Science.gov

Sample records for cryogenic fourier-transform ion

  1. First Signal on the Cryogenic Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Lin, Cheng; Mathur, Raman; Aizikov, Kostantin; O'Connor, Peter B.

    2009-01-01

    The construction and achievement of the first signal on a cryogenic Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR-MS) are reported here, demonstrating proof-of-concept of this new instrument design. Building the FTICR cell into the cold bore of a superconducting magnet provided advantages over conventional warm bore design. At 4.2 K, the vacuum system cryopumps itself, thus removing the requirement for a large bore to achieve the desired pumping speed for maintaining base pressure. Furthermore, because the bore diameter has been reduced, the amount of magnet wire needed to achieve high field and homogeneity was also reduced, greatly decreasing the cost/Tesla of the magnet. The current instrument implements an actively shielded 14-Tesla magnet of vertical design with an external matrix assisted laser desorption/ionization (MALDI) source. The first signal was obtained by detecting the laser desorbed/ionized (LDI) C60+• ions, with the magnet at 7 Tesla, unshimmed, and the preamplifier mounted outside of the vacuum chamber at room temperature. A subsequent experiment done with the magnet at 14 Tesla and properly shimmed produced a C60 spectrum showing ∼350,000 resolving power at m/z ∼720. Increased magnetic field strength improves many FTMS performance parameters simultaneously, particularly mass resolving power and accuracy. PMID:17931882

  2. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  3. Control Of Cryogenic Fourier Transform Spectrometer Scanning Mirrors

    NASA Astrophysics Data System (ADS)

    Tripathi, S. S.; Gowrinathan, S.

    1981-12-01

    The Perkin-Elmer Corporation has designed and built a cryogenically cooled Fourier transform spectrometer for spaceborne applications. In operation, the spectrometer requires mirrors moving at constant velocity in both forward and reverse directions. To maintain efficiency and accuracy, the time taken to reverse direction and the vibration induced due to this reversal must be kept within low limits. This paper deals with the control system design for maintaining a constant velocity during forward and reverse scans and for smooth direction reversals. The systems aspects of the problem are described, and time-domain techniques of modern control theory are applied for optimization of turn-around profile. The analysis leads to a suboptimal design easily implemented by using analog-type components. Test results of satisfactory performance are also included.

  4. External Second Gate-Fourier Transform Ion Mobility Spectrometry.

    SciTech Connect

    Tarver, Edward E., III

    2005-01-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and versatile techniques for the detection of trace levels of organic vapors. IMS is widely used for detecting contraband narcotics, explosives, toxic industrial compounds and chemical warfare agents. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention treaty verification as well as humanitarian de-mining efforts has mandated that equal importance be placed on the analysis time as well as the quality of the analytical data. (1) IMS is unrivaled when both speed of response and sensitivity has to be considered. (2) With conventional (signal averaging) IMS systems the number of available ions contributing to the measured signal to less than 1%. Furthermore, the signal averaging process incorporates scan-to-scan variations decreasing resolution. With external second gate Fourier Transform ion mobility spectrometry (FT-IMS), the entrance gate frequency is variable and can be altered in conjunction with other data acquisition parameters to increase the spectral resolution. The FT-IMS entrance gate operates with a 50% duty cycle and so affords a 7 to 10-fold increase in sensitivity. Recent data on high explosives are presented to demonstrate the parametric optimization in sensitivity and resolution of our system.

  5. Planetary infrared astronomy using a cryogenic postdisperser on Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Kunde, V. G.; Hanel, R. A.; Maguire, W. C.; Lamb, G. M.

    1986-01-01

    High resolution infrared spectra of planets from ground-based observatories were analyzed and instrumentation to improve sensitivity was developed. A cryogenic postdisperser (a narrow bandpass spectral filter) for use with Fourier transform spectrometers (FTS's) at facility observatories was constructed. This instrument has improved the sensitivity of FTS observations at 8 to 20 microns by about an order of magnitude. Spectra of Jupiter, Saturn and Comet Halley were obtained using the postdisperser with FTS facilities at the Kitt Peak 4-meter and McMath telescopes. Spectral resolution as high as 0.01/cm was achieved.

  6. Cryogenic Fourier transform spectrometer for infrared spectral calibrations from 4 to 20 micrometers

    NASA Astrophysics Data System (ADS)

    Woods, Solomon I.; Kaplan, Simon G.; Jung, Timothy M.; Carter, Adriaan C.; Datla, Raju U.

    2010-04-01

    We present initial performance data from a cryogenic Fourier transform spectrometer (Cryo-FTS) designed for lowbackground spectral infrared calibrations. The Cryo-FTS operates at a temperature of approximately 15 K and has been integrated into an infrared transfer radiometer containing a calibrated Si:As blocked impurity band (BIB) detector. Because of its low operating temperature, the spectrometer exhibits negligible thermal background signal and low drift. Data from tests of basic spectrometer function, such as modulation efficiency, scan jitter, spectral range, spectral resolution and sweep speed will be presented. We will also discuss calibration techniques and results pertinent to operation of the Cryo-FTS as part of a calibration instrument, including background, signal offset and gain, and spectral noise equivalent power. The spectrometer is presently limited to wavelengths below 25 micrometers but can be in principle extended to longer wavelengths by replacing its KBr beamsplitter with another beamsplitter engineered for use beyond 25 micrometers.

  7. Cryogenic magnetic bearing scanning mechanism design for the SPICA/SAFARI Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Hamelinck, Roger F. M. M.; Kruizinga, Bob; Gielesen, Wim L. M.; Braam, Ben C.; Nijenhuis, Jan R.; Loix, Nicolas; Luyckx, Stanislas; van Loon, Dennis; Kooijman, Peter Paul; Swinyard, Bruce M.

    2010-07-01

    TNO, together with its partners Micromega and SRON, have designed a cryogenic scanning mechanism for use in the SAFARI Fourier Transform Spectrometer (FTS) on board of the SPICA mission. The optics of the FTS scanning mechanism (FTSM) consists of two back-to-back cat's-eyes. The optics are mounted on a central "back-bone" tube which houses all the important mechatronic parts: the magnetic bearing linear guiding system, a magnetic linear motor serving as the OPD actuator, internal metrology with nanometer resolution, and a launch lock. A magnetic bearing is employed to enable a large scanning stroke in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, enabling sub-nanometer accuracy within a single stage with a stroke of -4 mm to +31.5 mm. Because the FTSM will be used at cryogenic temperatures of 4 Kelvin, the main structure and optics are all constructed from 6061 Aluminum. The overall outside dimensions of the FTSM are: 393 x 130 x 125 mm, and the mass is 2.2 kg.

  8. Ion collision cross section measurements in Fourier transform-based mass analyzers.

    PubMed

    Li, Dayu; Tang, Yang; Xu, Wei

    2016-06-01

    With the increasing demands of molecular structure analysis, several methods have been developed to measure ion collision cross sections within Fourier transform (FT) based mass analyzers. Particularly in the recent three years since 2012, the method of obtaining biomolecule collision cross sections was achieved in Fourier transform ion cyclotron resonance (FT-ICR) cells. Furthermore, similar methods have been realized or proposed for orbitraps and quadrupole ion traps. This technique adds a new ion structure analysis capability to FT-based mass analyzers. By providing complementary ion structure information, it could be used together with tandem mass spectrometry and ion mobility spectroscopy techniques. Although many questions and challenges remain, this technique potentially would greatly enhance the ion structure analysis capability of a mass spectrometer, and provide a new tool for chemists and biochemists. PMID:26788551

  9. A glow discharge ion source with fourier transform ion cyclotron resonance mass spectrometric detection.

    PubMed

    Barhick, C M; Eyler, J R

    1992-02-01

    A glow discharge (CD) ion source has been coupled to a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer using a four-element electrostatic lens to accelerate and focus ions generated external to the instrument's high magnetic field into its analyzer cell. Like other CD mass spectrometers, GD-FT-ICR can provide a quantitative measure of bulk analyte concentration with good precision and accuracy. Although detection limits currently attainable are several orders of magnitude higher than the commercially available magnetic sector-based instrument, CD-FT-ICR holds promise for ultrahigh resolving power elemental mass analysis. Several schemes are proposed to lower the detection limits of the technique while still providing high enough resolution to resolve isobaric interferences. PMID:24242880

  10. C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Smith, Donald F.; Robinson, Errol W.; Tolmachev, Aleksey V.; Heeren, Ronald M.; Pasa-Tolic, Ljiljana

    2011-12-15

    Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g. Au and Bi cluster and buckminsterfullerene (C60)) provide improved secondary ion yield and decreased fragmentation of surface species, thus accessibility to intact molecular ions. Despite developments in primary ion sources, development of mass spectrometers to fully exploit their advantages has been limited. Tandem mass spectrometry for identification of secondary ions is highly desirable, but implementation has proven to be difficult. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C60 primary ion source with the ultra-high mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100,000 (m/Δm50%) is demonstrated, with mass measurement accuracies below 3 parts-per-million. Imaging of mouse brain tissue at 40 μm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulae can be assigned to fragment ions.

  11. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  12. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  13. Ion Trap with Narrow Aperture Detection Electrodes for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nagornov, Konstantin O.; Kozhinov, Anton N.; Tsybin, Oleg Y.; Tsybin, Yury O.

    2015-05-01

    The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90° wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90° excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS—increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.

  14. Fourier transform C-13 NMR analysis of some free and potassium-ion complexed antibiotics.

    NASA Technical Reports Server (NTRS)

    Ohnishi, M.; Fedarko, M.-C.; Baldeschwieler, J. D.; Johnson, L. F.

    1972-01-01

    Fourier transforms of the noise-decoupled, natural abundance C-13 NMR free induction decays of the cyclic antibiotic valinomycin and its potassium-ion complex have been obtained at 25.2 MHz. Comparisons are made with C-13 NMR spectra taken at 22.6 MHz of the cyclic antibiotic nonactin and the synthetic polyether dicyclohexyl-18-crown-6 and their potassium complexes. The results obtained suggest that conformational rearrangements of the molecule as a whole can compete with direct interactions between carbons and the potassium ion in determining C-13 chemical shift differences between the free and complexed species.

  15. The Spontaneous Loss of Coherence Catastrophe in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Aizikov, Konstantin; Mathur, Raman; O’Connor, Peter B.

    2009-01-01

    The spontaneous loss of coherence catastrophe (SLCC) is a frequently observed, yet poorly studied, space-charge related effect in Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). This manuscript presents an application of the filter diagonalization method (FDM) in the analysis of this phenomenon. The temporal frequency behavior reproduced by frequency shift analysis using the FDM shows the complex nature of the SLCC, which can be explained by a combination of factors occurring concurrently, governed by electrostatics and ion packet trajectories inside the ICR cell. PMID:19013078

  16. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  17. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  18. High Throughput Proteomics Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Qian, Weijun; Camp, David G.; Smith, Richard D.

    2004-06-01

    The advent of high throughput proteomics technology for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of cellular machinery. Here, we review recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance (FTICR) mass spectrometry along with its potential application to high throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system-level.

  19. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  20. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations.

    PubMed

    Nikolaev, Eugene N; Kostyukevich, Yury I; Vladimirov, Gleb N

    2016-01-01

    Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer offers highest resolving power and mass accuracy among all types of mass spectrometers. Its unique analytical characteristics made FT ICR important tool for proteomics, metabolomics, petroleomics, and investigation of complex mixtures. Signal acquisition in FT ICR MS takes long time (up to minutes). During this time ion-ion interaction considerably affects ion motion and result in decreasing of the resolving power. Understanding of those effects required complicated theory and supercomputer simulations but culminated in the invention of the ion trap with dynamic harmonization which demonstrated the highest resolving power ever achieved. In this review we summarize latest achievements in theory and simulation of FT ICR mass spectrometers. PMID:24515872

  1. Vacuum Ultraviolet Photodissociation and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) Mass Spectrometry: Revisited.

    PubMed

    Shaw, Jared B; Robinson, Errol W; Paša-Tolić, Ljiljana

    2016-03-15

    We revisited the implementation of 193 nm ultraviolet photodissociation (UVPD) within the ion cyclotron resonance (ICR) cell of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer. UVPD performance characteristics were examined in the context of recent developments in the understanding of UVPD and in-cell tandem mass spectrometry. Efficient UVPD and photo-ECD of a model peptide and proteins within the ICR cell of a FT-ICR mass spectrometer are accomplished through appropriate modulation of laser pulse timing, relative to ion magnetron motion and the potential applied to an ion optical element upon which photons impinge. It is shown that UVPD yields efficient and extensive fragmentation, resulting in excellent sequence coverage for model peptide and protein cations. PMID:26882021

  2. Fourier Transform Mass Spectrometry

    PubMed Central

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  3. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    DOE PAGESBeta

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-19

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting inmore » nearly lossless transmission.« less

  4. Heterogeneously catalyzed hydrolysis of chlorine nitrate: Fourier-transform ion cyclotron resonance investigations of stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Schindler, Thomas; Berg, Christian; Niedner-Schatteburg, Gereon; Bondybey, Vladimir E.

    1996-03-01

    High resolution Fourier-transform ion cyclotron resonance (FT-ICR) mass spectroscopy is used to investigate reactions of large ionic water clusters H+(H2O)n and X-(H2O)n (n=1-100, X=O or OH). Reactions of the clusters with chlorine nitrate, important ``reservoir compound'' involved in the stratospheric ozone chemistry, are investigated to evaluate the importance of heterogeneously catalyzed reactions for ozone depletion. It is found that reactions of both cationic and anionic clusters result in effective hydrolysis of chlorine nitrate and return of the more active hypochlorous acid, HOCl into the gas phase. The chemistry of clusters is discussed, and its validity and relevance as a model for ``real life'' processes in the so-called polar stratospheric clouds (PSC's) is assessed.

  5. Focal-plane optimization for detector noise limited performance in cryogenic Fourier transform spectrometer /FTS/ sensors

    NASA Technical Reports Server (NTRS)

    Mcguirk, M.; Logan, L.

    1980-01-01

    A study was performed to determine the optimum focal plane configuration including optics, filters and detector-preamplifier selection. The configuration was optimized particularly with respect to minimizing the noise level, but fabrication considerations for a cryogenic environment were also taken into account. The noise terms from source, background, detector electronics and charged particle radiation were quantitatively evaluated. It appears that noise equivalent spectral radiance less than 10 to the -11th W/sq cm per sr per kayser can be achieved between 2.5 and 20 microns.

  6. Fourier Transform Mass Spectrometry.

    ERIC Educational Resources Information Center

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  7. Characterization of oligodeoxynucleotides by electron detachment dissociation fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Yang, Jiong; Mo, Jingjie; Adamson, Julie T; Håkansson, Kristina

    2005-03-15

    Electron detachment dissociation (EDD), recently introduced by Zubarev and co-workers for the dissociation of multiply charged biomolecular anions via a radical ion intermediate, has been shown to be analogous to electron capture dissociation (ECD) in several respects, including more random peptide fragmentation and retention of labile posttranslational modifications. We have previously demonstrated unique fragmentation behavior in ECD compared to vibrational excitation for oligodeoxynucleotide cations. However, that approach is limited by the poor sensitivity for oligonucleotide ionization in positive ion mode. Here, we show implementation of EDD on a commercial Fourier transform ion cyclotron resonance mass spectrometer utilizing two different configurations: a heated filament electron source and an indirectly heated hollow dispenser cathode electron source. The dispenser cathode configuration provides higher EDD efficiency and additional fragmentation channels for hexamer oligodeoxynucleotides. As in ECD, even-electron d/w ion series dominate the spectra, but we also detect numerous a/z (both even-electron and radical species), (a/z - B), c/x, (c/x - B), and (d/w - B) ions with minimal nucleobase loss from the precursor ions. In contrast to previous high-energy collision-activated dissociation (CAD) and ion trap CAD of radical oligonucleotide anions, we only observe minimum sugar cross-ring cleavage, possibly due to the short time scale of EDD, which limits secondary fragmentation. Thus, EDD provides fragmentation similar to ECD for oligodeoxynucleotides but at enhanced sensitivity. Finally, we show that noncovalent bonding in a DNA duplex can be preserved following EDD, illustrating another analogy with ECD. We believe the latter finding implies EDD has promise for characterization of nucleic acid structure and folding. PMID:15762599

  8. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    PubMed Central

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-01-01

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/\\documentclass[12pt]{minimal}\\begin{document}$\\sqrt{\\mbox{Hz}}$\\end{document}Hz when the transimpedance is about 85 dBΩ). The designed preamplifier has a bandwidth of ∼3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 MΩ when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect ∼110 charges in a single scan. PMID:22225232

  9. A gain and bandwidth enhanced transimpedance preamplifier for Fourier-transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Lin, Tzu-Yung; Green, Roger J.; O'Connor, Peter B.

    2011-12-15

    The nature of the ion signal from a 12-T Fourier-transform ion cyclotron resonance mass spectrometer and the electronic noise were studied to further understand the electronic detection limit. At minimal cost, a new transimpedance preamplifier was designed, computer simulated, built, and tested. The preamplifier design pushes the electronic signal-to-noise performance at room temperature to the limit, because of its enhanced tolerance of the capacitance of the detection device, lower intrinsic noise, and larger flat mid-band gain (input current noise spectral density of around 1 pA/{radical}(Hz) when the transimpedance is about 85 dB{Omega}). The designed preamplifier has a bandwidth of {approx}3 kHz to 10 MHz, which corresponds to the mass-to-charge ratio, m/z, of approximately 18 to 61 k at 12 T. The transimpedance and the bandwidth can be easily adjusted by changing the value of passive components. The feedback limitation of the circuit is discussed. With the maximum possible transimpedance of 5.3 M{Omega} when using an 0402 surface mount resistor, the preamplifier was estimated to be able to detect {approx}110 charges in a single scan.

  10. Towards analytically useful two-dimensional Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    van Agthoven, Maria A; Delsuc, Marc-André; Bodenhausen, Geoffrey; Rolando, Christian

    2013-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field. PMID:23076397

  11. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  12. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOEpatents

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  13. High-Throughput Metabolic Profiling of Soybean Leaves by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Yilmaz, Ali; Rudolph, Heather L; Hurst, Jerod J; Wood, Troy D

    2016-01-19

    As a relatively recent research field, plant metabolomics has gained increasing interest in the past few years and has been applied to answer biological questions through large-scale qualitative and quantitative analyses of the plant metabolome. The combination of sensitivity and selectivity offered by mass spectrometry (MS) for measurement of many metabolites in a single shot makes it an indispensable platform in metabolomics. In this regard, Fourier-transform ion cyclotron resonance (FTICR) has the unique advantage of delivering high mass resolving power and mass accuracy simultaneously, making it ideal for the study of complex mixtures such as plant extracts. Here we optimize soybean leaf extraction methods compatible with high-throughput reproducible MS-based metabolomics. In addition, matrix-assisted laser desorption ionization (MALDI) and direct LDI of soybean leaves are compared for metabolite profiling. The extraction method combined with electrospray (ESI)-FTICR is supported by the significant reduction of chlorophyll and its related metabolites as the growing season moves from midsummer to the autumn harvest day. To our knowledge for the first time, the use of ESI-FTICR MS and MALDI-FTICR MS is described in a complementary manner with the aim of metabolic profiling of plant leaves that have been collected at different time points during the growing season. PMID:26651857

  14. Electrically compensated Fourier transform ion cyclotron resonance cell for complex mixture mass analysis.

    PubMed

    Kaiser, Nathan K; Savory, Joshua J; McKenna, Amy M; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2011-09-01

    Complex natural organic mixtures such as petroleum require ultrahigh mass spectral resolution to separate and identify thousands of elemental compositions. Here, we incorporate a custom-built, voltage-compensated ICR cell for Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), based on a prior design by Tolmachev to produce optimal mass resolution. The compensated ICR cell installed in a custom-built 9.4 T FTICR mass spectrometer consists of seven cylindrical segments with axial proportions designed to generate a dc trapping potential that approaches an ideal three-dimensional axial quadrupolar potential. However, the empirically optimized compensation voltages do not correspond to the most quadrupolar trapping field. The compensation electrodes minimize variation in the reduced cyclotron frequency by balancing imperfections in the magnetic and electric field. The optimized voltages applied to compensation electrodes preserve ion cloud coherence for longer transient duration by approximately a factor of 2, enabling separation and identification of isobaric species (compounds with the same nominal mass but different exact mass) common in petroleum, such as C(3) vs SH(4) (separated by 3.4 mDa) and SH(3)(13)C vs (12)C(4) (separated by 1.1 mDa). The improved performance of the ICR cell provides more symmetric peak shape and better mass measurement accuracy. A positive ion atmospheric pressure photoionization (APPI) petroleum spectrum yields more than 26,000 assigned peaks, Fourier-limited resolving power of 800,000 at m/z 500 (6.6 s transient duration), and 124 part per billion root mean square (rms) error. The tunability of the compensation electrodes is critical for optimal performance. PMID:21838231

  15. Stored waveform inverse Fourier transform (SWIFT) ion excitation in trapped-ion mass spectometry: Theory and applications

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Marshall, Alan G.

    1996-12-01

    Stored waveform excitation produced by inverse Fourier transformation of a specified magnitude/phase excitation spectrum offers the most general and versatile means for broadband mass-selective excitation and ejection in Penning (FT-ICR) and Paul (quadrupole) ion trap mass spectrometry. Since the last comprehensive review of SWIFT excitation in 1987, the technique has been adopted, modified, and extended widely in both the ICR and quadrupole ion trap communities. Here, we review the principles, variations, algorithms, hardware implementation, and some applications of SWIFT for both ICR and quadrupole ion trap mass spectrometry. We show that the most desirable SWIFT waveform is that optimized to reduce both the time-domain SWIFT maximum amplitude and the amplitude near the start and end of the SWIFT waveform. We examine the "true" magnitude excitation spectrum, obtained by zero-filling and forward Fourier transforming the SWIFT time-domain waveform, in order to evaluate the trade-off between spectral magnitude uniformity and frequency (mass) selectivity. Apodization of the SWIFT waveform is optimally conducted by smoothing the excitation magnitude spectrum prior to generation of the SWIFT waveform by inverse FT. When (as for broadband ejection in a quadrupole ion trap) it is important that ions be excited near-simultaneously over a wide mass range, the phase spectrum (before inverse FT to generate the SWIFT waveform) may be overmodulated or randomly modulated ("filtered noise field"), with the recognition that very substantial non-uniformity in the "true" excitation magnitude spectrum will result.

  16. Surface-Induced Dissociation of Ions Produced by Matrix-Assisted Laser Desorption Ionization in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Laskin, Julia; Beck, Kenneth M.; Hache, John J.; Futrell, Jean H.

    2004-01-15

    Intermediate pressure matrix assisted laser ionization (MALDI) source was constructed and interfaced with a 6T Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially configured for surface-induced dissociation (SID) studies.

  17. Pulsed-gas glow discharge for ultrahigh mass resolution measurements with Fourier transform ion cyclotron resonance mass spectrometry

    SciTech Connect

    Watson, C.H.; Eyler, J.R.; Barshick, C.M.; Wronka, J.; Laukien, F.H.

    1996-02-01

    A new pulsed-gas glow discharge (GD) source has been developed for use with an external ion source Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. With pulsed argon gas introduction into the GD source, the gas load and pressure in the mass analyzer region were greatly reduced; this resulted in improved mass resolution. Mass resolution of greater than 145000 (fwhm) has been achieved for Cu{sup +} ions from a brass sample, the highest reported for any type of GD mass spectrometer. The pulsed-gas GD source promises analytical usefulness for ultrahigh resolution measurements in GD mass spectrometry. 16 refs., 3 figs.

  18. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode. PMID:8633761

  19. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  20. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results.

    PubMed

    Anupriya; Jones, Chad A; Dearden, David V

    2016-08-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy. Graphical Abstract ᅟ. PMID:27220844

  1. Collision Cross Sections for 20 Protonated Amino Acids: Fourier Transform Ion Cyclotron Resonance and Ion Mobility Results

    NASA Astrophysics Data System (ADS)

    Anupriya; Jones, Chad A.; Dearden, David V.

    2016-05-01

    We report relative dephasing cross sections for the 20 biogenic protonated amino acids measured using the cross sectional areas by Fourier transform ion cyclotron resonance (CRAFTI) technique at 1.9 keV in the laboratory reference frame, as well as momentum transfer cross sections for the same ions computed from Boltzmann-weighted structures determined using molecular mechanics. Cross sections generally increase with increasing molecular weight. Cross sections for aliphatic and aromatic protonated amino acids are larger than the average trend, suggesting these side chains do not fold efficiently. Sulfur-containing protonated amino acids have smaller than average cross sections, reflecting the mass of the S atom. Protonated amino acids that can internally hydrogen-bond have smaller than average cross sections, reflecting more extensive folding. The CRAFTI measurements correlate well with results from drift ion mobility (IMS) and traveling wave ion mobility (TWIMS) spectrometric measurements; CRAFTI results correlate with IMS values approximately as well as IMS and TWIMS values from independent measurements correlate with each other. Both CRAFTI and IMS results correlate well with the computed momentum transfer cross sections, suggesting both techniques provide accurate molecular structural information. Absolute values obtained using the various methods differ significantly; in the case of CRAFTI, this may be due to errors in measurements of collision gas pressure, measurement of excitation voltage, and/or dependence of cross sections on kinetic energy.

  2. Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Proschogo, Nicholas W; Albertson, Peter L; Bursle, Johanna; McConchie, Cameron A; Turner, Athol G; Willett, Gary D

    2012-02-29

    High-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry is successfully used in the detailed molecular analysis of aged macadamia nut oils. The results are consistent with peroxide values, the current industry measure for rancidity, and provide detailed molecular information on the oxidative and hydrolytic degeneration of such oils. Mass analysis of macadamia oil samples stored for extended periods at 6 °C revealed that oils obtained by the cold press method are more susceptible to aging than those obtained using modified Soxhlet or accelerated solvent extraction methods. PMID:22268609

  3. Tailored Noise Waveform/ Collision-Induced Dissociation of Ions Stored in a Linear Ion Trap Combined with Liquid Chromatography/Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    SciTech Connect

    Vilkov, Andrey N.; Bogdanov, Bogdan; Pasa-Tolic, Liljiana; Prior, David C.; Anderson, Gordon A.; Masselon, Christophe D.; Moore, Ronald J.; Smith, Richard D.

    2004-11-01

    A new collision-induced dissociation (CID) technique based on broadband tailored noise waveform (TNW) excitation of ions stored in a linear ion trap has been developed. In comparison with the conventional sustained off-resonance irradiation (SORI) CID method commonly used in Fourier transform ion cyclotron resonance mass spectrometry, this MS/MS technique increases throughput by eliminating the long pump-down delay associated with gas introduction into the high vacuum ICR cell region. In addition, the TNW-CID method speeds spectrum acquisition since it does not require Fourier transformation, calculation of resonant frequencies and generation of the excitation waveforms. We demonstrate TNW-CID coupled with on-line capillary reverse phase liquid chromatography separations for identification of peptides. The experimental results are compared with data obtained using conventional quadrupole ion trap MS/MS and SORI-CID MS/MS in an ICR cell.

  4. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhou, Xibin; Shi, Quan; Zhang, Yahe; Zhao, Suoqi; Zhang, Rui; Chung, Keng H; Xu, Chunming

    2012-04-01

    A novel technique was developed for characterization of saturated hydrocarbons. Linear alkanes were selectively oxidized to ketones by ruthenium ion catalyzed oxidation (RICO). Branched and cyclic alkanes were oxidized to alcohols and ketones. The ketones were then reduced to alcohols by lithium aluminum hydride (LiAlH(4)). The monohydric alcohols (O(1)) in the products obtained from the RICO and RICO-LiAlH(4) reduction reactions were characterized using negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for identification of iso-paraffins, acyclic paraffins and cyclic paraffins. Various model saturated compounds were used to determine the RICO reaction and ionization selectivity. The results from the FTICR MS analysis on the petroleum distillates derived saturated fraction were in agreement with those from field ionization gas chromatography time-of-flight mass spectrometry (FI GC-TOF MS) analysis. The technique was also used to characterize a petroleum vacuum residue (VR) derived saturates. The results showed that the saturated molecules in the VR contained up to 11 cyclic rings, and the maximum carbon number was up to 92. PMID:22424498

  5. Reference Interferometer Using a Semiconductor Laser/LED Reference Source in a Cryogenic Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Martino, Anthony J.; Cornwell, Donald M.

    1998-01-01

    A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.

  6. Preparation and in situ Characterization of Surfaces Using Soft-Landing in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    SciTech Connect

    Alvarez, Jormarie; Cooks, Robert G.; Barlow, Stephan E.; Gaspar, Dan J.; Futrell, Jean H.; Laskin, Julia

    2005-06-01

    Mass-selected peptide ions produced by electrospray ionization were deposited onto fluorinated self-assembled monolayer surfaces (FSAM) surfaces by soft-landing using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially designed for studying interactions of large ions with surfaces. Analysis of the modified surface was performed in situ by combining 2 keV Cs+ secondary ion mass spectrometry with FT-ICR detection of the sputtered ions (FT-ICR-SIMS). Regardless of the initial charge state of the precursor ion, the SIMS mass spectra included singly-protonated peptide fragment ions and peaks characteristic of the surfaces in all cases. In some experiments multiply-protonated peptide ions and [M+Au]+ ions were also observed upon SIMS analysis of modified surfaces. For comparison with the in situ analysis of the modified surfaces, ex situ analysis of some of the modified surfaces was performed by 25 kV Ga+ time of flight ? secondary ion mass spectrometry (ToF-SIMS). The ex situ analysis demonstrated that a significant number of soft-landed peptide ions remain charged on the surface even when exposed to air for several hours after deposition. Charge retention of soft-landed ions dramatically increases the ion yields obtained during SIMS analysis very sensitive detection of deposited material at less than 1% of monolayer coverage. Accumulation of charged species on the surface undergoes saturation due to Coulomb repulsion between charges at close to 30% coverage. We estimated that close to 1 ng of peptide could be deposited on the spot area of 4 mm2 of the FSAM surface without reaching saturation.

  7. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis

    NASA Astrophysics Data System (ADS)

    Hendrickson, Christopher L.; Quinn, John P.; Kaiser, Nathan K.; Smith, Donald F.; Blakney, Greg T.; Chen, Tong; Marshall, Alan G.; Weisbrod, Chad R.; Beu, Steven C.

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 ( m/Δm 50% ) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users.

  8. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis.

    PubMed

    Hendrickson, Christopher L; Quinn, John P; Kaiser, Nathan K; Smith, Donald F; Blakney, Greg T; Chen, Tong; Marshall, Alan G; Weisbrod, Chad R; Beu, Steven C

    2015-09-01

    We describe the design and initial performance of the first 21 tesla Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The 21 tesla magnet is the highest field superconducting magnet ever used for FT-ICR and features high spatial homogeneity, high temporal stability, and negligible liquid helium consumption. The instrument includes a commercial dual linear quadrupole trap front end that features high sensitivity, precise control of trapped ion number, and collisional and electron transfer dissociation. A third linear quadrupole trap offers high ion capacity and ejection efficiency, and rf quadrupole ion injection optics deliver ions to a novel dynamically harmonized ICR cell. Mass resolving power of 150,000 (m/Δm(50%)) is achieved for bovine serum albumin (66 kDa) for a 0.38 s detection period, and greater than 2,000,000 resolving power is achieved for a 12 s detection period. Externally calibrated broadband mass measurement accuracy is typically less than 150 ppb rms, with resolving power greater than 300,000 at m/z 400 for a 0.76 s detection period. Combined analysis of electron transfer and collisional dissociation spectra results in 68% sequence coverage for carbonic anhydrase. The instrument is part of the NSF High-Field FT-ICR User Facility and is available free of charge to qualified users. PMID:26091892

  9. Ion trajectories in an electrostatic ion guide for external ion source fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Marto, J A; Marshall, A G; May, M A; Limbach, P A

    1995-10-01

    An electrostatic ion guide (EIG) that consists of concentric cylinder and central wire electrodes can transport ions efficiently from an external ion source to an ion cyclotron resonance (ICR) ion trap for mass analysis, with several advantages over current injection methods. Because the electrostatic force of the EIG captures ions in a stable orbit about the wire electrode, ions with initially divergent trajectories may be redirected toward the ICR ion trap for improved ion transmission efficiency. SIMION trajectory calculations (ion kinetic energy, 1-200 eV; elevation angle, 0.30 °; azimuthal angle, 0.360°) predict that ions of m/z 1000 may be transmitted through a strong (0.01 → 3.0-T) magnetic field gradient. Judicious choice of ion source position and EIG potential minimizes the spread in ion axial kinetic energy at the ICR ion trap. Advantages of the EIG include large acceptance angle, even for ions that have large initial kinetic energy and large radial displacement with respect to the central z-axis, low ion extraction voltage (5-20 V), and efficient trapping because ions need not be accelerated to high velocity to pass through the magnetic field gradient. PMID:24214038

  10. Evaluation and optimization of electron capture dissociation efficiency in fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    McFarland, Melinda A; Chalmers, Michael J; Quinn, John P; Hendrickson, Christopher L; Marshall, Alan G

    2005-07-01

    Electron capture dissociation (ECD) efficiency has typically been lower than for other dissociation techniques. Here we characterize experimental factors that limit ECD and seek to improve its efficiency. Efficiency of precursor to product ion conversion was measured for a range of peptide (approximately 15% efficiency) and protein (approximately 33% efficiency) ions of differing sizes and charge states. Conversion of precursor ions to products depends on electron irradiation period and maximizes at approximately 5-30 ms. The optimal irradiation period scales inversely with charge state. We demonstrate that reflection of electrons through the ICR cell is more efficient and robust than a single pass, because electrons can cool to the optimal energy for capture, which allows for a wide range of initial electron energy. Further, efficient ECD with reflected electrons requires only a short (approximately 500 micros) irradiation period followed by an appropriate delay for cooling and interaction. Reflection of the electron beam results in electrons trapped in or near the ICR cell and thus requires a brief (approximately 50 micros) purge for successful mass spectral acquisition. Further electron irradiation of refractory precursor ions did not result in further dissociation. Possibly the ion cloud and electron beam are misaligned radially, or the electron beam diameter may be smaller than that of the ion cloud such that remaining precursor ions do not overlap with the electron beam. Several ion manipulation techniques and use of a large, movable dispenser cathode reduce the possibility that misalignment of the ion and electron beams limits ECD efficiency. PMID:15914017

  11. Incorporation of a Flared Inlet Capillary Tube on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    SciTech Connect

    Wu, Si; Zhang, Kai; Kaiser, Nathan K.; Bruce, James E.; Prior, David C.; Anderson, Gordon A.

    2006-04-17

    Atmospheric pressure ion sources such as electrospray ionization (ESI) and atmospheric pressure matrix assisted laser desorption ionization (AP-MALDI) are widely used with mass spectrometry for proteomics studies. Other newly developed atmospheric ion sources include desorption electrospray ionization (DESI). For these ionization methods, analyte ions created at atmospheric pressure are transferred to the high vacuum region for mass analysis after several stages of differential pumping. It has been reported that overall charge transmission between the ion source and the first vacuum stage is primarily dependent upon the proximity of the emitter and gas conductance of the interface inlet. We therefore developed an atmospheric pressure interface using flared inlet tubes. This report highlights our results obtained by coupling the customized flared inlet tubes with a Fourier transfer ion cyclotron resonance mass spectrometer (FT-ICRMS). We have also investigated the new interface with different types of atmospheric pressure ionization methods. For most of the ionization methods we investigated, such as ESI and DESI, increased ion current transmitted from the atmospheric pressure ion source to the first stage vacuum system was observed with the use of our enhanced ion inlet designs. The ion intensity that was detected with the flared inlet tube on a FT-ICRMS was also observed to increase {approx} 2-5 fold using ESI or DESI with the flared tube inlet. Moreover, increased spray tip positional tolerance was observed with implementation of the flared inlet tube. We also include our preliminary results obtained by coupling APMALDI with flared inlet tube in this paper. For AP-MALDI, the measured ion current transferred through the flared inlet tube was about 3 times larger than the ion current through the control non-flared inlet tube.

  12. Fourier transform infrared spectroscopy of azide and cyanate ion pairs in AOT reverse micelles

    NASA Astrophysics Data System (ADS)

    Owrutsky, Jeffrey C.; Pomfret, Michael B.; Barton, David J.; Kidwell, David A.

    2008-07-01

    Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li+, Na+, K+, and NH4+ counterions. The anions' antisymmetric stretching bands near 2000 cm-1 are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K+ and NH4+ as the counterions. The shifts are largest for low values of wo=[water]/[AOT] and approach the bulk value with increasing wo. The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li+>Na+>K+) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH4AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.

  13. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barrow, Mark P; Witt, Matthias; Headley, John V; Peru, Kerry M

    2010-05-01

    The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. PMID:20359201

  14. On-Line Desalting of Crude Oil in the Source Region of a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Chanthamontri, C. Ken; Stopford, Andrew P.; Snowdon, Ryan W.; Oldenburg, Thomas B. P.; Larter, Stephen R.

    2014-08-01

    The presence of dissolved metal ions in waters associated with crude oils has many negative implications for the transport, processing, and refining of petroleum. In addition, mass spectrometric analysis of sodium containing crude oil samples suffers from ionization suppression, unwanted adduct formation, and an increase in the complexity of data analysis. Here, we describe a method for the reduction/elimination of these adverse effects by modification of the source region gas-inlet system of a 12 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Several acids were examined as part of this study, with the most suitable for on-line desalting found to have both high vapor pressure and low pKa; 12.1 M HCl showed the strongest desalting effect for crude oil samples with a sodium removal index (SRI) of 88%-100% ± 7% for the NaOS compound class. In comparison, a SRI of only 38% ± 9% was observed for a H2O/toluene solution-phase extraction of Oil 1. These results clearly demonstrate the increased efficacy of pseudo-vapor phase desalting with the additional advantages that initial sample solution conditions are preserved and no sample preparation is required prior to analysis.

  15. Dithranol as a MALDI matrix for tissue imaging of lipids by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2012-10-01

    To fill the unmet need for improved matrixes for matrix-assisted laser desorption ionization (MALDI) tissue imaging of small molecules, dithranol (DT)--a matrix mainly used for the analysis of synthetic polymers--was evaluated for detection of lipids in rat liver and bovine calf lens, using MALDI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The use of DT resulted in better detection of endogenous lipids than did two other commonly used matrixes, α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), with >70 lipid entities (including phosphatidylcholines, phosphatidylethanolamines, sphingomyelins, phosphatidylserines, phosphatidylglycerol, phosphatidic acids, ceramide phosphates, sterol lipids, acyl carnitines, and glycerides) being detected in rat liver and bovine lens tissue sections, using positive-ion detection. Using saturated DT in chloroform/methanol (2:1, v/v), with 1% formic acid in the final mixture, 57 lipid entities were successfully imaged from bovine calf lens, with clear and distinct distribution patterns. In a section across the lens equatorial plane, all compounds showed concentric distributions around the lens nucleus and most showed specific abundance changes, which correlated with lens fiber cell age. As a novel finding, palmitoylcarnitine and oleoylcarnitine were found uniquely localized to the younger lens fiber cell cortex region. This work demonstrates the potential of DT as a new matrix for tissue imaging by MALDI-FTICR MS. PMID:22931516

  16. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-04-15

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. PMID:21416534

  17. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    PubMed Central

    Aizikov, Konstantin; Smith, Donald F.; Chargin, David A.; Ivanov, Sergei; Lin, Tzu-Yung; Heeren, Ron M. A.; O’Connor, Peter B.

    2011-01-01

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in ∼1 × 10–8 mbar vacuum. The range of motion is set to 100 mm × 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The “oversampling” MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter. PMID:21639522

  18. Top-Down Analysis of Highly Post-Translationally Modified Peptides by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guerrero, Andres; Lerno, Larry; Barile, Daniela; Lebrilla, Carlito B.

    2015-03-01

    Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from κ-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono- or bi-phosphorylated species. Additionally, these four forms can be modified with up to two O-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP never described before.

  19. Vacuum compatible sample positioning device for matrix assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging

    SciTech Connect

    Aizikov, Konstantin; Lin, Tzu-Yung; Smith, Donald F.; Heeren, Ron M. A.; Chargin, David A.; Ivanov, Sergei; O'Connor, Peter B.

    2011-05-15

    The high mass accuracy and resolving power of Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS) make them ideal mass detectors for mass spectrometry imaging (MSI), promising to provide unmatched molecular resolution capabilities. The intrinsic low tolerance of FT-ICR MS to RF interference, however, along with typically vertical positioning of the sample, and MSI acquisition speed requirements present numerous engineering challenges in creating robotics capable of achieving the spatial resolution to match. This work discusses a two-dimensional positioning stage designed to address these issues. The stage is capable of operating in {approx}1 x 10{sup -8} mbar vacuum. The range of motion is set to 100 mm x 100 mm to accommodate large samples, while the positioning accuracy is demonstrated to be less than 0.4 micron in both directions under vertical load over the entire range. This device was integrated into three different matrix assisted laser desorption/ionization (MALDI) FT-ICR instruments and showed no detectable RF noise. The ''oversampling'' MALDI-MSI experiments, under which the sample is completely ablated at each position, followed by the target movement of the distance smaller than the laser beam, conducted on the custom-built 7T FT-ICR MS demonstrate the stability and positional accuracy of the stage robotics which delivers high spatial resolution mass spectral images at a fraction of the laser spot diameter.

  20. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  1. Automated ambient desorption-ionization platform for surface imaging integrated with a commercial Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Pól, Jaroslav; Vidová, Veronika; Kruppa, Gary; Kobliha, Václav; Novák, Petr; Lemr, Karel; Kotiaho, Tapio; Kostiainen, Risto; Havlícek, Vladimír; Volný, Michael

    2009-10-15

    A fully automated atmospheric pressure ionization platform has been built and coupled with a commercial high-resolution Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) instrument. The outstanding performance of this instrument allowed screening on the basis of exact masses in imaging mode. The main novel aspect was in the integration of the atmospheric pressure ionization imaging into the current software for matrix-assisted laser desorption ionization (MALDI) imaging, which allows the user of this commercial dual-source mass spectrometer to perform MALDI-MS and different ambient MS imaging from the same user interface and to utilize the same software tools. Desorption electrospray ionization (DESI) and desorption atmospheric pressure photoionization (DAPPI) were chosen to test the ambient surface imaging capabilities of this new ionization platform. Results of DESI imaging experiments performed on brain tissue sections are in agreement with previous MS imaging reports obtained by DESI imaging, but due to the high resolution and mass accuracy of the FTICR instrument it was possible to resolve several ions at the same nominal mass in the DESI-MS spectra of brain tissue. These isobaric interferences at low resolution are due to the overlap of ions from different lipid classes with different biological relevance. It was demonstrated that with the use of high-resolution MS fast imaging screening of lipids can be achieved without any preseparation steps. DAPPI, which is a relatively new and less developed ambient ionization technique compared to DESI, was used in imaging mode for the first time ever. It showed promise in imaging of phytocompounds from plant leaves, and selective ionization of a sterol lipid was achieved by DAPPI from a brain tissue sample. PMID:19761221

  2. Comprehensive characterization of natural organic matter by MALDI- and ESI-Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cao, Dong; Huang, Huogao; Hu, Ming; Cui, Lin; Geng, Fanglan; Rao, Ziyu; Niu, Hongyun; Cai, Yaqi; Kang, Yuehui

    2015-03-25

    Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200-800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio<0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7>O/C ratio>0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization. PMID:25732692

  3. Improved Ion Optics for Introduction of Ions into a 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2014-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  4. Characterization of pyrogenic black carbon by desorption atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Podgorski, David C; Hamdan, Rasha; McKenna, Amy M; Nyadong, Leonard; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T

    2012-02-01

    We present a new method for molecular characterization of intact biochar directly, without sample preparation or pretreatment, on the basis of desorption atmospheric pressure photoionization (DAPPI) coupled to Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Conventional ionization methods (e.g., electrospray or atmospheric pressure photoionization) for characterization of natural organic matter have limited utility for the characterization of chars due to incomplete solubility in common solvents. Therefore, direct ionization techniques that do not require sample dissolution prior to analysis are ideal. Here, we apply DAPPI FTICR mass spectrometry to enable the first molecular characterization of uncharred parent oak biomass and after combustion (250 °C) or pyrolysis (400 °C). Parent oak is primarily composed of cellulose-, lignin-, and resin-like compounds. Oak combusted at 250 °C contains condensed aromatic compounds with low H/C and O/C ratios while retaining compounds with high H/C and O/C ratios. The bimodal distribution of aromatic and aliphatic compounds observed in the combusted oak sample is attributed to incomplete thermal degradation of lignin and hemicellulose. Pyrolyzed oak constituents exhibit lower H/C and O/C ratios: approximately three-quarters of the identified species are aromatic. DAPPI FTICR MS results agree with bulk elemental composition as well as functional group distributions determined by elemental analysis and solid state (13)C NMR spectroscopy. Complete molecular characterization of biomass upon thermal transformation may provide insight into the biogeochemical cycles of biochar and future renewable energy sources, particularly for samples currently limited by solubility, separation, and sample preparation. PMID:22242739

  5. Oil spill source identification by principal component analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra.

    PubMed

    Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P

    2013-10-01

    One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI. PMID:24033143

  6. Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Smith, Cameron R; Sleighter, Rachel L; Hatcher, Patrick G; Lee, James W

    2013-01-01

    Biochar has gained significant interest worldwide for its potential use as both a carbon sequestration technique and soil amendment. Recently, research has shown that pinewood-derived biochar water extracts inhibited the growth of aquatic photosynthetic microorganisms, both prokaryotic and eukaryotic algae, while chicken litter- and peanut shell-derived biochar water extracts showed no growth inhibition. With the use of electrodialysis, the pinewood-derived biochar water extract is separated into 3 fractions (anode-isolated, center chamber retained, and cathode-isolated substances) all with varying toxic effects. Because of its ultrahigh resolution and mass precision, electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is utilized in this study to analyze biochar water extracts at a molecular level to enhance our understanding of the toxic nature of pinewood-derived biochar water extracts as compared to benign peanut shell-derived biochar water extracts. The molecular composition of pinewood-derived biochar water extracts shows unique carbohydrate ligneous components and sulfur containing condensed ligneous components that are both absent from the peanut shell water extracts and more prevalent in the anode-isolated substances. Using Kendrick mass defect analysis, we also determine that the most likely inhibitor species contain carboxyl and hydroxyl homologous series, both of which are characteristic functional groups hypothesized in our previous research for the inhibitor species. We have suggested that inhibition of aquatic photosynthetic microorganism growth is most likely due to degraded lignin-like species rich in oxygen containing functionalities. From the study conducted here, we show the potential of ultrahigh resolution FTICR-MS as a valuable analytical technique for determining whether certain biochars are safe and benign for use as carbon sequestration and soil amendment. PMID:24180747

  7. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  8. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    SciTech Connect

    Soni, M.H.; Cooks, R.G. )

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  9. Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ikeya, Kosuke; Sleighter, Rachel L.; Hatcher, Patrick G.; Watanabe, Akira

    2015-03-01

    The composition of humic acids (HAs) with varying degrees of humification isolated from 10 common Japanese soils was characterized using negative ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry at 12 T. In particular, attention was paid to polynuclear aromatic components, which are more associated with the refractory nature of HAs and their resistance to biodegradation in soil than single C ring aromatic entities, such as lignin-like components, and aliphatic functionalities. Thousands of peaks were observed in the m/z range of 200-700, and molecular formulas were assigned to 817-2457 peaks in each sample. The molecular formulas having H/C and O/C ratios similar to those of lipid, protein, and other aliphatics with low double bond equivalents (DBE) of 0-7 were generally observed across the m/z range of 200-700. Although there were a number of molecular formulas having H/C and O/C values similar to those of lignin across the wide m/z range in the HAs with a low degree of humification, most lignin-like molecular formulas in the larger m/z range (450-650) or irrespective of m/z were lacking in the HAs with middle and high degrees of humification, respectively. These observations suggest a longer residence time for lignin monomers/dimers (and their derivatives; m/z 200-400) than larger lignin oligomers (m/z 450-650) in HA structural domains. The number of molecular formulas having H/C and O/C values similar to condensed aromatics increased with increasing degree of humification. The m/z and DBE values of condensed aromatic-like molecular formulas in the HAs with a lower degree of humification were <500 and 10-25, respectively, whilst the ranges expanded to 600 and 30-33, respectively, in the highly-humified black HAs. Kendrick mass defect analysis using a carboxyl group as the characteristic functional group found that 31, 73, and 39 molecular formulas had chain-type, net-type, and biphenyl-type condensed aromatic acids

  10. Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

  11. Laser-induced fluorescence of Ba+ ions trapped and mass-selected in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Li, G Z; Vining, B A; Guan, S; Marshall, A G

    1996-01-01

    We present the design and preliminary results from a Fourier transform ion cyclotron resonance (ICR) mass spectrometer developed for the direct detection of UV/visible laser-induced fluorescence of trapped, mass-selected, gas-phase ions. A 3 T superconducting magnet and an open-ended multi-section cylindrical Penning trap capture and confine ions created by electron impact or laser desorption. Azimuthal quadrupolar excitation in the presence of ion/neutral collisions cools, axializes and mass selects ions as they fill the trap. A pulsed dye laser pumped by an Nd:YAG laser provides electronic energy excitation. A Brewster window and baffles on each side of the vacuum chamber reduce the scattered light from the excitation laser. Laser-induced fluorescence is collected from mirrors and lenses and directed through a quartz window and fiber-optic bundle to a photomultiplier. The ICR and optical events are controlled by a modular ICR data station and GPIB and RS-232 interfaces. An excitation spectrum is demonstrated for atomic Ba+ ions, and should extend to laser-induced fluorescence of virtually any stable positive or negative gas-phase ions of arbitrary molecular weight: molecular or quasimolecular ions, fragment ions, adduct ions, and ions formed from ion/molecule reactions. PMID:8953788

  12. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chen, T; Beu, S C; Kaiser, N K; Hendrickson, C L

    2014-06-01

    A conventional Fourier transform-Ion Cyclotron Resonance (ICR) detection cell is azimuthally divided into four equal sections. One pair of opposed electrodes is used for ion cyclotron excitation, and the other pair for ion image charge detection. In this work, we demonstrate that an appropriate electrical circuit facilitates excitation and detection on one pair of opposed electrodes. The new scheme can be used to minimize the number of electrically independent ICR cell electrodes and/or improve the electrode geometry for simultaneously increased ICR signal magnitude and optimal post-excitation radius, which results in higher signal-to-noise ratio and decreased space-charge effects. PMID:24985871

  13. Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy.

    PubMed

    Fantinel, Fabiana; Rieger, Jens; Molnar, Ferenc; Hübler, Patrick

    2004-03-30

    The attenuated total reflectance Fourier transform infrared dialysis technique is introduced for the time-resolved investigation of the binding processes of Ca2+ to polyacrylates dissolved in water. We observed transient formation of intermediates in water with various types of coordination of the carboxylate group to Ca2+ throughout the complexation steps. Time-resolved changes in the spectra were analyzed with principal component analysis, from which the spectral species were obtained as well as their formation kinetics. We propose a model for the mechanisms of Ca2+ coordination to polyacrylates. The polymer chain length plays an important role in Ca2+ binding. PMID:15835120

  14. Boosting Sensitivity in Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids.

    PubMed

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography-Fourier transform ion cyclotron resonance-tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled (13)C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  15. Boosting Sensitivity in Liquid Chromatography–Fourier Transform Ion Cyclotron Resonance–Tandem Mass Spectrometry for Product Ion Analysis of Monoterpene Indole Alkaloids

    PubMed Central

    Nakabayashi, Ryo; Tsugawa, Hiroshi; Kitajima, Mariko; Takayama, Hiromitsu; Saito, Kazuki

    2015-01-01

    In metabolomics, the analysis of product ions in tandem mass spectrometry (MS/MS) is noteworthy to chemically assign structural information. However, the development of relevant analytical methods are less advanced. Here, we developed a method to boost sensitivity in liquid chromatography–Fourier transform ion cyclotron resonance–tandem mass spectrometry analysis (MS/MS boost analysis). To verify the MS/MS boost analysis, both quercetin and uniformly labeled 13C quercetin were analyzed, revealing that the origin of the product ions is not the instrument, but the analyzed compounds resulting in sensitive product ions. Next, we applied this method to the analysis of monoterpene indole alkaloids (MIAs). The comparative analyses of MIAs having indole basic skeleton (ajmalicine, catharanthine, hirsuteine, and hirsutine) and oxindole skeleton (formosanine, isoformosanine, pteropodine, isopteropodine, rhynchophylline, isorhynchophylline, and mitraphylline) identified 86 and 73 common monoisotopic ions, respectively. The comparative analyses of the three pairs of stereoisomers showed more than 170 common monoisotopic ions in each pair. This method was also applied to the targeted analysis of MIAs in Catharanthus roseus and Uncaria rhynchophylla to profile indole and oxindole compounds using the product ions. This analysis is suitable for chemically assigning features of the metabolite groups, which contributes to targeted metabolome analysis. PMID:26734034

  16. Metabolic study of grapevine leaves infected by downy mildew using negative ion electrospray--Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Becker, Loïc; Poutaraud, Anne; Hamm, Grégory; Muller, Jean-François; Merdinoglu, Didier; Carré, Vincent; Chaimbault, Patrick

    2013-09-17

    Grapevine is of worldwide economic importance due to wine production. However, this culture is often affected by pathogens causing severe harvest losses. Understanding host-pathogen relationships may be a key to solve this problem. In this paper, we evaluate the direct flow injection by electrospray - Fourier transform ion cyclotron resonance mass spectrometry (MS) of leaf extracts as a rapid method for the study of grapevine response to downy mildew (Plasmopara viticola) attack. The comparison of MS profiles obtained from control and infected leaves of different levels of resistant grapevines highlights several classes of metabolites (mainly saccharides, acyl lipids, hydroxycinnamic acids derivatives and flavonoids) which are identified using high resolution MS and tandem MS (MS/MS). Statistical analyses of 19 markers show a clear segregation between inoculated and healthy samples. This study points out relative high levels of disaccharides, acyl lipids and glycerophosphoinositol in inoculated samples. Sulfoquinovosyl diacylglycerols also emerge as possible metabolites involved in plant defense. PMID:23998536

  17. Imaging Fourier Transform Spectrometer

    SciTech Connect

    Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

    1993-04-14

    The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

  18. Fourier Transform Spectrometer System

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  19. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry

    PubMed Central

    Prokai, Laszlo; Stevens, Stanley M.

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  20. Direct Analysis in Real Time (DART) of an Organothiophosphate at Ultrahigh Resolution by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and Tandem Mass Spectrometry.

    PubMed

    Prokai, Laszlo; Stevens, Stanley M

    2016-01-01

    Direct analysis in real time (DART) is a recently developed ambient ionization technique for mass spectrometry to enable rapid and sensitive analyses with little or no sample preparation. After swab-based field sampling, the organothiophosphate malathion was analyzed using DART-Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Mass resolution was documented to be over 800,000 in full-scan MS mode and over 1,000,000 for an MS/MS product ion produced by collision-induced dissociation of the protonated analyte. Mass measurement accuracy below 1 ppm was obtained for all DART-generated ions that belonged to the test compound in the mass spectra acquired using only external mass calibration. This high mass measurement accuracy, achievable at present only through FTMS, was required for unequivocal identification of the corresponding molecular formulae. PMID:26784186

  1. Rainbow Fourier Transform

    NASA Technical Reports Server (NTRS)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  2. Combined infrared multiphoton dissociation and electron-capture dissociation using co-linear and overlapping beams in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Mihalca, Romulus; van der Burgt, Yuri E M; McDonnell, Liam A; Duursma, Marc; Cerjak, Iliya; Heck, Albert J R; Heeren, Ron M A

    2006-01-01

    A novel set-up for Fourier transform ion cyclotron resonance mass spectrometry (FTICR) is reported for simultaneous infrared multiphoton dissociation (IRMPD) and electron-capture dissociation (ECD). An unmodified electron gun ensures complete, on-axis overlap between the electron and the photon beams. The instrumentation, design and implementation of this novel approach are described. In this configuration the IR beam is directed into the ICR cell using a pneumatically actuated mirror inserted into the ion-optical path. Concept validation was made using different combinations of IRMPD and ECD irradiation events on two standard peptides. The ability to perform efficient IRMPD, ECD and especially simultaneous IRMPD and ECD using lower irradiation times is demonstrated. The increase in primary sequence coverage, with the combined IRMPD and ECD set-up, also increases the confidence in peptide and protein assignments. PMID:16705647

  3. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal

    PubMed Central

    Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  4. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Pyrolysis Oil from German Brown Coal.

    PubMed

    Zuber, Jan; Kroll, Marius M; Rathsack, Philipp; Otto, Matthias

    2016-01-01

    Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076

  5. Targeted and non-targeted boron complex formation followed by electrospray Fourier transform ion cyclotron mass spectrometry: a novel approach for identifying boron esters with natural organic matter.

    PubMed

    Gaspar, Andras; Lucio, Marianna; Harir, Mourad; Schmitt-Kopplin, Philippe

    2011-01-01

    The formation of boron esters was investigated in peat-soluble humified materials with a detailed molecular-level description of boron-organic interactions. Thousands of individually baseline separated signals were obtained from the analysis of natural organic matter of peat samples, using Fourier transform ion cyclotron resonance mass spectrometry. This technique offers unsurpassed isotope-specific mass resolution that can lead to precise molecular formula assignments by means of mathematical data analysis and visualisation techniques, such as mass defect (Kendrick) or elemental ratio (van Krevelen) plots. The analysis of potential boron binding structures within the sample of natural organic matter was described based on prior results. Herein, we describe an algorithm that can be used to effectively distinguish and filter complexes through data obtained from boron-enriched systems with highly intricate mass spectra, such as natural organic matter. PMID:21719921

  6. UV laser ablation of GdCa4O(BO3)3 (GdCOB) investigated by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Chéty-Gimondo, Rachel; Aubriet, Frédéric; Millon, Eric; Muller, J-F

    2004-01-01

    The ions generated by laser ablation (LA) of calcium and gadolinium oxoborate GdCa4O(BO3)3 (GdCOB) were investigated by Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS), a powerful tool for the characterization of ionic species produced by laser interaction with solid material. In order to better understand the matter transfer and the mechanism of thin film growth by pulsed-laser deposition (PLD), cationic and anionic clusters generated by UV laser ablation of GdCOB bulk material were studied. Laser ablation of GdCOB leads to the formation of various cluster ions which result from association of CaO, BO and B2O3 building blocks (BB) with different charge carriers (CC): H+, BO+, GdO+ in positive ion mode, and BO2-, OK-, OH-, Cl-, WO3- in negative ion mode. LA-FTICRMS investigations allow us to assign a valence state to each metallic atom included in each BB. A +II chemical state may be associated with calcium and +II and +III ones to boron. UV laser ablation of GdCOB therefore induces reduction processes of boron species in the gas phase. The oxygen reactive atmosphere used during PLD experiments allows the growth of stoichiometric thin films by fixation of oxygen on the ablated species. PMID:15529417

  7. Study of cluster anions generated by laser ablation of titanium oxides: a high resolution approach based on Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barthen, Nicolas; Millon, Eric; Aubriet, Frédéric

    2011-03-01

    Laser ablation of titanium oxides at 355 nm and ion-molecule reactions between [(TiO(2))(x)](-•) cluster anions and H(2)O or O(2) were investigated by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with an external ion source. The detected anions correspond to [(TiO(2))(x)(H(2)O)(y)OH](-) and [(TiO(2))(x)(H(2)O)(y)O(2)](-•) oxy-hydroxide species with x=1 to 25 and y=1, 2, or 3 and were formed by a two step process: (1) laser ablation, which leads to the formation of [(TiO(2))(x)](-•) cluster anions as was previously reported, and (2) ion-molecule reactions during ion storage. Reactions of some [(TiO(2))(x)](-•) cluster anions with water and dioxygen conducted in the FTICR cell confirm this assessment. Tandem mass spectrometry experiments were also performed in sustained off-resonance irradiation collision-induced dissociation (SORI-CID) mode. Three fragmentation pathways were observed: (1) elimination of water molecules, (2) O(2) loss for radical anions, and (3) fission of the cluster. Density functional theory (DFT) calculations were performed to explain the experimental data. PMID:21472569

  8. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Fahlman, Brian; Hewitt, L Mark; Frank, Richard A; Headley, John V

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands. PMID:26115966

  9. Beyond Naphthenic Acids: Environmental Screening of Water from Natural Sources and the Athabasca Oil Sands Industry Using Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barrow, Mark P.; Peru, Kerry M.; Fahlman, Brian; Hewitt, L. Mark; Frank, Richard A.; Headley, John V.

    2015-09-01

    There is a growing need for environmental screening of natural waters in the Athabasca region of Alberta, Canada, particularly in the differentiation between anthropogenic and naturally-derived organic compounds associated with weathered bitumen deposits. Previous research has focused primarily upon characterization of naphthenic acids in water samples by negative-ion electrospray ionization methods. Atmospheric pressure photoionization is a much less widely used ionization method, but one that affords the possibility of observing low polarity compounds that cannot be readily observed by electrospray ionization. This study describes the first usage of atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (in both positive-ion and negative-ion modes) to characterize and compare extracts of oil sands process water, river water, and groundwater samples from areas associated with oil sands mining activities. When comparing mass spectra previously obtained by electrospray ionization and data acquired by atmospheric pressure photoionization, there can be a doubling of the number of components detected. In addition to polar compounds that have previously been observed, low-polarity, sulfur-containing compounds and hydrocarbons that do not incorporate a heteroatom were detected. These latter components, which are not amenable to electrospray ionization, have potential for screening efforts within monitoring programs of the oil sands.

  10. Structural characterization of arginine-vasopressin and lysine-vasopressin by Fourier- transform ion cyclotron resonance mass spectrometry and infrared multiphoton dissociation.

    PubMed

    Bianco, Giuliana; Battista, Fabio; Buchicchio, Alessandro; Amarena, Concetta G; Schmitt-Kopplin, Philippe; Guerrieri, Antonio

    2015-01-01

    Arginine-vasopressin (AVP) and lysine-vasopressin (LVP) were analyzed by reversed-phase liquid chromatography/mass spectrometry (LC-MS) using Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) electrospray ionization (ESI) in the positive ion mode. LVP and AVP exhibited the protonated adduct [M+H](+) as the predominant ion at m/z 1056.43965 and at m/z 1084.44561, respectively. Infrared multiphoton dissociation (IRMPD), using a CO(2) laser source at a wavelength of 10.6 μm, was applied to protonated vasopressin molecules. The IRMPD mass spectra presented abundant mass fragments essential for a complete structural information. Several fragment ions, shared between two target molecules, are discussed in detail. Some previously unpublished fragments were identified unambiguously utilizing the high resolution and accurate mass information provided by the FT-ICR mass spectrometer. The opening of the disulfide loop and the cleavage of the peptide bonds within the ring were observed even under low-energy fragmentation conditions. Coupling the high-performance FT-ICR mass spectrometer with IRMPD as a contemporary fragmentation technique proved to be very promising for the structural characterization of vasopressin. PMID:26307701

  11. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  12. Combined infrared multiphoton dissociation and electron capture dissociation with a hollow electron beam in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Tsybin, Youri O; Witt, Matthias; Baykut, Gökhan; Kjeldsen, Frank; Håkansson, Per

    2003-01-01

    An electron injection system based on an indirectly heated ring-shaped dispenser cathode has been developed and installed in a 7 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. This new hardware design allows high-rate electron capture dissociation (ECD) to be carried out by a hollow electron beam coaxial with the ion cyclotron resonance (ICR) trap. Infrared multiphoton dissociation (IRMPD) can also be performed with an on-axis IR-laser beam passing through a hole at the centre of the dispenser cathode. Electron and photon irradiation times of the order of 100 ms are required for efficient ECD and IRMPD, respectively. As ECD and IRMPD generate fragments of different types (mostly c, z and b, y, respectively), complementary structural information that improves the characterization of peptides and proteins by FTICR mass spectrometry can be obtained. The developed technique enables the consecutive or simultaneous use of the ECD and IRMPD methods within a single FTICR experimental sequence and on the same ensemble of trapped ions in multistage tandem (MS/MS/MS or MS(n)) mass spectrometry. Flexible changing between ECD and IRMPD should present advantages for the analysis of protein digests separated by liquid chromatography prior to FTICRMS. Furthermore, ion activation by either electron or laser irradiation prior to, as well as after, dissociation by IRMPD or ECD increases the efficiency of ion fragmentation, including the w-type fragment ion formation, and improves sequencing of peptides with multiple disulfide bridges. The developed instrumental configuration is essential for combined ECD and IRMPD on FTICR mass spectrometers with limited access into the ICR trap. PMID:12872281

  13. Electrocardiogram analysis through time discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Lancaster, Cameron; Zhang, Guoping

    2011-03-01

    The motivation for this research is to find an alternative method to diagnose heart conditions. This can be accomplished by analyzing wave patterns in EKG data, and using the Fourier Transform to compare steady wave patterns against fibrillating wave patterns. The two main contributors are the following: heart electricity and Fourier Transform. Also, it is recognized that ion movement has potential to change the frequency in any heart beat signal. This effect is caused due to a strong electrostatic attraction that causes the membrane capacitance to build charge. For a single ion focus, the Nernst Potential influences the equilibrium potential for the membrane of an ion. If two or more ions are contributing to an electric field charge, the Goldman-Hodgkin-Katz will find the membrane equilibrium potential. If a membrane has an efflux, or influx, of ions, then it is possible to get the passive flow of the electric current to zero. In continued research, we will gain knowledge of solving equations; such as ionic flux, quantitative diffusion, electric current density, and more. The finishing portion of this research will be to compare the Fourier Transformed wave graphs to determine heart conditions. Supported by U.S. Department of Energy under Contract No. DE-FG02-06ER46304 and Indiana State University.

  14. Exploring Biosignatures Associated with Thenardite by Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (GALDI-FTICR-MS)

    SciTech Connect

    C. Doc Richardson; Nancy W. Hinman; Timothy R. McJunkin; J. Michelle Kotler; Jill R. Scott

    2008-10-01

    Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been employed to determine how effectively bio/organic molecules associated with the mineral thenardite (Na2SO4) can be detected. GALDI is based on the ability of the mineral host to assist desorption and ionization of bio/organic molecules without additional sample preparation. When glycine was mixed with thenardite, glycine was deprotonated to produce C2H4NO-2 at m/z 74.025. The combination of stearic acid with thenardite produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned a composition ofC18H39O7Na-. Anatural sample of thenardite from Searles Lake in California also produced a peak at m/z 390.260. The bio/organic signatures in both the laboratory-based and natural samples were heterogeneously dispersed as revealed by chemical imaging. The detection limits for the stearic acid and thenardite combination were estimated to be 3 parts per trillion or~7 zeptomoles (10-21) per laser spot. Attempts to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to contain the biosignatures of interest revealed problems due to a lack of phase coherence between data sets.

  15. Dithranol as a matrix for matrix assisted laser desorption/ionization imaging on a fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Le, Cuong H; Han, Jun; Borchers, Christoph H

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  16. The coupling of direct analysis in real time ionization to Fourier transform ion cyclotron resonance mass spectrometry for ultrahigh-resolution mass analysis.

    PubMed

    Rummel, Julia L; McKenna, Amy M; Marshall, Alan G; Eyler, John R; Powell, David H

    2010-03-01

    Direct Analysis in Real Time (DART) is an ambient ionization technique for mass spectrometry that provides rapid and sensitive analyses with little or no sample preparation. DART has been reported primarily for mass analyzers of low to moderate resolving power such as quadrupole ion traps and time-of-flight (TOF) mass spectrometers. In the current work, a custom-built DART source has been successfully coupled to two different Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers for the first time. Comparison of spectra of the isobaric compounds, diisopropyl methylphosphonate and theophylline, acquired by 4.7 T FT-ICR MS and TOF MS, demonstrates that the TOF resolving power can be insufficient for compositionally complex samples. 9.4 T FT-ICR MS yielded the highest mass resolving power yet reported with DART ionization for 1,2-benzanthracene and 9,10-diphenylanthracene. Polycyclic aromatic hydrocarbons exhibit a spatial dependence in ionization mechanisms between the DART source and the mass spectrometer. The feasibility of analyzing a variety of samples was established with the introduction and analysis of food products and crude oil samples. DART FT-ICR MS provides complex sample analysis that is rapid, highly selective and information-rich, but limited to relatively low-mass analytes. PMID:20187081

  17. Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Le, Cuong H.; Han, Jun; Borchers, Christoph H.

    2013-01-01

    Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided. PMID:24300588

  18. Structural characterisation of tyrosine-nitrated peptides by ultraviolet and infrared matrix-assisted laser desorption/ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Petre, Brínduşa-Alina; Youhnovski, Nikolay; Lukkari, Juho; Weber, Reinhold; Przybylski, Michael

    2005-01-01

    Nitration of tyrosine residues in proteins may occur in cells upon oxidative stress and inflammation processes mediated through generation of reactive nitroxyl from peroxynitrite. Tyrosine nitration from oxidative pathways may generate cytotoxic species that cause protein dysfunction and pathogenesis. A number of protein nitrations in vivo have been reported and some specific Tyrosine nitration sites have been recently identified using mass spectrometric methods. High-resolution Fourier transform ion cyclotron resonance mass spectrometry (MALDI) FT-ICR-MS) is shown here to be a highly efficient method in the determination of protein nitrations. Following the identification of nitration of the catalytic site Tyr-430 residue of bovine prostacyclin synthase, we synthesised several model peptides containing both unmodified tyrosine and 3-nitro-tyrosine residues, using solid-phase peptide synthesis (SPPS). The structures of the nitrotyrosine peptides were characterised both by ESI- and by matrix-assisted laser desorption/ionisation (MALDI)-FT-ICR-MS, using a standard ultraviolet (UV) nitrogen nitrogen laser and a 2.97 microm Nd-YAG infrared laser. Using UV-MALDI-MS, 3-nitrotyrosyl-peptides were found to undergo extensive photochemical fragmentation at the nitrophenyl group, which may hamper or prevent the unequivocal identification of Tyr-nitrations in cellular proteins. In contrast, infrared-MALDI-FT-ICR-MS did not produce fragmentation of molecular ions of Tyr-nitrated peptides. PMID:16322657

  19. Experimental investigations of the internal energy of molecules evaporated via laser-induced acoustic desorption into a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Shea, Ryan C; Petzold, Christopher J; Liu, Ji-Ang; Kenttämaa, Hilkka I

    2007-03-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier transform ion cyclotron resonance mass spectrometer, was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kilocalories per mole. Chemical ionization with a series of proton-transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, Val-Pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have a similar internal energy as those evaporated via SALD. PMID:17263513

  20. External second-gate Fourier transform ion mobility spectrometry: parametric optimization for detection of weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Tarver, Edward E.

    2004-09-01

    Ion mobility spectrometry (IMS) is recognized as one of the most sensitive and robust techniques for the detection of narcotics, explosives and chemical warfare agents. IMS is widely used in forensic, military and security applications. Increasing threat of terrorist attacks, the proliferation of narcotics, Chemical Weapons Convention (CWC) treaty verification as well as humanitarian de-mining efforst have mandated that equal importance be placed on the time required to obtain results as well as the quality of the analytical data. In this regard IMS is virtually unrivaled when both speed of response and sensitivity have to be considered. The problem with conventional (signal averaging) IMS systems is the fixed duty cycle of the entrance gate that restricts to less than 1%, the number of available ions contributing to the measured signal. Furthermore, the signal averaging process incorporates scan-to-scan variations that degrade the spectral resolution contributing to misidentifications and false positives.

  1. Conductivity study and fourier transform infrared (FTIR) characterization of methyl cellulose solid polymer electrolyte with sodium iodide conducting ion

    SciTech Connect

    Abiddin, Jamal Farghali Bin Zainal; Ahmad, Azizah Hanom

    2015-08-28

    Sodium ion (Na{sup +}) based solid polymer electrolyte (SPE) has been prepared using solution cast technique with distilled water as solvent and Methylcellulose (MC) as a polymer host. Methylcellulose polymer was chosen as the polymer host due to the abundance of lone pair electrons in the carbonyl and C-O-C constituents, which in turn provide multiple hopping sites for the Na{sup +} conducting ions. Variable compositions of sodium iodide (NaI) salt were prepared to investigate the optimum MC-NaI weight ratio. Results from Electrical Impedance Spectroscopy (EIS) technique show that pure methylcellulose has a low conductivity of 3.61 × 10{sup −11} S/cm.The conductivity increases as NaI content increases up to optimum NaIcomposition of 40 wt%, which yields an average conductivity of 2.70 × 10{sup −5} S/cm.

  2. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming

    2014-01-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 ≤ n ≤ 58),CnH2n-42N4V1O1 (37 ≤ n ≤ 57),CnH2n-44N4V1O1 (38 ≤ n ≤ 59),CnH2n-46N4V1O1 (43 ≤ n ≤ 54),CnH2n-48N4V1O1 (45 ≤ n ≤ 55),CnH2n-38N4V1S1O1 (36 ≤ n ≤ 41),CnH2n-40N4V1S1O1 (35 ≤ n ≤ 51),CnH2n-42N4V1S1O1 (36 ≤ n ≤ 54),CnH2n-44N4V1S1O1 (41 ≤ n ≤ 55),CnH2n-46N4V1S1O1 (39 ≤ n ≤ 55),CnH2n-27N5V1O1 (29 ≤ n ≤ 40),CnH2n-29N5V1O1 (34 ≤ n ≤ 42),CnH2n-33N5V1O1 (31 ≤ n ≤ 38),CnH2n-35N5V1O1 (32 ≤ n ≤ 41),CnH2n-27N5V1O2 (32 ≤ n ≤ 41) and CnH2n-29N5V1O2 (33 ≤ n ≤ 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils. PMID:24948028

  3. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhao, Xu; Shi, Quan; Gray, Murray R.; Xu, Chunming

    2014-06-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of CnH2n-40N4V1O1 (36 <= n <= 58),CnH2n-42N4V1O1 (37 <= n <= 57),CnH2n-44N4V1O1 (38 <= n <= 59),CnH2n-46N4V1O1 (43 <= n <= 54),CnH2n-48N4V1O1 (45 <= n <= 55),CnH2n-38N4V1S1O1 (36 <= n <= 41),CnH2n-40N4V1S1O1 (35 <= n <= 51),CnH2n-42N4V1S1O1 (36 <= n <= 54),CnH2n-44N4V1S1O1 (41 <= n <= 55),CnH2n-46N4V1S1O1 (39 <= n <= 55),CnH2n-27N5V1O1 (29 <= n <= 40),CnH2n-29N5V1O1 (34 <= n <= 42),CnH2n-33N5V1O1 (31 <= n <= 38),CnH2n-35N5V1O1 (32 <= n <= 41),CnH2n-27N5V1O2 (32 <= n <= 41) and CnH2n-29N5V1O2 (33 <= n <= 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils.

  4. New vanadium compounds in Venezuela heavy crude oil detected by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Zhao, Xu; Shi, Quan; Gray, Murray R; Xu, Chunming

    2014-01-01

    Metalloporphyrins are ubiquitous in nature, particularly iron porphyrins (hemes) and magnesium dihydroporphyrins or chlorophylls. Oxovanadium (IV) complexes of alkyl porphyrins are widely distributed in petroleum, oil shales and maturing sedimentary bitumen. Here we identify new vanadium compounds in Venezuela Orinoco heavy crude oil detected by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). These compounds likely have the main structure of porphyrin, with the addition of more aromatic rings, thiophene and amino functional groups, corresponding to molecular series of C(n)H(2n-40)N(4)V(1)O(1) (36 ≤ n ≤ 58),C(n)H(2n-42)N(4)V(1)O(1) (37 ≤ n ≤ 57),C(n)H(2n-44)N(4)V(1)O(1) (38 ≤ n ≤ 59),C(n)H(2n-46)N(4)V(1)O(1) (43 ≤ n ≤ 54),C(n)H(2n-48)N(4)V(1)O(1) (45 ≤ n ≤ 55),C(n)H(2n-38)N(4)V(1)S(1)O(1) (36 ≤ n ≤ 41),C(n)H(2n-40)N(4)V(1)S(1)O(1) (35 ≤ n ≤ 51),C(n)H(2n-42)N(4)V(1)S(1)O(1) (36 ≤ n ≤ 54),C(n)H(2n-44)N(4)V(1)S(1)O(1) (41 ≤ n ≤ 55),C(n)H(2n-46)N(4)V(1)S(1)O(1) (39 ≤ n ≤ 55),C(n)H(2n-27)N(5)V(1)O(1) (29 ≤ n ≤ 40),C(n)H(2n-29)N(5)V(1)O(1) (34 ≤ n ≤ 42),C(n)H(2n-33)N(5)V(1)O(1) (31 ≤ n ≤ 38),C(n)H(2n-35)N(5)V(1)O(1) (32 ≤ n ≤ 41),C(n)H(2n-27)N(5)V(1)O(2) (32 ≤ n ≤ 41) and C(n)H(2n-29)N(5)V(1)O(2) (33 ≤ n ≤ 42). These findings are significant for the understanding of the existing form of vanadium species in nature, and are helpful for enhancing the amount of information on palaeoenvironments and improving the level of applied basic theory for the processing technologies of heavy oils. PMID:24948028

  5. Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Håkansson, Kristina; Chalmers, Michael J; Quinn, John P; McFarland, Melinda A; Hendrickson, Christopher L; Marshall, Alan G

    2003-07-01

    We have mounted a permanent on-axis dispenser cathode electron source inside the magnet bore of a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer. This configuration allows electron capture dissociation (ECD) to be performed reliably on a millisecond time scale. We have also implemented an off-axis laser geometry that enables simultaneous access to ECD and infrared multiphoton dissociation (IRMPD). Optimum performance of both fragmentation techniques is maintained. The analytical utility of performing either ECD or IRMPD on a given precursor ion population is demonstrated by structural characterization of several posttranslationally modified peptides: IRMPD of phosphorylated peptides results in few backbone (b- and y-type) cleavages, and product ion spectra are dominated by neutral loss of H3PO4. In contrast, ECD provides significantly more backbone (c- and z*-type) cleavages without loss of H3PO4. For N-glycosylated tryptic peptides, IRMPD causes extensive cleavage of the glycosidic bonds, providing structural information about the glycans. ECD cleaves all backbone bonds (except the N-terminal side of proline) in a 3-kDa glycopeptide with no saccharide loss. However, only a charge-reduced radical species and some side chain losses are observed following ECD of a 5-kDa glycopeptide from the same protein. An MS3 experiment involving IR laser irradiation of the charge-reduced species formed by electron capture results in extensive dissociation into c- and z-type fragment ions. Mass-selective external ion accumulation is essential for the structural characterization of these low-abundance (modified) peptides. PMID:12964777

  6. Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Oro, Nicole E; Whittal, Randy M; Lucy, Charles A

    2012-09-01

    Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. PMID:22840706

  7. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS).

    PubMed

    Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran

    2016-05-01

    In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27194521

  8. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  9. Dynamic in situ fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery

    NASA Astrophysics Data System (ADS)

    Hongyou, Kenichi; Hattori, Takashi; Nagai, Youko; Tanaka, Toshihiro; Nii, Hiroyuki; Shoda, Kaoru

    2013-12-01

    Solvation/desolvation and the solid electrolyte interphase (SEI) formation at a graphite electrode during the initial charging process were investigated using in situ Fourier transform infrared spectroscopy (FTIR) measurements. These measurements were developed by applying a diamond attenuated total reflectance (ATR) crystal, which probed the electrolyte solvents at the surface of the graphite electrode and provided successive FTIR spectra with high signal-to-noise ratio. The charging process was performed in the Li(reference)/electrolyte/graphite(working)/Cu cell at a voltage ranging from 3.2 to 0.0001 V vs. Li/Li+. The measurement elucidated the change in the chemical bond of the electrolyte solvents. In an early stage, the amounts of solvated and desolvated solvents changed, providing evidence that the Li+ ions were intercalated into the graphite layer. The formation of the Li alkyl carbonate that forms the SEI layer was facilitated toward the end of the charging process. Measurements were also obtained of the electrolyte with a vinylene carbonate additive, and the contribution of the additive to the electrolyte solvent reduction was investigated.

  10. Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mead, R. N.; Mullaugh, K. M.; Avery, G. Brooks; Kieber, R. J.; Willey, J. D.; Podgorski, D. C.

    2013-05-01

    A series of seven rainwater samples were collected in Wilmington, North Carolina USA originating from both continental and coastal storms and analyzed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). This data set is unique in that it represents a detailed comparison of the molecular level composition of DOM in rainwater collected from distinctly different air mass back trajectories by FT-ICR MS. Approximately 25% of the roughly 2000 assigned CHO molecular formulas are unique to a single storm classification indicating the importance of air mass back trajectory on the composition of rainwater dissolved organic matter (DOM). Analysis of the unique molecular formula assignments highlighted distinct groupings of various bio- and geo-molecule classes with coastal storms containing unique formulas representative of lignin and cellulose-like formulas while continental storms had lipid-like formulas. A series of 18 distinct methylene oligomers were identified in coastal storms and 13 unique methylene oligomers in continental storms, suggesting oligomer formation is ubiquitous in rainwater albeit different for each storm classification. Oligomers of small acids and C3H4O2 were detected in both storm types indicating their processing may be similar in both back trajectories. Condensed aromatic hydrocarbons were detected in continental storms with phenol moieties that are not as oxidized as similar compounds detected in aquatic DOM.

  11. Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mead, R. N.; Mullaugh, K. M.; Avery, G. B.; Kieber, R. J.; Willey, J. D.; Podgorski, D. C.

    2012-12-01

    A series of seven rainwater samples were collected in Wilmington, North Carolina (USA), originating from both continental and coastal storms and analyzed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This data set is unique in that it represents a detailed comparison of the molecular level composition of DOM in rainwater collected from distinctly different air mass back trajectories by FTICR-MS. Approximately 25% of the roughly 2000 assigned CHO molecular formulas are unique to each storm classification indicating the importance of air mass back trajectory on the composition of rainwater dissolved organic matter (DOM). Analysis of the unique molecular formula assignments highlighted distinct groupings of various bio- and geo-molecule classes with coastal storms containing unique formulas representative of lignin and cellulose-like formulas, while continental storms had lipid-like formulas. A series of 18 distinct methylene oligomers were identified in coastal storms with 13 unique methylene oligomers in continental storms suggesting oligomer formation is ubiquitous in rainwater albeit different for each storm classification. Oligomers of small acids and C3H4O2 were detected in both storm types indicating their processing may be similar in both back trajectories. Black carbon (BC) was detected in continental storms with phenol moieties that are not as oxidized as aquatic DOM black carbon. The discovery of BC in continental rainwater has significant ramifications towards climate change, because atmospheric BC is such a potent chromophore that reemits absorbed sunlight at longer wavelengths thereby warming the lower atmosphere.

  12. Molecular evidence of heavy-oil weathering following the M/V Cosco Busan spill: insights from Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Lemkau, Karin L; McKenna, Amy M; Podgorski, David C; Rodgers, Ryan P; Reddy, Christopher M

    2014-04-01

    Recent studies have highlighted a critical need to investigate oil weathering beyond the analytical window afforded by conventional gas chromatography (GC). In particular, techniques capable of detecting polar and higher molecular weight (HMW; > 400 Da) components abundant in crude and heavy fuel oils (HFOs) as well as transformation products. Here, we used atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) to identify molecular transformations in oil-residue samples from the 2007 M/V Cosco Busan HFO spill (San Francisco, CA). Over 617 days, the abundance and diversity of oxygen-containing compounds increased relative to the parent HFO, likely from bio- and photodegradation. HMW, highly aromatic, alkylated compounds decreased in relative abundance concurrent with increased relative abundance of less alkylated stable aromatic structures. Combining these results with GC-based data yielded a more comprehensive understanding of oil spill weathering. For example, dealkylation trends and the overall loss of HMW species observed by FT-ICR MS has not previously been documented and is counterintuitive given losses of lower molecular weight species observed by GC. These results suggest a region of relative stability at the interface of these techniques, which provides new indicators for studying long-term weathering and identifying sources. PMID:24559181

  13. Pathway confirmation and flux analysis of central metabolicpathways in Desulfovibrio vulgaris Hildenborough using GasChromatography-Mass Spectrometry and Fourier Transform-Ion CyclotronResonance Mass Spectrometry

    SciTech Connect

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.

    2007-03-15

    Flux distribution in central metabolic pathways ofDesulfovibrio vulgaris Hildenborough was examined using 13C tracerexperiments. Consistent with the current genome annotation andindependent evidence from enzyme activity assays, the isotopomer resultsfrom both GC-MS and Fourier Transform-Ion Cyclotron Resonance massspectrometry (FT-ICR MS) indicate the lack of oxidatively functional TCAcycle and an incomplete pentose phosphate pathway. Results from thisstudy suggest that fluxes through both pathways are limited tobiosynthesis. The data also indicate that>80 percent of the lactatewas converted to acetate and the reactions involved are the primary routeof energy production (NAD(P)H and ATP production). Independent of the TCAcycle, direct cleavage of acetyl-CoA to CO and 5,10-methyl-THF also leadsto production of NADH and ATP. Although the genome annotation implicatesa ferredoxin-dependentoxoglutarate synthase, isotopic evidence does notsupport flux through this reaction in either the oxidative or reductivemode; therefore, the TCA cycle is incomplete. FT-ICR MS was used tolocate the labeled carbon distribution in aspartate and glutamate andconfirmed the presence of an atypical enzyme for citrate formationsuggested in previous reports (the citrate synthesized by this enzyme isthe isotopic antipode of the citrate synthesized by the (S)-citratesynthase). These findings enable a better understanding of the relationbetween genome annotation and actual metabolic pathways in D. vulgaris,and also demonstrate FT-ICR MS as a powerful tool for isotopomeranalysis, overcoming problems in both GC-MS and NMRspectroscopy.

  14. Two dimensional correlation analysis of Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter: a new graphical analysis of trends.

    PubMed

    Abdulla, Hussain A N; Sleighter, Rachel L; Hatcher, Patrick G

    2013-04-16

    Two-dimensional (2D) correlation analysis was applied to 20 Fourier transform ion cyclotron resonance mass spectra (FTICR-MS) of ultrafiltered dissolved organic matter samples from a salinity transect of the lower Chesapeake Bay. We were able to investigate the chemical changes in the dissolved organic matter pool at the molecular level and classify the individual peaks based on their biogeochemical reactivity. The power of this technique is its ability to be used on either the presence/absence of the individual peaks or their normalized magnitudes. The presence or absence of the peaks are utilized to identify the reactivity and correlation between peaks that plot in different regions of the van Krevelen diagram, whereas the normalized magnitudes are used to correlate the changes among individual peaks. One of the promising advantages of 2D correlation of FTICR-MS data is the ability to associate the variations of the individual peaks with the changes in the functional groups that are measured by other spectroscopic techniques. This approach takes us one step further from identifying molecular formulas to proposing chemical structures. PMID:23472832

  15. The Use of Accurate Mass Tags based upon High-Throughput Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Global Proteomic Characterization

    SciTech Connect

    Camp, David G.; Smith, Richard D.

    2004-07-30

    In this review, we describe the technological basis and progress towards a new global proteomics strategy that uses peptide accurate mass measurements augmented by information from separations (e.g. LC retention times) to provide large improvements in sensitivity, dynamic range, comprehensiveness and throughput. The use of ?accurate mass and time? (AMT) tags serves to eliminate the need for routine MS/MS measurements [#4109]. As the case study, we use our own research efforts to illustrate the role of AMTs within the broader context of a state-of-the-art proteomics effort. Our strategy exploits high-resolution capillary LC separations combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). AMTs represent peptide biomarkers and can be used to confidently identify proteins based on the high mass measurement accuracy provided by FTICR combined with LC elution times. Once identified using MS/MS, these biomarkers provide the foundation for subsequent high throughput studies using only AMT tags to identify and quantify the proteins expressed within a cell system. Key attractions of this approach include the feasibility of completely automated high confidence protein identifications, extensive proteome coverage, and the capability for exploiting stable-isotope labeling methods for high precision abundance measurements [#4019]. Additional developments described in this review include methods for more effective coverage of membrane proteins [#4184], for dynamic range expansion of proteome measurements [#4012], and for multi-stage separations that promise to enable more focused analyses, further extend the quality of measurements, and also extend measurements to more complex proteomes.

  16. Metabolic profile of salidroside in rats using high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Han, Fei; Li, Yan-ting; Mao, Xin-juan; Zhang, Xiao-shu; Guan, Jiao; Song, Ai-hua; Yin, Ran

    2016-03-01

    A high-performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (HPLC-FT-ICR MS) method was developed to study the in vivo metabolism of salidroside for the first time. Plasma, urine, bile, and feces samples were collected from male rats after a single intragastric gavage of salidroside at a dose of 50 mg/kg. Besides the parent drug, a total of seven metabolites (three phase I and four phase II metabolites) were detected and tentatively identified by comparing their mass spectrometry profiles with those of salidroside. Results indicated that metabolic pathways of salidroside in male rats included hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. Among them, glucuronidation and sulfate conjugation were the major metabolic reactions. And most important, the detection of the sulfation metabolite of p-tyrosol provides a clue for whether the deglycosylation of salidroside occurs in vivo after intragastric gavage. In summary, results obtained in this study may contribute to the better understanding of the safety and mechanism of action of salidroside. PMID:26558763

  17. Characterization of organic material in ice core samples from North America, Greenland, and Antarctica using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Catanzano, V.; Grannas, A. M.; Sleighter, R. L.; Hatcher, P. G.

    2013-12-01

    Historically, it has been an analytical challenge to detect and identify the organic components present in ice cores, due to the low abundance of organic carbon. In order to detect and characterize the small amounts of organic matter in ice cores, ultra high resolution instrumentation is required. Here we report the use of ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry, coupled with electrospray ionization, to identify the molecular formulas and compound classes of organic matter in both modern and ancient ice core and glacial samples from Wyoming, Greenland, and Antarctica. A suite of 21 samples were analyzed and thousands of distinct molecular species were identified in each sample, providing clues to the nature and sources of organic matter in these regions. Major biochemical classes of compounds were detected such as lignins, tannins, carbohydrates, proteins, lipids, unsaturated hydrocarbons, and condensed aromatic compounds. We will compare the nature of the organic matter present in the samples in order to determine the differences in dominant organic compound classes and in heteroatom (nitrogen and sulfur) abundance. By analyzing these differences, it is possible to investigate the historical patterns of organic matter deposition/source, and begin to investigate the influence of climate change, volcanism, and onset of the industrial revolution on the nature of organic matter preserved in ice cores.

  18. Fourier transform interferometer alignment method.

    PubMed

    Goldberg, Kenneth A; Naulleau, Patrick; Bokor, Jeffrey

    2002-08-01

    A rapid and convenient method has been developed to facilitate the alignment of the image-plane components of point-diffraction interferometers, including the phase-shifting point-diffraction interferometer. In real time, the Fourier transform of the detected image is used to calculate a pseudoimage of the electric field in the image plane of the test optic where thecritical alignment o f variousoptical components is performed. Reconstruction of the pseudoimage is similar to off-axis, Fourier transform holography. Intermediate steps in the alignment procedure are described. Fine alignment is aided by the introduction and optimization of a global-contrast parameter that is easily calculated from the Fourier transform. Additional applications include the alignment of image-plane apertures in general optical systems, the rapid identification of patterned image-plane alignment marks, and the probing of important image-plane field properties. PMID:12153074

  19. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Guo, Kevin; Bamforth, Fiona; Li, Liang

    2011-02-01

    Metabolome analysis of human cerebrospinal fluid (CSF) is challenging because of low abundance of metabolites present in a small volume of sample. We describe and apply a sensitive isotope labeling LC-MS technique for qualitative analysis of the CSF metabolome. After a CSF sample is divided into two aliquots, they are labeled by 13C-dansyl and 12C-dansyl chloride, respectively. The differentially labeled aliquots are then mixed and subjected to LC-MS using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS). Dansylation offers significant improvement in the performance of chromatography separation and detection sensitivity. Moreover, peaks detected in the mass spectra can be readily analyzed for ion pair recognition and database search based on accurate mass and/or retention time information. It is shown that about 14,000 features can be detected in a 25-min LC-FTICR MS run of a dansyl-labeled CSF sample, from which about 500 metabolites can be profiled. Results from four CSF samples are compared to gauge the detectability of metabolites by this method. About 261 metabolites are commonly detected in replicate runs of four samples. In total, 1132 unique metabolite ion pairs are detected and 347 pairs (31%) matched with at least one metabolite in the Human Metabolome Database. We also report a dansylation library of 220 standard compounds and, using this library, about 85 metabolites can be positively identified. Among them, 21 metabolites have never been reported to be associated with CSF. These results illustrate that the dansylation LC-FTICR MS method can be used to analyze the CSF metabolome in a more comprehensive manner.

  20. Static Fourier transform infrared spectrometer.

    PubMed

    Schardt, Michael; Murr, Patrik J; Rauscher, Markus S; Tremmel, Anton J; Wiesent, Benjamin R; Koch, Alexander W

    2016-04-01

    Fourier transform spectroscopy has established itself as the standard method for spectral analysis of infrared light. Here we present a robust and compact novel static Fourier transform spectrometer design without any moving parts. The design is well suited for measurements in the infrared as it works with extended light sources independent of their size. The design is experimentally evaluated in the mid-infrared wavelength region between 7.2 μm and 16 μm. Due to its large etendue, its low internal light loss, and its static design it enables high speed spectral analysis in the mid-infrared. PMID:27137061

  1. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  2. Identification of cytochrome P450 3A4 modification site with reactive metabolite using linear ion trap-Fourier transform mass spectrometry.

    PubMed

    Yukinaga, Hideo; Takami, Tomonori; Shioyama, Sho-Hei; Tozuka, Zenzaburo; Masumoto, Hiroshi; Okazaki, Osamu; Sudo, Ken-Ichi

    2007-10-01

    Covalent binding of reactive metabolites to cytochrome P450s (P450s) often causes their mechanism-based inactivation (MBI), resulting in drug-drug interactions or toxicity. The detection and identification of the P450 sites to which reactive metabolites bind would elucidate MBI mechanisms. We describe a proteomic approach using nano-LC/linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to characterize the binding of a reactive metabolite of raloxifene, which is a known P450 3A4 inhibitor, to the P450 3A4 isozyme. LTQ-FT analyses revealed that the metabolic reaction of raloxifene in a reconstituted P450 3A4 system formed a reactive metabolite adduct to P450 3A4 apoprotein, accompanied by a mass shift of 471 Da relative to intact P450 3A4 apoprotein. The reaction mixtures were digested with trypsin, and then the tryptic digests were analyzed by nano-LC-MS/MS. This technique revealed that VWGFYDGQQPVLAITDPDMIK (position 71-91) was a tryptic peptide modified by the reactive metabolite derived from raloxifene. The site of adduction with the reactive metabolite was further postulated to be the nucleophilic OH group of Tyr-75 of P450 3A4. A proteomic approach using LTQ-FT can yield direct information on the P450 3A4 modification site without radiolabeled compounds. In addition, this information can elucidate mechanisms involved in the covalent binding of reactive metabolites and the inactivation of P450 3A4. PMID:17867646

  3. The influence of alkali metal ions in the chemisorption of CO and CO{sub 2} on supported palladium catalysts: A Fourier transform infrared spectroscopic study

    SciTech Connect

    Liotta, L.F.; Deganello, G.; Martin, G.A.

    1996-12-01

    Two series of palladium-based catalysts were compared on the basis of the adsorption of CO and CO{sub 2}, monitored by Fourier transform infrared spectroscopy. The first series is represented by a silica-supported palladium catalyst and by some catalysts derived from it by addition of different amounts of sodium ion 0 {le} R {le} 25.6, where R is the atomic ratio Na/Pd. The second series consists of palladium catalysts supported on {open_quotes}model{close_quotes} and natural pumices. The model pumices, obtained by sol-gel techniques, are silico-aluminates containing variable amounts of sodium so that the corresponding Pd catalysts have an R value in the range 0{le}R{le}6.1. In the Pd/natural pumice catalysts, changes of the atomic ratio R{prime} = (Na + K)/Pd are achieved with different palladium loadings. Despite the analogous behaviour of the catalysts of both series when R=0, the presence of increasing alkali metal ions induces different behaviour towards the adsorption of CO. On increasing R in the Na-Pd/SiO{sub 2} series there is a progressive weakening of the C-O bond to produce eventually carbonates, whereas only a decrease of the amount of adsorbed CO occurs in the Pd/model pumice series (R{le}6.1). Furthermore, only physisorbed CO bands are observed in Pd/natural pumice catalysts (R{prime}{le}17). Different behaviour is also noticed towards the adsorption of CO{sub 2}: the equilibrium CO{sub 2}(gas){r_equilibrium}CO{sub ads}+O{sub ads} occurs in the Pd/SiO{sub 2} series, in contrast to the Pd/pumice series where only carbonate species on the surface of the support are detected. 83 refs., 12 figs., 4 tabs.

  4. DNA Interactions Probed by Hydrogen-Deuterium Exchange (HDX) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Confirm External Binding Sites on the Minichromosomal Maintenance (MCM) Helicase.

    PubMed

    Graham, Brian W; Tao, Yeqing; Dodge, Katie L; Thaxton, Carly T; Olaso, Danae; Young, Nicolas L; Marshall, Alan G; Trakselis, Michael A

    2016-06-10

    The archaeal minichromosomal maintenance (MCM) helicase from Sulfolobus solfataricus (SsoMCM) is a model for understanding structural and mechanistic aspects of DNA unwinding. Although interactions of the encircled DNA strand within the central channel provide an accepted mode for translocation, interactions with the excluded strand on the exterior surface have mostly been ignored with regard to DNA unwinding. We have previously proposed an extension of the traditional steric exclusion model of unwinding to also include significant contributions with the excluded strand during unwinding, termed steric exclusion and wrapping (SEW). The SEW model hypothesizes that the displaced single strand tracks along paths on the exterior surface of hexameric helicases to protect single-stranded DNA (ssDNA) and stabilize the complex in a forward unwinding mode. Using hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance MS, we have probed the binding sites for ssDNA, using multiple substrates targeting both the encircled and excluded strand interactions. In each experiment, we have obtained >98.7% sequence coverage of SsoMCM from >650 peptides (5-30 residues in length) and are able to identify interacting residues on both the interior and exterior of SsoMCM. Based on identified contacts, positively charged residues within the external waist region were mutated and shown to generally lower DNA unwinding without negatively affecting the ATP hydrolysis. The combined data globally identify binding sites for ssDNA during SsoMCM unwinding as well as validating the importance of the SEW model for hexameric helicase unwinding. PMID:27044751

  5. Design and Characterization of a High-power Laser-induced Acoustic Desorption (LIAD) Probe Coupled with a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Shea, Ryan C.; Habicht, Steven C.; Vaughn, Weldon E.; Kenttämaa, Hilkka I.

    2008-01-01

    We report here the construction and characterization of a high-power laser-induced acoustic desorption (LIAD) probe designed for Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometers to facilitate analysis of non-volatile, thermally labile compounds. This “next generation” LIAD probe offers significant improvements in sensitivity and desorption efficiency for analytes with larger molecular weights via the use of higher laser irradiances. Unlike the previous probes which utilized a power limiting optical fiber to transmit the laser pulses through the probe, this probe employs a set of mirrors and a focusing lens. At the end of the probe, the energy from the laser pulses propagates through a thin metal foil as an acoustic wave, resulting in desorption of neutral molecules from the opposite side of the foil. Following desorption, the molecules can be ionized by electron impact or chemical ionization. Almost an order of magnitude greater power density (up to 5.0 × 109 W/cm2) is achievable on the backside of the foil with the high-power LIAD probe compared to the earlier LIAD probes (maximum power density ~9.0 × 108 W/cm2). The use of higher laser irradiances is demonstrated not to cause fragmentation of the analyte. The use of higher laser irradiances increases sensitivity since it results in the evaporation of a greater number of molecules per laser pulse. Measurement of the average velocities of LIAD evaporated molecules demonstrates that higher laser irradiances do not correlate with higher velocities of the gaseous analyte molecules. PMID:17319645

  6. Detection of Biosignatures using Geomatrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Implications for the Search for Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Richardson, C. D.; Kotler, J. M.; Hinman, N. W.; Scott, J. R.

    2008-12-01

    Detection of bio/organic signatures, defined as an organic structure produced by living organisms or derived from other biogenic organic compounds, is essential to investigating the origin and distribution of extant or extinct life in the solar system. In conjunction with mineralogical, inorganic, and isotopic data, the detection and identification of bio/organic signatures can assist in linking biochemical and geochemical processes. Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is a proven method of obtaining bio/organic signatures from a range of geological materials. Sulfate salts were studied because they are found on Mars and Jovian satellites. The goal here was to determine (1) which combinations of bio/organic compounds and sulfate salts produced distinctive spectral signatures, and (2) the detection limit of the method. In these experiments, thenardite (Na2SO4) was mixed with stearic acid to determine the detection limit of GALDI-FTICR-MS, previously estimated to be 3 ppt, which corresponds to approximately 7 zeptomoles (10-21) per laser shot. All spectra were collected with little to no sample preparation and were acquired using a single laser shot. Unlike conventional analytical practices, the signal-to-noise ratio increased as the concentration of bio/organic compounds decreased relative to the mineral host. In combination with thenardite, aromatic amino acids were observed to undergo simple cation attachment ([M+Na]+) due to the π-bonded aromatic ring. Subsequent cation substitution of the carboxyl group led to formation of peaks representing double cation attachment ([M-H+Na]Na+). Spectra from naturally occurring thenardite and jarosite (XFe3(OH)6(SO4)2) revealed the presence of high mass cluster ions; analysis of their isotopic distribution suggested the presence of bio/organic compounds. High mass cluster ions, both organic and inorganic, readily

  7. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments

  8. Fourier-transform optical microsystems

    NASA Technical Reports Server (NTRS)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  9. JPL Fourier transform ultraviolet spectrometer

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

    1994-01-01

    The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

  10. Fourier-Transform Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Schindler, R. A.

    1986-01-01

    Fourier-transform spectrometer provides approximately hundredfold increase in luminosity at detector plane over that achievable with older instruments of this type. Used to analyze such weak sources as pollutants and other low-concentration substances in atmosphere. Interferometer creates fringe patterns on two distinct arrays of light detectors, which observe different wavelength bands. Objective lens focuses scene on image plane, which contains optical chopper. To make instrument less susceptible to variations in scene under observation, field and detector lenses focus entrance aperture, rather that image, onto detector array.

  11. Improved Fourier-transform profilometry

    SciTech Connect

    Mao Xianfu; Chen Wenjing; Su Xianyu

    2007-02-10

    An improved optical geometry of the projected-fringe profilometry technique, in which the exit pupil of the projecting lens and the entrance pupil of the imaging lens are neither at the same height above the reference plane nor coplanar, is discussed and used in Fourier-transform profilometry. Furthermore, an improved fringe-pattern description and phase-height mapping formula based on the improved geometrical generalization is deduced. Employing the new optical geometry, it is easier for us to obtain the full-field fringe by moving either the projector or the imaging device. Therefore the new method offers a flexible way to obtain reliable height distribution of a measured object.

  12. A high-resolution scanning microprobe matrix-assisted laser desorption/ionization ion source for imaging analysis on an ion trap/Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Koestler, Martin; Kirsch, Dieter; Hester, Alfons; Leisner, Arne; Guenther, Sabine; Spengler, Bernhard

    2008-10-01

    A new scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) ion source for high spatial resolution has been developed for linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The source is fully compatible with commercial ion trap flanges (such as the LTQ series, Thermo Fisher Scientific). The source is designed for atmospheric pressure (AP) operation but is also suitable for mid-pressure operation. The AP mode is especially useful for investigating volatile compounds. The source can be interchanged with other ion sources within a minute when operated in the AP mode. Combining high-lateral resolution MALDI imaging with high mass resolution and high mass accuracy mass spectrometry, available in the FT-ICR mode, provides a new quality of analytical information, e.g. from biological samples. First results obtained with the new ion source demonstrate a maximum lateral resolution of 0.6 by 0.5 microm. Depending on the limit of detection of the chosen mass analyzer, however, the size of the focus had to be enlarged to a diameter of up to 8 microm in the FT-ICR mode, in order to create enough ions for detection. Mass spectra acquired for analytical imaging were obtained from single laser pulses per pixel in all the experiments. This mode allows us to investigate biological thin sections with desorption focus diameters in the micrometer range, known to cause complete evaporation of material under the laser focus with a very limited number of laser pulses. As a first example, peptide samples deposited in microstructures were investigated with the new setup. A high quality and validity of the acquired images were obtained in the ion trap mode due to the low limit of detection. High mass resolution and accuracy but poorer image quality were obtained in the ICR mode due to the lower detection sensitivity of the ICR detector. PMID:18819119

  13. New analytical technique for establishing the quality of Soil Organic Matter affected by a wildfire. A first approach using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Waggoner, Derek C.; Almendros, Gonzalo; González-Vila, Francisco J.; Hatcher, Patrick G.

    2016-04-01

    Introduction: Fire is one of the most important modulator factors of the environment and the forest. It is able to induce chemical and biological shifts and these, in turn, can alter the physical properties of soil. Generally, fire affects the most reactive fraction, soil organic matter (SOM) (González-Pérez et al., 2004) resulting in changes to several soil properties and functions. To study changes in SOM following a wildfire, researchers can count on several traditional as well as new analytical techniques. One of the most recently employed techniques is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This new powerful ultra-high resolution mass spectral technique, together with graphic interpretation tools such as van Krevelen diagrams (Kim et al, 2003), may be used to shed light on alterations caused by the burning of SOM. The objective of this research is to study fire impacts on SOM, using a sandy soil collected under a Cork oak (Quercus suber) in Doñana National Park, Southwest Spain. that was affected by a wildfire in August 2012. Methods: The impact of fire on SOM was studied in various different sieve fractions (coarse, 1-2 mm, and fine, <0.05 mm) collected in a burned area and an adjacent unburned control site with the same physiographic conditions. Alkaline extracts of SOM from each soil sample were examined using a Bruker Daltonics 12 Tesla Apex Qe FT-ICR-MS equipped with an Apollo II ESI ion source (operating in negative ion mode). The ESI voltages were optimized for each sample, and all spectra were internally calibrated following the procedure of (Sleighter and Hatcher, 2007), after which, peaks were assigned unique molecular formulas using a MatLab script written in house by Dr. Wassim Obeid of Old Dominion University. Results: The van Krevelen diagrams together with the relative intensity of each chemical compound, both obtained by FT-ICR-MS, allowed us to assess SOM quality for each sample and size fractions. The

  14. New analytical technique for establishing the quality of Soil Organic Matter affected by a wildfire. A first approach using Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jiménez-Morillo, Nicasio T.; González-Pérez, José A.; Waggoner, Derek C.; Almendros, Gonzalo; González-Vila, Francisco J.; Hatcher, Patrick G.

    2016-04-01

    Introduction: Fire is one of the most important modulator factors of the environment and the forest. It is able to induce chemical and biological shifts and these, in turn, can alter the physical properties of soil. Generally, fire affects the most reactive fraction, soil organic matter (SOM) (González-Pérez et al., 2004) resulting in changes to several soil properties and functions. To study changes in SOM following a wildfire, researchers can count on several traditional as well as new analytical techniques. One of the most recently employed techniques is Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This new powerful ultra-high resolution mass spectral technique, together with graphic interpretation tools such as van Krevelen diagrams (Kim et al, 2003), may be used to shed light on alterations caused by the burning of SOM. The objective of this research is to study fire impacts on SOM, using a sandy soil collected under a Cork oak (Quercus suber) in Doñana National Park, Southwest Spain. that was affected by a wildfire in August 2012. Methods: The impact of fire on SOM was studied in various different sieve fractions (coarse, 1-2 mm, and fine, <0.05 mm) collected in a burned area and an adjacent unburned control site with the same physiographic conditions. Alkaline extracts of SOM from each soil sample were examined using a Bruker Daltonics 12 Tesla Apex Qe FT-ICR-MS equipped with an Apollo II ESI ion source (operating in negative ion mode). The ESI voltages were optimized for each sample, and all spectra were internally calibrated following the procedure of (Sleighter and Hatcher, 2007), after which, peaks were assigned unique molecular formulas using a MatLab script written in house by Dr. Wassim Obeid of Old Dominion University. Results: The van Krevelen diagrams together with the relative intensity of each chemical compound, both obtained by FT-ICR-MS, allowed us to assess SOM quality for each sample and size fractions. The

  15. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics.

    PubMed

    Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir

    2016-01-01

    Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903

  16. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

    PubMed Central

    Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir

    2016-01-01

    Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903

  17. Fourier transform infrared (FTIR) spectroscopy.

    PubMed

    Berthomieu, Catherine; Hienerwadel, Rainer

    2009-01-01

    Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method. PMID:19513810

  18. IDENTIFICATION OF MICROCYSTIN TOXINS FROM A STRAIN OF MICROCYSTIS AERUGINOSA BY LIQUID CHROMATOGRAPHY INTRODUCTION INTO A HYBRID LINEAR ION TRAP-FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETER

    EPA Science Inventory

    The cyclic heptapeptide microcystin toxins produced by a strain of Microcystis aeruginosa that has not been investigated previously were separated by liquid chromatography and identified by high-accuracy m/z measurements of their [M + H]+ ions and the fragment i...

  19. The fractional Fourier transform and applications

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  20. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the Geo

  1. The Geostationary Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  2. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOEpatents

    McLuckey, Scott A.; Goeringer, Douglas E.

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  3. Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier transform ion cyclotron resonance.

    PubMed

    Jiang, Bin; Liang, Yongmei; Xu, Chunming; Zhang, Jingyi; Hu, Miao; Shi, Quan

    2014-05-01

    Aromatic fractions derived from aerosol samples were characterized by gas chromatography and mass spectrometry (GC-MS), high temperature simulated distillation (SIMDIS), and positive-ion atmospheric pressure photoionization (APPI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. It was found that about 27 wt % compounds in aromatic fractions could not be eluted from a GC column and some large molecule PAHs were neglected in GC-MS analysis. APPI FT-ICR MS was proven to be a powerful approach for characterizing the molecular composition of aromatics, especially for the large molecular species. An aromatic sample from Beijing urban aerosol was successfully characterized by APPI FT-ICR MS. Results showed that most abundant aromatic compounds in PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) were highly condensed hydrocarbons with 4-8 aromatic rings and their homologues with very short alkyl chains. Furthermore, heteroatom-containing hydrocarbons were found as the significant components of the aromatic fractions: O1, O2, N1, and S1 class species with 10-28 DBEs (double bond equivalents) and 14-38 carbon numbers were identified by APPI FT-ICR MS. The heteroatom PAHs had similar DBEs and carbon number distribution as regular PAHs. PMID:24702199

  4. Reactivity and chemical characterization of effluent organic nitrogen from wastewater treatment plants determined by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Mesfioui, Rajaa; Love, Nancy G; Bronk, Deborah A; Mulholland, Margaret R; Hatcher, Patrick G

    2012-03-01

    In advanced wastewater treatment plants that achieve high levels of nitrogen (N) removal, up to one-third of the N in effluent is organic, herein referred to as effluent organic N (EON). While we know that inorganic N is highly labile, it is unclear what fraction of EON is bioavailable. In this study, we demonstrate the utility of a method that can be used to examine the reactivity of EON in natural receiving waters to better understand both the ecosystem response and the potential bioavailability of EON. The technique is suitable for analyzing polar organic matter in natural waters; electrospray ionization coupled with Fourier transform mass spectrometry. Bioassays were performed on samples collected at the end of the biological process from two wastewater treatment plants achieving advanced N removal. The samples were concentrated, and then added to natural water samples collected from the oligohaline James River, a major tributary of the Chesapeake Bay. Our results demonstrate that while the lignin-like fraction of the effluent dissolved organic matter (some of which contains N) was conserved, a large portion of aliphatic and aromatic compounds containing N was removed (79-100%) during incubations, while other compounds were produced. Furthermore, the two effluents exhibited differences in the degree of degradation and type of degradation, which can be related both to the various processes employed in the two WWTPs and the dramatic differences in the type of influent they received. These findings suggest that EON is highly reactive in the natural environment and that simple assays examining net consumption or production of bulk dissolved organic N pools are inadequate for assessing the bioavailability of EON. PMID:22172558

  5. Identification of glucosinolates in capers by LC-ESI-hybrid linear ion trap with Fourier transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR MS) and infrared multiphoton dissociation.

    PubMed

    Bianco, Giuliana; Lelario, Filomena; Battista, Fabio Giuseppe; Bufo, Sabino A; Cataldi, Tommaso R I

    2012-09-01

    An liquid chromatography-mass spectrometry method using electrospray ionization in negative ion mode coupled with a hybrid quadrupole linear ion trap and Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was applied to characterize of intact glucosinolates (GLSs) in crude sample extracts of wild bud flowers of Capparis spinosa (Capparis species, family Capparaceae). Structural information of GLSs was obtained upon precursor ions' isolation within the FTICR trapping cell and subsequent fragmentation induced by infrared multiphoton dissociation (IRMPD). Such a fragmentation was found very useful in terms of chemical identification of all precursor ions [M-H](-) including sulfur-rich GLSs reported here for the first time. Along with most common GLSs already found in capers such as glucocapparin, isopropyl/n-propyl-GLS, mercapto-glucocapparin, and two indolic GLS, i.e., 4-hydroxyglucobrassicin and glucobrassicin, the occurrence of the uncommon glycinyl-glucocapparin as well as two sulfur-rich GLSs is reported. IRMPD showed an increased selectivity towards disulfide bond cleavages with thiol migration, suggesting the side chain structure of non-targeted compounds, i.e., disulfanyl-glucocapparin and trisulfanyl-glucocapparin. Glucocapparin [2.05 ± 0.25 mg/g, dry weight (dw)] was the most abundant GLS, followed by glucobrassicin (232 ± 18 µg/g, dw) and 4-hydroxyglucobrassicin (89 ± 12 µg/g, dw). All other compounds were present at very low content ranging from 0.5 to 1.5 µg/g dw. PMID:22972784

  6. Characterization by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry of the major photoproducts of temoporfin (m-THPC) and bacteriochlorin (m-THPBC).

    PubMed

    Angotti, M; Maunit, B; Muller, J F; Bezdetnaya, L; Guillemin, F

    2001-07-01

    The photobleaching of 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (temoporfin, m-THPC) and 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (bacteriochlorin, m-THPBC) was studied in ethanol-water (1 : 99, v/v) and in physiological medium (phosphate-buffered saline, PBS) with or without fetal calf serum (FCS). m-THPC solution was irradiated with the laser radiation of 650 nm, whereas m-THPBC solution underwent two consecutive irradiations at 532 and 650 nm. The photoproducts were characterized by UV-visible absorption spectrophotometry and by matrix-assisted laser desorption/ionization (MALDI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Independent of the solvent used, the phototransformation of either photosensitizer yielded the formation of 5,10,15,20-tetrakis (m-hydroxyphenyl)porphyrin (m-THPP) through a major dehydrogenation process. PMID:11473406

  7. Electronically-Scanned Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.

    1984-01-01

    Instrument efficient, lightweight, and stable. Fourier-transform spectrometer configuration uses electronic, instead of mechanical, scanning. Configuration insensitive to vibration-induced sampling errors introduced into mechanically scanned systems.

  8. FOURIER TRANSFORM INFRARED SPECTROMETRY OF AMBIENT AEROSOLS

    EPA Science Inventory

    Fourier transform infrared (FTIR) spectrometry has been evaluated as a method for determining the concentration of selected species present in ambient aerosols collected on Teflon filters. The filters are analyzed by transmission measurements after collection of the fine fraction...

  9. Plasma Spectrochemistry with a Fourier Transform Spectrometer.

    NASA Astrophysics Data System (ADS)

    Manning, Thomas Joseph John

    1990-01-01

    This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.

  10. Identification of unsaturated N-acylhomoserine lactones in bacterial isolates of Rhodobacter sphaeroides by liquid chromatography coupled to electrospray ionization-hybrid linear ion trap-Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Cataldi, Tommaso R I; Bianco, Giuliana; Abate, Salvatore; Losito, Ilario

    2011-07-15

    The identification of two unsaturated N-acylhomoserine lactones (AHLs) produced by Rhodobacter sphaeroides bacteria, based on liquid chromatography (LC) coupled to a hybrid quadrupole linear ion trap (LTQ)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer upon electrospray ionization (ESI), is presented. Besides the confirmation of the signaling molecule already described in the literature, i.e. (Z)-N-tetradec-7-enoyl-homoserine lactone (C(14:1)-HSL), we have discovered the occurrence, at low, yet significant levels, of another monounsaturated compound, C(12:1) -HSL, which may extend the number of small diffusible chemical signals known for R. sphaeroides. Both unsaturated AHLs were identified by high-resolution FTICR mass spectrometry in extracts of bacterial culture media and the occurrence of a C=C bond was assessed upon their conversion into bromohydrins. Collision-induced dissociation (CID) spectra were then collected on the LTQ mass analyzer. A careful comparison of tandem MS spectra of monounsaturated (i.e., C(12:1)-HSL and C(14:1)-HSL) and saturated AHLs (i.e. C(12)-HSL and C(14)-HSL) led to the emphasis of two series of product ions, exhibiting 14 Da spaced m/z ratios. Both series were referred to progressive fragmentations at the aliphatic end of the AHL acyl chains, followed by neutral losses of terminal alkenes (i.e. CH(2)=CH(CH(2))(n)H). In particular, the series located at the higher end of the explored m/z range (>200 Da), observed only for monounsaturated species, enabled the location of the C=C bond between carbons 7 and 8 of the acyl chain. PMID:21638357

  11. Imaging Fourier Transform Spectroscopy from a Space Based Platform -- The Herschel/SPIRE Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Spencer, Locke Dean

    The Herschel Space Observatory (Herschel), a flagship mission of the European Space Agency (ESA), is comprised of three cryogenically cooled instruments commissioned to explore the far-infrared/submillimetre universe. Herschel's remote orbit at the second Lagrangian point (L2) of the Sun-Earth system, and its cryogenic payload, impose a need for thorough instrument characterization and rigorous testing as there will be no possibility for any servicing after launch. The Spectral and Photometric Imaging Receiver (SPIRE) is one of the instrument payloads aboard Herschel and consists of a three band imaging photometer and a two band imaging spectrometer. The imaging spectrometer on SPIRE consists of a Mach-Zehnder (MZ)-Fourier transform spectrometer (FTS) coupled with bolometric detector arrays to form an imaging FTS (IFTS). This thesis presents experiments conducted to verify the performance of an IFTS system from a space based platform, Le. the use of the SPIRE IFTS within the Herschel space observatory. Prior to launch, the SPIRE instrument has undergone a series of performance verification tests conducted at the Rutherford Appleton Laboratory (RAL) near Oxford, UK. Canada is involved in the SPIRE project through provision of instrument development hardware and software, mission flight software, and support personnel. Through this thesis project I have been stationed at RAL for a period spanning fifteen months to participate in the development, performance verification, and characterization of both the SPIRE FTS and photometer instruments. This thesis discusses Fourier transform spectroscopy and related FTS data processing (Chapter 2). Detailed discussions are included on the spectral phase related to the FTS beamsplitter (Chapter 3), the imaging aspects of the SPIRE IFTS instrument (Chapter 4), and the noise characteristics of the SPIRE bolometer detector arrays as measured using the SPIRE IFTS (Chapter 5). This thesis presents results from experiments performed

  12. Cryogenic ion chemistry and spectroscopy.

    PubMed

    Wolk, Arron B; Leavitt, Christopher M; Garand, Etienne; Johnson, Mark A

    2014-01-21

    The use of mass spectrometry in macromolecular analysis is an incredibly important technique and has allowed efficient identification of secondary and tertiary protein structures. Over 20 years ago, Chemistry Nobelist John Fenn and co-workers revolutionized mass spectrometry by developing ways to non-destructively extract large molecules directly from solution into the gas phase. This advance, in turn, enabled rapid sequencing of biopolymers through tandem mass spectrometry at the heart of the burgeoning field of proteomics. In this Account, we discuss how cryogenic cooling, mass selection, and reactive processing together provide a powerful way to characterize ion structures as well as rationally synthesize labile reaction intermediates. This is accomplished by first cooling the ions close to 10 K and condensing onto them weakly bound, chemically inert small molecules or rare gas atoms. This assembly can then be used as a medium in which to quench reactive encounters by rapid evaporation of the adducts, as well as provide a universal means for acquiring highly resolved vibrational action spectra of the embedded species by photoinduced mass loss. Moreover, the spectroscopic measurements can be obtained with readily available, broadly tunable pulsed infrared lasers because absorption of a single photon is sufficient to induce evaporation. We discuss the implementation of these methods with a new type of hybrid photofragmentation mass spectrometer involving two stages of mass selection with two laser excitation regions interfaced to the cryogenic ion source. We illustrate several capabilities of the cryogenic ion spectrometer by presenting recent applications to peptides, a biomimetic catalyst, a large antibiotic molecule (vancomycin), and reaction intermediates pertinent to the chemistry of the ionosphere. First, we demonstrate how site-specific isotopic substitution can be used to identify bands due to local functional groups in a protonated tripeptide designed to

  13. Fast Fourier Transforms of Piecewise Constant Functions

    NASA Astrophysics Data System (ADS)

    Sorets, Eugene

    1995-02-01

    We present an algorithm for the evaluation of the Fourier transform of piecewise constant functions of two variables. The algorithm overcomes the accuracy problems associated with computing the Fourier transform of discontinuous functions; in fact, its time complexity is O (N2 logN + NP log2 (1/ε) + V log3 (1/ε)), where ε is the accuracy, N is the size of the problem, P is the perimeter of the set of discontinuities, and V is its number of vertices. The algorithm is based on the Lagrange interpolation formula and the Green's theorem, which are used to preprocess the data before applying the fast Fourier transform. It readily generalizes to higher dimensions and to piecewise smooth functions.

  14. Distinguishing of Ile/Leu amino acid residues in the PP3 protein by (hot) electron capture dissociation in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Kjeldsen, Frank; Haselmann, Kim F; Sørensen, Esben S; Zubarev, Roman A

    2003-03-15

    In hot electron capture dissociation (HECD), multiply protonated polypeptides fragment upon capturing approximately 11-eV electrons. The excess of energy upon the primary c, z* cleavage induces secondary fragmentation in z* fragments. The resultant w ions allow one to distinguish between the isomeric Ile and Leu residues. The analytical utility of HECD is evaluated using tryptic peptides from the bovine milk protein PP3 containing totally 135 amino acid residues. Using a formal procedure for Ile/Leu (Xle) residue assignment, the identities of 20 out of 25 Xle residues (80%) were determined. The identity of an additional two residues could be correctly guessed from the absence of the alternative w ions, and only two residues, for which neither expected nor alternative w ions were observed, remained unassigned. Reinspection of conventional ECD spectra also revealed the presence of Xle w ions, although at lower abundances, with 44% of all Xle residues distinguished. Using a dispenser cathode as an electron source, identification of four out of five Xle residues in a 2.7-kDa peptide was possible with one acquisition 2 s long, with identification of all five residues by averaging of five such acquisitions. Unlike the case of high-energy collision-induced dissociation, no d ions were observed in the HECD of tryptic peptides. PMID:12659185

  15. Fast Fourier Transform algorithm design and tradeoffs

    NASA Technical Reports Server (NTRS)

    Kamin, Ray A., III; Adams, George B., III

    1988-01-01

    The Fast Fourier Transform (FFT) is a mainstay of certain numerical techniques for solving fluid dynamics problems. The Connection Machine CM-2 is the target for an investigation into the design of multidimensional Single Instruction Stream/Multiple Data (SIMD) parallel FFT algorithms for high performance. Critical algorithm design issues are discussed, necessary machine performance measurements are identified and made, and the performance of the developed FFT programs are measured. Fast Fourier Transform programs are compared to the currently best Cray-2 FFT program.

  16. An Interplay Between Infrared Multiphoton Dissociation Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry and Density Functional Theory Computations in the Characterization of a Tripodal Quinolin-8-Olate Gd(III) Complex

    NASA Astrophysics Data System (ADS)

    De Bonis, Margherita; Bianco, Giuliana; Amati, Mario; Belviso, Sandra; Cataldi, Tommaso R. I.; Lelj, Francesco

    2013-04-01

    A new hexadentate, tripodal 8-hydroxyquinoline based ligand (QH3) and its gadolinium(III) tris-chelated (GdQ) complex with hemicage structure was investigated by using high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICRMS). The protonated adduct of the free ligand and its hemicage tripodal Gd(III) complex, [GdQ + H]+, were first observed in experiments of electrospray ionization (ESI) with a linear ion trap (LTQ) mass spectrometer and further investigated by using high resolution FTICRMS. Gas-phase dissociation of the protonated Gd(III) complex, by infrared multiphoton dissociation (IRMPD) FTICR MS, demonstrated a fragmentation pattern with six main product cluster ions labeled as [Fn]+ ( n = 1 up to 6). These product ions suggest the elimination of 7-amino-alkyl or 7-alkyl chains of the hemicage moiety. High resolution MS conditions allowed the elucidation of the fragmentation pattern and product ion structures along with the determination, among the isotopic pattern of Gd, of the chemical compositions of closely related species, which differ in terms of hydrogen content. Among the Gd six naturally stable isotopes, 158Gd is the most abundant, and its peak within each cluster was used as a reference for distinguishing each product ions. Computational DFT investigations were applied to give support to some hypothesis of fragmentation pathways, which could not have been easily justified on the basis of the experimental work. Furthermore, computational studies suggested the coordination geometry of the protonated parent complex and the five- and four-coordinated complexes, which derive from its fragmentation. Furthermore, experimental and computational evidences were collected about the octet spin state of the parent compound.

  17. Experimental Investigations of the Internal Energy of Molecules Evaporated via Laser-induced Acoustic Desorption into a Fourier-transform Ion Cyclotron Resonance Mass Spectrometer (LIAD/FT-ICR)

    PubMed Central

    Shea, Ryan C.; Petzold, Christopher J.; Liu, Ji-ang; Kenttämaa, Hilkka I.

    2008-01-01

    The internal energy of neutral gas-phase organic and biomolecules, evaporated by means of laser-induced acoustic desorption (LIAD) into a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR), was investigated through several experimental approaches. The desorbed molecules were demonstrated not to undergo degradation during the desorption process by collecting LIAD-evaporated molecules and subjecting them to analysis by electrospray ionization/quadrupole ion trap mass spectrometry. Previously established gas-phase basicity (GB) values were remeasured for LIAD-evaporated organic molecules and biomolecules with the use of the bracketing method. No endothermic reactions were observed. The remeasured basicity values are in close agreement with the values reported in the literature. The amount of internal energy deposited during LIAD is concluded to be less than a few kcal/mol. Chemical ionization with a series of proton transfer reagents was employed to obtain a breakdown curve for a protonated dipeptide, val-pro, evaporated by LIAD. Comparison of this breakdown curve with a previously published analogous curve obtained by using substrate-assisted laser desorption (SALD) to evaporate the peptide suggests that the molecules evaporated via LIAD have less internal energy than those evaporated via SALD. PMID:17263513

  18. Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS)

    SciTech Connect

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Lee, F.D.

    1995-05-10

    Lawrence Livermore National Laboratory is currently operating a hyperspectral imager, the Livermore Imaging Fourier Transform Infrared Spectrometer (LIFTIRS). This instrument is capable of operating throughout the infrared spectrum from 3 to 12.5 {mu}m with controllable spectral resolution. In this presentation we report on it`s operating characteristics, current capabilities, data throughput and calibration issues.

  19. Geometric Representations for Discrete Fourier Transforms

    NASA Technical Reports Server (NTRS)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  20. Ultrafast Fourier-transform parallel processor

    SciTech Connect

    Greenberg, W.L.

    1980-04-01

    A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.

  1. Clifford Fourier transform on vector fields.

    PubMed

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space. PMID:16138556

  2. A Primer of Fourier Transform NMR.

    ERIC Educational Resources Information Center

    Macomber, Roger S.

    1985-01-01

    Fourier transform nuclear magnetic resonance (NMR) is a new spectroscopic technique that is often omitted from undergraduate curricula because of lack of instructional materials. Therefore, information is provided to introduce students to the technique of data collection and transformation into the frequency domain. (JN)

  3. REMOTE FOURIER TRANSFORM INFRARED AIR POLLUTION STUDIES

    EPA Science Inventory

    A commercial Fourier transform infrared interferometer system has been installed in a van and used to make longpath absorption and single-ended emission measurements of gaseous pollutant concentrations at a variety of pollutant sources. The interferometer system is described and ...

  4. Molecular Characterization and Reactivity of Dissolved Organic Matter by High Resolution Nanospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS)

    NASA Astrophysics Data System (ADS)

    Sleighter, R. L.; Hatcher, S. A.; Hatcher, P. G.

    2006-12-01

    The ultrahigh resolving power of FTICR-MS allows for the intense characterization of dissolved organic matter (DOM). DOM is the largest reactive component of the global carbon cycle, and an improved understanding of its composition is necessary to determine the transport and eventual fate of pollutants. The seasonal and spatial variations in DOM composition are investigated by taking surface water samples from five different sampling sites, four times a year. Water sampling begins at the Dismal Swamp in North Carolina, continues north up the Elizabeth River to the Chesapeake Bay, and concludes approximately ten miles off the coast in the Atlantic Ocean. DOM was extracted from the water samples using C18 extraction disks and were prepared in 50:50 methanol:water. Ammonium hydroxide was added prior to nanospray in order to solubilize the DOM as well as to increase the ionization efficiency. The samples were continuously infused into the Apollo II ion source with an Advion TriVersa NanoMate system of a Bruker 12 Tesla Apex QE FTICR-MS with resolving powers exceeding 400,000. All samples were analyzed in negative ion mode and were externally and internally calibrated prior to data analysis. Our DOM mass spectra consist of a multitude of peaks spanning the range of 200-850 m/z. Complexity is apparent from the detection of up to 20 peaks per nominal mass at nearly every mass throughout that range. A molecular formula calculator generated molecular formula matches from which van Krevelen plots were constructed for characterization purposes. A wide range of molecules were observed each containing oxygen, sulfur and nitrogen functional groups. We utilize the van Krevelen diagram to assist in clustering the molecules according to their functional group compositions. To test the hypothesis that formation of adducts to DOM serve to protect peptides from bacterial degradation, microcosm experiments were performed with a small isotopically enriched peptide, GGGR. This peptide

  5. Epitope extraction technique using a proteolytic magnetic reactor combined with Fourier-transform ion cyclotron resonance mass spectrometry as a tool for the screening of potential vaccine lead peptides.

    PubMed

    Bílková, Z; Stefanescu, R; Cecal, R; Korecká, L; Ouzká, S; Jezová, J; Viovy, J-L; Przybylski, M

    2005-01-01

    Epitope extraction technique is based on the specific digestion of a target protein followed by immunoaffinity isolation of a specific recognition peptide. This technique, in combination with mass spectrometry, has been efficiently used for epitope identification. The major goal of this work was to utilize newly developed enzyme and immunoaffinity magnetic reactors for the epitope extraction procedure and confirm the efficiency of this improved system for epitope screening of proteins. Alginic acid-coated magnetite microparticles with immobilized TPCK-trypsin provided high working efficiency with low non-specific adsorption, digestion time in minutes and low frequency of missed cleavages. The sensitivity and specificity of tryptic fragmentation of the beta-amyloid-peptide Abeta (1-40) as a model polypeptide was confirmed by Fourier-transform ion cyclotron resonance mass spectrometry analysis. The Sepharose reactor or immunoaffinity magnetic reactors, both with anti-amyloid-beta monoclonal antibodies, were used for specific isolation and identification of target peptides. In this way, the epitope extraction technique combined with mass spectrometric analysis is shown to be an excellent base for molecular screening of potential vaccine lead proteins. PMID:16322655

  6. Evaluation of combined matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry experiments for peptide mass fingerprinting analysis.

    PubMed

    da Silva, David; Wasselin, Thierry; Carré, Vincent; Chaimbault, Patrick; Bezdetnaya, Lina; Maunit, Benoît; Muller, Jean-François

    2011-07-15

    Peptide Mass Fingerprinting (PMF) is still of significant interest in proteomics because it allows a large number of complex samples to be rapidly screened and characterized. The main part of post-translational modifications is generally preserved. In some specific cases, PMF suffers from ambiguous or unsuccessful identification. In order to improve its reliability, a combined approach using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) was evaluated. The study was carried out on bovine serum albumin (BSA) digest. The influence of several important parameters (the matrix, the sample preparation method, the amount of the analyte) on the MOWSE score and the protein sequence coverage were evaluated to allow the identification of specific effects. A careful investigation of the sequence coverage obtained by each kind of experiment ensured the detection of specific peptides for each experimental condition. Results highlighted that DHB-FTICRMS and DHB- or CHCA-TOFMS are the most suited combinations of experimental conditions to achieve PMF analysis. The association (convolution) of the data obtained by each of these techniques ensured a significant increase in the MOWSE score and the protein sequence coverage. PMID:21638364

  7. Microholography by Numerical Wavefront Reconstruction in the Fourier Transform Geometry.

    NASA Astrophysics Data System (ADS)

    Haddad, Waleed Sami

    New techniques for pulsed holographic microimaging with x-rays and visible light based on the Fourier transform geometry are presented. A charge-coupled device (CCD) is used to record the holographic information. Images are reconstructed numerically by fast Fourier transform (FFT) and by a novel "stigmatic" aberration-free technique. It is shown by numerical simulation that reconstruction by FFT inherently suffers from coma. An innovative design for a Fourier transform x -ray holographic microscope incorporating a metallic microsphere as the reference wave producing element is presented. The design is optimized for use with an x-ray laser source operating in the range lambda~eq43 A; nickel is found to be the best material for the reference sphere in this range. A visible light analog of the x-ray microscope was built and tested yielding an image of Ascaris larva. Two unique visible light Fourier transform holographic microscopes are also presented. The first incorporates a glycerol microdrop reference lens. This microscope was operated at N.A. ~ 0.25 with an argon ion laser at lambda = 514.5 nm. The transverse point spread function of the system was measured to be 1.40 mum, near the theoretical diffraction limit of 1.29 mu m. The second is a design based on a Mach-Zehnder interferometer. This Fourier Mach Zehnder holographic microscope (FMZHM) offers great flexibility and many advantages. The FMZHM was operated at N.A. _sp{~ }{>} 0.25 with lambda = 514.5 nm and yielded many 2-D and 3-D images of biological samples. A study of potential biological applications of visible and x-ray holographic microscopy is also presented.

  8. Implementation of quantum and classical discrete fractional Fourier transforms

    NASA Astrophysics Data System (ADS)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-03-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  9. Implementation of quantum and classical discrete fractional Fourier transforms

    PubMed Central

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  10. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

  11. Electro-optic Imaging Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2005-01-01

    JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

  12. Miniaturization of holographic Fourier-transform spectrometers.

    PubMed

    Agladze, Nikolay I; Sievers, Albert J

    2004-12-20

    Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777

  13. High order generalized permutational fractional Fourier transforms

    NASA Astrophysics Data System (ADS)

    Ran, Qi-Wen; Yuan, Lin; Tan, Li-Ying; Ma, Jing; Wang, Qi

    2004-02-01

    We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT), is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +infty, M = 4k (k is a natural number) and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.

  14. Quantitative Analysis of Long Chain Fatty Acids Present in a Type I Kerogen Using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Compared with BF3/MeOH Methylation/GC-FID

    NASA Astrophysics Data System (ADS)

    Kamga, Albert W.; Behar, Fancoise; Hatcher, Patrick G.

    2014-05-01

    Long chain fatty acids (LCFAs) are present in various natural samples and are easily detectable using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) in negative ion mode. The capability of the ESI-FT-ICR-MS for quantifying LCFAs was evaluated by performing a standard addition followed by an internal standard methodology to several kerogen extracts using n-C20 fatty acid as standard. As the concentration of the standard increased, the magnitude of its peak ( m/z 311.29525) increased linearly but with two separate slopes, leaving the entire mass spectra relatively unchanged, which shows evidence of reproducibility. Response factors of other LCFAs are obtained using a standard addition approach. We employed five LCFA standards ( n-C15, n-C19, n-C24, n-C26, and n-C30) with different carbon numbers. This allowed us to determine the response factor of all fatty acids (with carbon number between 15 and 30) by plotting the slope of each standard versus its carbon number. With the observed response factors and use of the internal standard, the concentrations of LCFAs in four kerogen extracts were measured by ESI-FT-ICR-MS and compared with those from GC-FID. The carbon number distribution obtained by ESI-FT-ICR-MS matched well the GC-FID distribution (5%-50%) with the exception of C16 and C18, considering that ESI-FT-ICR-MS does not differentiate between normal and branched LCFAs, whereas GC-FID does. This allows one to quantitatively compare samples with a relatively similar matrix for specific compounds such as LCFAs with no need of time-consuming derivatization procedures. Moreover, the calibration can be extended to higher carbon numbers with ESI-FT-ICR-MS, beyond the capabilities of GC/MS.

  15. Hyphenation of Thermal Analysis to Ultrahigh-Resolution Mass Spectrometry (Fourier Transform Ion Cyclotron Resonance Mass Spectrometry) Using Atmospheric Pressure Chemical Ionization For Studying Composition and Thermal Degradation of Complex Materials.

    PubMed

    Rüger, Christopher P; Miersch, Toni; Schwemer, Theo; Sklorz, Martin; Zimmermann, Ralf

    2015-07-01

    In this study, the hyphenation of a thermobalance to an ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometer (UHR FTICR MS) is presented. Atmospheric pressure chemical ionization (APCI) is used for efficient ionization. The evolved gas analysis (EGA), using high-resolution mass spectrometry allows the time-resolved molecular characterization of thermally induced processes in complex materials or mixtures, such as biomass or crude oil. The most crucial part of the setup is the hyphenation between the thermobalance and the APCI source. Evolved gases are forced to enter the atmospheric pressure ionization interface of the MS by applying a slight overpressure at the thermobalance side of the hyphenation. Using the FTICR exact mass data, detailed chemical information is gained by calculation of elemental compositions from the organic species, enabling a time and temperature resolved, highly selective detection of the evolved species. An additional selectivity is gained by the APCI ionization, which is particularly sensitive toward polar compounds. This selectivity on the one hand misses bulk components of petroleum samples such as alkanes and does not deliver a comprehensive view but on the other hand focuses particularly on typical evolved components from biomass samples. As proof of principle, the thermal behavior of different fossil fuels: heavy fuel oil, light fuel oil, and a crude oil, and different lignocellulosic biomass, namely, beech, birch, spruce, ash, oak, and pine as well as commercial available softwood and birch-bark pellets were investigated. The results clearly show the capability to distinguish between certain wood types through their molecular patterns and compound classes. Additionally, typical literature known pyrolysis biomass marker were confirmed by their elemental composition, such as coniferyl aldehyde (C10H10O3), sinapyl aldehyde (C11H12O4), retene (C18H18), and abietic acid (C20H30O2). PMID:26024433

  16. Optical image encryption based on multifractional Fourier transforms.

    PubMed

    Zhu, B; Liu, S; Ran, Q

    2000-08-15

    We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153

  17. Noise figure of amplified dispersive Fourier transformation

    SciTech Connect

    Goda, Keisuke; Jalali, Bahram

    2010-09-15

    Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.

  18. Electro-optic imaging Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  19. Secret sharing based on quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Huang, Liusheng; Shi, Runhua; He, Libao

    2013-07-01

    Secret sharing plays a fundamental role in both secure multi-party computation and modern cryptography. We present a new quantum secret sharing scheme based on quantum Fourier transform. This scheme enjoys the property that each share of a secret is disguised with true randomness, rather than classical pseudorandomness. Moreover, under the only assumption that a top priority for all participants (secret sharers and recovers) is to obtain the right result, our scheme is able to achieve provable security against a computationally unbounded attacker.

  20. Phase amplitude conformal symmetry in Fourier transforms

    NASA Astrophysics Data System (ADS)

    Kuwata, S.

    2015-04-01

    For the Fourier transform ℑ : L2(R) → L2(R) of a complex-valued even or odd function ψ, it is found that the amplitude invariance |ℑψ| = |ψ| leads to a phase invariance or inversion as arg(ℑψ) = ±argψ + θ (θ = constant). The converse holds unless arg ψ = constant. The condition |ψ| = |ℑψ| is required in dealing with, for example, the minimum uncertainty relation between position and momentum. Without the evenness or oddness of ψ, |ℑψ| = |ψ| does not necessarily imply arg(ℑψ) = ±argψ + θ, nor is the converse.

  1. Fourier transform infrared spectroscopy of deuterated proteins

    NASA Astrophysics Data System (ADS)

    Marcano O., A.; Markushin, Y.; Melikechi, N.; Connolly, D.

    2008-08-01

    We report on Fourier transform spectra of deuterated proteins: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor II, monoclonal antibody to ovarian cancer antigen CA125 and Osteopontin. The spectra exhibit changes in the relative amplitude and spectral width of certain peaks. New peaks not present in the non-deuterated sample are also observed. Ways for improving the deuteration of proteins by varying the temperature and dilution time are discussed. We propose the use of deuterated proteins to increase the sensitivity of immunoassays aimed for early diagnostic of diseases most notably cancer.

  2. Advanced Techniques for Fourier Transform Wavefront Reconstruction

    SciTech Connect

    Poyneer, L A

    2002-08-05

    The performance of Fourier transform (FT) reconstructors in large adaptive optics systems with Shack-Hartmann sensors and a deformable mirror is analyzed. FT methods, which are derived for point-based geometries, are adapted for use on the continuous systems. Analysis and simulation show how to compensate for effects such as misalignment of the deformable mirror and wavefront sensor gain. Further filtering methods to reduce noise and improve performance are presented. All these modifications can be implemented at the filtering stage, preserving the speed of FT reconstruction. Simulation of a large system shows how compensated FT methods can have equivalent or better performance to slower vector-matrix-multiply reconstructions.

  3. Optical interpretation of a complex-order Fourier transform.

    PubMed

    Shih, C C

    1995-05-15

    It is demonstrated that the definition of a fractional-order Fourier transform can be extended into the complexorder regime. A complex-order Fourier transform deals with the imaginary part as well as the real part of the exponential function in the integral. As a result, while the optical implementation of fractional-order Fourier transform involves gradient-index media or spherical lenses, the optical interpretation of complex-order Fourier transform is practically based on the convolution operation and Gaussian apertures. The beam width of a Gaussian beam subjected to the complex-order Fourier transform is obtained analytically with the ABCD matrix approach. PMID:19859464

  4. Compact Fourier transform spectrometer without moving parts

    NASA Astrophysics Data System (ADS)

    Huang, Chu-Yu; Estroff, B.; Wang, Wei-Chih

    2012-04-01

    Fourier transform spectroscopy (FTS) is a potent analytical tool for chemical and biological analysis, but is limited by system size, expense, and robustness. To make FTS technology more accessible, we present a compact, inexpensive FTS system based on a novel liquid crystal (LC) interferometer. This design is unique because the optical path difference (OPD) is controlled by voltage applied to the LC cell. The OPD is further improved by reflecting the polarized incident light through the LC several times before reaching the second polarizer and measurement. This paper presents the theoretical model and numerical simulations for the liquid crystal Fourier transform spectrometer (LCFTS), and experimental results from the prototype. Based on the experimental results, the LCFTS performs in accordance with the theoretical predictions, achieving a maximum OPD of 210μm and a resolution of 1nm at a wavelength of 630nm. The instrumental response refresh rate is just under 1 second. Absorbance measurements were conducted for single and mixed solutions of deionized water and isopropyl alcohol, demonstrating agreement with a commercial system and literature values. We also present the LCFTS transmission spectra for varying concentrations of potassium permanganate to show system sensitivity.

  5. The PROSAIC Laplace and Fourier Transform

    SciTech Connect

    Smith, G.A.

    1994-11-01

    Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today`s emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting.

  6. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    NASA Astrophysics Data System (ADS)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    subsequent separation into asphaltenes, aliphatic hydrocarbons, aromatic hydrocarbons, neutral nitrogen, sulphur, oxygen (NSO) compounds and carboxylic acids. The asphaltene fractions are analysed using pyrolysis-GC, all other fractions are analysed by GC-MS. Additionally Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) is used to study the chemical composition of the samples on the molecular level using different ionisation methods.

  7. Two-dimensional fourier transform spectrometer

    DOEpatents

    DeFlores, Lauren; Tokmakoff, Andrei

    2013-09-03

    The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.

  8. Compact snapshot birefringent imaging Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Kudenov, Michael W.; Dereniak, Eustace L.

    2010-08-01

    The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.

  9. Surface Inspection using fourier transform infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Smyrl, N.R.; Williams, D.M.; Meyers, H.M. III; Barber, T.E.; Marrero-Rivera, M.

    1994-08-08

    The use of reflectance Fourier transform infrared (FTIR) spectroscopy as a tool for surface inspection is described. Laboratory instruments and portable instruments can support remote sensing probes that can map chemical contaminants on surfaces. Detection limits under the best of conditions are in the subnanometer range (i.e., near absolute cleanliness), excellent performance is obtained in the submicrometer range, and useful performance may exist for films tens of microns thick. Identifying and quantifying contamination such as mineral oils and greases, vegetable oils, and silicone oils on aluminum foil, galvanized sheet steel, smooth aluminum tubing, and gritblasted 7075 aluminum alloy and D6AC steel are described. The ability to map in time and space the distribution of oil stains on metals is demonstrated. Techniques for quantitatively applying oils to metals, subsequently verifying the application, and nonlinear relationships between reflectance and the quantity of oil are discussed.

  10. Optical correction using fourier transform heterodyne

    NASA Astrophysics Data System (ADS)

    Laubscher, Bryan E.; Nemzek, Robert J.; Cooke, Bradly J.; Olivas, Nicholas L.; Jorgensen, Anders M.; Smith, J. A.; Weisse-Bernstein, Nina R.

    2005-08-01

    In this paper we briefly present the theory of Fourier Transform Heterodyne (FTH), describe past verification experiments carried out, and discuss the experiment designed to use this new imaging technology to perform optical correction. FTH uses the scalar projection of a reference laser beam and a test laser beam onto a single element detector. The complex current in the detector yields the coefficient of the scalar projection. By projecting a complete orthonormal basis set of reference beams onto the test beam, the amplitude and phase of the test beam can be measured, allowing the reconstruction of the phasefront of the image. Experiments to determine this technique's applicability to optical correction and optical self-correction are continuing. Applications of this technique beyond optical correction include adaptive optics; interferometry; and active, high background, low signal imaging.

  11. FFTW: Fastest Fourier Transform in the West

    NASA Astrophysics Data System (ADS)

    Frigo, Matteo; Johnson, Steven G.

    2012-01-01

    FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). Benchmarks performed on a variety of platforms show that FFTW's performance is typically superior to that of other publicly available FFT software, and is even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program will perform well on most architectures without modification. The FFTW library is required by other codes such as StarCrash and Hammurabi.

  12. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  13. Uncertainty relation for the discrete Fourier transform.

    PubMed

    Massar, Serge; Spindel, Philippe

    2008-05-16

    We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form UV=e(i phi) VU. Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous variables position and momentum. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper's equation, a discrete version of the harmonic oscillator equation. PMID:18518426

  14. Fourier transform infrared spectroscopic study of truffles

    NASA Astrophysics Data System (ADS)

    Zhao, Dezhang; Liu, Gang; Song, Dingshan; Liu, Jian-hong; Zhou, Yilan; Ou, Jiaming; Sun, Shizhong

    2006-01-01

    Truffles are rare wild growing edible mushrooms belonging to Ascomycetes. In this paper, Fourier transform infrared (FTIR) spectroscopy was used to obtain vibrational spectra of truffles. The results show that the mushrooms exhibit characteristic spectra. The two strongest absorption bands appear at about 1077cm -1 and 1040 cm -1, which were described as C-O stretching in carbohydrate. The vibrational spectra indicate that the main compositions of the truffles are polysaccharide and protein. According to the characteristics bands and absorption ratios of spectra, different species of truffles can be discriminated. It is also found the great changes between moldy and healthy truffles, which the major differences are observed in the bands of protein. In addition, FTIR spectral differences are observed between the same species of truffles from different producing areas. It is showed that the FTIR spectroscopic method is valuable tool for rapid and nondestructive analysis of truffles prior to any extraction method used.

  15. Fourier transform infrared spectroscopy for Mars science

    NASA Astrophysics Data System (ADS)

    Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin

    2005-03-01

    Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.

  16. Discrete Fourier transforms of nonuniformly spaced data

    NASA Technical Reports Server (NTRS)

    Swan, P. R.

    1982-01-01

    Time series or spatial series of measurements taken with nonuniform spacings have failed to yield fully to analysis using the Discrete Fourier Transform (DFT). This is due to the fact that the formal DFT is the convolution of the transform of the signal with the transform of the nonuniform spacings. Two original methods are presented for deconvolving such transforms for signals containing significant noise. The first method solves a set of linear equations relating the observed data to values defined at uniform grid points, and then obtains the desired transform as the DFT of the uniform interpolates. The second method solves a set of linear equations relating the real and imaginary components of the formal DFT directly to those of the desired transform. The results of numerical experiments with noisy data are presented in order to demonstrate the capabilities and limitations of the methods.

  17. Linked Gas Chromatography/Fourier Transform Infrared Spectrometry/Fourier Transform Mass Spectrometry For Mixture Analysis

    NASA Astrophysics Data System (ADS)

    Laude, David A., Jr.; Johlman, Carolyn; Wilkins, Charles L.

    1985-12-01

    During the past few years it has been demonstrated that linkage of multiple spectrometry systems with gas chromatography (GC) offers significant advantages for structural analysis of mixture components as they are sepa-rated. In the work to be described, a Fourier transform mass spectrometer (FTMS) has been linked in parallel with a Fourier transform infrared (FTIR) spectrometer for concurrent analysis of GC eluants from a fused silica capillary column. This system provides FTIR, electron impact, and chemical ionization mass spectral analysis of each mixture component as it emerges from the GC. Furthermore, mass measurement accuracy in the low ppm range in the absence of calibrant is made possible by the FTMS. Effective use of the com-plementary information obtained is shown to produce more reliable analytical performance than for any individual measurement.

  18. Fourier transform imaging spectropolarimeter using simultaneous polarization modulation.

    PubMed

    Meng, Xin; Li, Jianxin; Liu, Defang; Zhu, Rihong

    2013-03-01

    We introduce a Fourier transform imaging spectropolarimeter composed of a simultaneous polarization modulator and a Fourier transform spectrometer without slit. The spectropolarimeter enables the generation of four sets of fringe patterns with different polarization states of light from an object point. Fourier transform of the fringe patterns provides four equations of Stokes parameters in various wavenumbers. And we can obtain the full-stokes vector from the equations. The most significant advantage of the method is that the four polarized fringe patterns are obtained simultaneously and separated without aliasing. Additionally, the advantages of the Fourier transform spectrometer are maintained, such as high radiative throughput. PMID:23455296

  19. Imaging Fourier transform spectrometry of chemical plumes

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth C.; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A midwave infrared (MWIR) imaging Fourier transform spectrometer (FTS), the Telops FIRST-MWE (Field-portable Imaging Radiometric Spectrometer Technology - Midwave Extended) has been utilized for the standoff detection and characterization of chemical plumes. Successful collection and analysis of MWIR hyperspectral imagery of jet engine exhaust has allowed us to produce spatial profiles of both temperature and chemical constituent concentrations of exhaust plumes. Successful characterization of this high temperature combustion event has led to the collection and analysis of hyperspectral imagery of lower temperature emissions from industrial smokestacks. This paper presents MWIR data from remote collection of hyperspectral imagery of methyl salicilate (MeS), a chemical warfare agent simulant, during the Chemical Biological Distributed Early Warning System (CBDEWS) test at Dugway Proving Grounds, UT in 2008. The data did not contain spectral lines associated with emission of MeS. However, a few broad spectral features were present in the background-subtracted plume spectra. Further analysis will be required to assign these features, and determine the utility of MWIR hyperspectral imagery for analysis of chemical warfare agent plumes.

  20. Coherent Fourier transform electrical pulse shaping.

    PubMed

    Xiao, Shijun; Weiner, Andrew M

    2006-04-01

    Fourier synthesis pulse shaping methods allowing generation of programmable, user defined femtosecond optical waveforms have been widely applied in ultrafast optical science and technology. In the electrical domain, arbitrary waveform generation is well established at frequencies below approximately 1 GHz, but is difficult at higher frequencies due to limitations in digital-to-analog converter technology. In this paper we demonstrate a method for electrical waveform synthesis at substantially higher frequencies (approximately 20 GHz electrical bandwidth) by combining Fourier optical pulse shaping (extended to hyperfine frequency resolution) and heterodyne optical to electrical conversion. Our scheme relies on coherent manipulation of fields and phases at all stages, both for processing in the optical domain and for conversion from the optical to the electrical domain. We illustrate this technique through a number of examples, including programmable retardation or advancement of short electrical pulses in time over a range exceeding ten pulse durations. Such optically implemented, coherent Fourier transform electrical pulse shaping should open new prospects in ultrawideband electromagnetics. PMID:19516448

  1. Fourier transform spectroscopy for future planetary missions

    NASA Astrophysics Data System (ADS)

    Brasunas, John C.; Hewagama, Tilak; Kolasinski, John R.; Kostiuk, Theodor

    2015-11-01

    Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system.Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, NASA Goddard was funded via the Planetary Instrument Definition and Development Progrem (PIDDP) to develop CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. Following the initial validation of CIRS-lite operation in the laboratory, we have been acquiring atmospheric data in the 8-12 micron window at the 1.2 m telescope at the Goddard Geophysical and Astronomical Observatory (GGAO) in Greenbelt, MD. Targets so far have included Earth's atmosphere (in emission, and in absorption against the moon), and Venus.We will present the roadmap for making CIRS-lite a viable candidate for future planetary missions.

  2. VLSI Implementation Of The Fast Fourier Transform

    NASA Astrophysics Data System (ADS)

    Chau, Paul M.; Ku, Walter H.

    1986-03-01

    A VLSI implementation of a Fast Fourier Transform (FFT) processor consisting of a mesh interconnection of complex floating-point butterfly units is presented. The Cooley-Tukey radix-2 Decimation-In-Frequency (DIF) formulation of the FFT was chosen since it offered the best overall compromise between the need for fast and efficient algorithmic computation and the need for a structure amenable to VLSI layout. Thus the VLSI implementation is modular, regular, expandable to various problem sizes and has a simple systolic flow of data and control. To evaluate the FFT architecture, VLSI area-time complexity concepts are used, but are now adapted to a complex floating-point number system rather than the usual integer ring representation. We show by our construction that the Thompson area-time optimum bound for the VLSI computation of an N-point FFT, area-time2oc = ORNlogN)1+a] can be attained by an alternative number representation, and hence the theoretical bound is a tight bound regardless of number system representation.

  3. Californium-252 plasma desorption with Fourier transform mass spectroscopy

    SciTech Connect

    Loo, J.A; Williams, E.R.; Amster, I.J.; Furlong, J.J.P.; Wang, B.H.; McLafferty, F.W.; Chait, B.T.; Field, F.H.

    1987-01-01

    Plasma desorption (PD) such, as that induced by the 100-MeV fission products of /sup 252/Cf, is a particularly promising ionization method for large molecules, yielding molecular ion species even from trypsin, molecular weight 23,463. Further, with trypsin using nitrocellulose as the substrate, (M + 3H)/sup 3 +/ is the most abundant molecular ion species and (M + 6H)/sup 6 +/ is measurable, which greatly extends the mass values (m) observable for instruments with an upper m/z limit (z = number of charges). However, a 50-..mu..Ci /sup 252/Cf source only produces 55,000 fissions s/sup -1/, yielding ion currents that are generally much too low for scanning instruments. An instrument with unusual capabilities for these, as well as for simultaneous ion detection over a wide mass range, is the Fourier transform (FT) mass spectrometer. With FTMS, Hunt has measured (M + H)/sup +/ ions of cytochrome c, molecular weight 12,384, ionized in an exterior fast-atom-bombardment source. Here the authors describe techniques for obtaining PD/FT mass spectra for a variety of compounds with abundant molecular ion species of masses as high as 2016 (alamethicin).

  4. A cryogenic scan mechanism for use in Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Blumenstock, Kenneth A.

    1995-01-01

    This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described.

  5. Geometric interpretations of the Discrete Fourier Transform (DFT)

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.

  6. Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram

    ERIC Educational Resources Information Center

    Hanley, Quentin S.

    2012-01-01

    Fourier transforms are used widely in chemistry and allied sciences. Examples include infrared, nuclear magnetic resonance, and mass spectroscopies. A thorough understanding of Fourier methods assists the understanding of microscopy, X-ray diffraction, and diffraction gratings. The theory of Fourier transforms has been presented in this "Journal",…

  7. Determination of Fourier Transforms on an Instructional Analog Computer

    ERIC Educational Resources Information Center

    Anderson, Owen T.; Greenwood, Stephen R.

    1974-01-01

    An analog computer program to find and display the Fourier transform of some real, even functions is described. Oscilloscope traces are shown for Fourier transforms of a rectangular pulse, a Gaussian, a cosine wave, and a delayed narrow pulse. Instructional uses of the program are discussed briefly. (DT)

  8. Resource requirements for a fault-tolerant quantum Fourier transform

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2014-11-01

    We investigate resource requirements for a fault-tolerant quantum Fourier transform. The quantum Fourier transform is a basic subroutine for quantum algorithms which provide an exponential speedup over known classical ones, such as Shor's algorithm for factoring. To implement single-qubit rotations required for a quantum Fourier transform in a fault-tolerant manner, we consider two types of approaches: gate synthesis and state distillation. While the gate synthesis approximates single-qubit rotations with basic quantum operations, the state distillation allows one to perform single-qubit rotations for a quantum Fourier transform exactly. It is unknown, however, which approach is better for a quantum Fourier transform. Here we develop a state-distillation method optimized for a quantum Fourier transform and compare this performance with those of state-of-the-art techniques for gate synthesis without and with ancillary states (ancillas). The performance is evaluated with the resource requirement for a quantum Fourier transform. The resource is measured by the total number of π /8 gates denoted by T , which is called the T count. Contrary to the expectation, the T count for the state distillation is considerably larger than those for the ancilla-free and ancilla-assisted gate synthesis. Thus, we conclude that the ancilla-assisted gate synthesis is a better approach to a fault-tolerant quantum Fourier transform.

  9. SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan

    2012-09-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).

  10. Signal Processing Issues in Fourier Transform Spectrometers

    NASA Astrophysics Data System (ADS)

    Hayes, Monson H.

    2002-12-01

    There are a number of interesting and challenging signal processing problems related to the design of a Fourier Transform Spectrometer (FTS). In this project, we look at a few of these problems in two different types of spectrometers-the Geostationary Imaging Fourier Transform Spectrometer (GIFTS), and a Far Infrared (FIR) FTS. One of the si nal processing challenges in GIFTS is the reduction of the massive data rate (2.4 x 109 bps) to an affordable telemetry rate of less than 60 Mbps. Since the GIFTS interferograms are heavily over-sampled, the first step is to decimate (down-sample) the interferograms with minimal distortion while keeping the signal processing algorithms simple enough to be implemented in the GIFTS hardware. Therefore, the first problem we looked at was the design of the decimation filters. Specifically, we performed a detailed analysis of two competing approaches that were being considered. The first, proposed by the Space Dynamics Lab (SDL), was to use a double sideband (real) band-pass filter. The second, proposed by Lincoln Laboratories (LL), was to use a single sideband (complex) band-pass filter. What the study showed was that a complex filter (LL approach) results in a savings of about 25% in the filtering requirements for the long-wave band, while in the mid-wave band the savings are approximately 50%. As a result, the decision was made to use a complex filter. Once the decision to use a complex filter had been made, we looked at some of the consequences of this decision. The most significant of these was the discovery that, with a complex filter, it is possible to extend the long-wave IR band beyond the folding frequency of 1174/cm and recover the SO2 line at 1176.5/cm. What this requires is the design of a band-pass decimation filter with a wider passband, and consequently of higher order. Specifically, it was shown that with about 25% more filter operations, the elusive SO2 line, believed to be irretrievable, could in fact be recovered

  11. Geostationary Fourier Transform Spectrometer (GeoFTS)

    NASA Astrophysics Data System (ADS)

    Sander, S. P.; Bekker, D. L.; Blavier, J. L.; Duren, R. M.; Eldering, A.; Frankenberg, C.; Key, R.; Manatt, K.; Miller, C. E.; Natraj, V.; Rider, D. M.; Wu, Y.

    2012-12-01

    In order to confidently project the future evolution of climate and support efforts to mitigate the climate change, quantifying the emissions of CO2 and CH4 is a national and international priority. To accomplish this goal, new observational approaches are required that operate over spatial scales ranging from regional to global, and temporal scales from diurnal to decadal. Geostationary satellite observations of CO2, CH4 and correlative quantities such as CO and chlorophyll fluorescence provide a new measurement approach to deliver the quantity and quality of data needed for improved flux estimates and an improved understanding of the partitioning between biogenic and anthropogenic sources. GeoFTS is an exciting new concept that combines the game changing technology of imaging Fourier Transform Spectroscopy with the observational advantages of a geostationary orbit. The GeoFTS observations enable well-posed surface-atmospheric carbon exchange assessments as well as quantify the atmospheric signatures of anthropogenic CO2 and CH4 emissions. GeoFTS uses a single instrument to make measurements in the near-infrared spectral region at high spectral resolution. The imaging FTS measures atmospheric CO2, CH4, and CO to deliver high-resolution maps multiple times per day. A half-meter-sized cube, the instrument is designed to be a secondary "hosted" payload on a commercial GEO satellite. The instrument leverages recent NASA technology investments, uses a flight-proven interferometer and sensor chip assemblies, and requires no new technology development. NASA and other government agencies have adopted the hosted payload implementation approach because it substantially reduces the overall mission cost. Dense continuous mapping (4 km x 4 km pixels at 40 deg. latitude) is a transformational advance beyond, and complementary to, the capabilities of the NASA missions of record in low earth orbit, providing two to three orders of magnitude improvement in the number of

  12. Technique for the metrology calibration of a Fourier transform spectrometer

    SciTech Connect

    Spencer, Locke D.; Naylor, David A

    2008-11-10

    A method is presented for using a Fourier transform spectrometer (FTS) to calibrate the metrology of a second FTS. This technique is particularly useful when the second FTS is inside a cryostat or otherwise inaccessible.

  13. A discrete Fourier transform for virtual memory machines

    NASA Technical Reports Server (NTRS)

    Galant, David C.

    1992-01-01

    An algebraic theory of the Discrete Fourier Transform is developed in great detail. Examination of the details of the theory leads to a computationally efficient fast Fourier transform for the use on computers with virtual memory. Such an algorithm is of great use on modern desktop machines. A FORTRAN coded version of the algorithm is given for the case when the sequence of numbers to be transformed is a power of two.

  14. Xgremlin: Interferograms and spectra from Fourier transform spectrometers analysis

    NASA Astrophysics Data System (ADS)

    Nave, G.; Griesmann, U.; Brault, J. W.; Abrams, M. C.

    2015-11-01

    Xgremlin is a hardware and operating system independent version of the data analysis program Gremlin used for Fourier transform spectrometry. Xgremlin runs on PCs and workstations that use the X11 window system, including cygwin in Windows. It is used to Fourier transform interferograms, plot spectra, perform phase corrections, perform intensity and wavenumber calibration, and find and fit spectral lines. It can also be used to construct synthetic spectra, subtract continua, compare several different spectra, and eliminate ringing around lines.

  15. The quest for conformal geometric algebra Fourier transformations

    NASA Astrophysics Data System (ADS)

    Hitzer, Eckhard

    2013-10-01

    Conformal geometric algebra is preferred in many applications. Clifford Fourier transforms (CFT) allow holistic signal processing of (multi) vector fields, different from marginal (channel wise) processing: Flow fields, color fields, electro-magnetic fields, ... The Clifford algebra sets (manifolds) of √-1 lead to continuous manifolds of CFTs. A frequently asked question is: What does a Clifford Fourier transform of conformal geometric algebra look like? We try to give a first answer.

  16. Implementation of weighted summation type fractional Fourier transform on FPGA

    NASA Astrophysics Data System (ADS)

    Zou, Qiming; Li, Longlong; Huang, Qian; Wang, Fei

    2015-07-01

    Recently Fractional Fourier transform (FrFT) has got a variety of applications in digital signal and image processing. This paper presents a novel hardware architecture for real-time computation of Discrete Fractional Fourier Transform (DFrFT), which can easily be extended to other fractional transforms. The proposed architecture has been verified on Xilinx FPGA(XC6VLX240T), which can run at a frequency up to 291MHz while with high accuracy.

  17. Simple optical setup implementation for digital Fourier transform holography

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. N.; Rodrigues, D. M. C.; dos Santos, P. A. M.

    2011-01-01

    In the present work a simple implementation of Digital Fourier Transform Holography (DFTH) setup is discussed. This is obtained making a very simple modification in the classical setup arquiteture of the Fourier Transform holography. It is also demonstrated the easy and practical viability of the setup in an interferometric application for mechanical parameters determination. The work is also proposed as an interesting advanced introductory training for graduated students in digital holography.

  18. Cryogenic resonator design for trapped ion experiments in Paul traps

    NASA Astrophysics Data System (ADS)

    Brandl, M. F.; Schindler, P.; Monz, T.; Blatt, R.

    2016-06-01

    Trapping ions in Paul traps require high radio frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  19. Automated charge state determination of complex isotope-resolved mass spectra by peak-target Fourier transform.

    PubMed

    Chen, Li; Yap, Yee Leng

    2008-01-01

    This study describes a new algorithm for charge state determination of complex isotope-resolved mass spectra. This algorithm is based on peak-target Fourier transform (PTFT) of isotope packets. It is modified from the widely used Fourier transform method because Fourier transform may give ambiguous charge state assignment for low signal-to-noise ratio (S/N) or overlapping isotopic clusters. The PTFT algorithm applies a novel "folding" strategy to enhance peaks that are symmetrically spaced about the targeted peak before applying the FT. The "folding" strategy multiplies each point to the high-m/z side of the targeted peak by its counterpart on the low-m/z side. A Fourier transform of this "folded" spectrum is thus simplified, emphasizing the charge state of the "chosen" ion, whereas ions of other charge states contribute less to the transformed data. An intensity-dependent technique is also proposed for charge state determination from frequency signals. The performance of PTFT is demonstrated using experimental electrospray ionization Fourier transform ion cyclotron resonance mass spectra. The results show that PTFT is robust for charge state determination of low S/N and overlapping isotopic clusters, and also useful for manual verification of potential hidden isotopic clusters that may be missed by the current analysis algorithms, i.e., AID-MS or THRASH. PMID:18293485

  20. Cryogenic ion trapping systems with surface-electrode traps

    NASA Astrophysics Data System (ADS)

    Antohi, P. B.; Schuster, D.; Akselrod, G. M.; Labaziewicz, J.; Ge, Y.; Lin, Z.; Bakr, W. S.; Chuang, I. L.

    2009-01-01

    We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with S88r+ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

  1. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  2. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    SciTech Connect

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resulted from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.

  3. [Spatially modulated Fourier transform imaging spectrometer data compression research].

    PubMed

    Huang, Min; Xiangli, Bin; Yuan, Yan; Shen, Zhong; Lu, Qun-bo; Wang, Zhong-hou; Liu, Xue-bin

    2010-01-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very fast in recent ten years. When it is used in satellite, because of the limit by the data transmission, the authors need to compress the original data obtained by the Fourier transform imaging spectrometer, then, the data can be transmitted, and can be incepted on the earth and decompressed. Then the authors can do data process to get spectrum data which can be used by user. Data compression technic used in Fourier transform imaging spectrometer is a new technic, and few papers introduce it at home and abroad. In this paper the authors will give a data compression method, which has been used in EDIS, and achieved a good result. PMID:20302132

  4. Fixed-point error analysis of Winograd Fourier transform algorithms

    NASA Technical Reports Server (NTRS)

    Patterson, R. W.; Mcclellan, J. H.

    1978-01-01

    The quantization error introduced by the Winograd Fourier transform algorithm (WFTA) when implemented in fixed-point arithmetic is studied and compared with that of the fast Fourier transform (FFT). The effect of ordering the computational modules and the relative contributions of data quantization error and coefficient quantization error are determined. In addition, the quantization error introduced by the Good-Winograd (GW) algorithm, which uses Good's prime-factor decomposition for the discrete Fourier transform (DFT) together with Winograd's short length DFT algorithms, is studied. Error introduced by the WFTA is, in all cases, worse than that of the FFT. In general, the WFTA requires one or two more bits for data representation to give an error similar to that of the FFT. Error introduced by the GW algorithm is approximately the same as that of the FFT.

  5. Application of Fourier transform spectroscopy to air pollution problems

    NASA Astrophysics Data System (ADS)

    Shaw, J. H.; Calvert, J. G.

    1980-11-01

    The nature of information that can be retrieved from spectra obtained with Fourier transform spectroscopy is discussed. Nonlinear, least squares analysis of spectra is capable of retrieving information that is beyond the reach of conventional methods and has improved precision and accuracy. Fourier transform infrared spectroscopy was used to study quantitatively the kinetics and mechanisms of several chemical reactions that are of interest to atmospheric chemists and are important in the development of air pollution control strategies. The systems studied include the metastable, reactive, gaseous species, peroxynitric acid, hypochlorous acid, and dimethylnitrosamine.

  6. Fourier transform profilometry for 360-deg shape using TDI camera

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Sajan, M. R.; Asundi, Anand K.

    1997-03-01

    This paper demonstrates a Fourier transform profilometry for 360 degree shape using TDI camera. Single stripe structured light can be recorded sequentially on one image when the camera is in TDI mode. An extended and deformed grating could be recorded in high speed and high resolution. The deformed fringe pattern is regarded as a fringe pattern in the Telecentric Fourier Transform Profilometry (TFTP), of which a wrapped phase is obtained directly. The unwrapped phase of TFTP gives the extended 360 degree profile without high frequency noise. Theoretical and experimental results are presented.

  7. Color image registration based on quaternion Fourier transformation

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wang, Zhengzhi

    2012-05-01

    The traditional Fourier Mellin transform is applied to quaternion algebra in order to investigate quaternion Fourier transformation properties useful for color image registration in frequency domain. Combining with the quaternion phase correlation, we propose a method for color image registration based on the quaternion Fourier transform. The registration method, which processes color image in a holistic manner, is convenient to realign color images differing in translation, rotation, and scaling. Experimental results on different types of color images indicate that the proposed method not only obtains high accuracy in similarity transform in the image plane but also is computationally efficient.

  8. Fractional Fourier transform in temporal ghost imaging with classical light

    SciTech Connect

    Setaelae, Tero; Shirai, Tomohiro; Friberg, Ari T.

    2010-10-15

    We investigate temporal, second-order classical ghost imaging with long, incoherent, scalar plane-wave pulses. We prove that in rather general conditions, the intensity correlation function at the output of the setup is given by the fractional Fourier transform of the temporal object. In special cases, the correlation function is shown to reduce to the ordinary Fourier transform and the temporal image of the object. Effects influencing the visibility and the resolution are considered. This work extends certain known results on spatial ghost imaging into the time domain and could find applications in temporal tomography of pulses.

  9. Modulated Fourier Transform Raman Fiber-Optic Spectroscopy

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)

    2000-01-01

    A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.

  10. Double image encryption based on iterative fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Liu, Shutian

    2007-07-01

    We present an image encryption algorithm to simultaneously encrypt two images into a single one as the amplitudes of fractional Fourier transform with different orders. From the encrypted image we can get two original images independently by fractional Fourier transforms with two different fractional orders. This algorithm can be independent of additional random phases as the encryption/decryption keys. Numerical results are given to analyze the capability of this proposed method. A possible extension to multi-image encryption with a fractional order multiplexing scheme has also been given.

  11. Fourier-transform and global contrast interferometer alignment methods

    DOEpatents

    Goldberg, Kenneth A.

    2001-01-01

    Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.

  12. Extending Fourier transformations to Hamilton's quaternions and Clifford's geometric algebras

    NASA Astrophysics Data System (ADS)

    Hitzer, Eckhard

    2013-10-01

    We show how Fourier transformations can be extended to Hamilton's algebra of quaternions. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Hamilton's algebra of quaternions is only one example of the larger class of Clifford's geometric algebras, complete algebras encoding a vector space and all its subspace elements. We introduce how Fourier transformations are extended to Clifford algebras and applied in electromagnetism, and in the processing of images, color images, vector field and climate data.

  13. The Heidelberg CSR: Stored Ion Beams in a Cryogenic Environment

    SciTech Connect

    Wolf, A.; Hahn, R. von; Grieser, M.; Orlov, D. A.; Fadil, H.; Welsch, C. P.; Andrianarijaona, V.; Diehl, A.; Schroeter, C. D.; Crespo Lopez-Urrutia, J. R.; Weber, T.; Mallinger, V.; Schwalm, D.; Ullrich, J.; Rappaport, M.; Urbain, X.; Haberstroh, Ch.; Quack, H.; Zajfman, D.

    2006-03-20

    A cryogenic electrostatic ion storage ring CSR is under development at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany. Cooling of the ultrahigh vacuum chamber is envisaged to lead to extremely low pressures as demonstrated by cryogenic ion traps. The ring will apply electron cooling with electron beams of a few eV up to 200 eV. Through long storage times of 1000 s as well as through the low wall temperature, internal cooling of infrared-active molecular ions to their rotational ground state will be possible and their collisions with merged collinear beams of electrons and neutral atoms can be detected with high energy resolution. In addition storage of slow highly charged ions is foreseen. Using a fixed in-ring gas target and a reaction microscope, collisions of the stored ions at a speed of the order of the atomic unit can be kinematically reconstructed. The layout and the cryogenic concept are introduced.

  14. Fourier transform spectroscopy of cotton and cotton trash

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fourier Transform techniques have been shown to have higher signal-to-noise capabilities, higher throughput, negligible stray light, continuous spectra, and higher resolution. In addition, FT spectroscopy affords for frequencies in spectra to be measured all at once and more precise wavelength calib...

  15. APPLICATION OF FOURIER TRANSFORM SPECTROSCOPY TO AIR POLLUTION PROBLEMS

    EPA Science Inventory

    The nature of information that can be retrieved from spectra obtained with Fourier transform spectroscopy is discussed. Nonlinear, least-squares analysis of spectra is capable of retrieving information that is beyond the reach of conventional methods and has improved precision an...

  16. Path Integrals, Fourier Transforms, and Feynman's Operational Calculus

    SciTech Connect

    Ahn, Byung Moo; Johnson, G. W.

    1998-03-15

    The disentangling process is the key to Feynman's operational calculus for noncommuting operators. The main result of his heuristic calculations deals with disentangling an exponential factor. We use the Wiener and Feynman integrals to make this disentangling (or time-ordering) mathematically rigorous in the case where the analytic functions from earlier work are replaced by Fourier transforms of complex-valued measures.

  17. Theoretical study of Fourier-transform acousto-optic imaging.

    PubMed

    Barjean, Kinia; Ramaz, François; Tualle, Jean-Michel

    2016-05-01

    We propose a full theoretical study of Fourier-transform acousto-optic imaging, which we recently introduced and experimentally assessed in [Opt. Lett.40, 705-708 (2015)OPLEDP0146-959210.1364/OL.40.000705] as an alternative to achieve axial resolution in acousto-optic imaging with a higher signal-to-noise ratio. PMID:27140883

  18. Development of a multi-Fourier-transform interferometer: fundamentals.

    PubMed

    Ohta, Izumi S; Hattori, Makoto; Matsuo, Hiroshi

    2006-04-20

    We describe the development of an instrument that uses a Martin-Puplett-type Fourier-transform spectrometer to apply an aperture synthesis technique to millimeter and submillimeter waves. We call this instrument a multi-Fourier-transform interferometer (MuFT). The MuFT performs wideband imaging, spectroscopy, and polarimetry, at millimeter and submillimeter wavelengths. We describe the fundamentals of the MuFT and give an example of one potential implementation. A full description of the observables with a MuFT is provided. A physical explanation of the observability of complex visibility by the MuFT is given. Fundamental restrictions on observations with the MuFT, e.g., limits on spectral and spatial resolution and on fields of view, are discussed. The advantages of the MuFT are summarized. PMID:16633405

  19. Implementing quantum Fourier transform with integrated photonic devices

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel

    2014-03-01

    Many quantum algorithms that exhibit exponential speedup over their classical counterparts employ the quantum Fourier transform, which is used to solve interesting problems such as prime factorization. Meanwhile, nonclassical interference of single photons achieved on integrated platforms holds the promise of achieving large-scale quantum computation with multiport devices. An optical multiport device can be built to realize any quantum circuit as a sequence of unitary operations performed by beam splitters and phase shifters on path-encoded qudits. In this talk, I will present a recursive scheme for implementing quantum Fourier transform with a multimode interference photonic integrated circuit. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

  20. Fourier transform digital holographic adaptive optics imaging system

    PubMed Central

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  1. Optimal color image restoration: Wiener filter and quaternion Fourier transform

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; Agaian, Sos S.

    2015-03-01

    In this paper, we consider the model of quaternion signal degradation when the signal is convoluted and an additive noise is added. The classical model of such a model leads to the solution of the optimal Wiener filter, where the optimality with respect to the mean square error. The characteristic of this filter can be found in the frequency domain by using the Fourier transform. For quaternion signals, the inverse problem is complicated by the fact that the quaternion arithmetic is not commutative. The quaternion Fourier transform does not map the convolution to the operation of multiplication. In this paper, we analyze the linear model of the signal and image degradation with an additive independent noise and the optimal filtration of the signal and images in the frequency domain and in the quaternion space.

  2. Fourier transform spectrometer based on Fabry-Perot interferometer.

    PubMed

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap. PMID:27409306

  3. Discrete Fourier Transform Analysis in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  4. Spectral measurements of exhaust gases using a Fourier transform spectrometer

    NASA Astrophysics Data System (ADS)

    Schruefer, Elmar; Lindermeir, Erwin; Palme, Frank; Wuelbern, K.

    1993-09-01

    In recent years environmental issues have become increasingly important. Especially the impact of gaseous emissions on the atmosphere is of great interest. As a consequence a group of several coworkers was established at the Institute for Electrical Measurement of the Technical University of Munich, Germany) with the task to develop and investigate spectroscopic methods and instruments for the analysis of the chemical compsition of exhaust gases. This article describes the advantages of the application of Fourier transform spectroscopy against conventional gas analysis devices. Moreover results of measurements of the exhaust of a smokestack of a coal fired power plant and of an aircraft engine are presented. The last section deals with the development of a Fourier transform spectrometer which is not equipped with any moving parts. This design was made especially for applications in harsh environments.

  5. Fast Fourier transform analysis of rotor-bearing systems

    NASA Technical Reports Server (NTRS)

    Choy, K. C.; Gunter, E. J.; Allaire, P. E.

    1978-01-01

    Nonlinear transient analysis of rotor-bearing systems is becoming increasingly important in the analysis of modern-day rotating machinery to model such phenomena as oil film whirl. This paper develops an analysis technique incorporating modal analysis and fast Fourier transform techniques to analyze rotors with residual shaft bow and realistic nonlinear bearings. The technique is demonstrated on single-mass and three-mass rotor examples. Comparisons of the theoretical results with experimental data give excellent agreement.

  6. Visible Imaging Fourier Transform Spectrometer: Design and Calibration

    SciTech Connect

    Wishnow, E H; Wurtz, R; Blais-Ouellette, S; Cook, K H; Carr, D; Lewis, I; Grandmont, F; Stubbs, C W

    2002-09-19

    We present details of the design, operation and calibration of an astronomical visible-band imaging Fourier transform spectrometer (IFTS). This type of instrument produces a spectrum for every pixel in the field of view where the spectral resolution is flexible. The instrument is a dual-input/dual-output Michelson interferometer coupled to the 3.5 meter telescope at the Apache Point Observatory. Imaging performance and interferograms and spectra from calibration sources and standard stars are discussed.

  7. An algorithm for the basis of the finite Fourier transform

    NASA Technical Reports Server (NTRS)

    Santhanam, Thalanayar S.

    1995-01-01

    The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.

  8. Optimizing holographic data storage using a fractional Fourier transform.

    PubMed

    Pégard, Nicolas C; Fleischer, Jason W

    2011-07-01

    We demonstrate a method to optimize the reconstruction of a hologram when the storage device has a limited dynamic range and a minimum grain size. The optimal solution at the recording plane occurs when the object wave has propagated an intermediate distance between the near and far fields. This distance corresponds to an optimal order and magnification of the fractional Fourier transform of the object. PMID:21725476

  9. Fourier transform Raman and IR spectra of snake skin

    NASA Astrophysics Data System (ADS)

    Barry, B. W.; Williams, A. C.; Edwards, H. G. M.

    1993-06-01

    The Fourier transform (FT) Raman and IR spectra of the shed dorsal skin of the snake Elaphe obsoleta (American black rat snake) are reported. Vibrational spectroscopic assignments are proposed for the first time. Although good quality Raman spectra were obtained from the hinge regions using an FT Raman microscope, the dorsal scale regions fluoresced even with 1064 nm IR excitation. This was ascribed to pigmentation markings on the scales.

  10. Fast Fourier transformation results from gamma-ray burst profiles

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Norris, Jay P.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, W. S.

    1992-01-01

    Several gamma-ray bursts in the BATSE data have sufficiently long durations and complex temporal structures with pulses that appear to be spaced quasi-periodically. In order to test and quantify these periods we have applied fast Fourier transformations (FFT) to all these events. We have also performed cross spectral analyses of the FFT of the two extreme (high-low) energy bands in each case to determine the lead/lag of the pulses in different energies.