These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Survey of cryogenic semiconductor devices  

SciTech Connect

Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

Talarico, L.J.; McKeever, J.W.

1996-04-01

2

21 CFR 882.4250 - Cryogenic surgical device.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 false Cryogenic surgical device. 882...Devices § 882.4250 Cryogenic surgical device. (a) Identification. A cryogenic surgical device is a...nervous tissue by the application of extreme cold to...

2010-04-01

3

Versatile three-dimensional cryogenic micropositioning device  

SciTech Connect

A simple design for a mechanically driven three-dimensional cryogenic micropositioner is presented. The design is based on a parallelogram structure constructed from leaf springs and wires. Actuation is achieved by the elastic deformation of the parallelogram by screws. Positions within a volume of roughly (2 mm){sup 3} are attainable. The precision and reproducibility of positioning are in the {mu}m-range. The deviations from linearity are smaller than 10{percent} for the whole working range and the deviation from orthogonality is smaller than 3{degree}. Calibration measurements performed on a Cu-mesh with a lattice constant of 60 {mu}m are presented. In an experiment investigating the ballistic transport of carriers in the semimetal Bi, two such devices are used. The first one is used as a scanning unit for an optical fiber and the second one is used as micropositioner for a Cu point contact. {copyright} {ital 1996 American Institute of Physics.}

Heil, J.; Boehm, A.; Primke, M.; Wyder, P. [Hochfeld-Magnetlabor, Max-Planck-Institut fuer Festkoerperforschung and Centre National de la Recherche Scientifique, B. P. 166, 25 Avenue des Martyrs, F-38042 Grenoble Cedex 9 (France)] [Hochfeld-Magnetlabor, Max-Planck-Institut fuer Festkoerperforschung and Centre National de la Recherche Scientifique, B. P. 166, 25 Avenue des Martyrs, F-38042 Grenoble Cedex 9 (France)

1996-01-01

4

Cryogenic Propellant Management Device: Conceptual Design Study  

NASA Technical Reports Server (NTRS)

Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.

Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher

2010-01-01

5

Verilog-A Device Models for Cryogenic Temperature Operation of Bulk Silicon CMOS Devices  

NASA Technical Reports Server (NTRS)

Verilog-A based cryogenic bulk CMOS (complementary metal oxide semiconductor) compact models are built for state-of-the-art silicon CMOS processes. These models accurately predict device operation at cryogenic temperatures down to 4 K. The models are compatible with commercial circuit simulators. The models extend the standard BSIM4 [Berkeley Short-channel IGFET (insulated-gate field-effect transistor ) Model] type compact models by re-parameterizing existing equations, as well as adding new equations that capture the physics of device operation at cryogenic temperatures. These models will allow circuit designers to create optimized, reliable, and robust circuits operating at cryogenic temperatures.

Akturk, Akin; Potbhare, Siddharth; Goldsman, Neil; Holloway, Michael

2012-01-01

6

Cryogenic direct current superconducting quantum interference device readout circuit  

E-print Network

Cryogenic direct current superconducting quantum interference device readout circuit Michael Mück SQUID readout circuit, which can be operated at liquid helium temperatures. Although room the readout circuit to low temperatures can also decrease its thermal noise. Our readout circuit uses

Le Roy, Robert J.

7

Screen Channel Liquid Acquisition Devices for Cryogenic Propellants  

NASA Technical Reports Server (NTRS)

This paper describes an on-going project to study the application screen channel liquid acquisition devices to cryogenic propellant systems. The literature of screen liquid acquisition devices is reviewed for prior cryogenic experience. Test programs and apparatus are presented to study these devices. Preliminary results are shown demonstrating bubble points for 200 x 1400 wires per inch and 325 x 2300 wires per inch Dutch twill screens. The 200 x 1400 screen has a bubble point of 15.8 inches of water in isopropyl alcohol and 6.6 inches of water in liquid nitrogen. The 325 x 2300 screen has a bubble point of 24.5 inches of water in isopropyl alcohol, 10.7 inches of water in liquid nitrogen, and 1.83 inches of water in liquid hydrogen. These values are found to be in good agreement with the results reported in the literature.

Chato, David J.; Kudlac, Maureen T.

2005-01-01

8

Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices  

NASA Technical Reports Server (NTRS)

NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMDs), such as screen channel capillary liquid acquisition devices (LADs), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity these results to flow rate and tank internal pressure.

Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.

2014-01-01

9

Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices  

NASA Technical Reports Server (NTRS)

NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMD's), such as screen channel capillary liquid acquisition devices (LAD's), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity of these results to flow rate and tank internal pressure.

Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.

2014-01-01

10

On-wafer, cryogenic characterization of ultra-low noise HEMT devices  

NASA Technical Reports Server (NTRS)

Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.

Bautista, J. J.; Laskar, J.; Szydlik, P.

1995-01-01

11

Improved cryogenic coring device for sampling wetland soils  

SciTech Connect

This paper is the third in a series on the design and construction (Knaus 1986) and improvements (Knaus and Cahoon 1990) of a cryogenic soil-coring device (cryocorer). Freezing wetland soils in place during sampling eliminates compaction, dewatering, and loss of flocculent material at the water-sediment interface. The cryocorer is suitable for sampling soils of emergent marsh and mangrove forests as well as shallow water bottoms, although it has been used primarily for the former. A small-diameter frozen soil core minimizes disruption of the surface, can be evaluated immediately for overall quality, and can be used to measure soil profiles and subsample for further analysis. The cryocorer continues to be used in studies of wetland accretion and soil bulk density throughout the US. Concomitant with the increased use of the device, improvements in cryocorer design and application have occurred. Reported here are improvements in design that have been made since 1992 with references to wetland research in which the cryocorer has been used extensively.

Cahoon, D.R.; Lynch, J.C. [National Biological Service, Lafayette, LA (United States); Knaus, R.M. [Louisiana State Univ., Baton Rouge, LA (United States)

1996-09-01

12

Power electronics performance in cryogenic environment: evaluation for use in HTS power devices  

NASA Astrophysics Data System (ADS)

Power electronics (PE) plays a major role in electrical devices and systems, namely in electromechanical drives, in motor and generator controllers, and in power grids, including high-voltage DC (HVDC) power transmission. PE is also used in devices for the protection against grid disturbances, like voltage sags or power breakdowns. To cope with these disturbances, back-up energy storage devices are used, like uninterruptible power supplies (UPS) and flywheels. Some of these devices may use superconductivity. Commercial PE semiconductor devices (power diodes, power MOSFETs, IGBTs, power Darlington transistors and others) are rarely (or never) experimented for cryogenic temperatures, even when designed for military applications. This means that its integration with HTS power devices is usually done in the hot environment, raising several implementation restrictions. These reasons led to the natural desire of characterising PE under extreme conditions, e. g. at liquid nitrogen temperatures, for use in HTS devices. Some researchers expect that cryogenic temperatures may increase power electronics' performance when compared with room-temperature operation, namely reducing conduction losses and switching time. Also the overall system efficiency may increase due to improved properties of semiconductor materials at low temperatures, reduced losses, and removal of dissipation elements. In this work, steady state operation of commercial PE semiconductors and devices were investigated at liquid nitrogen and room temperatures. Performances in cryogenic and room temperatures are compared. Results help to decide which environment is to be used for different power HTS applications.

Pereira, P.; Valtchev, S.; Pina, J.; Gonçalves, A.; Ventim Neves, M.; Rodrigues, A. L.

2008-02-01

13

Ultra-Low Noise HEMT Device Models: Application of On-Wafer Cryogenic Noise Analysis and Improved Parameter Extraction Techniques  

NASA Technical Reports Server (NTRS)

Significant advances in the development of HEMT technology have resulted in high performance cryogenic low noise amplifiers whose noise temperatures are within an order of magnitude of the quantum noise limit. Key to the identification of optimum HEMT structures at cryogenic temperatures is the development of on-wafer noise and device parameter extraction techniques. Techniques and results are described.

Bautista, J. J.; Hamai, M.; Nishimoto, M.; Laskar, J.; Szydlik, P.; Lai, R.

1995-01-01

14

Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures  

SciTech Connect

We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12?K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6?ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.

Ye, L., E-mail: ly17@nyu.edu; Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D. [Department of Physics, New York University, New York, New York 10003 (United States); Ohki, T. [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States); Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A. [HYPRES, 175 Clearbrook Road, Elmsford, New York 10523 (United States)

2014-05-07

15

Do-It-Yourself device for recovery of cryopreserved samples accidentally dropped into cryogenic storage tanks.  

PubMed

Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues (1,2). The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn' (2), which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces (2). In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks (1). These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials (3). However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy. PMID:22617806

Mehta, Rohini; Baranova, Ancha; Birerdinc, Aybike

2012-01-01

16

Do-It-Yourself Device for Recovery of Cryopreserved Samples Accidentally Dropped into Cryogenic Storage Tanks  

PubMed Central

Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues 1,2. The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn'2, which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces2. In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks1. These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials3. However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy. PMID:22617806

Mehta, Rohini; Baranova, Ancha; Birerdinc, Aybike

2012-01-01

17

Proton irradiation of a swept charge device at cryogenic temperature and the subsequent annealing  

NASA Astrophysics Data System (ADS)

A number of studies have demonstrated that a room temperature proton irradiation may not be sufficient to provide an accurate estimation of the impact of the space radiation environment on detector performance. This is a result of the relationship between defect mobility and temperature, causing the performance to vary subject to the temperature history of the device from the point at which it was irradiated. Results measured using Charge Coupled Devices (CCD) irradiated at room temperature therefore tend to differ from those taken when the device was irradiated at a cryogenic temperature, more appropriate considering the operating conditions in space, impacting the prediction of in-flight performance. This paper describes the cryogenic irradiation, and subsequent annealing of an e2v technologies Swept Charge Device (SCD) CCD236 irradiated at ?35.4°C with a 10 MeV equivalent proton fluence of 5.0 × 108 protons · cm?2. The CCD236 is a large area (4.4 cm2) X-ray detector that will be flown on-board the Chandrayaan-2 and Hard X-ray Modulation Telescope spacecraft, in the Chandrayaan-2 Large Area Soft X-ray Spectrometer and the Soft X-ray Detector respectively. The SCD is readout continually in order to benefit from intrinsic dither mode clocking, leading to suppression of the surface component of the dark current and allowing the detector to be operated at warmer temperatures than a conventional CCD. The SCD is therefore an excellent choice to test and demonstrate the variation in the impact of irradiation at cryogenic temperatures in comparison to a more typical room temperature irradiation.

Gow, J. P. D.; Smith, P. H.; Pool, P.; Hall, D. J.; Holland, A. D.; Murray, N. J.

2015-01-01

18

Cryogenic refrigeration requirements for superconducting insertion devices in a light source  

SciTech Connect

This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

Green, Michael A.; Green, Michael A.; Green, Michael A.

2003-08-15

19

A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system  

NASA Astrophysics Data System (ADS)

Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2014-09-01

20

A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.  

PubMed

Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems. PMID:25273745

Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

2014-09-01

21

Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices  

NASA Technical Reports Server (NTRS)

We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

2014-01-01

22

Precision control of thermal transport in cryogenic single-crystal silicon devices  

SciTech Connect

We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1?K. It is shown that the phonon mean-free-path ? is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ?, even when the surface is fairly smooth, 5–10?nm rms, and the peak thermal wavelength is 0.6??m. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30?nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ?, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

Rostem, K., E-mail: karwan.rostem@nasa.gov [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 (United States); NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771 (United States); Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771 (United States)

2014-03-28

23

Exploring cryogenic focused ion beam milling as a Group III-V device fabrication tool  

NASA Astrophysics Data System (ADS)

In this paper, we compare the features observed on a Group III-V strained layer superlattice (SLS) materials system as a result of room temperature Ga+ focused ion beam (FIB) milling to the features observed as a result of cryogenic FIB (cryo-FIB) milling at -135 °C under the same beam conditions (30 kV:1 nA). The features on the cryo-FIB milled material were observed both when the material was still cold and after it returned to room temperature. Although cryo-FIB milling yielded patterned features that were initially cleaner than comparable features defined by FIB milling at room temperature, we found that both room temperature FIB milling and cryo-FIB milling with subsequent sample warm-up resulted in the formation of Group III enriched features. These findings suggest that the structural and chemical properties of features fabricated by cryo-FIB milling are temperature-dependent, which is an important consideration when it comes to device fabrication. These dependencies will need to be better understood and controlled if cryo-FIB milling is to have future applications in this area.

Dolph, Melissa Commisso; Santeufemio, Christopher

2014-06-01

24

Bimetallic devices help maintain constant sealing forces down to cryogenic temperatures  

NASA Technical Reports Server (NTRS)

Tantalum washers compensate for different thermal coefficients of expansion between stainless steel and an aluminum O-ring. The washers have sufficient thickness to maintain a vacuum seal from room to cryogenic temperatures.

De Boskey, W. R.

1966-01-01

25

Cryogenic shutter  

NASA Technical Reports Server (NTRS)

A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

Barney, Richard D. (inventor); Magner, Thomas J. (inventor)

1992-01-01

26

Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices  

NASA Astrophysics Data System (ADS)

We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.

Al-Taie, H.; Smith, L. W.; Xu, B.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

2013-06-01

27

Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices  

SciTech Connect

We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e{sup 2}/h. A fabrication-limited yield of 94% is achieved for the array, and a “quantum yield” is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.

Al-Taie, H., E-mail: ha322@cam.ac.uk; Kelly, M. J. [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom) [Centre for Advanced Photonics and Electronics, Electrical Engineering Division, Department of Engineering, 9 J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Smith, L. W.; Xu, B.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Smith, C. G. [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); See, P. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)] [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom)

2013-06-17

28

Cryogenic probe station for on-wafer characterization of electrical devices.  

PubMed

A probe station, suitable for the electrical characterization of integrated circuits at cryogenic temperatures is presented. The unique design incorporates all moving components inside the cryostat at room temperature, greatly simplifying the design and allowing automated step and repeat testing. The system can characterize wafers up to 100 mm in diameter, at temperatures <20 K. It is capable of highly repeatable measurements at millimeter-wave frequencies, even though it utilizes a Gifford McMahon cryocooler which typically imposes limits due to vibration. Its capabilities are illustrated by noise temperature and S-parameter measurements on low noise amplifiers for radio astronomy, operating at 75-116 GHz. PMID:22559561

Russell, Damon; Cleary, Kieran; Reeves, Rodrigo

2012-04-01

29

Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration  

SciTech Connect

Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382-428 (India)

2014-01-29

30

A device to investigate the delamination strength in laminates at room and cryogenic temperature  

NASA Astrophysics Data System (ADS)

We construct an instrument to study the behavior of delamination strength in laminates which can be defined as the critical transverse stress at which an actual delamination occurs. The device allows the anvil measurements at room temperature or the liquid nitrogen temperature. For the electro-magnetic laminated materials (e.g., a superconducting YaBa2Cu3O7-x coated conductor which has a typical laminated structure), the delamination strength was measured while the properties of transport current were also recorded. Moreover, the influences of external magnetic field on the delamination strength were presented.

Zhang, Xingyi; Liu, Wei; Zhou, Jun; Zhou, You-He

2014-12-01

31

A device to investigate the delamination strength in laminates at room and cryogenic temperature.  

PubMed

We construct an instrument to study the behavior of delamination strength in laminates which can be defined as the critical transverse stress at which an actual delamination occurs. The device allows the anvil measurements at room temperature or the liquid nitrogen temperature. For the electro-magnetic laminated materials (e.g., a superconducting YaBa2Cu3O7-x coated conductor which has a typical laminated structure), the delamination strength was measured while the properties of transport current were also recorded. Moreover, the influences of external magnetic field on the delamination strength were presented. PMID:25554334

Zhang, Xingyi; Liu, Wei; Zhou, Jun; Zhou, You-He

2014-12-01

32

An RF Sensor for Gauging Screen-Channel Liquid Acquisition Devices for Cryogenic Propellants  

NASA Technical Reports Server (NTRS)

A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.

Zimmerli, Gregory A.; Metzger, Scott; Asipauskas, Marius

2014-01-01

33

Capillary acquisition devices for high-performance vehicles: Executive summary. [evaluation of cryogenic propellant management techniques using the centaur launch vehicle  

NASA Technical Reports Server (NTRS)

Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined.

Blatt, M. H.; Bradshaw, R. D.; Risberg, J. A.

1980-01-01

34

Cooling of superconducting devices by liquid storage and refrigeration unit  

DOEpatents

A system is disclosed for cooling superconducting devices. The system includes a cryogen cooling system configured to be coupled to the superconducting device and to supply cryogen to the device. The system also includes a cryogen storage system configured to supply cryogen to the device. The system further includes flow control valving configured to selectively isolate the cryogen cooling system from the device, thereby directing a flow of cryogen to the device from the cryogen storage system.

Laskaris, Evangelos Trifon; Urbahn, John Arthur; Steinbach, Albert Eugene

2013-08-20

35

Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies  

SciTech Connect

We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.

Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt [Applied Materials, Varian Semiconductor Equipment, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

2012-11-06

36

Optical Detection Of Cryogenic Leaks  

NASA Technical Reports Server (NTRS)

Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

Wyett, Lynn M.

1988-01-01

37

Cryogenic Pound Circuits for Cryogenic Sapphire Oscillators  

NASA Technical Reports Server (NTRS)

Two modern cryogenic variants of the Pound circuit have been devised to increase the frequency stability of microwave oscillators that include cryogenic sapphire-filled cavity resonators. The original Pound circuit is a microwave frequency discriminator that provides feedback to stabilize a voltage-controlled microwave oscillator with respect to an associated cavity resonator. In the present cryogenic Pound circuits, the active microwave devices are implemented by use of state-of-the-art commercially available tunnel diodes that exhibit low flicker noise (required for high frequency stability) and function well at low temperatures and at frequencies up to several tens of gigahertz. While tunnel diodes are inherently operable as amplitude detectors and amplitude modulators, they cannot, by themselves, induce significant phase modulation. Therefore, each of the present cryogenic Pound circuits includes passive circuitry that transforms the AM into the required PM. Each circuit also contains an AM detector that is used to sample the microwave signal at the input terminal of the high-Q resonator for the purpose of verifying the desired AM null at this point. Finally, each circuit contains a Pound signal detector that puts out a signal, at the modulation frequency, having an amplitude proportional to the frequency error in the input signal. High frequency stability is obtained by processing this output signal into feedback to a voltage-controlled oscillator to continuously correct the frequency error in the input signal.

Dick, G. John; Wang, Rabi

2006-01-01

38

Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.  

PubMed

Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China. PMID:24517821

Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

2014-01-01

39

Investigation of silicon field-effect transistors in cryogenic amplifiers for radio frequency superconducting quantum interference devices  

SciTech Connect

We have prepared {ital n}-channel silicon field-effect transistors, which are capable of working at liquid helium temperatures (4.2 K) and used them in cooled preamplifiers for rf superconducting quantum interference device (SQUID) readout electronics. All metallizations of these transistors were made of niobium, to study the possibility of a further integration of a SQUID and FET on the same chip. Using the FETs in a cooled preamplifier together with a rf SQUID gradiometer, the flux noise of the system could be reduced by a factor of 3 compared to a room temperature low noise preamplifier. We have also performed calculations of a possible increase of the substrate temperature due to the power dissipation of the FET and have measured the cross talk between FET and SQUID. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Becker, T.; Mueck, M. [Institut fuer Schicht-und Ionentechnik, Forschungszentrum Juelich GmbH (KFA), 52425 Juelich (Germany)] [Institut fuer Schicht-und Ionentechnik, Forschungszentrum Juelich GmbH (KFA), 52425 Juelich (Germany); Heiden, C. [Institut fuer Angewandte Physik der Justus Liebig Universitaet, Heinrich-Buff-Ring 16, 35392 Giebetaen (Germany)] [Institut fuer Angewandte Physik der Justus Liebig Universitaet, Heinrich-Buff-Ring 16, 35392 Giebetaen (Germany)

1995-05-01

40

Cryogenic Technology Development for Exploration Missions  

NASA Technical Reports Server (NTRS)

This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

Chato, David J.

2007-01-01

41

Acquisition and correlation of cryogenic nitrogen mass flow data through a multiple orifice Joule-Thomson device  

NASA Technical Reports Server (NTRS)

Liquid nitrogen mass flow rate, pressure drop, and temperature drop data were obtained for a series of multiple orifice Joule-Thomson devices, known as Visco Jets, over a wide range of flow resistance. The test rig used to acquire the data was designed to minimize heat transfer so that fluid expansion through the Visco Jets would be isenthalpic. The data include a range of fluid inlet pressures from 30 to 60 psia, fluid inlet temperatures from 118 to 164 R, outlet pressures from 2.8 to 55.8 psia, outlet temperatures from 117 to 162 R and flow rate from 0.04 to 4.0 lbm/hr of nitrogen. A flow rate equation supplied by the manufacturer was found to accurately predict single-phase (noncavitating) liquid nitrogen flow through the Visco Jets. For cavitating flow, the manufacturer's equation was found to be inaccurate. Greatly improved results were achieved with a modified version of the single-phase equation. The modification consists of a multiplication factor to the manufacturer's equation equal to one minus the downstream quality on an isenthalpic expansion of the fluid across the Visco Jet. For a range of flow resistances represented by Visco Jet Lohm ratings between 17,600 and 80,000, 100 percent of the single-phase data and 85 percent of the two-phase data fall within + or - 10 percent of predicted values.

Papell, S. Stephen; Saiyed, Naseem H.; Nyland, Ted W.

1990-01-01

42

Dual Cryogenic Capacitive Density Sensor  

NASA Technical Reports Server (NTRS)

A dual cryogenic capacitive density sensor has been developed. The device contains capacitive sensors that monitor two-phase cryogenic flow density to within 1% accuracy, which, if temperature were known, could be used to determine the ratio of liquid to gas in the line. Two of these density sensors, located a known distance apart, comprise the sensor, providing some information on the velocity of the flow. This sensor was constructed as a proposed mass flowmeter with high data acquisition rates. Without moving parts, this device is capable of detecting the density change within a two-phase cryogenic flow more than 100 times a second. Detection is enabled by a series of two sets of five parallel plates with stainless steel, cryogenically rated tubing. The parallel plates form the two capacitive sensors, which are measured by electrically isolated digital electronics. These capacitors monitor the dielectric of the flow essentially the density of the flow and can be used to determine (along with temperature) the ratio of cryogenic liquid to gas. Combining this information with the velocity of the flow can, with care, be used to approximate the total two-phase mass flow. The sensor can be operated at moderately high pressures and can be lowered into a cryogenic bath. The electronics have been substantially improved over the older sensors, incorporating a better microprocessor, elaborate ground loop protection and noise limiting circuitry, and reduced temperature sensitivity. At the time of this writing, this design has been bench tested at room temperature, but actual cryogenic tests are pending

Youngquist, Robert; Mata, Carlos; Vokrot, Peter; Cox, Robert

2009-01-01

43

Cryogenic Insulation  

NASA Technical Reports Server (NTRS)

Kevin Rivers, Thermal Structures Branch, checks electronic wiring on a test panel for a cryogenic insulation system. The thermal-mechanical testing is being done for Lockheed Martin as part of the X-33 Reusable Launch Vehicle (RLV) program. The foam panel, encased in an aluminum alloy, will be subjected to very low and very high temperatures and then be placed under heavyloads as part of the testing. Material in this panel may be used as part of an RLV fuel tank.

1996-01-01

44

Cryogenic Technology for Superconducting Accelerators  

NASA Astrophysics Data System (ADS)

Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

Hosoyama, Kenji

2012-01-01

45

LDR cryogenics  

NASA Technical Reports Server (NTRS)

A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

Nast, T.

1988-01-01

46

Cryogenic Flow Sensor  

NASA Technical Reports Server (NTRS)

An acousto-optic cryogenic flow sensor (CFS) determines mass flow of cryogens for spacecraft propellant management. The CFS operates unobtrusively in a high-pressure, high-flowrate cryogenic environment to provide measurements for fluid quality as well as mass flow rate. Experimental hardware uses an optical plane-of-light (POL) to detect the onset of two-phase flow, and the presence of particles in the flow of water. Acousto-optic devices are used in laser equipment for electronic control of the intensity and position of the laser beam. Acousto-optic interaction occurs in all optical media when an acoustic wave and a laser beam are present. When an acoustic wave is launched into the optical medium, it generates a refractive index wave that behaves like a sinusoidal grating. An incident laser beam passing through this grating will diffract the laser beam into several orders. Its angular position is linearly proportional to the acoustic frequency, so that the higher the frequency, the larger the diffracted angle. If the acoustic wave is traveling in a moving fluid, the fluid velocity will affect the frequency of the traveling wave, relative to a stationary sensor. This frequency shift changes the angle of diffraction, hence, fluid velocity can be determined from the diffraction angle. The CFS acoustic Bragg grating data test indicates that it is capable of accurately determining flow from 0 to 10 meters per second. The same sensor can be used in flow velocities exceeding 100 m/s. The POL module has successfully determined the onset of two-phase flow, and can distinguish vapor bubbles from debris.

Justak, John

2010-01-01

47

Cryogenic High-Sensitivity Magnetometer  

NASA Technical Reports Server (NTRS)

A proposed magnetometer for use in a cryogenic environment would be sensitive enough to measure a magnetic-flux density as small as a picogauss (10(exp -16) Tesla). In contrast, a typical conventional flux-gate magnetometer cannot measure a magnetic-flux density smaller that about 1 microgauss (10(exp -10) Tesla). One version of this device, for operation near the low end of the cryogenic temperature range, would include a piece of a paramagnetic material on a platform, the temperature of which would be controlled with a periodic variation. The variation in temperature would be measured by use of a conventional germanium resistance thermometer. A superconducting coil would be wound around the paramagnetic material and coupled to a superconducting quantum interference device (SQUID) magnetometer.

Day, Peter; Chui, Talso; Goodstein, David

2005-01-01

48

Refrigeration for Cryogenic Sensors  

NASA Technical Reports Server (NTRS)

Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

Gasser, M. G. (editor)

1983-01-01

49

Development of Advanced Tools for Cryogenic Integration  

NASA Astrophysics Data System (ADS)

This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

2004-06-01

50

Cryogenic immersion microscope  

DOEpatents

A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-12-14

51

Design parameter evaluation of a metal recoated Fiber Bragg Grating sensors for measurement of cryogenic temperature or stress in superconducting devices  

NASA Astrophysics Data System (ADS)

There are plenty of complex physical phenomena which remain to be studied and verified experimentally for building an optimized superconducting magnet. The main problem for experimental validations is due to the unavailability of suitable sensors. This paper proposes a Fiber Bragg Gratings (FBG) sensor for this purpose which allows access to the local temperature/stress state. To measure the low temperature (20 K), FBG can be recoated with materials having high thermal expansion coefficient (HTCE). This can induce a thermal stress for a temperature change, which in turn increases the sensitivity of the sensor. The performance of such sensors has been experimentally studied and reported in earlier paper [Rajinikumar R, Suesser M, Narayankhedkar KG, Krieg G, Atrey MD. Performance evaluation of metallic coated Fiber Bragg Grating sensors for sensing cryogenic temperature. Cryogenics 2008;48:142-7]. This paper aims at evaluation and determination of different design parameters like coating materials, coating thickness, grating period and the grating length for design of better performance FBG sensor for low temperature/stress measurements.

Rajinikumar, R.; Süßer, M.; Narayankhedkar, K. G.; Krieg, G.; Atrey, M. D.

2009-05-01

52

Cryogen thermal storage matrix  

SciTech Connect

This patent describes a thermal storage matrix for the collection and storage of liquid and solid cryogens for use in conjunction with the cooling of detectors by liquid or solid cryogen. It comprises: multiple layers of at least one highly adsorbent material which effectively adsorbs liquid cryogens and at least one relatively porous material which exhibits high thermal conductivity at cryogenic conditions and transfers heat in and out of the matrix and allows a path for a gas, generated as a liquid cryogen evaporates, to escape, without blowing the liquid out from the at least one highly adsorbent material.

Longsworth, R.

1991-05-07

53

Germanium JFET for Cryogenic Readout Electronics  

NASA Technical Reports Server (NTRS)

The n-channel Germanium junction field effect transistor (Ge-JFET) was designed and fabricated for cryogenic applications. The Ge-JFET exhibits superior noise performance at liquid nitrogen temperature (77 K). From the device current voltage characteristics of n-channel JFETs, it is seen that transconductance increases monotonically with the lowering of temperature to 4.2 K (liquid helium temperature).

Das, N. C.; Monroy, C.; Jhabvala, M.; Shu, P.

1999-01-01

54

Cryogenic processes and equipment 1982  

SciTech Connect

This collection of papers presented at the Joint Cryogenic Symposium in Los Angeles in 1982 covers cryogenic processes and equipment for temperatures above -423/sup 0/F, helium technology, and thermophysical properties and transport phenomena for cryogenic fluids.

Frederking, T.H.K.; Hiza, M.J.; Toscano, W.M.; Wenzel, L.A.

1983-01-01

55

Cryogenics for LDR  

NASA Technical Reports Server (NTRS)

Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.

Kittel, Peter

1988-01-01

56

Fundamentals of Cryogenics  

NASA Technical Reports Server (NTRS)

Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

2014-01-01

57

Cryogenic powered vehicle  

SciTech Connect

A cryogenic powered vehicle is disclosed which utilizes liquid nitrogen contained in a storage tank or tanks and communicated with a plurality of expansion assemblies through a one-way flow valve with the pressurized expanded gas being discharged to atmosphere through a turbine structure which is drivingly connected to the driving wheels of a vehicle through a suitable transmission and other conventional drive components. The expansion assemblies include heat exchange devices in the form of serpentine tubes having heat exchange fins thereon with one of the expansion assemblies being in the form of a heat exchange coil associated with the air conditioning system of an automobile or the load cooling system of a load carrying vehicle. One of the expansion assemblies is located adjacent the inlet of a turbine and is in the form of a master expander coil to discharge pressurized gas into a rotary vane type turbine to produce a rotational output that is drivingly connected to the drive train of a vehicle.

Boese, H.L.

1981-10-13

58

Unique Cryogenic Welded Structures  

Microsoft Academic Search

For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include

K. A. Yushchenko; G. G. Monko

2004-01-01

59

Cryogenic Information Center  

NASA Technical Reports Server (NTRS)

The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

2003-01-01

60

Shocks in Cryogenic Liquids  

Microsoft Academic Search

A unified definition of cryogenic fluids has not been clearly given so far. Nevertheless, for convenience’s sake in this chapter, it may be defined as fluids of which normal boiling points (NBP) are below liquid nitrogen temperature, 77 K. The saturated vapor pressure and the triple points and the critical points are shown for typical cryogenic fluids in Fig. 4.1.

Masahide Murakami

61

Application of a novel test system to characterize single-event transients at cryogenic temperatures  

Microsoft Academic Search

This manuscript presents details of a customized test system that enables carrying out broadbeam heavy ion SEE radiation testing of semiconductor devices at cryogenic temperatures, while the device is biased and operational, and its application to measure the temperature dependence of single event transients in a CMOS circuit. The cryogenic test system is lightweight and portable, and allows use of

Vishwanath Ramachandran; Matthew J. Gadlage; Jonathan R. Ahlbin; Michael L. Alles; R. A. Reed; B. L. Bhuva; L. W. Massengill; J. D. Black; C. N. Foster

2009-01-01

62

A new cryogenic diode thermometer  

NASA Astrophysics Data System (ADS)

While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

2002-05-01

63

Cryogenic wind tunnels. I  

NASA Technical Reports Server (NTRS)

The basic principles of cryogenic wind-tunnel operation are presented, and a typical cryogenic wind tunnel is described. Low-speed cryogenic wind tunnels are considered, along with some experiments conducted in these tunnels. Focus is placed on real-gas effects including condensation and thermal and caloric imperfections. The operating limits set by the saturation boundaries of nitrogen and air are analyzed, and the consequences of thermal and caloric imperfections on both isentropic and normal-shock flow in nitrogen are considered. The extension of analytical real-gas studies, including both laminar and turbulent boundary layers is covered. It is concluded that the deviation of the nitrogen boundary-layer parameters from their ideal-gas values are small, and that large real-gas effects will not be a factor in cryogenic tunnel simulation of the complex flows met in flight.

Kilgore, Robert A.

1987-01-01

64

Cryogenic Insulation System  

NASA Technical Reports Server (NTRS)

This invention relates to reusable, low density, high temperature cryogenic foam insulation systems and the process for their manufacture. A pacing technology for liquid hydrogen fueled, high speed aircraft is the development of a fully reusable, flight weight cryogenic insulation system for propellant tank structures. In the invention cryogenic foam insulation is adhesively bonded to the outer wall of the fuel tank structure. The cryogenic insulation consists of square sheets fabricated from an array of abutting square blocks. Each block consists of a sheet of glass cloth adhesively bonded between two layers of polymethacrylimide foam. Each block is wrapped in a vapor impermeable membrane, such as Kapton(R) aluminum Kapton(R), to provide a vapor barrier. Very beneficial results can be obtained by employing the present invention in conjunction with fibrous insulation and an outer aeroshell, a hot fuselage structure with an internal thermal protection system.

Davis, Randall C. (inventor); Taylor, Allan H. (inventor); Jackson, L. Robert (inventor); Mcauliffe, Patrick S. (inventor)

1988-01-01

65

Cryogenic Insulation Systems  

NASA Technical Reports Server (NTRS)

The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

1999-01-01

66

Cryogenic Feedthrough Test Rig  

NASA Technical Reports Server (NTRS)

The cryogenic feedthrough test rig (CFTR) allows testing of instrumentation feedthroughs at liquid oxygen and liquid hydrogen temperature and pressure extremes (dangerous process fluid) without actually exposing the feedthrough to a combustible or explosive process fluid. In addition, the helium used (inert gas), with cryogenic heat exchangers, exposes the feedthrough to that environment that allows definitive leak rates of feedthrough by typical industry-standard helium mass spectrometers.

Skaff, Antony

2009-01-01

67

Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation  

NASA Technical Reports Server (NTRS)

Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included.

1974-01-01

68

Composite, vacuum-jacketed tubing replaces bellows in cryogenic systems  

NASA Technical Reports Server (NTRS)

For reliability control of high pressure cryogenic systems, one or more 90 degree elbow expansion devices are substituted for the metal bellows normally used. The device consists of a conducting tube inside a support tube, with the space between the tubes evacuated for insulation.

Calvert, H. F.

1964-01-01

69

Spacecraft cryogenic gas storage systems  

NASA Technical Reports Server (NTRS)

Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

Rysavy, G.

1971-01-01

70

Cryogenic Capillary Screen Heat Entrapment  

NASA Technical Reports Server (NTRS)

Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.

Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.

2007-01-01

71

Evaluation of single versus multiple cryogen spray cooling spurts on in vitro model human skin  

Microsoft Academic Search

Many commercially available dermatologic lasers utilize cryogen spray cooling for epidermal protection. A previous tissue culture study demonstrated that single cryogen spurts (SCS) of 80 ms or less were unlikely to cause cryo-injury in light-skinned individuals. More recently, multiple cryogen spurts (MCS) have been incorporated into commercial devices, but the effects of MCS have not been evaluated. The aim was to

Alia T. Tuqan; Kristen M. Kelly; Guillermo Aguilar; Chung-Ho Sun; David Cassarino; Damian Derienzo; Ronald J. Barr; J. Stuart. Nelson

2005-01-01

72

Cryogenics for Fusion  

NASA Astrophysics Data System (ADS)

Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to "fusion for energy" will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

Dauguet, P.; Gistau-Baguer, G. M.; Bonneton, M.; Boissin, J. C.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.

2008-03-01

73

History, status and future applications of spaceborne cryogenic systems  

NASA Technical Reports Server (NTRS)

Cryogenic cooling is employed for an increasing number of space instruments. Cryogenic cooling is needed to provide the required detector response, reduce preamplifier noise, and/or reduce background radiation. Cryogenic cooling is required by instruments employed for applications missions, gamma-ray and X-ray astronomy, cosmic ray measurements, space surveillance, IR astronomy, relativity measurements, superconductivity devices, and basic research experiments. The cooling is provided with the aid of radiant coolers, stored solid cryogen coolers, stored liquid-helium coolers, mechanical coolers, He-3 coolers, adiabatic demagnetization, refrigeration, and higher temperature adsorption and magnetic systems. Radiant coolers will continue to find widespread application for low cooling-load/high-temperature situation. It is pointed out that a long-lifetime closed-cycle, mechanical cooler is one of the most critical space technological needs.

Sherman, A.

1982-01-01

74

Unique Cryogenic Welded Structures  

SciTech Connect

For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

Yushchenko, K.A.; Monko, G.G. [E.O. Paton Electric Welding Institute, Kiev 03680 (Ukraine)

2004-06-28

75

Unique Cryogenic Welded Structures  

NASA Astrophysics Data System (ADS)

For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

Yushchenko, K. A.; Monko, G. G.

2004-06-01

76

Cryogenic Model Materials  

NASA Technical Reports Server (NTRS)

An overview and status of current activities seeking alternatives to 200 grade 18Ni Steel CVM alloy for cryogenic wind tunnel models is presented. Specific improvements in material selection have been researched including availability, strength, fracture toughness and potential for use in transonic wind tunnel testing. Potential benefits from utilizing damage tolerant life-prediction methods, recently developed fatigue crack growth codes and upgraded NDE methods are also investigated. Two candidate alloys are identified and accepted for cryogenic/transonic wind tunnel models and hardware.

Kimmel, W. M.; Kuhn, N. S.; Berry, R. F.; Newman, J. A.

2001-01-01

77

Cryogenic Hybrid Magnetic Bearing  

NASA Technical Reports Server (NTRS)

Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

1994-01-01

78

Comparison of Cryogenic Temperature Sensor Installation Inside or Outside the Piping  

Microsoft Academic Search

Cryogenic thermometers for large cryogenic facilities, like superconducting particle accelerator or fusion devices, must be able to withstand very severe conditions over the lifetime of the facility. In addition to the proper selection of the sensor, the choice of the appropriate installation method plays an important role for satisfying operation. Several characteristics must be taken into account, for instance: large

R. Müller; M. Süßer

2010-01-01

79

COMPARISON OF CRYOGENIC TEMPERATURE SENSOR INSTALLATION INSIDE OR OUTSIDE THE PIPING  

Microsoft Academic Search

Cryogenic thermometers for large cryogenic facilities, like superconducting particle accelerator or fusion devices, must be able to withstand very severe conditions over the lifetime of the facility. In addition to the proper selection of the sensor, the choice of the appropriate installation method plays an important role for satisfying operation. Several characteristics must be taken into account, for instance: large

2010-01-01

80

Vapor cooled current lead for cryogenic electrical equipment  

DOEpatents

Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.

Vansant, James H. (Tracy, CA)

1983-01-01

81

Cryogenics Research and Engineering Experience  

NASA Technical Reports Server (NTRS)

Energy efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space have a direct impact on NASA, government and commercial programs. Research and development on thermal insulation, propellant servicing, cryogenic components, material properties and sensing technologies provides industry, government and research institutions with the cross-cutting technologies to manage low-temperature applications. Under the direction of the Cryogenic Testing Lab at Kennedy Space Center, the work experience acquired allowed me to perform research, testing, design and analysis of current and future cryogenic technologies to be applied in several projects.

Toro Medina, Jaime A.

2013-01-01

82

Guidance Document Cryogenic Liquids  

E-print Network

have boiling points below -73°C (-100°F). The most common cryogenic liquids currently on campus conditions of temperature and pressure. But all have two very important properties in common. First, the liquids and their vapors are extremely cold. The risk of destructive freezing of tissues is always present

83

High Power Cryogenic Targets  

SciTech Connect

The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

Gregory Smith

2011-08-01

84

Cryogenic Control System  

SciTech Connect

The control system (CS) for the cryogenic arrangement of the DO Liquid Argon Calorimeter consists of a Texas instruments 560/565 Programmable Logical Controller (PLC), two remote bases with Remote Base Controllers and a corresponding set of input/output (I/O) modules, and a PC AST Premium 286 (IBM AT Compatible). The PLC scans a set of inputs and provides a set of outputs based on a ladder logic program and PID control loops. The inputs are logic or analog (current, voltage) signals from equipment status switches or transducers. The outputs are logic or analog (current or voltage) signals for switching solenoids and positioning pneumatic actuators. Programming of the PLC is preformed by using the TISOFT2/560/565 package, which is installed in the PC. The PC communicates to the PLC through a serial RS232 port and provides operator interface to the cryogenic process using Xpresslink software.

Goloborod'ko, S.; /Fermilab

1989-02-27

85

Cryogenic treatment of gas  

DOEpatents

Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

Bravo, Jose Luis (Houston, TX); Harvey, III, Albert Destrehan (Kingwood, TX); Vinegar, Harold J. (Bellaire, TX)

2012-04-03

86

Cryogenic support system  

DOEpatents

A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

Nicol, Thomas H. (Aurora, IL); Niemann, Ralph C. (Downers Grove, IL); Gonczy, John D. (Oak Lawn, IL)

1988-01-01

87

Closed-cycle cryogenic pump suitable for sounding rockets use  

NASA Technical Reports Server (NTRS)

We have successfully used a closed-cycle cryogenic cooling system as a high-speed UHV pump for instruments carried into the upper atmosphere on board sounding rockets. The device utilizes a commercially available, Sterling-cycle refrigerator that has proven to be rugged and simple to use under field conditions.

Erdman, P. W.; Zipf, E. C.

1982-01-01

88

Cryogenic electronic memory infrastructure for physically related “continuity of care records” of frozen cells  

NASA Astrophysics Data System (ADS)

This paper describes low-temperature electronics for cryogenic applications, especially for a new technique for living-cell storage near liquid-nitrogen temperatures. Central is the reliable coupling of a sample carrier to cryo-tolerant electronics, particularly memory devices storing continuity of care records, lab workflows, and other useful documentation. We present (1) a two-year study of the performance and data retention of Flash-Memory devices in a controlled cryogenic environment, (2) a cryogenic multiplexer allowing multiple, cold Flash-Memories to share a communication channel, and (3) results for radio frequency identification tags immersed in liquid nitrogen.

Ihmig, Frank R.; Shirley, Stephen G.; Durst, Christopher H. P.; Zimmermann, Heiko

2006-04-01

89

The Cryogenic Grating Spectrometer  

NASA Technical Reports Server (NTRS)

The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

1995-01-01

90

Material Damping Experiments at Cryogenic Temperatures  

NASA Technical Reports Server (NTRS)

A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.

Levine, Marie; White, Christopher

2003-01-01

91

Polyamide 66 as a cryogenic dielectric  

NASA Astrophysics Data System (ADS)

Improvements in superconductor and cryogenic technologies enable novel power apparatus, e.g., cables, transformers, fault current limiters, generators, it etc., with better device characteristics than their conventional counterparts. In these applications electrical insulation materials play an important role in system weight, footprint (size), and voltage level. The trend in the electrical insulation material selection has been to adapt or to employ conventional insulation materials to these new systems. However, at low temperatures, thermal contraction and loss of mechanical strength in many materials make them unsuitable for superconducting power applications. In this paper, a widely used commercial material was characterized as a potential cryogenic dielectric. The material is used in "oven bags" which is a heat-resistant polyamide (nylon) used in cooking (produced by ; this value is approximately 46kVmm higher than PPLP™. Comparison of the mechanical properties of PA and PPLP™ indicates that PA66 has low storage and loss moduli than PPLP™. It is concluded that PA66 may be a good candidate for cryogenic applications. Finally, a summary of dielectric properties of some of the commercial tape insulation materials and various polymers is also provided.

Tuncer, Enis; Polizos, Georgios; Sauers, Isidor; Randy James, D.; Ellis, Alvin R.; Messman, Jamie M.; Aytu?, Tolga

2009-09-01

92

The SNS Cryogenic Control System: Experiences in Collaboration  

SciTech Connect

The cryogenic system for the Spallation Neutron Source (SNS) is designed by Jefferson Laboratory (JLab) personnel and is based on the existing JLab facility. Our task is to use the JLab control system design [2] as much as practical while remaining consistent with SNS control system standards. Some aspects of the systems are very similar, including equipment to be controlled, the need for PID loops and automatic sequences,and the use of EPICS. There are differences in device naming, system hardware, and software tools. The cryogenic system is the first SNS system to be developed using SNS standards. This paper reports on our experiences in integrating the new and the old.

W.H. Strong; P.A. Gurd; J.D. Creel; B.S. Bevins

2001-11-01

93

Cryogenic radiometer developments at NPL  

Microsoft Academic Search

Cryogenic radiometers are widely used as the primary standard of choice for optical radiometric measurements. This has led to increased demand for designs optimised for specific applications. NPL has pioneered the field of cryogenic radiometry, both in terms of design and application, from its first successful implementation in the 1970's through to the wide range of instruments and applications available

J. Ireland; M. G. White; N. P. Fox

94

Spacelab cryogenic propellant management experiment  

NASA Technical Reports Server (NTRS)

The conceptual design of a Spacelab cryogen management experiment was performed to demonstrate toe desirability and feasibility of subcritical cryogenic fluid orbital storage and supply. A description of the experimental apparatus, definition of supporting requirements, procedures, data analysis, and a cost estimate are included.

Cady, E. C.

1976-01-01

95

Cryogenic insulation development  

NASA Technical Reports Server (NTRS)

Multilayer insulations for long term cryogenic storage are described. The development effort resulted in an insulation concept using lightweight radiation shields, separated by low conductive Dacron fiber tufts. The insulation is usually referred to as Superfloc. The fiber tufts are arranged in a triangular pattern and stand about .040 in. above the radiation shield base. Thermal and structural evaluation of Superfloc indicated that this material is a strong candidate for the development of high performance thermal protection systems because of its high strength, purge gas evacuation capability during boost, its density control and easy application to a tank.

Leonhard, K. E.

1972-01-01

96

FRIB cryogenic distribution system  

SciTech Connect

The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Laverdure, Nathaniel A. [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Barrios, Matthew N. [Michigan State; Jones, S. [Michigan State; Johnson, M. [Michigan State; Casagrande, Fabio [Michigan State

2014-01-01

97

Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

2012-01-01

98

FRIB cryogenic distribution system  

SciTech Connect

The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States); Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)

2014-01-29

99

Cryogenic distribution for the Facility for Rare Isotope Beams  

SciTech Connect

The Facility for Rare Isotope Beams (FRIB) is a new National User Facility for nuclear science funded by the Department of Energy Office of Science and operated by Michigan State University. The FRIB accelerator linac consists of superconducting radio-frequency (SCRF) cavities operating at 2 K and SC magnets operating at 4.5 K all cooled by a large scale cryogenic refrigeration system. A major subsystem of the cryogenic system will be the distribution system whose primary components will include a distribution box, the transfer lines and the interconnect valve boxes at each cryogenic device. An overview of the conceptual design of the distribution system including engineering details, capabilities and schedule is described.

S. Jones, Dana Arenius, Adam Fila, P. Geutschow, Helmut Laumer, Matt Johnson, Cory S. Waltz, J. G. Weisend II

2012-06-01

100

CONE - An STS-based cryogenic fluid management experiment  

NASA Technical Reports Server (NTRS)

An overview of the CONE program is presented which includes a definition of the technology addressed by CONE and a baseline experiment set, a description of the experimental and support subsystems, interface requirements between the STS and the experiment carrier (Hitchhiker M), and the reusability and expansion capacity for additional experiment flights. CONE evaluates three primary technologies: the active thermodynamic vent system, the passive thermodynamic vent system, and liquid acquisition device performance. The cryogenic fluid management technology database that the system offers will allow for efficient subcritical cryogenic system designs for operation in a low-gravity environment. This system maximizes the balance between existing component technology and the need for the development of a cryogenic-fluid-management (CFM) test bed to investigate and demonstrate methods of storage and handling arenas.

Bell, R. S.; Vento, D. M.; Hanna, G. J.

1992-01-01

101

Cryogenics maintenance strategy  

NASA Astrophysics Data System (ADS)

ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

Cruzat, Fabiola

2012-09-01

102

Design and Construction of Cryogenic Optomechanical System  

NASA Astrophysics Data System (ADS)

One key challenge to observing quantum phenomena in a macroscopic mechanical oscillator is reaching its ground state. To achieve the low temperatures required for this, we utilize resolved sideband laser cooling of a few hundred kHz mechanical oscillator with high mechanical Q (a Si3N4 membrane) inside a high finesse optical cavity, in addition to cryogenically reducing the bath temperature. Realizing high Q and high finesse cavity optomechanical devices in a cryogenic environment requires overcoming a number of challenges. In this talk, we describe the design and construction of such a device working at a bath temperature of 300 mK (in a 3He refrigerator) and suited for operation at lower temperatures (in a dilution refrigerator). The design incorporates in-situ commercial piezo actuators (manufactured by Janssen Precision Engineering) to couple externally prepared laser light into the cold optical cavity. The design also incorporates filtering cavities to suppress classical laser noise, and acoustic and seismic isolation of the experiment.

Lee, Donghun; Underwood, Mitchell; Mason, David; Jayich, Andrew; Kashkanova, Anya; Harris, Jack

2013-03-01

103

Cryogenic Cooling for Myriad Applications-A STAR Is Born  

NASA Technical Reports Server (NTRS)

Cryogenics, the science of generating extremely low temperatures, has wide applicability throughout NASA. The Agency employs cryogenics for rocket propulsion, high-pressure gas supply, breathable air in space, life support equipment, electricity, water, food preservation and packaging, medicine, imaging devices, and electronics. Cryogenic liquid oxygen and liquid hydrogen systems are also replacing solid rocket motor propulsion systems in most of the proposed launch systems, a reversion to old-style liquid propellants. In the late 1980s, NASA wanted a compact linear alternator/motor with reduced size and mass, as well as high efficiency, that had unlimited service life for use in a thermally driven power generator for space power applications. Prior development work with free-piston Stirling converters (a Stirling engine integrated with a linear actuator that produces electrical power output) had shown the promise of that technology for high-power space applications. A dual use for terrestrial applications exists for compact Stirling converters for onsite combined heat and power units. The Stirling cycle is also usable in reverse as a refrigeration cycle suitable for cryogenic cooling, so this Stirling converter work promised double benefits as well as dual uses. The uses for cryogenic coolers within NASA abound; commercial applications are similarly wide-ranging, from cooling liquid oxygen and nitrogen, to cryobiology and bio-storage, cryosurgery, instrument and detector cooling, semiconductor manufacturing, and support service for cooled superconducting power systems.

2006-01-01

104

Cryogenic insulation strength and bond tester  

NASA Technical Reports Server (NTRS)

A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.

Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (inventors)

1985-01-01

105

Cryogenic Fluid Transfer for Exploration  

NASA Technical Reports Server (NTRS)

This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

Chato, David J.

2007-01-01

106

Cryogenic Two-Phase Flight Experiment: Results overview  

NASA Technical Reports Server (NTRS)

This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.

Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.

1995-01-01

107

LUX Cryogenics and Circulation  

NASA Astrophysics Data System (ADS)

LUX is a new dark matter direct detection experiment being carried out at the Sanford Underground Research Facility, at the renewed Homestake mine in Lead, SD. The detector's large size supports effective internal shielding from natural radioactivity of the surrounding materials and environment. The LUX detector consists of a cylindrical vessel containing 350 kg of liquid xenon (LXe) cooled down and maintained at 175-K operating temperature using a novel cryogenic system. We report the efficiency of our thermosyphon-based cooling system, as well as the efficiency of a unique internal heat exchanger with standard gas phase purification using a heated getter, which allows for very high flow purification without requiring large cooling power. Such systems are required for multi-ton scale up.

Bradley, Adam

2012-10-01

108

Basic cryogenics and materials  

NASA Technical Reports Server (NTRS)

The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insulatants, seals, and fiber reinforced composites.

Wigley, D. A.

1985-01-01

109

Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The CPS is an in-space cryogenic propulsive stage based largely on state of the practice design for launch vehicle upper stages. However, unlike conventional propulsive stages, it also contains power generation and thermal control systems to limit the loss of liquid hydrogen and oxygen due to boil-off during extended in-space storage. The CPS provides the necessary (Delta)V for rapid transfer of in-space elements to their destinations or staging points (i.e., E-M L1). The CPS is designed around a block upgrade strategy to provide maximum mission/architecture flexibility. Block 1 CPS: Short duration flight times (hours), passive cryo fluid management. Block 2 CPS: Long duration flight times (days/weeks/months), active and passive cryo fluid management.

Jones, David

2011-01-01

110

Cryogenic nuclear gyroscope  

SciTech Connect

A cryogenic nuclear gyroscope is described that is comprised of a cylinder of niobium cooled within a helium cryostat so as to be superconducting and to provide a trapped, substantially homogeneous magnetic field, a helium-3 sample contained within a spherical pyrex cell having nuclei possessing a net magnetic moment, coils provided to polarize the sample to provide that net magnetic moment, and a SQUID magnetometer coupled to the sample by a pick-up coil of a transformer and frequency sensitive means coupled to the SQUID to detect changes in the precession of the nuclear moments of the sample caused by rotation of the gyroscope about an axis parallel to the direction of the homogeneous magnetic field. A superconducting lead shield isolates the helium-3 sample from external magnetic fields.

Gallop, J.C.; Potts, S.P.

1980-09-30

111

Cryogenic cooler apparatus  

DOEpatents

A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. .sup.4 He, .sup.3 He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3-4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel.

Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Sunnyvale, CA)

1983-01-01

112

Cryogenic cooler apparatus  

DOEpatents

A Malone-type final stage for utilization in a Stirling cycle cryogenic cooler apparatus includes a displacer slidable within a vessel. [sup 4]He, [sup 3]He, or a mixture thereof is made to flow in a pulsating unidirectional manner through a regenerator in the displacer by utilization of check valves in separate fluid channels. Stacked copper screen members extend through the channels and through a second static thermodynamic medium within the displacer to provide efficient lateral heat exchange and enable cooling to temperatures in the range of 3--4 K. Another embodiment utilizes sintered copper particles in the regenerator. Also described is a final stage that has a non-thermally conducting displacer having passages with check valves for directing fluid past a regenerator formed in the surrounding vessel. 10 figs.

Wheatley, J.C.; Paulson, D.N.; Allen, P.C.

1983-01-04

113

Adhesive for cryogenic temperature applications  

NASA Technical Reports Server (NTRS)

Adhesive, which bonds a metal liner to a filament wound composite structure used for cryogenic pressure vessels, prevents the metal liner from buckling under depressurization. The adhesive consists of adducts of urethane and epoxy resins.

Doyle, H. M.

1969-01-01

114

The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems  

SciTech Connect

The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

Green, Michael A.

2003-07-09

115

A Piezoelectric Cryogenic Heat Switch  

NASA Technical Reports Server (NTRS)

We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

Jahromi, Amir E.; Sullivan, Dan F.

2014-01-01

116

Cryogenic foam insulation: Abstracted publications  

NASA Technical Reports Server (NTRS)

A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

Williamson, F. R.

1977-01-01

117

R&D ERL: Cryogenic System  

SciTech Connect

The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

Than, R.

2010-01-01

118

Latest developments in cryogenic safety  

NASA Technical Reports Server (NTRS)

The Cryogenic Safety Manual, sponsored by the British Cryogenics Council, was published over 10 years ago. A new updated version is now available. Some general aspects of cryogenic safety are highlighted, and attention is drawn to some of the more unusual hazardous situations. An awareness of the physical properties of the cryogenic fluids being dealt with is important in directing attention to hazardous situations which may arise. Because of this, the more important properties of the cryogenic fluids are given, such as molecular weight, boiling point and freezing point. From these properties, hazardous situations can be deduced. There are hidden dangers that are not always easy to spot. Some of the unexpected hazards, most of which have led to deaths, are: asphyxiation (anoxia), frost bites and hypothermia, explosions, and combustion. The aim of this publication is to help bring about increased safety in the production and use of cryogenic products through a deeper appreciation of the scientific, technological and administrative steps which must be made if accidents, some fatal, are to be voided in the future.

Webster, T. J.

1983-01-01

119

Improved yields for the nano-technology era using cryogenic aerosols  

Microsoft Academic Search

In this paper, cryogenic aerosol processing for enhancing final device yield in state-of-art 180 and 130 nm devices is demonstrated. Significant advantages of this particle removal technology is demonstrated and discussed: excellent particle removal efficiency on both hydrophilic and hydrophobic surfaces, no watermarks, no feature damage, no charge induced damage and no film modification or loss.

Thomas J. Wagener; Kazushi Kawaguchi

2004-01-01

120

Experimental Observations on Material Damping at Cryogenic Temperatures  

NASA Technical Reports Server (NTRS)

This paper describes a unique experimental facility designed to measure damping of materials at cryogenic temperatures for the Terrestrial Planet Finder (TPF) mission at the Jet Propulsion Laboratory. The test facility removes other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device. Damping data reported herein are obtained for materials (Aluminum, Aluminum/Terbium/Dysprosium, Titanium, Composites) vibrating in free-free bending modes with low strain levels (< 10(exp -6) ppm). The fundamental frequencies of material samples are ranged from 14 to 202 Hz. To provide the most beneficial data relevant to TPF-like precision optical space missions, the damping data are collected from room temperatures (around 293 K) to cryogenic temperatures (below 40 K) at unevenly-spaced intervals. More data points are collected over any region of interest. The test data shows a significant decrease in viscous damping at cryogenic temperatures. The cryogenic damping can be as low as 10(exp -4) %, but the amount of the damping decrease is a function of frequency and material. However, Titanium 15-3-3-3 shows a remarkable increase in damping at cryogenic temperatures. It demonstrates over one order of magnitude increase in damping in comparison to Aluminum 6061-T6. Given its other properties (e.g., good stiffness and low conductivity) this may prove itself to be a good candidate for the application on TPF. At room temperatures, the test data are correlated well with the damping predicted by the Zener theory. However, large discrepancies at cryogenic temperatures between the Zener theory and the test data are observed.

Peng, Chia-Yen; Levine, Marie; Shido, Lillian; Leland, Robert

2004-01-01

121

Cryogenic focussing, ohmically heated on-column trap  

SciTech Connect

A procedure is described for depositing a conductive layer of gold on the exterior of a fused-silica capillary used in gas chromatography. By subjecting a section of the column near the inlet to a thermal cycle of cryogenic cooling and ohmic heating, volatile samples are concentrated and subsequently injected. The performance of this trap as a chromatographic injector is demonstrated. Several additional applications are suggested and the unique properties of this device are discussed. 11 refs., 5 figs., 1 tab.

Springston, S.R.

1991-12-01

122

Cryogenic flux-concentrator  

NASA Technical Reports Server (NTRS)

Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

Bailey, B. M.; Brechna, H.; Hill, D. A.

1969-01-01

123

Cryogenic Electric Motor Tested  

NASA Technical Reports Server (NTRS)

Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

Brown, Gerald V.

2004-01-01

124

Collapsible Cryogenic Storage Vessel Project  

NASA Technical Reports Server (NTRS)

Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

Fleming, David C.

2002-01-01

125

Cryogenically assisted abrasive jet micromachining of polymers  

NASA Astrophysics Data System (ADS)

The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN2) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN2 also was found to reduce particle embedding.

Getu, H.; Spelt, J. K.; Papini, M.

2008-11-01

126

Tapered Screened Channel PMD for Cryogenic Liquids  

NASA Astrophysics Data System (ADS)

If a conventional spacecraft propellant management device (PMD) of the screened channel type were employed with a cryogenic liquid, vapor bubbles generated within the channel by heat transfer could ``dry out'' the channel screens and thereby cause the channels to admit large amounts of vapor from the tank into the liquid outflow. This paper describes a new tapered channel design that passively `pumps' bubbles away from the outlet port and vents them into the tank. A predictive mathematical model of the operating principle is presented and discussed. Scale-model laboratory tests were conducted and the mathematical model agreed well with the measured rates of bubble transport velocity. Finally, an example of the use of the predictive model for a realistic spacecraft application is presented. The model predicts that bubble clearing rates are acceptable even in tanks up to 2 m in length.

Dodge, Franklin T.; Green, Steve T.; Walter, David B.

2004-02-01

127

Modeling of cryogen leakage through composite laminates  

E-print Network

such as hydrogen at cryogenic temperatures. Exposure to varying temperatures and mechanical loads resulting from ?ight cycle, containment of pressurized cryogen causes thermo-mechanical loading of the composite. The thermo-mechanical loading cycles combined...

Peddiraju, Naga Venkata Satya Pravin Kumar

2005-02-17

128

Analysis of the cryogenic system behavior for pulsed heat load in EAST  

NASA Astrophysics Data System (ADS)

EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

2014-01-01

129

Analysis of the cryogenic system behavior for pulsed heat load in EAST  

SciTech Connect

EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H. [Cryogenic Engineering Division, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China)

2014-01-29

130

Other Cryogenic Wind Tunnel Projects  

NASA Technical Reports Server (NTRS)

The first cryogenic tunnel was built at the NASA Langley Research Center in 1972. Since then, many cryogenic wind-tunnels have been built at aeronautical research centers around the world. In this lecture some of the more interesting and significant of these projects that have not been covered by other lecturers at this Special Course are described. In this lecture authors describe cryogenic wind-tunnel projects at research centers in four countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Defence Research Agency - Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); and United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign, and NASA Langley).

Kilgore, Robert A.

1997-01-01

131

Other cryogenic wind tunnel projects  

NASA Technical Reports Server (NTRS)

The first cryogenic tunnel was built in 1972. Since then, many cryogenic wind-tunnel projects were started at aeronautical research centers around the world. Some of the more significant of these projects are described which are not covered by other lecturers at this Special Course. Described are cryogenic wind-tunnel projects in five countries: China (Chinese Aeronautical Research and Development Center); England (College of Aeronautics at Cranfield, and Royal Aerospace Establishment-Bedford); Japan (National Aerospace Laboratory, University of Tsukuba, and National Defense Academy); United States (Douglas Aircraft Co., University of Illinois at Urbana-Champaign and NASA Langley); and U.S.S.R. (Central Aero-Hydronamics Institute (TsAGI), Institute of Theoretical and Applied Mechanics (ITAM), and Physical-Mechanical Institute at Kharkov (PMI-K).

Kilgore, Robert A.

1989-01-01

132

Gauging Systems Monitor Cryogenic Liquids  

NASA Technical Reports Server (NTRS)

Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

2009-01-01

133

Programmable 2-D Addressable Cryogenic Aperture Masks  

NASA Technical Reports Server (NTRS)

We are developing a two-dimensional array of square microshutters (programmable aperture mask) for a multi-object spectrometer for the James Webb Space Telescope (JWST). This device will provide random access selection of the areas in the field to be studied. The device is in essence a close packed array of square slits, each of which can be opened independently to select areas of the sky for detailed study.The device is produced using a 100-micron thick silicon wafer as a substrate with 0.5-micron thick silicon nitride shutters on top of it. Silicon nitride has been selected as the blade and flexure material because its stiffness allows thinner and lighter structures than single crystal Si, the chief alternative, and because of its ease of manufacture. The 100 micron silicon wafer is backetched in a high aspect ratio Deep Reactive Ion Etching (Deep RIE) to leave only a support grid for the shutters and the address electronics. The shutter actuation is done magnetically whereas addressing is electrostatic. 128x128 format microshutter arrays have been produced. Their operation has been demostarted on 32x32 subarrays. Good reliability of the fabrication process and good quality of the microshutters has been achieved. The mechanical behavior and optical performance of the fabricated arrays at cryogenic temperature are being studied.

Kutyrev, A. S.; Moseley, S. H.; Jhabvala, M.; Li, M.; Schwinger, D. S.; Silverberg, R. F.; Wesenberg, R. P.

2004-01-01

134

Space Cryogenic Workshop, 8th, California Institute of Technology, Pasadena, July 31, Aug. 1, 1989, Proceedings  

NASA Astrophysics Data System (ADS)

Recent advances in cryogenic technology for space applications are examined in reviews and reports. Topics addressed include very-low-force cooling contacts for the ISO cryostat cover, convective heat flow in space cryogenics plugs, liquid-acquisition devices for superfluid He transfer, and pressure drop in the SHOOT superfluid-He acquisition system. Consideration is given to a liquid-He vibration cryostat for space qualification tests, closed-cycle coolers for temperatures below 30 K, stress analysis down to liquid-He temperature, a cryogenic valve actuator, and a spaceborne He-3 refrigerator. Also discussed are an adiabatic-demagnetization refrigerator for SIRTF, rejection of waste heat from O liquefaction operations at a lunar O production plant, SHOOT flowmeter and pressure transducers, and space qualification of the ISO cryogenic rupture disks.

1990-03-01

135

Cryogenic Faraday isolator  

SciTech Connect

A Faraday isolator is described in which thermal effects are suppressed by cooling down to liquid nitrogen temperatures. The principal scheme, main characteristics and modifications of the isolator are presented. The isolation degree is studied experimentally for the subkilowatt average laser radiation power. It is shown that the isolator can be used at radiation powers up to tens of kilowatts. (quantum electronic devices)

Zheleznov, D S; Zelenogorskii, V V; Katin, E V; Mukhin, I B; Palashov, O V; Khazanov, Efim A [Institute of Applied Physics, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

2010-05-26

136

A piezoelectric cryogenic heat switch.  

PubMed

We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios of about 100-200 at lowest and highest measures temperature were achieved when the positioner applied its maximum force of 8 N, respectively. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an ideal PZHS. PMID:24985863

Jahromi, Amir E; Sullivan, Dan F

2014-06-01

137

Cryogenic behavior of perovskite materials  

Microsoft Academic Search

Dielectric and piezoelectric properties of perovskite materials such as La modified Pb(Zr,Ti)O3 ceramics and Pb(Zn1\\/3Nb2\\/3)O3-PbTiO3 single crystals were investigated for cryogenic capacitor and actuator applications. Enhanced extrinsic contributions resulted in piezoelectric coefficient (d33) as high as 250 pC\\/N at 30 K, superior to that of PZT (d33 ? 100 pC\\/N). This cryogenic property enhancement was associated with retuning the MPB

Dong-Soo Paik; Seung-Eek Park; Wesley Hackenberger

1999-01-01

138

Cryogenic thermal diode heat pipes  

NASA Technical Reports Server (NTRS)

The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.

Alario, J.

1979-01-01

139

Optical Cryogenic Tank Level Sensor  

NASA Technical Reports Server (NTRS)

Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.

Duffell, Amanda

2005-01-01

140

NASA GRC Cryogenic Seal Test Rig Capability  

NASA Technical Reports Server (NTRS)

It has been about six years since any cryogenic seal tests were run at NASA GRC (Glenn Research Center). The Cryogenic Components Lab, where the cryogenic seal test rigs are located, has been shutdown due to the impending expansion of the Cleveland Hopkins International Airport. The current plan is to move the Cryogenic Components Lab (CCL), Cells I and 2 to NASA Plumbrook in Sandusky, Ohio. The purpose of this presentation is to inform the seal community of the cryogenic seal test rig capabilities available at NASA GRC for planning of future programs.

Proctor, Margaret

2001-01-01

141

Thermal lensing in cryogenic sapphire substrates  

E-print Network

We report the reduction of the thermal lensing in cryogenic sapphire mirrors, which is planed to be used in the Large scale Cryogenic Gravitational wave Telescope (LCGT) project. We measured three key parameters of sapphire substrate for thermal lensing at cryogenic temperature. They are optical absorption coefficient, thermal conductivity and temperature coefficient of refractive index at cryogenic temperature. On basis of these measurements, we estimated the shot noise sensitivity of the interferometer with thermal lensing by using a wave-front tracing simulation. We found that thermal lensing in cryogenic sapphire mirrors is negligible.

Takayuki Tomaru; Toshikazu Suzuki; Shinji Miyoki; Takashi Uchiyama; C. T. Taylor; Akira Yamamoto; Takakazu Shintomi; Masatake Ohashi; Kazuaki Kuroda

2002-02-12

142

GaAs Semi-Insulating Layer for a GaAs Device  

NASA Technical Reports Server (NTRS)

Improved design for GaAs electronic device or integrated circuit designed to operate at cryogenic temperatures, customary SiO2 insulating layer replaced by semi-insulating layer of GaAs. Thermal expansions of device and covering layer therefore match closely, and thermal stresses caused by immersion in cryogenic chamber nearly eliminated.

Sherrill, G.; Mattauch, R. J.

1986-01-01

143

Fastener load tests and retention systems tests for cryogenic wind-tunnel models  

NASA Technical Reports Server (NTRS)

A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

Wallace, J. W.

1984-01-01

144

Filling an Unvented Cryogenic Tank  

NASA Technical Reports Server (NTRS)

Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

Beck, Phillip; Willen, Gary S.

1987-01-01

145

Fast response cryogen level sensor  

NASA Technical Reports Server (NTRS)

Liquid level in cryogenic tank or pipe, or amount of gas trapped in pipeline flow, is monitored electronically by cylindrical capacitive sensor. Changes in liquid level between concentric tubes of capacitor change its impedance, varying current in drive circuit. Since it is oriented parallel to direction of liquid flow, sensor presents little resistance to moving fluid.

Fitzpatrick, J. B.; Maier, L. C.

1981-01-01

146

CRYOGENIC MACHINING OF KEVLAR COMPOSITES  

Microsoft Academic Search

Previous attempts to machine Kevlar aramid fibre reinforced plastics (KFRP) with conventional cutting tools have proven to be extremely difficult. This has somewhat restricted the material's usage, often negating the advantages of its high strength to weight ratio and fatigue tolerance. The present paper describes a novel technique of machining KFRP under cryogenic conditions with remarkable results compared to those

D. Bhattacharyya; M. N. Allen; S. J. Mander

1993-01-01

147

Dust Charge in Cryogenic Environment  

SciTech Connect

Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.

Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O. [Faculty of Engineering, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

2008-09-07

148

Background reduction in cryogenic detectors  

SciTech Connect

This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

Bauer, Daniel A.; /Fermilab

2005-04-01

149

A Magnetically Coupled Cryogenic Pump  

NASA Technical Reports Server (NTRS)

Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into the pump, and the pump was successfully operated meeting all expected operating parameters. Unique pump sub-assembly parts were designed and manufactured by the CTL using specialized materials determined to be superior for cryogenic thermal applications under the pump design conditions. This work is a proof-of-concept/proof-of-operation of the pump only. Other known internal design modifications to the pump should be accomplished for the long-term use of the pump. An upscaled version of this pump, which is under development and testing at the CTL, can be used either for current or future vehicle loading or for vehicle replenishment. Scaling of this pump can be easily accomplished.

Hatfield, Walter; Jumper, Kevin

2011-01-01

150

Reliability of Electronics for Cryogenic Space Applications Being Assessed  

NASA Technical Reports Server (NTRS)

Many future NASA missions will require electronic parts and circuits that can operate reliably and efficiently in extreme temperature environments below typical device specification temperatures. These missions include the Mars Exploration Laboratory, the James Webb Space Telescope, the Europa Orbiter, surface rovers, and deep-space probes. In addition to NASA, the aerospace and commercial sectors require cryogenic electronics in applications that include advanced satellites, military hardware, medical instrumentation, magnetic levitation, superconducting energy management and distribution, particle confinement and acceleration, and arctic missions. Besides surviving hostile space environments, electronics capable of low-temperature operation would enhance circuit performance, improve system reliability, extend lifetime, and reduce development and launch costs. In addition, cryogenic electronics are expected to result in more efficient systems than those at room temperature.

Patterson, Richard L.; Hammoud, Ahmad

2005-01-01

151

Strength of nanostructured austenitic steel 316LN at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

The aim of this work was to investigate the effect of nano-refinement on the properties of austenitic steel. The material with the initial grain size of 40-50pm was subjected to hydrostatic extrusion at a room temperature to the total accumulated strain exceeding 1. The microstructure developed was investigated by Transmission Electron Microscopy (TEM) and Focus Ion Beam (FIB). The strength of the extruded samples was tested at 293K, 77K and 4.2K by means of cryostat for static tensile tests. The results show that the hydrostatically extruded steel 316LN has excellent strength in cryogenic conditions, which make this material interesting for applications in cryogenic devices.

Czarkowski, P.; Krawczynska, A. T.; Brynk, T.; Nowacki, M.; Lewandowska, M.; Kurzyd?owski, K. J.

2014-12-01

152

Feasibility study for a Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) satellite  

NASA Technical Reports Server (NTRS)

This feasibility study presents the conceptual design of a spacecraft for performing a series of cryogenic fluid management flight experiments. This spacecraft, the Cryogenic On-Orbit Liquid Depot-Storage, Acquisition, and Transfer (COLD-SAT) satellite, will use liquid hydrogen as the test fluid, be launched on a Delta expendable launch vehicle, and conduct a series of experiments over a two to three month period. These experiments will investigate the physics of subcritical cryogens in the low gravity space environment to characterize their behavior and to correlate the data with analytical and numerical models of in-space cryogenic fluid management systems. Primary technologies addressed by COLD-SAT are: (1) pressure control; (2) chilldown; (3) no-vent fill; (4) liquid acquisition device fill; (5) pressurization; (6) low-g fill and drain; (7) liquid acquisition device expulsion; (8) line chilldown; (9) thermodynamic state control; and (10) fluid dumping.

Rybak, S. C.; Willen, G. S.; Follett, W. H.; Hanna, G. J.; Cady, E. C.; Distefano, E.; Meserole, J. S.

1990-01-01

153

Design Issues for Cryogenic Cooling of Short Period Superconducting Undulators  

SciTech Connect

Superconducting insertion devices, which produce periodic magnetic fields, have been built and installed in a number of synchrotron-light source storage-rings. For the most part, these devices have been wigglers, which have relatively long period lengths. This report concerns itself with the special cryogenic issues associated with short period undulators. The motivation for considering the incorporation of superconducting technology in insertion device designs is to achieve higher magnetic fields than can be achieved with more conventional permanent magnet technology. Since the peak field decreases sharply with increased magnet gap to period ratio, the cryogenic design of the magnet system is crucial. In particular, the insulation required for a warm vacuum bore device is impractical for short period undulators. This report describes the issues that are related to a cold bore ({approx}4 K) and an intermediate temperature bore (30 to 70 K) designs. The criteria for the use of small cryocoolers for cooling a short period undulator are presented. The problems associated with connecting small coolers to an undulator at 4.2 K are discussed.

Green, M.A.; Dietderich, D.R.; Marks, S.; Prestemon, S.O.; Schlueter, R.D. [Lawrence Berkeley National Laboratory, Berkeley CA 94720 (United States)

2004-06-23

154

Cryogenic contamination speed for cryogenic laser interferometric gravitational wave detector  

Microsoft Academic Search

The reflectance of an ultra-low loss dielectric multilayer coating mirror, which was cooled at 10 K and exposed to 300 K vacuum space, was monitored as the finesse of a Fabry–Perot cavity for two months. The reflectance was measured to decrease with a rate of 0.12+0.12?0.08 ppm per day. Accounting for this result, the cryogenic system for a gravitational wave

Shinji Miyoki; Takayuki Tomaru; Hideki Ishitsuka; Masatake Ohashi; Kazuaki Kuroda; Daisuke Tatsumi; Takashi Uchiyama; Toshikazu Suzuki; Nobuaki Sato; Tomiyoshi Haruyama; Akira Yamamoto; Takakazu Shintomi

2001-01-01

155

Electromagnetic dampers for cryogenic applications  

NASA Technical Reports Server (NTRS)

Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.

Brown, Gerald V.; Dirusso, Eliseo

1988-01-01

156

Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems  

NASA Technical Reports Server (NTRS)

An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.

1973-01-01

157

Insulating Cryogenic Pipes With Frost  

NASA Technical Reports Server (NTRS)

Crystallized water vapor fills voids in pipe insulation. Small, carefully controlled amount of water vapor introduced into dry nitrogen gas before it enters aft fuselage. Vapor freezes on pipes, filling cracks in insulation. Ice prevents gaseous nitrogen from condensing on pipes and dripping on structure, in addition to helping to insulate all parts. Industrial applications include large refrigeration plants or facilities that use cryogenic liquids.

Stephenson, J. G.; Bova, J. A.

1985-01-01

158

Cryogenic moderator simulations : confronting reality.  

SciTech Connect

The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a spallation neutron source dedicated to materials research. Its three cryogenic methane moderators provide twelve neutron beams to fourteen instruments and test facilities. This report concerns ongoing activities for benchmarking our Monte Carlo model of the IPNS neutron generation system. This paper concentrates on the techniques (both experimental and calculational) used in such benchmarking activities.

Iverson, E. B.

1999-01-06

159

Power stabilized cryogenic sapphire oscillator  

Microsoft Academic Search

Microwave oscillators of exceptional short-term stability have been realized from cryogenic sapphire resonators with loaded Q factors in excess of 109 at 11.9 GHz and 6 K. This has been achieved by a power stabilized loop oscillator with active Pound frequency stabilization. These oscillators have exhibited a fractional frequency stability of 3-4×10-15 for integration times from 0.3 to 100 s.

A. N. Luiten; A. G. Mann; M. E. Costa; D. G. Blair

1995-01-01

160

Investigation of cryogenic rupture disc design  

NASA Technical Reports Server (NTRS)

Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

Keough, J. B.; Oldland, A. H.

1973-01-01

161

Cryogenic transfer options for exploration missions  

NASA Technical Reports Server (NTRS)

The literature of in-space cryogenic transfer is reviewed in order to propose transportation concepts to support the Space Exploration Initiative (SEI). Forty-nine references are listed and key findings are synopsized. An assessment of the current maturity of cryogenic transfer system technology is made. Although the settled transfer technique is the most mature technology, the No-Vent Fill technology is maturing rapidly. Future options for development of cryogenic transfer technology are also discussed.

Chato, David J.

1991-01-01

162

Properties of cryogenically worked metals. [stainless steels  

NASA Technical Reports Server (NTRS)

A program was conducted to determine whether the mechanical properties of cryogenically worked 17-7PH stainless steel are suitable for service from ambient to cryogenic temperatures. It was determined that the stress corrosion resistance of the cryo-worked material is quite adequate for structural service. The tensile properties and fracture toughness at room temperature were comparable to titanium alloy 6Al-4V. However, at cryogenic temperatures, the properties were not sufficient to recommend consideration for structural service.

Schwartzberg, F. R.; Kiefer, T. F.

1975-01-01

163

Cryogenic Particle Detectors in Search for Dark Matter  

E-print Network

Cryogenic Particle Detectors in Search for Dark Matter Panofsky Prize presentation American;Panofsky Prize Talk - Cryogenic Dark Matter Detectors Page Blas Cabrera - Stanford University Original #12;Panofsky Prize Talk - Cryogenic Dark Matter Detectors Page Blas Cabrera - Stanford University TES

California at Berkeley, University of

164

Report on the First VLHC Photon Stop Cryogenic Design Experiment  

SciTech Connect

As part of Fermilab's study of a Very Large Hadron Collider (VLHC), a water-cooled photon stop was proposed as a device to intercept the synchrotron radiation emitted by the high-energy proton beams in the high-field superconducting magnets with minimal plug-cooling power. Photon stops are radiation absorbers operating at room temperature that protrude into the beam tube at the end of each bending magnet to scrape the synchrotron light emitted by the beam one magnet up-stream. Among the technological challenges regarding photon stops is their cryo-design. The photon stop is water-cooled and operates in a cryogenic environment. A careful cryo-design is therefore essential to enable operation at minimum heat transfer between the room temperature sections and the cryogenic parts. A photon stop cryo-design was developed and a prototype was built. This paper presents the results of the cryogenic experiments conducted on the first VLHC photon-stop prototype.

Geynisman, M.; Bauer, P.; Bossert, R.; Darve, C.; Ewald, K.; Klebaner, A.; Limon, P.; Martinez, A. [Fermi National Accelerator Laboratory, Batavia, Illinois, 60510 (United States)

2004-06-23

165

A new capsule platinum resistance thermometer for cryogenic use  

NASA Astrophysics Data System (ADS)

Standards grade platinum resistance thermometers (SPRTs) obtain their high stability in part due to the strain-free mounting of the sensing wire. The space required for this strain-free mounting normally results in thermometers on the order of 6 mm diameter by 40 mm length in size. While these SPRTs are acceptable in many applications, it is desirable to reduce the size as much as possible for cryogenic use where space is of major concern. For over 40 years Minco Products, Inc. provided a smaller alternative with their model S1059, a high-stability cryogenic capsule platinum resistance thermometer (PRT) packaged in a copper canister sized only 3.2 mm diameter by 9.7 mm length. The packaging was compatible for use over the 13 K to 533 K temperature range. Unfortunately, this product was discontinued in 2009. In its absence, Lake Shore Cryotronics, Inc., has worked with Advanced Sensing Products to develop a similarly sized replacement sensor for cryogenic use. The replacement capsule PRT is manufactured using the model S1059 design, but with modifications to reduce the chance of lead breakage at the epoxy-lead interface. Test devices have been fabricated and tested for temperature response and stability upon repeated calibration from 13 K to 330 K. The new sensor design features and performance data are presented in this work.

Courts, S. S.; Krause, J. K.

2013-09-01

166

Effects of electrostatic discharge on three cryogenic temperature sensor models  

NASA Astrophysics Data System (ADS)

Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox{trade mark, serif} resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox{trade mark, serif} temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox{trade mark, serif} temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox{trade mark, serif} sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

Courts, S. Scott; Mott, Thomas B.

2014-01-01

167

Effects of electrostatic discharge on three cryogenic temperature sensor models  

SciTech Connect

Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

2014-01-29

168

Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same  

NASA Technical Reports Server (NTRS)

A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

2001-01-01

169

Shutter mechanism for calibration of the cryogenic diffused infrared background experiment (DIRBE) instrument  

NASA Technical Reports Server (NTRS)

The design requirements, the design, the assembly and alignment, and the test program for a shutter mechanism which must operate at cryogenic temperature and draw less than 1.0 milliwatt are discussed. The design solution to meet these requirements is a device that positions a mirror with repeated accuracy, has no wearing surfaces, and operates at 2.0 K. The unique feature of this device is the simplicity of the mechanism, thus obtaining high reliability.

Tyler, Allen

1986-01-01

170

Developing Low-Noise GaAs JFETs For Cryogenic Operation  

NASA Technical Reports Server (NTRS)

Report discusses aspects of effort to develop low-noise, low-gate-leakage gallium arsenide-based junction field-effect transistors (JFETs) for operation at temperature of about 4 K as readout amplifiers and multiplexing devices for infrared-imaging devices. Transistors needed to replace silicon transistors, relatively noisy at 4 K. Report briefly discusses basic physical principles of JFETs and describes continuing process of optimization of designs of GaAs JFETs for cryogenic operation.

Cunningham, Thomas J.

1995-01-01

171

Setup of cryogenic front-end electronic systems for germanium detectors read-out  

Microsoft Academic Search

Front-end electronic devices for the read-out of ionizing radiation detectors must operate in many cases at cryogenic temperatures. In this work we focus in particular on front-end read-out systems for high-purity germanium (HPGe) detectors, which are usually operated at liquid nitrogen (LN) temperature. We analyze the strong effects that the changed characteristics of the electronic active and passive devices have

F. Zocca; A. Pullia; S. Riboldi; A. D'Andragora; C. Cattadori

2009-01-01

172

Cryogenic method for measuring nuclides and fission gases  

DOEpatents

A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

Perdue, P.T.; Haywood, F.F.

1980-05-02

173

Network analyzer calibration for cryogenic on-wafer measurements  

SciTech Connect

A cryogenic probe station for on-wafer microwave measurements has been developed at Sandia National Laboratories to explore the basic device physics and characterize advanced components for low-temperature applications. The station was designed to operate over a temperature range of 20 to 300 K with a frequency range of DC to 50 GHz. Due to the vacuum and the low temperature environment, the use of microwave probes and the calibration of network analyzer measurements are somewhat elaborate. This paper presents guidelines for probe use and calibration in this environment.

Hietala, V.M.; Housel, M.S.; Caldwell, R.B.

1994-04-01

174

Charged Probes, Bourdon Tubes Maintain Cryogenic Liquid Level  

NASA Technical Reports Server (NTRS)

The problem: To design a system that automatically maintains the fluid level in a liquid nitrogen cold trap. It is frequently necessary to operate a vacuum system using one or more cold traps for a prolonged period with the cold trap liquid level maintained between set limits. Electronic devices have been subject to failure due to the effect on components of cryogenic temperatures. The solution: An automatic liquid nitrogen dispensing system that uses gas filled probes, driving Bourdon tube gauges equipped with microswitches that, through a relay, control a solenoid valve in the liquid nitrogen storage line.

Krejsa, Mylo J.

1966-01-01

175

Design and installation of extra high voltage cryogenic dielectric test facilities for the superconducting electric equipment  

NASA Astrophysics Data System (ADS)

Superconducting electric equipments have a lot of advantages over the conventional devices such as improvements in overall efficiency, size reduction, high current carrying capability, and also environment-friendly products. Owing to these advantages, many research institutes have been tried to develop commercial superconducting devices, which could be applicable to the high voltage and high current electric networks. But up to now, most of the research works to develop commercial products were delayed because it was not easy to acquire reliable high voltage insulation properties and optimum insulation design skills considering extremely low temperature environments. Furthermore, it was difficult to determine optimum high voltage insulation level due to the lack of high voltage cryogenic dielectric test facilities. Thus, in order to establish the cryogenic dielectric technology regarding insulating design, cryogenic dielectric test skills, and to implement more reliable high voltage superconducting devices, high voltage cryogenic dielectric test facilities should be prepared for extra high voltage superconducting electric equipments. Recently, cryogenic dielectric test facilities were installed including 3 m long 2 m wide cryostat system with bushing, and 1.6 MVA lightening impulse generators, 400 kVA AC overvoltage test system in Korea. In this paper, design and installation of high voltage cryogenic dielectric test system including very big size FRP cryostat and high voltage bushing were minutely introduced. And some test results to develop high voltage bushings for liquid nitrogen cryostat in order to implement extra high voltage level bushings were illustrated. These test facilities will be fully utilized for the optimization of insulation design for extra high voltage superconducting electric equipments.

Lee, S. H.; Shin, W. J.; Khan, Umer A.; Oh, S. H.; Seong, J. K.; Lee, B. W.

2011-11-01

176

Cryogenic filter wheel design for an infrared instrument  

NASA Astrophysics Data System (ADS)

In the last two decades, Spain has built up a strong IR community which has successfully contributed to space instruments, reaching Co-PI level in the SPICA mission (Space Infrared Telescope for Cosmology and Astrophysics). Under the SPICA mission, INTA, focused on the SAFARI instrument requirements but highly adaptable to other missions has designed a cryogenic low dissipation filter wheel with six positions, taking as starting point the past experience of the team with the OSIRIS instrument (ROSETTA mission) filter wheels and adapting the design to work at cryogenic temperatures. One of the main goals of the mechanism is to use as much as possible commercial components and test them at cryogenic temperature. This paper is focused on the design of the filter wheel, including the material selection for each of the main components of the mechanism, the design of elastic mount for the filter assembly, a positioner device designed to provide positional accuracy and repeatability to the filter, allowing the locking of the position without dissipation. In order to know the position of the wheel on every moment a position sensor based on a Hall sensor was developed. A series of cryogenic tests have been performed in order to validate the material configuration selected, the ball bearing lubrication and the selection of the motor. A stepper motor characterization campaign was performed including heat dissipation measurements. The result is a six position filter wheel highly adaptable to different configurations and motors using commercial components. The mechanism was successfully tested at INTA facilities at 20K at breadboard level.

Azcue, Joaquín.; Villanueva, Carlos; Sánchez, Antonio; Polo, Cristina; Reina, Manuel; Carretero, Angel; Torres, Josefina; Ramos, Gonzalo; Gonzalez, Luis M.; Sabau, Maria D.; Najarro, Francisco; Pintado, Jesús M.

2014-09-01

177

Cryogenic contamination speed for cryogenic laser interferometric gravitational wave detector  

NASA Astrophysics Data System (ADS)

The reflectance of an ultra-low loss dielectric multilayer coating mirror, which was cooled at 10 K and exposed to 300 K vacuum space, was monitored as the finesse of a Fabry-Perot cavity for two months. The reflectance was measured to decrease with a rate of 0.12 +0.12-0.08 ppm per day. Accounting for this result, the cryogenic system for a gravitational wave laser interferometer such as LCGT requires several tens of meters of radiation shields inside its vacuum ducts to keep its optical performance.

Miyoki, Shinji; Tomaru, Takayuki; Ishitsuka, Hideki; Ohashi, Masatake; Kuroda, Kazuaki; Tatsumi, Daisuke; Uchiyama, Takashi; Suzuki, Toshikazu; Sato, Nobuaki; Haruyama, Tomiyoshi; Yamamoto, Akira; Shintomi, Takakazu

2001-05-01

178

Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies  

NASA Technical Reports Server (NTRS)

An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

Burge, G. W.; Blackmon, J. B.

1973-01-01

179

Cryogenic, high speed, turbopump bearing cooling requirements  

NASA Technical Reports Server (NTRS)

Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.

Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.

1988-01-01

180

Foam vessel for cryogenic fluid storage  

DOEpatents

Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

Spear, Jonathan D (San Francisco, CA)

2011-07-05

181

Surrogate Cryogenic Target Experiments on OMEGA  

Microsoft Academic Search

We will describe the latest set of surrogate cryogenic capsule implosion experiments performed with the OMEGA 60-beam UV laser system. These experiments are investigating the final compression performance of capsules consisting of gas-filled or evacuated CH or CD shells as ``surrogates'' of cryogenically prepared targets soon to be available on OMEGA. The final compression performance of the capsules is diagnosed

F. J. Marshall; B. Yaakobi; D. D. Meyerhofer; R. P. J. Town; J. A. Delettrez; V. Glebov; D. K. Bradley; J. P. Knauer; M. D. Cable; T. J. Ognibene

1998-01-01

182

Large scale cryogenic gravitational wave telescope  

Microsoft Academic Search

Abstract We present here the Large-scale Cryogenic Gravitational wave Tele- scope (LCGT) project which is aimed to improve the sensitivity of the existing gravitational wave projects by ten times. LCGT is the project constructing the km-scale gravitational wave detector in Japan succeeding the TAMA project, which adopts cryogenic mirrors with a higher power laser. We are planing to build it

S. Miyoki; Kazuaki Kuroda; Masatake Ohashi; Daisuke Tatsumi; Hideki Ishizuka; Masa-katsu Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Koji Arai; Mitsuhiro Fukushima; Koichi Waseda; Souichi Telada; Akitoshi Ueda; Takakazu Shintomi; Akira Yamamoto; Toshikazu Suzuki; Yoshio Saito; Tomiyoshi Haruyama; Nobuaki Sato; Kimio Tsubono; Keita Kawabe; Masaki Ando; Ken-ichi Ueda; Hitoki Yoneda; Mitsuru Musha; Norikatsu Mio; Shigenori Moriwaki; Akito Araya; Nobuyuki Kanda; Mike E. Tobar

2005-01-01

183

Neutron Detection with Cryogenics and Semiconductors  

SciTech Connect

The common methods of neutron detection are reviewed with special attention paid to the application of cryogenics and semiconductors to the problem. The authors' work with LiF- and boron-based cryogenic instruments is described as well as the use of CdTe and HgI{sub 2} for direct detection of neutrons.

bell, Z.W.; Carpenter, D.A.; Cristy, S.S.; Lamberti, V.E.

2005-03-10

184

D0 Cryogenic System Operator Training  

Microsoft Academic Search

D0 is a collider detector. It will be operating and doing physics at the same time as CDP, therefore it has been decided to train CDP operators to operate and respond to the D0 cryogenic control system. A cryogenic operator will be required to be in residence at D0, during the cooldown and liquid Argon fill of any of the

D. Markley

1991-01-01

185

Mechanical testing of large cryogenic structures  

NASA Technical Reports Server (NTRS)

The mechanical testing performed on the Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument installed on the Upper Atmosphere Research Satellite is discussed. The CLAES determines temperatures and concentrations of stratospheric minor species as a function of altitude by measuring the atmospheric infrared emission spectra. CLAES is based on a telescope optical system and infrared spectrometer which are cooled with cryogens.

Newkirk, Roger; Burriesci, Larry

1990-01-01

186

Cryogenic magnetic force microscope M. Rosemana)  

E-print Network

Cryogenic magnetic force microscope M. Rosemana) and P. Gru¨tter Centre for the Physics for publication 27 June 2000 We describe our cryogenic magnetic force microscope, operating between 4.2 and 300 K. As an effective means of vibration isolation, we suspend the microscope from a soft bellows which attenuates

Grütter, Peter

187

Fiberglass supports for cryogenic tanks  

NASA Technical Reports Server (NTRS)

Analysis, design, fabrication, and test activities were conducted to develop additional technology needed for application of filament-wound fiberglass struts to cryogenic flight tankage. It was conclusively verified that monocoque cylinder or ogive struts are optimum or near-optimum for the range of lengths and loads studied, that a higher strength-to-weight ratio can be achieved for fiberglass struts than for any metallic struts, and that integrally-wrapped metallic end fittings can be used to achieve axial load transfer without reliance on bond strength or mechanical fasteners.

Keller, C. W.

1972-01-01

188

Cryogenic properties of several copolyesters  

Microsoft Academic Search

Copolyesters of polyethylene terephthalate(PET) and polyethylene-2,6-naphthalene dicarboxylate(PEN) with composition of PET\\/PEN= 100\\/0, 95\\/5, 90\\/10, 85\\/15, 70\\/30, 50\\/50, 30\\/70, 10\\/90, 0\\/100 were prepared. The mechanical properties of uniaxial-drawn films were examined at 83 K and 296 K. PET\\/PEN=90\\/10 copolymer film possessed especially excellent cryogenic properties. It was found to withstand elongations in excess of 40% at stress levels of about 400

O. Yano; A. Kimoto; H. Yamaoka

1997-01-01

189

Residual contact restraints in cryogenics  

NASA Astrophysics Data System (ADS)

The use of residual stress measurements to evaluate the state of cryogenic turbomachines, whose surfaces are worn by the working conductions in dry contact, is addressed. Their contribution to the understanding of the reasons of possible ruptures is considered. It is stated that residual stress measurements should be used as a complementary tool rather than as input data for models. It is shown, thanks to two examples concerning the ball bearings and splines of the liquid hydrogen turbopump of the Vulcain engine, what can be expected from such techniques. Total exploitation of the results has still to be done, but preliminary results are quite encouraging.

Cretegny, J. F.; Demonicault, J. M.

190

Control of large cryogenic tunnels  

NASA Technical Reports Server (NTRS)

For the efficient and economic operation of large cryogenic wind tunnels, automatic control is necessary to precisely regulate the temperature, pressure, and Mach number. The features of the control system currently in operation at the U.S. National Transonic Facility are presented. Some unique features of the tunnel temperature control law are the automatic tunnel cool down utilizing structural temperature feedback and the fan power based liquid nitrogen nozzle switching logic that have played a key role in realizing good automatic tunnel control.

Balakrishna, S.; Kilgore, W. A.; Thibodeaux, J. J.

1992-01-01

191

Techniques for on-orbit cryogenic servicing  

NASA Astrophysics Data System (ADS)

NASA (National Aeronautics and Space Administration) has a renewed interest in on-orbit cryogen storage and transfer to support its mission to explore near-earth objects such as asteroids and comets. The Cryogenic Propellant Storage and Transfer Technology Demonstration Mission (CPST-TDM), managed by the NASA Glenn Research Center (GRC) and scheduled for launch in 2018, will demonstrate numerous key technologies applicable to a cryopropellant fuel depot. As an adjunct to the CPST-TDM work, experiments at NASA Goddard Space Flight Center (GSFC) will support the development of techniques to manage and transfer cryogens on-orbit and expand these techniques as they may be applicable to servicing science missions using solid cryogens such as the Wide-field Infrared Survey Explorer (WISE). The results of several ground experiments are described, including autogenous pressurization used for transfer of liquid nitrogen and argon, characterization of the transfer and solidification of argon, and development of robotic tools for cryogen transfer.

DeLee, C. H.; Barfknecht, P.; Breon, S.; Boyle, R.; DiPirro, M.; Francis, J.; Huynh, J.; Li, X.; McGuire, J.; Mustafi, S.; Tuttle, J.; Wegel, D.

2014-11-01

192

Cryogenic Field-Effect Transistors for the Study of Semiconductor Nanostructures.  

NASA Astrophysics Data System (ADS)

This thesis presents an experimental study of low-noise cryogenic field-effect transistors. The devices are fabricated in GaAs/AlGaAs heterostructure material grown by molecular beam epitaxy and are patterned using electron beam lithography. A mesa etch is used to define channels in the two-dimensional electron gas in the heterostructure; metallic gates are deposited by thermal evaporation of chrome and gold. We have measured the performance of these cryogenic devices at liquid helium temperatures between 0.38 K and 4.2 K. At T = 1.3 K these FETs display a charge sensitivity of less than 10^{-2} e/ surdHz and a charge resolution of approximately 0.4 electronic charges. The power dissipated in these devices is less than 1 muW and the operating bandwidth extends to 1 MHz and above. The input impedance of the FETs is equal to approximately 0.4 pF in parallel with a leakage resistance exceeding 10 ^{15} Omega. The channels are matched for devices built on the same chip, allowing the possibility of multi-FET cryogenic circuits. We demonstrate this with a simple differential amplifier built from cryogenic FETs. We demonstrate sensitive and low-leakage operation of the cryogenic FETs by using them to study the Fermi level of a two-dimensional electron gas in a microstructure. Using a floating gate arrangement the electrochemical potential is measured as a function of applied magnetic field; the experiment is a non-perturbative probe of the thermodynamic density of states of the electron gas. We observe oscillations corresponding to Landau level depopulation and large spikes due to persistent currents when the sample is in the quantum limit.

Mar, Douglas John

193

Cryogenic properties of several copolyesters  

SciTech Connect

Copolyesters of polyethylene terephthalate(PET) and polyethylene-2,6-naphthalene dicarboxylate(PEN) with composition of PET/PEN= 100/0, 95/5, 90/10, 85/15, 70/30, 50/50, 30/70, 10/90, 0/100 were prepared. The mechanical properties of uniaxial-drawn films were examined at 83 K and 296 K. PET/PEN=90/10 copolymer film possessed especially excellent cryogenic properties. It was found to withstand elongations in excess of 40% at stress levels of about 400 MPa at 83 K for PET/PEN=90/10 film uniaxial-drawn 5 times. Differential scanning calorimetry(DSC) curves of samples before and after tensile test at 83 K were compared for PET/PEN=90/10 film uniaxial-drawn 5 times. After tensile test at 83 K, the peak position of cold-crystallization shifted and the peak area between the curve and a baseline decreased, indicating that crystallization is allowed to take place during tensile test at 83 K. Dielectric loss tangent was measured in the temperature range from 18 K to the glass transition temperature. The relaxation below 100 K of PET and its copolymers was observed to be dependent on the morphology of samples. On the basis of the results obtained, relationship between the structure of polymers and their cryogenic properties has been discussed.

Yano, O.; Kimoto, A. [Kyoto Institute of Technology (Japan); Yamaoka, H. [Kyoto Univ., Kyoto (Japan)

1997-06-01

194

Models for cryogenic wind tunnels  

NASA Technical Reports Server (NTRS)

Model requirements, types of model construction methods, and research in new ways to build models are discussed. The 0.3-m Transonic Cryogenic Tunnel was in operation for 16 years and many 2-D airfoil pressure models were tested. In addition there were airfoil models dedicated to transition detection techniques and other specialized research. There were also a number of small 3-D models tested. A chronological development in model building technique is described which led to the construction of many successful models. The difficulties of construction are illustrated by discussing several unsuccessful model fabrication attempts. The National Transonic Facility, a newer and much larger tunnel, was used to test a variety of models including a submarine, transport and fighter configurations, and the Shuttle Orbiter. A new method of building pressure models was developed and is described. The method is centered on the concept of bonding together plates with pressure channels etched into the bond planes, which provides high density pressure instrumentation with minimum demand on parent model material. With care in the choice of materials and technique, vacuum brazing can be used to produce strong bonds without blocking pressure channels and with no bonding voids between channels. Using multiple plates, a 5 percent wing with 96 orifices was constructed and tested in a transonic cryogenic wind tunnel. Samples of test data are presented and future applications of the technology are suggested.

Lawing, Pierce L.

1989-01-01

195

Challenges for Cryogenics at Iter  

NASA Astrophysics Data System (ADS)

Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

Serio, L.

2010-04-01

196

Simulations of Cavitating Cryogenic Inducers  

NASA Technical Reports Server (NTRS)

Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

2004-01-01

197

Power Electronics Being Developed for Deep Space Cryogenic Applications  

NASA Technical Reports Server (NTRS)

Electronic circuits and systems designed for deep space missions need to operate reliably and efficiently in harsh environments that include very low temperatures. Spacecraft that operate in such cold environments carry a large number of heaters so that the ambient temperature for the onboard electronics remains near 20 C. Electronics that can operate at cryogenic temperatures will simplify system design and reduce system size and weight by eliminating the heaters and their associated structures. As a result, system development and launch cost will be reduced. At the NASA Glenn Research Center, an ongoing program is focusing on the development of power electronics geared for deep space low-temperature environments. The research and development efforts include electrical components design, circuit design and construction, and system integration and demonstration at cryogenic temperatures. Investigations are being carried out on circuits and systems that are targeted for use in NASA missions where low temperatures will be encountered: devices such as ceramic and tantalum capacitors, metal film resistors, semiconductor switches, magnetics, and integrated circuits including dc/dc converters, operational amplifiers, voltage references, and motor controllers. Test activities cover a wide range of device and circuit performance under simple as well as complex test conditions, such as multistress and thermal cycling. The effect of low-temperature conditions on the switching characteristics of an advanced silicon-on-insulator field effect transistor is shown. For gate voltages (VGS) below 2.6 V, drain currents at -190 C are lower than drain currents at room temperature (20 C).

Patterson, Richard L.; Hammoud, Ahmad

2003-01-01

198

D0 Cryogenic System Superconducting Solenoid Platform I/O  

SciTech Connect

The Dzero detector is scheduled for a major upgrade between 1996 and 1999. This note describes the specifications and configuration of the physical Input/Output devices and instrumentation of the 2 Tesla Superconducting Solenoid. The Solenoid and the VLPC cryostats both reside on the detector platform and are cooled by the Dzero Helium Refrigerator. The cryogenic process control s for these two components will be an extension of the TI565 programmable logic controller system used for other Dzero cryogenic controls. Two Input/Output Bases will be installed on the Dzero detector platform near the cryo corner. These I/O bases will handle all the sensor input and process control output devices from the Solenoid and VLPC cryostats. Having the I/O bases installed on the detector platform makes the connecting cabl ing to the platform much easier . All the instruments are wired directly to the I/O base. The bases have only one communications network cabl e that must be routed off the platform to the South side of the Dzero building.

Markley, D.; /Fermilab

1997-10-09

199

Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article  

NASA Technical Reports Server (NTRS)

To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

Hedayat, A

2013-01-01

200

Overview of Air Force Research Laboratory cryogenic technology development programs  

Microsoft Academic Search

This paper presents an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Technology Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the group is to support the pace community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. The primary

Thomas M. Davis; B. J. Tomlinson

1998-01-01

201

Thermal Design and Analysis for the Cryogenic MIDAS Experiment  

NASA Technical Reports Server (NTRS)

The Materials In Devices As Superconductors (MIDAS) spaceflight experiment is a NASA payload which launched in September 1996 on the Shuttle, and was transferred to the Mir Space Station for several months of operation. MIDAS was developed and built at NASA Langley Research Center (LaRC). The primary objective of the experiment was to determine the effects of microgravity and spaceflight on the electrical properties of high-temperature superconductive (HTS) materials. The thermal challenge on MIDAS was to maintain the superconductive specimens at or below 80 K for the entire operation of the experiment, including all ground testing and 90 days of spaceflight operation. Cooling was provided by a small tactical cryocooler. The superconductive specimens and the coldfinger of the cryocooler were mounted in a vacuum chamber, with vacuum levels maintained by an ion pump. The entire experiment was mounted for operation in a stowage locker inside Mir, with the only heat dissipation capability provided by a cooling fan exhausting to the habitable compartment. The thermal environment on Mir can potentially vary over the range 5 to 40 C; this was the range used in testing, and this wide range adds to the difficulty in managing the power dissipated from the experiment's active components. Many issues in the thermal design are discussed, including: thermal isolation methods for the cryogenic samples; design for cooling to cryogenic temperatures; cryogenic epoxy bonds; management of ambient temperature components self-heating; and fan cooling of the enclosed locker. Results of the design are also considered, including the thermal gradients across the HTS samples and cryogenic thermal strap, electronics and thermal sensor cryogenic performance, and differences between ground and flight performance. Modeling was performed in both SINDA-85 and MSC/PATRAN (with direct geometry import from the CAD design tool Pro/Engineer). Advantages of both types of models are discussed. Correlation of several models to ground testing and flight data (where available) is presented. Both SINDA and PATRAN models predicted the actual thermal performance of the experiment well, even without post-flight correlation adjustments of the models.

Amundsen, Ruth McElroy

1997-01-01

202

Insulation Characteristics of Bushing Shed at Cryogenic Temperature  

NASA Astrophysics Data System (ADS)

In the development of high-Tc superconducting(HTS) devices, the bushing for HTS devices (HTS bushing) is the core technology, the need to because of supply high voltage to the cable or the winding of the transformer. The lower part of the bushing is exposed to the liquid nitrogen (LN2), and it has many sheds. In particular, the insulation body with sheds and electrical insulation at cryogenic temperature have attracted a great deal of interest from the view point of the size, weight and efficiency of bushing. This study has mainly investigated the shed and insulation body by comparing glass fiber reinforced plastics (GFRP) in LN2. We investigated the surface discharge characteristics according to insulating materials, width and height of the shed.

Kim, W. J.; Kim, Y. J.; Kim, S. H.

2014-05-01

203

Throttling Cryogen Boiloff To Control Cryostat Temperature  

NASA Technical Reports Server (NTRS)

An improved design has been proposed for a cryostat of a type that maintains a desired low temperature mainly through boiloff of a liquid cryogen (e.g., liquid nitrogen) at atmospheric pressure. (A cryostat that maintains a low temperature mainly through boiloff of a cryogen at atmospheric pressure is said to be of the pour/fill Dewar-flask type because its main component is a Dewar flask, the top of which is kept open to the atmosphere so that the liquid cryogen can boil at atmospheric pressure and cryogenic liquid can be added by simply pouring it in.) The major distinguishing feature of the proposed design is control of temperature and cooling rate through control of the flow of cryogen vapor from a heat exchanger. At a cost of a modest increase in complexity, a cryostat according to the proposal would retain most of the compactness of prior, simpler pour/fill Dewar-flask cryostats, but would utilize cryogen more efficiently (intervals between cryogen refills could be longer).

Cunningham, Thomas

2003-01-01

204

Hybrid Composite Cryogenic Tank Structure  

NASA Technical Reports Server (NTRS)

A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.

DeLay, Thomas

2011-01-01

205

Use of resin composites for cryogenic tankage  

NASA Astrophysics Data System (ADS)

The resurgence in development of hypersonic vehicles has led to the evaluation of lightweight materials and structures for cryogenic tankage. Over the past 20 years, resin composites have replaced conventional metallic structures in improving aircraft and spacecraft performance. Previous attempts to develop resin matrix composites for cryogenic tankage were unsuccessful, due to the brittle nature of the matrix or the need for metallic liners to prevent permeation. With the development of new tougher resins and improved processing techniques, resin composites are once again being considered. This paper addresses the advancements made in resin composite technology and their potential advantages and drawbacks for use as cryogenic tankage.

Callaghan, M. T.

206

Brush seals for cryogenic applications  

NASA Technical Reports Server (NTRS)

This viewgraph presentation presents test results of brush seals for cryogenic applications. Leakage for a single brush seal was two to three times less than for a 12-tooth labyrinth seal. The maximum temperature rise for a single brush seal was less than 50 R and occurred at 25 psid across the seal and 35,000 rpm. A static blowout test demonstrated sealing capability up to 550 psid. The seal limit was not obtained. The power loss for a single brush at 35,000 rpm and 175 psid was 2.45 hp. Two brushes far apart leak less than two brushes tight packed. Rotor wear was approximately 0.00075 mils and bristle wear was 1-3 mils after 4-1/2 hours.

Proctor, Margaret P.

1994-01-01

207

Cryogenic thermal control technology summaries  

NASA Technical Reports Server (NTRS)

A summarization and categorization is presented of the pertinent literature associated with cryogenic thermal control technology having potential application to in-orbit fluid transfer systems and/or associated space storage. Initially, a literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in detail. Each summary, where applicable, consists of; (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4)major results, and (5) comments of the reviewer (GD/C). Specific areas covered are; (1) multilayer insulation of storage tanks with and without vacuum jacketing, (2) other insulation such as foams, shadow shields, microspheres, honeycomb, vent cooling and composites, (3) vacuum jacketed and composite fluid lines, and (4) low conductive tank supports and insulation penetrations. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.

Stark, J. A.; Leonhard, K. E.; Bennett, F. O., Jr.

1974-01-01

208

The Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

2014-01-01

209

The Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

2014-01-01

210

A cryogenic infrared calibration target  

NASA Astrophysics Data System (ADS)

A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ? 0.003, from 800 to 4800 cm-1 (12 - 2 ?m). Upon expanding the spectral range under consideration to 400-10 000 cm-1 (25 - 1 ?m) the observed performance gracefully degrades to R ? 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ˜4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials—Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder—are characterized and presented.

Wollack, E. J.; Kinzer, R. E.; Rinehart, S. A.

2014-04-01

211

Application of a novel test system to characterize single-event effects at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

Details of a customized cryogenic test system for use in in situ single-event radiation tests on semiconductor devices at cryogenic temperatures are presented. The lightweight portable system is designed for performing heavy-ion broadbeam single-event radiation testing at different beam facilities. It is designed for use with either liquid nitrogen or liquid helium as cryogens, depending on the desired lower temperature limit. A controlled heating system on the inside allows for single-event radiation tests as a function of temperature. To enable single-event strikes at angles, the device under test can be rotated about a vertical axis without having to break vacuum. Electrical connectivity to the device under test is provided through six fully customizable hermetically sealed connecting ports. The system has been used to conduct single-event tests over temperature on a test circuit fabricated in IBM CMOS 130 nm technology. Single-event transient pulse widths were found to increase by up to 30% as the temperature was varied from -135 °C to +20 °C. Device simulations indicate that single-event-induced parasitic bipolar transistor turn-on in the n-well of PMOS transistors is responsible for the observed increase in pulse widths across the temperature ranges considered.

Ramachandran, Vishwanath; Gadlage, Matthew J.; Ahlbin, Jonathan R.; Narasimham, Balaji; Alles, Michael L.; Reed, Robert A.; Bhuva, Bharat L.; Massengill, Lloyd W.; Black, Jeffrey D.; Foster, Christopher N.

2010-10-01

212

A brief overview of cryogenics in China  

NASA Astrophysics Data System (ADS)

In this paper general aspects of cryogenics in China are introduced, and applications of cryogenics in the space programme are described briefly, such as its application to the Long March 3 rocket vehicles with LH2/LO2 engines, the development of a 750 dm 3 hr -1 liquid hydrogen plant and railway tank cars with 60 and 70 m 3 capacities. In addition, the progress of various cryogenic techniques in China is presented, such as the FY-1 radiation refrigerator loaded on a meteorology satellite, regenerative cryocoolers of the Gifford-McMahon, Solvay, Vuilleumier, Stirling and pulse tube types, and the KM-3 and KM-4 space simulation facilities. Finally, the paper discusses current education about refrigeration and cryogenics for undergraduates and graduates.

Li, S.-M.

213

Evaluation of two designs for cryogenic insulation  

NASA Technical Reports Server (NTRS)

Shingle-type, crinkled, aluminized polyethylene ester is thermally and structurally tested for cryogenic insulation. Insulation systems require thermal efficiency with minimum weight, and the ability to withstand vibration, acceleration, and rapid pressure drops.

Getty, R. C.

1970-01-01

214

Behaviour of 222Rn at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

The behaviour of radon in a cryogenic environment is still not well known. Therefore, measured radon emanation rates at room temperature cannot be translated directly to cryogenic conditions. In this work we present a table-top experiment that provides a direct way of determining the behaviour of 222Rn in cryogenic argon and helium at liquid argon temperature. We observe an increased emanation rate of 222Rn atoms to liquid argon compared to the rate observed to helium at room temperature. We also find that 222Rn atoms stick to cold metal surfaces when emanated to helium at liquid argon temperature but partly distribute in the liquid when emanated to cryogenic argon. Concluding, we give possible interpretations of the observations.

Lindemann, Sebastian; Simgen, Hardy; Zuzel, Grzegorz

2011-04-01

215

Cryogenic target formation using cold gas jets  

DOEpatents

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

Hendricks, Charles D. [Livermore, CA

1980-02-26

216

Cryogenic target formation using cold gas jets  

DOEpatents

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.

Hendricks, Charles D. (Livermore, CA)

1981-01-01

217

Cryogenic target formation using cold gas jets  

DOEpatents

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

Hendricks, C.D.

1980-02-26

218

Creep of pure aluminum at cryogenic temperatures  

E-print Network

CREEP OF PURE ALUMINUM AT CRYOGENIC TEMPERATURES A Thesis by LACY CLARK MCDONALD Submitted to the Office of Graduate Studies of Texas AgrM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1989 Major Subject: Mechanical Engineering CREEP OF PURE ALUMINUM AT CRYOGENIC TEMPERATURES A Thesis by LACY CLARK MCDONALD Approved a. s to style and content by: K. Ted Hartwig (Chair ol' Committee) Walter L. Bradley (Member) Mehrda. d...

McDonald, Lacy Clark

2012-06-07

219

Cryogenic production of ammonia synthesis gas  

Microsoft Academic Search

An improved cryogenic separation process is provided for forming a substantially CO-free and lower hydrocarbon-free hydrogen-rich gas, suitable for use in producing an ammonia synthesis gas, from a hydrogen-containing gas stream also containing carbon monoxide and lower hydrocarbon impurities, wherein the hydrogen containing gas is subject to a two-stage autorefrigerated cryogenic flash treatment to remove concentrated methane-containing and carbon monoxide-containing

Traficante

1985-01-01

220

Filament-wound, fiberglass cryogenic tank supports  

NASA Technical Reports Server (NTRS)

The design, fabrication, and testing of filament-wound, fiberglass cryogenic tank supports for a LH2 tank, a LF2/FLOX tank and a CH4 tank. These supports consist of filament-wound fiberglass tubes with titanium end fittings. These units were satisfactorily tested at cryogenic temperatures, thereby offering a design that can be reliably and economically produced in large or small quantities. The basic design concept is applicable to any situation where strong, lightweight axial load members are desired.

Carter, J. S.; Timberlake, T. E.

1971-01-01

221

Cryogenic ion chemistry and spectroscopy.  

PubMed

The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to stereoselectively catalyze bromination of biaryl substrates. This procedure directly reveals the particular H-bond donor and acceptor groups that enforce the folded structure of the bare ion as well as provide contact points for noncovalent interaction with substrates. We then show how photochemical hole-burning involving only vibrational excitations can be used in a double-resonance mode to systematically disentangle overlapping spectra that arise when several conformers of a dipeptide are prepared in the ion source. Finally, we highlight our ability to systematically capture reaction intermediates and spectroscopically characterize their structures. Through this method, we can identify the pathway for water-network-mediated, proton-coupled transformation of nitrosonium, NO(+) to HONO, a key reaction controlling the cations present in the ionosphere. Through this work, we reveal the critical role played by water molecules occupying the second solvation shell around the ion, where they stabilize the emergent product ion in a fashion reminiscent of the solvent coordinate responsible for the barrier to charge transfer in solution. Looking to the future, we predict that the capture and characterization of fleeting intermediate complexes in the homogeneous catalytic activation of small molecules like water, alkanes, and CO2 is a likely avenue rich with opportunity. PMID:23972279

Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

2014-01-21

222

Electronic Components and Systems for Cryogenic Space Applications  

NASA Technical Reports Server (NTRS)

Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

2001-01-01

223

Gamma Radiation Induced Calibration Shift for Four Cryogenic Thermometer Types  

NASA Astrophysics Data System (ADS)

Cryogenic temperature sensors utilized in space environments are exposed to ionizing radiation with the total dose dependent upon the length of the mission. Based upon their minimal size and robust packaging, four models of cryogenic Resistance Thermometer Devices (RTDs) manufactured by Lake Shore Cryotronics, Inc. were tested to determine their reliability for space applications with regard to radiation. Samples of Cernox™ RTDs (CX-1050-SD), ruthenium oxide RTDs (models RX-102A-AA and RX-103A-AA), and silicon diode thermometers (model DT-670-SD) were irradiated at room temperature by a cesium-137 gamma source to total doses ranging from 5 Gy to 10 kGy. This paper presents the resulting temperature shifts induced by the gamma radiation as a function of total dose over the 1.4 K to 325 K temperature range. These data show that 1) Cernox™ RTDs exhibit high radiation hardness to 10 kGy from 1.4 K to 325 K, 2) ruthenium oxide RTDs show moderate radiation hardness to 10 kGy below 10 K, and 3) silicon diodes temperature sensors exhibit some radiation tolerance to low levels of radiation (especially below 70 K), but quickly shift calibration at radiation levels above 300 Gy, especially above 100 K.

Courts, S. Scott; Yeager, C. J.

2004-06-01

224

Thin semi-rigid coaxial cables for cryogenics applications  

NASA Astrophysics Data System (ADS)

We have developed cryogenic coaxial cables for low temperature signal readout from sensitive devices, such as transition edge sensors, superconducting tunnel junctions, and kinetic inductance detectors. In order to reduce heat penetration into cryogenic stages, low thermal conductivity metals were chosen for both center and outer electrical conductors. Various types of coaxial cables, employing stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium, and niobium-titanium, were manufactured using drawing dies. Thermal and electrical properties were investigated between 1 and 8 K. Coaxial cables made of copper alloys showed thermal conductance roughly consistent with literature, meanwhile Nb coaxial cable must be affected by the drawing process and thermal conductance was lowered. Attenuation of superconducting Nb and NbTi coaxial cables were observed to be adequately small up to above 10 GHz compared to those of normal conducting coaxial cables, which are subject to the Wiedemann-Franz law. We also measured normal conducting coaxial cables with silver-plated center conductors to improve high frequency performance.

Kushino, Akihiro; Kasai, Soichi

2013-03-01

225

Cryogenic pellet production developments for long-pulse plasma operation  

SciTech Connect

Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A. [Oak Ridge National Laboratory, 1Bethel Valley Rd Oak Ridge, TN 37831 (United States)

2014-01-29

226

The Cryogenic Anticoincidence Detector for ATHENA-XMS  

NASA Astrophysics Data System (ADS)

The TES cryogenic detectors, due to their high spectral resolution and imaging capability in the soft X-ray domain, are the reference devices for the next proposed space missions whose aims are to characterize the spectra of faint or diffuse sources. ATHENA is the re-scoped IXO mission, and one of its focal plane instrument is the X-ray Microcalorimeter Spectrometer (XMS) working in the energy range 0.3-10 keV. XMS will be able to achieve the proposed scientific goals if a background lower than 0.02 cts/cm2/s/keV is guaranteed. The studies performed by GEANT4 simulations depict a scenario where it is mandatory to use an active Anti-Coincidence (AC) to reduce the expected background in the L2 orbit down to the required level. This is possible using a cryogenic AC detector able to provide a rejection efficiency of about 99%. We are developing for this purpose a TES-based detector made by Silicon absorbers (total assembled area about 1 cm2 and 300 ?m thick) and sensed by a Ir:Au TES. All the work done for IXO is applicable to ATHENA, with more margins due to the smaller area required for the detector. Here we present the results obtained from different samples, as a step towards the final detector design.

Macculi, C.; Colasanti, L.; Lotti, S.; Natalucci, L.; Piro, L.; Bagliani, D.; Biasotti, M.; Gatti, F.; Torrioli, G.; Barbera, M.; La Rosa, G.; Mineo, T.; Perinati, E.

2012-06-01

227

Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT)  

Microsoft Academic Search

The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) will perform subcritical liquid hydrogen handling experiments under low gravity conditions to provide engineering data for future space transportation missions. Comprising the four Class 1 enabling experiments are tank press control, tank chilldown, tank no-vent fill, and liquid acquisition device fill\\/refill. The nine Class 2 enhancing experiments are tanker

John R. Schuster; Edwin J. Russ; Joseph P. Wachter

1990-01-01

228

A 2.3-GHz cryogenically cooled HEMT amplifier for DSS 13  

NASA Technical Reports Server (NTRS)

A prototype 2.3 GHz (S band) high electron mobility transistor (HEMT) amplifier/closed cycle refrigerator (CCR) system was installed in the DDS-13 feedcone, replacing the 2.3 GHz maser. The amplifier is cryogenically cooled to a physical temperature of 12 K and provides 31.5 K antenna system noise temperature and 29 dB of gain. The HEMT device used in the amplifier is a prototype.

Tanida, L.

1987-01-01

229

Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering  

Microsoft Academic Search

Abstract: Using a pulsed Nd:YAG laser (532 nm) and a gated, intensifiedcharge-coupled device, planar Rayleigh and Raman scattering techniqueshave been used to visualize the unseeded Mach 0.2 flow density ina 0.3-meter transonic cryogenic wind tunnel. Detection limits are determinedfor density measurements by using both unseeded Rayleigh andRaman (N 2 vibrational) methods. Seeding with CO 2 improved theRayleigh flow visualization at

Gregory C. Herring; Behrooz Shirinzadeh

2002-01-01

230

Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine  

NASA Technical Reports Server (NTRS)

A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

2012-01-01

231

Active Costorage of Cryogenic Propellants for Exploration  

NASA Technical Reports Server (NTRS)

Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo

2008-01-01

232

Conceptual design of a centrifugal COâ cleaning device. Final report\\/project accomplishments summary  

Microsoft Academic Search

The L.A.W. Group, Inc., Cryokinetics Division designs and manufactures cryogenic cleaning devices in their Wichita, Kansas, facility. The L.A.W. Group, Inc., Cryokinetics Division identified a market need for a new cryogenic cleaning device that would generate a high level of kinetic energy at a lower operating pressure and noise level. This market need is being generated because the existing products

1997-01-01

233

Status of the ESS cryogenic system  

NASA Astrophysics Data System (ADS)

The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

Weisend, J. G., II; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

2014-01-01

234

Aerogel Blanket Insulation Materials for Cryogenic Applications  

NASA Technical Reports Server (NTRS)

Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

2009-01-01

235

Status of the ESS cryogenic system  

SciTech Connect

The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L. [European Spallation Source ESS AB, SE-22100 Lund (Sweden)

2014-01-29

236

Advanced cryogenics for cutting tools. Final report  

SciTech Connect

The purpose of the investigation was to determine if cryogenic treatment improved the life and cost effectiveness of perishable cutting tools over other treatments or coatings. Test results showed that in five of seven of the perishable cutting tools tested there was no improvement in tool life. The other two tools showed a small gain in tool life, but not as much as when switching manufacturers of the cutting tool. The following conclusions were drawn from this study: (1) titanium nitride coatings are more effective than cryogenic treatment in increasing the life of perishable cutting tools made from all cutting tool materials, (2) cryogenic treatment may increase tool life if the cutting tool is improperly heat treated during its origination, and (3) cryogenic treatment was only effective on those tools made from less sophisticated high speed tool steels. As a part of a recent detailed investigation, four cutting tool manufacturers and two cutting tool laboratories were queried and none could supply any data to substantiate cryogenic treatment of perishable cutting tools.

Lazarus, L.J.

1996-10-01

237

Cryogenic measurements of aerojet GaAs n-JFETs  

NASA Technical Reports Server (NTRS)

The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

Goebel, John H.; Weber, Theodore T.

1993-01-01

238

Cryogenic measurements of aerojet GaAs n-JFETs  

NASA Astrophysics Data System (ADS)

The spectral noise characteristics of Aerojet gallium arsenide (GaAs) junction field effect transistors (JFET's) have been investigated down to liquid-helium temperatures. Noise characterization was performed with the field effect transistor (FET) in the floating-gate mode, in the grounded-gate mode to determine the lowest noise readings possible, and with an extrinsic silicon photodetector at various detector bias voltages to determine optimum operating conditions. The measurements indicate that the Aerojet GaAs JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to silicon (Si) metal oxide semiconductor field effect transistor (MOSFET's) operating at liquid helium temperatures, and is equal to the best Si n channel junction field effect transistor (n-JFET's) operating at 300 K.

Goebel, John H.; Weber, Theodore T.

1993-09-01

239

Simulated Extragalactic Observations with a Cryogenic Imaging Spectrophotometer  

E-print Network

In this paper we explore the application of cryogenic imaging spectrophotometers. Prototypes of this new class of detector, such as superconducting tunnel junctions (STJs) and transition edge sensors (TESs), currently deliver low resolution imaging spectrophotometry with high quantum efficiency (70-100%) and no read noise over a wide bandpass in the visible to near-infrared. In order to demonstrate their utility and the differences in observing strategy needed to maximize their scientific return, we present simulated observations of a deep extragalactic field. Using a simple analytic technique, we can estimate both the galaxy redshift and spectral type more accurately than is possible with current broadband techniques. From our simulated observations and a subsequent discussion of the expected migration path for this new technology, we illustrate the power and promise of these devices.

Ben A. Mazin; Robert J. Brunner

2000-07-27

240

Simulated Extragalactic Observations with a Cryogenic Imaging Spectrophotometer  

E-print Network

In this paper we explore the application of cryogenic imaging spectrophotometers. Prototypes of this new class of detector, such as superconducting tunnel junctions (STJs) and transition edge sensors (TESs), currently deliver low resolution imaging spectrophotometry with high quantum efficiency (70-100%) and no read noise over a wide bandpass in the visible to near-infrared. In order to demonstrate their utility and the differences in observing strategy needed to maximize their scientific return, we present simulated observations of a deep extragalactic field. Using a simple analytic technique, we can estimate both the galaxy redshift and spectral type more accurately than is possible with current broadband techniques. From our simulated observations and a subsequent discussion of the expected migration path for this new technology, we illustrate the power and promise of these devices.

Mazin, B A; Mazin, Ben A.; Brunner, Robert J.

2000-01-01

241

Effects of cryogenic temperatures on the performance of CW VECSELs  

NASA Astrophysics Data System (ADS)

We report the effects of cryogenic temperatures on the performance of two CW VECSELs. Firstly we make use of a liquid nitrogen cooled copper cold finger cryostat to house an entire VECSEL device within the vacuum space and report a 3.3 fold reduction in lasing threshold and a 3.6 times increase in the slope efficiency when the gain chip is held at 133 K compared to 293 K. Secondly we show that a VECSEL utilising an unprocessed gain chip and pumped with constant pump-spot size, exhibits thermal rollover at twice the incident pump power when held at 20 K and compared to operation at 293 K. This enhanced performance will motivate the development of processed gain chips that are robust against thermal contraction.

Morris, Oliver J.; Wilcox, Keith G.; Head, C. R.; Turnbull, Andrew P.; Farrer, Ian; Beere, Harvey E.; Ritchie, David A.; Tropper, Anne C.

2013-02-01

242

Tests of VPHGs in the NIR for use at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

We report on the performances measured at room temperature, before and after a cryogenic cooling cycle, of a set of NIR Volume Phase Holographic Gratings (VPHGs) manufactured at the Miguel Hernández University (UMH, Elche, Spain) aimed at their use in astronomical instrumentations. VPHGs are novel optical components which can replace standard ruled transmission gratings, offering some advantages. Instead of a surface modulation, a diffraction index modulation printed in a volume of material generates the diffraction according to the required specifications. While VPHGs are becoming an option for instruments working in the optical regime at room temperature, their use is still minimal in the NIR wavebands due to the stringent requirements impose by the cryogenic environment. But their good properties in terms of high transmission and compact mechanical design are kept even in cryogenic, so efforts to develop such devices functional at cryogenic temperatures are underway in several institutions. We report results on transmission of newly manufactured VPHGs. These results were achieved through a collaborative effort within the European network OPTICON WP6, “New Materials and Processes in Astronomical Instrumentation”, and whose participating institutions are Instituto de Astrofísica de Canarias (IAC), Universidad Miguel Hernández, Osservatorio Astronomico di Brera (INAF) and Politecnico di Milano.

Insausti, Maider; Garzón, Francisco; Madrigal, Roque; Fimia, Antonio

2012-09-01

243

Design of a precision etalon position control system for a cryogenic spectrometer  

NASA Technical Reports Server (NTRS)

The Upper Atmosphere Research Satellite (UARS) will be launched in 1988 to study the distribution of a series of trace elements in the upper atmosphere and to study atmospheric dynamics. The UARS carries on board a cryogenically cooled infrared spectrometer to measure the concentration of a series of chemical species that are important for understanding the ozone layer in the stratosphere. This device, known as the Cryogenic Limb Array Etalon Spectrometer (CLAES), uses a multiposition filter wheel combined with tilt-scanned Fabry Perot etalons to obtain the high resolution required for these experiments. The CLAES optical system is sealed in a dewar where it is maintained at cryogenic temperatures by a supply of solid hydrogen. Operating temperatures for CLAES range from 130 K at the entrance aperture to 13 K at the focal plane. The design and test of a special control system using a unique actuator concept to provide position and can control for the CLAES etalon are described. Results of performance tests at cryogenic temperatures simulating the CLAES on-orbit environment are discussed.

Aubrun, J. N.; Lorell, K. R.; Zacharie, D. F.; Thatcher, J. B.

1984-01-01

244

Fractional watt Vuillemier cryogenic refrigerator program engineering notebook. Volume 1: Thermal analysis  

NASA Technical Reports Server (NTRS)

The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.

Miller, W. S.

1974-01-01

245

Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths  

NASA Technical Reports Server (NTRS)

The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.

Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William

2012-01-01

246

Performance of Power Converters at Cryogenic Temperatures  

NASA Technical Reports Server (NTRS)

Power converters capable of operation at cryogenic temperatures are anticipated to play an important role in the power system architecture of future NASA deep space missions. Design of such converters to survive cryogenic temperatures will improve the power system performance and reduce development and launch costs. Aerospace power systems are mainly a DC distribution network. Therefore, DC/DC and DC/AC converters provide the outputs needed to different loads at various power levels. Recently, research efforts have been performed at the NASA Glenn Research Center (GRC) to design and evaluate DC/DC converters that are capable of operating at cryogenic temperatures. This paper presents a summary of the research performed to evaluate the low temperature performance of five DC/DC converters. Various parameters were investigated as a function of temperature in the range of 20 to -196 C. Data pertaining to the output voltage regulation and efficiency of the converters is presented and discussed.

Elbuluk, Malik E.; Gerber, Scott; Hammoud, Ahmad; Patterson, Richard L.

2001-01-01

247

Performance evaluation of cryogenically treated tungsten carbide tools in turning  

Microsoft Academic Search

This paper describes a study on the effects of cryogenic treatment of tungsten carbide. Cryogenic treatment has been acknowledged by some as a means of extending the tool life of many cutting tool materials, but little is known about the mechanism behind it. Thus far, detailed studies pertaining to cryogenic treatment have been conducted only on tool steels. However, tungsten

A. Y. L. Yong; K. H. W. Seah; M. Rahman

2006-01-01

248

Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)  

NASA Technical Reports Server (NTRS)

Objectives: 1) Store cryogenic propellants in a manner that maximizes their availability for use regardless of mission duration. 2) Efficiently transfer conditioned cryogenic propellant to an engine or tank situated in a microgravity environment. 3) Accurately monitor and gauge cryogenic propellants situated in a microgravity environment.

Chojnacki, Kent

2013-01-01

249

Microstructure of cryogenic treated M2 tool steel  

Microsoft Academic Search

Cryogenic treatment has been claimed to improve wear resistance of certain steels and has been implemented in cutting tools, autos, barrels etc. Although it has been confirmed that cryogenic treatment can improve the service life of tools, the underling mechanism remains unclear. In this paper, we studied the microstructure changes of M2 tool steel before and after cryogenic treatment. We

J. Y Huang; Y. T Zhu; X. Z Liao; I. J Beyerlein; M. A Bourke; T. E Mitchell

2003-01-01

250

Environmental testing of high Tc superconductive thermal isolators for space-borne cryogenic detector systems  

NASA Technical Reports Server (NTRS)

Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall

1992-01-01

251

Two-Phase Cryogenic Heat Exchanger for the Thermodynamic Vent System  

NASA Technical Reports Server (NTRS)

A two-phase cryogenic heat exchanger for a thermodynamic vent system was designed and analyzed, and the predicted performance was compared with test results. A method for determining the required size of the Joule-Thomson device was also developed. Numerous sensitivity studies were performed to show that the design was robust and possessed a comfortable capacity margin. The comparison with the test results showed very similar heat extraction performance for similar inlet conditions. It was also shown that estimates for Joule- Thomson device flow rates and exit quality can vary significantly and these need to be accommodated for with a robust system design.

Christie, Robert J.

2011-01-01

252

A low-power-dissipation broadband cryogenic preamplifier utilizing GaAs MESFETs in parallel  

SciTech Connect

A voltage sensitive preamplifier design is presented for operation at 1.6 K. The active device is a Sony 3SK164 dual-gate GaAs metal-semiconductor field-effect transistor (MESFET), which was chosen for its low-frequency noise performance, stability against oscillations, and the inclusion of a gate protection diode. Active devices made from GaAs operate at cryogenic temperatures without carrier freeze out.'' The main design goal was to keep the power dissipation in the cryostat minimal, while maintaining high bandwidth and low noise. This was achieved by operating four parallel MESFETs at cryogenic temperatures in cascode with a room-temperature Si JFET. Parallel operation gives a higher transconductance-to-power dissipation ratio than with a single device. The input cascode is followed by high-speed, low-noise operational amplifiers. The low-frequency noise corner occurs at 100 kHz. The white voltage noise of the preamplifier referred to the input is [lt]0.9 nV/Hz[sup 1/2] at 1 MHz with 2 mW dissipated in the cryogenic stage. The power dissipation can be reduced to 1 mW with a moderate increase in noise. The preamplifier noise was found to be dominated by the cryogenic stage. There are two 50-[Omega] outputs with gains of 39 dB and 59 dB, and the [minus]3 dB points occur at 500 Hz and 10 MHz. The design of the preamplifier is discussed in detail. Noise measurements under a variety of bias conditions are presented along with an analysis of the different noise sources.

Lee, A.T. (Physics Department, Stanford University, Stanford, California 94305 (United States))

1993-08-01

253

Conceptual design of pressure relief systems for cryogenic application  

NASA Astrophysics Data System (ADS)

The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

Grohmann, S.; Süßer, M.

2014-01-01

254

Conceptual design of pressure relief systems for cryogenic application  

SciTech Connect

The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

Grohmann, S. [Institute for Technical Thermodynamics and Refrigeration, Karlsruhe Institute of Technology, Engler-Bunte-Ring 21, 76131 Karlsruhe, Germany and Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 E (Germany); Süßer, M. [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

2014-01-29

255

Cryogenic fluid management experiment trunnion fatigue verification  

NASA Technical Reports Server (NTRS)

A subcritical liquid hydrogen orbital storage and transfer experiment was designed for flight in the Shuttle cargo bay. The Cryogenic Fluid Management Experiment (CFME) includes a liquid hydrogen tank supported in a vacuum jacket by two fiberglass epoxy trunnion mounts. This composite material was selected for the trunnions since it provides desirable strength, weight and thermal characteristics for supporting cryogenic tankage. An experimental program was conducted to provide material property and fatigue data for S-glass epoxy composite materials at ambient and liquid hydrogen temperatures and to verify structural integrity of the CFME trunnion supports.

Bailey, W. J.; Fester, D. A.; Toth, J. M., Jr.; Kasper, H. J.

1983-01-01

256

Photochemistry of chloropicrin in cryogenic matrices  

NASA Astrophysics Data System (ADS)

The photolysis of chloropicrin (CCl 3NO 2) was investigated in Ar and N 2 cryogenic matrices. The extent of reaction was monitored using FT-IR spectroscopy. Phosgene and nitrosyl chloride were the observed photoproducts at all wavelengths investigated (220, 251, 313, 365, and 405 nm). When the photolysis was performed with 220, 251, or 313 nm light, two additional bands were also observed. These bands have been assigned to CCl 3ONO. Chloropicrin was also photolyzed in the presence of O 2 and 18O2. 18O-labeled photoproducts were not detected in cryogenic matrices.

Wade, Elisabeth A.; Reak, Kristina E.; Parsons, Bradley F.; Clemes, Thomas P.; Singmaster, Karen A.

2002-11-01

257

Adjustable expandable cryogenic piston and ring  

DOEpatents

The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

Mazur, Peter O. (Aurora, IL); Pallaver, Carl B. (Woodridge, IL)

1980-01-01

258

Resolving ultrafast heating of dense cryogenic hydrogen.  

PubMed

We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ?300??fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ?0.9??ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory. PMID:24679300

Zastrau, U; Sperling, P; Harmand, M; Becker, A; Bornath, T; Bredow, R; Dziarzhytski, S; Fennel, T; Fletcher, L B; Förster, E; Göde, S; Gregori, G; Hilbert, V; Hochhaus, D; Holst, B; Laarmann, T; Lee, H J; Ma, T; Mithen, J P; Mitzner, R; Murphy, C D; Nakatsutsumi, M; Neumayer, P; Przystawik, A; Roling, S; Schulz, M; Siemer, B; Skruszewicz, S; Tiggesbäumker, J; Toleikis, S; Tschentscher, T; White, T; Wöstmann, M; Zacharias, H; Döppner, T; Glenzer, S H; Redmer, R

2014-03-14

259

Microstructural Stability of 316 Stainless Steel During Long Term Exposure to High Magnetic Fields at Cryogenic Temperatures  

SciTech Connect

The effect of long term exposure to high magnetic fields at cryogenic temperatures on the microstructural stability of austenitic stainless steel was investigated. Three samples of SUS316 were prepared. One was as-machined, the second was solution heat-treated, and the last was solution heat-treated followed by a sensitization heat treatment. The samples were attached to the helical coil cover of the Large Helical Device, which is a large plasma experimental device operating with a superconducting magnet system. The maximum magnetic field the samples experienced was about 2.56 T for over 100 cycles during which time the temperature was kept at about 4.5 K for approximately 300 days. Before and after the exposure, the susceptibility was measured by a superconducting quantum interference device and it was confirmed that the austenitic phase was stable and did not produce any additional martensite by the long term exposure to the high magnetic fields at cryogenic temperatures.

Nishimura, A. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan); Kakeshita, T. [Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871 (Japan)

2004-06-28

260

Method of measuring heat influx of a cryogenic transfer system  

DOEpatents

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, Ralph C. (Downers Grove, IL); Zelipsky, Steven A. (Tinley Park, IL); Rezmer, Ronald R. (Lisle, IL); Smelser, Peter (Bruner, MO)

1981-01-01

261

Cryogenic Technology, part 1. [conference proceedings; cryogenic wind tunnel design and instrumentation  

NASA Technical Reports Server (NTRS)

Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.

1980-01-01

262

Cost-Efficient Storage of Cryogens  

NASA Technical Reports Server (NTRS)

NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.

Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.

2007-01-01

263

The Cryogenic Test Bed experiments: Cryogenic heat pipe flight experiment CRYOHP (STS-53). Cryogenic two phase flight experiment CRYOTP (STS-62). Cryogenic flexible diode flight experiment CRYOFD  

NASA Technical Reports Server (NTRS)

This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.

Thienel, Lee; Stouffer, Chuck

1995-01-01

264

Cryogenic Fuel Tank Draining Analysis Model  

NASA Technical Reports Server (NTRS)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Greer, Donald

1999-01-01

265

Further Surrogate Cryogenic Target Experiments on OMEGA  

Microsoft Academic Search

We have performed surrogate cryogenic (solid shell) implosion experiments (HE1) on the OMEGA 60-beam UV laser system, extending the range of targets to those most suitable to current illumination conditions. Simultaneous measurements of shell (fuel) areal density, electron temperature, and ion temperature have been obtained with both x-ray and neutron spectroscopic techniques. Observed areal densities of as high as ~*60

F. J. Marshall; D. K. Bradley; J. A. Delettrez; P. A. Jaanimagi; R. L. Kremens; C. P. Verdon; B. Yaakobi; M. D. Cable

1997-01-01

266

Cryogenics: Producing a state of suspended reality  

Microsoft Academic Search

This paper explores the phenomenon of cryogenics, and its impact on current conceptualizations about death within social psychology. As an alternative to traditional death ritualization, evaluation of the use of cryonic suspension is offered to show how the technique accommodates the denial of death, feeds on narcissistic values, and aids in the secularization of technology over religion. Finally, the fundamental

J. Smith Teitge

1984-01-01

267

Exergy analysis of cryogenic air separation  

Microsoft Academic Search

An exergy analysis is performed to analyse the possibilities of fuel saving in the cryogenic distillation process, which is the main method of air separation. It is shown that more than half of the exergy loss takes place in the liquefaction unit and almost one-third in the air compression unit. Minor exergy losses are taking place in the distillation unit

R. L. Cornelissen; G. G. Hirs

1998-01-01

268

Temperature control of a cryogenic bath  

NASA Technical Reports Server (NTRS)

Foreign gas introduced into vapor phase above liquid region cools cryogenic baths. Equipment consists of gas tank and cover of styrofoam. Helium is considered the best choice to produce cooling, though any gas with boiling point lower than that of bath liquid may be used.

Asher, I. M.

1972-01-01

269

Energy Efficient Storage and Transfer of Cryogens  

NASA Technical Reports Server (NTRS)

Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.

Fesmire, James E.

2013-01-01

270

Robust Multilayer Insulation for Cryogenic Systems  

NASA Technical Reports Server (NTRS)

New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

2007-01-01

271

Development of a cryogenic heat pipe  

Microsoft Academic Search

Heat pipe operating characteristics can be used to advantage in cryogenic systems. Diode operation of the heat pipe, the ability to conduct heat in one direction only, is useful in protecting the heat load if the heat sink temperature rises above the load temperature. Because of this, the heat pipe can be made to act as a thermal switch. A

F. C. Prenger; W. F. Stewart; J. E. Runyan

1993-01-01

272

Fiber optic level sensor for cryogens  

NASA Technical Reports Server (NTRS)

Sensor is useful in cryogenic environments where liquids of very low index of refraction are encountered. It is "yes/no" indication of whether liquid is in contact with sensor. Sharp bends in fiber alter distribution of light among propagation modes. This amplifies change in light output observed when sensor contacts liquid, without requiring long fiber that would increse insertion loss.

Sharma, M.

1981-01-01

273

Jacketed cryogenic piping is stress relieved  

NASA Technical Reports Server (NTRS)

Jacketed design of piping used to transfer cryogenic fluids, relieves severe stresses associated with the temperature gradients that occur during transfer cycles and ambient periods. The inner /transfer/ pipe is preloaded in such a way that stress relief takes place automatically as cycling occurs.

Bowers, W. M.

1967-01-01

274

Cost-Efficient Storage of Cryogens  

NASA Astrophysics Data System (ADS)

NASA's cryogenic infrastructure, which supports launch vehicle operations and propulsion testing, is reaching an age when major refurbishment is required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at various NASA field centers. Perlite powder has historically been the insulation material of choice for these applications, but new bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. Research was conducted on thermal performance to identify operational considerations and risks associated with using these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, granular physics, and insulation changeout). This research showed that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarized the operational requirements that should be considered for these applications.

Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.

2008-03-01

275

Cryogenic Heat Exchanger with Turbulent Flows  

ERIC Educational Resources Information Center

An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

2012-01-01

276

Microwave oscillators incorporating cryogenic sapphire dielectric resonators  

Microsoft Academic Search

Progress is reported on efforts to develop a commercially-viable high purity X-band signal source incorporating a cryogenic sapphire dielectric resonator. The resonator design is of the whispering gallery type to take advantage of the excellent electromagnetic field confinement offered by this geometry. Complications resulting from the high spurious mode density of this type of resonator have been eliminated by developing

R. C. Taber; C. A. Flory

1995-01-01

277

Cryogenic propellant prestart conditioning for NLS  

NASA Technical Reports Server (NTRS)

An overview is presented of a candidate National Launch System (NLS) passive cryogenic propellant prestart conditioning system that offers a stable propellant thermal environment and minimum system complexity. A 2D, multinode model utilizing real fluid properties was developed. This model predicts flow recirculation due to thermal gradients by assuming vertical cold and warm opposing flow streams produced by density differential.

Gaynor, T. L.; Merlin, M. V.; Gautney, T. T.

1992-01-01

278

Cryogenically enhanced magneto-Archimedes levitation  

Microsoft Academic Search

The application of both a strong magnetic field and magnetic field gradient to a diamagnetic body can produce a vertical force which is sufficient to counteract its weight due to gravity. By immersing the body in a paramagnetic fluid, an additional adjustable magneto-buoyancy force is generated which enhances the levitation effect. Here we show that cryogenic oxygen and oxygen–nitrogen mixtures

A T Catherall; P López-Alcaraz; K A Benedict; P J King; L Eaves

2005-01-01

279

Subcooling for Long Duration In-Space Cryogenic Propellant Storage  

NASA Technical Reports Server (NTRS)

Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

2010-01-01

280

Precision high-value resistance scaling with a two-terminal cryogenic current comparator.  

PubMed

We describe a cryogenic two-terminal high-resistance bridge and its application in precision resistance scaling from the quantized Hall resistance (QHR) at RH = RK/2 = 12?906.4035 ? to decade resistance standards with values between 1 M? and 1 G?. The design minimizes lead resistance errors with multiterminal connections to the QHR device. A single variable voltage source and resistive ratio windings are utilized to achieve excellent dynamic stability, which is not readily obtained in low-current measurements with conventional cryogenic current comparators (CCCs). Prototypes of this bridge have been verified by a successful international comparison of high-resistance scaling using two-terminal CCCs in the national metrology institutes of Argentina, Mexico, and the United States. PMID:24784632

Hernandez-Marquez, F L; Bierzychudek, M E; Jones, G R; Elmquist, R E

2014-04-01

281

Test of a trail cryogenic balance in the ONERA T2 wind tunnel  

NASA Technical Reports Server (NTRS)

The three component cryogenic balance designed and manufactured by the ONERA Large Means Directorate, was equipped with a light alloy schematic model and tested at the end of 1984 at the T2 wind tunnel in gusts at low temperatures up to 120 K. The tests pertained to the impact of the cryogenic conditions on the behavior of extensometric bridges while cooling the balance-model system mounted in the conditioning device and during gusts with models in the test section. A few tests with thermal disequilibrium between the flow and balance made it possible to confirm the proper operation in the range 120 to 300 K. This gust system showed that the balance, which was well compensated thermally, may be used in T2 with and without precooling. For any thermal gradient, the analysis was always performed with the same matrices and aerodynamic coefficients were obtained with the same precision.

Blanchard, A.; Seraudie, A.; Plazanet, M.; Payry, M. J.

1987-01-01

282

Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest  

NASA Technical Reports Server (NTRS)

DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.

Patterson, Richard; Hammoud, Ahmad

2010-01-01

283

Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering  

NASA Technical Reports Server (NTRS)

Using a pulsed Nd:YAG laser (532 nm) and a gated, intensified charge-coupled device, planar Rayleigh and Raman scattering techniques have been used to visualize the unseeded Mach 0.2 flow density in a 0.3-meter transonic cryogenic wind tunnel. Detection limits are determined for density measurements by using both unseeded Rayleigh and Raman (N2 vibrational) methods. Seeding with CO2 improved the Rayleigh flow visualization at temperatures below 150 K. The seeded Rayleigh version was used to demonstrate the observation of transient flow features in a separated boundary layer region, which was excited with an oscillatory jet. Finally, a significant degradation of the laser light sheet, in this cryogenic facility, is discussed.

Herring, Gregory C.; Shirinzadeh, Behrooz

2002-01-01

284

Thales Cryogenics rotary cryocoolers for HOT applications  

NASA Astrophysics Data System (ADS)

Thales Cryogenics has an extensive background in delivering reliable linear and rotary coolers for military, civil and space programs. Recent work carried out at detector level enable to consider a higher operation temperature for the cooled detectors. This has a direct impact on the cooling power required to the cryocooler. In continuation of the work presented last year, Thales cryogenics has studied the operation and optimization of the rotary cryocoolers at high cold regulation temperature. In this paper, the performances of the Thales Cryogenics rotary cryocoolers at elevated cold regulation temperature will be presented. From these results, some trade-offs can be made to combine correct operation of the cryocooler on all the ambient operational range and maximum efficiency of the cryocooler. These trade-offs and the impact on MTTF of elevated cold regulation temperature will be presented and discussed. In correlation with the increase of the cold operation temperature, the cryocooler input power is significantly decreased. As a consequence, the cooler drive electronics own consumption becomes relatively important and must be reduced in order to minimize global input power to the cooling function (cryocooler and cooler drive electronics). Thales Cryogenics has developed a new drive electronics optimized for low input power requirements. In parallel, improvements on RM1 and RM2 cryocoolers have been defined and implemented. The main impacts on performances of these new designs will be presented. Thales cryogenics is now able to propose an efficient cooling function for application requiring a high cold regulation temperature including a range of tuned rotary coolers.

Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Freche, Sébastien

2012-06-01

285

Cryogenic systems for the large deployable reflector  

NASA Technical Reports Server (NTRS)

There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

Mason, Peter V.

1988-01-01

286

The Nuclear Cryogenic Propulsion Stage  

NASA Technical Reports Server (NTRS)

Nuclear Thermal Propulsion (NTP) development efforts in the United States have demonstrated the technical viability and performance potential of NTP systems. For example, Project Rover (1955 - 1973) completed 22 high power rocket reactor tests. Peak performances included operating at an average hydrogen exhaust temperature of 2550 K and a peak fuel power density of 5200 MW/m3 (Pewee test), operating at a thrust of 930 kN (Phoebus-2A test), and operating for 62.7 minutes in a single burn (NRX-A6 test). Results from Project Rover indicated that an NTP system with a high thrust-to-weight ratio and a specific impulse greater than 900 s would be feasible. Excellent results were also obtained by the former Soviet Union. Although historical programs had promising results, many factors would affect the development of a 21st century nuclear thermal rocket (NTR). Test facilities built in the US during Project Rover no longer exist. However, advances in analytical techniques, the ability to utilize or adapt existing facilities and infrastructure, and the ability to develop a limited number of new test facilities may enable affordable development, qualification, and utilization of a Nuclear Cryogenic Propulsion Stage (NCPS). Bead-loaded graphite fuel was utilized throughout the Rover/NERVA program, and coated graphite composite fuel (tested in the Nuclear Furnace) and cermet fuel both show potential for even higher performance than that demonstrated in the Rover/NERVA engine tests.. NASA's NCPS project was initiated in October, 2011, with the goal of assessing the affordability and viability of an NCPS. FY 2014 activities are focused on fabrication and test (non-nuclear) of both coated graphite composite fuel elements and cermet fuel elements. Additional activities include developing a pre-conceptual design of the NCPS stage and evaluating affordable strategies for NCPS development, qualification, and utilization. NCPS stage designs are focused on supporting human Mars missions. The NCPS is being designed to readily integrate with the Space Launch System (SLS). A wide range of strategies for enabling affordable NCPS development, qualification, and utilization should be considered. These include multiple test and demonstration strategies (both ground and in-space), multiple potential test sites, and multiple engine designs. Two potential NCPS fuels are currently under consideration - coated graphite composite fuel and tungsten cermet fuel. During 2014 a representative, partial length (approximately 16") coated graphite composite fuel element with prototypic depleted uranium loading is being fabricated at Oak Ridge National Laboratory (ORNL). In addition, a representative, partial length (approximately 16") cermet fuel element with prototypic depleted uranium loading is being fabricated at Marshall Space Flight Center (MSFC). During the development process small samples (approximately 3" length) will be tested in the Compact Fuel Element Environmental Tester (CFEET) at high temperature (approximately 2800 K) in a hydrogen environment to help ensure that basic fuel design and manufacturing process are adequate and have been performed correctly. Once designs and processes have been developed, longer fuel element segments will be fabricated and tested in the Nuclear Thermal Rocket Element Environmental Simulator (NTREE) at high temperature (approximately 2800 K) and in flowing hydrogen.

Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Belvin, Anthony D.; Borowski, Stanley K.; Scott, John H.

2014-01-01

287

Ground-Based Investigations with the Cryogenic Hydrogen Maser  

NASA Technical Reports Server (NTRS)

The cryogenic hydrogen maser (CHM) developed at the Smithsonian Astrophysical Observatory (SAO) was designed to be functionally similar to SAO room temperature hydrogen masers with appropriate modifications made for operation at cryogenic temperatures. A schematic of the SAO CHM is shown in Figure 1, and a description of this device and its operation follows. A beam of molecular hydrogen is dissociated into atoms at room temperature. The resultant beam of atomic hydrogen is then cooled, magnetically state selected, and focused into a quartz storage bulb centered inside of a microwave cavity resonant with the hydrogen hyperfine transition at 1420 MHz. The quartz storage bulb is coated with a superfluid He-4 film, and both the bulb and cavity are maintained near 0.5 K. The maser signal is coupled out inductively and carried to room temperature via semi-rigid coaxial cable. After passing through a room temperature isolator and preamp, the maser signal is detected with a low-noise heterodyne receiver as used in the room temperature SAO hydrogen masers. The maser temperature is lowered to 0.5 K using a recirculating He-3 refrigerator. This refrigerator consists of several cooling stages: a liquid nitrogen stage at 77 K, a liquid 4He bath at 4.2 K, a pumped He-4 pot at approximately 1.7 K, and the pumped, recirculating He-3 stage at 0.5 K. The atomic hydrogen beam, state selector, storage bulb and cavity are all connected inside a single, maser vacuum chamber (MVC). This space is pumped out from below by a turbo pump. Above the MVC, an inlet to the space allows for the input of flowing superfluid 4He film. External to the MVC is a second, outer vacuum chamber (OVC), maintained for operation of the cryostat and also pumped by a turbo pump. Inside the OVC, there is radiation shielding at 77 K and 1.7 K.

Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

2003-01-01

288

Progress on GaAs cryogenic readout circuits for SISCAM  

NASA Astrophysics Data System (ADS)

We are developing cryogenic readout circuits for the array of superconducting tunneling junctions (STJs) at submillimeter wavelength SISCAM (Superconductive Imaging Submillimeter-wave CAMera). A current conceptual design of SISCAM will employ a direct hybrid array system just like CMOS image sensors widely used at optical and infrared wavelength. Because of relatively large impedance of the STJ fabricated by RIKEN (~10 M? in a dark condition), it requires readout preamplifier with low current noise. Therefore, it is not suitable for the STJ to use a readout system by Superconductive Quantum Interferences Devices as for Transition Edge Sensor. Instead, we selected capacitive transimpedance amplifier (CTIA) using a SONY n-type GaAs Junction Field Effect Transistor (JFET). However, the CTIA has not been used as the readout of the STJ. Therefore, we measured the photocurrent of the STJ by the CTIA with Silicon JFETs and by transimpedance amplifier (TIA), which is a conventional readout for the STJ, in the same bias condition, and confirmed both results are in good agreement. Additionally, we report development of readout integrated circuits with GaAs JFETs. In order to design the CTIA circuit with the GaAs JFETs, we fabricated the independent GaAs JFETs and matched pairs of them. We measured electrical characteristics of these GaAs JFETs at the cryogenic temperatures less than 4.2 K. We demonstrated performance of an operational amplifier fabricated with the GaAs JFETs measuring a differential amplifier with the dual GaAs JFET, and additionally estimate amplifier gain, offset voltage, and power consumption of the CTIA by the circuit simulation using the PSPICE. In consequence, the expected performance fulfills the requirements for the readout amplifier of the STJs except for the noise performance.

Nagata, H.; Kobayashi, J.; Matsuo, H.; Fujiwara, M.

2006-06-01

289

Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development  

NASA Technical Reports Server (NTRS)

Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results.

Klem, Mark D.; Smith, Timothy D.; Wadel, Mary F.; Meyer, Michael L.; Free, James M.; Cikanek, Harry A., III

2011-01-01

290

Analysis of the Thermal Loads on the KSTAR Cryogenic System  

SciTech Connect

A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.

Kim, Y.S.; Oh, Y.K.; Kim, W.C.; Park, Y.M.; Lee, Y.J.; Jin, S.B.; Sa, J.W.; Choi, C.H.; Cho, K.W.; Bak, J.S.; Lee, G.S. [Korea Basic Science Institute, Yusung-Ku, Daejeon 305-806 (Korea, Republic of)

2004-06-23

291

Cryogenic measurements of aerojet GaAs n-JFETs  

NASA Astrophysics Data System (ADS)

The spectral noise characteristics of Aerojet GaAs n-JFETs have been investigated down to liquid helium temperatures. Voltage noise characterization was performed with the FET in 1) the floating gate mode, 2) the grounded gate mode to determine the lowest noise readings possible and 3) with an extrinsic silicon photodetector at various detector bias voltages, to determine optimum operating conditions. Current noise characterization was measured at the drain in the temperature range 300 to 77 K. Device design and MBE processing are described. Static I-V characterization is done at 300, 77 and 6 K. The measurements indicate that the Aerojet GaAs n-JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered as a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to that of Si MOSFETs operating at liquid helium temperatures, and is equal to the best Si n-JFETs operating at 300 K.

Goebel, John H.; Weber, Theodore T.; van Rheenen, Arthur D.; Jostad, Leon; Kim, Joo-Young; Gable, Ben

1992-07-01

292

Cryogenic measurements of aerojet GaAs n-JFETs  

NASA Technical Reports Server (NTRS)

The spectral noise characteristics of Aerojet GaAs n-JFETs have been investigated down to liquid helium temperatures. Voltage noise characterization was performed with the FET in 1) the floating gate mode, 2) the grounded gate mode to determine the lowest noise readings possible and 3) with an extrinsic silicon photodetector at various detector bias voltages, to determine optimum operating conditions. Current noise characterization was measured at the drain in the temperature range 300 to 77 K. Device design and MBE processing are described. Static I-V characterization is done at 300, 77 and 6 K. The measurements indicate that the Aerojet GaAs n-JFET is a quiet and stable device at liquid helium temperatures. Hence, it can be considered as a readout line driver or infrared detector preamplifier as well as a host of other cryogenic applications. Its noise performance is superior to that of Si MOSFETs operating at liquid helium temperatures, and is equal to the best Si n-JFETs operating at 300 K.

Goebel, John H.; Weber, Theodore T.; Van Rheenen, Arthur D.; Jostad, Leon; Kim, Joo-Young; Gable, Ben

1992-01-01

293

Cryogenic Optical Systems and Instrumentation IX (AM 116) Newly Modified Cryogenic Optical Test Facility at the Marshall Space Flight Center  

NASA Technical Reports Server (NTRS)

Marshall Space Flight Center (MSFC) has maintained and operated a world-class x-ray optics and detector testing facility known as the X-ray Calibration Facility (XRCF) since the mid 1970's. The ground test and calibration of the Chandra X-ray Observatory optics and detectors were successfully completed at the XRCF in 1997. The beginning of the Next Generation Space Telescope (NGST) development programs (NMSD, SBMD, AMSD, etc.) and the establishment of the Space Optics Manufacturing Technology Center at MSFC have led to an XRCF modification. In 1999 the facility was upgraded to perform cryogenic testing of lightweight visible optics (without compromising the existing x-ray testing capability). A thermal enclosure capable of 20 degrees Kelvin and vibration isolated instrumentation mount were added. A vacuum-compatible five-axis motion table was modified to operate under cryogenic conditions. Optics up to two meters in diameter with radii of curvature of up to twenty meters can be accommodated. Facility characterization tests and one NGST program mirror test have been completed to date. By July 2000, two other mirrors will be tested. Optical wavefront measurements were made at < 35 degrees Kelvin with several instruments located at the test mirror's radius of curvature. The current wavefront measuring instruments include a Shack-Hartman wavefront sensor, a point diffraction interferometer, a point spread function-measuring device, and a radius of curvature measuring instrument. A vibration insensitive phase shifting interferometer is planned for future optical testing. This paper will present a brief history of the facility, a discussion of its current x-ray optic testing capabilities, and a complete description of the new capabilities in the visible optical testing regime.

Eng, Ronnie; Kegley, Jeff; Keidel, John

2000-01-01

294

Photonic Devices  

NASA Astrophysics Data System (ADS)

Covering every major photonic device, this textbook strikes a careful balance between theoretical and practical concepts. The devices it covers include optical fibers, couplers, electro-optic devices, magneto-optic devices, lasers and photodetectors. The book is well-suited as a text for senior undergraduate and graduate courses, as well as a device-driven engineering reference for professionals.

Liu, Jia-Ming

2005-05-01

295

A cryogenic valve for spacecraft applications  

NASA Technical Reports Server (NTRS)

Space-compatible cryogenic valves are now required to operate between room and liquid helium temperatures. A remotely controllable cryogenic valve is described, which is made of bellows-type stainless steel and is operated by a miniature dc motor with integral gearset (485:1) at a nominal voltage of 28 Vdc. The power transmission provides a further reduction of 7.2:1 to give an overall gear ratio of nearly 3500:1, assuring reliability of operation at low temperatures. Valve performance (leak rate) data are presented at LN2, LHe, and SfHe temperatures at delivered torques of 18, 27, 31, and 35 N-m. At a closing torque of 31 N-m, a leak rate of 0.028 scc/sec was achieved at 2 K, while at a torque of 18 N-m the leak rate at 300 K was less than 3 x 10 to the -9th scc/sec.

Salerno, L. J.; Spivak, A. L.

1982-01-01

296

Cryogenic cooling for high power laser amplifiers  

NASA Astrophysics Data System (ADS)

Using DPSSL (Diode Pumped Solid State Lasers) as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz). The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K-170 K with a heat flux of 1 MW*m-2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

Perin, J. P.; Millet, F.; Divoky, M.; Rus, B.

2013-11-01

297

Bonding and Sealing Evaluations for Cryogenic Tanks  

NASA Technical Reports Server (NTRS)

Several different cryogenic tank concepts are being considered for reusable launch vehicles (RLV'S) . Though different tank concepts are being considered, many will require that the cryogenic insulation be evacuated and be bonded to a structure. In this work, an attempt was made to evaluate the effectiveness of maintaining a vacuum on a specimen where foam or honeycomb core was encased within Gr/Ep. In addition to these tests, flatwise adhesion pull off tests were performed at room temperature with PR 1664, EA 9394, FM-300, Crest 3170, and HT 435 adhesives. The materials bonded included Gr/Ep, Gr/BMI, Al, and stainless steel facesheets, and Ti honeycomb, Hexcel honeycomb, and Rohacell foam core materials.

Glass, David E.

1997-01-01

298

Cryogenic hydrogen circulation system of neutron source  

SciTech Connect

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 China and University of Chinese Academy of Sciences, Chinese Academy of Sciences, BJ100049 (China); Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y. [Institute of Physics and Chemistry, Chinese Academy of Sciences, BJ100190 (China); Zhang, P. [School of Energy and Power Engineering, HuaZhong University of Science and Technology, WH430074 (China); Wang, G. P. [Institute of High Energy Physics, Chinese Academy of Sciences, BJ100049 (China)

2014-01-29

299

Large scale cryogenic fluid systems testing  

NASA Technical Reports Server (NTRS)

NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

1992-01-01

300

Cryogenic Magnetic Bearing Test Facility (CMBTF)  

NASA Technical Reports Server (NTRS)

The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.

1992-01-01

301

Cryogenic hydrogen circulation system of neutron source  

NASA Astrophysics Data System (ADS)

Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

2014-01-01

302

Cryogenic evaluation of epoxy bond strength  

NASA Astrophysics Data System (ADS)

The purpose of the work presented here was to determine methods of optimizing the adhesion of a particular epoxy (CTD-101K, Composite Technology Development Inc.) to a particular nickel-based alloy substrate (Incoloy ® 908, Inco Alloys International) for cryogenic applications. Initial efforts were focused on surface preparation of the substrate material via various mechanical and chemical cleaning techniques. Test samples, fabricated to simulate the conduit-to-insulation interface, were put through a mock heat treat and vacuum/pressure impregnation process. Samples were compression/shear load tested to compare the bond strengths at room temperature and liquid nitrogen temperature. The resulting data indicate that acid etching creates a higher bond strength than the other tested techniques and that the bond formed is stronger at cryogenic temperatures than at room temperature. A description of the experiment along with the resulting data is presented here.

Albritton, N.; Young, W.

303

Design concepts for the ASTROMAG cryogenic system  

NASA Technical Reports Server (NTRS)

Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

Green, M. A.; Castles, S.

1988-01-01

304

Design concepts for the ASTROMAG cryogenic system  

NASA Technical Reports Server (NTRS)

Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

Green, M. A.; Castles, S.

1987-01-01

305

Optimized Heat Interception for Cryogen Tank Support  

NASA Technical Reports Server (NTRS)

We consider means for using the cooling available in boil-off gas to intercept heat conducted through the support structure of a cryogen tank. A one-dimensional model of the structure coupled to a gas stream gives an analytical expression for heat leak in terms of flow rate for temperature independent-properties and laminar flow. A numerical model has been developed for heat transfer on a thin cylindrical tube with an attached vent line. The model is used to determine the vent path layout that will minimize heat flow into the cryogen tank. The results are useful for a number of applications, but the one of interest in this study is the minimization of the boil-off in large cryopropellant tanks in low Earth and low lunar orbit.

Canavan, Edgar R.; Miller, F. K.

2007-01-01

306

Transition detection studies in the cryogenic environment  

NASA Technical Reports Server (NTRS)

Boundary-layer transition detection studies were carried out in the 0.3 Meter Transonic Cryogenic Tunnel on a supercritical airfoil, using an infrared imaging system. The purpose of the experiments was to determine the extent of the temperature range in which commercially available IR systems can detect transition in cryogenic environment. The experiment was designed to take advantage of a combination of factors including the wind tunnel operation mode, the model construction materials and the IR system image processing options. During the initial phases of the study, the IR based findings were confirmed by measurements done with a micro-thin hot-film system. Ultimately, free and forced transition could be detected down to 170 K.

Gartenberg, Ehud; Johnson, William G., Jr.; Johnson, Charles B.; Carraway, Debra L.; Wright, Robert E.

1990-01-01

307

A mirror mount for cryogenic environments  

NASA Technical Reports Server (NTRS)

The finite element method was used to study the effect of mount-induced aberrations on the optical surface of a lightweight double arch mirror subjected to cryogenic temperatures. The mount design was controlled by the requirements imposed on the optical surface quality and stress levels. The finite element analysis was used to define the feasible range of mount parameters and the selection of a design within the feasible region. The final design consisted of three spring-loaded Invar T-clamps that uniquely define the location of the mirror, three radially compliant parallel spring guides that remove the effect of radial contraction of structure in cryogenic temperatures, and a flexible baseplate that was used to reduce the effect of temperature-induced baseplate tilt errors. The experimental results from the application of this system to an existing 20-inch fused silica double arch mirror are shown, and possible improvements in system performance are discussed.

Iraninejad, B.; Vukobratovich, D.; Richard, R. M.; Melugin, R. K.

1984-01-01

308

Development of cryogen free Ic measurement system  

NASA Astrophysics Data System (ADS)

The increasing use of high-temperature superconducting (HTS) materials for advanced power applications has generated much interest in the acquisition of the voltage-current ( V- I) characteristic curve to measure the critical current ( Ic) of HTS tape. Cryogen free Ic measurement system for HTS wires or coils was designed and fabricated by using a GM-cryocooler and two HTS current leads. The sample cools conductively by 2nd stage of SRDK-408D cryocooler manufactured by Sumitomo Heavy Industries Ltd. (SHI). Each high temperature end of HTS current leads is thermally connected to 1st stage of the cryocooler and electrically disconnected. HTS tape samples cooled down by about 10 K. Ic measurements were conducted on a BSCCO-2212 tape, a BSCCO-2223 tape with joints and a BSCCO-2223 small coil under self-field. A description of cryogen free Ic measurement system design and results from a series of measurements will be presented.

Sohn, M. H.; Kim, S.; Sim, K. D.; Lee, E. Y.; Kim, H. M.; Park, H. Y.; Seong, K. C.; Kwon, Y. K.

2008-09-01

309

Absorber Materials at Room and Cryogenic Temperatures  

SciTech Connect

We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

2011-09-01

310

Feasibility study for the Cryogenic Orbital Nitrogen Experiment (CONE)  

NASA Technical Reports Server (NTRS)

An improved understanding of low gravity subcritical cryogenic fluid behavior is critical for the continued development of space based systems. Although early experimental programs provided some fundamental understanding of zero gravity cryogenic fluid behavior, more extensive flight data are required to design space based cryogenic liquid storage and transfer systems with confidence. As NASA's mission concepts evolve, the demand for optimized in-space cryogenic systems is increasing. Cryogenic Orbital Nitrogen Experiment (CONE) is an attached shuttle payload experiment designed to address major technological issues associated with on-orbit storage and supply of cryogenic liquids. During its 7 day mission, CONE will conduct experiments and technology demonstrations in active and passive pressure control, stratification and mixing, liquid delivery and expulsion efficiency, and pressurant bottle recharge. These experiments, conducted with liquid nitrogen as the test fluid, will substantially extend the existing low gravity fluid data base and will provide future system designers with vital performance data from an orbital environment.

Bell, R. S.; Crouch, M. A.; Hanna, G. J.; Cady, E. C.; Meserole, J. S.

1991-01-01

311

Cryogen free sample environment for neutron scattering experiments at ISIS  

NASA Astrophysics Data System (ADS)

Most neutron facilities have a fleet of cryostats providing low temperature and high magnetic fields for sample environment. This large scale usage of cryogenic equipment requires significant resources and can create a number of problems including health and safety issues and the considerable cost of the required cryogens. The last problem has become more significant due to the increasing costs of liquid helium caused by global helium supply problems. The ISIS facility has an internal development programme intended to gradually substitute all conventional cryogenic systems with cryogen free systems preferably based on the pulse tube refrigerator. The programme includes a number of development projects which are aiming to deliver a range of cryogen free equipment including a top-loading 1.5 K cryostat, superconducting magnets in re-condensing cryostats and cryogen free dilution refrigerators. Here we are going to describe the design of these systems and discuss the results of prototype testing.

Kirichek, O.; Down, R. B. E.; Keeping, J.; Evans, B.; Bowden, Z. A.

2012-02-01

312

Design, construction and cooling system performance of a prototype cryogenic stopping cell for the Super-FRS at FAIR  

NASA Astrophysics Data System (ADS)

A cryogenic stopping cell for stopping energetic radioactive ions and extracting them as a low energy beam was developed. This first ever cryogenically operated stopping cell serves as prototype device for the Low-Energy Branch of the Super-FRS at FAIR. The cell has a stopping volume that is 1 m long and 25 cm in diameter. Ions are guided by a DC field along the length of the stopping cell and by a combined RF and DC fields provided by an RF carpet at the exit-hole side. The ultra-high purity of the stopping gas required for optimum ion survival is reached by cryogenic operation. The design considerations and construction of the cryogenic stopping cell, as well as some performance characteristics, are described in detail. Special attention is given to the cryogenic aspects in the design and construction of the stopping cell and the cryocooler-based cooling system. The cooling system allows the operation of the stopping cell at any desired temperature between about 70 K and room temperature. The cooling system performance in realistic on-line conditions at the FRS Ion Catcher Facility at GSI is discussed. A temperature of 110 K at which efficient ion survival was observed is obtained after 10 h of cooling. A minimum temperature of the stopping gas of 72 K was reached. The expertise gained from the design, construction and performance of the prototype cryogenic stopping cell has allowed the development of a final version for the Low-Energy Branch of the Super-FRS to proceed.

Ranjan, M.; Dendooven, P.; Purushothaman, S.; Dickel, T.; Reiter, M. P.; Ayet, S.; Haettner, E.; Moore, I. D.; Kalantar-Nayestanaki, N.; Geissel, H.; Plaß, W. R.; Schäfer, D.; Scheidenberger, C.; Schreuder, F.; Timersma, H.; Van de Walle, J.; Weick, H.

2015-01-01

313

Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout  

E-print Network

Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal, Hilo, HI 96720, USA ABSTRACT Teledyne Imaging Sensors (TIS) has developed a new CMOS device known. At the last SPIE conference we presented test and performance results of a Teledyne 2KÃ?2K silicon PIN diode

Liske, Jochen

314

PRESSURE OSCILLATION IN RHIC CRYOGENIC SYSTEM.  

SciTech Connect

HORIZONTAL BEAM VIBRATION AROUND 10HZ IN THE RELATIVISTIC HEAVY ION COLLIDER (RHIC) HAVE BEEN IDENTIFIED AND THE POSSIBLE SOURCES TO CAUSE THIS VIBRATION HAVE BEEN INVESTIGATED. TO DETERMINE THE HETIUM PRESSURE OSCILLATIONS AS A POSSIBLE PRIMARY VIBRATION SOURCE, HELIUM PRESSURE MEASUREMENTS WERE CARRIED OUT IN THE FIVE CRYOGENIC TRANSFER LINES AT 2 VALVE BOXES AND 6 LEAD PORTS AT 2 TRIPLET CRYOSTAT FOR BOTH MAGNET RINGS. ADDITIONALLY, COLD MA...

JIA,L.MONTAG,C.TALLERICO,T.HIRZEL,W.NICOLETTI,A.

2003-09-22

315

Influence of Thermal Cycling on Cryogenic Thermometers  

Microsoft Academic Search

The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to

C Balle; J Casas-Cubillos; Jean Michel Rieubland; A Suraci; F Togny; N Vauthier

1999-01-01

316

Method and apparatus for producing cryogenic targets  

DOEpatents

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

Murphy, James T. (Los Alamos, NM); Miller, John R. (Penfield, NY)

1984-01-01

317

CRYOGENIC FLUIDS IN NUCLEAR PROPULSION SYSTEMS  

Microsoft Academic Search

Nuclear rocket engines employ hydrogen, a cryogenic liquid, as a ;\\u000a propellant in order to obtain a system with a high specific impulse. Since ;\\u000a hydrogen is also an excellent moderator of neutrons, it provides a reactivity ;\\u000a contribution which must be taken into consideration in the design of a reactor ;\\u000a and in its programmed operation. The reactivity worth

R. S. Thurston; J. D. Balcomb; G. P. Watts; R. S. Pollock; A. R. Lyle

1963-01-01

318

Cryogenic adhesives and sealants: Abstracted publications  

NASA Technical Reports Server (NTRS)

Abstracts of primary documents containing original experimental data on the properties of adhesives and sealants at cryogenic temperatures are presented. The most important references mentioned in each document are cited. In addition, a brief annotation is given for documents considered secondary in nature, such as republications or variations of original reports, progress reports leading to final reports included as primary documents, and experimental data on adhesive properties at temperatures between about 130 K and room temperature.

Williamson, F. R.; Olien, N. A.

1977-01-01

319

Cryogenic properties of aluminum alloys and composites  

SciTech Connect

Several aluminum-based materials have been evaluated for possible application at cryogenic temperatures. These included the Al-Li alloy 2090, a high purity mechanically alloyed Al, SiC whisker reinforced Al 2124, and SiC particulate reinforced Al 6061. Mechanical properties, thermal properties and electrical properties were measured for these materials. Their performance in a radio frequency cavity was also determined. 4 refs., 6 figs.

Hill, M.A.; Rollett, A.D.; Jacobson, L.A.; Borch, N.R.; Gibbs, W.S.; Patterson, R.A.; Carter, D.H.

1989-01-01

320

Cryogenic regenerator including sarancarbon heat conduction matrix  

NASA Technical Reports Server (NTRS)

A saran carbon matrix is employed to conduct heat through the heat storing volume of a cryogenic regenerator. When helium is adsorbed into the saran carbon matrix, the combination exhibits a volumetric specific heat much higher than previously used lead balls. A helium adsorbed saran regenerator should allow much lower refrigerator temperatures than those practically obtainable with lead based regenerators for regenerator type refrigeration systems.

Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Britcliffe, Michael J. (Inventor)

1989-01-01

321

Cryogenic Treatment of Tool Materials: A Review  

Microsoft Academic Search

Cryogenic treatment (CT) of materials has shown significant improvement in their properties. Various advantages like increase in wear resistance, reduced residual stresses, increase in hardness, fatigue resistance, toughness imparted by transformation of retained austenite to martensite, precipitation of carbides, eta-carbide formation, perfect distributed\\/homogenous crystal structure, better thermal conductivity, and reduced chemical degradation. Moreover, this technology is an eco-friendly, nontoxic, and

Nirmal S. Kalsi; Rakesh Sehgal; Vishal S. Sharma

2010-01-01

322

Tough strong iron alloys for cryogenic service  

NASA Technical Reports Server (NTRS)

Series of alloys with minor additions of reactive metals possesses outstanding strength and toughness at cryogenic temperatures. Effective metal additons include aluminum, niobium, titanium, and vanadium. Strengthening of series is achieved by thermomechanical processing and by precipitate strengthening while maintaining high level of toughness. Possible applications include liquefied natural-gas storage and transmission, structural members in superconducting machinery, and welding rod for other alloys such as nine nickel steels.

Stephens, J. R.; Witzke, W. R.

1977-01-01

323

Design Tool for Cryogenic Thermal Insulation Systems  

Microsoft Academic Search

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed.

Jonathan A Demko; J. E. Fesmire; S. D. Augustynowicz

2008-01-01

324

DESIGN TOOL FOR CRYOGENIC THERMAL INSULATION SYSTEMS  

Microsoft Academic Search

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed.

J. A. Demko; J. E. Fesmire; S. D. Augustynowicz

2008-01-01

325

Photochemistry of chloropicrin in cryogenic matrices  

Microsoft Academic Search

The photolysis of chloropicrin (CCl3NO2) was investigated in Ar and N2 cryogenic matrices. The extent of reaction was monitored using FT-IR spectroscopy. Phosgene and nitrosyl chloride were the observed photoproducts at all wavelengths investigated (220, 251, 313, 365, and 405 nm). When the photolysis was performed with 220, 251, or 313 nm light, two additional bands were also observed. These

Elisabeth A Wade; Kristina E Reak; Bradley F Parsons; Thomas P Clemes; Karen A Singmaster

2002-01-01

326

Nonvented Filling Of A Cryogenic Tank  

NASA Technical Reports Server (NTRS)

Chilling before filling reduces ullage. Report describes experiments on nonvented filling of tank designed to store cryogenic liquids. Experiments showed if tank first chilled and evacuated, it can then be filled to more than 90 percent of its capacity without venting, provided conditions of chilling, initial tank pressure, and filling chosen properly. Developed for space applications, also useful in ground-based operations where venting impractical or hazardous.

Chato, David J.; Moran, Matthew E.; Nyland, Ted W.; Nakanishi, Shigeo

1992-01-01

327

Active Control of Cryogenic Propellants in Space  

NASA Technical Reports Server (NTRS)

A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

Notardonato, William

2011-01-01

328

Cryogenic plant for natural gas liquefaction  

Microsoft Academic Search

It is essential to develop an efficient, compact, and safe plant for recondensation of natural gas vapors formed during shipping\\u000a of liquefied natural gas (LNG) by large methane tankers. A test bench that simulates the operation of a full-scale cryogenic\\u000a plant for production of up to 2884 kg\\/h LNG has been built for comprehensive studies. The refrigeration required for this

Yu. S. Bukholdin; S. V. Sukhostavets; I. I. Petukhov

2007-01-01

329

Method and apparatus for producing cryogenic targets  

SciTech Connect

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

Murphy, J.T.; Miller, J.R.

1981-08-28

330

Method and apparatus for producing cryogenic targets  

DOEpatents

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

Murphy, J.T.; Miller, J.R.

1984-08-07

331

Dusty Plasma Structures in Cryogenic DC Discharges  

SciTech Connect

Experimental investigations of dust structures in dc low-pressure glow discharge at temperatures of liquid nitrogen (T = 77 K) and liquid helium (T = 4.2 K) are presented. Super dense dust structures with dust density np {approx} 108-109 cm-3 formed within striations of cryogenic discharges as well as boundary-free worm-like dust structure moved in discharge at 4.2 K were obtained.

Antipov, S.N.; Fortov, V.E.; Kirillin, A.V.; Petrov, O F. [Institute for High Energy Densities, Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 125412, Moscow (Russian Federation); Asinovskii, E.I.; Markovets, V.V. [Institute of High Temperatures, Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13/19, 125412, Moscow (Russian Federation)

2005-10-31

332

Dusty Plasma Structures in Cryogenic DC Discharges  

NASA Astrophysics Data System (ADS)

Experimental investigations of dust structures in dc low-pressure glow discharge at temperatures of liquid nitrogen (T = 77 K) and liquid helium (T = 4.2 K) are presented. Super dense dust structures with dust density np ~ 108-109 cm-3 formed within striations of cryogenic discharges as well as boundary-free worm-like dust structure moved in discharge at 4.2 K were obtained.

Antipov, S. N.; Asinovskii, E. I.; Fortov, V. E.; Kirillin, A. V.; Markovets, V. V.; Petrov, O. F.

2005-10-01

333

Dusty Plasma Structures in Cryogenic DC Discharges  

Microsoft Academic Search

Experimental investigations of dust structures in dc low-pressure glow discharge at temperatures of liquid nitrogen (T = 77 K) and liquid helium (T = 4.2 K) are presented. Super dense dust structures with dust density np ~ 108-109 cm-3 formed within striations of cryogenic discharges as well as boundary-free worm-like dust structure moved in discharge at 4.2 K were obtained.

S. N. Antipov; E. I. Asinovskii; V. E. Fortov; A. V. Kirillin; V. V. Markovets; O. F. Petrov

2005-01-01

334

Value for controlling flow of cryogenic fluid  

DOEpatents

A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

Knapp, Philip A. (Moore, ID)

1996-01-01

335

Modifications developed to improve x-ray detection devices  

NASA Technical Reports Server (NTRS)

Improvements in the development of x-ray detection devices are described. Emphasis is placed on lowering the temperature in order to achieve better x-ray response. A simplified charge integrator schematic is presented along with supporting tables. By using cryogenic operating temperatures, these x-ray detectors may eventually surpass the performance of the best semiconductor detectors.

1994-01-01

336

Influence of Thermal Cycling on Cryogenic Thermometers  

E-print Network

The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

1999-01-01

337

Design Tool for Cryogenic Thermal Insulation Systems  

SciTech Connect

Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

Demko, Jonathan A [ORNL] [ORNL; Fesmire, J. E. [NASA Kennedy Space Center, Kennedy Space Center, Florida] [NASA Kennedy Space Center, Kennedy Space Center, Florida; Augustynowicz, S. D. [Sierra Lobo Inc., Kennedy Space Center, Florida] [Sierra Lobo Inc., Kennedy Space Center, Florida

2008-01-01

338

Cryogenic testing of the TPC superconducting solenoid  

NASA Astrophysics Data System (ADS)

This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin.

Green, M. A.; Smits, R. G.; Taylor, J. D.; Vanslyke, V.; Barrera, F.; Petersen, H.; Rago, C. E.; Rinta, R. I.; Talaska, D.; Watt, R. D.

1983-06-01

339

A Rapid Turnaround Cryogenic Detector Characterization System  

NASA Technical Reports Server (NTRS)

Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

2004-01-01

340

Realization and performance of cryogenic selection mechanisms  

NASA Astrophysics Data System (ADS)

Within Infra-Red large wavelength bandwidth instruments the use of mechanisms for selection of observation modes, filters, dispersing elements, pinholes or slits is inevitable. The cryogenic operating environment poses several challenges to these cryogenic mechanisms; like differential thermal shrinkage, physical property change of materials, limited use of lubrication, high feature density, limited space etc. MATISSE the mid-infrared interferometric spectrograph and imager for ESO's VLT interferometer (VLTI) at Paranal in Chile coherently combines the light from 4 telescopes. Within the Cold Optics Bench (COB) of MATISSE two concepts of selection mechanisms can be distinguished based on the same design principles: linear selection mechanisms (sliders) and rotating selection mechanisms (wheels).Both sliders and wheels are used at a temperature of 38 Kelvin. The selection mechanisms have to provide high accuracy and repeatability. The sliders/wheels have integrated tracks that run on small, accurately located, spring loaded precision bearings. Special indents are used for selection of the slider/wheel position. For maximum accuracy/repeatability the guiding/selection system is separated from the actuation in this case a cryogenic actuator inside the cryostat. The paper discusses the detailed design of the mechanisms and the final realization for the MATISSE COB. Limited lifetime and performance tests determine accuracy, warm and cold and the reliability/wear during life of the instrument. The test results and further improvements to the mechanisms are discussed.

Aitink-Kroes, Gabby; Bettonvil, Felix; Kragt, Jan; Elswijk, Eddy; Tromp, Niels

2014-07-01

341

Thermal Performance Testing Of Cryogenic Piping Systems  

NASA Technical Reports Server (NTRS)

Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

2003-01-01

342

Performance predictions of a solid cryogen cooler  

NASA Astrophysics Data System (ADS)

Two analytical models describing the transient response of a single-stage, open-cycle solid cryogen cooler are presented. The first model assumes solid-vapor equilibrium and neglects the vapor-phase thermodynamics inside the cryostat. The second model includes the effects of vapor-phase dynamics. The conservation laws of mass and energy, solid-vapor pressure-temperature equilibrium curve, and ideal gas law are used to establish the thermodynamic state of the cryogen. This cryostat model, combined with the gas-dynamics analysis of the vent line flow, gives the complete mathematical representation of the cryostat subsystem. The vent line geometry and the thermal environment to which the vent line is exposed, strongly contribute to the complex gas-dynamic characteristics of the vent flow in which thermal and frictional choking is often the rule rather than the exception. A backward method of solution is used to analyze the vent line gas flow where calculations march from the vent pipe exit to the cryostat tank in direction opposite to that of the vent gas flow. Results of this backward solution method, using one-dimensional compressible flow theory, correlate well with cryogenic expenditure test data, with flight data and the more detailed numerical solution of the Navier-Stokes equations in the low-mass flow rate regime.

Nguyen, H. T.; Sadunas, J. A.

1987-06-01

343

The acoustic effect of cryogenically treating trumpets  

NASA Astrophysics Data System (ADS)

The acoustic effect of cryogenically treating trumpets is investigated. Ten Vincent Bach Stradivarious B? trumpets are studied, half of which have been cryogenically treated. The trumpets were played by six players of varying proficiency, with sound samples being recorded directly to disk at a sampling rate of 44.1 kHz. Both the steady-state and initial transient portions of the audio samples are analyzed. When comparing the average power spectra of the treated trumpets to the untreated set, no repeatable, statistically independent differences are observed in the data. Differences observed in player-to-player and trumpet-to-trumpet comparisons overshadow any differences that may have been brought on due to the cryogenic treatment. Qualitatively, players established no clear preference between the treated and untreated trumpets regarding tone and playability, and could not differentiate between the two sets of instruments. All data was collected in a double blind fashion. The treatment itself is a three step process, involving an 8 hour linear cool down period, a 10 hour period of sustained exposure to -195°C (-300°F), and a 20-25 hour period of warming back to room temperature. [Work was completed with the support of Steinway & Sons Pianos and Selmer Musical Instruments.

Jones, Jesse; Rogers, Chris

2003-10-01

344

Cryogenic detectors for advanced neutron sources  

NASA Astrophysics Data System (ADS)

Next-generation pulsed neutron sources using high-intensity proton accelerators have made a great deal of progress in Japan (J-PARC project), United States (SNS project), and United Kingdom (ISIS second target station project), where the peak intensity of the neutrons flux is expected to be an order of magnitude higher than the existing highest flux steady reactor in the Institut Laue-Langevin. The high-intensity pulsed neutron source would open up a possibility to use a micron-sized neutron beam, thus the neutron detectors with a high spatial resolution of a few micrometers and a temporal resolution of a few microseconds would be required. The cryogenic detectors using superconducting tunnel junctions or microcalorimeter would be key instruments to explore new sciences in such applications. Moreover, neutron detectors operating at a cryogenic temperature have an important role in physics research using fast neutrons or ultra-cold neutrons. In such applications, the microcalorimeters and the solid-state semiconductor detectors with neutron converters ( 6Li, 10B, 3He) have been developed. The cryogenic neutron detectors and their applications are reviewed in this report.

Katagiri, Masaki

2006-04-01

345

SAFETY ASPECTS OF BIG CRYOGENIC SYSTEMS DESIGN  

SciTech Connect

Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

Chorowski, M.; Fydrych, J.; Polinski, J. [Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

2010-04-09

346

Safety Aspects of Big Cryogenic Systems Design  

NASA Astrophysics Data System (ADS)

Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

Chorowski, M.; Fydrych, J.; Poli?ski, J.

2010-04-01

347

Historical Summary of Cryogenic Activity Prior to 1950  

Microsoft Academic Search

Cryogenics is the science and technology dealing with temperatures less than about 120 K, although this historical summary\\u000a does not adhere to a strict 120 K definition. The techniques used to produce cryogenic temperatures differ in severalways\\u000a from those dealing with conventional refrigeration. In practice, these two areas often overlap and the boundary between conventional\\u000a and cryogenic refrigeration is often

R. Radebaugh

348

Performance of cryogenically treated tungsten carbide tools in milling operations  

Microsoft Academic Search

This paper describes a study on the effects of cryogenic treatment of tungsten carbide. Cryogenic treatment has been acknowledged\\u000a by some as a means of extending the tool life of many cutting tool materials, but little is known about the mechanism behind\\u000a it. Thus far, the only few detailed studies conducted pertain to the cryogenic treatment of tool steels. However,

A. Y. L. Yong; K. H. W. Seah; M. Rahman

2007-01-01

349

Rapid-Chill Cryogenic Coaxial Direct-Acting Solenoid Valve  

NASA Technical Reports Server (NTRS)

A commercially available cryogenic direct- acting solenoid valve has been modified to incorporate a rapid-chill feature. The net effect of the modifications is to divert some of the cryogenic liquid to the task of cooling the remainder of the cryogenic liquid that flows to the outlet. Among the modifications are the addition of several holes and a gallery into a valve-seat retainer and the addition of a narrow vent passage from the gallery to the atmosphere.

Richard, James; Castor, Jim; Sheller, Richard

2006-01-01

350

Safety Data Sheet Material Name: NITROGEN, CRYOGENIC LIQUID SDS ID: 00232352  

E-print Network

Safety Data Sheet Material Name: NITROGEN, CRYOGENIC LIQUID SDS ID: 00232352 sensation, suffocation, convulsions, coma #12;Safety Data Sheet Material Name: NITROGEN, CRYOGENIC LIQUID is swallowed, get medical attention. #12;Safety Data Sheet Material Name: NITROGEN, CRYOGENIC LIQUID SDS ID

Carpick, Robert W.

351

Neutron spin manipulation devices using YBCO films  

NASA Astrophysics Data System (ADS)

The Meissner effect in a thin-film superconductor can be used to create a sharp boundary between regions of different magnetic field and hence can be used as a component of neutron spin manipulation devices. We have developed two cryogenic neutron spin manipulation devices using single-crystal, high-Tc, YBCO films, which can be cooled without using liquid cryogens and eliminate small angle scattering associated with polycrystalline films. The devices are a spin flipper and a spin precession device both of which use 350-nm-thick YBCO films covered with gold on a 0.5 mm thick sapphire substrate. The spin flipper consists of one such film mounted on an oxygen-free copper frame and connected to a closed-cycle He refrigerator. The flipper is capable of working with a maximum neutron beam size of 42 x 42 mm2 and can be used with both vertical and horizontal guide fields. The spin precession device was constructed by mounting two of the YBCO films parallel to one another with an H-magnet between them. By changing the current through the H - magnet, the precession of the neutron polarisation between the films can be controlled. Tests at the Low Energy Neutron Source (LENS) show that this device is capable of generating controlled spin precession for a neutron beam up to 20 x 20 mm2 in cross section.

Wang, T.; Li, F.; Parnell, S. R.; Hamilton, W. A.; Kaiser, H.; Washington, A. L.; Baxter, D. V.; Pynn, R.

2014-07-01

352

Clogging of Joule-Thomson Devices in Liquid Hydrogen-Lunar Lander Descent Stage Operating Regime  

Microsoft Academic Search

Joule-Thomson (J-T) devices have been identified as critical components for future space exploration missions. The NASA Constellation Program lunar architecture considers LOX\\/LH2 propulsion for the lunar lander descent stage main engine an enabling technology, ensuring the cryogenic propellants are available at the correct conditions for engine operation. This cryogenic storage system may utilize a Thermodynamic Vent System (TVS) that includes

J. M. Jurns

2010-01-01

353

CLOGGING OF JOULE-THOMSON DEVICES IN LIQUID HYDROGEN—LUNAR LANDER DESCENT STAGE OPERATING REGIME  

Microsoft Academic Search

Joule-Thomson (J-T) devices have been identified as critical components for future space exploration missions. The NASA Constellation Program lunar architecture considers LOX\\/LH2 propulsion for the lunar lander descent stage main engine an enabling technology, ensuring the cryogenic propellants are available at the correct conditions for engine operation. This cryogenic storage system may utilize a Thermodynamic Vent System (TVS) that includes

J. M. Jurns

2010-01-01

354

Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle  

NASA Technical Reports Server (NTRS)

Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.

Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.

2003-01-01

355

Cryogenic optical tests of a lightweight HIP beryllium mirror  

NASA Technical Reports Server (NTRS)

Five interferometric tests were conducted at cryogenic temperatures on a lightweight, 50 cm diameter, hot isostatic pressed (HIP) beryllium mirror in the Ames Research Center (ARC) Cryogenic Optics Test Facility. The purpose of the tests was to determine the stability of the mirror's figure when cooled to cryogenic temperatures. Test temperatures ranged from room ambient to 8 K. One cycle to 8 K and five cycles to 80 K were performed. Optical and thermal test methods are described. Data is presented to show the amount of cryogenic distortion and hysteresis present in the mirror when measured with an earlier, Shack interferometer, and with a newly-acquired, phase-measuring interferometer.

Melugin, Ramsey K.; Miller, Jacob H.; Young, J. A.; Howard, Steven D.; Pryor, G. Mark

1989-01-01

356

Cryogenic operation of third-generation, 200GHz peak-fT, silicon-germanium heterojunction bipolar transistors  

Microsoft Academic Search

We present a comprehensive investigation of the cryogenic performance of third-generation silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technology. Measurements of the current-voltage (dc), small-signal ac, and broad-band noise characteristics of a 200-GHz SiGe HBT were made at 85 K, 120 K, 150 K, 200 K, and 300 K. These devices show excellent behavior down to 85 K, maintaining reasonable dc

Bhaskar Banerjee; Sunitha Venkataraman; Yuan Lu; Qingqing Liang; Chang-Ho Lee; Sebastien Nuttinck; Dekhyuon Heo; Y.-J. E. Chen; J. D. Cressler; J. Laskar; G. Freeman; D. C. Ahlgren

2005-01-01

357

Cryogenic Test of a Coaxial Coupling Scheme for Fundamental and Higher Order Modes in Superconducting Cavities  

SciTech Connect

A coaxial coupling device located in the beam pipe of the TESLA type superconducting cavities provides for better propagation of Higher Order Modes (HOMs) and their strong damping in appropriate HOM couplers. Additionally, it also provides efficient coupling for fundamental mode RF power into the superconducting cavity. The whole coupling device can be designed as a detachable system. If appropriately dimensioned, the magnetic field can be minimized to a negligible level at the flange position. This scheme, presented previously*, provides for several advantages: strong HOM damping, flangeable solution, exchangeability of the HOM damping device on a cavity, less complexity of the superconducting cavity, possible cost advantages. This contribution will describe the results of the first cryogenic test.

J.K. Sekutowicz, P. Kneisel

2009-05-01

358

Development and implementation of the TPX structural and cryogenic design criteria  

SciTech Connect

The Tokamak Physics Experiment (TPX) is a superconducting tokamak utilizing both Nb{sub 3}Sn and NbTi superconducting magnets and will feature a low-activation titanium alloy vacuum vessel and carbon-carbon composite divertors. Due to the unique nature of the component designs, materials, and environment, the TPX project felt it necessary to develop a design criteria (code) which will specifically address the structural and cryogenic design aspects of such a device. The developed code is intended to serve all components of the device; namely, the TF and PF magnets, vacuum vessel, first wall and divertor, cryostat, diagnostics, heating devices, shielding, and all associated structural elements. The structural portion is based largely on that developed for the Burning Plasma Experiment (BPX), which was modeled after the CIT Vacuum Vessel Structural Design Criteria and ASME Boiler and Pressure Vessel (B & PV) Code. The cryogenic criteria is largely modeled after that proposed in the ITER CDA. This paper summarizes the TPX Criteria document.

Zatz, I.; Heitzenroeder, P. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Schultz, J.H. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

1993-11-01

359

Cryogenic probe station for use in automated microwave and noise figure measurements  

NASA Technical Reports Server (NTRS)

A cryogenic measurement system capable of performing on-wafer RF testing of semiconductor devices and circuits has been developed. This 'CryoProbe Station' can wafer-probe devices and circuits at cryogenic temperatures, thus eliminating the need for wire bonds. The system operates under vacuum created by a sorption pump. It uses an open cycle cooling system that can be cooled with either liquid nitrogen or liquid helium. Presently, it can reach temperatures, as low as 80 K and 37 K for each of the coolants, respectively. The temperature can be raised using a heater and it is stabilized to within 0.2 K by use of a temperature controller. The CryoProbe Station features a 1 by 2 inch stage that can hold large circuits and calibration standards simultaneously. The system is used with a Hewlett Packard 8510C Automatic Network Analyzer (ANA) to obtain S-parameter data over the frequency range 0.045-26.5 GHz. S-parameter data on HEMT (high electron mobility transistors) devices has been obtained with this station. With the use of DEEMBED software from NIST, detailed transmission line studies have been performed. Although the CryoProbe Station is designed for frequencies up to 26.5 GHz, useful transmission line data has been obtained for frequencies as high as 40 GHz. The CryoProbe station has also been used with the ATN noise figure measurement system to perform automatic, temperature dependent noise figure measurements.

Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul G.; Ebihara, Ben T.; Romanofsky, Robert R.

1994-01-01

360

The formation of natural cryogenic brines  

NASA Astrophysics Data System (ADS)

The source of salts in the Ca-chloridic, hypersaline brines (up to 190 g Cl L -1) occurring in crystalline basement rocks in the Canadian, Fennoscandian and Bohemian Shields and their evolution have been investigated and reported. The Cl-Br-Na relationship indicates that these waters have been concentrated from seawater, by freezing during glacial times. The Na/Cl ratio (0.25 to 0.35) in the more saline fluids is compatible with cooling down to -30°C, where the most saline waters have been concentrated by a factor of 25 to 30 relative to the parent seawater. The brines formed from seawater within cryogenic troughs, along the subarctic continental margins, around ice sheets. The depressions within which the brines formed are the cryogenic analogues of the classic, evaporitic lagoon. One million years suffice to saturate with brine a 2000km-radius by 1km-depth rock volume at an H 2O removal rate of only 2.8 mm/yr. Density-induced brine migration on a continental scale takes place via fissures below the ice. Our calculations, that were performed on a hypothetical ice sheet with dimensions compatible with the Laurentide ice sheet, demonstrate that during 1m.y., a 60m thick cryogenic sediment section could have formed. However, the precipitated minerals (mirabilite and hydrohalite) are repeatedly dispersed by the advance and retreat of the ice sheet, dissolved by melt water-seawater mixtures, and eroded during postglacial uplift, leaving almost no trace in the geological record. The cryogenic brines formed intermittently during and between glacial periods. The repeating advance and retreat of the ice sheets exerted a major control on the direction and intensity of brine flow. The cryogenic concentration of seawater and the migration of brine towards the center of the glaciostatic depression occurred mainly during the build up of the ice sheet, while reversal of the water flow from the center of the cryogenic basin outwards happened upon deglaciation. The flow of the waters in the subsurface was, inevitably, accompanied by significant dilution with melt water from the ice sheets. Using a "granitic" U concentration of 4 ppm and a (Ca-Mg mass balance based) rock/water ratio anywhere between 3.4 and 6.8 kg L -1, a few hundred thousand years of brine-rock interaction are sufficient for the growth of 129I in the most saline Canadian Shield brine to its present concentration (3.4×10 8 atoms 129I L -1). Hence, both the formation of the saline fluids and their emplacement in their present sites occurred most likely within the Pleistocene. The young age calculated for cryogenic brines in crystalline shields and the dynamic water flow therein should raise concern about the planning and construction of high-grade nuclear waste repositories in such rocks, which are already under way.

Starinsky, Abraham; Katz, Amitai

2003-04-01

361

New cryogenic environment for beamline ID22 at the European Synchrotron Radiation Facility  

SciTech Connect

A compact minicryostat has been well adapted on the hard x-ray microprobe ID22 of the European Synchrotron Radiation Facility. For variable low-temperature investigations, its special technical design provides precise scanning microscopy and allows easy access for multiple detection modes. Based on x-ray excited optical luminescence technique on the micrometer scale, details of the equipment, its temperature calibration, and typical results are described. Data collections from InAs quantum heterostructures support the excellent thermal performance of the novel cryogenic device.

Martinez-Criado, G.; Steinmann, R.; Alen, B.; Labrador, A.; Fuster, D.; Ripalda, J. M.; Homs, A.; Laboure, S.; Susini, J. [Experiments Division, European Synchrotron Radiation Facility, 38043-Grenoble (France); Microelectronics Institute Madrid CNM-CSIC, 28760-Tres Cantos (Spain); Laoratori de Llum de Sincrotro, BM16, European Synchrotron Radiation Facility, 38043-Grenoble (France); Microelectronics Institute Madrid CNM-CSIC, 28760-Tres Cantos (Spain); Experiments Division, European Synchrotron Radiation Facility, 38043-Grenoble (France)

2007-02-15

362

Cavity optomechanics with Si3N4 membranes at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically rigid Fabry-Perot cavity. The extremely high products of quality factor and frequency of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of \\bar {n} < 10 , starting at a bath temperature of 5 K. We show that even at cold temperatures thermally occupied mechanical modes of the cavity elements can be a limitation, and we discuss methods to reduce these effects sufficiently for achieving ground state cooling. This promising new platform should have versatile uses for hybrid devices and searches for radiation pressure shot noise.

Purdy, T. P.; Peterson, R. W.; Yu, P.-L.; Regal, C. A.

2012-11-01

363

Cavity optomechanics with Si3N4 membranes at cryogenic temperatures  

E-print Network

We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically-rigid Fabry-Perot cavity. The extremely high quality-factor frequency products of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of less than 10, starting at a bath temperature of 5 kelvin. We show that even at cold temperatures thermally-occupied mechanical modes of the cavity elements can be a limitation, and we discuss methods to reduce these effects sufficiently to achieve ground state cooling. This promising new platform should have versatile uses for hybrid devices and searches for radiation pressure shot noise.

T. P. Purdy; R. W. Peterson; P. -L. Yu; C. A. Regal

2012-08-31

364

Cavity optomechanics with Si3N4 membranes at cryogenic temperatures  

E-print Network

We describe a cryogenic cavity-optomechanical system that combines Si3N4 membranes with a mechanically-rigid Fabry-Perot cavity. The extremely high quality-factor frequency products of the membranes allow us to cool a MHz mechanical mode to a phonon occupation of less than 10, starting at a bath temperature of 5 kelvin. We show that even at cold temperatures thermally-occupied mechanical modes of the cavity elements can be a limitation, and we discuss methods to reduce these effects sufficiently to achieve ground state cooling. This promising new platform should have versatile uses for hybrid devices and searches for radiation pressure shot noise.

Purdy, T P; Yu, P -L; Regal, C A

2012-01-01

365

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOEpatents

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

1992-01-01

366

Large Cryogenic Infrastructure for LHC Superconducting Magnet and Cryogenic Component Tests: Layout, Commissioning and Operational Experience  

SciTech Connect

The largest cryogenic test facility at CERN, located at Zone 18, is used to validate and to test all main components working at cryogenic temperature in the LHC (Large Hadron Collider) before final installation in the machine tunnel. In total about 1300 main dipoles, 400 main quadrupoles, 5 RF-modules, eight 1.8 K refrigeration units will be tested in the coming years.The test facility has been improved and upgraded over the last few years and the first 18 kW refrigerator for the LHC machine has been added to boost the cryogenic capacity for the area via a 25,000 liter liquid helium dewar. The existing 6 kW refrigerator, used for the LHC Test String experiments, will also be employed to commission LHC cryogenic components.We report on the design and layout of the test facility as well as the commissioning and the first 10,000 hours operational experience of the test facility and the 18 kW LHC refrigerator.

Calzas, C.; Chanat, D.; Knoops, S.; Sanmarti, M.; Serio, L. [Accelerator Technology Division, CERN, 1211 Geneva 23 (Switzerland)

2004-06-23

367

The cryogenic system for ITER CC superconducting conductor test facility  

NASA Astrophysics Data System (ADS)

This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.

Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin

2011-01-01

368

Ground-Based Investigations with the Cryogenic Hydrogen Maser  

NASA Technical Reports Server (NTRS)

The room temperature hydrogen maser is an active atomic oscillator used as a high-frequency-stability local oscillator for radio astronomy, metrology, and spacecraft navigation, and in tests of fundamental physics. The cryogenic hydrogen maser (CHM) operates at 0.5 K, employing superfluid helium-coated walls to store the masing hydrogen atoms. We are investigating whether the CHM may provide better frequency stability than the room temperature hydrogen maser: one to three orders of magnitude improvement may be possible because of greatly reduced thermal noise and larger signal power. Exceptional frequency stability will be required for spacecraft tracking in future deep-space missions, for space-based tests of relativity and gravitation, and for local (i.e., flywheel) oscillators used with absolute frequency standards such as laser-cooled atomic fountains and linear ion traps. These new devices are passive high-resolution frequency discriminators. Alone, they cannot function as superior atomic clocks; their effective operation depends on being integrated with an active local oscillator with excellent short term stability - such as that possible with the CHM.

Walsworth, Ronald L.; Mattison, Edward; Vessot, Robert F. C.

2001-01-01

369

The development of a cryogenic over-pressure pump  

NASA Astrophysics Data System (ADS)

A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL).

Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Garcia, J.; Lathrop, A.; Ruiz, F.

2014-01-01

370

The development of a cryogenic over-pressure pump  

SciTech Connect

A cryogenic over-pressure pump (OPP) was tested in the prototype telescope liquid nitrogen (LN2) cooling system for the Dark Energy Survey (DES) Project. This OPP consists of a process cylinder (PC), gas generator, and solenoid operated valves (SOVs). It is a positive displacement pump that provided intermittent liquid nitrogen (LN2) flow to an array of charge couple devices (CCDs) for the prototype Dark Energy Camera (DECam). In theory, a heater submerged in liquid would generate the drive gas in a closed loop cooling system. The drive gas would be injected into the PC to displace that liquid volume. However, due to limitations of the prototype closed loop nitrogen system (CCD cooling system) for DECam, a quasiclosed-loop nitrogen system was created. During the test of the OPP, the CCD array was cooled to its designed set point temperature of 173K. It was maintained at that temperature via electrical heaters. The performance of the OPP was captured in pressure, temperature, and flow rate in the CCD LN2 cooling system at Fermi National Accelerator Laboratory (FNAL)

Alvarez, M.; Cease, H.; Flaugher, B.; Flores, R.; Lathrop, A. [Fermi National Accelerator Laboratory, Batavia, IL, 60510 (United States); Garcia, J. [Illinois Institute of Technology, Chicago, IL, 60616 A (United States); Ruiz, F. [Illinois Institute of Technology, Chicago, IL, 60616 (United States)

2014-01-29

371

Use of Capillaries for Macromolecular Crystallization in a Cryogenic Dewar  

NASA Technical Reports Server (NTRS)

The enhanced gaseous nitrogen (EGN) dewar is a cryogenic dry shipper with a sealed cylinder inserted inside along with a temperature monitoring device, and is intended for macromolecular crystallization experiments on the International Space Station. Within the dewar, each crystallization experiment is contained as a solution within a plastic capillary tube. The standard procedure for loading samples in these tubes has involved rapid freezing of the precipitant and biomolecular solution, e.g., protein, directly in liquid nitrogen; this method, however, often resulted in uncontrolled formation of air voids, These air pockets, or bubbles, can lead to irreproducible crystallization results. A novel protocol has been developed to prevent formation of bubbles, and this has been tested in the laboratory as well as aboard the International Space Station during a 42-day long mission of July/August 2001. The gain or loss of mass from solutions within the plastic capillaries revealed that mass transport occurred among separated tubes, and that this mass transport was dependent upon the hygroscopic character of the solution contained in any given tube. The surface area of the plastic capillary tube also related to the observed mass transport. Furthermore, the decreased mass of solutions of-protein correlated to observed formation of protein crystals.

Ciszak, Ewa; Hammons, Aaron S.; Hong, Young Soo

2002-01-01

372

Use of Capillaries for Macromolecular Crystallization in a Cryogenic Dewar  

NASA Technical Reports Server (NTRS)

The Enhanced Gaseous Nitrogen (EGN) Dewar is a cryogenic dry shipper with a sealed cylinder inserted inside along with a temperature-monitoring device, and is intended for macromolecular crystallization experiments on the International Space Station. Within the Dewar, each crystallization experiment is contained as a solution within a plastic capillary. The standard procedure for loading samples in these tubes has involved rapid freezing of the precipitant and biomolecule solution directly in liquid nitrogen; this method, however, often results in uncontrolled formation of air voids. These air pockets, or bubbles, then can lead to irreproducible crystallization results. A novel protocol has been developed to prevent formation of bubbles, and this has been tested in the laboratory as well as aboard the International Space Station during a 42-day long mission of July/August of 2001. Furthermore, gain or loss of mass from solutions within the capillaries revealed that mass transport amongst separated tubes occurred, and that this mass transport was determined by the hygroscopic character of a solution contained in any given tube. The sample volume and the surface area of the plastic capillary tube also related to the observed mass transport.

Ciszak, Ewa; Hammons, Aaron S.; Hong, Young Soo; Curreri, Peter A. (Technical Monitor)

2001-01-01

373

Radiation requirements and testing of cryogenic thermometers for the ILC  

Microsoft Academic Search

Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15

T. Barnett; Yu. P. Filippov; N. V. Mokhov; N. Nakao; A. L. Klebaner; S. A. Korenev; J. C. Theilacker; J. Trenikhina; K. Vaziri

2007-01-01

374

Zero Gravity Cryogenic Vent System Concepts for Upper Stages  

Microsoft Academic Search

The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid\\/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical

Alain Ravex; Robin Flachbart; Barney Holt

1999-01-01

375

A Testbed for Implementing Prognostic Methodologies on Cryogenic Propellant Loading  

E-print Network

A Testbed for Implementing Prognostic Methodologies on Cryogenic Propellant Loading Systems Chetan-level activities more optimal, efficient, and cost-effective. In particular, in cryo- genic propellant loading and other health management technologies [1]. A cryogenic propellant loading testbed has been developed

Daigle, Matthew

376

TESLA Report 2001-37 THE TESLA CRYOGENIC DISTRIBUTION SYSTEM  

E-print Network

with a quadrupole and dipole steering coils. The paper describes the cryogenic distribution system necessaryTESLA Report 2001-37 THE TESLA CRYOGENIC DISTRIBUTION SYSTEM S. Wolff, H. Lierl, B. Petersen, DESY Electron Laser (FEL) with wave lengths down to 0.1 nm. The accelerating structures consist of 1.3 GHz

377

TT2A Mercury Jet Experiment The Cryogenic  

E-print Network

beam pulses, this would reduce the cycle time and give a very simple cryogenic system #12; "SPECIFICATION" of the cryogenic cycle is: 1. Initial fill of the magnet cryostat slowly over many hours -12 hours 2. Operation of the magnet on the following cycle: · When the magnet is at ~80 K, empty

McDonald, Kirk

378

Thermography to Inspect Insulation of Large Cryogenic Tanks  

NASA Technical Reports Server (NTRS)

Thermography has been used in the past to monitor active, large, cryogenic storage tanks. This approach proposes to use thermography to monitor new or refurbished tanks, prior to filling with cryogenic liquid, to look for insulation voids. Thermography may provide significant cost and schedule savings if voids can be detected early before a tank is returned to service.

Arens, Ellen; Youngquist, Robert

2011-01-01

379

Prediction of cryogenic heat pipe performance. Final report  

Microsoft Academic Search

Investigations into the performance of cryogenic heat pipes have been in progress at the Georgia Institute of Technology for several years. In continuation of these investigations the goal of this study has been to gain a better understanding of the transient response of cryogenic heat pipes and heat pipe systems. A method for predicting behavior of heat pipes during startup

1977-01-01

380

Cryogenic line insulation made from prefabricated polyurethane shells  

NASA Technical Reports Server (NTRS)

Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.

Lerma, G.

1975-01-01

381

Welding consumable development for a cryogenic (4 K) application  

Microsoft Academic Search

This paper summarizes the development and qualification of an appropriate welding consumable for a demanding cryogenic magnet application. It begins with a review of the research conducted on cryogenic fracture toughness of wrought and welded austenitic stainless steels. This research shows that certain elements of the composition have a powerful effect upon the steel's fracture toughness at 4 K. In

S. F. Kane; A. L. Farland; T. A. Siewert; C. N. McCowan

1999-01-01

382

Two cryogenic mechanisms for Earth based infrared astronomy  

Microsoft Academic Search

The Infrared Multi-Object Spectrograph (IRMOS) is a ground based, low budget, principle investigator class, cryogenic instrument for IR astronomy. The instrument envelope and optomechanical designs were defined prior to beginning mechanism detailed designs, so serious volumetric constraints were encountered during the advanced design phase. This fact and the high precision requirements, room temperature and cryogenic operation, and budgetary constraints led

J. P. Schepis; M. W. McClendon; M. M. Webb; S. W. Zewari; J. E. Hylan; M. P. Barthelmy; J. MacKenty

2003-01-01

383

Novel design of an all-cryogenic RF pound circuit  

NASA Technical Reports Server (NTRS)

We report on the design, construction and test of a new all-cryogenic RF Pound circuit used to stabilize a 100 MHz VCXO. Here, all active and passive RF components used to accomplish the phase modulation and detect a PM to AM conversion have been installed into the cryogenic environment.

Basu, Ronni; Wang, Rabi T.; Dick, G. John

2005-01-01

384

Contracting/expanding self-sealing cryogenic tube seals  

NASA Technical Reports Server (NTRS)

Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, and adaptable to a wide variety of cryogenic applications.

Jia, Lin X. (Inventor)

1997-01-01

385

Reusable High-Temperature/Cryogenic Foam-Insulation System  

NASA Technical Reports Server (NTRS)

Flightweight insulation withstands wide temperture cycling. Reusable insulation system for cryogenic containment vessels withstands repeated exposures to thermal environments that span ranges from cryogenic-fluid temperature {-425oF (-254oC)} to maximum use temperature of containment-tank material {+400oF (+204oC)}. System designed for use with high-speed flight vehicles.

Davis, Randall C.; Taylor, Allan H.; Jackson, L. Robert; Mcauliffe, Patrick

1987-01-01

386

Equipment and Methods for Cryogenic Thermal Insulation Testing  

Microsoft Academic Search

The study and evaluation of cryogenic thermal insulation materials and systems is a technology focus area of the Cryogenics Testbed at NASA Kennedy Space Center. The liquid nitrogen evaporation method is used between boundary temperatures of about 300 kelvin (K) and 77 K to make accurate measurements of the heat transfer rates and apparent thermal conductivity values (k-values) through different

J. E. Fesmire; S. D. Augustynowicz; K. W. Heckle; B. E. Scholtens

2004-01-01

387

Cryogenic fluid management technology requirements for the Space Transfer Vehicle  

NASA Technical Reports Server (NTRS)

An in-house study was performed to design a cryogenic Space Transfer Vehicle (STV) for the late 1990s that can evolve with the demanding mission requirements of the manned exploration initiatives. An assessment of cryogenic fluid management technology issues associated with the STV was performed to identify technology gaps and propose advanced development activities.

Cramer, John M.; Brown, Norman S.

1989-01-01

388

Materials for cold neutron sources: Cryogenic and irradiation effects  

Microsoft Academic Search

Materials for the construction of cold neutron sources must satisfy a range of demands. The cryogenic temperature and irradiation create a severe environment. Candidate materials are identified and existing cold sources are briefly surveyed to determine which materials may be used. Aluminum- and magnesium-based alloys are the preferred materials. Existing data for the effects of cryogenic temperature and near-ambient irradiation

1990-01-01

389

Contracting/expanding self-sealing cryogenic tube seals  

NASA Technical Reports Server (NTRS)

Contracting/expanding self-sealing cryogenic tube seals are disclosed which use the different properties of thermal contraction and expansion of selected dissimilar materials in accord with certain design criteria to yield self-tightening seals via sloped-surface sealing. The seals of the subject invention are reusable, simple to assemble, adaptable to a wide variety of cryogenic applications.

Jia, Lin X. (Inventor)

1997-01-01

390

Using Composite Materials in a Cryogenic Pump  

NASA Technical Reports Server (NTRS)

Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

2008-01-01

391

Cryogenic Scan Mechanism for Fourier Transform Spectrometer  

NASA Technical Reports Server (NTRS)

A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

Brasunas, John C.; Francis, John L.

2011-01-01

392

Simple Spreadsheet Thermal Models for Cryogenic Applications  

NASA Technical Reports Server (NTRS)

Self consistent circuit analog thermal models that can be run in commercial spreadsheet programs on personal computers have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. these models have been used to analyze the SIRTF Telescope Test Facility (STTF). The facility has been brought on line for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison between the models' predictions and actual performance of this facility will be presented.

Nash, Alfred

1995-01-01

393

CESAR: Cryogenic Electronics for Space Applications  

NASA Astrophysics Data System (ADS)

Ultra-low temperature sensors provide unprecedented performances in X-ray and far infrared astronomy by taking advantage of physical properties of matter close to absolute zero. CESAR is an FP7 funded project started in December 2010, that gathers six European laboratories around the development of high performances cryogenic electronics. The goal of the project is to provide far-IR, X-ray and magnetic sensors with signal-processing capabilities at the heart of the detectors. We present the major steps that constitute the CESAR work, and the main results achieved so far.

Revéret, V.; de la Broïse, X.; Fermon, C.; Pannetier-Lecoeur, M.; Pigot, C.; Rodriguez, L.; Sauvageot, J.-L.; Jin, Y.; Marnieros, S.; Bouchier, D.; Putzeys, J.; Long, Y.; Kiss, C.; Kiraly, S.; Barbera, M.; Lo Cicero, U.; Brown, P.; Carr, C.; Whiteside, B.

2014-08-01

394

New black paint for cryogenic infrared applications  

NASA Technical Reports Server (NTRS)

A black paint has been developed and tested for cryogenic applications involving wavelengths beyond 10 microns. The paint has been used extensively for liquid helium cooled applications in a variety of instruments operating between 10 and 120 microns. The material is applied by brush over a spray or brush applied primer coat. A final covering is applied by either brush or spray. The composition and preparation of the paint are described, as are data about its outgassing properties. Infrared reflection and scattering data obtained by other groups which compare this material to other commercially available surface preparations are presented.

Houck, J. R.

1983-01-01

395

Canceling Torque Caused By Boiloff Of Cryogen  

NASA Technical Reports Server (NTRS)

Proposed technique for cancellation of small torques caused by venting of cryogens from tanks in spacecraft adaptable to use in making small corrections in orientations of terrestrial scientific instruments. Torque eliminated by directing exhaust gas through "T" vent. To cancel remaining small torque, that side of "T" from which exhaust produces smaller thrust heated just enough to equalize opposing thrusts. Concept useful in situations in which conventional electromagnetic actuators not suitable because of constraints related to temperature, radiation, or vibration and equipment required to be robust, simple, reliable, light in weight, and without moving parts.

Bhandari, Pradeep

1993-01-01

396

Two phase pumping of cryogenic propellants  

NASA Technical Reports Server (NTRS)

Two-phase cryogenic propellant pumping techniques developed during the past 5 years are discussed. During this period the theory of two-phase pumping of hydrogen was developed into an operational technique that can result in significant benefits to space vehicle propulsion systems. Using two-phase pumping techniques, zero LH2 tank net positive suction head (NPSH) was demonstrated on turbopump and rocket engine firings, and limited experimental results show that two-phase pumping of liquid oxygen is feasible. Design techniques were developed for improving the two-phase pumping capability of inducers.

Stinson, H. P.; Gross, L. A.

1972-01-01

397

Pressure transducer and system for cryogenic environments  

NASA Technical Reports Server (NTRS)

A silicon pressure die is bonded to a borosilicate substrate above the pneumatic port. A Wheatstone bridge circuit is formed on the silicon pressure die and has bridge elements of silicon doped with boron to a deposit density level of approximately 1 x 10(exp 19)-10(exp 21) boron/cc. A current source is provided to excite the Wheatstone bridge circuit. In addition, a temperature sensor is provided to provide temperature readings. An array may be formed of the resulting pressure transducers. This unique solution of materials permits operation of a pressure transducer in cryogenic environments.

Chapman, John J. (inventor)

1992-01-01

398

Deep Space Network, Cryogenic HEMT LNAs  

NASA Technical Reports Server (NTRS)

Exploration of the Solar System with automated spacecraft that are more than ten astronomical units (1 AU = 149,597,870.691 km) from earth requires very large antennae employing extremely sensitive receivers. A key figure of merit in the specification of the spacecraft-to-earth telecommunications link is the ratio of the antenna gain to operatio nal noise temperature (G/Top) of the system. The Deep Space Network (DSN) receivers are cryogenic, low-noise amplifiers (LNAs) which addres s the need to maintain Top as low as technology permits. Historicall y, the extra-ordinarily sensitive receive systems operated by the DSN have required ctyogenically cooled, ruby masers, operating at a physi cal temperature near the boiling point of helium, as the LNA. Althoug h masers continue to be used today, they are hand crafted at JPL and expensive to manufacture and maintain. Recent advances in the developm ent of indium phosphide (InP) based high electron mobility transistor s (HEMTs) combined with cryogenic cooling near the boiling point of h ydrogen have made this alternate technology comparable with and a fraction of the cost of maser technology. InP HEMT LNA modules are demons trating noise temperatures less than ten times the quantum noise limi t (10hf/k) from 1 to 100 GHz. To date, the lowest noise LNA modules developed for the DSN have demonstrated noise temperatures of 3.5 K and 8.5 K at 8.5 K at 32 GHz, respectively. Front-end receiver packages employing these modules have demonstrated operating system noise temperatures of 17 K at 8.4 GHz (on a 70m antenna at zenith) and 39 K at 3 2 GHz (on a 34m antenna at zenith). The development and demonstration of cryogenic, InP HEMT based front-end amplifiers for the DSN requir es accurate component and module characterization, and modeling from 1 to 100 GHz at physical temperatures down to 12 K. The characterizati on and modeling begins with the HEMT chip, proceeds to the multi-stag e HEMT LNA module, and culminates with the complete front-end cryogenic receiver package for the antenna. This presentation will provide a n overview of this development process. Examples will be shown for de vices, LNA modules, front-end receiver packages, antennae employing these packages and the improvements to the down-link capacity.

Bautista, J. Javier

2006-01-01

399

Radiation Requirements and Testing of Cryogenic Thermometers for the Ilc  

NASA Astrophysics Data System (ADS)

Large quantity of cryogenic temperature sensors will be used for operation of the International Linear Collider (ILC). Most of them will be subject to high radiation doses during the accelerator lifetime. Understanding of particle energy spectra, accumulated radiation dose in thermometers and its impact on performance are vital in establishing technical specification of cryogenic thermometry for the ILC. Realistic MARS15 computer simulations were performed to understand the ILC radiation environment. Simulation results were used to establish radiation dose requirements for commercially available cryogenic thermometers. Two types of thermometers, Cernox® and TVO, were calibrated prior to irradiation using different technique. The sensors were subjected then to up to 200 kGy electron beam irradiation with kinetic energy of 5 MeV, a representative of the situation at the ILC operation. A post-irradiation behavior of the sensors was studied. The paper describes the MARS15 model, simulation results, cryogenic test set-up, irradiation tests, and cryogenic test results.

Barnett, T.; Filippov, Yu. P.; Filippova, E. Yu.; Mokhov, N. V.; Nakao, N.; Klebaner, A. L.; Korenev, S. A.; Theilacker, J. C.; Trenikhina, J.; Vaziri, K.

2008-03-01

400

Cryogenic Fluid Management Technology for Moon and Mars Missions  

NASA Technical Reports Server (NTRS)

In support of the U.S. Space Exploration Policy, focused cryogenic fluid management technology efforts are underway within the National Aeronautics and Space Administration. Under the auspices of the Exploration Technology Development Program, cryogenic fluid management technology efforts are being conducted by the Cryogenic Fluid Management Project. Cryogenic Fluid Management Project objectives are to develop storage, transfer, and handling technologies for cryogens to support high performance demands of lunar, and ultimately, Mars missions in the application areas of propulsion, surface systems, and Earth-based ground operations. The targeted use of cryogens and cryogenic technologies for these application areas is anticipated to significantly reduce propellant launch mass and required on-orbit margins, to reduce and even eliminate storage tank boil-off losses for long term missions, to economize ground pad storage and transfer operations, and to expand operational and architectural operations at destination. This paper organizes Cryogenic Fluid Management Project technology efforts according to Exploration Architecture target areas, and discusses the scope of trade studies, analytical modeling, and test efforts presently underway, as well as future plans, to address those target areas. The target areas are: liquid methane/liquid oxygen for propelling the Altair Lander Ascent Stage, liquid hydrogen/liquid oxygen for propelling the Altair Lander Descent Stage and Ares V Earth Departure Stage, liquefaction, zero boil-off, and propellant scavenging for Lunar Surface Systems, cold helium and zero boil-off technologies for Earth-Based Ground Operations, and architecture definition studies for long term storage and on-orbit transfer and pressurization of LH2, cryogenic Mars landing and ascent vehicles, and cryogenic production via in situ resource utilization on Mars.

Doherty, Michael P.; Gaby, Joseph D.; Salerno, Louis J.; Sutherlin, Steven G.

2010-01-01

401

Daydreaming Devices  

E-print Network

Daydreaming Devices is a project on aspects of daydream and the design of convertible furniture within the context of art. This thesis addresses the concepts and the design of two daydreaming devices developed during my ...

Da Ponte, Ana Sofia Lopes

2008-01-01

402

A transition detection study using a cryogenic hot film system in the Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

A transition detection study was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) using a specialized hot film system designed specifically for use in cryogenic wind tunnels. The quantitative transition location data obtained at near cryogenic conditions, 360 deg R (200K) represents the first definitive transition Reynolds numbers obtained in a cryogenic wind tunnel. The model was tested at both adiabatic and nonadiabatic wall conditions with a wall-to-total temperature ratio as low as 0.47. The test results indicated an improved technique for hot-film installation and a modified data acquisition system would allow the on-line determination of the location of boundary layer transition in cryogenic wind tunnels, such as the U.S. National Transonic Facility.

Johnson, C. B.; Carraway, D. L.; Stainback, P. C.; Fancher, M. F.

1987-01-01

403

Cryogenic Propellant Depot Experiments, Demonstrations and Applications  

NASA Technical Reports Server (NTRS)

Cryogenic Propellant Depots have been assessed over many years in terms of architectures, system configuration trades, related technologies, economic assessments, etc., to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. These activities have identified architectures and concepts that produce, preposition and store propellants in space for exploration and commercial space activities. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. The Boeing Company supported the NASA, Marshall Space Flight Center (MSFC) by conducting Architecture Definitions and Systems Studies. The primary objectives were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space demonstration requirements. This presentation briefly summarizes potential ground and flight experiments and demonstrations as well as discusses various commercial and exploration applications of Cryogenic Propellant Depots.

Howell, Joe T.; Fikes, John C.; Henley, Mark

2007-01-01

404

The cryogenic gas stopping cell of SHIPTRAP  

NASA Astrophysics Data System (ADS)

The overall efficiency of the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt, employed for high-precision mass measurements of exotic nuclei in the mass region above fermium, is presently mostly limited by the stopping and extraction of fusion-evaporation products in the SHIPTRAP gas cell. To overcome this limitation a second-generation gas cell with increased stopping volume was designed. In addition, its operation at cryogenic temperatures leads to a higher gas density at a given pressure and an improved cleanliness of the helium buffer gas. Here, the results of experiments with a 219Rn recoil ion source are presented. An extraction efficiency of 74(3)% was obtained, a significant increase compared to the extraction efficiency of 30% of the present gas stopping cell operated at room temperature. The optimization of electric fields and other operating parameters at room as well as cryogenic temperatures is described in detail. Furthermore, the extraction time of 219Rn ions was determined for several operating parameters.

Droese, C.; Eliseev, S.; Blaum, K.; Block, M.; Herfurth, F.; Laatiaoui, M.; Lautenschläger, F.; Minaya Ramirez, E.; Schweikhard, L.; Simon, V. V.; Thirolf, P. G.

2014-11-01

405

Cryogen free cryostat for neutron scattering experiments  

NASA Astrophysics Data System (ADS)

Most very low temperature (below 1K) experiments at advanced neutron facilities are based on dilution and 3He refrigerator inserts used with Orange cryostats, or similar systems. However recent increases in the cost of liquid helium caused by global helium supply problems, has raised significant concern about the affordability of such cryostats. Here we present the design and test results of a cryogen free top-loading cryostat with a standard KelvinoxVT® dilution refrigerator insert which provides sample environment for neutron scattering experiments in the temperature range 35 mK - 300 K. The dilution refrigerator insert operates in a continuous regime. The cooling time of the insert is similar to one operated in the Orange cryostat. The main performance criteria such as base temperature, cooling power, and circulation rate are compatible with the technical specification of a standard dilution refrigerator. In fact the system offers operating parameters very similar to those of an Orange cryostat, but without the complication of cryogens. The first scientific results obtained in ultra-low temperature neutron scattering experiment with this system are also going to be discussed.

Kirichek, O.; Down, R. B. E.; Manuel, P.; Keeping, J.; Bowden, Z. A.

2014-12-01

406

Power control electronics for cryogenic instrumentation  

NASA Technical Reports Server (NTRS)

In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.

Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.

1995-01-01

407

Cryogenic current-in-plane tunneling apparatus.  

PubMed

We have designed and fabricated a cryogenic variable-temperature current-in-plane tunneling apparatus to measure the magnetoresistive properties of unpatterned magnetic tunnel junction wafers as a function of temperature. The wafer is mounted on the cold finger of a liquid helium continuous flow cryostat. The temperature can be continuously varied between 7 and 330 K. We describe the design and fabrication of the micromachined silicon probe head that comprises a comb of 20 measuring and 4 leveling probes. The measuring probes are typically 0.7 microm wide and 1.2 microm thick, with lengths of 10, 7, and 4 microm, and a pitch that varies from 1.5 to 30 microm. The leveling probes are used in conjunction with a tilt stage to adjust the parallelism between the comb and the sample wafer during the approach of the probe head. The probe head is mounted on a nonmagnetic x-y stage, which can access a 22x22 mm(2) area with a repeatability of approximately 1 microm. The first measurements taken at room and cryogenic temperatures are shown. PMID:19123574

Weiss, Nicolas; Drechsler, Ute; Despont, Michel; Parkin, Stuart S P

2008-12-01

408

Development of a cryogenic heat pipe  

SciTech Connect

Heat pipe operating characteristics can be used to advantage in cryogenic systems. Diode operation of the heat pipe, the ability to conduct heat in one direction only, is useful in protecting the heat load if the heat sink temperature rises above the load temperature. Because of this, the heat pipe can be made to act as a thermal switch. A screened-wick, inverted-artery, cryogenic heat pipe was designed, fabricated, and tested. The tests were first conducted with hydrogen and then with oxygen as the working fluid. Heat pipe performance limits were measured as a function of operating temperature, and startup from both the supercritical and the frozen state was demonstrated. The heat pipe was designed to operate as a thermal diode, and transient tests were used to determine the turndown ratio. The heat pipe test results were correlated with the Los Alamos heat pipe computer code and good agreement was obtained between the predicted and measured performance. The heat pipe was developed for spacecraft sensor cooling applications. Test results show significant performance advantages over solid conductors.

Prenger, F.C.; Stewart, W.F.; Runyan, J.E.

1993-08-01

409

Test techniques for cryogenic wind tunnels  

NASA Technical Reports Server (NTRS)

Some of the testing techniques developed for transonic cryogenic tunnels are presented. Techniques are emphasized which required special development or were unique because of the opportunities offered by cryogenic operation. Measuring the static aerodynamic coefficients normally used to determine component efficiency is discussed. The first topic is testing of two dimensional airfoils at transonic Mach numbers and flight values of Reynolds number. Three dimensional tests of complete configurations and sidewall mounted wings are also described. Since flight Reynolds numbers are of interest, free transition must be allowed. A discussion is given of wind tunnel and model construction effects on transition location. Time dependent phenomena, fluid mechanics, and measurement techniques are examined. The time dependent, or unsteady, aerodynamic test techniques described include testing for flutter, buffet, and oscillating airfoil characteristics. In describing non-intrusive laser techniques, discussions are given regarding optical access, seeding, forward scatter lasers, two-spot lasers, and laser holography. Methods of detecting transition and separation are reported and a new type of skin friction balance is described.

Lawing, Pierce L.

1989-01-01

410

Thermal Design of a Collapsible Cryogenic Vessel  

NASA Technical Reports Server (NTRS)

Strategic planning for human exploration missions to Mars has conclusively identified in-situ resource utilization (ISRU) as an enabling technology. Most mission scenarios include an ISRU plant to produce propellants for ascent from Mars as well as the production of backup reserves of water, oxygen, and process gases. Current mission scenarios call for an ISRU plant to be deployed and then produce and store the required propellants and life support reserves before the arrival of the first human mission. Reliable cryogenic propellant liquefaction and storage technologies for extended period missions are especially critical. This report examines the cryogenic storage problem for liquid oxygen produced by an ISRU plant for a human mission scenario. The analysis examines various hardware configurations including insulation types, packaging techniques, and required cryocoolers to minimize the initial launch mass to low Earth orbit. Results of the analyses indicate that high vacuum insulation systems requiring vacuum pressures below one millitorr will be required to minimize the 'initial launch mass into low Earth orbit even though the temperature on the surface of Mars is much lower than Earth.

Hegab, Hisham E.

2001-01-01

411

Viscous Energy Dissipation in Frozen Cryogens  

NASA Astrophysics Data System (ADS)

ITER is an international research and development project with the goal of demonstrating the feasibility of fusion power. The fuel for the ITER plasma is injected in the form of frozen deuterium pellets; the current injector design includes a batch extruder, cooled by liquid helium. A more advanced fuel system will produce deuterium pellets continuously using a twin-screw extruder, cooled by a cryocooler. One of the critical design parameters for the advanced system is the friction associated with the shearing planes of the frozen deuterium in the extruder; the friction determines the required screw torque as well as the cryocooler heat load. An experiment has been designed to measure the energy dissipation associated with shearing frozen deuterium. Deuterium gas is cooled to its freezing point in the gap between a stationary outer canister and a rotating inner cylinder. The dissipation is measured mechanically and through calorimetric means. The experiment has also been used to measure dissipation in other cryogens, such as neon, as a function of rotational velocity and temperature. This paper describes the design and construction of the experiment and presents measurements over a range of cryogens and test conditions.

Meitner, S. J.; Pfotenhauer, J. M.; Andraschko, M. R.

2008-03-01

412

Aerogel Beads as Cryogenic Thermal Insulation System  

NASA Technical Reports Server (NTRS)

An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

2001-01-01

413

European low-noise MMIC technologies for cryogenic millimetre wave radio astronomical applications  

NASA Astrophysics Data System (ADS)

The Low Noise technology has a paramount relevance on radiotelescopes and radiometers performances. Its influence on sensitivity and temporal stability has a deep impact on obtainable scientific results. As well known, front end active part of scientific instruments are cryocooled in order to drastically reduce the intrinsic thermal noise generated by its electronic parts and consequently increase the sensitivity. In this paper we will describe the obtained results by an Italian Space Agency funded activity. The aim is to validate European MMIC Low Noise technologies and designs for cryogenic environments in the range of millimetre wave. As active device, HEMT (High Electron Mobility Transistor) are considered the best device for high frequency and low noise cryo applications. But not all the semiconductor foundry process are suitable for applications in such environment. Two European Foundries has been selected and two different HEMT based Low Noise Amplifiers have been designed and produced. The main goal of this activity is identify an European technology basement for space and ground based low noise cryogenic applications. Designs, layout, architectures, foundry processes and results will be compared.

Cremonini, Andrea; Mariotti, Sergio; Valenziano, Luca

2012-09-01

414

CRYOGENICS AND ITS APPLICATION WITH REFERENCE TO SPICE GRINDING: A REVIEW  

Microsoft Academic Search

Cryogenics’ is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, manufacturing industry, sports and musical instruments, biological science and agriculture etc. Cryogenic freezing finds pivotal application in food i.e. spices and condiments. Although there is a wide range of cryogens to produce the desired

S. Balasubramanian; Manoj Kumar Gupta; K. K. Singh

2011-01-01

415

Cryogenics and its Application with Reference to Spice Grinding: A Review  

Microsoft Academic Search

Cryogenics is the study of very low temperature and its application on different materials including biological products. Cryogenics has numerous applications in space science, electronics, automobiles, the manufacturing industry, sports and musical instruments, biological science and agriculture, etc. Cryogenic freezing finds pivotal application in food, that is, spices and condiments. Although there is a wide range of cryogens to produce

S. Balasubramanian; Manoj Kumar Gupta; K. K. Singh

2012-01-01

416

Study and design of cryogenic propellant acquisition systems. Volume 2: Supporting experimental program  

NASA Technical Reports Server (NTRS)

Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.

Burge, G. W.; Blackmon, J. B.

1973-01-01

417

Adhesive Bonding Characterization of Composite Joints for Cryogenic Usage  

NASA Technical Reports Server (NTRS)

The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future reusable launch vehicles need to minimize the gross liftoff weight (GLOW). This weight reduction is possible due to the large reduction in weight that composite materials can provide over current aluminum technology. In addition to composite technology, adhesively bonded joints potentially have several benefits over mechanically fastened joints, such as weight savings and cryogenic fluid containment. Adhesively bonded joints may be used in several areas of these cryogenic tanks, such as in lobe-to-lobe joints (in a multi-lobe concept), skirt-to-tank joint, strut-to-tank joint, and for attaching stringers and ring frames. The bonds, and the tanks themselves, must be able to withstand liquid cryogenic fuel temperatures that they contain. However, the use of adhesively bonded composite joints at liquid oxygen and hydrogen temperatures is largely unknown and must be characterized. Lockheed Martin Space Systems Company, Michoud Operations performed coupon-level tests to determine effects of material selection, cure process parameters, substrate surface preparation, and other factors on the strength of these composite joints at cryogenic temperatures. This led to the selection of a material and process that would be suitable for a cryogenic tank. KEY WORDS: Composites, Adhesive Bonding, Cryogenics

Graf, Neil A.; Schieleit, Gregory F.; Biggs, Robert

2000-01-01

418

Comparison of cryogenic W band low noise amplifier based on different III-V HEMT foundry process and technologies  

NASA Astrophysics Data System (ADS)

We present the results of a development activity for cryogenic Low Noise Amplifiers based on HEMT technology for ground based and space-borne application. We have developed and realized two LNA design in W band, based on m-HEMT technology. MMIC chips have been manufactured by European laboratories and companies and assembled in test modules by our team. We compare performances with other technologies and manufacturers. LNA RF properties (noise figures, S-parameters) have been measured at room and cryogenic temperature and test results are reported in this paper. Performance are compared with those of state-of-the-art devices, as available in the literature. Strengths and improvements of this project are also discussed.

Valenziano, L.; Zannoni, M.; Mariotti, S.; Cremonini, A.; De Rosa, A.; Banfi, S.; Baó, A.; Gervasi, M.; Limiti, E.; Passerini, A.; Schiavone, F.

2014-07-01

419

MgB2 cylindrical superconducting shielding for cryogenic measurement applications: a case study on DC current transformers  

NASA Astrophysics Data System (ADS)

A method for designing cylindrical hollow superconducting shields for cryogenic measurement devices operating in background fields of 1 T is proposed. The shield design is based on MgB2 composite, manufactured by the reactive Mg liquid infiltration process [1]. The MgB2 composite allows low-cost shields with good mechanical resistance to be realized easily. The geometrical design is benchmarked by the experimental characterization at 4.2 K. A design case study for the shield of a cryogenic DC current transformer is reported. Design results show a shielding efficiency of 70% for both the axial and radial components, with prospective measurement accuracy up to 10 ppm on 100 kA.

Arpaia, P.; Ballarino, A.; Giunchi, G.; Montenero, G.

2014-04-01

420

Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope  

NASA Astrophysics Data System (ADS)

KAGRA is a project to construct a cryogenic interferometric gravitational wave detector in Japan. Its mirrors and the lower parts of the suspension systems will be cooled to 20 K in order to reduce thermal noise, one of the fundamental noise sources. One of the key features of KAGRA's cooling system is that it will keep the mirrors cooled without introducing vibration. This paper describes the current status of the design, manufacture and testing of the KAGRA cooling system.

Sakakibara, Yusuke; Akutsu, Tomotada; Chen, Dan; Khalaidovski, Aleksandr; Kimura, Nobuhiro; Koike, Shigeaki; Kume, Tatsuya; Kuroda, Kazuaki; Suzuki, Toshikazu; Tokoku, Chihiro; Yamamoto, Kazuhiro

2014-11-01

421

Cryogenic grinding: an efficient method for recycling scrap rubber  

SciTech Connect

Cryogenic grinding represents an opportunity for expanding recycling capabilities to a broad range of compounds. Many materials that can be reduced to a powder by conventional coarse grinding can be reduced more efficiently by using a super-cold agent such as liquid nitrogen at -320/sup 0/F to embrittle plastic or rubber polymers before grinding. In addition, cryogenic grinding makes possible the size reduction of many materials that cannot be ground by conventional ambient grinding methods. Some experiences of cryogenic grinding in practice at United Tire and Rubber company, Limited, headquartered in Rexdale, Ontario, are noted. A schematic of such a system is shown.

Not Available

1980-06-01

422

Spacecraft-borne long life cryogenic refrigeration: Status and trends  

NASA Technical Reports Server (NTRS)

The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.

Johnson, A. L.

1983-01-01

423

Cryogenic system operating experience review for fusion applications  

SciTech Connect

This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

Cadwallader, L.C.

1992-01-01

424

Magnetomechanical damping in cryogenic TbDy  

NASA Technical Reports Server (NTRS)

Vibration damping in polycrystalline TbDy alloys was studied at cryogenic temperatures. The material was prepared by cold-rolling to induce crystallographic texture, and was then heat-treated to relieve internal stress. Mechanical hysteretic losses were measured at various strains, frequencies, and loading configurations at 77 K. Some textured TbDy materials demonstrated 22.6% energy dissipation in mechanical measurements at low frequency (0.01 Hz) and a mean logarithmic decrement of 0.23 at a higher frequency (25 kHz). Ultrasonic velocities of longitudinal and shear elastic waves were measured on single and polycrystalline TbDy; little variation in ultrasonic velocities was found evenfor samples with large variation in crystallographic texture and magnetomechanical properties.

Dooley, J.; Good, N.; White, C.; Leland, S.; Fultz, B.

2002-01-01

425

Characterization of feedback resistors for cryogenic applications  

NASA Technical Reports Server (NTRS)

Results are presented on the testing of feedback resistors selected for use in the transimpedance amplifiers (TIAs) in the Diffuse Infrared Background Experiment (DIRBE) to be flown on the NASA's Cosmic Background Explorer satellite planned for a launch in 1989. The resistors without encapsulation were found to be reliable as cryogenic circuit elements. Their resistance is sufficiently high (so that their Johnson noise does not dominate amplifier noise at the signal frequency), and they are sufficiently linear; no correction need to be made for signals up to 1.5 V, the 100,000 signal-to-noise level for the DIRBE, which covers most of the signals expected to be seen on the sky.

Lakew, B.; Moseley, S. H.; Silverberg, R. F.

1989-01-01

426

Basic cryogenics and materials. Phase 1  

NASA Technical Reports Server (NTRS)

The effects of cryogenic temperatures on the mechanical and physical properties of materials are summarized. Heat capacity and thermal conductivity are considered in the context of conservation of liquid nitrogen, thermal stability of the gas stream, and the response time for changes in operating temperature. Particular attention is given to the effects of differential expansion and failure due to thermal fatigue. Factors affecting safety are discussed, including hazards created due to the inadvertent production of liquid oxygen and the physiological effects of exposure to liquid and gaseous nitrogen, such as cold burns and asphyxiation. The preference for using f.c.c. metals at low temperatures is explained in terms of their superior toughness. The limitations on the use of ferritic steels is also considered. Nonmetallic materials are discussed, mainly in the context of their LOX compatibility and their use in the form of foams and fibers as insultants, seals, and fiber reinforced composites.

Wigley, D. A.

1985-01-01

427

Pressure Oscillation in RHIC Cryogenic System  

SciTech Connect

Horizontal beam vibration around 10 Hz in the Relativistic Heavy Ion Collider (RHIC) have been identified and the possible sources to cause this vibration have been investigated. To determine the helium pressure oscillations as a possible primary vibration source, helium pressure measurements were carried out in the five cryogenic transfer lines at two valve boxes and six lead ports at one triplet cryostat for both magnet rings. Additionally, cold masses inside one triplet cryostat have also been equipped with accelerometers to further investigate the phenomenon. This paper reports the helium pressure oscillations, including one at 10 Hz with peak-to-peak pressure of 7 kPa, which is close to the frequency of beam vibration.

Jia, L.X.; Montag, C.; Tallerico, T.; Hirzel, W.; Nicoletti, A. [Brookhaven National Laboratory, Upton, New York 11973 (United States)

2004-06-23

428

Performances of NIR VPHGs at cryogenic temperatures  

NASA Astrophysics Data System (ADS)

We summarize the performances measured at room temperature and in cryogenic conditions of a set of NIR Volume Phase Holographic Gratings (VPHGs) which can then be used in astronomical instrumentations. VPHGs are novel optical components which can replace standard transmission gratings. Instead of a surface modulation a diffraction index modulation printed in a volume of material generates the diffraction according to the required specifications. Results on transmission and wavefront deformation are presented and compared in the two temperature regimes. These results were achieved along the run of the Joint Research Action 6 of OPTICON FP6 programme whose participating institutions are Osservatorio Astronomico di Brera (INAF), Instituto de Astrofísica de Canarias, Centre Spatial de Liege, Politecnico di Milano and European Southern Observatory.

Insausti, M.; Garzón, F.; Rasilla, J. L.; Blanche, P.-A.; Lemaire, P.

2008-07-01

429

Investigations on Absorber Materials at Cryogenic Temperatures  

SciTech Connect

In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility?s (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variations from room temperature down to 2 K. Initial results are presented in this paper.

Frank Marhauser, Thomas Elliott, Robert Rimmer

2009-05-01

430

Innovative technology summary report: Cryogenic drilling  

SciTech Connect

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01

431

SQUID Multiplexers for Cryogenic Detector Arrays  

NASA Technical Reports Server (NTRS)

SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

2004-01-01

432

Cryogenic Fluid Film Bearing Tester Development Study  

NASA Technical Reports Server (NTRS)

Conceptual designs were developed for the determination of rotordynamic coefficients of cryogenic fluid film bearings. The designs encompassed the use of magnetic and conventional excitation sources as well as the use of magnetic bearings as support bearings. Test article configurations reviewed included overhung, floating housing, and fixed housing. Uncertainty and forced response analyses were performed to assess quality of data and suitability of each for testing a variety of fluid film bearing designs. Development cost and schedule estimates were developed for each design. Facility requirements were reviewed and compared with existing MSFC capability. The recommended configuration consisted of a fixed test article housing centrally located between two magnetic bearings. The magnetic bearings would also serve as the excitation source.

Scharrer, Joseph K. (editor); Murphy, Brian T.; Hawkins, Lawrence A.

1993-01-01

433

Cryogenic fluid film bearing tester development study  

NASA Astrophysics Data System (ADS)

Conceptual designs were developed for the determination of rotordynamic coefficients of cryogenic fluid film bearings. The designs encompassed the use of magnetic and conventional excitation sources as well as the use of magnetic bearings as support bearings. Test article configurations reviewed included overhung, floating housing, and fixed housing. Uncertainty and forced response analyses were performed to assess quality of data and suitability of each for testing a variety of fluid film bearing designs. Development cost and schedule estimates were developed for each design. Facility requirements were reviewed and compared with existing MSFC capability. The recommended configuration consisted of a fixed test article housing centrally located between two magnetic bearings. The magnetic bearings would also serve as the excitation source.

Scharrer, Joseph K.; Murphy, Brian T.; Hawkins, Lawrence A.

1993-06-01

434

Rotary bayonets for cryogenic and vacuum service  

SciTech Connect

Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year.

Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

1993-07-01

435

Cryogenic glass-filament-wound tank evaluation  

NASA Technical Reports Server (NTRS)

High-pressure glass-filament-wound fluid storage vessels with thin aluminum liners were designed, fabricated, and tested at ambient and cryogenic temperatures which demonstrated the feasibility of producing such vessels as well as high performance and light weight. Significant developments and advancements were made in solving problems associated with the thin metal liners in the tanks, including liner bonding to the overwrap and high strain magnification at the vessel polar bosses. The vessels had very high burst strengths, and failed in cyclic fatigue tests by local liner fracture and leakage without structural failure of the composite tank wall. The weight of the tanks was only 40 to 55% of comparable 2219-T87 aluminum and Inconel 718 tanks.

Morris, E. E.; Landes, R. E.

1971-01-01

436

Dissipative Cryogenic Filters with Zero DC Resistance  

SciTech Connect

The authors designed, implemented and tested cryogenic RF filters with zero DC resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in {radical}{omega}, as typical for skin depth based RF filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

Bluhm, Hendrik; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept

2008-04-22

437

Photolytic separation of isotopes in cryogenic solution  

DOEpatents

Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

Freund, Samuel M. (Santa Fe, NM); Maier, II, William B. (Los Alamos, NM); Holland, Redus F. (Los Alamos, NM); Beattie, Willard H. (Los Alamos, NM)

1985-01-01

438

Nuclear Cryogenic Propulsion Stage for Mars Exploration  

NASA Technical Reports Server (NTRS)

The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

2012-01-01

439

Linear cryogenic coolers for HOT infrared detectors  

NASA Astrophysics Data System (ADS)

In spite of a wide spreading the uncooled night vision technologies, the cooled systems are still known to be superior in terms of working ranges, resolution and ability to recognize/track fast moving objects in dynamic infrared scenes. Recent technological advances allowed development and fielding of high temperature infrared detectors working up to 200K while showing performances typical for their 77K predecessors. The direct benefits of using such detectors are the lowering of the optical, cooling and packaging constraints resulting in smaller and cost effective optics, electronics and mechanical cryocooler. The authors are formulating requirements and general vision of prospective ultra-compact, long life, lightweight, power efficient, acoustically and dynamically quiet linear cryogenic cooler towards forthcoming infrared imagers. In particular, the authors are revealing the outcomes of the feasibility study and discuss downscaling options.

Veprik, A.; Riabzev, S.; Avishay, N.; Oster, D.; Tuitto, A.

2012-06-01

440

Electromechanical actuation for cryogenic valve control  

NASA Technical Reports Server (NTRS)

The design and analysis of the electromechanical actuator (EMA) being developed for the NASA/Marshall Space Flight Center as part of the National Launch System (NLS) Propellant Control Effector Advanced Development Program (ADP) are addressed. The EMA design uses several proven technologies combined into a single modular package which includes single stage high ratio gear reduction, redundant electric motors mounted on a common drive shaft, redundant drive and control electronics, and digital technology for performing the closed loop position feedback, communication, and health monitoring functions. Results of tests aimed at evaluating both component characteristics and overall system performance demonstrated that the goal of low cost, reliable control in a cryogenic environment is feasible.

Lister, M. J.; Reichmuth, D. M.

1993-01-01

441

Centaur Standard Shroud (CSS) cryogenic unlatch tests  

NASA Technical Reports Server (NTRS)

Cryogenic tanking and partial jettison (unlatch) tests were performed on a full scale Centaur vehicle and Centaur Standard Shroud (CSS) to develop and qualify the CSS insulation system, the CSS and Centaur ground-hold purge systems, and the Centaur hydrogen tank flight vent system. Operation of the shroud/Centaur pyrotechnic systems, seals, and the shroud jettison springs, hinges, and other separation systems was demonstrated by a partial jettison of the shroud into catch nets. The Centaur tanks were filled with liquid hydrogen and liquid nitrogen. Prelaunch operations were performed, and data taken to establish system performances. Results from the initial tests showed a higher than expected heat transfer rate to the Centaur hydrogen tank. In addition, the release mechanism for the forward seal between the Centaur and the CSS did not function properly, and the seal was torn during jettison of the shroud.

1973-01-01

442

Nuclear Cryogenic Propulsion Stage Affordable Development Strategy  

NASA Technical Reports Server (NTRS)

The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.

Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.

2014-01-01

443

Cryogenic upper stage test bed engine  

NASA Technical Reports Server (NTRS)

A vehicle system with unique characteristics will be needed in connection with the extension of the Space Transportation System (STS) from Low Earth Orbit (LEO) to Geosynchronous Equatorial Orbit (GEO) and beyond. These characteristics are determined by NASA missions related to the deployment of large space structures, satellite servicing, and manned sorties to geosynchronous orbit. Advances in vehicle design and operation will be required along with significant advances in engine technologies. A versatile, well-instrumented test bed engine will be needed for the evaluation of the required technologies. Developments leading to the fabrication and assembly of the first high chamber pressure expander cycle test bed engine are discussed. The test bed engine, which is called Integrated Component Evaluator (ICE), is required for the development of an advanced, cryogenic, upperstage engine.

Pauckert, R.; Zachary, A.; Degaetano, E.; Sutton, R.

1985-01-01

444

Cryogenic Orbital Testbed (CRYOTE) development status  

NASA Astrophysics Data System (ADS)

High-performance space travel is enabled with propellants having a high specific impulse, and the highest specific impulse can be produced with hydrogen. The Cryogenic Orbital Testbed (CRYOTE) provides an in-space environment where the unique properties and fluid flow of hydrogen can be demonstrated in micro- or zero-gravity. With partnerships across industry and NASA, CRYOTE has developed a detailed concept of an in-flight core system (that can accommodate a variety of experiments). Development has included launch vehicle interface development for transfer of residual Liquid Hydrogen (LH2) from the launch vehicle to a development tank and an in-depth thermal analysis considering the orbital thermal environment and heat loads imparted on the thermal system. This paper will describe the non-proprietary development to date, outline lessons learned in the development, and detail the plan moving forward with the CRYOTE project.

Gravlee, M.; Kutter, B.; McLean, C.; Marquardt, J.

2012-04-01

445

Cavitation in liquid cryogens. 2: Hydrofoil  

NASA Technical Reports Server (NTRS)

Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.

Hord, J.

1973-01-01

446

A magnetically suspended linearly driven cryogenic refrigerator  

NASA Technical Reports Server (NTRS)

This paper described a novel Stirling cycle cryogenic refrigerator which was designed, fabricated and successfully tested at Philips Laboratories. The prominent features of the machine are an electro-magnetic bearing system, a pair of moving magnet linear motors, and clearance seals with a 25 mu m radial gap. The all-metal and ceramic construction eliminates long-term organic contamination of the helium working fluid. The axial positions of the piston and displacer are electronically controlled, permitting independent adjustment of the amplitude of each and their relative phase relationship during operation. A simple passive counterbalance reduces axial vibrations. The design of the refrigerator system components is discussed and a comparison is made between performance estimates and measured results.

Stolfi, F.; Goldowsky, M.; Ricciardelli, J.; Shapiro, P.

1983-01-01

447

Optical Testing of Retroreflectors for Cryogenic Applications  

NASA Technical Reports Server (NTRS)

A laser tracker (LT) is an important coordinate metrology tool that uses laser interferometry to determine precise distances to objects, points, or surfaces defined by an optical reference, such as a retroreflector. A retroreflector is a precision optic consisting of three orthogonal faces that returns an incident laser beam nearly exactly parallel to the incident beam. Commercial retroreflectors are designed for operation at room temperature and are specified by the divergence, or beam deviation, of the returning laser beam, usually a few arcseconds or less. When a retroreflector goes to extreme cold (.35 K), however, it could be anticipated that the precision alignment between the three faces and the surface figure of each face would be compromised, resulting in wavefront errors and beam divergence, degrading the accuracy of the LT position determination. Controlled tests must be done beforehand to determine survivability and these LT coordinate errors. Since conventional interferometer systems and laser trackers do not operate in vacuum or at cold temperatures, measurements must be done through a vacuum window, and care must be taken to ensure window-induced errors are negligible, or can be subtracted out. Retroreflector holders must be carefully designed to minimize thermally induced stresses. Changes in the path length and refractive index of the retroreflector have to be considered. Cryogenic vacuum testing was done on commercial solid glass retroreflectors for use on cryogenic metrology tasks. The capabilities to measure wavefront errors, measure beam deviations, and acquire laser tracker coordinate data were demonstrated. Measurable but relatively small increases in beam deviation were shown, and further tests are planned to make an accurate determination of coordinate errors.

Ohl, Raymond G.; Frey, Bradley J.; Stock, Joseph M.; McMann, Joseph C.; Zukowiski, Tmitri J.

2010-01-01

448

The DIII-D cryogenic system upgrade  

SciTech Connect

The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

1993-10-01

449

Bismuth alloy potting seals aluminum connector in cryogenic application  

NASA Technical Reports Server (NTRS)

Bismuth alloy potting seals feedthrough electrical connector for instrumentation within a pressurized vessel filled with cryogenic liquids. The seal combines the transformation of high-bismuth content alloys with the thermal contraction of an external aluminum tube.

Flower, J. F.; Stafford, R. L.

1966-01-01

450

Towards a cryogenic planar ion trap for Sr-88  

E-print Network

This thesis describes experiments with ion traps constructed with electrodes in a single two-dimensional plane, and ion traps operated in a cryogenic environment at 77K and 4K temperatures. These two technologies address ...

Bakr, Waseem (Waseem S.)

2006-01-01

451

Piezoelectric Sensor Evaluation for Structural Health Monitoring of Cryogenic Structures  

NASA Technical Reports Server (NTRS)

This viewgraph presentation provides an overview of Structural Health Monitoring (SHM), and profiles piezoelectric sensors useful for SHM of cryogenic structures. The presentation also profiles impedance tests and other SHM tests conducted at Marshall Space Flight Center (MSFC).

Lassiter, John; Engberg, Robert

2005-01-01

452

Bulk Charging of Dielectrics in Cryogenic Space Environments  

NASA Technical Reports Server (NTRS)

We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.

Minow, J. I.; Coffey, V. N.; Blackwell, W. C., Jr.; Parker, L. N.; Jun, I.; Garrett, H. B.

2007-01-01

453

Carbon fiber composites for cryogenic filament-wound vessels  

NASA Technical Reports Server (NTRS)

Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

Larsen, J. V.; Simon, R. A.

1972-01-01

454

Postflight Analysis of the Apollo 14 Cryogenic Oxygen System  

NASA Technical Reports Server (NTRS)

A postflight analysis of the Apollo 14 cryogenic oxygen system is presented. The subjects discussed are: (1) methods of analysis, (2) stratification and heat transfer, (3) flight analysis, (4) postflight analysis, and (5) determination of model parameters.

Rule, D. D.

1972-01-01

455

Behaviour of {sup 222}Rn at cryogenic temperatures  

SciTech Connect

The behaviour of radon in a cryogenic environment is still not well known. Therefore, measured radon emanation rates at room temperature cannot be translated directly to cryogenic conditions. In this work we present a table-top experiment that provides a direct way of determining the behaviour of {sup 222}Rn in cryogenic argon and helium at liquid argon temperature. We observe an increased emanation rate of {sup 222}Rn atoms to liquid argon compared to the rate observed to helium at room temperature. We also find that {sup 222}Rn atoms stick to cold metal surfaces when emanated to helium at liquid argon temperature but partly distribute in the liquid when emanated to cryogenic argon. Concluding, we give possible interpretations of the observations.

Lindemann, Sebastian; Simgen, Hardy [Max-Planck-Institut fuer Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany); Zuzel, Grzegorz [Jagellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland)

2011-04-27

456

Rigid open-cell polyurethane foam for cryogenic insulation  

NASA Technical Reports Server (NTRS)

Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields.

Faddoul, J. R.; Lindquist, C. R.; Niendorf, L. R.; Nies, G. E.; Perkins, P. J., Jr.

1971-01-01

457

Large-Scale Cryogen Systems and Test Facilities  

NASA Technical Reports Server (NTRS)

NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

2007-01-01

458

Direct-Drive, Cryogenic Target Implosions on OMEGA  

SciTech Connect

Direct-drive spherical implosions of cryogenic, D2-filled capsules are performed on the 60-beam OMEGA laser system. The targets are energy scaled from the base line ignition design developed for the National Ignition Facility.

Marshall, F.J.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Elasky, L.M.; Epstein, R.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Janezic, R.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Loucks, S.J.; Lund, L.D.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Radha, P.B.; Regan, S.P.; Sangster, T.C.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Skupsky, S.; Frenje, J.A.; Li, C.K.; Petrasso, R.D.; Seguin, F.H.

2005-04-12

459

Application of Doppler global velocimetry in cryogenic wind tunnels  

NASA Astrophysics Data System (ADS)

A specially designed Doppler global velocimetry system (DGV, planar Doppler velocimetry) was developed and installed in a high-speed cryogenic wind tunnel facility for use at free stream Mach numbers between 0.2 and 0.88, and pressures between 1.2 bar and 3.3 bar. Particle seeding was achieved by injecting a mixture of gaseous nitrogen and water vapor into the dry and cold tunnel flow, which then immediately formed a large amount of small ice crystals. Given the limited physical and optical access for this facility, DGV is considered the best choice for non-intrusive flow field measurements. A multiple branch fiber imaging bundle attached to a common DGV image receiving system simultaneously viewed a common area in the flow field from three different directions through the wind tunnel side walls. The complete imaging system and fiber-fed light sheet generators were installed inside the normally inaccessible pressure plenum surrounding the wind tunnel’s test section. The system control and frequency-stabilized laser system were placed outside of the pressure shell. With a field of view of 300×300 mm2, the DGV system acquired flow maps at a spatial resolution of 3×3 mm2 in the wake of simple vortex generators as well as in the wake of different wing-tip devices on a half-span aircraft model. Although problems mainly relating to light reflections and icing on the observation windows significantly impaired part of the measurements, the remotely controlled hardware operated reliably over the course of three months.

Willert, C.; Stockhausen, G.; Beversdorff, M.; Klinner, J.; Lempereur, C.; Barricau, P.; Quest, J.; Jansen, U.

2005-08-01

460

Comparison of Stress Relief Procedures for Cryogenic Aluminum Mirrors  

NASA Technical Reports Server (NTRS)

The Infrared Multi-Object Spectrograph (IRMOS) is a facility instrument for the Kitt Peak National Observatory Mayall Telescope (3.8 meter) and an engineering prototype for a potential design for the Next Generation Space Telescope/Multi-Object Spectrograph. IRMOS is a low-to mid-resolution (R = lambda/delta-lambda = 300-3800), near-IR (0.8-2.5 micron) spectrograph which produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arcmin field of view using a commercial MEMS multimirror array device. The instrument operating temperature is 80 K and the design is athermal --- the optical bench and mirrors are machined from aluminum 6061-T651. In spite of its baseline mechanical stress relief, aluminum 6061-T651 harbors some residual stress, which, unless relieved during fabrication, may relieve and distort mirror figure to unacceptable levels at the operating temperature. Other cryogenic instruments using aluminum mirrors for both ground-based and space IR astronomy have employed a variety of heat treatment formulae, with mixed results. We present the results of a test program designed to empirically determine the best stress relief procedure for the IRMOS mirrors. Identical test mirrors with spherical and flat optical prescriptions are processed with five different heat treatment formulae from the literature and compared to samples with out any additional processing. After figuring via diamond turning, the mirrors are tested for figure error and radius of curvature at room temperature and at 80 K for several thermal cycles. The heat treatment procedure for the mirrors that yielded the least and most repeatable change in figure error and radius is applied to the IRMOS mirror blanks. We correlate the results of our optical testing with heat treatment and metallographic data.

Ohl, Raymond G.; Barthelmy, Michael P.; Zewari, S. Wahid; Toland, Ronald; Mink, Ronald; Mentzell, J. Eric; Greenhouse, Matthew A.; McMann, Joseph C.; Hylan, Jason; Hagopian, John G.; Krebs, Carolyn (Technical Monitor)

2002-01-01

461

Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings  

NASA Technical Reports Server (NTRS)

This report describes a thermohydrodynamic analysis and computer programs for the prediction of the static and dynamic force response of fluid film bearings for cryogenic applications. The research performed addressed effectively the most important theoretical and practical issues related to the operation and performance of cryogenic fluid film bearings. Five computer codes have been licensed by the Texas A&M University to NASA centers and contractors and a total of 14 technical papers have been published.

San Andres, Luis

1996-01-01

462

Computing the Thermodynamic State of a Cryogenic Fluid  

NASA Technical Reports Server (NTRS)

The Cryogenic Tank Analysis Program (CTAP) predicts the time-varying thermodynamic state of a cryogenic fluid in a tank or a Dewar flask. CTAP is designed to be compatible with EASY5x, which is a commercial software package that can be used to simulate a variety of processes and equipment systems. The mathematical model implemented in CTAP is a first-order differential equation for the pressure as a function of time.

Willen, G. Scott; Hanna, Gregory J.; Anderson, Kevin R.

2005-01-01

463

Thermal acoustic oscillations, volume 2. [cryogenic fluid storage  

NASA Technical Reports Server (NTRS)

A number of thermal acoustic oscillation phenomena and their effects on cryogenic systems were studied. The conditions which cause or suppress oscillations, the frequency, amplitude and intensity of oscillations when they exist, and the heat loss they induce are discussed. Methods of numerical analysis utilizing the digital computer were developed for use in cryogenic systems design. In addition, an experimental verification program was conducted to study oscillation wave characteristics and boiloff rate. The data were then reduced and compared with the analytical predictions.

Spradley, L. W.; Sims, W. H.; Fan, C.

1975-01-01

464

Cryogenic Yb3+-Doped Solid-State Lasers  

Microsoft Academic Search

Cryogenically cooled solid-state lasers promise a revolution in power scalability while maintaining a good beam quality because of significant improvements in efficiency and thermo-optic properties. This is particular