal(s). Size of these is 40mm x 30mm x 2mm and estimated total power dissipation is around 400 micro watts.

  13. ACCESS: Detector Control and Performance

    NASA Astrophysics Data System (ADS)

    Morris, Matthew J.; Kaiser, M.; McCandliss, S. R.; Rauscher, B. J.; Kimble, R. A.; Kruk, J. W.; Wright, E. L.; Bohlin, R.; Kurucz, R. L.; Riess, A. G.; Pelton, R.; Deustua, S. E.; Dixon, W. V.; Sahnow, D. J.; Mott, D. B.; Wen, Y.; Benford, D. J.; Gardner, J. P.; Feldman, P. D.; Moos, H. W.; Lampton, M.; Perlmutter, S.; Woodgate, B. E.

    2014-01-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments that will enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 to 1.7 micron bandpass (companion poster, Kaiser et al.). The flight detector and detector spare have been selected and integrated with their electronics and flight mount. The controller electronics have been flight qualified. Vibration testing to launch loads and thermal vacuum testing of the detector, mount, and housing have been successfully performed. Further improvements to the flight controller housing have been made. A cryogenic ground test system has been built. Dark current and read noise tests have been performed, yielding results consistent with the initial characterization tests of the detector performed by Goddard Space Flight Center’s Detector Characterization Lab (DCL). Detector control software has been developed and implemented for ground testing. Performance and integration of the detector and controller with the flight software will be presented. NASA APRA sounding rocket grant NNX08AI65G supports this work.

  14. High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.

  15. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  16. Design and performance of a cryogenic iris aperture mechanism

    NASA Astrophysics Data System (ADS)

    de Jonge, C.; Laauwen, W. M.; de Vries, E. A.; Smit, H. P.; Detrain, A.; Eggens, M. J.; Ferrari, L.; Dieleman, P.

    2014-07-01

    A cryogenic iris mechanism is under development as part of the ground calibration source for the SAFARI instrument. The iris mechanism is a variable aperture used as an optical shutter to fine-tune and modulate the absolute power output of the calibration source. It has 4 stainless steel blades that create a near-circular aperture in every position. The operating temperature is 4.5 Kelvin to provide a negligible background to the SAFARI detectors, and `hot spots' above 9K should be prevented. Cryogenic testing proved that the iris works at 4K. It can be used in a broad range of cryogenic optical instruments where optical throughput needs to be controlled. Challenges in the design include the low cooling power available (5mW) and low friction at cryogenic temperatures. The actuator is an `arc-type' rotary voice-coil motor. The use of flexural pivots creates a mono-stable mechanism with a resonance frequency at 26Hz. Accurate and fast position control with disturbance rejection is managed by a PID servo loop using a hall-sensor as input. At 4 Kelvin, the frequency is limited to 4Hz to avoid excess dissipation and heating. In this paper, the design and performance of the iris are discussed. The design was optimized using a thermal, magnetic and mechanical model made with COMSOL Finite Element Analysis software. The dynamical and state-space modeling of the mechanism and the concept of the electrical control are presented. The performance of the iris show good agreement to the analytical and COMSOL modeling.

  17. Cryogenic Flange and Seal Evaluation

    NASA Technical Reports Server (NTRS)

    Ramirez, Adrian

    2014-01-01

    The assembly of flanges, seals, and pipes are used to carry cryogenic fluid from a storage tank to the vehicle at launch sites. However, after a certain amount of cycles these raised face flanges with glass-filled Teflon gaskets have been found to have torque relaxation and are as a result susceptible to cryogenic fluid leakage if not re-torqued. The intent of this project is to identify alternate combinations of flanges and seals which may improve thermal cycle performance and decrease re-torque requirements. The general approach is to design a test fixture to evaluate leak characteristics between spiral and concentric serrations and to test alternate flange and seal combinations. Due to insufficient time, it was not possible to evaluate these different types of combinations for the combination that improved thermal cycle performance the most. However, the necessary drawings for the test fixture were designed and assembled along with the collection of the necessary parts.

  18. A cryogenic receiver for EPR.

    PubMed

    Narkowicz, R; Ogata, H; Reijerse, E; Suter, D

    2013-12-01

    Cryogenic probes have significantly increased the sensitivity of NMR. Here, we present a compact EPR receiver design capable of cryogenic operation. Compared to room temperature operation, it reduces the noise by a factor of ≈2.5. We discuss in detail the design and analyze the resulting noise performance. At low microwave power, the input noise density closely follows the emission of a cooled 50Ω resistor over the whole measurement range from 20K up to room temperature. To minimize the influence of the microwave source noise, we use high microwave efficiency (≈1.1-1.7mTW(-1/2)) planar microresonators. Their efficient conversion of microwave power to magnetic field permits EPR measurements with very low power levels, typically ranging from a few μW down to fractions of nW. PMID:24161681

  19. Cryogenic VPH grisms for MOIRCS

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Ichiyama, Kotaro; Ebizuka, Noboru; Murata, Chihiro; Taniguchi, Yuichiro; Okura, Tsutomu; Harashima, Masakazu; Uchimoto, Yuka Katsuno; Maruyama, Miyoko; Iye, Masanori; Shimasaku, Kazuhiro

    2008-07-01

    We present the development and first astronomical applications of VPH grisms which are now operated at cryogenic temperature in MOIRCS, a Cassegrain near-infrared instrument of the Subaru Telescope. We designed and fabricated the VPH grisms with a resolving power ~3000 for the use in near-infrared bands. The VPH grating, encapsulated in BK7 glass, is glued between two ZnSe prisms with vertex angle of 20 deg. After repeating several thermal cycles down to ~100 K carefully enough not to cause irreparable damage on the grism during cooling, we evaluated the performance at cryogenic temperature in the laboratory and found no deterioration and no large difference in the performance from that measured in room temperature. Based on commissioning observations with MOIRCS, we have confirmed the high efficiency (~0.8) and the resolving power of the original design. Common use of the grisms is due to start in the second semester of 2008.

  20. Electromagnetic dampers for cryogenic applications

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Dirusso, Eliseo

    1988-01-01

    Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

  1. Advanced cryogenic tank development status

    NASA Astrophysics Data System (ADS)

    Braun, G. F.; Tack, W. T.; Scholz, E. F.

    1993-06-01

    Significant advances have been made in the development of materials, structures, and manufacturing technologies for the next generation of cryogenic propellant tanks under the auspices of a joint U.S. Air Force/NASA sponsored advanced development program. This paper summarizes the achievements of this three-year program, particularly in the evolution and properties of Weldalite 049, net shape component technology, Al-Li welding technology, and efficient manufacturing concepts. Results of a recent mechanical property characterization of a full-scale integrally stiffened barrel panel extrusion are presented, as well as plans for an additional weld process optimization program using response surface design of experiment techniques. A further discussion is given to the status of hardware completed for the Advanced Manufacturing Development Center and Martin Marietta's commitment to the integration of these technologies into the production of low-cost, light-weight cryogenic propellant tanks.

  2. Cryogenic High-Sensitivity Magnetometer

    NASA Technical Reports Server (NTRS)

    Day, Peter; Chui, Talso; Goodstein, David

    2005-01-01

    A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

  3. The Cryogenic Dark Matter Search: First 5-Tower Data and Improved Understanding of Ionization Collection

    SciTech Connect

    Bailey, Catherine N.

    2010-01-01

    The Cryogenic Dark Matter Search (CDMS) is searching for Weakly Interacting Massive Particles (WIMPs) with cryogenic particle detectors. These detectors have the ability to discriminate between nuclear recoil candidate and electron recoil background events by collecting both phonon and ionization energy from recoils in the detector crystals. The CDMS-II experiment has completed analysis of the first data runs with 30 semiconductor detectors at the Soudan Underground Laboratory, resulting in a world leading WIMP-nucleon spin-independent cross section limit for WIMP masses above 44 GeV/c2. As CDMS aims to achieve greater WIMP sensitivity, it is necessary to increase the detector mass and discrimination between signal and background events. Incomplete ionization collection results in the largest background in the CDMS detectors as this causes electron recoil background interactions to appear as false candidate events. Two primary causes of incomplete ionization collection are surface and bulk trapping. Recent work has been focused on reducing surface trapping through the modification of fabrication methods for future detectors. Analyzing data taken with test devices has shown that hydrogen passivation of the amorphous silicon blocking layer worsens surface trapping. Additional data has shown that the iron-ion implantation used to lower the critical temperature of the tungsten transition-edge sensors causes a degradation of the ionization collection. Using selective implantation on future detectors may improve ionization collection for events near the phonon side detector surface. Bulk trapping is minimized by neutralizing ionized lattice impurities. Detector investigations at testing facilities and in situ at the experimental site have provided methods to optimize the neutralization process and monitor running conditions to maintain full ionization collection. This work details my contribution to the 5-tower data taking, monitoring, and analysis effort as

  4. Results from the Cryogenic Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Reisetter, Angela

    2010-02-01

    The Cryogenic Dark Matter Search (CDMS-II and SuperCDMS) uses high-purity Ge crystals operated at 40mK to look for WIMPs, a leading dark matter candidate. The CDMS experiment is housed in the Soudan Underground Laboratory in Soudan, MN, and the collaboration has published world-leading limits on WIMP-nucleon cross sections. The CDMS-II detectors, 1-cm thick crystals, use ionization and phonon signals to distinguish bulk nuclear recoils (caused by WIMPs) from electron recoils and from surface events caused by electromagnetic backgrounds. I will report on the most recent results from the operation of 5 towers of detectors (6 detectors per tower) for 612.13 kg-days of exposure, during what was the final run of CDMS-II. I will also address the progress in R&D work on the next generation of CDMS Ge detectors, and the status of the first run of SuperCDMS, a run including 6 SuperCDMS 1-inch thick Ge detectors with newly developed phonon sensors. )

  5. Development of cryogenic alpha spectrometers using metallic magnetic calorimeters

    NASA Astrophysics Data System (ADS)

    Ranitzsch, P. C.; Kempf, S.; Pabinger, A.; Pies, C.; Porst, J.-P.; Schäfer, S.; Fleischmann, A.; Gastaldo, L.; Enss, C.; Jang, Y. S.; Kim, I. H.; Kim, M. S.; Kim, Y. H.; Lee, J. S.; Lee, K. B.; Lee, M. K.; Lee, S. J.; Yoon, W. S.; Yuryev, Y. N.

    2011-10-01

    Cryogenic particle detectors have recently been adopted in radiation detection and measurement because of their high energy resolution. Many of these detectors have demonstrated energy resolutions better than the theoretical limit of semiconductor detectors. We report the development of a micro-fabricated magnetic calorimeter coupled to a large-area particle absorber. It is based on a planar, 1 mm 2 large paramagnetic temperature sensor made of sputtered Au:Er, which covers a superconducting meander-shaped pickup coil coupled to a low-noise dc-SQUID to monitor the magnetization of the sensor. A piece of gold foil of 2.5×2.5×0.07 mm 3 was glued to the Au:Er film to serve as an absorber for incident alpha particles. The detector performance was investigated with an 241Am source. The signal size comparison for alpha and gamma peaks with a large difference in energy demonstrated that the detector had good linear behavior. An energy resolution of 2.83±0.05 keV in FWHM was obtained for 5.5 MeV alpha particles.

  6. Cryogenic measurements of aerojet GaAs n-JFETs

    NASA Technical Reports Server (NTRS)

    Goebel, John H.; Weber, Theodore T.

    1993-01-01

    The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

  7. Contamination control of the SABER cryogenic infrared telescope

    NASA Astrophysics Data System (ADS)

    Dyer, James S.; Brown, Steven; Esplin, Roy W.; Hansen, Galen; Jensen, Scott M.; Stauder, John L.; Zollinger, Lorin

    2002-09-01

    The SABER instrument (Sounding of the Atmosphere using Broadband Emission Spectroscopy) is a cryogenic infrared sensor on the TIMED spacecraft with stringent molecular and particulate contamination control requirements. The sensor measures infrared emissions from atmospheric constituents in the earth limb at altitudes ranging from 60 to 180 km using radiatively-cooled 240 K optics and a mechanically-refrigerated 75 K detector. The stray light performance requirements necessitate nearly pristine foreoptics. The cold detector in a warm sensor presents challenges in controlling the cryodeposition of water and other condensable vapors. Accordingly, SABER incorporates several unique design features and test strategies to control and measure the particulate and molecular contamination environment. These include internal witness mirrors, dedicated purge/depressurization manifolds, labyrinths, cold stops, and validated procedures for bakeout, cooldown, and warmup. The pre-launch and on-orbit contamination control performance for the SABER telescope will be reviewed.

  8. Cryogenic Supply for the Gerda Experiment

    NASA Astrophysics Data System (ADS)

    Haberstroh, Ch.

    2008-03-01

    In the GERDA experiment (GERmanium Detector Array for the search of neutrinoless double beta decay of 76Ge) germanium diodes are suspended in a superinsulated cryostat filled with 70 m3 of liquid argon. The cold medium is required since the diodes have to be operated at low temperatures, and furthermore for shielding against background radiation. For the same reason the whole experiment will be placed in the underground laboratories in the Gran Sasso mountains, Italy. In order to avoid any detrimental perturbation inside the dewar vessel, the liquid-argon (LAr) inventory in the main tank will be kept in a subcooled state at a working pressure of 0.12 MPa absolute at the surface. At the TU Dresden an appropriate cryogenic arrangement was designed to match these requirements. Liquid nitrogen (LN2) is used as a cooling fluid. Special care was taken to cope with the narrow temperature span between the LAr boiling temperature and triple point. In the proposed solution a subcooler located close to the cryostat neck provides a stable LAr convection inside the main tank. The working pressure is adjusted with a controlled, slightly elevated temperature level at the liquid-vapor interface.

  9. Foam Insulation for Cryogenic Flowlines

    NASA Technical Reports Server (NTRS)

    Sonju, T. R.; Carbone, R. L.; Oves, R. E.

    1985-01-01

    Welded stainless-steel vacuum jackets on cryogenic ducts replaced by plastic foam-insulation jackets that weigh 12 percent less. Foam insulation has 85 percent of insulating ability of stainless-steel jacketing enclosing vacuum of 10 microns of mercury. Foam insulation easier to install than vacuum jacket. Moreover, foam less sensitive to damage and requires minimal maintenance. Resists vibration and expected to have service life of at least 10 years.

  10. Cryogenic moderator simulations : confronting reality.

    SciTech Connect

    Iverson, E. B.

    1999-01-06

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

  11. Insulating Cryogenic Pipes With Frost

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Bova, J. A.

    1985-01-01

    Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

  12. Eight combinatorial stacks of three layers of carbon black/PVA-carbon black/EVA composite as a vapor detector array.

    PubMed

    Setasuwon, Paisan; Menbangpung, Laongdao; Sahasithiwat, Somboon

    2008-01-01

    Eight specimens of combinatorial stacking of 3 layers of carbon black/PVA-carbon black/EVA composite were prepared on substrate with interdigitated electrode. They were subjected to 15 solvent vapors with dielectric constants from 2-80,and their responses were processed for calculation of resolution factor (RF). If the detector responses are assumed to have a normal distribution, RF values of 1.0, 2.0, and 3.0 indicate the 76, 92, and 98% confidence, respectively, of correctly identifying one analyte from the other of a specific pair. Of the possible 105 pairs, 99 pairs have RF values of more than 3, 5 pairs have RF values of more than 1, and only one pair has an RF value of less than 1. The resolution factor was affected by both the dielectric constant and boiling point of tested solvents. Employing Fisher linear discrimination improves all RF values greater than 3, making confidence in resolving the pair reach almost 100%. Contributions from each combination were studied, and it was shown that diversity by combinatorial stacking is essential to the improvement of RF value. All of these capabilities are derived from combinatorial stacking of 3 layers of just two simple carbon black/polymer composites. PMID:18855459

  13. Cryogenic performance of a lightweight silicon carbide mirror

    NASA Astrophysics Data System (ADS)

    Eng, Ron; Carpenter, James R.; Foss, Colby A., Jr.; Hadaway, James B.; Haight, Harlan J.; Hogue, William D.; Kane, David; Kegley, Jeffrey R.; Stahl, H. Philip; Wright, Ernest R.

    2005-08-01

    Low cost, high performance lightweight Silicon Carbide (SiC) mirrors provide an alternative to Beryllium mirrors. A Trex Enterprises 0.25m diameter low areal density SiC mirror using its patented Chemical Vapor Composites (CVC) technology was evaluated for its optical performance at cryogenic temperature. CVC SiC is chemically pure, thermally stable, and mechanically stiff. CVC technology yields higher growth rate than that of CVD SiC. NASA has funded lightweight optical materials technology development efforts for future space based telescope programs. As part of these efforts, a Trex SiC mirror was measured interferometrically from room temperature to 30 degrees Kelvin. This paper will discuss the test goals, the cryogenic optical testing infrastructure and instrumentation at MSFC, test results, and lessons learned.

  14. Cryogenic fluid management in space

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1988-01-01

    Many future space based vehicles and satellites will require on orbit refuelling procedures. Cryogenic fluid management technology is being developed to assess the requirements of such procedures as well as to aid in the design and development of these vehicles. Cryogenic fluid management technology for this application could be divided into two areas of study, one is concerned with fluid transfer process and the other with cryogenic liquid storage. This division is based upon the needed technology for the development of each area. In the first, the interaction of fluid dynamics with thermodynamics is essential, while in the second only thermodynamic analyses are sufficient to define the problem. The following specific process related to the liquid transfer area are discussed: tank chilldown and fill; tank pressurization; liquid positioning; and slosh dynamics and control. These specific issues are discussed in relation with the required technology for their development in the low gravity application area. In each process the relevant physics controlling the technology is identified and methods for resolving some of the basic questions are discussed.

  15. Cryogenic actuator for subnanometer positioning

    NASA Astrophysics Data System (ADS)

    Bree, B. v.; Janssen, H.; Paalvast, S.; Albers, R.

    2012-09-01

    This paper discusses the development, realization, and qualification of a positioning actuator concept specifically for cryogenic environments. Originally developed for quantum physics research, the actuator also has many applications in astronomic cryogenic instruments to position optical elements with nanometer level accuracy and stability. Typical applications include the correction of thermally induced position errors of optical components after cooling down from ambient to cryogenic temperatures or sample positioning in microscopes. The actuator is nicknamed the ‘PiezoKnob’ because it is piezo based and it is compatible with the typical manipulator knob often found in standard systems for optical benches, such as linear stages or tip/tilt lens holders. Actuation with high stiffness piezo elements enables the Piezoknob to deliver forces up to 50 Newton which allows relatively stiff guiding mechanisms or large pre-loads. The PiezoKnob has been qualified at 77 Kelvin and was shown to work down to 2 Kelvin. As part of the qualification program, the custom developed driving electronics and set point profile have been fine-tuned, by combing measurements with predictions from a dynamic model, thus maximizing efficiency and minimizing power dissipation. Furthermore, the actuator holds its position without power and thanks to its mechanical layout it is absolutely insensitive to drift of the piezo elements or the driving electronics.

  16. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  17. Positronium production in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.

    2016-03-01

    We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.

  18. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  19. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  20. Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.