Science.gov

Sample records for cryogenic system commissioning

  1. Commissioning the cryogenic system of the first LHC sector

    SciTech Connect

    Millet, F.; Claudet, S.; Ferlin, G.; Perin, A.; Riddone, G.; Serio, L.; Soubiran, M.; Tavian, L.; Ronayette, L.; Rabehl, R.; /Fermilab

    2007-12-01

    The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioning is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.

  2. Status of the Cryogenic System Commissioning at SNS

    SciTech Connect

    F. Casagrande; I.E. Campisi; P.A. Gurd; D.R. Hatfield; M.P. Howell; D. Stout; W.H. Strong; D. Arenius; J.C. Creel; K. Dixon; V. Ganni; P.K. Knudsen

    2005-05-16

    The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

  3. Validation and performance of the LHC cryogenic system through commissioning of the first sector

    SciTech Connect

    Serio, L.; Bouillot, A.; Casas-Cubillos, J.; Chakravarty, A.; Claudet, S.; Gicquel, F.; Gomes, P.; Kumar, M.; Kush, P.K.; Millet, F.; Perin, A.; /CERN /Fermilab /Tata Inst. /CERN

    2007-12-01

    The cryogenic system [1] for the Large Hadron Collider accelerator is presently in its final phase of commissioning at nominal operating conditions. The refrigeration capacity for the LHC is produced using eight large cryogenic plants and eight 1.8 K refrigeration units installed on five cryogenic islands. Machine cryogenic equipment is installed in a 26.7-km circumference ring deep underground tunnel and are maintained at their nominal operating conditions via a distribution system consisting of transfer lines, cold interconnection boxes at each cryogenic island and a cryogenic distribution line. The functional analysis of the whole system during all operating conditions was established and validated during the first sector commissioning in order to maximize the system availability. Analysis, operating modes, main failure scenarios, results and performance of the cryogenic system are presented.

  4. Installation and commissioning of a cryogen distribution system for the TPS project

    NASA Astrophysics Data System (ADS)

    Tsai, H. H.; Hsiao, F. Z.; Li, H. C.; Lin, M. C.; Wang, C.; Liao, W. R.; Lin, T. F.; Chiou, W. S.; Chang, S. H.; Chuang, P. S. D.

    2016-07-01

    A cryogen distribution system was installed and commissioned to transfer liquid nitrogen (LN2) and liquid helium (LHe) from storage dewars to superconducting radio-frequency (SRF) cavities for the 3-GeV Taiwan Photon Source (TPS) project. The cryogen distribution system comprises one distribution valve box (DVB), four control valve boxes (CVB) and seven sections of multichannel transfer line (MCL). The DVB distributes the LHe and LN2 to the CVB, and then to the SRF cavities through independent vacuum-jacketed transfer lines. The vaporized GHe and GN2 from the cryomodules are collected via the MCL. The cryogen distribution system was installed and commissioned from October 2014 to the end of March 2015. This paper presents the installation, pre-commissioning and commissioning of the cryogen distribution system, and describes the heat load test. Thermal acoustic oscillation (TAO) was found in the GHe process line; this phenomenon and its solution are also presented and discussed.

  5. Specification, installation and commissioning of a large industrial control system for the LEP2 cryogenics

    NASA Astrophysics Data System (ADS)

    Kuhn, H. K.; Juillerat, A. C.; Rabany, M.; Wollès, J. C.

    1994-12-01

    CERN is upgrading the LEP e +-e - collider for energies above the Z 0 particle by installing super-conducting cavities. The cryogenic system attached to these cavities is controlled by a distributed, industrial control system, having been the object of a tender. The issues relate to the software specification, the management of the contract, the installation and the gradual commissioning of the system. The experience with a fully farmed- out solution is reported.

  6. ARIEL E-linac Cryogenic System: Commissioning and First Operational Experience

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Kishi, D.; Laxdal, R.; Ma, Y.; Nagimov, R.; Yosifov, D.

    2015-12-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separator and Accelerator (ISAC) facility at TRIUMF. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are operated at 2 K. HELIAL LL helium liquefier by Air Liquide Advanced Technologies (ALAT) with a tuneable liquid helium (LHe) production was installed and commissioned in Q4’2013 [1]. It provides 4 K liquid helium to one injector and one accelerator cryomodules that were installed and tested in 2014. The 4 K to 2 K liquid helium transition is achieved on-board of each cryomodule. The cryoplant, LHe and LN2 distributions, sub-atmospheric (S/A) system and cryomodules were successfully commissioned and integrated into the e-linac cryogenic system. Required pressure regulation for both 4 K cryoplant in the Dewar and 2 K with the S/A system was achieved under simulated load. Final integration tests confirmed overall stable performance of the cryogenic system with two cryomodules installed. The paper presents details of the cryogenic system commissioning tests as well as highlights of the initial operational experience.

  7. Integration and Commissioning of the ARIEL e-linac Cryogenic System at TRIUMF

    NASA Astrophysics Data System (ADS)

    Koveshnikov, Alexey; Bylinskii, Iouri; Hodgson, Geoff; Koscielniak, Shane; Nagimov, Ruslan; Yosifov, Dimo

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separation and Acceleration (ISAC) facility at TRIUMF. The key part of the ARIEL project is a superconducting radiofrequency (SRF) linear electron accelerator (e-linac). The e-linac helium cryogenic system was designed to meet the ARIEL specifications. The HELIAL LL helium liquefier byAir Liquide Advanced Technologiessupplies 4 K liquid helium (LHe) to cryomodules via aLHe distribution system. The cryomodules have a top-loaded-coldmass design. The 4 K-2 K temperature conversion is achieved by a counter flow heat exchanger and a JT-valve installed onboard each cryomodule[1]. The temperature in the 2 K volume of the cryomodules is controlled by pressure control in the sub-atmospheric line. Sub-atmospheric helium is warmed up in a custom-designed heat exchanger and after passing sub-atmospheric pumps goes to the helium compressor suction line. The LN2 system supplies liquid nitrogen to the liquefier, 80 K shielding of the cryomodules and LHe distribution system, as well as to the freeze-out helium purifier. The installation of the e-linac cryogenic system components started in February 2013 while the corresponding subsystems tests started in November 2013. This paper describes the e-linac cryogenic system components integration and presents the results of the acceptance tests and commissioning activities performed at TRIUMF since November 2013.

  8. Commissioning of the helium cryogenic system for the HIE- ISOLDE accelerator upgrade at CERN

    NASA Astrophysics Data System (ADS)

    Delruelle, N.; Inglese, V.; Leclercq, Y.; Pirotte, O.; Williams, L.

    2015-12-01

    The High Intensity and Energy ISOLDE (HIE-ISOLDE) project is a major upgrade of the existing ISOLDE and REX-ISOLDE facilities at CERN. The most significant improvement will come from replacing the existing REX accelerating structure by a superconducting linear accelerator (SC linac) composed ultimately of six cryo-modules installed in series, each containing superconducting RF cavities and solenoids operated at 4.5 K. In order to provide the cooling capacity at all temperature levels between 300 K and 4.5 K for the six cryo-modules, an existing helium refrigerator, manufactured in 1986 and previously used to cool the ALEPH magnet during LEP operation from 1989 to 2000, has been refurbished, reinstalled and recommissioned in a dedicated building located next to the HIE-ISOLDE experimental hall. This helium refrigerator has been connected to a new cryogenic distribution line, consisting of a 30-meter long vacuum-insulated transfer line, a 2000-liter storage dewar and six interconnecting valve boxes, one for each cryo-module. This paper describes the whole cryogenic system and presents the commissioning results including the preliminary operation at 4.5 K of the first cryo- module in the experimental hall.

  9. Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  10. Commissioning of the cryogenics of the LHC long straight sections

    SciTech Connect

    Perin, A.; Casas-Cubillos, J.; Claudet, S.; Darve, C.; Ferlin, G.; Millet, F.; Parente, C.; Rabehl, R.; Soubiran, M.; van Weelderen, R.; Wagner, U.; /CERN

    2010-01-01

    The LHC is made of eight circular arcs interspaced with eight Long Straight Sections (LSS). Most powering interfaces to the LHC are located in these sections where the particle beams are focused and shaped for collision, cleaning and acceleration. The LSSs are constituted of several unique cryogenic devices and systems like electrical feed-boxes, standalone superconducting magnets, superconducting links, RF cavities and final focusing superconducting magnets. This paper presents the cryogenic commissioning and the main results obtained during the first operation of the LHC Long Straight Sections.

  11. Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.; Wikstrom, J. P.

    1999-01-01

    The results of a comparative study of cryogenic insulation systems performed are presented. The key aspects of thermal insulation relative to cryogenic system design, testing, manufacturing, and maintenance are discussed. An overview of insulation development from an energy conservation perspective is given. Conventional insulation materials for cryogenic applications provide three levels of thermal conductivity. Actual thermal performance of standard multilayer insulation (MLI) is several times less than laboratory performance and often 10 times worse than ideal performance. The cost-effectiveness of the insulation system depends on thermal performance; flexibility and durability; ease of use in handling, installation, and maintenance; and overall cost including operations, maintenance, and life cycle. Results of comprehensive testing of both conventional and novel materials such as aerogel composites using cryostat boil-off methods are given. The development of efficient, robust cryogenic insulation systems that operate at a soft vacuum level is the primary focus of this paper.

  12. TPC magnet cryogenic system

    SciTech Connect

    Green, M.A.; Burns, W.A.; Taylor, J.D.; Van Slyke, H.W.

    1980-03-01

    The Time Projection Chamber (TPC) magnet at LBL and its compensation solenoids are adiabatically stable superconducting solenoid magnets. The cryogenic system developed for the TPC magnet is discussed. This system uses forced two-phase tubular cooling with the two cryogens in the system. The liquid helium and liquid nitrogen are delivered through the cooled load by forced tubular flow. The only reservoirs of liquid cryogen exist in the control dewar (for liquid helium) and the conditioner dewar (for liquid nitrogen). The operation o these systems during virtually all phases of system operation are described. Photographs and diagrams of various system components are shown, and cryogenic system data are presented in the following sections: (1) heat leaks into the TPC coil package and the compensation solenoids; (2) heat leaks to various components of the TPC magnet cryogenics system besides the magnets and control dewar; (3) the control dewar and its relationship to the rest of the system; (4) the conditioner system and its role in cooling down the TPC magnet; (5) gas-cooled electrical leads and charging losses; and (6) a summation of the liquid helium and liquid nitrogen requirements for the TPC superconducting magnet system.

  13. Spacecraft cryogenic gas storage systems

    NASA Technical Reports Server (NTRS)

    Rysavy, G.

    1971-01-01

    Cryogenic gas storage systems were developed for the liquid storage of oxygen, hydrogen, nitrogen, and helium. Cryogenic storage is attractive because of the high liquid density and low storage pressure of cryogens. This situation results in smaller container sizes, reduced container-strength levels, and lower tankage weights. The Gemini and Apollo spacecraft used cryogenic gas storage systems as standard spacecraft equipment. In addition to the Gemini and Apollo cryogenic gas storage systems, other systems were developed and tested in the course of advancing the state of the art. All of the cryogenic storage systems used, developed, and tested to date for manned-spacecraft applications are described.

  14. Cryogenic support system

    DOEpatents

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1988-11-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member. 7 figs.

  15. Cryogenic support system

    DOEpatents

    Nicol, Thomas H.; Niemann, Ralph C.; Gonczy, John D.

    1988-01-01

    A support system is disclosed for restraining large masses at very low or cryogenic temperatures. The support system employs a tie bar that is pivotally connected at opposite ends to an anchoring support member and a sliding support member. The tie bar extends substantially parallel to the longitudinal axis of the cold mass assembly, and comprises a rod that lengthens when cooled and a pair of end attachments that contract when cooled. The rod and end attachments are sized so that when the tie bar is cooled to cryogenic temperature, the net change in tie bar length is approximately zero. Longitudinal force directed against the cold mass assembly is distributed by the tie bar between the anchoring support member and the sliding support member.

  16. FRIB cryogenic distribution system

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D.; Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F.

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  17. Commissioning of the cryogenic safety test facility PICARD

    NASA Astrophysics Data System (ADS)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  18. The RHIC cryogenic control system

    SciTech Connect

    Farah, Y.; Sondericker, J.

    1993-08-01

    A cryogenic process control system for the RHIC Project is discussed. It is independent of the main RHIC Control System, consisting of an upgrade of the existing 24.8 Kw helium refrigerator control section with the addition of a ring control section that regulates and monitors all cryogenic signals in the RHIC tunnel. The system is fully automated, which can run without the continuous presence of operators.

  19. Commissioning HVAC systems

    SciTech Connect

    Schiess, K.

    1995-12-01

    In recent years, commissioning has been viewed as a separate process that had to be specified and implemented by a specialized entity. This article discusses commissioning in the HVAC field and looks at it from an international perspective. The author has worked in Europe, South Africa (British system) and the USA. The differences between the British and the American methods of commissioning are discussed, with examples given where the American way was unsuccessful. It is the design engineer`s job to test and accept (commission) an installation after the contractor has demonstrated the performance to the satisfaction of the design engineer. Once the plant is commissioned, it is put into service.

  20. Commissioning of HVAC systems

    SciTech Connect

    Schiess, K.

    1995-06-01

    In recent years various presentation and discussions have taken place which looked at commissioning as a separate process that had to be specified and implemented by a specialized entity in a project. This presentation discusses commissioning in the HVAC field and looks at it from an international perspective. The author has worked in Europe, South Africa (British system) and in the USA. The differences are discussed between the British and the American methods with some examples where the American way of commissioning was unsuccessful. The conclusion is that it is the design engineer`s job to test and accept (commission) an installation after the contractor has demonstrated the performance to the satisfaction of the design engineer. Once the plant is commissioned, it is put into service.

  1. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  2. Operation of large cryogenic systems

    SciTech Connect

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab.

  3. ILC cryogenic systems reference design

    SciTech Connect

    Peterson, T.J.; Geynisman, M.; Klebaner, A.; Theilacker, J.; Parma, V.; Tavian, L.; /CERN

    2008-01-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  4. Ilc Cryogenic Systems Reference Design

    NASA Astrophysics Data System (ADS)

    Peterson, T. J.; Geynisman, M.; Klebaner, A.; Parma, V.; Tavian, L.; Theilacker, J.

    2008-03-01

    A Global Design Effort (GDE) began in 2005 to study a TeV scale electron-positron linear accelerator based on superconducting radio-frequency (RF) technology, called the International Linear Collider (ILC). In early 2007, the design effort culminated in a reference design for the ILC, closely based on the earlier TESLA design. The ILC will consist of two 250 GeV linacs, which provide positron-electron collisions for high energy physics research. The particle beams will be accelerated to their final energy in superconducting niobium RF cavities operating at 2 kelvin. At a length of about 12 km each, the main linacs will be the largest cryogenic systems in the ILC. Positron and electron sources, damping rings, and beam delivery systems will also have a large number and variety of other superconducting RF cavities and magnets, which require cooling at liquid helium temperatures. Ten large cryogenic plants with 2 kelvin refrigeration are envisioned to cool the main linacs and the electron and positron sources. Three smaller cryogenic plants will cool the damping rings and beam delivery system components predominately at 4.5 K. This paper describes the cryogenic systems concepts for the ILC.

  5. Improved cryogenic refrigeration system

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1967-01-01

    Two-position shuttle valve simplifies valving arrangement and crank-shaft configuration in gas-balancing and Stirling-cycle refrigeration systems used to produce temperatures below 173 degrees K. It connects the displacer and regenerator alternately to the supply line or the return line of the compressor, and establishes constant pressure on the drive piston.

  6. The DIII-D cryogenic system upgrade

    SciTech Connect

    Schaubel, K.M.; Laughon, G.J.; Campbell, G.L.; Langhorn, A.R.; Stevens, N.C.; Tupper, M.L.

    1993-10-01

    The original DIII-D cryogenic system was commissioned in 1981 and was used to cool the cryopanel arrays for three hydrogen neutral beam injectors. Since then, new demands for liquid helium have arisen including: a fourth neutral beam injector, ten superconducting magnets for the electron cyclotron heating gyrotrons, and more recently, the advanced diverter cryopump which resides inside the tokamak vacuum vessel. The original cryosystem could not meet these demands. Consequently, the cryosystem was upgraded in several phases to increase capacity, improve reliability, and reduce maintenance. The majority of the original system has been replaced with superior equipment. The capacity now exists to support present as well as future demands for liquid helium at DIII-D including a hydrogen pellet injector, which is being constructed by Oak Ridge National Laboratory. Upgrades to the cryosystem include: a recently commissioned 150 {ell}/hr helium liquefier, two 55 g/sec helium screw compressors, a fully automated 20-valve cryogen distribution box, a high efficiency helium wet expander, and the conversion of equipment from manual or pneumatic to programmable logic controller (PLC) control. The distribution box was designed and constructed for compactness due to limited space availability. Overall system efficiency was significantly improved by replacing the existing neutral beam reliquefier Joule-Thomson valve with a reciprocating wet expander. The implementation of a PLC-based automatic control system has resulted in increased efficiency and reliability. This paper will describe the cryosystem design with emphasis on newly added equipment. In addition, performance and operational experience will be discussed.

  7. Cryogenic System for the Cryomodule Test Stand at Fermilab

    NASA Astrophysics Data System (ADS)

    White, Michael; Hansen, Benjamin; Klebaner, Arkadiy

    2015-12-01

    This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description of the heat load measurement plan.

  8. Shuttle cryogenic supply system optimization study. Volume 4: Cryogenic cooling in environmental control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of cryogenic fluid cooling in the environmental control system of the space shuttle was conducted. The technique for treating the cryogenic fluid storage and supply tanks and subsystems as integrated systems was developed. It was concluded that a basic incompatibility exists between the heat generated and the cryogen usage rate and cryogens cannot be used to absorb the generated heat. The use of radiators and accumulators to provide additional cooling capability is recommended.

  9. Process Flow and Functional Analysis of the Iter Cryogenic System

    NASA Astrophysics Data System (ADS)

    Henry, D.; Chalifour, M.; Forgeas, A.; Kalinin, V.; Monneret, E.; Serio, L.; Vincent, G.; Voigt, T.

    2010-04-01

    The ITER cryogenic system is presently under design by a large international collaboration. It will start commissioning at Cadarache, south of France in 2015. The system is designed to provide an equivalent refrigeration capacity of 65 kW at 4.5 K for the superconducting magnet and 1300 kW at 80 K for the cryoplant pre-cooling stages and the Cryostat Thermal Shields (CTS). The cryoplant consists of three 4.5 K refrigerators and two 80 K helium loops coupled with two LN2 modules. Two 4.5 K modules are dedicated to the magnet system and a small one is devoted to the cryopumps and Pellet Injection System. One Interconnection box interfaces the cryoplant and a complex cryodistribution system which includes 5 Auxiliary Cold Boxes dedicated to each cryogenic subsystem. The ITER cryogenic system will have to cope with various normal and abnormal operational modes including superconducting magnets quench recovery and fast energy discharge. We will present the general Process Flow Diagram of the cryoplant and cryodistribution system and the operation requirements. The functional analysis of the cryogenic system will be performed leading to a proposal of the cryogenic control system architecture. The instrumentation and control requirements will also be outlined.

  10. Apollo cryogenic integrated systems program

    NASA Technical Reports Server (NTRS)

    Seto, R. K. M.; Cunningham, J. E.

    1971-01-01

    The integrated systems program is capable of simulating both nominal and anomalous operation of the Apollo cryogenics storage system (CSS). Two versions of the program exist; one for the Apollo 14 configuration and the other for J Type Mission configurations. The program consists of two mathematical models which are dynamically coupled. A model of the CSS components and lines determines the oxygen and hydrogen flowrate from each storage tank given the tank pressures and temperatures, and the electrical power subsystem and environmental control subsystem flow demands. Temperatures and pressures throughout the components and lines are also determined. A model of the CSS tankage determines the pressure and temperatures in the tanks given the flowrate from each tank and the thermal environment. The model accounts for tank stretch and includes simplified oxygen tank heater and stratification routines. The program is currently operational on the Univac 1108 computer.

  11. Commissioning and First Operation of the Cryogenics for the CERN Axion Solar Telescope (CAST)

    NASA Astrophysics Data System (ADS)

    Barth, K.; Delikaris, D.; Passardi, G.; Pezzetti, M.; Pirotte, O.; Stewart, L.; Vullierme, B.; Walckiers, L.; Zioutas, K.

    2004-06-01

    A new experiment, the CERN Axion Solar Telescope (CAST) was installed and commissioned in 2002. Its aim is to experimentally prove the existence of an as yet hypothetical particle predicted by theory as a solution of the strong CP problem and possible candidate for galactic dark matter. The heart of the detector consists of a decommissioned 10-m long LHC superconducting dipole prototype magnet, providing a magnetic field of up to 9.5 T. The whole telescope assembly is aligned with high precision to the core of the sun. If they exist, axions could be copiously produced in the core of the sun and converted into photons within the transverse magnetic field of the telescope. The converted low-energy solar axion spectrum, peaked around a mean energy of 4.4 keV, can then be focused by a special x-ray mirror system and detected by low-background photon detectors, installed on each end of the telescopes twin beam pipes. This paper describes the external and proximity cryogenic system and magnet commissioning as well as the first operational experience with the overall telescope assembly.

  12. Commissioning and First Operation of the Cryogenics for the CERN Axion Solar Telescope (CAST)

    SciTech Connect

    Barth, K.; Delikaris, D.; Passardi, G.; Pezzetti, M.; Pirotte, O.; Stewart, L.; Vullierme, B.; Walckiers, L.; Zioutas, K.

    2004-06-23

    A new experiment, the CERN Axion Solar Telescope (CAST) was installed and commissioned in 2002. Its aim is to experimentally prove the existence of an as yet hypothetical particle predicted by theory as a solution of the strong CP problem and possible candidate for galactic dark matter. The heart of the detector consists of a decommissioned 10-m long LHC superconducting dipole prototype magnet, providing a magnetic field of up to 9.5 T. The whole telescope assembly is aligned with high precision to the core of the sun. If they exist, axions could be copiously produced in the core of the sun and converted into photons within the transverse magnetic field of the telescope. The converted low-energy solar axion spectrum, peaked around a mean energy of 4.4 keV, can then be focused by a special x-ray mirror system and detected by low-background photon detectors, installed on each end of the telescopes twin beam pipes. This paper describes the external and proximity cryogenic system and magnet commissioning as well as the first operational experience with the overall telescope assembly.

  13. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  14. FRIB Cryogenic Distribution System and Status

    SciTech Connect

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Yang, Shuo; Nellis, Timothy; Jones, S.; Casagrande, Fabio

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  15. Modeling and Commissioning of a Cold Compressor String for the Superfluid Cryogenic Plant at Fermilab's Cryo-module Test Facility

    NASA Astrophysics Data System (ADS)

    Ueresin, C.; Decker, L.; Treite, P.

    In 2011, Linde Cryogenics, a division of Linde Process Plants, Tulsa, Oklahoma, was awarded the contract to deliver a 500 W at 2 K superfluid cryogenic plant to Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, USA. This system includes a cold compressor string with three centrifugal compressors and a vacuum pump skid with five volumetric pumps in parallel used to pump down helium to its saturation pressure corresponding to 2 K. Linde Kryotechnik AG, Pfungen Switzerland engineered and supplied the cold compressor system and commissioned it with its control logic to cover the complete range of system operation. The paper outlines issues regarding compressor design, compressor string modeling, control algorithms, controller performance, and surge protection.

  16. The cryogenic control system of BEPCII

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ke-Xiang; Zhao, Ji-Jiu; Yue, Ke-Juan; Dai, Ming-Hui; Huang, Yi-Ling; Jiang, Bo

    2008-04-01

    A superconducting cryogenic system has been designed and deployed in the Beijing Electron- Positron Collider Upgrade Project (BEPCII). The system consists of a Siemens PLC (S7-PLC, Programmable Logic Controller) for the compressor control, an Allen Bradley (AB) PLC for the cryogenic equipments, and the Experimental Physics and Industrial Control System (EPICS) that integrates the PLCs. The system fully automates the superconducting cryogenic control with process control, PID (Proportional-Integral-Differential) control loops, real-time data access and data storage, alarm handler and human machine interface. It is capable of automatic recovery as well. This paper describes the BEPCII cryogenic control system, data communication between S7-PLC and EPICS Input/Output Controllers (IOCs), and the integration of the flow control, the low level interlock, the AB-PLC, and EPICS.

  17. Progress on the CUORE Cryogenic System

    SciTech Connect

    Martinez, M.; Arnaboldi, C.; Nucciotti, A.; Schaeffer, D.; Sisti, M.; Barucci, M.; Bucci, C.; Frossati, G.; De Waard, A.; Woodcraft, A.

    2009-12-16

    We give here an update on the CUORE cryogenic system. It consists of a large cryogen-free cryostat cooled by five pulse tubes and one high-power specially designed dilution refrigerator built by Leiden Cryogenics. The cryostat design has been completed and it is presently under construction. The site at the Gran Sasso Underground Laboratory is ready for the installation of the cryostat which is expected to begin by the end of 2009. We discuss here the preliminary results obtained on the performance of the mechanical cryorefrigerators. We also present a measurement of the residual heat leak of the copper which has been selected for the cryostat fabrication.

  18. D0 Cryogenic System Operator Training

    SciTech Connect

    Markley, D.; /Fermilab

    1991-11-30

    D0 is a collider detector. It will be operating and doing physics at the same time as CDP, therefore it has been decided to train CDP operators to operate and respond to the D0 cryogenic control system. A cryogenic operator will be required to be in residence at D0, during the cooldown and liquid Argon fill of any of the calorimeters. The cryogenic system at D0 is designed to be unmanned during steady state operation. CDP operations has 2 man cryogenic shifts 24 hours a day. It is intended that CDP operators monitor the D0 cryogenic systems, evaluate and respond to alarms, and notify a D0 cryo expert in the event of an unusual problem. A D0 cryogenic system view node has been installed at CDP to help facilitate these goals. It should be noted that even though the CDP view node is a fully operational node it is intended that it be more of an information node and is therefore password protected. The D0 cryo experts may reassess the use of the CDP node at a later date based on experience and operating needs. This engineering note outlines the format of the training and testing given to the CDP operators to make them qualified D0 operators.

  19. Recent progress of cryogenic system for 40 T hybrid magnet

    NASA Astrophysics Data System (ADS)

    Li, J.; Ouyang, Z.; Li, H.; Meng, Q.; Shi, L.; Ai, X.; Fang, M.; Chen, X.

    2015-12-01

    The 40 T hybrid magnet under construction at High Magnetic Field Laboratory of Chinese Academy of Sciences (CHMFL) consists of an 11 T superconducting outsert with clear bore of 800 mm and a resistive insert with clear bore of 32 mm. The outsert made of Nb3Sn CICC is cooled with 4.5 K forced flow helium. The main cryogenic system includes a helium refrigerator (360 W at 4.5 K) and a helium distribution system for the cooling of coils, structures, transfer line and current leads. The helium refrigerator was successfully commissioned and put into operation in 2012. The helium distribution system installation will be completed in December 2015. This paper discusses the design of cryogenic system and recent progress in construction.

  20. Conceptual design of the FRIB cryogenic system

    SciTech Connect

    Weisend II, J G; Bull, Brad; Burns, Chris; Fila, Adam; Kelley, Patrick; Laumer, Helmut; Mann, Thomas; McCartney, Allyn; Jones, S; Zeller, A

    2012-06-01

    The Facility for Rare Isotope Beams (FRIB) is a new nuclear science facility funded by the DOE Office of Science and Michigan State University (MSU). FRIB is currently under design and will be located on the MSU campus. The centerpiece of FRIB is a heavy ion linac utilizing superconducting RF cavities and magnets which in turn requires a large cryogenic system. The cryogenic system consists of a commercially produced helium refrigeration plant and an extensive distribution system. Superconducting components will operate at both 4.5 K and 2 K. This paper describes the conceptual design of the system including the expected heat loads and operating modes. The strategy for procuring a custom turnkey helium refrigeration plant from industry, an overview of the distribution system, the interface of the cryogenic system to the conventional facilities and the project schedule are also described.

  1. Advanced long term cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Brown, Norman S.

    1987-01-01

    Long term, cryogenic fluid storage facilities will be required to support future space programs such as the space-based Orbital Transfer Vehicle (OTV), Telescopes, and Laser Systems. An orbital liquid oxygen/liquid hydrogen storage system with an initial capacity of approximately 200,000 lb will be required. The storage facility tank design must have the capability of fluid acquisition in microgravity and limit cryogen boiloff due to environmental heating. Cryogenic boiloff management features, minimizing Earth-to-orbit transportation costs, will include advanced thick multilayer insulation/integrated vapor cooled shield concepts, low conductance support structures, and refrigeration/reliquefaction systems. Contracted study efforts are under way to develop storage system designs, technology plans, test article hardware designs, and develop plans for ground/flight testing.

  2. Status of the ESS cryogenic system

    SciTech Connect

    Weisend II, J. G.; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-29

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  3. Status of the ESS cryogenic system

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Darve, C.; Gallimore, S.; Hees, W.; Jurns, J.; Köttig, T.; Ladd, P.; Molloy, S.; Parker, T.; Wang, X. L.

    2014-01-01

    The European Spallation Source (ESS) is a neutron science facility funded by a collaboration of 17 European countries currently under design and construction in Lund, Sweden. The centerpiece of ESS is a 2.5 GeV proton linac utilizing superconducting RF cavities operating at 2 K. In addition to cooling the SRF cavities, cryogenics is also used at ESS in the liquid hydrogen moderators surrounding the target. ESS also uses both liquid helium and liquid nitrogen in a number of the planned neutron instruments. There is also a significant cryogenic installation associated with the site acceptance testing of the ESS cryomodules. The ESS cryogenic system consists of 3 separate helium refrigeration/liquefaction plants supplying the accelerator, target moderators and instruments. An extensive cryogenic distribution system connects the accelerator cryoplant with the cryomodules. This paper describes the preliminary design of the ESS cryogenic system including the expected heat loads. Challenges associated with the required high reliability and turn-down capability will also be discussed. A unique feature of ESS is its commitment to sustainability and energy recovery. A conceptual design for recovering waste heat from the helium compressors for use in the Lund district heating system will also be described.

  4. Estimating Transient Pressure Surges in Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Pfister, P.; Gunnerson, F.; Hosler, E.

    1986-01-01

    Potentially-damaging pressure waves anticipated and, therefore, avoided. Mathematical model developed for prediction of pressure behavior in single-and two-phase cryogenic systems. Transient liquid-flow analysis modified to incorporate behavior of vapor bubbles and used to predict maximum pressure in cryogenic transfer systems consisting of complex pipe and valve arrangements under both steady-state and transient conditions. Simulation compared favorably with data obtained during transfer of liquid oxygen from ground storage tanks to Space Shuttle orbiter external tanks. Program written in FORTRAN 77 for batch execution.

  5. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  6. Robust Multilayer Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Scholtens, B. E.

    2008-03-01

    New requirements for thermal insulation include robust Multilayer insulation (MLI) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  7. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  8. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  9. Method of measuring heat influx of a cryogenic transfer system

    DOEpatents

    Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter

    1981-01-01

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  10. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  11. Cryogenic helium 2 systems for space applications

    NASA Technical Reports Server (NTRS)

    Urban, E.; Katz, L.; Hendricks, J.; Karr, G.

    1978-01-01

    Two cryogenic systems are described which will provide cooling for experiments to be flown on Spacelab 2 in the early 1980's. The first system cools a scanning infrared telescope by the transfer of cold helium gas from a separate superfluid helium storage dewar. The flexible design permits the helium storage dewar and transfer assembly to be designed independent of the infrared experiment. Where possible, modified commerical apparatus is used. The second cryogenic system utilizes a specially designed superfluid dewar in which a superfluid helium experiment chamber is immersed. Each dewar system employs a porous plug as a phase separator to hold the liquid helium within the dewar and provide cold gas to a vent line. To maintain the low vapor pressure of the superfluid, each system requires nearly continuous prelaunch vacuum pump service, and each will vent to space during the Spacelab 2 flight.

  12. NSLS-II RF Cryogenic System

    SciTech Connect

    Rose, J.; Dilgen, T.; Gash, B.; Gosman, J.; Mortazavi, P.; Papu, J.; Ravindranath, V.; Sikora, R.; Sitnikov, A.; Wilhelm, H.; Jia, Y.; Monroe, C.

    2015-05-03

    The National Synchrotron Light Source II is a 3 GeV X-ray user facility commissioned in 2014. A new helium refrigerator system has been installed and commissioned to support the superconducting RF cavities in the storage ring. Special care was taken to provide very stable helium and LN2 pressures and flow rates to minimize microphonics and thermal effects at the cavities. Details of the system design along with commissioning and early operations data will be presented.

  13. Cryogenic system operational experience at SNS

    NASA Astrophysics Data System (ADS)

    Howell, M.; DeGraff, B.; Kim, S.-H.; Morris, B.; Neustadt, T.; Strong, H.

    2015-12-01

    The helium cryogenic system at Spallation Neutron Source (SNS) provides cooling to 81 superconducting radio frequency cavities. During the first ten years of operation, much operational experience and lessons learned have been gained. The lessons learned include integrated system issues as well as component failures in the areas of mechanical, electrical and controls. Past issues that have been corrected as well as current issues in the system will be detailed in this paper. In 2009, a Process Failure Modes and Effects Analysis (PFMEA) was completed as a way to identify high risk items and prioritize efforts. Since 2009, the progress on mitigating the identified high risk items has been tracked. The results of the PFMEA and the progress made in reducing risk to the cryogenic system operation will be detailed in this paper.

  14. Design Tool for Cryogenic Thermal Insulation Systems

    SciTech Connect

    Demko, Jonathan A; Fesmire, J. E.; Augustynowicz, S. D.

    2008-01-01

    Thermal isolation of low-temperature systems from ambient environments is a constant issue faced by practitioners of cryogenics. For energy-efficient systems and processes to be realized, thermal insulation must be considered as an integrated system, not merely an add-on element. A design tool to determine the performance of insulation systems for comparative trade-off studies of different available material options was developed. The approach is to apply thermal analysis to standard shapes (plane walls, cylinders, spheres) that are relatively simple to characterize with a one-dimensional analytical or numerical model. The user describes the system hot and cold boundary geometry and the operating environment. Basic outputs such as heat load and temperature profiles are determined. The user can select from a built-in insulation material database or input user defined materials. Existing information has been combined with the new experimental thermal conductivity data produced by the Cryogenics Test Laboratory for cryogenic and vacuum environments, including high vacuum, soft vacuum, and no vacuum. Materials in the design tool include multilayer insulation, aerogel blankets, aerogel bulk-fill, foams, powders, composites, and other insulation system constructions. A comparison of the design tool to a specific composite thermal insulation system is given.

  15. Safety Aspects of Big Cryogenic Systems Design

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Fydrych, J.; Poliński, J.

    2010-04-01

    Superconductivity and helium cryogenics are key technologies in the construction of large scientific instruments, like accelerators, fusion reactors or free electron lasers. Such cryogenic systems may contain more than hundred tons of helium, mostly in cold and high-density phases. In spite of the high reliability of the systems, accidental loss of the insulation vacuum, pipe rupture or rapid energy dissipation in the cold helium can not be overlooked. To avoid the danger of over-design pressure rise in the cryostats, they need to be equipped with a helium relief system. Such a system is comprised of safety valves, bursting disks and optionally cold or warm quench lines, collectors and storage tanks. Proper design of the helium safety relief system requires a good understanding of worst case scenarios. Such scenarios will be discussed, taking into account different possible failures of the cryogenic system. In any case it is necessary to estimate heat transfer through degraded vacuum superinsulation and mass flow through the valves and safety disks. Even if the design of the helium relief system does not foresee direct helium venting into the environment, an occasional emergency helium spill may happen. Helium propagation in the atmosphere and the origins of oxygen-deficiency hazards will be discussed.

  16. Termosyphon cryogenic system for RED-100 detector

    NASA Astrophysics Data System (ADS)

    Sosnovtsev, V.; Tolstukhin, I.; Shakirov, A.; Shafigullin, R.

    2016-02-01

    A cryogenic system based on a two-phase closed tubular thermosyphon with 12 mm diameter copper tube is developed. It was used for thermal stabilization of the liquid xenon emission detector RED-100. The nitrogen refrigerant cooled down with a free-boiling liquid nitrogen bath has been used. It was shown that the system supports the RED100 operation at temperature 166 K with accuracy ±1K.

  17. Development of dual solid cryogens for high reliability refrigeration system

    NASA Technical Reports Server (NTRS)

    Caren, R. P.; Coston, R. M.

    1967-01-01

    High reliability solid cryogen refrigeration system consists of a container initially filled with a solid cryogen which is coupled thermally to an infrared detector by means of a link of high thermal conductivity extending from a heat exchanger within the cryogen container.

  18. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  19. Commissioning and operation of the CEBAF end station refrigeration system

    SciTech Connect

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.; Kashy, D.; Keesee, M.; Wilson, J. Jr.

    1996-08-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1,500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned fin 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance.

  20. Status of the cryogenic payload system for the KAGRA detector

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Chen, D.; Hagiwara, A.; Kajita, T.; Miyamoto, T.; Suzuki, T.; Sakakibara, Y.; Tanaka, H.; Yamamoto, K.; Tomaru, T.

    2016-05-01

    KAGRA is a large scale cryogenic gravitational wave telescope currently under construction in Japan. The detector is located 200 m underground in the Kamioka mine and will employ cryogenic technologies to achieve high sensitivity. The mirrors of the interferometer will be in the form of multiple pendulums and the final stages will employ cryogenic sapphire suspension system operating at 20 Kelvin. In this paper we report the ongoing activities of the cryogenic payload group involved in the design and fabrication of the cryogenic payload system for the KAGRA detector

  1. A Rapid Turnaround Cryogenic Detector Characterization System

    NASA Technical Reports Server (NTRS)

    Benford, Dominic j.; Dipirro, Michael J.; Forgione, Joshua B.; Jackson, Clifton E.; Jackson, Michael L.; Kogut, Al; Moseley, S. Harvey; Shirron, Peter J.

    2004-01-01

    Upcoming major NASA missions such as the Einstein Inflation Probe and the Single Aperture Far-Infrared Observatory require arrays of detectors with thousands of elements, operating at temperatures near l00 mK and sensitive to wavelengths from approx. 100 microns to approx. 3 mm. Such detectors represent a substantial enabling technology for these missions, and must be demonstrated soon in order for them to proceed. In order to make rapid progress on detector development, the cryogenic testing cycle must be made convenient and quick. We have developed a cryogenic detector characterization system capable of testing superconducting detector arrays in formats up to 8 x 32, read out by SQUID multiplexers. The system relies on the cooling of a two-stage adiabatic demagnetization refrigerator immersed in a liquid helium bath. This approach permits a detector to be cooled from 300K to 50 mK in about 4 hours, so that a test cycle begun in the morning will be over by the end of the day. Tine system is modular, with two identical immersible units, so that while one unit is cooling, the second can be reconfigured for the next battery of tests. We describe the design, construction, and performance of this cryogenic detector testing facility.

  2. Cryogenic Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, David W.; Guzik, Monica C.

    2014-03-01

    A computational model of the cryogenic boil-off reduction system being developed by NASA as part of the Cryogenic Propellant Storage and Transfer technology maturation project has been applied to a range of propellant storage tanks sizes for high-performing in-space cryogenic propulsion applications. This effort focuses on the scaling of multi-layer insulation (MLI), cryocoolers, broad area cooling shields, radiators, solar arrays, and tanks for liquid hydrogen propellant storage tanks ranging from 2 to 10 m in diameter. Component scaling equations were incorporated into the Cryogenic Analysis Tool, a spreadsheet-based tool used to perform system-level parametric studies. The primary addition to the evolution of this updated tool is the integration of a scaling method for reverse turbo-Brayton cycle cryocoolers, as well as the development and inclusion of Self-Supporting Multi-Layer Insulation. Mass, power, and sizing relationships are traded parametrically to establish the appropriate loiter period beyond which this boil-off reduction system application reduces mass. The projected benefit compares passive thermal control to active thermal control, where active thermal control is evaluated for reduced boil-off with a 90 K shield, zero boil-off with a single heat interception stage at the tank wall, and zero boil-off with a second interception stage at a 90 K shield. Parametric studies show a benefit over passive storage at loiter durations under one month, in addition to showing a benefit for two-stage zero boil-off in terms of reducing power and mass as compared to single stage zero boil-off. Furthermore, active cooling reduces the effect of varied multi-layer insulation performance, which, historically, has been shown to be significant.

  3. Design of the NIF Cryogenic Target System

    SciTech Connect

    Gibson, C; Baltz, J; Malsbury, T; Atkinson, D; Brugmann, V; Coffield, F; Edwards, O; Haid, B; Locke, S; Shiromizu, S; Skulina, K

    2008-06-10

    The United States Department of Energy has embarked on a campaign to conduct credible fusion ignition experiments on the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in 2010. The target assembly specified for this campaign requires the formation of a deuterium/tritium (DT) fuel ice layer in a 2 mm diameter capsule at the center of a 9 mm long by 5 mm diameter cylinder, called a hohlraum. The ice layer must be formed and maintained at temperatures below 20 K. At laser shot time, the target is positioned at the center of the NIF target chamber, aligned to the laser beams and held stable to less than 7 {micro}m rms. We have completed the final design of the Cryogenic Target System and are integrating the devices necessary to create, characterize and position the cryogenic target for ignition experiments. These designs, with supporting analysis and prototype test results, will be presented.

  4. Cryogenic target system for hydrogen layering

    SciTech Connect

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; Edwards, O.; Fair, J.; Fedorov, M.; Fry, J.; Gibson, C.; Haid, B.; Holunga, D.; Kohut, T.; Lewis, T.; Malsbury, T.; Mapoles, E.; Sater, J.; Skulina, K.; Trummer, D.; Walters, C.

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highly constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.

  5. Design concepts for the ASTROMAG cryogenic system

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Castles, S.

    1987-01-01

    Described is a proposed cryogenic system used to cool the superconducting magnet for the Space Station based ASTROMAG Particle Astrophysics Facility. This 2-meter diameter superconducting magnet will be cooled using stored helium II. The paper presents a liquid helium storage concept which would permit cryogenic lifetimes of up to 3 years between refills. It is proposed that the superconducting coil be cooled using superfluid helium pumped by the thermomechanical effect. It is also proposed that the storage tank be resupplied with helium in orbit. A method for charging and discharging the magnet with minimum helium loss using split gas-cooled leads is discussed. A proposal to use a Stirling cycle cryocooler to extend the storage life of the cryostat will also be presented.

  6. Cryogenic target system for hydrogen layering

    DOE PAGESBeta

    Parham, T.; Kozioziemski, B.; Atkinson, D.; Baisden, P.; Bertolini, L.; Boehm, K; Chernov, A.; Coffee, K.; Coffield, F.; Dylla-Spears, R.; et al

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  7. Thermal Performance Testing Of Cryogenic Piping Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.

    2003-01-01

    Thermal performance measurement of piping systems under actual field conditions is important for space launch development and commercial industry. Knowledge of the true insulating effectiveness is needed in system design, development, and research activities. A new 18-meter-long test apparatus for cryogenic pipelines has been developed. Three different pipelines, rigid or flexible, can be tested simultaneously. Critical factors in heat leak measurements include eliminating heat transfer at end connections and obtaining proper liquid saturation condition. Effects due to variations in the external ambient conditions like wind, humidity, and solar radiation must be minimized. The static method of liquid nitrogen evaporation has been demonstrated, but the apparatus can be adapted for dynamic testing with cryogens, chilled water, or other working fluids. This technology is suited for the development of an industry standard test apparatus and method. Examples of the heat transfer data from testing commercially available pipelines are given. Prototype pipelines are currently being tested and evaluated at the Cryogenics Test Laboratory of NASA Kennedy Space Center.

  8. CRYOGENIC UPPER STAGE SYSTEM SAFETY

    NASA Technical Reports Server (NTRS)

    Smith, R. Kenneth; French, James V.; LaRue, Peter F.; Taylor, James L.; Pollard, Kathy (Technical Monitor)

    2005-01-01

    NASA s Exploration Initiative will require development of many new systems or systems of systems. One specific example is that safe, affordable, and reliable upper stage systems to place cargo and crew in stable low earth orbit are urgently required. In this paper, we examine the failure history of previous upper stages with liquid oxygen (LOX)/liquid hydrogen (LH2) propulsion systems. Launch data from 1964 until midyear 2005 are analyzed and presented. This data analysis covers upper stage systems from the Ariane, Centaur, H-IIA, Saturn, and Atlas in addition to other vehicles. Upper stage propulsion system elements have the highest impact on reliability. This paper discusses failure occurrence in all aspects of the operational phases (Le., initial burn, coast, restarts, and trends in failure rates over time). In an effort to understand the likelihood of future failures in flight, we present timelines of engine system failures relevant to initial flight histories. Some evidence suggests that propulsion system failures as a result of design problems occur shortly after initial development of the propulsion system; whereas failures because of manufacturing or assembly processing errors may occur during any phase of the system builds process, This paper also explores the detectability of historical failures. Observations from this review are used to ascertain the potential for increased upper stage reliability given investments in integrated system health management. Based on a clear understanding of the failure and success history of previous efforts by multiple space hardware development groups, the paper will investigate potential improvements that can be realized through application of system safety principles.

  9. R&D ERL: Cryogenic System

    SciTech Connect

    Than, R.

    2010-01-01

    The ERL cryogenic system will supply cooling to a super-conducting RF (SCRF) gun and the 5-cell super-conducting RF cavity system that need to be held cold at 2K. The engineering of the cavity cryomodules were carried out by AES in collaboration with BNL. The 2K superfluid bath is produced by pumping on the bath using a sub-atmospheric warm compression system. The cryogenic system makes use of mainly existing equipment relocated from other facilities: a 300W 4.5K coldbox, an 45 g/s screw compressor, a 3800 liter liquid helium storage dewar, a 170 m{sup 3} warm gas storage tank, and a 40,000 liter vertical low pressure liquid nitrogen storage dewar. An existing wet expander obtained from another facility has been added to increase the plant capacity. In order to deliver the required 3 to 4 bar helium to the cryomodules while using up stored liquid capacity at low pressure, a new subcooler will be installed to function as the capacity transfer device. A 2K to 4K recovery heat exchanger is also implemented for each cryomodule to recover refrigeration below 4K, thus maximizing 2K cooling capacity with the given sub-atmospheric pump. No 4K-300K refrigeration recovery is implemented at this time of the returning sub-atmospheric cold vapor, hence the 2K load appears as a liquefaction1 load on the cryogenic plant. A separate LN2 cooling loop supplies liquid nitrogen to the superconducting gun's cathode tip.

  10. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  11. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J. ); Bittner, D.N.; Hendricks, C.D. )

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester's Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D[sub 2] or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  12. Conceptual design report for the University of Rochester cryogenic target delivery system

    SciTech Connect

    Fagaly, R.L.; Alexander, N.B.; Bourque, R.F.; Dahms, C.F.; Lindgren, J.R.; Miller, W.J.; Bittner, D.N.; Hendricks, C.D.

    1993-05-01

    The upgrade of the Omega laser at the University of Rochester`s Laboratory for Laser Energetics (UR/LLE) will result in a need for large targets filled with D{sub 2} or Dt and maintained at cryogenic temperatures. This mandates a cryogenic target delivery system capable of filling, layering, characterizing and delivering cryogenic targets to the Omega Upgrade target chamber. The program goal is to design, construct, and test the entire target delivery system by June 1996. When completed (including an operational demonstration), the system will be shipped to Rochester for reassembly and commissioning in time for the Omega Upgrade cryogenic campaign, scheduled to start in 1998. General Atomics has been assigned the task of developing the conceptual design for the cryogenic target delivery system. Design and fabrication activities will be closely coordinated with the University of Rochester, Lawrence Livermore National laboratory (LLNL) and Los Alamos National Laboratory (LANL), drawing upon their knowledge base in fuel layering and cryogenic characterization. The development of a target delivery system for Omega could also benefit experiments at Lawrence Livermore National Laboratory and the other ICF Laboratories in that the same technologies could be applied to NOVA, the National Ignition Facility or the future Laboratory Microfusion Facility.

  13. Linac cryogenic distribution system maintenance and upgrades at Jlab

    SciTech Connect

    Dixon, Kelly D.; Wright, Mathew C.; Ganni, Venkatarao

    2014-01-01

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  14. Linac cryogenic distribution system maintenance and upgrades at JLab

    SciTech Connect

    Dixon, K.; Wright, M.; Ganni, V.

    2014-01-29

    The Central Helium Liquefier (CHL) distribution system to the CEBAF and FEL linacs at Jefferson Lab (JLab) experienced a planned warm up during the late summer and fall of 2012 for the first time after its commissioning in 1991. Various maintenance and modifications were performed to support high beam availability to the experimental users, meet 10 CFR 851 requirements for pressure systems, address operational issues, and prepare the cryogenic interfaces for the high-gradient cryomodules needed for the 12 GeV upgrade. Cryogenic maintenance and installation work had to be coordinated with other activities in the linacs and compete for manpower from other department installation activities. With less than a quarter of the gas storage capacity available to handle the boil-off from the more than 40 cryomodules, 35,000 Nm{sup 3} of helium was re-liquefied and shipped to a vendor via a liquid tanker trailer. Nearly 200 u-tubes had to be removed and stored while seals were replaced on related equipment such as vacuum pump outs, bayonet isolation and process valves.

  15. Cryogenic Propellant Feed System Analytical Tool Development

    NASA Technical Reports Server (NTRS)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.

    2011-01-01

    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  16. Cryogenic system for a superconducting spectrometer

    SciTech Connect

    Porter, J.

    1983-03-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable, pool boiling design to provide a maximum particle bending field of 3 tesla. This paper describes the cryogenic facility including helium refrigeration, gas management, liquid nitrogen system, and the overall control strategy. The system normally operates with a 4 K heat load of 150 watts; the LN/sub 2/ circuits absorb an additional 4000 watts. 80K intercept control is by an LSI 11 computer. Total available refrigeration at 4K is 400 watts using reciprocating expanders at the 20K and 4K level. The minicomputer has the capability of optimizing overall utility input cost by varying operating points. A hybrid of pneumatic, analog, and digital control is successful in providing full time unattended operation. The 7m diameter magnet/cryostat assembly is rotatable through 180 degrees to provide a variety of spectrometer orientations.

  17. Aerogel Beads as Cryogenic Thermal Insulation System

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.; Thompson, Karen (Technical Monitor)

    2001-01-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/cubic m) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10(exp -5) torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  18. Aerogel beads as cryogenic thermal insulation system

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Augustynowicz, S. D.; Rouanet, S.

    2002-05-01

    An investigation of the use of aerogel beads as thermal insulation for cryogenic applications was conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Steady-state liquid nitrogen boiloff methods were used to characterize the thermal performance of aerogel beads in comparison with conventional insulation products such as perlite powder and multilayer insulation (MLI). Aerogel beads produced by Cabot Corporation have a bulk density below 100 kilograms per cubic meter (kg/m3) and a mean particle diameter of 1 millimeter (mm). The apparent thermal conductivity values of the bulk material have been determined under steady-state conditions at boundary temperatures of approximately 293 and 77 kelvin (K) and at various cold vacuum pressures (CVP). Vacuum levels ranged from 10-5 torr to 760 torr. All test articles were made in a cylindrical configuration with a typical insulation thickness of 25 mm. Temperature profiles through the thickness of the test specimens were also measured. The results showed the performance of the aerogel beads was significantly better than the conventional materials in both soft-vacuum (1 to 10 torr) and no-vacuum (760 torr) ranges. Opacified aerogel beads performed better than perlite powder under high-vacuum conditions. Further studies for material optimization and system application are in progress.

  19. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    SciTech Connect

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-29

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN{sub 2} storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  20. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  1. Cryogenic system options for a superconducting aircraft propulsion system

    NASA Astrophysics Data System (ADS)

    Berg, F.; Palmer, J.; Bertola, L.; Miller, Paul; Dodds, Graham

    2015-12-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution.

  2. Thermal Performance Testing of Cryogenic Insulation Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.

    2007-01-01

    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.

  3. Status of the Cryogen-Free Cryogenic System for the CUORE Experiment

    NASA Astrophysics Data System (ADS)

    Nucciotti, A.; Alessandria, F.; Ameri, M.; Bucci, C.; Bersani, A.; Canonica, L.; Cereseto, R.; Ceruti, G.; Cremonesi, O.; Dally, A.; Datskov, V.; Dossena, S.; Ejzak, L.; Faverzani, M.; Ferri, E.; Franceschi, A.; Gregerson, G.; Heeger, K.; Ligi, C.; Napolitano, T.; Orlandi, D.; Sisti, M.; Taffarello, L.; Tatananni, L.; Wise, T.; Woodcraft, A.

    2011-11-01

    The CUORE detector will be made of 988 TeO2 crystals and will need a base temperature lower than 10 mK in order to meet the performance specifications. To cool the CUORE detector a large cryogen-free cryostat with five pulse tubes and one specially designed high-power dilution refrigerator has been designed. The detector assembly has a total mass of about 1.5 ton and uses a vibration decoupling suspension system. Because of the stringent requirements regarding radioactivity, about 12 tons of lead shielding need to be cooled to 4 K and below, and only a limited number of construction materials are acceptable. The eight retractable radioactive sources for detector calibration and about 2600 signal wires add further complexity to the system. The many stringent and contrasting requirements together with the overall large size made the design of the CUORE cryogenic system a real mechanical and cryogenic engineering challenge. The cryogenic system is expected to be fully operational in the Gran Sasso Laboratory in July 2013. We report here about the current status of the cryogenic system construction, which has started about one year.

  4. Cryogenic system operating experience review for fusion applications

    SciTech Connect

    Cadwallader, L.C.

    1992-01-01

    This report presents a review of cryogenic system operating experiences, from particle accelerator, fusion experiment, space research, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of cryogenic component failure rates and accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with cryogenic systems are discussed, including ozone formation, effects of spills, and modeling spill behavior. This information should be useful to fusion system designers and safety analysts, such as the team working on the International Thermonuclear Experimental Reactor design.

  5. Front-end system for Yb : YAG cryogenic disk laser

    NASA Astrophysics Data System (ADS)

    Perevezentsev, E. A.; Mukhin, I. B.; Kuznetsov, I. I.; Vadimova, O. L.; Palashov, O. V.

    2015-05-01

    A new front-end system for a cryogenic Yb : YAG laser is designed. The system consists of a femtosecond source, a stretcher and a regenerative amplifier with an output energy of 25 μJ at a pulse repetition rate of 49 kHz, a pulse duration of ~2 ns and a bandwidth of ~1.5 nm. After increasing the pump power of the regenerative amplifier, it is expected to achieve a pulse energy of ~1 mJ at the input to cryogenic amplification stages, which will allow one to obtain laser pulses with a duration of several picoseconds at the output of the cryogenic laser after compression.

  6. CCRIS: Carnegie Commission Reports Information System.

    ERIC Educational Resources Information Center

    Lavin, Mary Jo

    The Carnegie Commission Reports Information System (CCRIS) attempts to make the findings of the 22 Commission reports (published by McGraw Hill Book Company) more readily available to the academic community. CCRIS consists of an explanatory text of 16 pages introducing the reader to a set of 1500 edge-notched McBee cards. Each card contains a…

  7. Modular, Rapid Propellant Loading System/Cryogenic Testbed

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter, Sr.; Jumper, Kevin

    2012-01-01

    The Cryogenic Test Laboratory (CTL) at Kennedy Space Center (KSC) has designed, fabricated, and installed a modular, rapid propellant-loading system to simulate rapid loading of a launch-vehicle composite or standard cryogenic tank. The system will also function as a cryogenic testbed for testing and validating cryogenic innovations and ground support equipment (GSE) components. The modular skid-mounted system is capable of flow rates of liquid nitrogen from 1 to 900 gpm (approx equals 3.8 to 3,400 L/min), of pressures from ambient to 225 psig (approx equals 1.5 MPa), and of temperatures to -320 F (approx equals -195 C). The system can be easily validated to flow liquid oxygen at a different location, and could be easily scaled to any particular vehicle interface requirements

  8. Postflight Analysis of the Apollo 14 Cryogenic Oxygen System

    NASA Technical Reports Server (NTRS)

    Rule, D. D.

    1972-01-01

    A postflight analysis of the Apollo 14 cryogenic oxygen system is presented. The subjects discussed are: (1) methods of analysis, (2) stratification and heat transfer, (3) flight analysis, (4) postflight analysis, and (5) determination of model parameters.

  9. Design of the PIXIE cryogenic system

    NASA Astrophysics Data System (ADS)

    DiPirro, M.; Fixsen, D.; Kogut, A.; Li, X.; Marquardt, J.; Shirron, P.

    2012-04-01

    The Primordial Inflation Explorer (PIXIE) is a proposed mission to study the polarization of the remnant cosmic microwave background with the goal of finding and understanding primordial gravity waves. The instrument has been designed to capture this information across the entire sky by rejecting foreground signals and suppressing systematic error by multiple differencing methods. The instrument operates at a temperature very close to the cosmic microwave background of 2.7 K, while the detectors operate at 0.1 K. The PIXIE cryogenic system provides this in low Earth orbit by making use of three subsystems. Lightweight, simply deployed shields provide protection against the Earth and Sun while passively cooling wiring and instrument supports at 150 K. A mechanical cryocooler precools wires and supports at 68, 17, and 4.5 K while its compressors operate at room temperature. And finally two adiabatic demagnetization refrigerators cool the instrument from 4.5 to 2.7 K and cool the detectors to 0.1 K. Staged cooling in this manner allows a thermodynamically efficient use of relatively mature technologies that can be fully demonstrated before flight.

  10. Design and testing of the New Muon Lab cryogenic system at Fermilab

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Theilacker, J.C.; DeGraff, B.D.; Leibfritz, J.; /Fermilab

    2009-11-01

    Fermi National Accelerator Laboratory is constructing a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab building. The facility will be used for testing and validating cryomodule designs as well as support systems. For the initial phase of the project, a single Type III plus 1.3 GHz cryomodule will be cooled and tested using a single Tevatron style standalone refrigerator. Subsequent phases involve testing as many as two full RF units consisting of up to six 1.3 GHz cryomodules with the addition of a new cryogenic plant. The cryogenic infrastructure consists of the refrigerator system, cryogenic distribution system as well as an ambient temperature pumping system to achieve 2 K operations with supporting purification systems. A discussion of the available capacity for the various phases versus the proposed heat loads is included as well as commissioning results and testing schedule. This paper describes the plans, status and challenges of this initial phase of the New Muon Lab cryogenic system.

  11. Progress on the cryogenic system for the KAGRA cryogenic interferometric gravitational wave telescope

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Akutsu, Tomotada; Chen, Dan; Khalaidovski, Aleksandr; Kimura, Nobuhiro; Koike, Shigeaki; Kume, Tatsuya; Kuroda, Kazuaki; Suzuki, Toshikazu; Tokoku, Chihiro; Yamamoto, Kazuhiro

    2014-11-01

    KAGRA is a project to construct a cryogenic interferometric gravitational wave detector in Japan. Its mirrors and the lower parts of the suspension systems will be cooled to 20 K in order to reduce thermal noise, one of the fundamental noise sources. One of the key features of KAGRA's cooling system is that it will keep the mirrors cooled without introducing vibration. This paper describes the current status of the design, manufacture and testing of the KAGRA cooling system.

  12. Miniature Cryogenic Valves for a Titan Lake Sampling System

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Zimmerman, Wayne; Takano, Nobuyuki; Avellar, Louisa

    2014-01-01

    The Cassini mission has revealed Titan to be one of the most Earthlike worlds in the Solar System complete with many of the same surface features including lakes, river channels, basins, and dunes. But unlike Earth, the materials and fluids on Titan are composed of cryogenic organic compounds with lakes of liquid methane and ethane. One of the potential mission concepts to explore Titan is to land a floating platform on one of the Titan Lakes and determine the local lake chemistry. In order to accomplish this within the expected mass volume and power budgets there is a need to pursue the development for a low power lightweight cryogenic valves which can be used along with vacuum lines to sample lake liquid and to distribute to various instruments aboard the Lander. To meet this need we have initiated the development of low power cryogenic valves and actuators based on a single crystal piezoelectric flextensional stacks produced by TRS Ceramics Inc. Since the origin of such high electromechanical properties of Relaxor-PT single crystals is due to the polarization rotation effect, (i.e., intrinsic contributions), the strain per volt decrease at cryogenic temperatures is much lower than in standard Lead Zirconate Titanate (PZT) ceramics. This makes them promising candidates for cryogenic actuators with regards to the stroke for a given voltage. This paper will present our Titan Lake Sampling and Sample Handling system design and the development of small cryogenic piezoelectric valves developed to meet the system specifications.

  13. The SNS Cryogenic Control System: Experiences in Collaboration

    SciTech Connect

    W.H. Strong; P.A. Gurd; J.D. Creel; B.S. Bevins

    2001-11-01

    The cryogenic system for the Spallation Neutron Source (SNS) is designed by Jefferson Laboratory (JLab) personnel and is based on the existing JLab facility. Our task is to use the JLab control system design [2] as much as practical while remaining consistent with SNS control system standards. Some aspects of the systems are very similar, including equipment to be controlled, the need for PID loops and automatic sequences,and the use of EPICS. There are differences in device naming, system hardware, and software tools. The cryogenic system is the first SNS system to be developed using SNS standards. This paper reports on our experiences in integrating the new and the old.

  14. History, status and future applications of spaceborne cryogenic systems

    NASA Technical Reports Server (NTRS)

    Sherman, A.

    1982-01-01

    Cryogenic cooling is employed for an increasing number of space instruments. Cryogenic cooling is needed to provide the required detector response, reduce preamplifier noise, and/or reduce background radiation. Cryogenic cooling is required by instruments employed for applications missions, gamma-ray and X-ray astronomy, cosmic ray measurements, space surveillance, IR astronomy, relativity measurements, superconductivity devices, and basic research experiments. The cooling is provided with the aid of radiant coolers, stored solid cryogen coolers, stored liquid-helium coolers, mechanical coolers, He-3 coolers, adiabatic demagnetization, refrigeration, and higher temperature adsorption and magnetic systems. Radiant coolers will continue to find widespread application for low cooling-load/high-temperature situation. It is pointed out that a long-lifetime closed-cycle, mechanical cooler is one of the most critical space technological needs.

  15. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  16. The cryogenic system for ITER CC superconducting conductor test facility

    NASA Astrophysics Data System (ADS)

    Peng, Jinqing; Wu, Yu; Liu, Huajun; Shi, Yi; Chen, Jinglin; Ren, Zhibin

    2011-01-01

    This paper describes the cryogenic system of the International Thermonuclear Experimental Reactor (ITER) Correction Coils (CC) test facility, which consists of a 500 W/4.5 K helium refrigerator, a 50 kA superconducting transformer cryostat (STC) and a background field magnet cryostat (BFMC). The 500 W/4.5 K helium refrigerator synchronously produces both the liquid helium (LHe) and supercritical helium (SHe). The background field magnet and the primary coil of the superconducting transformer (PCST) are cooled down by immersing into 4.2 K LHe. The secondary Cable-In-Conduit Conductor (CICC) coil of the superconducting transformer (SCST), superconducting joints and the testing sample of ITER CC are cooled down by forced-flow supercritical helium. During the commissioning experiment, all the superconducting coils were successfully translated into superconducting state. The background field magnet was fully cooled by immersing it into 4.2 K LHe and generated a maximal background magnetic field of 6.96 T; the temperature of transformer coils and current leads was reduced to 4.3 K; the inlet temperature of SHe loop was 5.6 K, which can meet the cooling requirements of CIC-Conductor and joint boxes. It is noted that a novel heat cut-off device for High Temperature Superconducting (HTS) binary current leads was introduced to reduce the heat losses of transformer cryostat.

  17. SRF Test Areas Cryogenic System Controls Graphical User Interface

    SciTech Connect

    DeGraff, B.D.; Ganster, G.; Klebaner, A.; Petrov, A.D.; Soyars, W.M.; /Fermilab

    2011-06-09

    Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users.

  18. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  19. Commissioning

    SciTech Connect

    Huta, L.G.

    1995-12-01

    Building managers often find that HVAC, lighting and other systems in new buildings need adjustments and modifications. The owner, architect and contractor may mistakenly assume that all of a building`s systems--architectural, mechanical, control and electrical--function according to the design intent. Thus, energy managers can optimize their building`s performance through commissioning, a process that looks for and corrects the defects in a building` operating system or design, immediately before and after it is occupied (following construction or renovation).

  20. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    SciTech Connect

    Gao, F.; Rose, J.; Cupolo, J.; Dilgen, T.; Rose, B.; Gash, W.; Ravindranath, V.; Yeddulla, M.; Papu, J.; Davila, P.; Holub, B.; Tagger, J.; Sikora, R.; Ramirez, G.; Kulpin, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  1. Cryogenic compressive properties of basic epoxy resin systems

    SciTech Connect

    Markley, F.W.; Hoffman, J.A.; Muniz, D.P.

    1985-09-01

    The compressive properties of short cylindrical samples of many different epoxy resin systems have been measured at ambient temperature and at 77/sup 0/K. These are pure resin systems of known chemistry, without the inorganic fillers or fibrous reinforcements needed in final cryogenic systems. Of course, chemically incorporated modifiers such as flexibilizing resins have been included. This data should make possible inferences about cryogenic properties from molecular structures and provide specific data useful to formulators and end users. Measurements on some other plastics such as PTFE, Polyimides, and UHMWPE have been made for comparison purposes.

  2. Low-Heat-Leak Electrical Leads For Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hooker, Matthew W.

    1994-01-01

    Electrical leads offering high electrical conductivity and low thermal conductivity developed for use in connecting electronic devices inside cryogenic systems to power supplies, signal-processing circuits, and other circuitry located in nearby warmer surroundings. Strip of superconductive leads on ceramic substrate, similar to ribbon cable, connects infrared detectors at temperature of liquid helium with warmer circuitry. Electrical leads bridging thermal gradient at boundary of cryogenic system designed both to minimize conduction of heat from surroundings through leads into system and to minimize resistive heating caused by electrical currents flowing in leads.

  3. Cryogenic ion trapping systems with surface-electrode traps

    NASA Astrophysics Data System (ADS)

    Antohi, P. B.; Schuster, D.; Akselrod, G. M.; Labaziewicz, J.; Ge, Y.; Lin, Z.; Bakr, W. S.; Chuang, I. L.

    2009-01-01

    We present two simple cryogenic rf ion trap systems in which cryogenic temperatures and ultra high vacuum pressures can be reached in as little as 12 h. The ion traps are operated either in a liquid helium bath cryostat or in a low vibration closed cycle cryostat. The fast turn around time and availability of buffer gas cooling made the systems ideal for testing surface-electrode ion traps. The vibration amplitude of the closed cycled cryostat was found to be below 106 nm. We evaluated the systems by loading surface-electrode ion traps with S88r+ ions using laser ablation, which is compatible with the cryogenic environment. Using Doppler cooling we observed small ion crystals in which optically resolved ions have a trapped lifetime over 2500 min.

  4. A transition detection study using a cryogenic hot film system in the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Carraway, D. L.; Stainback, P. C.; Fancher, M. F.

    1987-01-01

    A transition detection study was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) using a specialized hot film system designed specifically for use in cryogenic wind tunnels. The quantitative transition location data obtained at near cryogenic conditions, 360 deg R (200K) represents the first definitive transition Reynolds numbers obtained in a cryogenic wind tunnel. The model was tested at both adiabatic and nonadiabatic wall conditions with a wall-to-total temperature ratio as low as 0.47. The test results indicated an improved technique for hot-film installation and a modified data acquisition system would allow the on-line determination of the location of boundary layer transition in cryogenic wind tunnels, such as the U.S. National Transonic Facility.

  5. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  6. Pressure transducer and system for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor)

    1992-01-01

    A silicon pressure die is bonded to a borosilicate substrate above the pneumatic port. A Wheatstone bridge circuit is formed on the silicon pressure die and has bridge elements of silicon doped with boron to a deposit density level of approximately 1 x 10(exp 19)-10(exp 21) boron/cc. A current source is provided to excite the Wheatstone bridge circuit. In addition, a temperature sensor is provided to provide temperature readings. An array may be formed of the resulting pressure transducers. This unique solution of materials permits operation of a pressure transducer in cryogenic environments.

  7. Means of protecting cryogenic systems from the geyser effect

    SciTech Connect

    Filina, N.N.

    1986-03-01

    New means of protection, which permit a low fluid boil in the pipeline without proceeding into an avalanchelike process, have been developed on the basis of theoretical and experimental investigations of the geyser effect in cryogenic systems with an end thermal influx from a regulating fitting. An equation is presented for computing the time allowed for the low fluid boil. Pressure increase in the overhead reservoir is discussed and a cryogenic reservoir with concentric pipeline equipped with a hood for vapor elimination is illustrated. Vapor removal from a vertical pipeline is examined. A structural method of protecting cryogenic systems from the geyser effect is discussed; the value of this method consists in its high reliability.

  8. Shuttle cryogenic supply system optimization study. Volume 6: Appendixes

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The optimization of the cryogenic supply system for space shuttles is discussed. The subjects considered are: (1) auxiliary power unit parametric data, (2) propellant acquisition, (3) thermal protection and thermodynamic properties, (4) instrumentation and controls, and (5) initial component redundancy evaluations. Diagrams of the systems are provided. Graphs of the performance capabilities are included.

  9. Cryogenic system for COMET experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi

    2016-07-01

    Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.

  10. Design and Construction of Cryogenic Optomechanical System

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Underwood, Mitchell; Mason, David; Jayich, Andrew; Kashkanova, Anya; Harris, Jack

    2013-03-01

    One key challenge to observing quantum phenomena in a macroscopic mechanical oscillator is reaching its ground state. To achieve the low temperatures required for this, we utilize resolved sideband laser cooling of a few hundred kHz mechanical oscillator with high mechanical Q (a Si3N4 membrane) inside a high finesse optical cavity, in addition to cryogenically reducing the bath temperature. Realizing high Q and high finesse cavity optomechanical devices in a cryogenic environment requires overcoming a number of challenges. In this talk, we describe the design and construction of such a device working at a bath temperature of 300 mK (in a 3He refrigerator) and suited for operation at lower temperatures (in a dilution refrigerator). The design incorporates in-situ commercial piezo actuators (manufactured by Janssen Precision Engineering) to couple externally prepared laser light into the cold optical cavity. The design also incorporates filtering cavities to suppress classical laser noise, and acoustic and seismic isolation of the experiment.

  11. Commissioning of CMS Endcap Muon System

    NASA Astrophysics Data System (ADS)

    Brownell, Elizabeth

    2009-05-01

    This talk is as an overview of the evolution and current state of commissioning work on the CMS endcap muon system. I intend to highlight the progress in operating the detector, some problems encountered and solutions developed, lessons learned in the process, points which still require action to be taken, and data taking results.

  12. Superfluid helium cryogenic systems for superconducting RF cavities at KEK

    SciTech Connect

    Nakai, H.; Hara, K.; Honma, T.; Hosoyama, K.; Kojima, Y.; Nakanishi, K.; Kanekiyo, T.; Morita, S.

    2014-01-29

    Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear Collider (ILC) project and the compact Energy Recovery Linac (cERL), employ superconducting RF cavities made of pure niobium, which can generate high gradient acceleration field. Since the operation temperature of these cavities is selected to be 2 K, we have developed two 2 K superfluid helium cryogenic systems for stable operation of superconducting RF cavities for each of STF and cERL. These two 2 K superfluid helium cryogenic systems are identical in principle. Since the operation mode of the cavities is different for STF and cERL, i.e. the pulse mode for STF and the continuous wave mode for cERL, the heat loads from the cavities are quite different. The 2 K superfluid helium cryogenic systems mainly consists of ordinary helium liquefiers/refrigerators, 2 K refrigerator cold boxes, helium gas pumping systems and high-performance transfer lines. The 2 K refrigerators and the high-performance transfer lines are designed by KEK. Some superconducting RF cavity cryomodules have been already connected to the 2 K superfluid helium cryogenic systems for STF and cERL respectively, and cooled down to 2 K successfully.

  13. Cryogenic system upgrade for the National Superconducting Cyclotron Laboratory

    SciTech Connect

    A. McCartney; V. Ganni; H. Laumer; D. Arenius; J. Creel; W. Chronis; K. Davidson

    2002-05-10

    The National Superconducting Cyclotron Laboratory (NSCL) is a National Science Foundation supported facility, with additional support from Michigan State University (MSU). The facility consists of two superconducting cyclotrons and over fifty individual cryostats, each containing several superconducting magnets that are used in the beam transport system. The facility also has a superconducting ion source and a large superconducting spectrograph. To support this facility we operated two helium refrigerators producing approximate 900W at 4.5K. In July of 1999, construction of a new beam analysis system, the A1900, was started. The laboratory was reconfigured to couple the two cyclotrons in series to enable the facility to produce higher intensity radioactive beams than previously possible in the stand-alone mode. In addition, the helium distribution system was upgraded with new transfer lines and a new distribution box. The new requirements increased the refrigeration load to more than 1 KW at 4.5K. To support this increased cryogenic load, the existing two helium cryogenic plants, were at best, marginal in capacity. This would have required both plants to run at full capacity, maximum efficiency and availability. To achieve higher reliability, availability, and process transient capacity for magnet cool down and filling, a decision was made to obtain a larger cryogenic plant to support the new system. The following paper describes the important aspects and capabilities of the new cryogenic system to accomplish this goal.

  14. Standardization in Cryogenic Insulation Systems Testing and Performance Data

    NASA Astrophysics Data System (ADS)

    Fesmire, James E.

    The close relationship between industrial energy use and cryogenics drives the need for optimized thermal insulation systems. Emerging cryofuels usage is enabled by adequate isolation of the liquid hydrogen or liquefied natural gas from the ambient environment. Thermal performance data for the total insulation system, as rendered, are essential for both engineering designs and cost-benefit decisions involving comparisons among alternatives. These data are obtained through rigorous testing with suitable apparatus and repeatable methods. Properly defined terminology, analysis, and reporting are also vital. Advances in cryogenic insulation test apparatus and methods have led to the recent addition of two new technical standards of ASTM International: C1774 - Standard Guide for Thermal Performance Testing of Cryogenic InsulationSystems and C740 - Standard Guide for Evacuated Reflective Cryogenic Insulation. Among the different techniques described in the new standards is the cylindrical boiloff calorimeter for absolute heat measurement over the full range of vacuum pressure conditions. The details of this apparatus, test method, and data analysis are given. Benchmark thermal performance data, including effective thermal conductivity (ke) and heat flux (q) for the boundary temperatures of 293 K and 77 K, are given for a number of different multilayer insulation (MLI) systems in comparison with data for other commonly-used insulation systems including perlite powder, fiberglass, polyurethane foam, and aerogels.

  15. G2 Autonomous Control for Cryogenic Delivery Systems

    NASA Technical Reports Server (NTRS)

    Dito, Scott J.

    2014-01-01

    The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.

  16. Method of measuring heat influx of a cryogenic transfer system. [Patent application

    DOEpatents

    Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.

    1980-10-29

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  17. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    SciTech Connect

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs.

  18. Nanogel Aerogel as Load Bearing Insulation for Cryogenic Systems

    NASA Astrophysics Data System (ADS)

    Koravos, J. J.; Miller, T. M.; Fesmire, J. E.; Coffman, B. E.

    2010-04-01

    Load support structures in cryogenic storage, transport and processing systems are large contributors to the total heat leak of the system. Conventional insulation systems require the use of these support members in order to stabilize the process fluid enclosure and prevent degradation of insulation performance due to compression. Removal of these support structures would substantially improve system efficiency. Nanogel aerogel insulation performance is tested at vacuum pressures ranging from high vacuum to atmospheric pressure and under loads from loosely packed to greater than 10,000 Pa. Insulation performance is determined using boil-off calorimetry with liquid nitrogen as the latent heat recipient. Two properties of the aerogel insulation material suit it to act as a load bearing "structure" in a process vessel: (1) Ability to maintain thermal performance under load; (2) Elasticity when subjected to load. Results of testing provide positive preliminary indication that these properties allow Nanogel aerogel to effectively be used as a load bearing insulation in cryogenic systems.

  19. Cryogenic system for the mirror fusion test facility

    SciTech Connect

    VanSant, J.H.; Slack, D.S.; Nelson, R.L.

    1980-02-26

    The Mirror Fusion Test Facility (MFTF), currently being constructed at the Lawrence Livermore Laboratory, has large superconducting magnets, cryopanels, and supporting cryogenic equipment that will comprise one of the world's largest liquid helium (LHe) systems. The facility will provide mirror magnetic confinement for experimental fusion plasmas that will be approximately the same physical size as if in a conceptual fusion reactor. The cryogenic system typifies the magnitude and makeup of systems that will be used in future magnetic fusion reactors. Here we describe the LHe cryopumping and magnet systems. Principal components include a 3300 W helium refrigerator, 30,000 L LHe storage, a 1.5 MW (2000 hp) refrigerator compressor, 1100 m/sup 2/ of cryopanels, and a 420 MJ superconducting magnet system. Design features, method of operation, thermal protection, and helium recovery operations are discussed.

  20. A pressure control analysis of cryogenic storage systems

    NASA Technical Reports Server (NTRS)

    Lin, C.-S.; Van Dresar, N. T.; Hasan, M. M.

    1991-01-01

    Self-pressurization of cryogenic storage tanks due to heat leak through the thermal protection system is examined along with the performance of various pressure control technologies for application in microgravity environments. Methods of pressure control such as fluid mixing, passive thermodynamic venting, and active thermodynamic venting are analyzed using the homogeneous thermodynamic model. Simplified equations suggested may be used to characterize the performance of various pressure control systems and to design space experiments.

  1. The Fermilab CMTF cryogenic distribution remote control system

    NASA Astrophysics Data System (ADS)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-01

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  2. Cryogenic system of China Dark matter Experiment (CDEX-10)

    NASA Astrophysics Data System (ADS)

    Ning, Feipeng; Zhu, Zian; Wang, Meifen; Geng, Lisi; Yang, Huan; Wang, Kexiang; Zhao, Ling; Hou, Zhilong; Yue, Qian; Xing, Haoyang

    2016-06-01

    Dark matter is a type of matter hypothesized in astronomy and cosmology to account for a large part of the mass that appears to be missing from the universe. China Dark matter EXperiment (CDEX) is a direct detection system of dark matter. A cryogenic system for CDEX-10 has been designed and constructed. This note describes the cryogenic system of the CDEX-10, theoretical predictions of the heat loads to the cryostat, and measured heat loads at operation. The cryostat is an argon cooled bath type cryostat. Two pulse tube refrigerators are used for argon liquefying. The dark matter detecting needs a very quiet condition, so a special thermal shield is designed to reduce the radiation heat leakage.

  3. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  4. Performances of the Planck-HFI cryogenic thermal control system

    NASA Astrophysics Data System (ADS)

    Leroy, Christophe; Arondel, Antoine; Bernard, Jean-Philippe; Carfantan, Hervé; Dumesnil, Cydalise; Fourmond, Jean-Jacques; Guyot, Guy; Lamarre, Jean-Michel; Pajot, François; Piat, Michel; Puget, Jean-Loup; Trouilhet, Jean-Francois; Varesi, Sylvain

    2006-06-01

    The core of the High Frequency Instrument (HFI) on-board the Planck satellite consists of 52 bolometric detectors cooled at 0.1 Kelvin. In order to achieve such a low temperature, the HFI cryogenic architecture consists in several stages cooled using different active coolers. These generate weak thermal fluctuations on the HFI thermal stages. Without a dedicated thermal control system these fluctuations could produce unwanted systematic effects, altering the scientific data. The HFI thermal architecture allows to minimise these systematic effects, thanks to passive and active control systems described in this paper. The passive and active systems are used to damp the high and low frequency fluctuations respectively. The last results regarding the tests of the HFI passive and active thermal control systems are presented here. The thermal transfer functions measurement between active coolers and HFI cryogenic stages will be presented first. Then the stability of the temperatures obtained on the various cryogenic stages with PID regulations systems will be checked through analysis of their power spectrum density.

  5. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1993-06-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  6. Cryogenic cooling system for the ground test accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F. ); Spulgis, I. )

    1993-01-01

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH[sub 2]) storage Dewar with a transfer line to an LH[sub 2] run tank containing an LH[sub 2]/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  7. Cryogenic cooling system for the Ground Test Accelerator

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.; Moeller, J.; Durham, F.; Spulgis, I.

    1994-12-31

    A cryogenic cooling system has been designed, built and tested for the Ground Test Accelerator (GTA) at the Los Alamos National Laboratory. Major components of the GTA require cooling to less than 50 K to reduce rf-heating and to increase thermal stability. The cooling system is capable of cooling (at an acceptable rate for thermal stresses) the cryogenically cooled components and then maintaining them at their operating temperature during accelerator testing for all modes and power levels of operation. The accelerator components are cooled by circulating cold, dense helium gas (about 21 K and 2.1 MPa) through the components. The circulating helium is refrigerated in a heat exchanger that uses boiling liquid hydrogen as a source of refrigeration. The cryogenic cooling system consists of the following major components: a liquid hydrogen (LH{sub 2}) storage Dewar with a transfer line to an LH{sub 2} run tank containing an LH{sub 2}/gaseous helium (GHe) heat exchanger, circulation lines, and a circulation pump. The system, sized to cool a load of approximately 40 kW at temperatures as low as 20 K, is operational, but has not yet been operated in conjunction with the accelerator.

  8. Dynamic simulations of the cryogenic system of a tokamak

    NASA Astrophysics Data System (ADS)

    Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.

    2015-12-01

    Power generation in the next decades could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to 4.4K. The plasma works cyclically and the coil system is subjected to pulsed heat load which has to be handled by the refrigerator. By smoothing the variable loads, the refrigerator capacity can be set close to the average power; optimizing investment and operational costs. Within the “Broader Approach agreement” related to ITER project, CEA (Commissariat a l'Energie Atomique et aux Energies Alternatives) is in charge of providing the cryogenic system for the Japanese tokamak (JT-60SA), that is currently under construction in Naka. The system has been designed to handle the pulsed heat loads. To prepare the acceptance tests of the cryogenic system foreseen in 2016, both dynamic modelling and experimental tests on a scaled down mock-up are of high interest for assessing pulsed load smoothing control. After explaining HELIOS (HElium Loop for hIgh lOad Smoothing) operating modes, a dynamic model is presented, with results on the pulsed heat load scenarios. All the simulations have been performed with EcosimPro® and the associated cryogenic library CRYOLIB.

  9. Commissioning of the liquid nitrogen thermo-siphon system for NASA-JSC Chamber-A

    NASA Astrophysics Data System (ADS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2014-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or "shrouds") which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA's James Webb Space Telescope (JWST). Chamber A's previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  10. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA s Space Environment Simulation Laboratory s (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN cooling with centrifugal pumps, requiring 220,000 liters of LN to cool-down and consuming 180,000 liters per day of LN in steady operation. The LN system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the subcontractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC s request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 68,000 liters to cool-down and less than 91,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  11. Commissioning of the Liquid Nitrogen Thermo-Siphon System for NASA-JSC Chamber-A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Montz, M.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Garcia, S.; Garza, J.

    2013-01-01

    NASA's Space Environment Simulation Laboratory's (SESL) Chamber A, located at the Johnson Space Center in Houston Texas has recently implemented major enhancements of its cryogenic and vacuum systems. The new liquid nitrogen (LN2) thermo-siphon system was successfully commissioned in August of 2012. Chamber A, which has 20 K helium cryo-panels (or shrouds ) which are shielded by 80 K nitrogen shrouds, is capable of simulating a deep space environment necessary to perform ground testing of NASA s James Webb Space Telescope (JWST). Chamber A s previous system used forced flow LN2 cooling with centrifugal pumps, requiring 200,000 liters of LN2 to cool-down and consuming 180,000 liters per day of LN2 in steady operation. The LN2 system did not have the reliability required to meet the long duration test of the JWST, and the cost estimate provided in the initial approach to NASA-JSC by the sub-contractor for refurbishment of the system to meet the reliability goals was prohibitive. At NASA-JSC's request, the JLab Cryogenics Group provided alternative options in 2007, including a thermo-siphon, or natural flow system. This system, eliminated the need for pumps and used one tenth of the original control valves, relief valves, and burst disks. After the thermo-siphon approach was selected, JLab provided technical assistance in the process design, mechanical design, component specification development and commissioning oversight, while the installation and commissioning operations of the system was overseen by the Jacobs Technology/ESC group at JSC. The preliminary commissioning data indicate lower shroud temperatures, 70,000 liters to cool-down and less than 90,000 liters per day consumed in steady operation. All of the performance capabilities have exceeded the design goals. This paper will outline the comparison between the original system and the predicted results of the selected design option, and the commissioning results of thermo-siphon system.

  12. Transient Study of a Cryogenic Hydrogen Filling System

    NASA Technical Reports Server (NTRS)

    Schleier, Howard

    1991-01-01

    An investigation was made of producing a workable model for the transient analysis of a cryogenic hydrogen filling system. A series of programs and subprograms defining the momentum, mass, and energy balances and the physical properties, transport properties, and their interactions were devised.The program was modified for a simple theoretical test fluid. Exhaustive runs and modifications were made and at this point no stability was achieved except in trivial cases.

  13. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  14. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  15. Cryogenic system component development for fusion experimental reactor at JAERI

    SciTech Connect

    Kato, T.; Kamiya, S.; Tada, E.; Hiyama, T.; Kawano, K.; Shimamoto, S.

    1986-11-01

    A supercritical helium (SHE) circulation pump, a jet pump, and a cold compressor were designed and manufactured as the first step of cryogenic component development for a large-scale cryogenic system which is required for the Fusion Experimental Reactor (FER). The SHE circulation pump achieved 320-g/s flow rate with an 0.88-MPa pressure head at 4.6 K, making it the biggest cold pump in the world. The jet pump's mass flow ratio was about 1.0 with an 0.07-MPa pressure head at about 10 K. The cold compressor was successfully operated with an inlet vapor pressure of 0.053 MPa (3.7 K), and outlet pressure of 0.12 MPa, and a mass flow rate of 60 g/s. The designs and test results are described in this paper.

  16. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  17. Cryogenic system for the MYRRHA superconducting linear accelerator

    SciTech Connect

    Chevalier, Nicolas R.; Junquera, Tomas; Thermeau, Jean-Pierre; Romão, Luis Medeiros; Vandeplassche, Dirk

    2014-01-29

    SCK⋅CEN, the Belgian Nuclear Research Centre, is designing MYRRHA, a flexible fast spectrum research reactor (80 MW{sub th}), conceived as an accelerator driven system (ADS), able to operate in sub-critical and critical modes. It contains a continuous-wave (CW) superconducting (SC) proton accelerator of 600 MeV, a spallation target and a multiplying core with MOX fuel, cooled by liquid lead-bismuth (Pb-Bi). From 17 MeV onward, the SC accelerator will consist of 48 β=0.36 spoke-loaded cavities (352 MHz), 34 β=0.47 elliptical cavities (704 MHz) and 60 β=0.65 elliptical cavities (704 MHz). We present an analysis of the thermal loads and of the optimal operating temperature of the cryogenic system. In particular, the low operating frequency of spoke cavities makes their operation in CW mode possible both at 4.2 K or at 2 K. Our analysis outlines the main factors that determine at what temperature the spoke cavities should be operated. We then present different cryogenic fluid distribution schemes, important characteristics (storage, transfer line, etc.) and the main challenges offered by MYRRHA in terms of cryogenics.

  18. Molecular absorption cryogenic cooler for liquid hydrogen propulsion systems

    NASA Technical Reports Server (NTRS)

    Klein, G. A.; Jones, J. A.

    1982-01-01

    A light weight, long life molecular absorption cryogenic cooler (MACC) system is described which can use low temperature waste heat to provide cooling for liquid hydrogen propellant tanks for interplanetary spacecraft. Detailed tradeoff studies were made to evaluate the refrigeration system component interactions in order to minimize the mass of the spacecraft cooler system. Based on this analysis a refrigerator system mass of 31 kg is required to provide the .48 watts of cooling required by a 2.3 meter diameter liquid hydrogen tank.

  19. IMPROVEMENTS TO THE CRYOGENIC CONTROL SYSTEM ON DIII-D

    SciTech Connect

    HOLTROP,K.L; ANDERSON,P.M; MAUZEY,P.S

    2003-10-01

    OAK-B135 The cryogenic facility that is part of the DIII-D tokamak system supplies liquid nitrogen and liquid helium to the superconducting magnets used for electron cyclotron heating, the D{sub 2} pellet injection system, cryopumps in the DIII-D vessel, and cryopanels in the neutral beam injection system. The liquid helium is liquefied on site using a Sulzer liquefier that has a 150 l/h liquefaction rate. Control of the cryogenic facility at DIII-D was initially accomplished through the use of three different programmable logic controllers (PLCs). Recently, two of those three PLCs, a Sattcon PLC controlling the Sulzer liquefier and a Westinghouse PLC, were removed and all their control logic was merged into the remaining PLC, a Siemens T1555. This replacement was originally undertaken because the removed PLCs were obsolete and unsupported. However, there have been additional benefits from the replacement. The replacement of the RS-232 serial links between the graphical user interface and the PLCs with a high speed Ethernet link allows for real-time display and historical trending of nearly all the cryosystem's data. this has greatly increased the ability to troubleshoot problems with the system, and has permitted optimization of the cryogenic system's performance because of the increased system integration. To move the control logic of the Sattcon control loops into the T1555, an extensive modification of the basic PID control was required. These modifications allow for better control of the control loops and are now being incorporated in other control loops in the system.

  20. Cryogenic system for the interferometric cryogenic gravitationalwave telescope, KAGRA - design, fabrication, and performance test -

    NASA Astrophysics Data System (ADS)

    Tokoku, C.; Kimura, N.; Koike, S.; Kume, T.; Sakakibara, Y.; Suzuki, T.; Yamamoto, K.; Chen, D.; Goto, S.; Tanaka, M.; Ioka, S.; Nakamoto, K.; Nezuka, H.; Uchiyama, T.; Ohashi, M.; Kuroda, K.

    2014-01-01

    KAGRA is the cryogenic interferometric gravitational wave telescope designed for the direct detection of gravitational waves from the astronomical sources. To achieve the best sensitivity, one of the most difficult challenges is cooling the mirrors to 20K to reduce the thermal noise. We developed four cryostats and sixteen very-low-vibration cryocooler units to accomplish our purpose. In this paper, we describe the outline of the cryogenic design and fabrication, and the results of the cryogenic performance test of the cryostats and cryocooler units.

  1. Commissioning of the Orion Laser system

    NASA Astrophysics Data System (ADS)

    James, Steven; Brown, Colin; Drew, David; Duffield, Stuart; Elsemere, Stephen; Fyrth, Jim; Girling, Mark; Gumbrell, Edward; Hill, Matthew; Hillier, David; Hopps, Nicholas; Norman, Michael; Oades, Kevin; Palmer, James; Parker, Stefan; Treadwell, Paul; Winter, David; Hoarty, David

    2012-10-01

    We present data collected in a recent series of shots taken to commission the Orion laser system. Ten long pulse (LP, nanosecond pulse length) and two short pulse (SP, picosecond pulse length) laser beams were fired onto a series of metal and plastic foils and data recorded. X-ray images of the laser plasma interaction show LP spot sizes of less than 100μm with >400J of 351nm on target, consistent with wavefront measurements. Picosecond pulses operating at powers of 500TW were used to generate ion beams with large numbers of energetic (multi-ten's of MeV) protons, indicating a high focussed intensity and energetic electron acceleration. Thick-target hard X-ray dosimetry measurements were made to prove the effectiveness of the shielding. An X-ray streak camera was used to synchronise all twelve beams to within +/-50ps of each other, and all twelve beams were fired simultaneously onto a target.

  2. Precision cryogenic temperature data acquisition system

    NASA Astrophysics Data System (ADS)

    Farah, Y.; Sondericker, J. H.

    1985-08-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of + or - 25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors.

  3. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  4. Strain Gage Measurement System to Determine Cryogenic Propellant Tank Level

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; St.Cyr, William W.; VanDyke, David; McVay, Greg; Mitchell, Mark; Langford, Lester

    2003-01-01

    Measurement of tank level, particularly for cryogenic propellants, has proven to be a difficult proposition. Current methods based on differential pressure, capacitance sensors, temperature sensors, etc.; do not provide sufficiently accurate or robust measurements, especially at run time. This paper describes a simple, but effective method to determine propellant volume by measuring very small deformations of the structure supporting the tank. Results of a laboratory study to validate the method, and experimental data from a deployed system are presented. A comparison with an existing differential pressure sensor shows that the strain gage system provides a very good quality signal even during pressurization.

  5. Cryogenic system for BERLinPro

    NASA Astrophysics Data System (ADS)

    Anders, W.; Hellwig, A.; Knobloch, J.; Pflückhahn, D.; Rotterdam, S.

    2014-01-01

    In 2010 Helmholtz-Zentrum Berlin (HZB) received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact Energy recovery linac (ERL) is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad emittance electron beam. The BERLinPro know-how can then be transferred to various ERL-based applications. All accelerating RF cavities including the electron source are based on superconducting technology operated at 1.8 K. A Linde L700 helium liquefier is supplying 4.5 K helium. The subatmospheric pressure of 16 mbar of the helium bath of the cavities will be achieved by pumping with a set of cold compressors and warm vacuum pumps. While the L700 is already in operating, the 1.8 K system and the helium transfer system are in design phase.

  6. Cryogenic system for BERLinPro

    SciTech Connect

    Anders, W.; Hellwig, A.; Knobloch, J.; Pflückhahn, D.; Rotterdam, S.

    2014-01-29

    In 2010 Helmholtz-Zentrum Berlin (HZB) received funding to design and build the Berlin Energy Recovery Linac Project BERLinPro. The goal of this compact Energy recovery linac (ERL) is to develop the accelerator physics and technology required to generate and accelerate a 100-mA, 1-mm mrad emittance electron beam. The BERLinPro know-how can then be transferred to various ERL-based applications. All accelerating RF cavities including the electron source are based on superconducting technology operated at 1.8 K. A Linde L700 helium liquefier is supplying 4.5 K helium. The subatmospheric pressure of 16 mbar of the helium bath of the cavities will be achieved by pumping with a set of cold compressors and warm vacuum pumps. While the L700 is already in operating, the 1.8 K system and the helium transfer system are in design phase.

  7. Electronic components and systems for cryogenic space applications

    NASA Astrophysics Data System (ADS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2002-05-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about -183 °C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation systems, and arctic exploration. An on-going R&D program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving and operating in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house electronic component and small system testing will also be discussed. .

  8. Commissioning of the ALICE data acquisition system

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Barroso, V.; Carena, F.; Carena, W.; Chapeland, S.; Cobanoglu, O.; Dénes, E.; Divià, R.; Fuchs, U.; Kiss, T.; Makhlyueva, I.; Ozok, F.; Roukoutakis, F.; Schossmaier, K.; Soós, C.; Vyvre, P. V.; Vergara, S.

    2008-07-01

    ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A flexible, large bandwidth Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time foreseen per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. The Data Acquisition and Test Environment (DATE) is the software framework handling the data from the detector electronics up to the mass storage. This paper reviews the DAQ software and hardware architecture, including the latest features of the final design, such as the handling of the numerous calibration procedures in a common framework. We also discuss the large scale tests conducted on the real hardware to assess the standalone DAQ performances, its interfaces with the other online systems and the extensive commissioning performed in order to be ready for cosmics data taking scheduled to start in November 2007. The test protocols followed to integrate and validate each sub-detector with DAQ and Trigger hardware synchronized by the Experiment Control System are described. Finally, we give an overview of the experiment logbook, and some operational aspects of the deployment of our computing facilities. The implementation of a Transient Data Storage able to cope with the 1.25 GB/s recorded by the event-building machines and the data quality monitoring framework are covered in separate papers.

  9. Electronic Components and Systems for Cryogenic Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammoud, A.; Dickman, J. E.; Gerber, S.; Elbuluk, M. E.; Overton, E.

    2001-01-01

    Electronic components and systems capable of operation at cryogenic temperatures are anticipated in many future NASA space missions such as deep space probes and planetary surface exploration. For example, an unheated interplanetary probe launched to explore the rings of Saturn would reach an average temperature near Saturn of about - 183 C. In addition to surviving the deep space harsh environment, electronics capable of low temperature operation would contribute to improving circuit performance, increasing system efficiency, and reducing payload development and launch costs. Terrestrial applications where components and systems must operate in low temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. An on-going research and development program at the NASA Glenn Research Center focuses on the development of reliable electronic devices and efficient power systems capable of surviving in low temperature environments. An overview of the program will be presented in this paper. A description of the low temperature test facilities along with selected data obtained from in-house component testing will also be discussed. Ongoing research activities that are being performed in collaboration with various organizations will also be presented.

  10. Operational and troubleshooting experiences in the SST-1 cryogenic system

    NASA Astrophysics Data System (ADS)

    Mahesuria, G.; Panchal, P.; Panchal, R.; Patel, R.; Sonara, D.; Gupta, N. C.; Srikanth, G. L. N.; Christian, D.; Garg, A.; Bairagi, N.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Tank, J.; Tanna, V. L.; Pradhan, S.

    2014-01-01

    Recently, the cooldown and current charging campaign have been carried out towards the demonstration of the first successful plasma discharge in the steady state superconducting Tokomak (SST-1). The SST-1 machine consists of cable-in-conduit wound superconducting toroidal as well as poloidal coils, cooled using 1.3 kW at 4.5 K helium refrigerator -cum- liquefier (HRL) system. The cryo system provides the two-phase helium at 0.13 MPa at 4.5 K as well as forced-flow pressurized helium at 0.4 MPa and in addition to 7 g-s-1 liquefaction capacity required for the current leads and other cold mass at 4.5 K. The entire integrated cold masses having different thermo hydraulic resistances cooled with the SST-1 HRL in optimised process parameters. In order to maintain different levels of temperatures and to facilitate smooth and reliable cooldown, warm-up, normal operations as well as to handle abnormal events such as, quench or utilities failures etc., exergy efficient process are adopted for the helium refrigerator-cum-liquefier (HRL) with an installed equivalent capacity of 1.3 kW at 4.5 K. Using the HRL, the cold mass of about 40 tons is being routinely cooled down from ambient temperature to 4.5 K with an average cooldown rate of 0.75 - 1 K-h-1. Long-term cryogenic stable conditions were obtained within 15 days in the superconducting coils and their connecting feeders. Afterwards, all of the cold mass is warmed-up in a controlled manner to ambient temperature. In this paper, we report the recent operational results of the cryogenic system during the first plasma discharge in SST-1 as well as the troubleshooting experiences of the cryogenic plant related hardware.

  11. Nanodielectric system for cryogenic applications: Barium titanate filled polyvinyl alcohol

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Duckworth, Robert C

    2008-01-01

    In the current study the focus is on dielectric properties (as a function of frequency and temperature) of a polymeric composite system composed of polyvinyl alcohol and barium titanate nano powder. In the investigations, the temperature range is between 50-295 K, and the frequency range is between $20\\ \\hertz-1\\ \\mega\\hertz$. Polarization and conduction processes are investigated in the linear regime. Dielectric breakdown strengths of samples are also reported. The materials presented have potential to be implemented in cryogenic capacitor or field grading applications.

  12. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  13. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    NASA Astrophysics Data System (ADS)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-12-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Because each subsystem has to be far away from each other and be placed in the distant location, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  14. The refrigeration and cryogenic distribution system for the shortpulse x-ray source

    SciTech Connect

    Green, Michael A.; Corlett, John N.

    2002-10-20

    This report describes the essential elements of the cryogenic system. The cryogenic distribution system starts at the level of the linac superconducting RF cavities [1] and moves out through the cryogenic piping to the liquid helium refrigeration plant that will be used to cool the RF cavities and the undulator magnets. For this report, the cryogenic distribution system and cryogenic refrigerator includes the following elements: (1) The piping within the linac cryogenic modules will influence the heat transfer through the super-fluid helium from the outer surface of the TESLA niobium cavity and the liquid to gas interface within the horizontal header pipe where the superfluid helium boils. This piping determines the final design of the linac cryogenic module. (2) The acceptable pressure drops determine the supply and return piping dimensions. (3) The helium distribution system is determined by the need to cool down and warm up the various elements in the light source. (4) The size of the cryogenic plant is determined by the heat loads and the probable margin of error on those heat loads. Since the final heat loads are determined by the acceleration gradient in the cavities, a linac with five cryogenic modules will be compared to a linac with only four cryogenic modules. The design assumes that all cryogenic elements in the facility will be cooled using a common cryogenic plant. To minimize vibration effects on the beam lines, this plant is assumed to be located some distance from the synchrotron light beam lines. All of the cryogenic elements in the facility will be attached to the helium refrigeration system through cryogenic transfer lines. The largest single cryogenic load is the main linac, which consists of four or five cryogenic modules depending on the design gradient for the cavities in the linac section. The second largest heat load comes from the cryogenic modules that contain the transverse deflecting RF cavities. The injector linac is the third largest

  15. Layered composite thermal insulation system for nonvacuum cryogenic applications

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.

    2016-03-01

    A problem common to both space launch applications and cryogenic propulsion test facilities is providing suitable thermal insulation for complex cryogenic piping, tanks, and components that cannot be vacuum-jacketed or otherwise be broad-area-covered. To meet such requirements and provide a practical solution to the problem, a layered composite insulation system has been developed for nonvacuum applications and extreme environmental exposure conditions. Layered composite insulation system for extreme conditions (or LCX) is particularly suited for complex piping or tank systems that are difficult or practically impossible to insulate by conventional means. Consisting of several functional layers, the aerogel blanket-based system can be tailored to specific thermal and mechanical performance requirements. The operational principle of the system is layer-pairs working in combination. Each layer pair is comprised of a primary insulation layer and a compressible radiant barrier layer. Vacuum-jacketed piping systems, whether part of the ground equipment or the flight vehicle, typically include numerous terminations, disconnects, umbilical connections, or branches that must be insulated by nonvacuum means. Broad-area insulation systems, such as spray foam or rigid foam panels, are often the lightweight materials of choice for vehicle tanks, but the plumbing elements, feedthroughs, appurtenances, and structural supports all create "hot spot" areas that are not readily insulated by similar means. Finally, the design layouts of valve control skids used for launch pads and test stands can be nearly impossible to insulate because of their complexity and high density of components and instrumentation. Primary requirements for such nonvacuum thermal insulation systems include the combination of harsh conditions, including full weather exposure, vibration, and structural loads. Further requirements include reliability and the right level of system breathability for thermal

  16. Cryogenic control system of the large COMPASS polarized target

    NASA Astrophysics Data System (ADS)

    Gautheron, F.; Ball, J.; Baum, G.; Berglund, P.; Doshita, N.; Goertz, St.; Gustafsson, K.; Horikawa, N.; Kisselev, Y.; Koivuniemi, J.; Kondo, K.; Meyer, W.; Reicherz, G.

    2004-06-01

    The dilution refrigerator used to cool the large COMPASS polarized target is monitored through a PC running LabVIEW TM 6.1 under Windows 2000 TM. About 60 parameters of the target (temperatures, pressures, flow rates) are continuously plotted and checked. They are periodically recorded in an Oracle TM database and in a data file. An alarm for every parameter can be individually activated and optionally connected to a GSM (Global System for Mobile Communication) delivery message system. A web server receives and publishes the online status of the target with online tables and graphics on a dedicated COMPASS polarized target information web site. A Siemens programmable logic controller (PLC) powered by an uninterruptable source keeps the cryogenic system safe and stable during the long beam periods by controlling valves and interlocks. This safety feature protects the dilution refrigerator against potential damages in case of power failure.

  17. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    NASA Technical Reports Server (NTRS)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  18. Search for 0 νββ with CUORE: experiment and cryogenic systems overview

    NASA Astrophysics Data System (ADS)

    Drobizhev, Alexey; Cuore Collaboration

    2016-03-01

    CUORE--the Cryogenic Underground Observatory for Rare Events--is a search for the neutrinoless double beta decay of 130Te based at the Gran Sasso National Laboratories in Italy. The experiment, currently in its final stages of commissioning, is expected to begin data taking in 2016 and eventually be sensitive to a ~1026 y half life after a 5 y live time. The detector consists of an array of 988 5 ×5 ×5 cm3 TeO2 crystals (204 kg isotope mass) operated as bolometers at ~10 mK temperatures with Ge NTD readout. Running a ~1 t, ~1 m3 detector at such temperatures necessitated the design and construction of the world's largest and most powerful dilution refrigerator, capable of reaching temperatures <10 mK and producing ~ 2 mW of cooling power at 100 mK. The cryostat is optimized for noise and vibration isolation, as well as radiopurity. We report the expected and observed performance of the CUORE experiment and, in particular, its cryogenic systems. This work is supported by the INFN, DOE, NSF, the Alfred P. Sloan Foundation, the University of Wisconsin Foundation, and Yale University.

  19. D0 Cryogenic System Superconducting Solenoid Platform I/O

    SciTech Connect

    Markley, D.; /Fermilab

    1997-10-09

    The Dzero detector is scheduled for a major upgrade between 1996 and 1999. This note describes the specifications and configuration of the physical Input/Output devices and instrumentation of the 2 Tesla Superconducting Solenoid. The Solenoid and the VLPC cryostats both reside on the detector platform and are cooled by the Dzero Helium Refrigerator. The cryogenic process control s for these two components will be an extension of the TI565 programmable logic controller system used for other Dzero cryogenic controls. Two Input/Output Bases will be installed on the Dzero detector platform near the cryo corner. These I/O bases will handle all the sensor input and process control output devices from the Solenoid and VLPC cryostats. Having the I/O bases installed on the detector platform makes the connecting cabl ing to the platform much easier . All the instruments are wired directly to the I/O base. The bases have only one communications network cabl e that must be routed off the platform to the South side of the Dzero building.

  20. Spiral 2 cryogenic system overview: Design, construction and performance test

    SciTech Connect

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-29

    The new particle accelerator project Spiral 2 at GANIL (“Grand Accélérateur d’Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  1. Options for the Cryogenic System for the BESSY-FEL

    NASA Astrophysics Data System (ADS)

    Kutzschbach, A.; Quack, H.; Haberstroh, Ch.; Knobloch, J.; Anders, W.; Pflueckhahn, D.

    2004-06-01

    The Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung (BESSY GmbH), in January 1999, started operation of BESSY II, a third-generation synchrotron light source delivering world-class, high-brilliance photon beams in the VUV to XUV spectral range. Based on this experience, BESSY has recently proposed the construction of a free-electron laser (FEL), covering a photon-energy range from 20 eV to 1 keV. To reduce the development time and cost, BESSY intends to use proven cavity and cryostat technology developed for the TESLA linear collider. However, the cryogenic load per cavity is approximately 15 to 20 times higher than that anticipated for the (pulsed) TESLA operation. This paper describes possible modifications of the cryostat design to accommodate these additional losses. Superconducting RF cavities are the basis of the FEL accelerator providing the driving electron beam with 2.25 GeV. The accelerator consists of five cold sections separated by warm sections reserved for bunch compression and beam extraction. The total refrigeration load will be covered by a single refrigerator. Several possible layouts of the cryogenic system are described and their advantages and disadvantages are discussed.

  2. Towards the invisible cryogenic system for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Steinmeyer, F.; Retz, P. W.; White, K.; Lang, A.; Stautner, W.; Smith, P. N.; Gilgrass, G.

    2002-05-01

    With about 10,000 Magnetic Resonance Imaging (MRI) systems installed worldwide, helium cooled magnets have become familiar equipment in hospitals and imaging centers. Patients and operators are only aware of the hissing sound of the Gifford-MacMahon refrigerator. Service technicians, however, still work with cryogenic fluids and cold gases, e.g. for replenishing the helium reservoir, inserting retractable current leads for magnet ramps, or replacing burst disks after a magnet quench. We will describe the steps taken at Oxford Magnet Technology towards the ultimate goal of a superconducting magnet being as simple as a household fridge. Early steps included the development of resealing quench valves, as well as permanently installed transfer siphons that only open when fully cooled to 4K. On recently launched 1.5 Tesla solenoid magnets, 500 A current leads are permanently fixed into the service turret, with hardly any boil-off penalty (40-50 cc/hr total). Ramping of the magnet has been fully automated, including electronic supervision of the gas-cooled current leads. One step ahead, the 1 Tesla High Field Open magnet is refrigerated by a single 4K Gifford MacMahon coldhead, relieving the user from the necessity to refill with helium. Our conduction cooled 0.2 Tesla HTS magnet testbed does not require liquid cryogens at any time in its life, including initial cool-down.

  3. Spiral 2 cryogenic system overview: Design, construction and performance test

    NASA Astrophysics Data System (ADS)

    Deschildre, C.; Bernhardt, J.; Flavien, G.; Crispel, S.; Souli, M.; Commeaux, C.

    2014-01-01

    The new particle accelerator project Spiral 2 at GANIL ("Grand Accélérateur d'Ions Lourds, i.e. National Large Heavy Ion Accelerator) in Caen (France) is a very large installation, intended to serve fundamental research in nuclear physics. The heart of the future machine features a superconductor linear accelerator, delivering a beam until 20Mev/A, which are then used to bombard a matter target. The resulting reactions, such as fission, transfer, fusion, etc. will generate billions of exotic nuclei. To achieve acceleration of the beam, 26 cavities which are placed inside cryomodules at helium cryogenic temperature will be used. AL-AT (Air Liquide Advanced Technologies) takes part to the project by supplying cryogenic plant. The plant includes the liquefier associated to its compressor station, a large dewar, a storage tank for helium gas and transfer lines. In addition, a helium recovery system composed of recovery compressor, high pressure storage and external purifier has been supplied. Customized HELIAL LF has been designed, manufactured and tested by AL-AT to match the refrigeration power need for the Spiral 2 project which is around 1300 W equivalent at 4.5 K.

  4. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  5. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    SciTech Connect

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features of the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.

  6. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    NASA Astrophysics Data System (ADS)

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features of the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.

  7. Design, Project Execution, and Commissioning of the 1.8 K Superfluid Helium Refrigeration System for SRF Cryomodule Testing

    DOE PAGESBeta

    Treite, P.; Nuesslein, U.; Jia, Yi; Klebaner, A.; Theilacker, J.

    2015-07-15

    The Fermilab Cryomodule Test Facility (CMTF) provides a test bed to measure the performance of superconducting radiofrequency (SRF) cryomodules (CM). These SRF components form the basic building blocks of future high intensity accelerators such as the International Linear Collider (ILC) and a Muon Collider. Linde Kryotechnik AG and Linde Cryogenics have designed, constructed and commissioned the superfluid helium refrigerator needed to support SRF component testing at the CMTF Facility. The hybrid refrigerator is designed to operate in a variety of modes and under a wide range of boundary conditions down to 1.8 Kelvin set by CM design. Special features ofmore » the refrigerator include the use of warm and cold compression and high efficiency turbo expanders.This paper gives an overview on the wide range of the challenging cooling requirements, the design, fabrication and the commissioning of the installed cryogenic system.« less

  8. Control and operation cost optimization of the HISS cryogenic system

    SciTech Connect

    Porter, J.; Bieser, F.; Anderson, D.

    1983-08-01

    The Heavy Ion Spectrometer System (HISS) relies upon superconducting coils of cryostable design to provide a maximum particle bending field of 3 tesla. A previous paper describes the cryogenic facility including helium refrigeration and gas management. This paper discusses a control strategy which has allowed full time unattended operation, along with significant nitrogen and power cost reductions. Reduction of liquid nitrogen consumption has been accomplished by making use of the sensible heat available in the cold exhaust gas. Measured nitrogen throughput agrees with calculations for sensible heat utilization of zero to 70%. Calculated consumption saving over this range is 40 liters per hour for conductive losses to the supports only. The measured throughput differential for the total system is higher.

  9. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  10. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    2001-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.

  11. Zero Gravity Cryogenic Vent System Concepts for Upper Stages

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.

    1999-01-01

    The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.

  12. Test system accurately determines tensile properties of irradiated metals at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Levine, P. J.; Skalka, R. J.; Vandergrift, E. F.

    1967-01-01

    Modified testing system determines tensile properties of irradiated brittle-type metals at cryogenic temperatures. The system includes a lightweight cryostat, split-screw grips, a universal joint, and a special temperature control system.

  13. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21

    strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  14. Baseline Configuration of the Cryogenic System for the International Linear Collider

    SciTech Connect

    Casas-Cubillos, J.; Claudet, S.; Parma, V.; Riddone, G.; Serio, L.; Tavian, L.; Vullierme, B.; van Weelderen, R.; Chorowski, M.; Ganni, R.; Rode, C.; Klebaner, A.; Peterson, T.; Theilacker, J.; Rousset, B.; Weisend, J.; /SLAC

    2007-06-18

    The paper discusses the main constraints and boundary conditions and describes the baseline configuration of the International Linear Collider (ILC) cryogenic system. The cryogenic layout, architecture and the cooling principle are presented. The paper addresses a plan for study and development required to demonstrate and improve the performance, to reduce cost and to attain the desired reliability.

  15. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  16. CHARMS: The Cryogenic, High-Accuracy Refraction Measuring System

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Douglas

    2004-01-01

    The success of numerous upcoming NASA infrared (IR) missions will rely critically on accurate knowledge of the IR refractive indices of their constituent optical components at design operating temperatures. To satisfy the demand for such data, we have built a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS), which, for typical 1R materials. can measure the index of refraction accurate to (+ or -) 5 x 10sup -3 . This versatile, one-of-a-kind facility can also measure refractive index over a wide range of wavelengths, from 0.105 um in the far-ultraviolet to 6 um in the IR, and over a wide range of temperatures, from 10 K to 100 degrees C, all with comparable accuracies. We first summarize the technical challenges we faced and engineering solutions we developed during the construction of CHARMS. Next we present our "first light," index of refraction data for fused silica and compare our data to previously published results.

  17. General purpose multiplexing device for cryogenic microwave systems

    NASA Astrophysics Data System (ADS)

    Chapman, Benjamin J.; Moores, Bradley A.; Rosenthal, Eric I.; Kerckhoff, Joseph; Lehnert, K. W.

    2016-05-01

    We introduce and experimentally characterize a general purpose device for signal processing in circuit quantum electrodynamics systems. The device is a broadband two-port microwave circuit element with three modes of operation: it can transmit, reflect, or invert incident signals between 4 and 8 GHz. This property makes it a versatile tool for lossless signal processing at cryogenic temperatures. In particular, rapid switching (≤ 15 ns ) between these operation modes enables several multiplexing readout protocols for superconducting qubits. We report the device's performance in a two-channel code domain multiplexing demonstration. The multiplexed data are recovered with fast readout times (up to 400 ns ) and infidelities ≤ 10-2 for probe powers ≥ 7 fW , in agreement with the expectation for binary signaling with Gaussian noise.

  18. Electronically scanned multichannel pressure transducer system for cryogenic environments

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1990-01-01

    Research into the application of custom doped piezoresistive silicon pressure sensors has led to a multichannel pressure sensor design that will operate accurately and reliably at cryogenic temperatures. The thermal effects upon multichannel pressure sensors are mapped by thermal calibrations and are represented by sets of nth order coefficients specific to each sensor. The thermal offset and sensitivity variations are corrected by computer algorithms which scan the sensors, recall correction coefficients from thermally induced sensor variations, and apply these to correct the sensor's output measurement uncertainty to within 0.5 percent of full scale output for combined offset and sensitivity. A prototype sensor system has been fabricated, and performance test data are presented.

  19. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    SciTech Connect

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

    2014-01-29

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  20. Simulated Propellant Loading System: Testbed for cryogenic component and control systems research & development

    NASA Astrophysics Data System (ADS)

    Toro Medina, J.; Sass, J.; Youney, J.; Schmitz, W.

    2015-12-01

    Technologies in the fields of cryogenic components and control systems are constantly evolving to advance the state of current cryogenic operations that will support future space exploration missions. To meet new demanding requirements, these missions will increasingly rely upon research and development in energy-efficient storage, transfer and use of cryogens and cryogenic propellants on Earth and in space. The capability to test these technologies is sometimes limited to isolated subsystems with a narrow application spectrum. The initiative to develop the Simulated Propellant Loading System (SPLS) is to provide an integrated multipurpose generic testbed to allow dedicated test and evaluation of new technologies in a field environment on a scale that is relevant to launch facility propellant systems. The Cryogenic Test Laboratory (CTL) at the Kennedy Space Center has more than two years of operational experience of using the SPLS to support independent and integrated technology maturation. This paper presents the development of a highly repeatable automated cold flow test sequence that was used in the evaluation and advancement of autonomous control system technologies. A range of other recent applications and capabilities of the SPLS will also be presented in this paper.

  1. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Paik, H. J.; Zagarola, M.; Shirron, P. J.; Griggs, C. E.; Moody, M. V.; Han, S.-C.

    2016-01-01

    Measurement of a planet's gravity field provides fundamental information about the planet's mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planet's geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESA's GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  2. Design of Superconducting Gravity Gradiometer Cryogenic System for Mars Mission

    NASA Technical Reports Server (NTRS)

    Li, X.; Lemoine, F. G.; Shirron, P. J.; Paik, H. J.; Griggs, C. E.; Moody, M. V.; Han, S. C.; Zagarola, M.

    2016-01-01

    Measurement of a planets gravity field provides fundamental information about the planets mass properties. The static gravity field reveals information about the internal structure of the planet, including crustal density variations that provide information on the planets geological history and evolution. The time variations of gravity result from the movement of mass inside the planet, on the surface, and in the atmosphere. NASA is interested in a Superconducting Gravity Gradiometer (SGG) with which to measure the gravity field of a planet from orbit. An SGG instrument is under development with the NASA PICASSO program, which will be able to resolve the Mars static gravity field to degree 200 in spherical harmonics, and the time-varying field on a monthly basis to degree 20 from a 255 x 320 km orbit. The SGG has a precision two orders of magnitude better than the electrostatic gravity gradiometer that was used on the ESAs GOCE mission. The SGG operates at the superconducting temperature lower than 6 K. This study developed a cryogenic thermal system to maintain the SGG at the design temperature in Mars orbit. The system includes fixed radiation shields, a low thermal conductivity support structure and a two-stage cryocooler. The fixed radiation shields use double aluminized polyimide to emit heat from the warm spacecraft into the deep space. The support structure uses carbon fiber reinforced plastic, which has low thermal conductivity at cryogenic temperature and very high stress. The low vibration cryocooler has two stages, of which the high temperature stage operates at 65 K and the low temperature stage works at 6 K, and the heat rejection radiator works at 300 K. The study also designed a second option with a 4-K adiabatic demagnetization refrigerator (ADR) and two-stage 10-K turbo-Brayton cooler.

  3. Shuttle cryogenic supply system optimization study. Volume 2: Technical report, sections 4 through 9

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and development of cryogenic supply systems for space shuttle vehicles are discussed. The weights, component counts, and statements of advantages and disadvantages of the systems considered are presented. Performance characteristics of the systems are analyzed in the form of graphs. Block diagrams and engineering drawings of the candidate systems are provided. Special consideration is given to flow rates and thermodynamic properties of the cryogenic systems.

  4. Shuttle cryogenic supply system optimization study. Volume 3: Technical report, section 10, 11 and 12

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The evaluation of candidate cryogenic fuel systems for space shuttle vehicles is discussed. A set of guidelines was used to establish a matrix of possible combinations for the integration of potential cryogenic systems. The various concepts and combinations which resulted from the integration efforts are described. The parameters which were considered in developing the matrix are: (1) storage of cryogenic materials, (2) fuel lines, (3) tank pressure control, (4) thermal control, (5) fluid control, and (6) fluid conditioning. Block diagrams and drawings of the candidate systems are provided. Performance predictions for the systems are outlined in tables of data.

  5. Performance and Cost Evaluation of Cryogenic Solid Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Adirim, Harry; Lo, Roger; Knecht, Thomas; Reinbold, Georg-Friedrich; Poller, Sascha

    2002-01-01

    cooling equipment and its operation during fabrication and launch, neither were there problems with thrust to weight ratio of un-cooled but insulated Cryogenic Solid Motors which ascend into their trajectory while leaving the cooling equipment at the launch pad. In performance calculations for new launchers with CSP-replacements of boosters or existing stages, ARIANE 5 and a 3-stage launcher with CSP - 1st stage into GTO serve as examples. For keeping payload-capacity in the reference orbit constant, the modeling of a rocket system essentially requires a process of iteration, in which the propellant mass is varied as central parameter and - with the help of a CSP mass-model - all other dimensions of the booster are derived from mass models etc. accordingly. The process is repeated until the payload resulting from GTO track-optimization corresponds with that of the model ARIANE 5 in sufficient approximation. Under the assumptions made, the application of cryogenic motors lead to a clear reduction of the launch mass. This is essentially caused by the lower propellant mass and secondary by the reduced structure mass. Finally cost calculations have been made by ASTRIUM and demonstrated the cost saving potential of CSP propulsion. For estimating development, production, ground facilities, and operating cost, the parametric cost modeling tool has been used in combination with Cost Estimating Relationships (CER). Parametric cost models only allow comparative analyses, therefore ARIANE 5 in its current (P1) configuration has been estimated using the same mission model as for the CSP launcher. As conclusion of these cost assessment can be stated, that the utilization of cryogenic solid propulsion could offer a considerable cost savings potential. Academic and industrial cooperation is crucial for the challenging R&D work required. It will take the combined capacities of all experts involved to unlock the promises of clean, high Isp CSP propulsion for chemical Earth

  6. Shuttle cryogenic supply system optimization study. Volume 5A-1: Users manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Integrated Math Model for Cryogenic Systems is a flexible, broadly applicable systems parametric analysis tool. The program will effectively accommodate systems of considerable complexity involving large numbers of performance dependent variables such as are found in the individual and integrated cryogen systems. Basically, the program logic structure pursues an orderly progression path through any given system in much the same fashion as is employed for manual systems analysis. The system configuration schematic is converted to an alpha-numeric formatted configuration data table input starting with the cryogen consumer and identifying all components, such as lines, fittings, and valves, each in its proper order and ending with the cryogen supply source assembly. Then, for each of the constituent component assemblies, such as gas generators, turbo machinery, heat exchangers, and accumulators, the performance requirements are assembled in input data tabulations. Systems operating constraints and duty cycle definitions are further added as input data coded to the configuration operating sequence.

  7. Conceptual design of pressure relief systems for cryogenic application

    NASA Astrophysics Data System (ADS)

    Grohmann, S.; Süßer, M.

    2014-01-01

    The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

  8. Conceptual design of pressure relief systems for cryogenic application

    SciTech Connect

    Grohmann, S.; Süßer, M.

    2014-01-29

    The conceptual design of pressure relief systems is an important aspect in the early phase of any cryogenic system design, because a prudent and responsible evaluation of relief systems involves much more than just relief devices. The conceptual design consists of various steps: At first, hazard scenarios must be considered and the worst-case scenario identified. Next, a staged interaction against pressure increase is to be defined. This is followed by the selection of the general type of pressure relief device for each stage, such as safety valve and rupture disc, respectively. Then, a decision concerning their locations, their capacities and specific features must be taken. Furthermore, it is mandatory to consider the inlet pressure drop and the back pressure in the exhaust line for sizing the safety devices. And last but not least, economic and environmental considerations must be made in case of releasing the medium to the atmosphere. The development of the system's safety concept calls for a risk management strategy based on identification and analysis of hazards, and consequent risk mitigation using a system-based approach in compliance with the standards.

  9. Thermal Stabilization in a High Vacuum Cryogenic Optical System

    NASA Astrophysics Data System (ADS)

    Wallace, Rosa; Cripe, Jonathan; Corbitt, Thomas

    2016-03-01

    The existing technology for gravitational wave detection is limited in part by quantum noise. In our tabletop experiments, we are attempting to lower the noise floor to the quantum limit through the use of a seismically isolated cryogenic high vacuum environment, with the intention of exploring different methods to reduce quantum noise. In the development phase of this environment, we have implemented a customized strategy of ultraviolet irradiation combined with cryogenically cooled radiation shielding to reduce the impact of water vapor and blackbody radiation on the thermal stability of the cryogenic micro-components. Supported by National Science Foundation REU Site #1262890 and CAREER Award #1150531.

  10. Cryogenic molecular separation system for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.

    2015-12-01

    A 11C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. In the ISOL system, 11CH4 molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive 12CH4 gases, which can simulate the chemical characteristics of 11CH4 gases. We investigated the separation of CH4 molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH4. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  11. Results of KEPCO HTS cable system tests and design of hybrid cryogenic system

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Sohn, S. H.; Yang, H. S.; Hwang, S. D.; Kim, D. L.; Ryoo, H. S.; Choi, H. O.

    2010-11-01

    In order to investigate the compatibility as a power utility facility, Korea Electric Power Corporation (KEPCO) had installed a 22.9 kV, 1250 A, 100 m long high temperature superconducting (HTS) power cable system. Using the HTS cable, various tests have been performed to investigate electrical and thermo-mechanical properties. Since 2005, a series of thermal cycle tests between liquid nitrogen (LN 2) and ambient temperatures have been conducted using a vacuum-pump driven open-loop cryogenic system with a capacity of 3 kW. In the tests, although the open-loop cryogenic system was reliable to operate the HTS cable system, it was not effective in economic view point because LN 2 consumption was larger than expected. In order to secure against unexpected emergencies and solve the problem of LN 2 consumption, a hybrid cryogenic system was designed and installed. A stirling cryocooler was employed and combined with the open-loop cryogenic system. Considering the average heat load at rated condition, the cooling capacity of the cryocooler was determined to 4 kW at 77 K. In this paper, results of performance tests and the design of the hybrid cooling system are presented.

  12. Cryogenics Vision Workshop for High-Temperature Superconducting Electric Power Systems Proceedings

    SciTech Connect

    Energetics, Inc.

    2000-01-01

    The US Department of Energy's Superconductivity Program for Electric Systems sponsored the Cryogenics Vision Workshop, which was held on July 27, 1999 in Washington, D.C. This workshop was held in conjunction with the Program's Annual Peer Review meeting. Of the 175 people attending the peer review meeting, 31 were selected in advance to participate in the Cryogenics Vision Workshops discussions. The participants represented cryogenic equipment manufactures, industrial gas manufacturers and distributors, component suppliers, electric power equipment manufacturers (Superconductivity Partnership Initiative participants), electric utilities, federal agencies, national laboratories, and consulting firms. Critical factors were discussed that need to be considered in describing the successful future commercialization of cryogenic systems. Such systems will enable the widespread deployment of high-temperature superconducting (HTS) electric power equipment. Potential research, development, and demonstration (RD and D) activities and partnership opportunities for advancing suitable cryogenic systems were also discussed. The workshop agenda can be found in the following section of this report. Facilitated sessions were held to discuss the following specific focus topics: identifying Critical Factors that need to be included in a Cryogenics Vision for HTS Electric Power Systems (From the HTS equipment end-user perspective) identifying R and D Needs and Partnership Roles (From the cryogenic industry perspective) The findings of the facilitated Cryogenics Vision Workshop were then presented in a plenary session of the Annual Peer Review Meeting. Approximately 120 attendees participated in the afternoon plenary session. This large group heard summary reports from the workshop session leaders and then held a wrap-up session to discuss the findings, cross-cutting themes, and next steps. These summary reports are presented in this document. The ideas and suggestions raised during

  13. Progress and status of cryogenic refrigeration system for project Hydra

    NASA Astrophysics Data System (ADS)

    Yuan, J.; Catseman, F.; Tilleman, H.; Henderson, N.

    2015-12-01

    In the last two decades, HTS cables have been successfully demonstrated around the world, preparing HTS power cables for a full commercial introduction. Among the demonstration projects, circulating subcooled liquid nitrogen to maintain the HTS cable at operating temperature is a widely adopted approach. In this approach, the cooling systems are absolutely critical to the successful operation of the HTS cables. This paper describes the progress and status of the cryogenic refrigeration system designed and manufactured for project Hydra, which is a project jointly funded by the U.S. Department of Homeland Security Science and Technology Directorate, American Superconductor and Consolidated Edison Company of New York, Inc. American Superconductor is leading the team supported by Con Edison, Ultera, Altran Solutions, and DH Industries. The cable is an inherently fault current limiting HTS cable, approximately 200 m long and designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be installed and energized near New York City. The refrigeration system was designed and manufactured by DH Industries. This paper provides details on the successful factory acceptance testing completed in November 2014.

  14. Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.

    2007-01-01

    In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.

  15. A dynamic optical measurement system for cryogenic fluids using laser interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, J. H.; Bao, S. R.; Zhang, R. P.; Qiu, L. M.

    2015-12-01

    Dynamic visualization is of great significance in the research of flow conditions and mass transfer process of cryogenic fluids. In this paper, two common ways to measure the concentration of cryogenic fluids are introduced and compared. To improve the real-time monitoring of cryogenic fluid, a non-contact dynamic optical measurement system using laser interferometry is designed, which is sensitive to subtle changes of fluid concentration. A precise and dynamic interference pattern can be obtained using this system. Two-dimensional concentration distribution of the fluid can be calculated from the interference pattern. Detailed calculation process is presented in the paper.

  16. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  17. Performance Testing of a Cryogenic Refrigeration System for HTS Cables

    NASA Astrophysics Data System (ADS)

    Lee, R. C.; Dada, A.; Garcia, E. L.; Ringo, S. M.

    2006-04-01

    A novel Cryogenic Refrigeration System (CRS) has been developed to provide the refrigeration for an in-grid 350 m HTS cable demonstration in Albany NY. Refrigeration is provided by a closed cycle refrigerator (cryocooler) with a nominal cooling capacity of 6 kW at 70 K. The CRS is designed to meet both the stringent operating and reliability criteria necessary for the utility industry, while demonstrating the commercial requirements of a cost effective and compact design. Integral to the operation of the CRS is the continuous monitoring and control provided by BOC's remote operations infrastructure. The skid mounted CRS has been installed at host utility Niagara Mohawk's site in Albany. Field trials of the CRS and its remote operation were conducted prior to the HTS cable installation using a simulated heat load. A wide variety of operating conditions and modes of operation were tested, including back up and accelerated recovery from fault current conditions. This paper describes the integrated system design and field testing results.

  18. COMMISSIONING OF THE SPALLATION NEUTRON SOURCE ACCELERATOR SYSTEMS

    SciTech Connect

    Plum, Michael A

    2007-01-01

    The Spallation Neutron Source accelerator complex consists of a 2.5 MeV H- front-end injector system, a 186 MeV normal-conducting linear accelerator, a 1 GeV superconducting linear accelerator, an accumulator ring, and associated beam transport lines. The linac was commissioned in five discrete runs, starting in 2002 and completed in 2005. The accumulator ring and associated beam transport lines were commissioned in two runs from January to April 2006. With the completed commissioning of the SNS accelerator, the facility has begun initial low-power operations. In the course of beam commissioning, most beam performance parameters and beam intensity goals have been achieved at low duty factor. A number of beam dynamics measurements have been performed, including emittance evolution, transverse coupling in the ring, beam instability thresholds, and beam distributions on the target. The commissioning results, achieved beam performance and initial operating experience of the SNS will be discussed

  19. Cryogenic thermal system analysis for orbital propellant depot

    NASA Astrophysics Data System (ADS)

    Chai, Patrick R.; Wilhite, Alan W.

    2014-09-01

    In any manned mission architecture, upwards of seventy percent of all payload delivered to orbit is propellant, and propellant mass fraction dominates almost all transportation segments of any mission requiring a heavy lift launch system like the Saturn V. To mitigate this, the use of an orbital propellant depot has been extensively studied. In this paper, a thermal model of an orbital propellant depot is used to examine the effects of passive and active thermal management strategies. Results show that an all passive thermal management strategy results in significant boil-off for both hydrogen and oxygen. At current launch vehicle prices, these boil-offs equate to millions of dollars lost per month. Zero boil-off of propellant is achievable with the use of active cryocoolers; however, the cooling power required to produce zero-boil-off is an order of magnitude higher than current state-of-the-art cryocoolers. This study shows a zero-boil-off cryocooler minimum power requirement of 80-100 W at 80 K for liquid oxygen, and 100-120 W at 20 K for liquid hydrogen for a representative Near-Earth Object mission. Research and development effort is required to improve the state-of-the-arts in-space cryogenic thermal management.

  20. Cryogenic thermometry for refrigerant distribution system of JT-60SA

    NASA Astrophysics Data System (ADS)

    Natsume, K.; Murakami, H.; Kizu, K.; Yoshida, K.; Koide, Y.

    2015-12-01

    JT-60SA is a fully superconducting fusion experimental device involving Japan and Europe. The cryogenic system supplies supercritical or gaseous helium to superconducting coils through valve boxes or coil terminal boxes and in-cryostat pipes. There are 86 temperature measurement points at 4 K along the distribution line. Resistance temperature sensors will be installed on cooling pipes in vacuum. In this work, two sensor attachment methods, two types of sensor, two thermal anchoring methods, and two sensor fixation materials have been experimentally evaluated in terms of accuracy and mass productivity. Finally, the verification test of thermometry has been conducted using the sample pipe fabricated in the same way to the production version, which has been decided by the comparison experiments. The TVO sensor is attached by the saddle method with Apiezon N grease and the measurement wires made of phosphor bronze are wound on the pipe with Stycast 2850FT as the thermal anchoring. A Cernox sensor is directly immersed in liquid helium as a reference thermometer during the experiment. The measured temperature difference between the attached one and reference one has been within ±15 mK in the range of 3.40-4.73 K. It has satisfies the accuracy requirement of 0.1 K.

  1. CERN experience and strategy for the maintenance of cryogenic plants and distribution systems

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Pezzetti, M.; Pirotte, O.; Tavian, L.; Wagner, U.

    2015-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. After several years of exploitation of a wide range of cryogenic installations and in particular following the last two years major shutdown to maintain and consolidate the LHC machine, we have analysed and reviewed the maintenance activities to implement an efficient and reliable exploitation of the installations. We report the results, statistics and lessons learned on the maintenance activities performed and in particular the required consolidations and major overhauling, the organization, management and methodologies implemented.

  2. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  3. Improving building energy system performance by continuous commissioning

    SciTech Connect

    Liu, M.

    1999-10-01

    Commissioning has played an important role in improved building comfort and reduced energy consumption. This article presents an advanced form of commissioning for existing buildings, called continuous commissioning (CC), which has produced energy savings comparable to those produced by the traditional audit/retrofit process at a third of the cost. It has also increased operating staff skills, reduced maintenance costs, and improved building comfort--extras which are not provided by usual retrofit programs. This article will present the philosophy, process, cost, and savings. Continuous commissioning is a process developed by the Energy Systems Laboratory (ESL) to: (1) optimize the operation of existing systems to improve building comfort and reduce building energy cost; (2) solve existing comfort and IAQ problems; (3) guarantee continuous optimal operation by operational staff in future years; and (4) provide optimal energy retrofit suggestions to owners to minimize the project costs.

  4. Safety issues of space liquid-helium and solid-cryogen systems

    NASA Astrophysics Data System (ADS)

    Mason, Peter V.

    2002-05-01

    Safety of hardware and personnel is a major concern in space programs. Space cryogenic systems are particularly prone to risk because of their complexity and because of the potential for overpressurization resulting from blockage of vent paths during the integration and test process. A number of space flight programs with liquid-helium and solid-cryogen systems have had incidents which resulted in risk or actual damage to flight hardware, or in risk to personnel. Since such incidents typically occur late in the development cycle, costs due to delays are extremely high. A second major of area of risk is the use of cooling loops in solid cryogen systems. When cooling is performed, the cryogen contracts and cryogen from warmer locations vaporizes and is deposited in the voids. This can lead to rupture of tankage and plumbing. Risk reduction measures include two-fault tolerant design, systematic use of burst disks and relief valves, careful analysis of possible risks, detailed and well-reviewed procedures and redundancy of critical systems, such as valves and valve drive circuitry. We will discuss the design and operation of space cryogenics systems from a safety point of view. We will also describe a number of incidents, their causes, the corrective steps taken and lessons learned.

  5. Real-Time Model-Based Leak-Through Detection within Cryogenic Flow Systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Figueroa, F.

    2015-01-01

    The timely detection of leaks within cryogenic fuel replenishment systems is of significant importance to operators on account of the safety and economic impacts associated with material loss and operational inefficiencies. Associated loss in control of pressure also effects the stability and ability to control the phase of cryogenic fluids during replenishment operations. Current research dedicated to providing Prognostics and Health Management (PHM) coverage of such cryogenic replenishment systems has focused on the detection of leaks to atmosphere involving relatively simple model-based diagnostic approaches that, while effective, are unable to isolate the fault to specific piping system components. The authors have extended this research to focus on the detection of leaks through closed valves that are intended to isolate sections of the piping system from the flow and pressurization of cryogenic fluids. The described approach employs model-based detection of leak-through conditions based on correlations of pressure changes across isolation valves and attempts to isolate the faults to specific valves. Implementation of this capability is enabled by knowledge and information embedded in the domain model of the system. The approach has been used effectively to detect such leak-through faults during cryogenic operational testing at the Cryogenic Testbed at NASA's Kennedy Space Center.

  6. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  7. Renewal of the Control System and Reliable Long Term Operation of the LHD Cryogenic System

    NASA Astrophysics Data System (ADS)

    Mito, T.; Iwamoto, A.; Oba, K.; Takami, S.; Moriuchi, S.; Imagawa, S.; Takahata, K.; Yamada, S.; Yanagi, N.; Hamaguchi, S.; Kishida, F.; Nakashima, T.

    The Large Helical Device (LHD) is a heliotron-type fusion plasma experimental machine which consists of a fully superconducting magnet system cooled by a helium refrigerator having a total equivalent cooling capacity of 9.2 kW@4.4 K. Seventeenplasma experimental campaigns have been performed successfully since1997 with high reliability of 99%. However, sixteen years have passed from the beginning of the system operation. Improvements are being implementedto prevent serious failures and to pursue further reliability.The LHD cryogenic control system was designed and developed as an open system utilizing latest control equipment of VME controllers and UNIX workstations at the construction time. Howeverthe generation change of control equipment has been advanced. Down-sizing of control deviceshas beenplanned from VME controllers to compact PCI controllers in order to simplify the system configuration and to improve the system reliability. The new system is composed of compact PCI controller and remote I/O connected with EtherNet/IP. Making the system redundant becomes possible by doubling CPU, LAN, and remote I/O respectively. The smooth renewal of the LHD cryogenic controlsystem and the further improvement of the cryogenic system reliability are reported.

  8. Results from commissioning the AGS Booster orbit system

    SciTech Connect

    Bleser, E.

    1993-06-01

    This note reports results from the commissioning of three systems in the AGS Booster. The beam position monitor system, which works to a relative accuracy of 0.36 millimeters; the uncorrected Booster orbit, which has quite large excursions; and the passive eddy current correction system, which eliminates all but a few percent of the eddy current dipole effect.

  9. Structural Design and Analysis of a 150 kJ HTS SMES Cryogenic System

    NASA Astrophysics Data System (ADS)

    Han, Peng; Wu, Yu; Liu, Huajun; Li, Laifeng; Yang, Huihui

    A 150 kJ high temperature superconducting magnetic energy storage (HTS-SMES) system is under manufacturing in China. This paper focuses on the structural design and analysis of the SMES cryogenic system. The cryogenic system is designed and fabricated to maintain the working temperature. The system includes a vacuum vessel, its thermal radiation shield, its supporting devices, conduction plates, and current leads. Two G-M cryocoolers are used for the system cooling, the main one is connected to the HTS coils and the other is connected to the thermal shield and the lower ends of the current leads. In this study, the 3D models of the SMES cryogenic system were created with CATIA, a 3D model design software, and the analysis of the SMES cryogenic system was done by ANSYS. The mechanical analysis results on the vacuum vessel, suspension devices and supporting devices are presented, particularly the analyses on suspenders and shelf supports are of vital importance since the finished SMES system should meet vehicle-mounted requirements in long time transport. The heat load and the temperature distribution of the thermal shield were analyzed. A cooling experiment of the cryogenic system was made and the thermal shield was cooled down to about 50 K.

  10. Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system

    SciTech Connect

    V. Ganni; D. M. Arenius; B. S. Bevins; W. C. Chronis; J. D. Creel; J. D. Wilson Jr.

    2002-05-10

    In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design, fabrication, and commissioning of a cold compressor system capable of pumping 250 g/s of 2-K helium vapor to a pressure above 1 bar. The 2-K cold box consists of five stages of centrifugal variable speed compressors with LN2 cooled drive motors and magnetic bearings, a plate fin heat exchanger, and an LN2 shield system. The new 2-K cold box (referred to as the SCN) was built as a redundant system to an existing four stage cold compressor SCM cold box that was commissioned in May 1994. The SCN has been in continuous service supporting the facility experiments since commissioning. This system has achieved a significant improvement in the total 2-K refrigeration system capacity and stability and has substantially increased the operating envelope both in cold compressor flow and operating pressure range. This paper describes the cold box configuration and the experience s in the design, fabrication, commissioning and performance evaluation. The capacity of the system for various operating pressures (0.040 to 0.025 bar at the load corresponding to a total compressor pressure ratio of 28 to 54) is presented. An effort is made to characterize the components and their operating data over the tested range. This includes the return side pressure drop in the distribution system, the heat exchanger, and the cold compressor characteristics. The system design parameters and their effects on performance are outlined.

  11. Design, fabrication, commissioning, and testing of a 250 g/s, 2-K helium cold compressor system

    NASA Astrophysics Data System (ADS)

    Ganni, V.; Arenius, D. M.; Bevins, B. S.; Chronis, W. C.; Creel, J. D.; Wilson, J. D.

    2002-05-01

    In June 1999 the Thomas Jefferson National Accelerator Facility (TJNAF) Cryogenic Systems Group had completed the design, fabrication, and commissioning of a cold compressor system capable of pumping 250 g/s of 2-K helium vapor to a pressure above 1 bar. The 2-K cold box consists of five stages of centrifugal variable speed compressors with LN2 cooled drive motors and magnetic bearings, a plate fin heat exchanger, and an LN2 shield system. The new 2-K cold box (referred to as the SCN) was built as a redundant system to an existing four stage cold compressor SCM cold box that was commissioned in May 1994. The SCN has been in continuous service supporting the facility experiments since commissioning. This system has achieved a significant improvement in the total 2-K refrigeration system capacity and stability and has substantially increased the operating envelope both in cold compressor flow and operating pressure range. This paper describes the cold box configuration and the experiences in the design, fabrication, commissioning and performance evaluation. The capacity of the system for various operating pressures (0.040 to 0.025 bar at the load corresponding to a total compressor pressure ratio of 28 to 54) is presented. An effort is made to characterize the components and their operating data over the tested range. This includes the return side pressure drop in the distribution system, the heat exchanger, and the cold compressor characteristics. The system design parameters and their effects on performance are outlined.

  12. Commissioning of a 20 K helium refrigeration system for NASA-JSC Chamber-A

    NASA Astrophysics Data System (ADS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2014-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center's Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL's Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (23 metric tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the design, project execution and commissioning results.

  13. Commissioning of a 20 K Helium Refrigeration System for NASA-JSC Chamber A

    NASA Technical Reports Server (NTRS)

    Homan, J.; Redman, R.; Ganni, V.; Sidi-Yekhlef, A.; Knudsen, P.; Norton, R.; Lauterbach, J.; Linza, R.; Vargas, G.

    2013-01-01

    A new 20 K helium refrigerator installed at NASA Johnson Space Center s Space Environment Simulation Laboratory (SESL) was successfully commissioned and tested in 2012. The refrigerator is used to create a deep space environment within SESL s Chamber A to perform ground testing of the James Webb Space Telescope (JWST). The chamber previously and currently still has helium cryo-pumping panels (CPP) and liquid nitrogen shrouds used to create low earth orbit environments. Now with the new refrigerator and new helium shrouds the chamber can create a deep space environment. The process design, system analysis, specification development, and commissioning oversight were performed by the cryogenics department at Jefferson Lab, while the contracts and system installation was performed by the ESC group at JSC. Commissioning data indicate an inverse coefficient of performance better than 70 W/W for a 18 kW load at 20 K (accounting for liquid nitrogen pre-cooling power) that remains essentially constant down to one third of this load. Even at 10 percent of the maximum capacity, the performance is better than 150 W/W at 20 K. The refrigerator exceeded all design goals and demonstrated the ability to support a wide load range from 10 kW at 15 K to 100 kW at 100 K. The refrigerator is capable of operating at any load temperature from 15 K to ambient with tight temperature stability. The new shroud (36 tons of aluminum) can be cooled from room temperature to 20 K in 24 hours. This paper will outline the process design and commissioning results.

  14. Methods for Automated and Continuous Commissioning of Building Systems

    SciTech Connect

    Larry Luskay; Michael Brambley; Srinivas Katipamula

    2003-04-30

    Avoidance of poorly installed HVAC systems is best accomplished at the close of construction by having a building and its systems put ''through their paces'' with a well conducted commissioning process. This research project focused on developing key components to enable the development of tools that will automatically detect and correct equipment operating problems, thus providing continuous and automatic commissioning of the HVAC systems throughout the life of a facility. A study of pervasive operating problems reveled the following would most benefit from an automated and continuous commissioning process: (1) faulty economizer operation; (2) malfunctioning sensors; (3) malfunctioning valves and dampers, and (4) access to project design data. Methodologies for detecting system operation faults in these areas were developed and validated in ''bare-bones'' forms within standard software such as spreadsheets, databases, statistical or mathematical packages. Demonstrations included flow diagrams and simplified mock-up applications. Techniques to manage data were demonstrated by illustrating how test forms could be populated with original design information and the recommended sequence of operation for equipment systems. Proposed tools would use measured data, design data, and equipment operating parameters to diagnosis system problems. Steps for future research are suggested to help more toward practical application of automated commissioning and its high potential to improve equipment availability, increase occupant comfort, and extend the life of system equipment.

  15. Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect

    Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

    2008-03-31

    This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

  16. Performance Test of the Proto-Model of Space Infrared Cryogenic System

    NASA Astrophysics Data System (ADS)

    Lee, D.-H.; Yang, H.-S.; Nam, U.-W.; Lee, S.; Jin, H.; Kim, D.-L.; Pak, S.; Kim, B.-H.; Park, S.-J.

    2006-12-01

    We have tested the performance of the Proto-model of Space Infrared Cryogenic System (PSICS), which is a small infrared camera, developed by Korea Astronomy and Space Science Institute (KASI), Korea Basic Science Institute (KBSI), Korea Institute of Machinery and Materials (KIMM), and i3system co., as a cooperation project. The purpose of PSICS is to ensure a technology of small infrared cryogenic system for future development of space infrared (IR) cameras. PSICS consists of cryogenic part, IR sensor and electronic part, and optical part. The performance test of each part and the integrated system has been completed successfully. PSICS will be used as a guiding camera for ground-based IR telescopes and a test system for developing a space-borne instrument.

  17. Cryogenic Hydrogen/helium Storage and Supply System, Phase 1

    NASA Technical Reports Server (NTRS)

    Norman, R. H.; Raynor, R. D.

    1976-01-01

    An existing cryogenic tank was refurbished, microspheres were installed in the tank annulus, and the thermal performance of the unit was tested. The performance data was compared with NRC-2 multilayer insulation and low emittance aluminized surfaces installed in tanks of the same basic design. The cryogenic tank modified during the program was originally designed for the Manned Orbiting Laboratory (MOL) Program, and subsequently modified by vacuum-depositing aluminum on all annulus surfaces and leaving out the NRC-2 multilayer insulation. It is concluded that the application of aluminized-microsphere insulation is not yet very predictable for tank design purposes, especially at LH2 temperature and in the presence of a vapor-cooled shield.

  18. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    SciTech Connect

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-03-28

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m{sup 3} storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  19. Cryogenic optical systems and instruments II; Proceedings of the Meeting, Los Angeles, CA, Jan. 23, 24, 1986

    NASA Technical Reports Server (NTRS)

    Melugin, Ramsey K. (Editor)

    1986-01-01

    The topics of the present conference encompass cryogenic optical system design considerations, cryogenic instruments and their components, the design and performance of cryogenic dewars for space, and technologies supporting cryogenic systems and instruments. Attention is given to the Space IR Telescope Facility (SIRTF) observatory's design and on-orbit servicing, hardware development for the Gravity Probe-B program, the multiband imaging photometer aboard SIRTF, and the SIRTF wide field, diffraction-limited array camera. Also discussed are the cryogenic star-tracking telescope for Gravity Probe-B, a balloon-borne spectrometer for measurement of lower stratospheric trace constituents, the primary mirror support system design for a cryogenic space telescope, and the SQUID readout and ultralow magnetic fields of Gravity Probe-B.

  20. RHIC cryogenics

    NASA Astrophysics Data System (ADS)

    Iarocci, M. A.; Brown, D.; Sondericker, J.; Wu, K. C.; Benson, J.; Farah, Y.; Lac, C.; Morgillo, A.; Nicoletti, A.; Quimby, E.; Rank, J.; Rehak, M.; Werner, A.

    2003-03-01

    An integrated helium cryogenic system was designed with the specific performance goal of cooling and refrigerating the cryogenic magnets to below their nominal operating temperature. These magnets make up the steering and focusing elements for the Relativistic Heavy Ion Collider (RHIC). In addition to meeting the accelerator demands, reliability, flexibility, safety, and ease of operation were key considerations during the design phase of the project. The refrigerator, with a capacity of 25 kW at about 4 K, was originally designed to match the load for the Colliding Beam Accelerator Project. The existing refrigerator, along with its complimentary warm compressor system was reconfigured slightly to meet the cooling process cycle design for RHIC. The original VAX based process control system was also adapted for RHIC, and later expanded upon to integrate a new programmable logic controller based ring resident control system, hence forming a common system to monitor and control all cryogenic components.

  1. Commissioning and performance of the BNL EBIS LLRF system

    SciTech Connect

    Yuan, S.; Smith, K.S.; Hayes, T.; Severino, F.; Harvey, M.; Narayan, G.; Zaltsman, A.

    2011-03-28

    The Electron Beam Ion Source (EBIS) LLRF system utilizes the RHIC LLRF upgrade platform to achieve the required functionality and flexibility. The LLRF system provides drive to the EBIS high-level RF system, employs I-Q feedback to provide required amplitude and phase stability, and implements a cavity resonance control scheme. The embedded system provides the interface to the existing Controls System, making remote system control and diagnostics possible. The flexibility of the system allows us to reuse VHDL codes, develop new functionalities, improve current designs, and implement new features with relative ease. In this paper, we will discuss the commissioning process, issues encountered, and performance of the system.

  2. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    SciTech Connect

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-29

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  3. Design progress of cryogenic hydrogen system for China Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Wang, G. P.; Zhang, Y.; Xiao, J.; He, C. C.; Ding, M. Y.; Wang, Y. Q.; Li, N.; He, K.

    2014-01-01

    China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat load from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.

  4. Fastener load tests and retention systems tests for cryogenic wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Wallace, J. W.

    1984-01-01

    A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.

  5. Requirements and interfaces to cryogenic and power supply plants for the ITER magnet system

    SciTech Connect

    Yoshida, K.; Kalinin, V.; Stoner, S.

    1996-12-31

    This paper describes the requirements and interfaces of cryogenic and power supply plants for the ITER magnet system. The heat loads and mass flow rates of the magnet system is evaluated to keep coil temperature within 6.5 K during the plasma operation of 2200 s. The helium consumption in the current leads is estimated for a current feed of 4.5 MA from 4 K to 300 K. The location of the electrical insulation breaks is compared near winding and outside of cryostat. The terminal box is designed for interfacing the cryogenic and power supply systems. Separate vacuums for the cryostat and the cryolines facilitate maintenance of all cryogenic components without warm-up of the whole system. A superconducting busbar is used to supply current from a current connector at the coil to the vapor-cooled lead in the coil terminal box. The layout of cryogenic lines and equipment is designed to consider space limitations and routing restrictions in the tokamak hall and the electrical termination building. The main parameters of the cryogenic plant (cryoplant) are discussed.

  6. Power Systems Development Facility: Design, Construction, and Commissioning Status

    SciTech Connect

    Powell, C.A.; Vimalchand; Hendrix, H.L.; Honeycut, P.M.

    1996-12-31

    This paper will provide an introduction to the Power Systems Development Facility, a Department of Energy sponsored, engineering scale demonstration of two advanced coal-fired power technologies; and discuss current status of design, construction and commissioning of this facility. 28 viewgraphs, including 2 figs.

  7. Apparatus for supporting a cryogenic fluid containment system within an enclosure

    DOEpatents

    Zhang, Burt X.; Ganni, Venkatarao; Stifle, Kirk E.

    1995-01-01

    An apparatus for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system.

  8. Apparatus for supporting a cryogenic fluid containment system within an enclosure

    DOEpatents

    Zhang, B.X.; Ganni, V.; Stifle, K.E.

    1995-01-31

    An apparatus is disclosed for supporting at least one inner cryogenic fluid containment system within an outer isolating enclosure to retard heat transfer into the inner containment system comprising a plurality of supports serially interconnected and laterally spaced by lateral connections to extend the heat conduction path into the inner containment system. 8 figs.

  9. Shuttle cryogenic supply system. Optimization study. Volume 5 B-1: Programmers manual for math models

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer program for rapid parametric evaluation of various types of cryogenics spacecraft systems is presented. The mathematical techniques of the program provide the capability for in-depth analysis combined with rapid problem solution for the production of a large quantity of soundly based trade-study data. The program requires a large data bank capable of providing characteristics performance data for a wide variety of component assemblies used in cryogenic systems. The program data requirements are divided into: (1) the semipermanent data tables and source data for performance characteristics and (2) the variable input data which contains input parameters which may be perturbated for parametric system studies.

  10. Study and design of cryogenic propellant acquisition systems. Volume 1: Design studies

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    An in-depth study and selection of practical propellant surface tension acquisition system designs for two specific future cryogenic space vehicles, an advanced cryogenic space shuttle auxiliary propulsion system and an advanced space propulsion module is reported. A supporting laboratory scale experimental program was also conducted to provide design information critical to concept finalization and selection. Designs using localized pressure isolated surface tension screen devices were selected for each application and preliminary designs were generated. Based on these designs, large scale acquisition prototype hardware was designed and fabricated to be compatible with available NASA-MSFC feed system hardware.

  11. Preparing accelerator systems for the RHIC sextant commissioning

    SciTech Connect

    Trbojevic, D.; Pilat, F.; Ahrens, L.

    1997-07-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards completion in 1999 when beams will circulate in both collider rings. One of the major tests of the RHIC project was the commissioning of the first sextant with gold ion beams in early 1997. This is a report on preparation of the RHIC accelerator systems for the first sextant test. It includes beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, flags and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the configuration database system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  12. Preparing Accelerator Systems for the RHIC Sextant Commissioning

    NASA Astrophysics Data System (ADS)

    Trbojevic, D.; Pilat, F.; Ahrens, L.; Barton, D.; Clifford, T.; Connoly, R.; Fischer, W.; Harrison, M.; Mackay, W.; Olsen, B.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trahern, C.; Witkover, R.

    1997-05-01

    The Relativistic Heavy Ion Collider (RHIC) construction is progressing steadily towards the beginning of the 1999 when beams will first be circulated in both collider rings. One of the major tests of the RHIC project is the commissioning of the first sextant with gold ion beams. This is a report on the preparation of the RHIC accelerator systems during the first sextant test, including beam position monitors, timing, injection correction through the magnetic septum and kickers, current transformers, ``flags'' and the ionization beam profile monitors, beam loss monitors, beam and quench permit link system, power supply controls, and the CYBASE data base system. The software and hardware development and coordination of the different systems before commissioning were regularly checked during bi-weekly, and (later) weekly, progress report meetings.

  13. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror

    NASA Astrophysics Data System (ADS)

    Enya, K.; Kataza, H.; Bierden, P.

    2009-03-01

    We present our first results on the development and evaluation of a cryogenic deformable mirror (DM) based on Micro Electro Mechanical Systems (MEMS) technology. A MEMS silicon-based DM chip with 32 channels, in which each channel is 300 μm × 300 μm in size, was mounted on a silicon substrate in order to minimize distortion and prevent it from being permanently damaged by thermal stresses introduced by cooling. The silicon substrate was oxidized to obtain electric insulation and had a metal fan-out pattern on the surface. For cryogenic tests, we constructed a measurement system consisting of a Fizeau interferometer, a cryostat cooled by liquid N2, zooming optics, electric drivers. The surface of the mirror at 95 K deformed in response to the application of a voltage, and no significant difference was found between the deformation at 95 K and that at room temperature. The power dissipation by the cryogenic DM was also measured, and we suggest that this is small enough for it to be used in a space cryogenic telescope. The properties of the DM remained unchanged after five cycles of vacuum pumping, cooling, warming, and venting. We conclude that fabricating cryogenic DMs employing MEMS technology is a promising approach. Therefore, we intend to develop a more sophisticated device for actual use, and to look for potential applications including the Space Infrared Telescope for Cosmology & Astrophysics (SPICA), and other missions.

  14. Leak testing of cryogenically pumped large-volume high-vacuum systems

    NASA Astrophysics Data System (ADS)

    Sherlock, Charles N.

    1988-01-01

    The problems that may occur in the cryogenically pumped large-volume high-vacuum chambers (LVHVCs), used for the environmental testing of aerospace components and systems, are examined. Consideration is given to the designs of the LVHVCs and the cryogenic pumps. In the procedure of leak testing with tracer gas, the success of testing depends on attaining the required test sensitivity with speed, economy, and reliability. The steps required to speed up the leak location phase of the leak testing procedure and to thoroughly clean every penetration (i.e., fitting or nozzle) of the system are discussed.

  15. Operational modes and control philosophy of the SSCL Magnet Test Lab. (MTL) cryogenic system

    SciTech Connect

    Ganni, V.; Than, R.; Thirumaleshwar, M.

    1993-05-01

    The MTL`s function is to test prototype and industrially manufactured magnets for the Superconducting Super Collider Laboratory (SSCL). The cryogenic system of the MTL has a main refrigeration system consisting of a two-stage compression system, a refrigerator/liquefier coldbox, a liquid helium dewar, warm gas storage, and a regeneration skid. The MTL cryogenic system also includes the following auxiliary equipment: two cleaning, cooling, warmup and purification (CCWP) coldbox modules with a regeneration skid for the charcoal beds, two CCWP compressors, a dehydration skid with its own regeneration system, a pump box, a refrigeration recovery unit, and five distribution boxes. At any given time, the refrigeration system has the capacity to simultaneously test at least six magnets under normally required testing conditions. Every magnet will undergo cleaning, cooldown, and filling prior to general testing, conditioning, quench testing, and other experiments. At the completion of general testing, etc., the magnet must be emptied prior to warming it up to ambient temperature. Furthermore, conditioning, training, and testing of the magnets can be carried out at different temperatures between 4.5 K and 2.5 K. The cryogenic system is designed to test multiple magnets, not all of which are necessarily in the same preparational or operational stage. This paper describes the different operational modes and the behavior and control of the total cryogenic system during multiple magnet tests.

  16. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    SciTech Connect

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  17. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    NASA Astrophysics Data System (ADS)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-01

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  18. Commissioning results from the recently upgraded RHIC LLRF system

    SciTech Connect

    Smith, K.S.; Harvey, M.; Hayes, T.; Narayan, G.; Severino, F.; Yuan, S.; Zaltsman, A.

    2011-03-28

    During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform. The RHIC LLRF upgrade is based on the recently developed RHIC LLRF Upgrade Platform. The major design goals of the platform are: (1) Design a stand alone, generic, digital, modular control architecture which can be configured to satisfy all of the application demands we currently have, and which will be supportable and upgradeable into the foreseeable future; and (2) It should integrate seamlessly into existing controls infrastructure, be easy to deploy, provide access to all relevant control parameters (eliminate knobs), provide vastly improved diagnostic data capabilities, and permit remote reconfiguration. Although the system is still in its infancy, we think the initial commissioning results from RHIC indicate that these goals have been achieved, and that we've only begun to realize the benefits the platform provides.

  19. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    NASA Technical Reports Server (NTRS)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  20. Design of propellant acquisition systems for advanced cryogenic space propulsion systems

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.; Castle, J. N.

    1973-01-01

    This paper presents results of work conducted to expand the technology base and evolve practical propellant surface tension acquisition system designs for future cryogenic space vehicles. Surface tension screen device channel flow analysis and supporting tests showed that reasonable mesh sizes could provide the required retention performance. Integrated subsystem studies and development showed that practical and effective screen surface tension acquisition devices could be designed for typical applications, but that other interfacing feed subsystems are often constrained by the design of the particular acquisition device. These constraints may dominate the total feed system performance.

  1. Commissioning of the IGp Feedback System at DAFNE

    SciTech Connect

    Drago, A.; Fox, J.D.; Teytelman, D.; Tobiyama, M.; /KEK, Tsukuba

    2011-11-01

    The iGp (Integrated Gigasample Processor) is an innovative digital bunch-by-bunch feedback system developed by a KEK / SLAC / INFN-LNF joint collaboration. The processing unit can sample at 500 MHz and compute the bunch-by-bunch output signal for up to {approx}5000 bunches. The feedback gateware code is implemented inside just one FPGA (Field Programmable Gate Array) chip, a Xilinx Virtex-II. The FPGA implements two banks of 16-tap FIR (Finite Impulse Response) filters. Each filter is realtime programmable through the operator interface. At DA{Phi}NE, the Frascati {Phi}-Factory, two iGp units have been commissioned in the April 2007. The iGp systems have substituted the previous betatron feedback systems. This insertion has been very fast and has shown no problems involving just a substitution of the old, less flexible, digital systems, letting unchanged the baseband analog frontend and backend. The commissioning has been very simple, due to the complete and powerful EPICS operator interface, working well in local and remote operations. The software includes also tools for analyzing post processor data. A description of the commissioning with the operations done is reported.

  2. PERFORMANCE OF A LIQUID XENON CALORIMETER CRYOGENIC SYSTEM FOR THE MEG EXPERIMENT

    SciTech Connect

    Haruyama, T.; Kasami, K.; Hisamitsu, Y.; Iwamoto, T.; Mihara, S.; Mori, T.; Nishiguchi, H.; Otani, W.; Sawada, R.; Uchiyama, Y.; Nishitani, T.

    2008-03-16

    The {mu}-particle rare decay physics experiment, the MU-E-GAMMA (MEG) experiment, will soon be operational at the Paul Scherrer Institute in Zurich. To achieve the extremely high sensitivity required to detect gamma rays, 800 L of liquid xenon is used as the medium in the calorimeter, viewed by 830 photomultiplier tubes (PMT) immersed in it. The required liquid xenon purity is of the order of ppb of water, and is obtained by using a cryogenic centrifugal pump and cold molecular sieves. The heat load of the calorimeter at 165 K is to be approximately 120 W, which is removed by a pulse-tube cryocooler developed at KEK and built by Iwatani Industrial Gas Corp., with a cooling power of about 200 W at 165 K. The cryogenic system is also equipped with a 1000-L dewar. This paper describes the results of an initial performance test of each cryogenic component.

  3. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  4. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  5. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    NASA Technical Reports Server (NTRS)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  6. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  7. The Evolution of the Cryogenic System of the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Hees, W.; Arnold, Ph; Fydrych, J.; Jurns, J.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is an intergovernmental project building a multidisciplinary research laboratory based upon the world's most powerful neutron source to be built in Lund, Sweden. The ESS will use a superconducting linear accelerator which will deliver protons with 5 MW of power to the target at 2.0 GeV with a nominal current of 62.5 mA. A cryomodule test stand will be supplied with helium for the site acceptance tests. The target will have two moderators using supercritical hydrogen to cool down the neutrons. The neutron instruments and the experiments’ sample environment will use liquid helium and liquid nitrogen to cool detectors and samples. The ESS cryogenic system is designed to deliver cryogenic cooling capacity to all three client system. A first concept of the ESS cryogenic system was developed in 2010 and 2011 with a limited amount of input from the clients as well as from site infrastructure (i.e. buildings and utilities). The design had to be flexible enough to accommodate future changes in scope, schedule and available infrastructure. Over the following years the design has evolved together with these parameters to achieve a maturity today which allowed us to order the accelerator cryoplant and to start procurement of many of the other parts of the ESS cryogenic system. This paper presents the evolution of the design throughout the years and the factors influencing certain design choices.

  8. Control System For Cryogenic THD Layering At The National Ignition Facility

    SciTech Connect

    Fedorov, M; Blubaugh, J; Edwards, O; Mauvais, M; Sanchez, R; Wilson, B

    2011-03-18

    The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 {micro}m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

  9. Development of the cryogenic system of AEgIS at CERN

    SciTech Connect

    Derking, J. H.; Bremer, J.; Burghart, G.; Doser, M.; Dudarev, A.; Haider, S.

    2014-01-29

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth’s gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 L⋅day{sup −1} and of liquid nitrogen 5 L⋅day{sup −1}. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.

  10. Development of the cryogenic system of AEgIS at CERN

    NASA Astrophysics Data System (ADS)

    Derking, J. H.; Bremer, J.; Burghart, G.; Doser, M.; Dudarev, A.; Haider, S.

    2014-01-01

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is located at the antiproton decelerator complex of CERN. The main goal of the experiment is to perform the first direct measurement of the Earth's gravitational acceleration on antihydrogen atoms within 1% precision. The antihydrogen is produced in a cylindrical Penning trap by combining antiprotons with positrons. To reach the precision of 1%, the antihydrogen has to be cooled to 100 mK to reduce its random velocity. A dilution refrigerator is selected to deliver the necessary cooling capacity of 100 μW at 50 mK. The AEgIS cryogenic system basically consists of cryostats for a 1-T and for a 5-T superconducting magnet, a central region cryostat, a dilution refrigerator cryostat and a measurement cryostat with a Moiré deflectometer to measure the gravitational acceleration. In autumn 2012, the 1-T cryostat, 5-T cryostat and central region cryostat were assembled and commissioned. The apparatus is cooled down in eight days using 2500 L of liquid helium and liquid nitrogen. During operation, the average consumption of liquid helium is 150 Lṡday-1 and of liquid nitrogen 5 Lṡday-1. The temperature sensors at the Penning traps measured 12 K to 18 K, which is higher than expected. Simulations show that this is caused by a bad thermalization of the trap wiring. The implementation of the sub-kelvin region is foreseen for mid-2015. The antihydrogen will be cooled down to 100 mK in an ultra-cold trap consisting of multiple high-voltage electrodes made of sapphire with gold plated electrode sectors.

  11. Residential commissioning to assess envelope and HVAC system performance

    SciTech Connect

    Wray, Craig P.; Sherman, Max H.

    2001-08-31

    Houses do not perform optimally or even as many codes and forecasts predict. For example, Walker et al. (1998a) found large variations in thermal distribution system efficiency, as much as a factor of two even between side-by-side houses with the same system design and installation crew. This and other studies (e.g., Jump et al. 1996) indicate that duct leakage testing and sealing can readily achieve a 25 to 30% reduction in installed cooling capacity and energy consumption. As another example, consider that the building industry has recognized for at least 20 years the substantial impact that envelope airtightness has on thermal loads, energy use, comfort, and indoor air quality. However, Walker et al. (1998a) found 50% variances in airtightness for houses with the same design and construction crews, within the same subdivision. A substantial reason for these problems is that few houses are now built or retrofitted using formal design procedures, most are field assembled from a large number of components, and there is no consistent process to identify problems or to correct them. Solving the problems requires field performance evaluations of houses using appropriate and agreed upon procedures. Many procedural elements already exist in a fragmented environment; some are ready now to be integrated into a new process called residential commissioning (Wray et al. 2000). For example, California's Title 24 energy code already provides some commissioning elements for evaluating the energy performance of new houses. A house consists of components and systems that need to be commissioned, such as building envelopes, air distribution systems, cooling equipment, heat pumps, combustion appliances, controls, and other electrical appliances. For simplicity and practicality, these components and systems are usually evaluated individually, but we need to bear in mind that many of them interact. Therefore, commissioning must not only identify the energy and non-energy benefits

  12. Micromechanics, fracture mechanics and gas permeability of composite laminates for cryogenic storage systems

    NASA Astrophysics Data System (ADS)

    Choi, Sukjoo

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to ½. When the transverse crack propagates to a stiffer layer normal to a ply-direction, the singularity becomes less than ½ and vice versa. Finite element analysis is performed to evaluate fracture toughness of a laminated beam subjected to the fracture load measured by the fracture experiment at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the variation of fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property which is independent to temperature changes. The experimental analysis is performed to investigate the

  13. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to

  14. Operation of the cryogenic system for the Mirror Fusion Test Facility

    SciTech Connect

    Chronis, W.C.; Slack, D.S.

    1987-06-09

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) at Lawrence Livermore National Laboratory (LLNL) was designed to cool the entire MFTF-B system from ambient to operating temperature in less than 10 days. The system was successfully operated in the recent plant and capital equipment (PACE) acceptance tests, and results from these tests helped us correct problem areas and improve the system.

  15. Operational experience and reliability of the cryogenic systems for the TRISTAN insertion quadrupole magnets

    SciTech Connect

    Tsuchiya, K.; Ohuchi, N.; Morita, Y.; Kabe, A.

    1996-12-31

    Four sets of helium cryogenic systems for the mini-beta insertion quadrupole magnets were installed near the interaction points of the TRISTAN main ring in 1990. Each system consists of a helium compressor, a cold box, a subcooler, transfer lines, two magnet-cryostats, two helium gas tanks and a liquid nitrogen storage tank, and its nominal cooling capacity is 140 W at 4.2 K + 25 L/h. The four systems are controlled automatically by a process control computer system. The first operation started in 1991 and by the middle of 1995, the total operating time for each system reached about 28,000 hours. In this paper the authors report the experience gathered during 28,000 x 4 operating hours in running four cryogenic systems together with the control system. Maintenance experience and statistics of failures of different components are also described.

  16. Experimental Studies on Cryogenic System for 22.9 KV Hts Cable Sytem

    NASA Astrophysics Data System (ADS)

    Sohn, S. H.; Lim, J. H.; Yang, H. S.; Kim, D. L.; Ryoo, H. S.; Kim, C. D.; Kim, D. H.; Lee, S. K.; Hwang, S. D.

    2008-03-01

    In terms of high transmission capacity with lower voltage, a high temperature superconducting (HTS) cable system is a very attractive challenge for utilities. However, the concomitant cryogenic system for the HTS cable system is one of the tantalizing problems in the operation. The reliability and maintainability of cryogenic system are the key issues to apply it to the real electric power grid. Korea Electric Power Corporation (KEPCO) is making an attempt to verify the applicability of the HTS cable system to improve the efficiency of electric power industry. Since May 2006, a 22.9-kV, 50-MVA, 3-phase, 100-m class HTS cable system with an open cooling system has been operated at the KEPCO Gochang test yard. Concurrently, another HTS cable verification test with the same electrical specification and an hybrid cooling system has been carried out by LS Cable (LSC) Ltd in close proximity to the KEPCO's HTS cable system within Gochang test yard. KEPCO conducts the operation of the open cooling system, and is evaluating the hybrid system of LSC with respect to facility performance and usability. This paper compares the cryogenic performance of both HTS cable systems and discusses cooling test results such as step response.

  17. The high altitude qualification tests of the cryogenic and vacuum system for ALMA

    NASA Astrophysics Data System (ADS)

    Silber, Armin

    2012-09-01

    The Cryogenic System of ALMA is one of the core sub systems of the Front End low noise receiver and the failsafe operation is mandatory to ensure the successful astronomical observations. ESO has done a comprehensive test campaign on the ALMA operational site Chajnantor1 at an altitude of 5000m, to qualify this system for the harsh operational conditions. In this contribution we will present an overview of those Qualification tests which have been carried out on ALMA`s 4K Cryogenic and Vacuum System components and the additional required measures to operate the system under the special environmental conditions, respectively the operational constrains. That will include the findings concerning the optimization of the remote diagnostic and the definition of additional monitor and control parameters. The resulting solutions have considerable influence on the maintenance processes, the operational staff requirements and the reduction of the operational costs in particularly with regards to the large system number of 66 antennas.

  18. Cryogenic system component development for the fusion experimental reactor at JAERI

    SciTech Connect

    Kato, T.; Kamiya, S.; Tada, E.; Hiyama, T.; Kawano, K.; Shimamoto, S.

    1986-01-01

    The major objective of fusion R and D at the Japan Atomic Energy Research Institute (JAERI) is to construct the Fusion Experimental Reactor (FER) to follow JT-60. The construction of FER inevitably requires development of a large, reliable, and efficient helium liquefier/refrigerator and the more advanced cryogenic technology for cooling superconducting toroidal and poloidal coils. Typical characteristics required for the cryogenic system of FER are 10 to 20 kW at 4 K as one unit, reliability for > 8000 h, a stable pulsed heat load, and high-energy efficiency of > 1/500. In this cryogenic system, the major components such as the helium compressor, turbo-expander, cold circulation pump for supercritical helium, and cold compressor to reduce operating temperature below 4 K should be scaled up to a mass flow rate of > 1000 g/s. For this purpose, JAERI has developed cryogenics since 1980 in accordance with the development program in which the scaling up of the major components mentioned above are involved as well as cooling technology development.

  19. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    NASA Astrophysics Data System (ADS)

    Arenz, M.; Babutzka, M.; Bahr, M.; Barrett, J. P.; Bauer, S.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Besserer, U.; Blümer, J.; Bodine, L. I.; Bokeloh, K.; Bonn, J.; Bornschein, B.; Bornschein, L.; Büsch, S.; Burritt, T. H.; Chilingaryan, S.; Corona, T. J.; De Viveiros, L.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Ebenhöch, S.; Eitel, K.; Ellinger, E.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Felden, A.; Fischer, S.; Formaggio, J. A.; Fränkle, F.; Furse, D.; Ghilea, M.; Gil, W.; Glück, F.; Gonzalez Ureña, A.; Görhardt, S.; Groh, S.; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillen, B.; Höhn, T.; Holzapfel, B.; Hötzel, M.; Howe, M. A.; Huber, A.; Jansen, A.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Kosmider, A.; Kovalík, A.; Krasch, B.; Kraus, M.; Krause, H.; Krause, M.; Kuckert, L.; Kuffner, B.; La Cascio, L.; Lebeda, O.; Leiber, B.; Letnev, J.; Lobashev, V. M.; Lokhov, A.; Malcherek, E.; Mark, M.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Müller, K.; Neuberger, M.; Neumann, H.; Niemes, S.; Noe, M.; Oblath, N. S.; Off, A.; Ortjohann, H.-W.; Osipowicz, A.; Otten, E.; Parno, D. S.; Plischke, P.; Poon, A. W. P.; Prall, M.; Priester, F.; Ranitzsch, P. C.-O.; Reich, J.; Rest, O.; Robertson, R. G. H.; Röllig, M.; Rosendahl, S.; Rupp, S.; Ryšavý, M.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Schwarz, J.; Seiler, W.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Skasyrskaya, A.; Slezák, M.; Špalek, A.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suesser, M.; Telle, H. H.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Unru, A.; Valerius, K.; Vénos, D.; Vianden, R.; Vöcking, S.; Wall, B. L.; Wandkowsky, N.; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wierman, K. L.; Wilkerson, J. F.; Winzen, D.; Wolf, J.; Wüstling, S.; Zacher, M.; Zadoroghny, S.; Zbořil, M.

    2016-04-01

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10‑11 mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.

  20. The NEON Science Commissioning Plan: Strategies for Confirming System Operation

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Thorpe, A.; Buur, H.

    2015-12-01

    A transformation is underway in the field of ecological monitoring as compelling science questions motivate us to build ever-larger networks aiming to acquire uniform datasets over wide geographical ranges and long timescales. The National Ecological Observatory Network (NEON), currently under construction across the U.S., represents the most ambitious such effort to characterize ecology at the continental scale. When completed in 2017, NEON will begin a 30-year program to monitor the state of North American ecosystems at scores of independent sites by employing a combination of terrestrial and aquatic sensors, organismal, biogeochemical, and hydrological sampling conducted by field staff, and airborne remote-sensing imaging and spectroscopy. Simply building and bringing such complex, long-term monitoring networks online is, however, insufficient to produce a useful result: the science team must also confirm that the system fulfills its essential mission to generate accurate and uniform data from all sites over time. This is the role of Science Commissioning, the process which completes the construction stage by confirming that the system operates as designed before entering full operations. Ideally, Science Commissioning involves simply testing the completed system against all applicable science requirements. In the real world of large, complex networks, planners of Science Commissioning must grapple with several key questions: How can we verify that the measurements from a given subsystem reflect "truth"? How can we ensure that similar subsystems at different sites return equivalent results? How can we confirm that data from the same site remain comparable over long periods of time? How can we conduct meaningful tests on a large system in a reasonable amount of time and effort? We describe the specific strategies NEON is developing to meet these challenges and the implications for other large ecological monitoring networks.

  1. A Cryogenic Fluid System Simulation in Support of Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Barber, John P.; Johnston, Kyle B.; Daigle, Matthew

    2013-01-01

    Simulations serve as important tools throughout the design and operation of engineering systems. In the context of sys-tems health management, simulations serve many uses. For one, the underlying physical models can be used by model-based health management tools to develop diagnostic and prognostic models. These simulations should incorporate both nominal and faulty behavior with the ability to inject various faults into the system. Such simulations can there-fore be used for operator training, for both nominal and faulty situations, as well as for developing and prototyping health management algorithms. In this paper, we describe a methodology for building such simulations. We discuss the design decisions and tools used to build a simulation of a cryogenic fluid test bed, and how it serves as a core technology for systems health management development and maturation.

  2. Cryogenic adsorber design in a helium refrigeration system

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjun; Zhang, Ning; Li, Zhengyu; Li, Q.

    2012-06-01

    The cryogenic adsorber is specially designed to eliminate impurities in gaseous helium such as O2, and N2 which is normally difficult to remove, based on the reversible cryotrapping of impurities on an activated carbon bed. The coconut shell activated carbon is adopted because of its developed micropore structure and specific surface area. This activated carbon adsorption is mostly determined by the micropore structure, and the adsorption rate of impurities is inversely proportional to the square of the particle sizes. The active carbon absorber's maximum permissible flow velocity is 0.25 m/s. When the gas flow velocity increases, the adsorption diffusion rate of the adsorbent is reduced, because an increase in the magnitude of the velocity resulted in a reduced amount of heat transfer to a unit volume of impure gas. According to the numerical simulation of N2 adsorption dynamics, the appropriate void tower link speed and the saturated adsorption capacity are determined. Then the diameter and height of the adsorber are designed. The mass transfer length should be taken into account in the adsorber height design. The pressure decrease is also calculated. The important factors that influence the adsorber pressure decrease are the void tower speed, the adsorbed layer height, and the active carbon particle shape and size.

  3. The cryogenic readout system with GaAs JFETs for multi-pixel cameras

    NASA Astrophysics Data System (ADS)

    Hibi, Y.; Matsuo, H.; Nagata, H.; Ikeda, H.; Fujiwara, M.

    2010-11-01

    Our purpose is to realize a multi-pixel sub-millimeter/terahertz camera with the superconductor - insulator - superconductor photon detectors. These detectors must be cooled below 1 K. Since these detectors have high impedance, signal amplifiers of each pixel must be setting aside of them for precise signal readout. Therefore, it is desirable that the readout system work well even in cryogenic temperature. We selected the n-type GaAs JFETs as cryogenic circuit elements. From our previous studies, the n-type GaAs JFETs have good cryogenic properties even when those power dissipations are low. We have designed several kinds of integration circuits (ICs) and demonstrated their performance at cryogenic temperature. Contents of ICs are following; AC coupled trans-impedance amplifiers, voltage distributors for suppressing input offset voltage of AC coupled CTIAs, multiplexers with sample-and holds, and shift-registers for controlling multiplex timing. The power dissipation of each circuit is 0.5 to 3 micro watts per channel. We also have designed and manufactured 32-channel multi-chip-modules with these ICs. These modules can make 32- channel input photo current signals into one or two serial output voltage signal(s). Size of these is 40mm x 30mm x 2mm and estimated total power dissipation is around 400 micro watts.

  4. An ultralightweight, evacuated, load-bearing, high-performance insulation system. [for cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.; Cunnington, G. R., Jr.

    1978-01-01

    A new hollow-glass microsphere insulation and a flexible stainless-steel vacuum jacket were demonstrated on a flight-weight cryogenic test tank, 1.17 m in diameter. The weight of the system is three times lighter than the most advanced vacuum-jacketed design demonstrated to date, a free-standing honeycomb hard shell with a multilayer insulation system (for a Space Tug application). Design characteristics of the flexible vacuum jacket are presented along with a model describing the insulation thermal performance as a function of boundary temperatures and emittance, compressive load on the insulation and insulation gas pressure. Test data are compared with model predictions and with prior flat-plate calorimeter test results. Potential applications for this insulation system or a derivative of this system include the cryogenic Space Tug, the Single-Stage-to-Orbit Space Shuttle, LH2 fueled subsonic and hypersonic aircraft, and LNG applications.

  5. Cryogenic sub-system for the 56 MHz SRF storage cavity for RHIC

    SciTech Connect

    Huang, Y.; Than, R.; Orfin, P.; Lederle, D.; Tallerico, T.; Masi L.; Talty, P.; Zhang, Y.

    2011-03-28

    A 56 MHz Superconducting RF Storage Cavity is being constructed for the RHIC collider. This cavity is a quarter wave resonator that will be operated in a liquid helium bath at 4.4 K. The cavity requires an extremely quiet environment to maintain its operating frequency. The cavity, besides being engineered for a mechanically quiet system, also requires a quiet cryogenic system. The helium is taken from RHIC's main helium supply header at 3.5 atm, 5.3K at a phase separator tank. The boil-off is sent back to the RHIC refrigeration system to recover the cooling. To acoustically separate the RHIC helium supply and return lines, a condenser/boiler heat exchanger condenses the helium vapor generated in the RF cavity bath. A system description and operating parameters are given about the cryogen delivery system. The 56 MHz superconducting storage RF cavity project is making progress. The cryogenic system design is in its final stage. The helium supply lines have been tapped into the RHIC helium distribution lines. The plate-and-fin heat exchanger design is near completion and specification will be sent out for bid soon. The cold helium vapor heating system design will start soon as well. A booster compressor specification is underway. The first phase separator and transfer line design work is near completion and will be sent out for bid soon.

  6. Cryogenic shutter

    NASA Astrophysics Data System (ADS)

    Barney, Richard D.; Magner, Thomas J.

    1992-07-01

    A magnetically operated shutter mechanism is provided that will function in cryogenic or cryogenic zero gravity environments to selectively block radiation such as light from passing through a window to a target object such as a mirror or detector located inside a cryogenic container such as a dewar. The mechanism includes a shutter paddle blade that is moved by an electromagnetically actuated torquing device between an open position where the target object is exposed to ambient radiation or light and a closed position where the shutter paddle blade shields the ambient radiation or light from the target object. The purpose of the shuttering device is to prevent the mirror or other target object from being directly exposed to radiation passing through the window located on the side wall of the dewar, thereby decreasing or eliminating any temperature gradient that would occur within the target object due to exposure to the radiation. A special nylon bearing system is utilized to prevent the device from binding during operation and the paddle blade is also thermally connected to a reservoir containing cryogen to further reduce the internal temperature.

  7. Update on the development of cryogenic sapphire mirrors and their seismic attenuation system for KAGRA

    NASA Astrophysics Data System (ADS)

    Hirose, Eiichi; Sekiguchi, Takanori; Kumar, Rahul; Takahashi, Ryutaro; the KAGRA Collaboration

    2014-11-01

    We describe the recent development of cryogenic sapphire mirrors and their seismic attenuation system (SAS) for the KAGRA gravitational wave detector. We briefly outline the current R&D status of sapphire mirror development. The SAS for the sapphire mirrors is under development, and we report the concept of the system and the sapphire suspension, and predict the performance based on a mathematical model with and without feedback control.

  8. Operation of graphene quantum Hall resistance standard in a cryogen-free table-top system

    NASA Astrophysics Data System (ADS)

    Janssen, T. J. B. M.; Rozhko, S.; Antonov, I.; Tzalenchuk, A.; Williams, J. M.; Melhem, Z.; He, H.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.

    2015-09-01

    We demonstrate quantum Hall resistance measurements with metrological accuracy in a small cryogen-free system operating at a temperature of around 3.8 K and magnetic fields below 5 T. Operating this system requires little experimental knowledge or laboratory infrastructure, thereby greatly advancing the proliferation of primary quantum standards for precision electrical metrology. This significant advance in technology has come about as a result of the unique properties of epitaxial graphene on SiC.

  9. Cryogenic Design of the Deep Space Network Large Array Low-Noise Amplifier System

    NASA Astrophysics Data System (ADS)

    Britcliffe, M. J.; Hanson, T. R.; Franco, M. M.

    2004-05-01

    This article describes the cryogenic design and performance of a prototype low-noise amplifier (LNA) system for the Deep Space Network (DSN) Large Array task. The system is used to cool a dual-frequency feed system equipped with high-electron mobility transistor (HEMT) low-noise amplifiers and the associated support electronics. The LNA/feed system operates at a temperature under 18 K. The system is designed to be manufactured at minimum cost. The design considerations, including the cryocooler to be used, vacuum system, microwave interconnects, mechanical components, and radiation shielding, are discussed.

  10. An expert system to manage the operation of the Space Shuttle's fuel cell cryogenic reactant tanks

    NASA Technical Reports Server (NTRS)

    Murphey, Amy Y.

    1990-01-01

    This paper describes a rule-based expert system to manage the operation of the Space Shuttle's cryogenic fuel system. Rules are based on standard fuel tank operating procedures described in the EECOM Console Handbook. The problem of configuring the operation of the Space Shuttle's fuel tanks is well-bounded and well defined. Moreover, the solution of this problem can be encoded in a knowledge-based system. Therefore, a rule-based expert system is the appropriate paradigm. Furthermore, the expert system could be used in coordination with power system simulation software to design operating procedures for specific missions.

  11. Cryogenic gas target system for intense RI beam productions in nuclear astrophysics

    SciTech Connect

    Wakabayashi, Y.; Yamaguchi, H.; Hayakawa, S.; Kurihara, Y.; Amadio, G.; Fujikawa, H.; Kubono, S.; Binh, D. N.; He, J. J.; Kim, A.

    2008-05-21

    A cryogenic gas target system was newly developed to produce intense RI beams at the low-energy in-flight radio-isotope beam separator (CRIB) of the University of Tokyo. The main features of the cryogenic gas target system are the direct cooling of the target cell by a liquid N{sub 2} finger and the circulation of the target gas that goes through the liquid N{sub 2} tank. Hydrogen gas was cooled down to 85-90 K by liquid nitrogen and used as a secondary beam production target which has a thickness of 2.3 mg/cm{sup 2} at the gas pressure of 760 Torr. Intense RI beams, such as a {sup 7}Be beam of 2x10{sup 8} particles per second, were successfully produced using the target.

  12. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    SciTech Connect

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-04-09

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  13. A PC-based collapse factor analysis for high pressure cryogenic systems

    NASA Technical Reports Server (NTRS)

    Hodge, B. K.; Koenig, Keith

    1992-01-01

    A collapse factor simulation computer program, suitable for use on personal computers, for supercritical cryogen system pressurization is examined. The available literature is previewed, individual component models are developed, and the overall simulation program logic is examined. Extensive use is made of existing thermodynamic and transport property evaluation packages. Heat transfer is estimated using natural convection correlations, and transient wall heat conduction is considered. Examples of the simulation are demonstrated for two facilities. Partial validation is achieved by comparing the simulation output with data from an existing test facility. Preliminary results indicate that the collapse factors will seldom exceed 1.15 during supercritical operation of high-pressure cryogenic systems. Recommendations for improvements in the component models and the simulation are made.

  14. A large-stroke cryogenic imaging FTS system for SPICA-Safari

    NASA Astrophysics Data System (ADS)

    Jellema, Willem; van Loon, Dennis; Naylor, David; Roelfsema, Peter

    2014-08-01

    The scientific goals of the far-infrared astronomy mission SPICA challenge the design of a large-stroke imaging FTS for Safari, inviting for the development of a new generation of cryogenic actuators with very low dissipation. In this paper we present the Fourier Transform Spectrometer (FTS) system concept, as foreseen for SPICA-Safari, and we discuss the technical developments required to satisfy the instrument performance.

  15. Shuttle cryogenics supply system optimization study. Volume 5, B-3, part 2: Appendix to programmers manual for math model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A computer programmer's manual for a digital computer which will permit rapid and accurate parametric analysis of current and advanced attitude control propulsion systems is presented. The concept is for a cold helium pressurized, subcritical cryogen fluid supplied, bipropellant gas-fed attitude control propulsion system. The cryogen fluids are stored as liquids under low pressure and temperature conditions. The mathematical model provides a generalized form for the procedural technique employed in setting up the analysis program.

  16. Acquisition/expulsion system for earth orbital propulsion system study. Volume 3: Cryogenic test

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A ground test program was conducted to verify several of the design methods and techniques that were used in designing cryogenic acquisition/expulsion systems. The testing of a 63.5-cm diameter DSL subscale model was particularly significant. Under these tests, the operational characteristics of the DSL concept were verified using LH2 and LN2. Demonstration of the gas free liquid expulsion characteristics was accomplished by expelling LH2 under -1 g using both GH2 and GHe pressurization. Loading of the acquisition/expulsion device was successfully accomplished using LH2 and LN2. The liquid free vapor venting performance of the model was limited because of the thermal stratification under the -1 g test conditions.

  17. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited).

    PubMed

    Stoeckl, C; Bedzyk, M; Brent, G; Epstein, R; Fiksel, G; Guy, D; Goncharov, V N; Hu, S X; Ingraham, S; Jacobs-Perkins, D W; Jungquist, R K; Marshall, F J; Mileham, C; Nilson, P M; Sangster, T C; Shoup, M J; Theobald, W

    2014-11-01

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si Heα line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell. PMID:25430343

  18. Conceptual design of a cryogenic test bench system for millimeter wavelength detectors

    NASA Astrophysics Data System (ADS)

    Ventura, S.; Ferrusca, D.; Ibarra-Medel, E.

    2014-07-01

    We present the design of a cryogenic system for testing different technologies of millimeter wavelength detectors. The proposed design is developed at the Astronomical Instrumentation Laboratory for Millimeter Wavelength at the National Institute of Astrophysics, Optics and Electronics, in México. The cryogenic system is integrated by a closed cycle pulse tube cooler with a 4 Kelvin 12 inches cold plate and a He-4/He-3 fridge and would be able to characterize KIDs (Kinetic Inductor Detectors), TES (Transition Edge Sensors) or semiconductor bolometers using a thermal link to a 250 mK stage. Readout electronics will be installed at the 4 Kelvin cold plate along with connectors and cables for the thermometry. In this paper we present a preliminary 3D model design which its main goal is to use efficiently the limited space in the cryostat with emphasis on the interchangeability for installing each time any of the three different detector technologies in the same cold plate; results for the thermal calculations and finite-element modeling are also shown. The system would allow, with some minor changes, to replace the He-4/He-3 fridge by a dilution fridge in order to reach temperatures about 100 mK to have more flexibility in the detector testing. The importance of the cryogenic test bench relies in the need for an easier and quicker characterization of detectors arrays as part of the research for the development of instruments for millimeter telescopes.

  19. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)

    SciTech Connect

    Stoeckl, C. Bedzyk, M.; Brent, G.; Epstein, R.; Fiksel, G.; Guy, D.; Goncharov, V. N.; Hu, S. X.; Ingraham, S.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Marshall, F. J.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.; Theobald, W.

    2014-11-15

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si He{sub α} line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  20. Gas gap heat switch for a cryogen-free magnet system

    NASA Astrophysics Data System (ADS)

    Barreto, J.; Borges de Sousa, P.; Martins, D.; Kar, S.; Bonfait, G.; Catarino, I.

    2015-12-01

    Cryogen-free superconducting magnet systems (CFMS) have become popular over the last two decades for the simple reason that the use of liquid helium is rather cumbersome and that helium is a scarce resource. Some available CFMS use a mechanical cryocooler as the magnet's cold source. However, the variable temperature insert (VTI) for some existing CFMS are not strictly cryogen-free as they are still based on helium gas circulation through the sample space. We designed a prototype of a gas gap heat switch (GGHS) that allows a thermal management of a completely cryogen-free magnet system, with no helium losses. The idea relies on a parallel cooling path to a variable temperature insert (VTI) of a magnetic properties measurement system under development at Inter-University Accelerator Centre. A Gifford-McMahon cryocooler (1.5 W @ 4.2 K) would serve primarily as the cold source of the superconducting magnet, dedicating 1 W to this cooling, under quite conservative safety factors. The remaining cooling power (0.5 W) is to be diverted towards a VTI through a controlled GGHS that was designed and built with a 80 μm gap width. The built GGHS thermal performance was measured at 4 K, using helium as the exchange gas, and its conductance is compared both with a previously developed analytical model and a finite element method. Lessons learned lead to a new and more functional prototype yet to be reported.

  1. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Bedzyk, M.; Brent, G.; Epstein, R.; Fiksel, G.; Guy, D.; Goncharov, V. N.; Hu, S. X.; Ingraham, S.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Marshall, F. J.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.; Theobald, W.

    2014-11-01

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si Heα line at ˜1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ˜7 cm in ˜100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ˜1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  2. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-10-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.

  3. Commissioning results of the APS storage ring diagnostics systems

    SciTech Connect

    Lumpkin, A.H.

    1996-12-31

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size ({sigma}{sub x} {approx} 150 {mu}m, {sigma}{sub y} {approx} 50 {mu}m), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at {approximately} 6.5 Hz frequency; observation of bunch lengthening ({sigma} {approx} 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations.

  4. Pressure and temperature fluctuation simulation of J-PARC cryogenic hydrogen system

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Ohtsu, K.; Aso, T.; Kawakami, Y.

    2015-12-01

    The J-PARC cryogenic hydrogen system provides supercritical cryogenic hydrogen to the moderators at a pressure of 1.5 MPa and temperature of 18 K and removes 3.8 kW of nuclear heat from the 1 MW proton beam operation. We prepared a heater for thermal compensation and an accumulator, with a bellows structure for volume control, to mitigate the pressure fluctuation caused by switching the proton beam on and off. In this study, a 1-D simulation code named DiSC-SH2 was developed to understand the propagation of pressure and temperature propagations through the hydrogen loop due to on and off switching of the proton beam. We confirmed that the simulated dynamic behaviors in the hydrogen loop for 300-kW and 500-kW proton beam operations agree well with the experimental data under the same conditions.

  5. Characteristics and performance of the ESTEC large space simulator cryogenic system

    NASA Technical Reports Server (NTRS)

    Amlinger, H.; Bosma, S. J.

    1986-01-01

    The final concept and performance characteristics of the Large Space Simulator (LSS) at ESTEC, The Netherlands are discussed. The LSS cryogenics system has proven its operational capabilities under simulated heat load conditions and provides sufficient margin for future elevated requirements. The acceptance test proved that nominal operating pressures can be lower than the design parameters, providing increased system safety and reliability. The ease of access for repair and the incorporated redundancy will limit system downtime. Finally, the system design resulted in a low consumption of LN sub 2, which is an important factor in keeping the operational costs at a low level.

  6. A new method for commissioning Monte Carlo treatment planning systems

    NASA Astrophysics Data System (ADS)

    Aljarrah, Khaled Mohammed

    2005-11-01

    The Monte Carlo method is an accurate method for solving numerical problems in different fields. It has been used for accurate radiation dose calculation for radiation treatment of cancer. However, the modeling of an individual radiation beam produced by a medical linear accelerator for Monte Carlo dose calculation, i.e., the commissioning of a Monte Carlo treatment planning system, has been the bottleneck for the clinical implementation of Monte Carlo treatment planning. In this study a new method has been developed to determine the parameters of the initial electron beam incident on the target for a clinical linear accelerator. The interaction of the initial electron beam with the accelerator target produces x-ray and secondary charge particles. After successive interactions in the linac head components, the x-ray photons and the secondary charge particles interact with the patient's anatomy and deliver dose to the region of interest. The determination of the initial electron beam parameters is important for estimating the delivered dose to the patients. These parameters, such as beam energy and radial intensity distribution, are usually estimated through a trial and error process. In this work an easy and efficient method was developed to determine these parameters. This was accomplished by comparing calculated 3D dose distributions for a grid of assumed beam energies and radii in a water phantom with measurements data. Different cost functions were studied to choose the appropriate function for the data comparison. The beam parameters were determined on the light of this method. Due to the assumption that same type of linacs are exactly the same in their geometries and only differ by the initial phase space parameters, the results of this method were considered as a source data to commission other machines of the same type.

  7. Fundamentals of Cryogenics

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley; Tomsik, Thomas; Moder, Jeff

    2014-01-01

    Analysis of the extreme conditions that are encountered in cryogenic systems requires the most effort out of analysts and engineers. Due to the costs and complexity associated with the extremely cold temperatures involved, testing is sometimes minimized and extra analysis is often relied upon. This short course is designed as an introduction to cryogenic engineering and analysis, and it is intended to introduce the basic concepts related to cryogenic analysis and testing as well as help the analyst understand the impacts of various requests on a test facility. Discussion will revolve around operational functions often found in cryogenic systems, hardware for both tests and facilities, and what design or modelling tools are available for performing the analysis. Emphasis will be placed on what scenarios to use what hardware or the analysis tools to get the desired results. The class will provide a review of first principles, engineering practices, and those relations directly applicable to this subject including such topics as cryogenic fluids, thermodynamics and heat transfer, material properties at low temperature, insulation, cryogenic equipment, instrumentation, refrigeration, testing of cryogenic systems, cryogenics safety and typical thermal and fluid analysis used by the engineer. The class will provide references for further learning on various topics in cryogenics for those who want to dive deeper into the subject or have encountered specific problems.

  8. Development of a reusable, flight-weight cryogenic foam insulation system

    NASA Technical Reports Server (NTRS)

    Mcauliffe, P. S.; Davis, R. C.; Taylor, A. H.

    1986-01-01

    Attention is given to a light weight foam insulation system applicable to reusable cryogenic propellant tankage for hypersonic aircraft and space launch vehicles. The insulation system consists of nominally sized blocks of a high temperature-resistant polymethacrylimide foam that is wrapped with a vapor-impermeable membrane of Kapton-aluminum-Kapton laminate, which is adhesively bonded to the outer propellant tank wall. Test results are presented which indicate that this insulation system is capable of enduring a Mach 5 service environment without structural cracking, deterioration, or loss of performance.

  9. Design of 24. 8-kw, 3. 8-K cryogenic system for Isabelle

    SciTech Connect

    Brown, D.P.; Afrashteh, M.; Bamberger, J.A.; Fresco, A.; Schlafke, A.P.; Schneider, W.J.; Sondericker, J.H.; Werner, A.; Wu, K.C.

    1982-01-01

    The ISABELLE Helium refrigerator is described in terms of performance requirements. Overall design is presented in discussion of the main refrigerator, subcooler/circulation system, distribution and load matching, design heat load, ratio of refrigeration capactity to heat load, system design pressure, physical plant, reliability and redundancy, and process control. The primary and shield circuits for one accelerator ring is diagramed. Isabelle's heat load allowance is given in a table showing primary (W at 4K) and secondary (W at 55K) loads. The redundant components in Isabelle's cryogenic system are illustrated.

  10. Comparative analysis of cryogenic and PTSA technologies for systems of oxygen production

    NASA Astrophysics Data System (ADS)

    Banaszkiewicz, T.; Chorowski, M.; Gizicki, W.

    2014-01-01

    Development of oxy-combustion technology requires relatively lower purity oxygen production (90 - 95% O2). There are two known methods to produce oxygen in such purity level - cryogenic and sorption. Cryogenic air separation technology is currently well developed and widely used for oxygen production in large quantities (up to 5 000 tons per day from a single technology train). The second method is pressure swing adsorption (PSA), which is well suited for smaller quantities of oxygen (below 500 tons per day). To optimize overall energy consumption, the PSA method can be combined with swing of temperature by using waste heat from combined heat-power generation (cogeneration) processes, leading to pressure temperature swing adsorption (PTSA). In small and medium scale oxygen production systems for oxy-combustion, both PTSA and cryogenic method can be used. The paper shows calculations and experimental validation of the efficiency and economics for both processes. The limitations of applicability for each of these technologies are indicated. The possibility of coupling the technologies, including thermal power plants, in order to improve the efficiency of the oxygen separation is discussed.

  11. Solar Thermal Upper Stage Cryogen System Engineering Checkout Test

    NASA Technical Reports Server (NTRS)

    Olsen, A. D; Cady, E. C.; Jenkins, D. S.

    1999-01-01

    The Solar Thermal Upper Stage technology (STUSTD) program is a solar thermal propulsion technology program cooperatively sponsored by a Boeing led team and by NASA MSFC. A key element of its technology program is development of a liquid hydrogen (LH2) storage and supply system which employs multi-layer insulation, liquid acquisition devices, active and passive thermodynamic vent systems, and variable 40W tank heaters to reliably provide near constant pressure H2 to a solar thermal engine in the low-gravity of space operation. The LH2 storage and supply system is designed to operate as a passive, pressure fed supply system at a constant pressure of about 45 psia. During operation of the solar thermal engine over a small portion of the orbit the LH2 storage and supply system propulsively vents through the enjoy at a controlled flowrate. During the long coast portion of the orbit, the LH2 tank is locked up (unvented). Thus, all of the vented H2 flow is used in the engine for thrust and none is wastefully vented overboard. The key to managing the tank pressure and therefore the H2 flow to the engine is to manage and balance the energy flow into the LH2 tank with the MLI and tank heaters with the energy flow out of the LH2 tank through the vented H2 flow. A moderate scale (71 cu ft) LH2 storage and supply system was installed and insulated at the NASA MSFC Test Area 300. The operation of the system is described in this paper. The test program for the LH2 system consisted of two parts: 1) a series of engineering tests to characterize the performance of the various components in the system: and 2) a 30-day simulation of a complete LEO and GEO transfer mission. This paper describes the results of the engineering tests, and correlates these results with analytical models used to design future advanced Solar Orbit Transfer Vehicles.

  12. Numerical Modeling of Fluid Transient in Cryogenic Fluid Network of Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Flachbart, Robin

    2003-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicles propulsion systems. These transients often occur at system activation and shut down. For ground safety reasons, many spacecrafts are launched with the propellant lines dry. These lines are often evacuated by the time the spacecraft reaches orbit. When the propellant isolation valve opens during propulsion system activation, propellant rushes into lines creating a pressure surge. During propellant system shutdown, a pressure surge is created due to sudden closure of a valve. During both activation and shutdown, pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. The method of characteristics is the most widely used method of calculating fluid transients in pipeline [ 1,2]. The method of characteristics, however, has limited applications in calculating flow distribution in complex flow circuits with phase change, heat transfer and rotational effects. A robust cryogenic propulsion system analyzer must have the capability to handle phase change, heat transfer, chemical reaction, rotational effects and fluid transients in conjunction with subsystem flow model for pumps, valves and various pipe fittings. In recent years, such a task has been undertaken at Marshall Space Flight Center with the development of the Generalized Fluid System Simulation Program (GFSSP), which is based on finite volume method in fluid network [3]. GFSSP has been extensively verified and validated by comparing its predictions with test data and other numerical methods for various applications such as internal flow of turbo-pump [4], propellant tank pressurization [5,6], chilldown of cryogenic transfer line [7] and squeeze film damper rotordynamics [8]. The purpose of the present paper is to investigate the applicability of the finite volume method to predict fluid transient in cryogenic flow

  13. Cryogenic cooling with cryocooler on a rotating system.

    PubMed

    Oguri, S; Choi, J; Kawai, M; Tajima, O

    2013-05-01

    We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (>99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition, cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 rpm. The developed system can be applied in various fields, e.g., in tests of Lorentz invariance, searches for axion, radio astronomy, and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation. PMID:23742598

  14. The design and testing of a cooling system using mixed solid cryogen for a portable superconducting magnetic energy storage system

    NASA Astrophysics Data System (ADS)

    Kim, K. L.; Song, J. B.; Choi, J. H.; Kim, S. H.; Y Koh, D.; Seong, K. C.; Chang, H. M.; Lee, H. G.

    2010-12-01

    A cooling system that uses solid nitrogen (SN2) as an effective heat capacity enhancer was recently introduced to enhance the thermal stability of the HTS SMES. Since SN2 has a large enthalpy with minimal weight, it enables a portable system by increasing the recooling to recooling time period (RRTP). However, contact between the SN2 and HTS SMES magnet can be broken by repeated thermal disturbances (thermal 'dry-out' phenomena). Therefore, it is essential to improve thermal contact to allow full use of the heat capacity of SN2. This study evaluated the effect of using a mixture containing SN2 and a small amount of a liquid cryogen as a cooling system in the HTS SMES system. The performance of the cooling system was evaluated using the mixed cryogen and compared with that of SN2 alone. In addition, the role of liquid neon (Ne) as a heat exchanger between SN2 and the HTS SMES magnet is discussed.

  15. Cryogenic thermal storage system for discontinuous industrial vacuum processes

    NASA Astrophysics Data System (ADS)

    Bruzzi, M.; Chesi, A.; Baldi, A.; Tarani, F.; Mori, R.; Scaringella, M.; Carnevale, E.

    2012-10-01

    Phase Change Materials are proposed for refrigerating systems in discontinuous industrial vacuum processes where temperatures as low as -140 ÷ -100°C are necessary within time-frames representing 10÷20% of total operating time. An application is proposed for cooling systems used in a Physical Vapour Deposition (PVD) apparatus. A prototype has been manufactured which couples a cryopump with a reservoir filled with MethylCycloPentane (MCP-C6H12) and a distribution line where nitrogen in the gaseous state is flowing. Preliminary tests show that temperatures of about -120°C are actually achieved within time windows compatible with PVD applications.

  16. Cryogenic analytical tools for LHe distribution system design

    SciTech Connect

    Johnson, R.R.

    1983-07-29

    The two computer programs presented in this paper are both fundamentally general in that they could be applied to other magnet systems. In addition to MFTF-B analyses, these programs will be used on current and future GDC superconducting magnet projects. Future extended capabilities will include transient heating and flow conditions for THERMOSIPHON and multiple magnet quench features for MAGPRS.

  17. Design Result of the Cryogenic Hydrogen Circulation System for 1 MW Pulse Spallation Neutron Source (JSNS) in J-PARC

    SciTech Connect

    Aso, T.; Tatsumoto, H.; Hasegawa, S.; Ushijima, I.; Ohtsu, K.; Kato, T.; Ikeda, Y.

    2006-04-27

    A cryogenic hydrogen circulation system to cool cryogenic hydrogen moderators for the spallation neutron source in J-PARC has been designed. This system consists of a helium refrigerator system and a hydrogen circulation system. The refrigeration capacity required for the cryogenic system is specified to be around 6 kW at 17 K. The hydrogen circulation system is composed of a hydrogen-helium heat exchanger, two circulation pumps, multiple transfer lines, three moderator vessels, an Ortho-Para hydrogen converter, an accumulator, a heater and others. The system adopts a centrifugal-type hydrogen pump that can circulate the cryogenic hydrogen (20 K, 0.5 to 1.5 MPa) with the mass flow up to 162 g/s through the three moderators. This forced-flow circulation can remove the nuclear heating from the moderators and can keep the temperature difference through the moderators within 3 K. The Ortho-Para hydrogen converter will be installed to maintain the Para-hydrogen concentration of more than 99% at the inlet of the moderators. For the pressure changes due to the proton beam being turned on and off, we will prepare an accumulator and a heater, which is called a hybrid pressure control. The cryogenic system has been designed with safety concepts that protect the public.

  18. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  19. Automation, Operation, and Data Analysis in the Cryogenic, High Accuracy, Refraction Measuring System (CHARMS)

    NASA Technical Reports Server (NTRS)

    Frey, Bradley; Leviton, Duoglas

    2005-01-01

    The Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA s Goddard Space Flight Center has been enhanced in a number of ways in the last year to allow the system to accurately collect refracted beam deviation readings automatically over a range of temperatures from 15 K to well beyond room temperature with high sampling density in both wavelength and temperature. The engineering details which make this possible are presented. The methods by which the most accurate angular measurements are made and the corresponding data reduction methods used to reduce thousands of observed angles to a handful of refractive index values are also discussed.

  20. Hot-film system for transition detection in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Carraway, Debra L.; Stainback, P. Calvin; Fancher, M. F.

    1987-01-01

    It is well known that the determination of the location of boundary-layer transition is necessary for the correct interpretation of aerodynamic data in transonic wind tunnels. In the late 1970s the Douglas Aircraft Company developed a vapor deposition hot-film system for transition detection in cryogenic wind tunnels. Tests of the hot-films in a low-speed tunnel demonstrated the ability to obtain on-line transition data with an enhanced simultaneous hot-film data acquisition system. The equipment design and specifications are described.

  1. Two-Phase Cryogenic Heat Exchanger for the Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.

    2011-01-01

    A two-phase cryogenic heat exchanger for a thermodynamic vent system was designed and analyzed, and the predicted performance was compared with test results. A method for determining the required size of the Joule-Thomson device was also developed. Numerous sensitivity studies were performed to show that the design was robust and possessed a comfortable capacity margin. The comparison with the test results showed very similar heat extraction performance for similar inlet conditions. It was also shown that estimates for Joule- Thomson device flow rates and exit quality can vary significantly and these need to be accommodated for with a robust system design.

  2. Two stage sorption type cryogenic refrigerator including heat regeneration system

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Wen, Liang-Chi (Inventor); Bard, Steven (Inventor)

    1989-01-01

    A lower stage chemisorption refrigeration system physically and functionally coupled to an upper stage physical adsorption refrigeration system is disclosed. Waste heat generated by the lower stage cycle is regenerated to fuel the upper stage cycle thereby greatly improving the energy efficiency of a two-stage sorption refrigerator. The two stages are joined by disposing a first pressurization chamber providing a high pressure flow of a first refrigerant for the lower stage refrigeration cycle within a second pressurization chamber providing a high pressure flow of a second refrigerant for the upper stage refrigeration cycle. The first pressurization chamber is separated from the second pressurization chamber by a gas-gap thermal switch which at times is filled with a thermoconductive fluid to allow conduction of heat from the first pressurization chamber to the second pressurization chamber.

  3. Study of cryogenic propellant systems for loading the space shuttle

    NASA Technical Reports Server (NTRS)

    Voth, R. O.; Steward, W. G.; Hall, W. J.

    1974-01-01

    Computer programs were written to model the liquid oxygen loading system for the space shuttle. The programs allow selection of input data through graphic displays which schematically depict the part of the system being modeled. The computed output is also displayed in the form of graphs and printed messages. Any one of six computation options may be selected. The first four of these pertain to thermal stresses, pressure surges, cooldown times, flow rates and pressures during cooldown. Options five and six deal with possible water hammer effects due to closing of valves, steady flow and transient response to changes in operating conditions after cooldown. Procedures are given for operation of the graphic display unit and minicomputer.

  4. Conceptual design of a cryogenic system for the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Sato, Y.; Sugita, H.; Shinozaki, K.; Okamoto, A.; Yamawaki, T.; Komatsu, K.; Nakagawa, T.; Murakami, H.; Matsuhara, H.; Murakami, M.; Takada, M.; Takai, S.; Okabayashi, A.; Kanao, K.; Tsunematsu, S.; Otsuka, K.; Narasaki, K.

    2010-07-01

    The conceptual design of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) has been studied as a pre-project of the Japan Aerospace Exploration Agency (JAXA) in collaboration with ESA to be launched in 2018. The SPICA is transferred into a halo orbit around the second Lagrangian point in the Sun-Earth system, where radiant cooling is available effectively. The SPICA has a large IR telescope 3 m in diameter, which is cooled without cryogen to below 6 K by the radiant and mechanical cooling system. Therefore, the SPICA mission will cover mid- and far-IR astronomy with high sensitivity and spatial resolution during a long period of over 5 years for goal. Most heat radiation from the sun and spacecraft is blocked by the Sun Shield and thermal radiation shields covered with Multi-Layer Insulator (MLI) to limit heat radiation to the Scientific Instrument Assembly (SIA). The SIA, which is composed of the primary mirrors and optical benches equipped with Focal Plane Instruments (FPIs), is refrigerated to below 6 K by two sets of 4K-class Joule-Thomson (JT) cooler with a cooling power of 40 mW at 4.5 K. The Far-IR detector is refrigerated to 1.7 K by two sets of 1K-class JT coolers with a cooling power of 10 mW at 1.7 K. Improvements for the higher reliability and sufficient cooling performance are required in the development of SPICA mechanical cryocoolers. Thermal analysis indicates that the SPICA cryogenic system works effectively to limit the total heat load on the SIA to 41.2 mW. This paper describes the conceptual design of the SPICA cryogenic system, which was established with thermal feasibility for nominal operation mode.

  5. Description of the insulation system for the Langley 0.3-Meter Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.; Dress, D. A.; Kilgore, R. A.

    1985-01-01

    The thermal insulation system of the Langley 0.3 Meter Transonic Cryogenic Tunnel is described. The insulation system is designed to operate from room temperature down to about 77.4 K, the temperature of liquid nitrogen at 1 atmosphere. A detailed description is given of the primary insulation sytem consists of glass fiber mats, a three part vapor barrier, and a dry positive pressure purge system. Also described are several secondary insulation systems required for the test section, actuators, and tunnel supports. An appendix briefly describes the original insulation system which is considered inferior to the one presently in place. The time required for opening and closing portions of the insulation system for modification or repair to the tunnel has been reduced, typically, from a few days for the original thermal insulating system to a few hours for the present system.

  6. Experimental study of cryogenic liquid turbine expander with closed-loop liquefied nitrogen system

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Sun, Jinju; Song, Peng

    2015-04-01

    A cryogenic liquid turbine expander is developed as a replacement for traditional Joule-Thomson valves used in the cryogenic systems for the purpose of energy saving. An experimental study was conducted to evaluate the performance of the turbine expander and is the subject of this paper. The test rig comprises a closed-loop liquefied nitrogen system, cryogenic liquid turbine expander unit, and its auxiliary and measuring systems. The test operating parameters of the turbine expander are determined on the basis of flow similarity rules. Pre-cooling of the liquid nitrogen system is first performed, and then the tests are conducted at different flow rates and speed ratios. The turbine expander flow rate, inlet and outlet pressure and temperature, rotational speed and shaft torque were measured. Experimental results and their uncertainties were analyzed and discussed. The following are demonstrated: (1) For both test cases, turbine expander peak isentropic efficiency is respectively 78.8% and 68.4% obtained at 89.6% and 92% of the design flow rate. The large uncertainties in isentropic efficiency are caused by the large enthalpy variations subjected to small measurement uncertainties in temperature and pressure. (2) Total efficiency and hydraulic efficiency of the turbine expander are obtained. They are essentially the same, since both include flow-related effects and also bearing losses. Comparisons of total efficiency and hydraulic efficiency were used to justify measurement uncertainties of different quantities, since the former involves the measured mass flow rate and enthalpy drop (being dependant on inlet and outlet temperature and pressure), while the latter involves the actual shaft power, volume flow rate, and inlet and outlet pressure. (3) Losses in flow passages and the shaft-bearing system have been inferred based on the measured turbine expander total efficiency, isentropic efficiency, and mechanical efficiency, which are respectively 57.6-74.8%, 62

  7. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  8. Ball Aerospace Actuator Cryogenic Testing

    NASA Technical Reports Server (NTRS)

    Kingsbury, Lana; Lightsey, Paul; Quigley, Phil; Rutkowski, Joel; Russell, J. Kevin (Technical Monitor)

    2002-01-01

    The ambient testing characterizing step size and repeatability for the Ball Aerospace Cryogenic Nano-Positioner actuators for the AMSD (Advanced Mirror System Demonstrator) program has been completed and are presented. Current cryogenic testing is underway. Earlier cryogenic test results for a pre-cursor engineering model are presented.

  9. Evaluation of supercritical cryogen storage and transfer systems for future NASA missions

    NASA Technical Reports Server (NTRS)

    Arif, Hugh; Aydelott, John C.; Chato, David J.

    1990-01-01

    Conceptual designs of Space Transportation Vehicles (STV), and their orbital servicing facilities, that utilize supercritical, single phase, cryogenic propellant were established and compared with conventional subcritical, two phases, STV concepts. The analytical study was motivated by the desire to avoid fluid management problems associated with the storage, acquisition and transfer of subcritical liquid oxygen and hydrogen propellants in the low gravity environment of space. Although feasible, the supercritical concepts suffer from STV weight penalties and propellant resupply system power requirements which make the concepts impractical.

  10. Evaluation of supercritical cryogen storage and transfer systems for future NASA missions

    NASA Technical Reports Server (NTRS)

    Arif, Hugh; Aydelott, John C.; Chato, David J.

    1989-01-01

    Conceptual designs of Space Transportation Vehicles (STV), and their orbital servicing facilities, that utilize supercritical, single phase, cryogenic propellants were established and compared with conventional subcritical, two phase, STV concepts. The analytical study was motivated by the desire to avoid fluid management problems associated with the storage, acquisition and transfer of subcritical liquid oxygen and hydrogen propellants in the low gravity environment of space. Although feasible, the supercritical concepts suffer from STV weight penalties and propellant resupply system power requirements which make the concepts impractical.

  11. Environmental testing of high Tc superconductive thermal isolators for space-borne cryogenic detector systems

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Buckley, John D.; Randolf, Henry W.; Verbelyi, Darren; Haertling, Gene H.; Hooker, Matthew W.; Selim, Raouf; Caton, Randall

    1992-01-01

    Thick films of superconductive material on low thermal conductivity substrates (e.g., yttria-stabilized zirconia and fused silica) are considered as a replacement for the existing electrical connections between the detector array and data acquisition and storage electronics in the cryogenic detector systems being developed by NASA. The paper describes some of the design constraints on the superconducting device and presents results of a preliminary analysis of the effects of vibration, gamma irradiation, and long-term exposure to high vacuum and liquid nitrogen encountered in operating such a device in space.

  12. Status of the cryogenic inertial reference system for the Gravity Probe B mission

    NASA Technical Reports Server (NTRS)

    Lipa, J. A.; Gwo, D.-H.; Kirschman, R. K.

    1993-01-01

    We describe the status of the development and testing program for the inertial reference system for the Gravity Probe B gyroscopes. The gyroscope housings are attached to a cryogenic telescope with a 14 cm aperture that continuously points at a guide star. The star image is split to provide quadrant pointing information which is used to steer the spacecraft. This data is also combined with the gyro readout data to provide an absolute precession measurement. Motion of the guide star is independently checked by reference to background galaxies. Room temperature testing of a prototype telescope has been completed and preparations are being made for low temperature tests.

  13. Thermostabilization System Based on Two-phase Closed Cryogenic Thermosyphon for RED100 Detector

    NASA Astrophysics Data System (ADS)

    Bolozdynya, A. I.; Efremenko, Yu. V.; Khromov, V. A.; Shafigullin, R. R.; Shakirov, A. V.; Sosnovtsev, V. V.; Tolstukhin, I. A.

    The RED 100 emission detector requires thermostabilization at about 100K. The heat transfer characteristics of a two-phase closed cryogenic thermosyphon made of copper pipe and bellow flex hoses with nitrogen fluid have been investigated. The thermosyphon consists of sealed pipe enclosed in a vacuum jacket and uses a free-boiling liquid nitrogen pool as a cooling machine. The system is very flexible and can provide heat transfer rate up to 100 W in the temperature range of 80-100 K.

  14. Slosh wave excitation due to cryogenic liquid reorientation in space-based propulsion system

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Shyu, K. L.; Lee, C. C.

    1991-01-01

    The objective of the cryogenic fluid management of the spacecraft propulsion system is to develop the technology necessary for acquistion or positioning of liquid and vapor within a tank in reduced gravity to enable liquid outflow or vapor venting. In this study slosh wave excitation induced by the resettling flow field activated by 1.0 Hz medium frequency impulsive reverse gravity acceleration during the course of liquid fluid reorientation with the initiation of geyser for liquid filled levels of 30, 50, and 80 percent have been studied. Characteristics of slosh waves with various frequencies excited are discussed.

  15. Process Design of Cryogenic Distribution System for CFETR CS Model Coil

    NASA Astrophysics Data System (ADS)

    Cheng, Anyi; Zhang, Qiyong; Fu, Bao; Lu, Xiaofei

    2016-02-01

    The superconducting magnet of Central Solenoid (CS) model coil of China Fusion Engineering Test Reactor (CFETR) is made of Nb3Sn/NbTi cable-in-conduit conductor (CICC), and operated by forced-flow cooling with a large amount of supercritical helium. The cryogenic circulation pump is analyzed and considered to be effective in achieving the supercritical helium (SHe) circulation for the forced-flow cooled (FFC) CICC magnet. A distributed system will be constructed for cooling the CFETR CS model coil. This paper presents the design of FFC process for the CFETR CS model coil. The equipment configuration, quench protection in the magnet and the process control are presented.

  16. Physics Based Model for Online Fault Detection in Autonomous Cryogenic Loading System

    NASA Technical Reports Server (NTRS)

    Kashani, Ali; Devine, Ekaterina Viktorovna P; Luchinsky, Dmitry Georgievich; Smelyanskiy, Vadim; Sass, Jared P.; Brown, Barbara L.; Patterson-Hine, Ann

    2013-01-01

    We report the progress in the development of the chilldown model for rapid cryogenic loading system developed at KSC. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDAFLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDAFLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.

  17. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    SciTech Connect

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  18. Development of cryogenic installations for large liquid argon neutrino detectors

    NASA Astrophysics Data System (ADS)

    Adamowski, M.; Bremer, J.; Geynisman, M.; Hentschel, S.; Montanari, D.; Nessi, M.; Norris, B.

    2015-12-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these installations (parts per trillion of oxygen equivalent contamination). This paper gives an overview of the installations involved in these cryogenic projects, describes the functional demands made to these cryogenic systems and presents the initial studies on which these future cryogenic systems will be based.

  19. 75 FR 74025 - Procedural Manual for the Election Assistance Commission's Voting System Testing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... COMMISSION Procedural Manual for the Election Assistance Commission's Voting System Testing and Certification...; publication of Voting System Testing and Certification Manual, Version 2.0, for 60 day public comment period... manual for its Voting System Testing and Certification Program. This manual sets the...

  20. SU-E-T-630: Commissioning for SRS Planning Systems

    SciTech Connect

    Pella, S; Smith, C; Leventouri, T; Bacala, A

    2014-06-15

    Purpose: This study will try to find optimal procedures to collect small fields beam data for commissioning in treatment planning systems (TPS), and to provide a protocol to collect output factors for very small field sizes: 0.5 cm × 0.5 cm to 4.0 cm × 4.0 cm.This will help in determining the correct beam configuration methods in TPS planning intensity modulated radiation therapy (IMRT), and stereotactic radiosurgery SRS using mini multileaf collimation (mMLC). Methods: Data has been collected for a mMLC linear accelerator (linac) Novalis from 0.5 cm × 0.5 cm to 10 cm × 10 cm (its maximum field size). The TPS chosen is BrainLab, Eclipse and Cyberknife. The beam data collected was modeled and imported in the TPS. Verification plans were generated in solid water to confirm the goodness of the data. 3D and IMRT plans on regular CT scans were generated and verified using Mapcheck. All 3D plans with field sizes above 4 cm × 4 cm verified excellent using a distance to agreement of 2 mm and a 2% tolerance. IMRT plans gave an error of -8%. New scans with new detectors have been taken, new field sizes were introduced, and focus has been applied on determining the dosimetric leaf gap. Results: Although this is still a work in progress, this study brings several issues to light: the importance of the correct technique in beam data collection from the correct watertank to the correct detectors. Readings for rectangular fields have to be taken especially for fields which one side is under 4 cm. Conclusion: The use of equivalent square fields will not provide correct readings for the fields with large differences between the length and the width.

  1. Study and development of a cryogenic heat exchanger for life support systems

    NASA Technical Reports Server (NTRS)

    Soliman, M. M.

    1973-01-01

    A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.

  2. Cryogenic Property Measurements on Icy Compositions with Application to Solar System Ices

    NASA Astrophysics Data System (ADS)

    Hays, C.; Castillo-Rogez, J.; Barmatz, M.; Mitchell, K.

    2007-08-01

    grains). Post-synthesis microstructural characterization will be performed using Cryogenic Optical Microscopy integrating a cross-polarizer to analyze thin sections, and a Cryogenic Scanning Electron Microscope. Mechanical property measurements on solid specimens will be performed between 80 and 270 K with a cryogenically cooled Instron measurement system. Compression measurements will be conducted as a function of temperature, strain-rate, microstructural length scale and orientation. The time dependent viscous response will be measured by performing creep measurements over the same range of temperatures. Using low-frequency cyclic loading, the dissipation factor will be measured at frequencies approaching satellite orbital frequencies. We will report preliminary mechanical property measurements of Antarctic glacial specimens at cryogenic temperatures. Fluids. In order to improve our understanding of effusive cryovolcanism, the rheological properties of liquid and mixed (slurry) materials will be measured between 80 and 300 K using a cryogenically cooled Brookfield rotational rheometer. We will report preliminary measurements of the temperature dependence of the viscous response for several compositions in the Methanol-Water System. Also, we will describe an experiment designed to measure methane wetting on water ice. These experiments will be carried out in order to explore the effects of the presence of methane lakes on Titan's surface. We are developing the capability to investigate more complex materials relevant to surface processes on Titan, including methane-ethane phase studies, hydrocarbons such as acetylene and benzene, as well as tholins and clathrates, which should exhibit a range of rheological and mechanical properties from fast-moving fluids to glacial creep. Acknowledgements: Most of the research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National

  3. Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN

    NASA Astrophysics Data System (ADS)

    Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero

    The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.

  4. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    NASA Astrophysics Data System (ADS)

    Parente, C.; Allen, W.; Munday, A.; Wiggins, P.

    2006-04-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, flexible hoses were used instead of bellows to allow for thermal compensation of the process pipes. If necessary, compensation units were integrated in the vacuum jacket. The thermal design was performed to fulfil the specified heat-load budget. This paper presents the main technical design choices for the lines together with their expected performance.

  5. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  6. Thermal performance of a modularized replaceable multilayer insulation system for a cryogenic stage

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.

    1977-01-01

    A rugged modularized MLI system for a 2.23-meter-diameter (87.6-in.-diam) liquid hydrogen tank was designed, fabricated, and tested under simulated near-earth and deep-space environments. The two blankets of the system were each composed of 17 double-aluminized Mylar radiation shields separated by silk net. The unit area weight of the installed system was 1.54 kg/sqm (0.32 lb/sq ft). The overall average heat transferred into the insulated tank was 22.7 and 0.98 watts (77.4 and 3.3 Btu/hr) during simulated near-earth and deep-space testing, respectively. The near-earth result was only 2.6 times that predicted for an undisturbed insulation system (i.e., no seams or penetrations). Tests indicate that this insulation concept could be useful for a cryogenic space tug or orbit transfer vehicle application.

  7. Design and integration of a cryogenic propellant crossfeed system for parallel burn vehicles

    NASA Astrophysics Data System (ADS)

    Howarth, James W.; Merlin, Michael V.; Petrilla, Stephen P.; Vaddey, Seshagirirao V.

    1993-06-01

    A study was made to design and integrate a cryogenic propellant crossfeed system into an orbiter/booster vehicle set having parallel burning stages. A crossfeed system configuration has been developed that provides a solution for crossfeeding multiparallel-burn stages for HLLV and AMLS vehicles. With a crossfeed system, the NASA/Langley Research Center predicted weight savings of about 26 percent in gross weight and about 23 percent in dry weight can be achieved. The crossfeed configuration success is highly dependent on component selection and the operational sequence chosen to achieve system performance objectives. These components and a flight sequence are identified. Emphasis is placed on minimizing vehicle complexity and obtaining low booster residuals. The related subsystem concerns for propellant loading, pressurization, venting, in-flight separable umbilical disconnects, and retraction are addressed. Guidelines and design objectives were also established for large diameter, separable disconnect design development.

  8. The cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.

    1976-01-01

    Based on theoretical studies and experience with a low speed cryogenic tunnel and with a 1/3-meter transonic cryogenic tunnel, the cryogenic wind tunnel concept was shown to offer many advantages with respect to the attainment of full scale Reynolds number at reasonable levels of dynamic pressure in a ground based facility. The unique modes of operation available in a pressurized cryogenic tunnel make possible for the first time the separation of Mach number, Reynolds number, and aeroelastic effects. By reducing the drive-power requirements to a level where a conventional fan drive system may be used, the cryogenic concept makes possible a tunnel with high productivity and run times sufficiently long to allow for all types of tests at reduced capital costs and, for equal amounts of testing, reduced total energy consumption in comparison with other tunnel concepts.

  9. Cryogenic fluid management technologies for space transportation. Zero G thermodynamic vent system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Long term storage of subcritical cryogens in space must address the problem of thermal stratification in the storage tanks, liquid acquisition devices, and associated feed systems. Due to the absence of gravity induced body forces, thermal stratification in zero-g is more severe than commonly experienced in a one-g environment. If left uncontrolled, the thermal gradients result in excessive tank pressure rise and the formation of undesirable liquid/vapor mixtures within the liquid bulk, liquid acquisition system, and propellant transfer lines. Since external heat leakage cannot be eliminated, a means of minimizing the thermal stratification in the ullage gas, liquid, and feed system is required. A subsystem which minimizes the thermal stratification and rejects the environmental heat leakage in an efficient manner is therefore needed for zero-g subcritical cryogenic systems. In ground based storage systems the ullage gas location is always known (top of the tank) and therefore direct venting of gases as a means of heat rejection is easily accomplished. In contrast, because the ullage location in a zero-g environment is not easily predictable, heat rejection through direct gaseous venting is difficult in space (requires liquid settling, or surface tension devices). A means of indirect venting through the use of a thermodynamic vent system (TVS) is therefore required. A thermodynamic vent system allows indirect venting of vapor through heat exchange between the vented fluid and the stored fluid. The objective is to ensure that only gas and not liquid is vented, in order to minimize the propellant losses. Consequently, the design of a TVS is a critical enabling technology for future applications such as solar thermal and electric propulsion, single-stage-to-orbit vertical landers and upper stages, and any space based operations involving subcritical cryogenics. To bridge this technology gap NASA MSFC initiated an effort to build and verify through ground tests a zero

  10. Performance of the Primary Mirror Center-of-Curvature Optical Metrology System during Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The JWST primary mirror consists of 18 1.5 m hexagonal segments, each with 6-DoF and RoC adjustment. The telescope will be tested at its cryogenic operating temperature at Johnson Space Center. The testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The performance of these metrology systems, including hardware, software, procedures, was assessed during two cryogenic tests at JSC, using the JWST Pathfinder telescope. This paper describes the test setup, the testing performed, and the resulting metrology system performance.

  11. 78 FR 76858 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ..., ``Complainants''). 78 FR 52563 (August 23, 2013). The complaint alleged violations of Section 337 of the Tariff... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission... United States after importation of certain sleep- disordered breathing treatment systems and...

  12. 78 FR 49763 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Diego, California; ResMed Incorporated of San Diego, California; and ResMed Limited of Australia. 78 FR... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission... importation of certain sleep- disordered breathing treatment systems and components thereof by reason...

  13. Developments with the Commission's Longitudinal Student Data System. Working Paper WP/06-07

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2006

    2006-01-01

    This paper summarizes the many uses of the California Postsecondary Education Commission's data system and describes work in progress on adding additional data elements. It describes how the Commission is using its Longitudinal Student Data System (LSDS) to examine the movement of students through California's public colleges and universities. The…

  14. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system

    SciTech Connect

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2014-09-15

    Magnetic resonance imaging (MRI) at microtesla fields using superconducting quantum interference device (SQUID) detection has previously been demonstrated, and advantages have been noted. Although the ultralow-field SQUID MRI technique would not need the heavy superconducting magnet of conventional MRI systems, liquid helium required to cool the low-temperature detector still places a significant burden on its operation. We have built a prototype cryocooler-based SQUID MRI system that does not require a cryogen. The SQUID detector and the superconducting gradiometer were cooled down to 3.7 K and 4.3 K, respectively. We describe the prototype design, characterization, a phantom image, and areas of further improvements needed to bring the imaging performance to parity with conventional MRI systems.

  15. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts were developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, loadbearing insulation (LBI). Thermal performance measurements were made under space-hold (vacuum) conditions for insulating warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately 0.00008 W/m-K (W = weight,Kg; m = measured; K = temperature) for the MLI systems (liquid hydrogen test results) and 0.00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature).

  16. Direct-drive digitally-commutated filter wheel positioning system for cryogenic optical applications

    NASA Astrophysics Data System (ADS)

    Lorell, Kenneth R.; Aubrun, Jean-Noel; Opyd, Walter G.; Wood, Allen D.

    1993-01-01

    A control system is presented for precise and rapid positioning of spectral filters in the multispectral infrared optical system used for the MUlti-Spectral Infrared Camera (MUSIC). A hybrid system employing a stepper motor as a direct-drive brushless servomotor presents an ideal solution, applying high torque at low speed for the optimum response as limited by available torque. As the end of the repositioning transient is approached, closed-loop proportional control of torque provides quick settling to a positioning accuracy of 0.02 degrees. The use of a stepper motor avoids the problems of a brushed DC servomotor, such as brush and bearing failures at high speeds in a cryogenic vacuum, and backlash in reduction gears. The analog servo loop with commutation hardware to optimally switch the current to the stepper motor windings, avoids problems typical of stepper motors, such as limited positioning precision and high power dissipation while holding position.

  17. Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel

    NASA Technical Reports Server (NTRS)

    Turney, G. E.; Fishbach, L. H.

    1984-01-01

    A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.

  18. Cryogen-free lkA-class Ic measurement system featuring an 8 T HTS magnet

    NASA Astrophysics Data System (ADS)

    Strickland, N. M.; Hoffmann, C.; Wimbush, S. C.; Pooke, D. M.; Huang, T.; Lazic, Z.; Chamritski, V.; Talantsev, E. F.; Long, N. J.; Tallon, J. L.

    2014-05-01

    We have developed a cryogen-free critical-current (Ic) measuring system comprising a conduction-cooled 8 T HTS magnet and convection-cooled sample, both cooled by commercial cryocoolers. The sample can be rotated and transport currents of up to 800 A delivered with less than 0.5 K temperature rise during the Ic measurement. The system is automated with respect to variations in temperature (30-90 K), field (0-8 T), and field angle (0-360°). We have used this system to measure HTS wire samples, concentrating on metal-organic deposited YBCO on RABiTS substrates. Particular emphasis is given to the evolution of Ic anisotropy with temperature, and the dangers of extrapolating from 77 K to 30 K.

  19. Conceptual design and analysis of orbital cryogenic liquid storage and supply systems

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.

    1981-01-01

    A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.

  20. The Development and Implementation of a Cryogenic Pressure Sensitive Paint System in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Oglesby, Donald M.; Goodman, Kyle Z.; Goad, William K.; Goad, Linda R.; Massey, Edward A.

    2009-01-01

    The Pressure Sensitive Paint (PSP) method was used to measure global surface pressures on a model at full-scale flight Reynolds numbers. In order to achieve these conditions, the test was carried out at the National Transonic Facility (NTF) operating under cryogenic conditions in a nitrogen environment. The upper surface of a wing on a full-span 0.027 scale commercial transport was painted with a porous PSP formulation and tested at 120K. Data was acquired at Mach 0.8 with a total pressure of 200 kPa, resulting in a Reynolds number of 65 x 106/m. Oxygen, which is required for PSP operation, was injected using dry air so that the oxygen concentration in the flow was approximately 1535 ppm. Results show qualitative agreement with expected results. This preliminary test is the first time that PSP has been successfully deployed to measure global surface pressures at cryogenic condition in the NTF. This paper will describe the system as installed, the results obtained from the test, as well as proposed upgrades and future tests.

  1. Progress on the MICE Liquid Absorber Cooling and CryogenicDistribution System

    SciTech Connect

    Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov,Y.; Ishimoto, S.; Cummings, M.A.C.; Lau, W.W.; Yang, S.Q.

    2005-05-13

    This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber.

  2. Development and test of a cryogenic pulsating heat pipe and a pre-cooling system

    NASA Astrophysics Data System (ADS)

    Bonnet, Fabien; Gully, Philippe; Nikolayev, Vadim

    2012-06-01

    The needs of thermal links in cryogenic applications are increasing, especially because of the use of cryocoolers which offer a reduced size cold finger. The Pulsating Heat Pipe (PHP) is a passive two-phase high performance thermal link. Like the conventional heat pipe, it features a closed tube filled with a two-phase fluid able to transfer heat from its hot part (evaporator) to the cold part (condenser). A general problem for any two-phase cryogenic thermal link is the pre-cooling of the evaporator to ensure the presence of liquid inside the evaporator to start the flow motion. In conventional heat pipes, this problem is by passed by the wick but in the case of PHPs it has to be specially addressed. We have designed, manufactured and tested a helium PHP associated to a novel pre-cooling system. The cool down time of the PHP evaporator is reduced significantly. The maximum transferred power of the PHP is 145 mW with a cold source at 4.2 K.

  3. Cryogenic system design of 11 GEV/C super high momentum spectrometer superconducting magnets at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Sun, Eric; Brindza, Paul; Lassister, Steven; Fowler, Mike

    2012-06-01

    The design of the cryogenic system for the 11 GeV/c Super High Momentum Spectrometer (SHMS) is presented. A description of the cryogenic control reservoir and the cryogenic transfer line is given. Details of the cryogenic control reservoirs, cryogenic transfer lines, and pressure piping are summarized. Code compliance is ensured through following the requirements of the ASME Pressure Vessel Code and Pressure Piping Code. An elastic-plastic-analysis-based combined safety factor approach is proposed to meet the low stress requirement of ASME 2007 Section VIII, Division 2 so that Charpy V-notch (CVN) impact testing can be avoided through analysis. Material toughness requirements in ASME 2007 Section VIII, Division 2 are adopted as CVN impact testing rules of stainless steel 304 piping at 4.2 K and 77 K. A formula-based combined safety factor approach for pressure piping is also proposed to check whether the impact testing can be avoided due to low stress. Analysis and calculation have shown that no CVN impact testing of base metal and heat affected zones is required for the helium reservoir, nitrogen reservoir, and their relevant piping. Total heat loads to liquid helium and liquid nitrogen are studied also. The total heat load to LHe for SHMS is estimated to be 137 W, and the total load to LN2 is calculated to be 420 W.

  4. Cryogenic system design of 11 GEV/C super high momentum spectrometer superconducting magnets at Jefferson Lab

    SciTech Connect

    Eric Sun, Paul Brindza, Steven Lassister, Mike Fowler

    2012-07-01

    The design of the cryogenic system for the 11 GeV/c Super High Momentum Spectrometer (SHMS) is presented. A description of the cryogenic control reservoir and the cryogenic transfer line is given. Details of the cryogenic control reservoirs, cryogenic transfer lines, and pressure piping are summarized. Code compliance is ensured through following the requirements of the ASME Pressure Vessel Code and Pressure Piping Code. An elastic-plastic-analysis-based combined safety factor approach is proposed to meet the low stress requirement of ASME 2007 Section VIII, Division 2 so that Charpy V-notch (CVN) impact testing can be avoided through analysis. Material toughness requirements in ASME 2007 Section VIII, Division 2 are adopted as CVN impact testing rules of stainless steel 304 piping at 4.2 K and 77 K. A formula-based combined safety factor approach for pressure piping is also proposed to check whether the impact testing can be avoided due to low stress. Analysis and calculation have shown that no CVN impact testing of base metal and heat affected zones is required for the helium reservoir, nitrogen reservoir, and their relevant piping. Total heat loads to liquid helium and liquid nitrogen are studied also. The total heat load to LHe for SHMS is estimated to be 137 W, and the total load to LN2 is calculated to be 420 W.

  5. Development of Rene' 41 honeycomb structure as an integral cryogenic tankage/fuselage concept for future space transportation systems

    NASA Technical Reports Server (NTRS)

    Shideler, J. J.; Swegle, A. R.; Fields, R. A.

    1982-01-01

    The status of the structural development of an integral cryogenic-tankage/hot-fuselage concept for future space transportation systems (STS) is discussed. The concept consists of a honeycomb sandwich structure which serves the combined functions of containment of cryogenic fuel, support of vehicle loads, and thermal protection from an entry heating environment. The inner face sheet is exposed to a cryogenic (LH2) temperature of -423 F during boost; and the outer face sheet, which is slotted to reduce thermal stress, is exposed to a maximum temperature of 1400 F during a high altitude, gliding entry. A fabrication process for a Rene' 41 honeycomb sandwich panel with a core density less than 1 percent was developed which is consistent with desirable heat treatment processes for high strength.

  6. Overview of the cryogenic system for the ariel e-linac at TRIUMF

    NASA Astrophysics Data System (ADS)

    Bylinskii, Iouri; Kishi, David; Koveshnikov, Alexey; Laxdal, Robert; Sekachev, Igor; Sitnikov, Alexandre; Yosifov, Dimo

    2012-06-01

    The Advanced Rare IsotopE Laboratory (ARIEL) is a major upgrade of the existing ISAC radioactive beam facility. After completion, ARIEL will triple TRIUMF's capability of the rare isotope production for the needs of the international scientific community. The key feature of this upgrade is the 50 MeV 10 mA continuous-wave (CW) electron linear accelerator (e-linac) utilizing superconducting bulk niobium technology at 1.3GHz. This paper presents the proposed layout of the e-linac cryogenic system including details of the accelerator cryomodules, estimated heat load of the helium refrigerator, and the description of the helium and LN2 storage and distribution systems with requirements for major components.

  7. Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration

    NASA Technical Reports Server (NTRS)

    Bard, Steven (Inventor); Jones, Jack A. (Inventor)

    1992-01-01

    A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.

  8. Study and design of cryogenic propellant acquisition systems. Volume 2: Supporting experimental program

    NASA Technical Reports Server (NTRS)

    Burge, G. W.; Blackmon, J. B.

    1973-01-01

    Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.

  9. Test techniques: A survey paper on cryogenic tunnels, adaptive wall test sections, and magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Kilgore, Robert A.; Dress, David A.; Wolf, Stephen W. D.; Britcher, Colin P.

    1989-01-01

    The ability to get good experimental data in wind tunnels is often compromised by things seemingly beyond our control. Inadequate Reynolds number, wall interference, and support interference are three of the major problems in wind tunnel testing. Techniques for solving these problems are available. Cryogenic wind tunnels solve the problem of low Reynolds number. Adaptive wall test sections can go a long way toward eliminating wall interference. A magnetic suspension and balance system (MSBS) completely eliminates support interference. Cryogenic tunnels, adaptive wall test sections, and MSBS are surveyed. A brief historical overview is given and the present state of development and application in each area is described.

  10. Liquid cryogenic lubricant

    NASA Technical Reports Server (NTRS)

    Dietrich, M. W.; Townsend, D. P.; Zaretsky, E. V.

    1970-01-01

    Fluorinated polyethers are suitable lubricants for rolling-element bearings in cryogenic systems. Lubrication effectiveness is comparable to that of super-refined mineral oil lubricants operating at room temperature.

  11. Cryogenic Cooling System for 5 kA, 200 μH Class HTS DC Reactor

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, Seokho; Kim, Kwangmin; Park, Minwon; Park, Taejun; Kim, A.-rong; Lee, Sangjin

    DC reactors, made by aluminum busbar, are used to stabilize the arc of an electric furnace. In the conventional arc furnace, the transport current is several tens of kilo-amperes and enormous resistive loss is generated. To reduce the resistive loss at the DC reactor, a HTS DC reactor can be considered. It can dramatically improve the electric efficiency as well as reduce the installation space. Similar with other superconducting devices, the HTS DC reactor requires current leads from a power source in room temperature to the HTS coil in cryogenic environment. The heat loss at the metal current leads can be minimized through optimization process considering the geometry and the transport current. However, the transport current of the HTS DC reactor for the arc furnace is much larger than most of HTS magnets and the enormous heat penetration through the current lead should be effectively removed to keep the temperature around 70∼77 K. Current leads are cooled down by circulation of liquid nitrogen from the cooling system with a stirling cryocooler. The operating temperature of HTS coil is 30∼40 K and circulation of gaseous helium is used to remove the heat generation at the HTS coil. Gaseous helium is transported through the cryogenic helium blower and a single stage GM cryocooler. This paper describes design and experimental results on the cooling system for current leads and the HTS coil of 5 kA, 200 μH class DC reactor as a prototype. The results are used to verify the design values of the cooling systems and it will be applied to the design of scale-up cooling system for 50 kA, 200 μH class DC reactor.

  12. Cryogenic exciter

    SciTech Connect

    Bray, James William; Garces, Luis Jose

    2012-03-13

    The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.

  13. The European Commission Stepping Up Both the Efficiency and Equity of Education and Training Systems

    ERIC Educational Resources Information Center

    Baye, Ariane; Demeuse, Marc

    2008-01-01

    This article analyses the Communication of the European Commission (EC) devoted to efficiency and equity of European education systems. It shows the Commission's difficulties in integrating the multiple dimensions of education equity and the confusion between pedagogical and economical notions of efficiency. The authors also analyse the means…

  14. 78 FR 41950 - Certain Video Game Systems and Wireless Controllers and Components Thereof; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Island and New Kingdoms, LLC of Nehalem, Oregon (collectively, ``CK''). 76 FR 23624 (Apr. 27, 2011). The... the Commission's action. See Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005... COMMISSION Certain Video Game Systems and Wireless Controllers and Components Thereof;...

  15. The TORE SUPRA Cryogenic System Behaviour During Long Plasma Discharges with a High Injected Energy

    SciTech Connect

    Henry, D.; Hertout, P.; Journeaux, J. Y.; Duchateau, J. L.; Reynaud, P.

    2006-04-27

    After the CIEL project completion including the upgrade of the plasma facing components and the water cooling system, the superconducting Tore Supra Tokamak achieved a world record of injected energy (1.1 GJ), during long duration (6 min) plasma discharges, which was enabled by the upgrade of the transfer system capacities, but also by the steady state toroidal field. The Tore Supra cryogenic refrigerator enables the toroidal field coils to be operated at nominal current along the full daily plasma operation shift. It has capacities of 300 W at 1.8 K, 750 W at 4.5 K and 30 kW at 80 K and was operated with a high reliability for more than 16 years. After a brief recall on the cryogenic refrigeration of the toroidal superconducting magnet, the distribution of the heat loads at the various levels of temperature (in standby mode 150W at 1.8 K and 200W at 4.5 K) is presented. The inventory of the calculated static and variable heat loads deposited within each part of toroidal field coils and thermal shields, is given with the factors of dependence. This analysis identifies and quantifies the major magnetic disturbances like a disruption (about 12 kJ onto the coils and 300 kJ onto the thick casings) which generate additional heat loads for the refrigerator.The measurements associated with the He II saturated bath pumping system, and the supercritical helium loop cooling the thick casings, allow us to verify thereafter the behaviour of the cryo-refrigerator during the long duration discharges, and the compliance with the theoretical model.The conclusions bring results also applicable to the cyoplant of future plant like ITER which will operate with long duration discharges.

  16. The TORE SUPRA Cryogenic System Behaviour During Long Plasma Discharges with a High Injected Energy

    NASA Astrophysics Data System (ADS)

    Henry, D.; Hertout, P.; Journeaux, J. Y.; Duchateau, J. L.; Reynaud, P.

    2006-04-01

    After the CIEL project completion including the upgrade of the plasma facing components and the water cooling system, the superconducting Tore Supra Tokamak achieved a world record of injected energy (1.1 GJ), during long duration (6 min) plasma discharges, which was enabled by the upgrade of the transfer system capacities, but also by the steady state toroidal field. The Tore Supra cryogenic refrigerator enables the toroidal field coils to be operated at nominal current along the full daily plasma operation shift. It has capacities of 300 W at 1.8 K, 750 W at 4.5 K and 30 kW at 80 K and was operated with a high reliability for more than 16 years. After a brief recall on the cryogenic refrigeration of the toroidal superconducting magnet, the distribution of the heat loads at the various levels of temperature (in standby mode 150W at 1.8 K and 200W at 4.5 K) is presented. The inventory of the calculated static and variable heat loads deposited within each part of toroidal field coils and thermal shields, is given with the factors of dependence. This analysis identifies and quantifies the major magnetic disturbances like a disruption (about 12 kJ onto the coils and 300 kJ onto the thick casings) which generate additional heat loads for the refrigerator. The measurements associated with the He II saturated bath pumping system, and the supercritical helium loop cooling the thick casings, allow us to verify thereafter the behaviour of the cryo-refrigerator during the long duration discharges, and the compliance with the theoretical model. The conclusions bring results also applicable to the cyoplant of future plant like ITER which will operate with long duration discharges.

  17. FRIB Cryogenic Plant Status

    SciTech Connect

    Dixon, Kelly D.; Ganni, Venkatarao; Knudsen, Peter N.; Casagranda, Fabio

    2015-12-01

    After practical changes were approved to the initial conceptual design of the cryogenic system for MSU FRIB and an agreement was made with JLab in 2012 to lead the design effort of the cryogenic plant, many activities are in place leading toward a cool-down of the linacs prior to 2018. This is mostly due to using similar equipment used at CHLII for the 12 GeV upgrade at JLab and an aggressive schedule maintained by the MSU Conventional Facilities department. Reported here is an updated status of the cryogenic plant, including the equipment procurement status, plant layout, facility equipment and project schedule.

  18. Cryogenic & Gas System Piping Pressure Tests (A Collection of PT Permits)

    SciTech Connect

    Rucinski, Russell A.; /Fermilab

    2002-08-22

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  19. Physics based model for online fault detection in autonomous cryogenic loading system

    SciTech Connect

    Kashani, Ali; Ponizhovskaya, Ekaterina; Luchinsky, Dmitry; Smelyanskiy, Vadim; Patterson-Hine, Anna; Sass, Jared; Brown, Barbara

    2014-01-29

    We report the progress in the development of the chilldown model for a rapid cryogenic loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The two-phase flow model of the chilldown is approximated as one-dimensional homogeneous fluid flow with no slip condition for the interphase velocity. The model is built using commercial SINDA/FLUINT software. The results of numerical predictions are in good agreement with the experimental time traces. The obtained results pave the way to the application of the SINDA/FLUINT model as a verification tool for the design and algorithm development required for autonomous loading operation.

  20. Mechanical properties of a fiberglass prepreg system at cryogenic and other temperatures

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Cockrell, C. E.

    1982-01-01

    The compressor driving the flow in the National Transonic Facility, which is nearing completion at the Langley Research Center, has 25 fiberglass blades. E-glass cloth with a pre-impregnated epoxy resin has been selected as the material for the fan blades because of its low cost, high damping, and fatigue resistance. A complete characterization is presented of this fan blade fiberglass system at temperatures of 367 K, room temperature, and 89 K. The characterization test results suggest that the material follows the general trends of metals and other glass-reinforced plastics at cryogenic temperatures. A slight diminution in strength was observed at the elevated temperature. The tests included the following: tensile, compression, fatigue, inplane shear, interlaminar shear, thermal expansion, creep, and thermal cycle.

  1. A Fully Redundant On-Line Mass Spectrometer System Used to Monitor Cryogenic Fuel Leaks on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.

  2. Comparison of reusable insulation systems for cryogenically-tanked earth-based space vehicles

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.; Barber, J. R.

    1978-01-01

    Three reusable insulation systems concepts have been developed for use with cryogenic tanks of earth-based space vehicles. Two concepts utilized double-goldized Kapton (DGK) or double-aluminized Mylar (DAM) multilayer insulation (MLI), while the third utilized a hollow-glass-microsphere, load-bearing insulation (LBI). All three insulation systems have recently undergone experimental testing and evaluation under NASA-sponsored programs. Thermal performance measurements were made under space-hold (vacuum) conditions for insulation warm boundary temperatures of approximately 291 K. The resulting effective thermal conductivity was approximately .00008 W/m-K for the MLI systems (liquid hydrogen test results) and .00054 W/m-K for the LBI system (liquid nitrogen test results corrected to liquid hydrogen temperature). The DGK MLI system experienced a maximum thermal degradation of 38 percent, the DAM MLI system 14 percent, and the LBI system 6.7 percent due to repeated thermal cycling representing typical space flight conditions. Repeated exposure of the DAM MLI system to a high humidity environment for periods as long as 8 weeks provided a maximum degradation of only 24 percent.

  3. Demonstration of ``regulatory`` process controls on the TSTA cryogenic distillation system

    SciTech Connect

    Willms, R.S.; Sherman, R.H.; Cole, S.P.; Riggs, J.B.; Okuno, K.

    1995-04-01

    Due to the nature of its fusion reaction, most of the DT used to fuel the International Thermonuclear Experimental Reactor (ITER) will exit unreacted. This effluent will be purified by the fuel cleanup system so that the isotope separation system (ISS) will be fed only hydrogen isotopes and possibly some helium. The ISS will separate this feed into streams nominally composed of He/H2/HD, D2, DT, and T2. These products will be recycled through appropriate fueling systems back to the fusion reactor or returned to storage. The ISS will have to respond properly to feed conditions which change rapidly. Feed changes will propagate quickly through the entire cascade. It is apparent that an automatic control system will be required to respond to these changes and maintain product quality. It is convenient to divide such a distillation control system into `regulatory` controls and composition controls. The `regulatory` controls include liquid levels, flowrates, reboiler heats, and pressure. A system of regulatory controls has been devised and installed on the four-column cascade of cryogenic columns at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. This tritium-compatible ISS is designed for approximately 1/10 the ITER flowrate and is dedicated to fusion fuel studies. Details of the TSTA ISS have been published previously.

  4. Thermal System Verification and Model Validation for NASA's Cryogenic Passively Cooled James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Cleveland, Paul E.; Parrish, Keith A.

    2005-01-01

    A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description

  5. Cryogenic system for the ArTeMiS large sub millimeter camera

    NASA Astrophysics Data System (ADS)

    Ercolani, E.; Relland, J.; Clerc, L.; Duband, L.; Jourdan, T.; Talvard, M.; Le Pennec, J.; Martignac, J.; Visticot, F.

    2014-07-01

    A new photonic camera has been developed in the framework of the ArTéMis project (Bolometers architecture for large field of view ground based telescopes in the sub-millimeter). This camera scans the sky in the sub-millimeter range at simultaneously three different wavelengths, namely 200 μm, 350 μm, 450 μm, and is installed inside the APEX telescope located at 5100m above sea level in Chile. Bolometric detectors cooled to 300 mK are used in the camera, which is integrated in an original cryostat developed at the low temperature laboratory (SBT) of the INAC institut. This cryostat contains filters, optics, mirrors and detectors which have to be implemented according to mass, size and stiffness requirements. As a result the cryostat exhibits an unusual geometry. The inner structure of the cryostat is a 40 K plate which acts as an optical bench and is bound to the external vessel through two hexapods, one fixed and the other one mobile thanks to a ball bearing. Once the cryostat is cold, this characteristic enabled all the different elements to be aligned with the optical axis. The cryogenic chain is built around a pulse tube cooler (40 K and 4 K) coupled to a double stage helium sorption cooler (300 mK). The cryogenic and vacuum processes are managed by a Siemens PLC and all the data are showed and stored on a CEA SCADA system. This paper describes the mechanical and thermal design of the cryostat, its command control, and the first thermal laboratory tests. This work was carried out in collaboration with the Astrophysics laboratory SAp of the IRFU institut. SAp and SBT have installed the camera in July 2013 inside the Cassegrain cabin of APEX.

  6. 78 FR 57414 - Certain Video Game Systems and Wireless Controllers and Components Thereof, Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... Island and New Kingdoms, LLC of Nehalem, Oregon (collectively, ``CK''). 76 FR 23624 (Apr. 27, 2011). The... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Video Game Systems and Wireless Controllers and Components Thereof,...

  7. Tritum recovery system from waste water of fusion reactor using CECE and cryogenic-wall thermal diffusion column

    SciTech Connect

    Arita, T.; Yamanishi, T.; Iwai, Y.; Okuno, K.; Kobayashi, N.; Yamamoto, I.

    1996-12-31

    A system for recovery of tritium in water has been proposed. The system is composed of CECE (Combined Electrolysis Chemical Exchange) and CTD (Cryogenic-wall Thermal Diffusion) columns. A design study was carried out for the two cases: the waste water processing in fusion facilities; and the tritium recovery from heavy water in a fission reactor in Japan. The size and power consumption of the system can greatly be reduced by using the CECE column than the system of WD (Water Distillation) columns. The operation and maintenance of the CTD column are quite easier than the CD (Cryogenic Distillation) column. The proposed system would be applicable for some cases such as the waste water processing in tritium facilities, where the processing flow rate is relatively small. 11 refs., 4 figs., 6 tabs.

  8. Fiber-Optic Strain-Gage Tank Level Measurement System for Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Mitchell, Mark; Langford, Lester

    2004-01-01

    Measurement of tank level, particularly for cryogenic propellants, has proven to be a difficult problem. Current methods based on differential pressure, capacitance sensors, temperature sensors, etc.; do not provide sufficiently accurate or robust measurements, especially at run time. These methods are designed to measure tank-level, but when the fluids are in supercritical state, the liquid-gas interface disappears. Furthermore, there is a need for a non-intrusive measurement system; that is, the sensors should not require tank modifications and/or disturb the fluids. This paper describes a simple, but effective method to determine propellant mass by measuring very small deformations of the structure supporting the tank. Results of a laboratory study to validate the method, and experimental data from a deployed system are presented. A comparison with an existing differential pressure sensor shows that the strain gage system provides a much better quality signal across all regimes during an engine test. Experimental results also show that the use of fiber optic strain gages (FOSG) over classic foil strain gages extends the operation time (before the system becomes uncalibrated), and increases accuracy. Finally, a procedure is defined whereby measurements from the FOSG mounted on the tank supporting structure are compensated using measurements of a FOSG mounted on a reference plate and temperature measurements of the structure. Results describing the performance of a deployed system that measures tank level during propulsion tests are included.

  9. Thermal Integration of a Liquid Acquisition Device into a Cryogenic Feed System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Schunk, R. G.; Martin, A. K.; Eskridge, R. H.; Frenkel, A.; Grayson, G.; Pendleton, M. L.

    2011-01-01

    Primary objectives of this effort were to define the following: (1) Approaches for quantification of the accumulation of thermal energy within a capillary screen liquid acquisition device (LAD) for a lunar lander upper stage during periods of up to 210 days on the lunar surface, (2) techniques for mitigating heat entrapment, and (3) perform initial testing, data evaluation. The technical effort was divided into the following categories: (1) Detailed thermal modeling of the LAD/feed system interactions using both COMSOL computational fluid device and standard codes, (2) FLOW-3D modeling of bulk liquid to provide interfacing conditions for the LAD thermal modeling, (3) condensation conditioning of capillary screens to stabilize surface tension retention capability, and (4) subscale testing of an integrated LAD/feed system. Substantial progress was achieved in the following technical areas: (1) Thermal modeling and experimental approaches for evaluating integrated cryogen LAD/feed systems, at both the system and component levels, (2) reduced gravity pressure control analyses, (3) analytical modeling and testing for capillary screen conditioning using condensation and wicking, and (4) development of rapid turnaround testing techniques for evaluating LAD/feed system thermal and fluid integration. A comprehensive effort, participants included a diverse cross section of representatives from academia, contractors, and multiple Marshall Space Flight Center organizations.

  10. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  11. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  12. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    NASA Astrophysics Data System (ADS)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-01

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  13. Commissioning of Fermilab's electron cooling system for 8-GeV antiprotons

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Seletsky, S.; Gai, W.; Kazakevich, Grigory M.; /Novosibirsk, IYF

    2005-05-01

    A 4.3-MeV electron cooling system [1] has been installed at Fermilab in the Recycler antiproton storage ring and is currently being commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper reports on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  14. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    of the composite structure resulting in frequency dependent impedance variations. We demonstrate, using simulations and measurements, how the return loss can be improved by modifying the sinuous geometry. The feed-LNA combination is characterized for important properties such as return loss, system noise, far field beam patterns including cross-polarization over a wide frequency range. The system is developed as a feed for a parabolic reflector. The overall system performance is calculated in terms of the A/Tsys ratio. A cryogenic version would have a direct impact on specialized observing applications requiring large instantaneous bandwidths with high sensitivity. A novel cryogenic implementation of this system is demonstrated using a Stirling cycle, one-stage refrigerator. The cryocooler offers advantages like low cost, light weight, small size, low power consumption, and does not require routine maintenance. The higher antenna input impedance and a balanced feeding method for the sinuous antenna offers a unique set of challenges when developing a cryogenic system.

  15. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  16. Cryogenic molecular separation system for radioactive {sup 11}C ion acceleration

    SciTech Connect

    Katagiri, K.; Noda, A.; Suzuki, K.; Nagatsu, K.; Nakao, M.; Hojo, S.; Wakui, T.; Noda, K.; Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ramzdorf, A. Yu.

    2015-12-15

    A {sup 11}C molecular production/separation system (CMPS) has been developed as part of an isotope separation on line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. In the ISOL system, {sup 11}CH{sub 4} molecules will be produced by proton irradiation and separated from residual air impurities and impurities produced during the irradiation. The CMPS includes two cryogenic traps to separate specific molecules selectively from impurities by using vapor pressure differences among the molecular species. To investigate the fundamental performance of the CMPS, we performed separation experiments with non-radioactive {sup 12}CH{sub 4} gases, which can simulate the chemical characteristics of {sup 11}CH{sub 4} gases. We investigated the separation of CH{sub 4} molecules from impurities, which will be present as residual gases and are expected to be difficult to separate because the vapor pressure of air molecules is close to that of CH{sub 4}. We determined the collection/separation efficiencies of the CMPS for various amounts of air impurities and found desirable operating conditions for the CMPS to be used as a molecular separation device in our ISOL system.

  17. The cryogenic system for the VIRUS array of spectrographs on the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Smith, Michael P.; Mulholland, George T.; Booth, John A.; Good, John M.; Hill, Gary J.; MacQueen, Phillip J.; Rafal, Marc D.; Savage, Richard D.; Vattiat, Brian L.

    2008-07-01

    The Hobby-Eberly Telescope (HET) is an existing innovative large telescope of 9.2 meter aperture, located at the McDonald Observatory in West Texas. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) requires a major upgrade to the HET, including a substantial increase in the telescope field of view, as well as the development and integration of a revolutionary new integral field spectrograph called VIRUS. The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) is an instrument comprising approximately 150 individual IFU-fed spectrographs which will be mounted on the telescope structure. Each spectrograph has a CDD camera detector package which must be cryogenically cooled during scientific operation. In order to cool each of these camera systems a liquid nitrogen system has been proposed and design study completed. The proposed system includes: a liquid nitrogen source, vacuum jacket distribution system, local storage on the telescope, and distribution under a thermal siphon to the individual spectrographs and local thermal connectors.

  18. In-Space Cryogenic Propellant Depot (ISCPD) Architecture Definitions and Systems Studies

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Henley, Mark

    2006-01-01

    The objectives of the ISCPD Architecture Definitions and Systems Studies were to determine high leverage propellant depot architecture concepts, system configuration trades, and related technologies to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. This activity identified architectures and concepts that preposition and store propellants in space for exploration and commercial space activities, consistent with Exploration Systems Research and Technology (ESR&T) objectives. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. Trade studies were conducted, technology development needs identified and assessments performed to drive out the roadmap for obtaining an in-space cryogenic propellant depot capability. The Boeing Company supported the NASA Marshall Space Flight Center (MSFC) by conducting this Depot System Architecture Development Study. The primary objectives of this depot architecture study were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space test article requirements.

  19. Performance test of the cryogenic cooling system for the superconducting fault current limiter

    NASA Astrophysics Data System (ADS)

    Hong, Yong-Ju; In, Sehwan; Yeom, Han-Kil; Kim, Heesun; Kim, Hye-Rim

    2015-12-01

    A Superconducting Fault Current Limiter is an electric power device which limits the fault current immediately in a power grid. The SFCL must be cooled to below the critical temperature of high temperature superconductor modules. In general, they are submerged in sub-cooled liquid nitrogen for their stable thermal characteristics. To cool and maintain the target temperature and pressure of the sub-cooled liquid nitrogen, the cryogenic cooling system should be designed well with a cryocooler and coolant circulation devices. The pressure of the cryostat for the SFCL should be pressurized to suppress the generation of nitrogen bubbles in quench mode of the SFCL. In this study, we tested the performance of the cooling system for the prototype 154 kV SFCL, which consist of a Stirling cryocooler, a subcooling cryostat, a pressure builder and a main cryostat for the SFCL module, to verify the design of the cooling system and the electric performance of the SFCL. The normal operation condition of the main cryostat is 71 K and 500 kPa. This paper presents tests results of the overall cooling system.

  20. Design of the fill/transfer station cryostat for the OMEGA cryogenic target system

    SciTech Connect

    Gibson, C.R.; Charmin, C.M.; Del Bene, J.V.; Hoffmann, E.H.; Besenbruch, G.E.; Anteby, I.

    1997-09-01

    General Atomics is designing, testing and fabricating a system for supplying cryogenic targets for the University of Rochester`s OMEGA laser system. A prototype system has demonstrated the filling of 1 mm diameter, 3 {micro}m wall plastic spheres to 111 MPa (1,100 atm) with deuterium and then cooling to 18 K to condense the fuel. The production design must be capable of routinely filling and cooling targets with a 50/50 mix of deuterium and tritium and transferring them to a device which places the targets into the focus of 60 laser beams. This paper discusses the design and analysis of the production Fill/Transfer Station cryostat. The cryostat has two major components, a fixed base and a removable dome. The joint between the base and the dome is similar to a bayonet fitting and is sealed by a room temperature elastomeric o-ring. Since the cryostat must be housed in a glovebox, its design is driven strongly by maintenance requirements. To reach the equipment inside the cryostat, the dome is simply unbolted and lifted. The inside of the cryostat is maintained at 16 K by a closed loop helium flow system. Gaseous helium at about 1.4 MPa (200 psi) flows through tubes which are brazed to the inner walls. Cooling is provided by several cryocoolers which are located external to the cryostat. Liquid nitrogen is used as a heat intercept and to precool the helium gas.

  1. Security Systems Commissioning: An Old Trick for Your New Dog

    ERIC Educational Resources Information Center

    Black, James R.

    2009-01-01

    Sophisticated, software-based security systems can provide powerful tools to support campus security. By nature, such systems are flexible, with many capabilities that can help manage the process of physical protection. However, the full potential of these systems can be overlooked because of unfamiliarity with the products, weaknesses in security…

  2. Design of high-energy-class cryogenically cooled Yb∶YAG multislab laser system with low wavefront distortion

    NASA Astrophysics Data System (ADS)

    Divoky, Martin; Sikocinski, Pawel; Pilar, Jan; Lucianetti, Antonio; Sawicka, Magdalena; Slezak, Ondrej; Mocek, Tomas

    2013-06-01

    Detailed modeling results of 100 J class laser systems with respect to the output energy, beam propagation, nonlinear phase accumulation, wavefront aberrations, and adaptive optics performance obtained in MIRÓ and MATLAB codes are presented here. The laser system is based on a cryogenically cooled Yb∶YAG multislab amplifier with two identical amplifier heads and operates at 10 Hz repetition rate with an average power above 1 kW.

  3. Cryogenic-Compatible Winchester Connector Mount and Retaining System for Composite Tubes

    NASA Technical Reports Server (NTRS)

    Pontius, James; McGuffey, Douglas

    2011-01-01

    A connector retainer and mounting system has been designed to replace screw-mounting of Winchester connectors. Countersunk screws are normally used to secure connectors to structures, and to keep them from coming apart. These screws are normally put into threaded or through-holes in metallic structures. This unique retainer is designed such that integral posts keep the connector halves retained, and a groove permits a cable tie to be fastened around the retainer and composite tube, thus securing the connector to the structure. The system is compatible for use on cryogenic (and conventional) bonded composite tube assemblies. Screws and tapped/through-holes needed to retain and mount Winchester connectors cannot be used on blind-access composite tubes. This system allows for rapid installation, removal, low-molecular-outgassing materials, and particulate-free installation and removal. Installation and/or changes late in the integration, and test flow with limited access in a cleanroom environment are possible. No sanding or bonding is needed.

  4. Cryogenic System for J-Parc Neutrino Superconducting Magnet Beam LINE—DESIGN, Construction and Performance Test

    NASA Astrophysics Data System (ADS)

    Makida, Y.; Ohhata, H.; Okamura, T.; Suzuki, S.; Araoka, O.; Ogitsu, T.; Kimura, N.; Nakamoto, T.; Sasaki, K.; Kaneda, S.; Takahashi, T.; Ito, A.; Nagami, M.; Kumaki, T.; Nakashima, T.

    2010-04-01

    A helium cryogenic plant has been constructed in the proton accelerator research complex, J-PARC, to cool a string of superconducting magnets in the neutrino beam line since 2005. It consists of a screw compressor with a capacity of 160 g/s at 1.4 MPa, a 1.5 kW refrigerator, a centrifugal SHE pump with a flow rate of 300 g/s and peripherals. After system integration, performance tests have been carried out. In a preliminary cooling test without magnets, the cryogenic system attained a cooling capacity of 522 W by circulating supercritical helium flow of 300 g/s at 0.4 MPa and at 4.5 K. Afterwards a full system test with the magnets was carried out. The magnets were successfully charged up to an ultimate current of 5000 A beyond a nominal current of 4400 A. This paper describes the plant design and the result of performance measurements.

  5. Cryogenic propellant thermal control system design considerations, analyses, and concepts applied to a Mars human exploration mission

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Tucker, Stephen; Hoffman, David J.

    1993-01-01

    This paper analyzes, defines, and sizes cryogenic storage thermal control systems that meet the requirements of future NASA Mars human exploration missions. The design issues of this system include the projection of the existing Multilayer Insulation data base for cryogenic storage to much thicker (10 cm or more) insulation systems, the unknown heat leak from mechanical interfaces, and the thermal and structural performance effects of the large tank sizes required for a Mars mission. Acknowledging these unknown effects, heat loss projections are made based on extrapolation of the existing data base. The results indicate that hydrogen, methane, and oxygen are feasible propellants, and that the best suited thermal control sytems are 'thick' MLI, thermodynamic vent sytems, cryocoolers, and vacuum jackets.

  6. Laser heated pedestal growth system commissioning and fiber processing

    NASA Astrophysics Data System (ADS)

    Buric, Michael; Yip, M. J.; Chorpening, Ben; Ohodnicki, Paul

    2016-05-01

    A new Laser Heated Pedestal Growth system was designed and fabricated using various aspects of effective legacy designs for the growth of single-crystal high-temperature-compatible optical fibers. The system is heated by a 100-watt, DC driven, CO2 laser with PID power control. Fiber diameter measurements are performed using a telecentric video system which identifies the molten zone and utilizes edge detection algorithms to report fiber-diameter. Beam shaping components include a beam telescope; along with gold-coated reflaxicon, turning, and parabolic focusing mirrors consistent with similar previous systems. The optical system permits melting of sapphire-feedstock up to 1.5mm in diameter for growth. Details regarding operational characteristics are reviewed and properties of single-crystal sapphire fibers produced by the system are evaluated. Aspects of the control algorithm efficacy will be discussed, along with relevant alternatives. Finally, some new techniques for in-situ processing making use of the laser-heating system are discussed. Ex-situ fiber modification and processing are also examined for improvements in fiber properties.

  7. Kodak AMSD Cryogenic Test Plans

    NASA Technical Reports Server (NTRS)

    Matthews, Gary; Hammon, John; Barrett, David; Russell, Kevin (Technical Monitor)

    2002-01-01

    NGST will be an IR based optical system that will operate at cryogenic temperatures. As part of the AMSD program, Kodak must demonstrate the ability of our system to perform at these very cold temperatures. Kodak will discuss the test approach that will be used for cryogenic testing at MSFC's XRCF.

  8. Study on mitigation of pulsed heat load for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  9. Analytical Verifications in Cryogenic Testing of NGST Advanced Mirror System Demonstrators

    NASA Technical Reports Server (NTRS)

    Cummings, Ramona; Levine, Marie; VanBuren, Dave; Kegley, Jeff; Green, Joseph; Hadaway, James; Presson, Joan; Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2002-01-01

    Ground based testing is a critical and costly part of component, assembly, and system verifications of large space telescopes. At such tests, however, with integral teamwork by planners, analysts, and test personnel, segments can be included to validate specific analytical parameters and algorithms at relatively low additional cost. This paper opens with strategy of analytical verification segments added to vacuum cryogenic testing of Advanced Mirror System Demonstrator (AMSD) assemblies. These AMSD assemblies incorporate material and architecture concepts being considered in the Next Generation Space Telescope (NGST) design. The test segments for workmanship testing, cold survivability, and cold operation optical throughput are supplemented by segments for analytical verifications of specific structural, thermal, and optical parameters. Utilizing integrated modeling and separate materials testing, the paper continues with support plan for analyses, data, and observation requirements during the AMSD testing, currently slated for late calendar year 2002 to mid calendar year 2003. The paper includes anomaly resolution as gleaned by authors from similar analytical verification support of a previous large space telescope, then closes with draft of plans for parameter extrapolations, to form a well-verified portion of the integrated modeling being done for NGST performance predictions.

  10. Development of a magic-angle spinning nuclear magnetic resonance probe with a cryogenic detection system for sensitivity enhancement

    NASA Astrophysics Data System (ADS)

    Mizuno, Takashi; Hioka, Katsuya; Fujioka, Koji; Takegoshi, K.

    2008-04-01

    A novel nuclear magnetic resonance (NMR) probe for high-resolution solid-state NMR has been developed. In this probe, temperature of the detection coil is kept at cryogenic temperature (˜12K) for sensitivity enhancement, which is achieved not only by suppression of thermal noise but also by increment of a Q factor of the coil. A marked feature of this probe is that a sample rotating at magic angle is thermally isolated from the cryogenic system in order to realize high-resolution solid-state NMR measurement at various sample temperatures. We call this system as cryocoil magic-angle spinning (cryocoil MAS). H1 MAS NMR with the coil temperature of ˜20K was successfully observed for solid adamantane rotating at room temperature, and signal-to-noise increment due to this cryocoil approach was confirmed.

  11. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  12. Shuttle cryogenics supply system. Optimization study. Volume 5 B-2, part 1: Appendix programmers manual for math model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An appendix to the programmers manual for the mathematical model pertaining to the design of cryogenic supply systems for spacecraft is presented. The program listing was produced using the EXEC-8 LISTALL processor which lists a file in alphabetical order. Since the processor does not differentiate between subroutines, functions, and procedure definition processors, each subprogram has been relabeled to clearly identify the type of symbolic listing.

  13. The analysis of the transient pressure response of the shuttle EPS-ECS cryogenic tanks with external pressurization systems

    NASA Technical Reports Server (NTRS)

    Barton, J. E.; Patterson, H. W.

    1973-01-01

    An analysis of transient pressures in externally pressurized cryogenic hydrogen and oxygen tanks was conducted and the effects of design variables on pressure response determined. The analysis was conducted with a computer program which solves the compressible viscous flow equations in two-dimensional regions representing the tank and external loop. The external loop volume, thermal mass, and heat leak were the dominant design variables affecting the system pressure response. No significant temperature stratification occurred in the fluid contained in the tank.

  14. Diagnostic system for cryogenically cooled 10 Hz Yb:YAG laser

    NASA Astrophysics Data System (ADS)

    Koubíková, Lucia; Thoma, Jiří; Naylon, Jack A.; Indra, Lukáš; Fibrich, Martin; Kramer, Daniel; Rus, Bedrich

    2015-01-01

    The ELI Beamlines facility will house repetition rate high-power lasers with pulse durations down to 15 fs and over petawatt peak powers. Our research group participates in the construction of a cryogenically cooled Yb:YAG multi-slab amplifier; part of the L2 beamline. The system shall provide square, super-Gaussian beam with nearly 2 ns pulses with rectangular temporal profile and energy of up to 10 J at 10 Hz. The laser will provide pump beams for broadband OPCPA stages. The diagnostic system of the pump laser is critical for the correct performance analysis, stabilization feedback and mostly for the machine interlock system as damages of the expensive optical components can develop very fast with the 10 Hz repetition rate. The diagnostic system provides key laser parameters and characteristics in temporal, spectral and spatial domain. The paper describes testing of the setup for measurements of the final 10 J output. Its design is based on a combination of optical wedges and diffractive sampler to facilitate multiple diagnostics on a relatively small footprint. The laser diagnostics package covers measurements in spatial domain such as near-field, far-field, or wavefront analysis, further optical spectrum, pulse energy and temporal shape. In order to detect possible damage dark-field analysis was implemented as well. The final setup was modeled in optical design software (Radiant Zemax) to understand its behavior and later tested together with real-time LabVIEW code developed by our group as being part of the machine interlock system. The first results of the tests as well as detailed description of the diagnostics package design are presented.

  15. Development of a cryogenic system for the VIRUS array of 150 spectrographs for the Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Chonis, Taylor S.; Vattiat, Brian L.; Hill, Gary J.; Marshall, J. L.; Cabral, Kris; DePoy, D. L.; Smith, Michael P.; Good, John M.; Booth, John A.; Rafal, Marc D.; Savage, Richard D.

    2010-07-01

    The upcoming Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) has provided motivation for upgrading the Hobby-Eberly Telescope (HET) at the McDonald Observatory. This upgrade includes an increase in the field-of-view to accommodate the new and revolutionary Visible Integral-field Replicable Unit Spectrograph (VIRUS). VIRUS is the instrument designed to conduct the HETDEX survey and consists of 150 individual integral-field spectrographs fed by 33,600 total optical fibers covering the 22 arc-minute field-of-view of the upgraded HET. The spectrographs are mounted in four enclosures, each 6.0×3.0×1.4 meters in size. Each spectrograph contains a CCD detector that must be cryogenically cooled, presenting an interesting cryogenic and vacuum challenge within the distribution system. In this paper, we review the proposed vacuum jacketed, thermal siphon, liquid nitrogen distribution system used to cool the array of detectors and discuss recent developments. We focus on the design, prototyping, and testing of a novel "make-break" thermal connector, built from a modified cryogenic bayonet, that is used to quickly detach a single spectrograph pair from the system.

  16. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems

    NASA Astrophysics Data System (ADS)

    Murray, Peter G.; Martin, Iain W.; Craig, Kieran; Hough, James; Robie, Raymond; Rowan, Sheila; Abernathy, Matt R.; Pershing, Teal; Penn, Steven

    2015-09-01

    Thermal noise resulting from the mechanical loss of multilayer dielectric coatings is expected to impose a limit to the sensitivities of precision measurement systems used in fundamental and applied science. In the case of gravitational wave astronomy, future interferometric gravitational wave detectors are likely to operate at cryogenic temperatures to reduce such thermal noise and ameliorate thermal loading effects, with the desirable thermomechanical properties of silicon making it an attractive mirror substrate choice for this purpose. For use in such a precision instrument, appropriate coatings of low thermal noise are essential. Amorphous silicon (a -Si ) deposited by e-beam and other techniques has been shown to have low mechanical loss. However, to date, the levels of mechanical and optical loss for a -Si when deposited by ion-beam sputtering (the technique required to produce amorphous mirrors of the specification for gravitational wave detector mirrors) are unknown. In this paper results from measurements of the mechanical loss of a series of IBS a -Si films are presented which show that reductions are possible in coating thermal noise of a factor of 1.5 at 120 K and 2.1 at 20 K over the current best IBS coatings (alternating stacks of silica and titania-doped tantala), with further reductions feasible under appropriate heat treatments.

  17. Integrated system modeling analysis of a cryogenic multi-cell deflecting-mode cavity resonator

    SciTech Connect

    Shin, Young-Min; Church, Michael

    2013-09-15

    A deflecting mode cavity is the integral element for six-dimensional phase-space beam control in bunch compressors and emittance transformers at high energy beam test facilities. RF performance of a high-Q device is, however, highly sensitive to operational conditions, in particular in a cryo-cooling environment. Using analytic calculations and RF simulations, we examined cavity parameters and deflecting characteristics of TM{sub 110,π} mode of a 5 cell resonator in a liquid nitrogen cryostat, which has long been used at the Fermilab A0 Photoinjector (A0PI). The sensitivity analysis indicated that the cavity could lose 30%–40% of deflecting force due to defective input power coupling accompanying non-uniform field distribution across the cells with 40 ∼ 50 MeV electron beam and 70–80 kW klystron power. Vacuum-cryomodules of the 5 cell cavity are planned to be installed at the Fermilab Advanced Superconducting Test Accelerator facility. Comprehensive modeling analysis integrated with multi-physics simulation tools showed that RF loading of 1 ms can cause a ∼5 K maximum temperature increase, corresponding to a ∼4.3 μm/ms deformation and a 1.32 MHz/K maximum frequency shift. The integrated system modeling analysis will improve design process of a high-Q cavity with more accurate prediction of cryogenic RF performance under a high power pulse operation.

  18. Operational characteristics of the J-PARC cryogenic hydrogen system for a spallation neutron source

    SciTech Connect

    Tatsumoto, Hideki; Ohtsu, Kiichi; Aso, Tomokazu; Kawakami, Yoshihiko; Teshigawara, Makoto

    2014-01-29

    The J-PARC cryogenic hydrogen system provides supercritical hydrogen with the para-hydrogen concentration of more than 99 % and the temperature of less than 20 K to three moderators so as to provide cold pulsed neutron beams of a higher neutronic performance. Furthermore, the temperature fluctuation of the feed hydrogen stream is required to be within ± 0.25 K. A stable 300-kW proton beam operation has been carried out since November 2012. The para-hydrogen concentrations were measured during the cool-down process. It is confirmed that para-hydrogen always exists in the equilibrium concentration because of the installation of an ortho-para hydrogen convertor. Propagation characteristics of temperature fluctuation were measured by temporarily changing the heater power under off-beam condition to clarify the effects of a heater control for thermal compensation on the feed temperature fluctuation. The experimental data gave an allowable temperature fluctuation of ± 1.05 K. It is clarified through a 286-kW and a 524-kW proton beam operations that the heater control would be applicable for the 1-MW proton beam operation by extrapolating from the experimental data.

  19. Cryogenic Propellant Densification Study

    NASA Technical Reports Server (NTRS)

    Ewart, R. O.; Dergance, R. H.

    1978-01-01

    Ground and vehicle system requirements are evaluated for the use of densified cryogenic propellants in advanced space transportation systems. Propellants studied were slush and triple point liquid hydrogen, triple point liquid oxygen, and slush and triple point liquid methane. Areas of study included propellant production, storage, transfer, vehicle loading and system requirements definition. A savings of approximately 8.2 x 100,000 Kg can be achieved in single stage to orbit gross liftoff weight for a payload of 29,484 Kg by utilizing densified cryogens in place of normal boiling point propellants.

  20. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  1. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  2. Design of a scanning gate microscope for mesoscopic electron systems in a cryogen-free dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Pelliccione, M.; Sciambi, A.; Bartel, J.; Keller, A. J.; Goldhaber-Gordon, D.

    2013-03-01

    We report on our design of a scanning gate microscope housed in a cryogen-free dilution refrigerator with a base temperature of 15 mK. The recent increase in efficiency of pulse tube cryocoolers has made cryogen-free systems popular in recent years. However, this new style of cryostat presents challenges for performing scanning probe measurements, mainly as a result of the vibrations introduced by the cryocooler. We demonstrate scanning with root-mean-square vibrations of 0.8 nm at 3 K and 2.1 nm at 15 mK in a 1 kHz bandwidth with our design. Using Coulomb blockade thermometry on a GaAs/AlGaAs gate-defined quantum dot, we demonstrate an electron temperature of 45 mK.

  3. Cryogenic safety aspect of the low -$\\beta$ magnest systems at the Large Hadron Collider (LHC)

    SciTech Connect

    Darve, C.; /Fermilab

    2010-07-01

    The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

  4. A new generation of split, closed-cycle, cryogenic coolers for infrared systems

    NASA Astrophysics Data System (ADS)

    Lehrfeld, Daniel

    1983-03-01

    Unfortunately, for user and manufacturer both, the closed-cycle cryogenic cooler to date has deserved its reputation as the "weak-link" in i.r. systems. When the cooler requires service at intervals of a few hundred hours at best, the quality of the system it serves is unfairly diminished. This paper addresses technological advances in the art of Stirling-cycle coolers which will increasingly cause that image of military cryocoolers to change for the better. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Three new machines are discussed. Both {1}/{4} and l W (nominal capacity) at 80 K linear-resonant, free-displacer Stirling coolers designed for a minimum of 2500 hours MTBF are examined. The third machine is an advanced {1}/{4} W at 80 K Stirling cooler incorporating the same component improvements in its free-displacer while utilizing a crankshaft-driven compressor. All three are designed to be compatible with standard U.S. 60 element and {120}/{180} element detector/Dewars. The technologies of linear-resonant compressors and free-displacer expanders as embodied in these machines is discussed in sufficient detail that the reasons for their superior performance will be clear.

  5. Optical Detection Of Cryogenic Leaks

    NASA Technical Reports Server (NTRS)

    Wyett, Lynn M.

    1988-01-01

    Conceptual system identifies leakage without requiring shutdown for testing. Proposed device detects and indicates leaks of cryogenic liquids automatically. Detector makes it unnecessary to shut equipment down so it can be checked for leakage by soap-bubble or helium-detection methods. Not necessary to mix special gases or other materials with cryogenic liquid flowing through equipment.

  6. The Florida Public Broadcasting System. Report and Recommendations of the Postsecondary Education Planning Commission. Report 3.

    ERIC Educational Resources Information Center

    Florida State Postsecondary Education Commission, Tallahassee.

    This study of the Florida Public Broadcasting Program System, which was conducted by the Program Committee of the Postsecondary Education Planning Commission, focused on five basic issues: (1) What are the current policies and procedures for determining how to add public broadcasting stations to Florida's system? (2) How should Florida fund public…

  7. An Analysis of New Jersey Postsecondary Education Expenditures: The Current System (FY 76) and the Commission Recommendations.

    ERIC Educational Resources Information Center

    New Jersey State Commission on Financing Postsecondary Education, Trenton.

    The current system of financing postsecondary education in New Jersey and that proposed by the Booher Commission in its final report, "Financing in an Era of Uncertainty," are compared. The Booher Commission was a public, blue ribbon commission appointed by the New Jersey Board of Higher Education. Implementation of the recommendations of the…

  8. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  9. Automated sample exchange and tracking system for neutron research at cryogenic temperatures.

    PubMed

    Rix, J E; Weber, J K R; Santodonato, L J; Hill, B; Walker, L M; McPherson, R; Wenzel, J; Hammons, S E; Hodges, J; Rennich, M; Volin, K J

    2007-01-01

    An automated system for sample exchange and tracking in a cryogenic environment and under remote computer control was developed. Up to 24 sample "cans" per cycle can be inserted and retrieved in a programed sequence. A video camera acquires a unique identification marked on the sample can to provide a record of the sequence. All operations are coordinated via a LABVIEW program that can be operated locally or over a network. The samples are contained in vanadium cans of 6-10 mm in diameter and equipped with a hermetically sealed lid that interfaces with the sample handler. The system uses a closed-cycle refrigerator (CCR) for cooling. The sample was delivered to a precooling location that was at a temperature of approximately 25 K, after several minutes, it was moved onto a "landing pad" at approximately 10 K that locates the sample in the probe beam. After the sample was released onto the landing pad, the sample handler was retracted. Reading the sample identification and the exchange operation takes approximately 2 min. The time to cool the sample from ambient temperature to approximately 10 K was approximately 7 min including precooling time. The cooling time increases to approximately 12 min if precooling is not used. Small differences in cooling rate were observed between sample materials and for different sample can sizes. Filling the sample well and the sample can with low pressure helium is essential to provide heat transfer and to achieve useful cooling rates. A resistive heating coil can be used to offset the refrigeration so that temperatures up to approximately 350 K can be accessed and controlled using a proportional-integral-derivative control loop. The time for the landing pad to cool to approximately 10 K after it has been heated to approximately 240 K was approximately 20 min. PMID:17503933

  10. Cool Down Experiences with the SST-1 Helium Cryogenics System before and after Current Feeders System Modification

    NASA Astrophysics Data System (ADS)

    Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.

    The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.

  11. Suitability of commercially available laboratory cryogenic refrigerators to support shipboard electro-optical systems in the 10 - 77 Kelvin region

    NASA Technical Reports Server (NTRS)

    Hansen, R. G.; Byrd, E. A.

    1983-01-01

    The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon.

  12. Suitability of commercially available laboratory cryogenic refrigerators to support shipboard electro-optical systems in the 10 - 77 Kelvin region

    NASA Astrophysics Data System (ADS)

    Hansen, R. G.; Byrd, E. A.

    1983-12-01

    The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon.

  13. Performance of the Primary Mirror Center-of-curvature Optical Metrology System During Cryogenic Testing of the JWST Pathfinder Telescope

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Wells, Conrad; Olczak, Gene; Waldman, Mark; Whitman, Tony; Cosentino, Joseph; Connolly, Mark; Chaney, David; Telfer, Randal

    2016-01-01

    The James Webb Space Telescope (JWST) primary mirror (PM) is 6.6 m in diameter and consists of 18 hexagonal segments, each 1.5 m point-to-point. Each segment has a six degree-of-freedom hexapod actuation system and a radius-of-curvature (RoC) actuation system. The full telescope will be tested at its cryogenic operating temperature at Johnson Space Center. This testing will include center-of-curvature measurements of the PM, using the Center-of-Curvature Optical Assembly (COCOA) and the Absolute Distance Meter Assembly (ADMA). The COCOA includes an interferometer, a reflective null, an interferometer-null calibration system, coarse & fine alignment systems, and two displacement measuring interferometer systems. A multiple-wavelength interferometer (MWIF) is used for alignment & phasing of the PM segments. The ADMA is used to measure, and set, the spacing between the PM and the focus of the COCOA null (i.e. the PM center-of-curvature) for determination of the ROC. The performance of these metrology systems was assessed during two cryogenic tests at JSC. This testing was performed using the JWST Pathfinder telescope, consisting mostly of engineering development & spare hardware. The Pathfinder PM consists of two spare segments. These tests provided the opportunity to assess how well the center-of-curvature optical metrology hardware, along with the software & procedures, performed using real JWST telescope hardware. This paper will describe the test setup, the testing performed, and the resulting metrology system performance. The knowledge gained and the lessons learned during this testing will be of great benefit to the accurate & efficient cryogenic testing of the JWST flight telescope.

  14. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    SciTech Connect

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.

    2014-01-29

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  15. Evaluation of Static Mixer Flow Enhancements for Cryogenic Viscous Compressor Prototype for ITER Vacuum System

    SciTech Connect

    Duckworth, Robert C; Baylor, Larry R; Meitner, Steven J; Combs, Stephen Kirk; Ha, Tam T; Morrow, Michael; Biewer, Theodore M; Rasmussen, David A; Hechler, Michael P; Pearce, R.J.H.; Dremel, M.; Boissin, Jean Claude

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (50 to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype

  16. Evaluation of static mixer flow enhancements for cryogenic viscous compressor prototype for ITER vacuum system

    NASA Astrophysics Data System (ADS)

    Duckworth, Robert C.; Baylor, Larry R.; Meitner, Steven J.; Combs, Stephen K.; Ha, Tam; Morrow, Michael; Biewer, T.; Rasmussen, David A.; Hechler, Michael P.; Pearce, Robert J. H.; Dremel, Mattias; Boissin, J.-C.

    2014-01-01

    As part of the U.S. ITER contribution to the vacuum systems for the ITER fusion project, a cryogenic viscous compressor (CVC) is being designed and fabricated to cryopump hydrogenic gases in the torus and neutral beam exhaust streams and to regenerate the collected gases to controlled pressures such that they can be mechanically pumped with controlled flows to the tritium reprocessing facility. One critical element of the CVC design that required additional investigation was the determination of flow rates of the low pressure (up to 1000 Pa) exhaust stream that would allow for complete pumping of hydrogenic gases while permitting trace levels of helium to pass through the CVC to be pumped by conventional vacuum pumps. A sub-scale prototype test facility was utilized to determine the effectiveness of a static mixer pump tube concept, which consisted of a series of rotated twisted elements brazed into a 2-mm thick, 5-cm diameter stainless steel tube. Cold helium gas flow provided by a dewar and helium transfer line was used to cool the exterior of the static mixer pump tube. Deuterium gas was mixed with helium gas through flow controllers at different concentrations while the composition of the exhaust gas was monitored with a Penning gauge and optical spectrometer to determine the effectiveness of the static mixer. It was found that with tube wall temperatures between 6 K and 9 K, the deuterium gas was completely cryopumped and only helium passed through the tube. These results have been used to design the cooling geometry and the static mixer pump tubes in the full-scale CVC prototype.

  17. Unique Cryogenic Welded Structures

    NASA Astrophysics Data System (ADS)

    Yushchenko, K. A.; Monko, G. G.

    2004-06-01

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  18. Unique Cryogenic Welded Structures

    SciTech Connect

    Yushchenko, K.A.; Monko, G.G.

    2004-06-28

    For the last few decades, the E. O. Paton Electric Welding Institute has been active in the field of cryogenic materials science. Integrated research on development of new grades of steels and alloys for cryogenic engineering was carried out in collaboration with the leading institutions of Russia, Ukraine, and Georgia. Commercially applied welding technologies and consumables were developed. They include large, spherical tanks for storage of liquefied gases (from oxygen to helium) under high pressures; space simulators with a capacity of 10 000 m3 and more; and load-carrying elements of superconducting fusion magnetic systems for the TOKAMAK, MGD, and ITER series.

  19. Remote, PCM-controlled, multi-channel radio frequency FM telemetry system for cryogenic wind tunnel application

    NASA Technical Reports Server (NTRS)

    Diamond, John K.

    1989-01-01

    A telemetry system used in the NASA-Langley cryogenic transonic wind tunnel to obtain rotational strain and temperature data is described. The system consists of four FM transmitters allowing for a remotely controlled PCM combination. A rotating four-contact mercury slip-ring is used as an interface between the fixed and rotating mechnical structures. Over 60 channels of data on the main fan disk and blade structures have been obtained. These data are studied to verify computer predictions and mechanical life. A series of block diagrams are included.

  20. The Trading Post System on the Navajo Reservation. Staff Report to the Federal Trade Commission.

    ERIC Educational Resources Information Center

    Federal Trade Commission, Los Angeles, CA.

    Since the late 19th century, trading posts have been a prominant feature in Navajo economic life. Today, due to geographic isolation and an absence of economic alternatives, many Navajos are still dependent upon trading posts. This report of a Federal Trade Commission (FTC) investigation details the system on the Navajo Reservation, including the…

  1. 76 FR 26315 - In the Matter of Certain Birthing Simulators and Associated Systems; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... Gaumard Scientific Company, Inc. of Miami, Florida. 76 FR 6632 (Feb. 7, 2011). The complaint, as amended... Presidential Memorandum of July 21, 2005, 70 FR 43251 (July 26, 2005). During this period, the subject articles... COMMISSION In the Matter of Certain Birthing Simulators and Associated Systems; Notice of...

  2. 78 FR 22536 - Procedural Manual for the Election Assistance Commission's Voting System Test Laboratories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ...The U.S. Election Assistance Commission (EAC) is publishing a procedural manual for its Voting System Testing and Certification Program. This manual sets the administrative procedures for becoming an EAC accredited test laboratory and guidelines for VSTL participation in the EAC Testing and Certification Program. The program is mandated by the Help America Vote Act (HAVA) at 42 US.C....

  3. Compact cryogenic inductors

    SciTech Connect

    Singh, S.K.; Carr, W.J. Jr.; Fagan, T.J. Jr.; Hordubay, T.D.; Chuboy, H.L. . Science and Technology Center)

    1994-07-01

    Power systems requiring power levels as high as a few megawatts to a few gigawatts for periods of several microseconds to several milliseconds with repetitive frequencies of a few hertz to a few kilohertz are being considered for potential space applications. The impulsive nature of the power presents the opportunity to use inductive energy storage techniques for pulse duty to enhance economic and practical considerations. An inductors must be efficient, lightweight, and reliable, and it must have high energy density if it is to be used in space based power systems. Cryogenic inductors are best studied for such an application. Parametric analyses of the two potential types of cryogenic inductors (superconducting and hyperconducting reveal that the hyperconducting (high purity aluminum)) inductor would be significantly lighter and achieve higher energy densities without the added penalty of a helium refrigeration system, thus resulting in improved overall system reliability. The lightweight hyperconducting cryogenic inductor technology is, however, in its infancy. This paper describes the required technology base which would allow the eventual application of the lightweight cryogenic inductor in space power systems, and also conclusively demonstrates the underlying principles.

  4. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning.

    PubMed

    Dempsey, Claire

    2010-12-01

    To describe the steps undertaken to commission a 3D high dose rate (HDR) brachytherapy treatment planning system (TPS). Emphasis was placed on validating previously published recommendations, in addition to checking 3D parameters such as treatment optimization and dose volume histogram (DVH) analysis. Commissioning was performed of the brachytherapy module of the Nucletron Oncentra MasterPlan treatment planning system (version 3.2). Commissioning test results were compared to an independent external beam TPS (Varian Eclipse v 8.6) and the previously commissioned Nucletron Plato (v 14.3.7) brachytherapy treatment planning system, with point doses also independently verified using the brachytherapy module in RadCalc (v 6.0) independent point dose calculation software. Tests were divided into eight categories: (i) Image import accuracy, (ii) Reconstruction accuracy, (iii) Source configuration data check, (iv) Dose calculation accuracy, (v) Treatment optimization validation, (vi) DVH reproducibility, (vii) Treatment export check and (viii) Printout consistency. Point dose agreement between Oncentra, Plato and RadCalc was better than 5% with source data and dose calculation protocols following the American Association of Physicists in Medicine (AAPM) guidelines. Testing of image accuracy (import and reconstruction), along with validation of automated treatment optimization and DVH analysis generated a more comprehensive set of testing procedures than previously listed in published recommendations. PMID:21053116

  5. Commission Review of New Academic Programs Proposed by the Public Higher Education Systems, 2002 to 2004. Commission Report 04-08

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2004

    2004-01-01

    The California Postsecondary Education Commission is statutorily responsible for reviewing and commenting on the need for new degree and certificate programs proposed by the public higher education systems. This report summarizes the results of approximately 100 independent reviews conducted between 2002 and 2004. The long-range academic plans of…

  6. Mechanical and Thermal Characteristics of Insulation Materials for the KSTAR Magnet System at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Chung, Wooho; Lim, Bungsu; Kim, Myungkyu; Park, Hyunki; Kim, Keeman; Chu, Yong; Lee, Sangil

    2004-06-01

    The KSTAR(Korea Superconducting Tokamak Advanced Research) superconducting magnet is electrically insulated by the composite material of epoxy resin and glass fiber (2.5 kV/mm) and Kapton (8 kV/mm). The insulation composite material of epoxy resin and glass fiber is prepared using a VPI (Vacuum Pressure Impregnation) process. The superconducting magnet is under mechanical stress caused by the large temperature difference between the operation temperature of the magnet and room temperature. The large electro-magnetic force during the operation of the magnet is also exerted on the magnet. Therefore, the characteristics of the insulation material at cryogenic temperatures are very important and the tensile stress and thermal expansion coefficient for the insulation materials of the KSTAR superconducting magnet are measured. This paper presents results on mechanical properties of the insulation material for KSTAR magnets, such as density, ultimate tensile stress and thermal contraction between room temperature and cryogenic temperatures.

  7. Adjustable mount for electro-optic transducers in an evacuated cryogenic system

    NASA Technical Reports Server (NTRS)

    Crossley, Edward A., Jr. (Inventor); Haynes, David P. (Inventor); Jones, Howard C. (Inventor); Jones, Irby W. (Inventor)

    1987-01-01

    The invention is an adjustable mount for positioning an electro-optic transducer in an evacuated cryogenic environment. Electro-optic transducers are used in this manner as high sensitivity detectors of gas emission lines of spectroscopic analysis. The mount is made up of an adjusting mechanism and a transducer mount. The adjusting mechanism provided five degrees of freedom, linear adjustments and angular adjustments. The mount allows the use of an internal lens to focus energy on the transducer element thereby improving the efficiency of the detection device. Further, the transducer mount, although attached to the adjusting mechanism, is isolated thermally such that a cryogenic environment can be maintained at the transducer while the adjusting mechanism remains at room temperature. Radiation shields also are incorporated to further reduce heat flow to the transducer location.

  8. Thermal performance of an integrated thermal protection system for long-term storage of cryogenic propellants in space

    NASA Technical Reports Server (NTRS)

    Dewitt, R. L.; Boyle, R. J.

    1977-01-01

    It was demonstrated that cryogenic propellants can be stored unvented in space long enough to accomplish a Saturn orbiter mission after 1,200-day coast. The thermal design of a hydrogen-fluorine rocket stage was carried out, and the hydrogen tank, its support structure, and thermal protection system were tested in a vacuum chamber. Heat transfer rates of approximately 23 W were measured in tests to simulate the near-Earth portion of the mission. Tests to simulate the majority of the time the vehicle would be in deep space and sun-oriented resulted in a heat transfer rate of 0.11 W.

  9. NASA Cryogenic Propellant Systems Technology Development and Potential Opportunities for Discussion

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    2015-01-01

    Members of the eCryo Team are traveling to France to meet with CNES (Centre National d'Etudes Spatiales) on the benchmarking of CFM (Cryogenic Fluids Management) analytical models the week of January 26th, 2015. Mike Meyer is representing the Agency and eCryo Project and will conduct a conversation to explore future work. This slide package (28 charts and 3 movies) requires approval via a 1676. ISS data in this chart set has been copied from public websites.

  10. Conceptual Design of the Cryogenic System for the High-luminosity Upgrade of the Large Hadron Collider (LHC)

    NASA Astrophysics Data System (ADS)

    Brodzinski, K.; Claudet, S.; Ferlin, G.; Tavian, L.; Wagner, U.; Van Weelderen, R.

    The discovery of a Higgs boson at CERN in 2012 is the start of a major program of work to measure this particle's properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program. Europe's top priority is the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with an objective to collect ten times more data than in the initial design, by around 2030. To reach this objective, the LHC cryogenic system must be upgraded to withstand higher beam current and higher luminosity at top energy while keeping the same operation availability by improving the collimation system and the protection of electronics sensitive to radiation. This paper will present the conceptual design of the cryogenic system upgrade with recent updates in performance requirements, the corresponding layout and architecture of the system as well as the main technical challenges which have to be met in the coming years.

  11. Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed

    SciTech Connect

    Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka

    2005-07-15

    A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

  12. CRYOGENIC MAGNETS

    DOEpatents

    Post, R.F.; Taylor, C.E.

    1963-05-21

    A cryogenic magnet coil is described for generating magnetic fields of the order of 100,000 gauss with a minimum expenditure of energy lost in resistive heating of the coil inductors and energy lost irreversibly in running the coil refrigeration plant. The cryogenic coil comprises a coil conductor for generating a magnetic field upon energization with electrical current, and refrigeration means disposed in heat conductive relation to the coil conductor for cooling to a low temperature. A substantial reduction in the power requirements for generating these magnetic fields is attained by scaling the field generating coil to large size and particular dimensions for a particular conductor, and operating the coil at a particular optimum temperature commensurate with minimum overall power requirements. (AEC)

  13. Determination of the Optimal Operating Parameters for the Jefferson Lab's Cryogenic Cold Compressor System

    SciTech Connect

    Joe Wilson; Venkatarao Ganni; Dana Arenius; Jonathan Creel

    2004-06-01

    Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) are supported by 2 K helium refrigerator known as the Central Helium Liquefier (CHL), which maintains a constant low vapor pressure over the accelerators' large liquid helium inventory with a five-stage centrifugal compressor train. The cold compressor train operates with constrained discharge pressure and can be varied over a range of suction pressures and mass flows to meet the operational requirements of the two accelerators. Using data from commissioning and routine operations of the cold compressor system, the presented procedure predicts an operating point for each cold compressor such that maximum efficiency is attained for the overall cold compressor system for a given combination of mass flow and vapor pressure. The procedure predicts expected efficiency of the system and relative compressors speeds for operating vapor pressures from 4 to 2.5 kPa (corresponds to overall pressure ratios of 29 to 56) and flow rates of 135 g/s to 250 g/s. The results of the predictions are verified by test for a few operating conditions of mass flows and vapor pressures.

  14. Determination of the Optimal Operating Parameters for the Jefferson Lab's Cryogenic Cold Compressor System

    SciTech Connect

    Wilson, J.D. Jr.; Ganni, V.; Arenius, D.M.; Creel, J.D.

    2004-06-23

    Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) and Free Electron Laser (FEL) are supported by 2 K helium refrigerator known as the Central Helium Liquefier (CHL), which maintains a constant low vapor pressure over the accelerators' large liquid helium inventory with a five-stage centrifugal compressor train. The cold compressor train operates with constrained discharge pressure and can be varied over a range of suction pressures and mass flows to meet the operational requirements of the two accelerators. Using data from commissioning and routine operations of the cold compressor system, the presented procedure predicts an operating point for each cold compressor such that maximum efficiency is attained for the overall cold compressor system for a given combination of mass flow and vapor pressure. The procedure predicts expected efficiency of the system and relative compressors speeds for operating vapor pressures from 4 to 2.5 kPa (corresponds to overall pressure ratios of 29 to 56) and flow rates of 135 g/s to 250 g/s. The results of the predictions are verified by test for a few operating conditions of mass flows and vapor pressures.

  15. Large Scale Testing of a Foam/Multilayer Insulation Thermal Control System (TCS) for Cryogenic Upper Stages

    NASA Technical Reports Server (NTRS)

    Hastings, Leon; Martin, James

    1998-01-01

    The development of high energy cryogenic upper stages is essential for the efficient delivery of large payloads to various destinations envisioned in future programs. A key element in such upper stages is cryogenic fluid management (CFM) advanced development/technology. Due to the cost of and limited opportunities for orbital experiments, ground testing must be employed to the fullest extent possible. Therefore, a system level test bed termed the Multipurpose Hydrogen Test Bed (MHTB), which is representative in size and shape (3 meter diameter by 3 meter long with a volume of 18 cubic meters) of a fully integrated space transportation vehicle liquid hydrogen propellant tank has been established. To date, upper stage studies have often baselined the foam/multilayer insulation (FMLI) combination concept; however, hardware experience with the concept is minimal and was therefore selected for the MHTB. The foam element (isofoam SS-1 171 with an average thickness of 3.5 centimeters) is designed to protect against ground hold/ascent flight environments, and allows for the use of a dry nitrogen purge as opposed to the more complex/heavy helium purge subsystem normally required with MLI in cryogenic applications. The MLI (45 layers of Double Aluminized Mylar with Dacron spacers) provides protection in the vacuum environment of space and is designed for an on-orbit storage period of 45 days. Several unique features were incorporated in the MLI concept and included: variable density MLI (reduces weight and radiation losses by changing the layer density), larger but fewer DAM perforations for venting during ascent to orbit (reduces radiation losses), and roll wrap installation of the MLI with a commercially established process to lower assembly man-hours and reduce seam heat leak. Thermal performance testing of the MHTB TCS was conducted during three test series conducted between September 1995 and May 1996. Results for the ground hold portion of the tests were as expected

  16. First Engineering Commissioning of EAST Tokamak

    NASA Astrophysics Data System (ADS)

    Wan, Yuanxi; Li, Jiangang; Weng, Peide; EAST Team

    2006-05-01

    Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak. The first commissioning started on Feb. 1st of 2006 and finished on March 30th of 2006 at the Institute of Plasma Physics, Chinese Academy of Sciences. It consists of leakage testing at both room temperature and low temperature, pumping down, cooling down all coils, current leads, bus bar and the thermal shielding, exciting all the coils, measuring magnetic configuration and warming up the magnets. The electromagnetic, thermal hydraulic and mechanical performance of EAST Toroidal Field (TF) and Poloidal Field (PF) magnets have also been tested. All sub-systems, including pumping system, cryogenic system, PF& TF power supply systems, magnet instrumentation system, quench detection and protection system, water cooling system, data acquisition system, main control system, plasma control system (PCS), interlock and safety system have been successfully tested.

  17. 76 FR 11277 - In the Matter of Collaborative System Products and Components Thereof (II); Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... COMMISSION In the Matter of Collaborative System Products and Components Thereof (II); Notice of Commission... on May 12, 2010. 75 FR 41889 (Jul. 19, 2010). The complaint alleged violations of section 337 of the..., and the sale within the United States after importation of certain collaborative system products...

  18. 75 FR 65509 - In the Matter of Collaborative System Products and Components Thereof (II); Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... COMMISSION In the Matter of Collaborative System Products and Components Thereof (II); Notice of Commission... FR 41889 (Jul. 19, 2010). The complaint alleged violations of section 337 of the Tariff Act of 1930... within the United States after importation of certain collaborative system products and...

  19. Neutron Yield Study of Direct-Drive, Low-Adiabat Cryogenic D2 Implosions on OMEGA Laser System

    SciTech Connect

    Hu, S.X.; Radha, P.B.; Marozas, J.A.; Betti, R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Goncharov, V.N.; Igumenshchev, I.V.; Marshall, F.J.; McCrory, R.L.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.; Skupsky, S.; Smalyuk, V.A.; Elbaz, Y.; Shvarts, D.

    2009-11-17

    Neutron yields of direct-drive, low-adiabat (alpha ~~ 2 to 3) cryogenic D2 target implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have been systematically investigated using the two-dimensional (2D) radiation hydrodynamics code DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)]. Low-mode (ell <- 12) perturbations, including initial target offset, ice-layer roughness, and laser-beam power imbalance, were found to be the primary source of yield reduction for thin-shell (5 um), low-alpha, cryogenic targets. The 2D simulations of thin-shell implosions track experimental measurements for different target conditions and peak laser intensities ranging from 2.5 x 10^14–6 x 10^14 W/cm^2. Simulations indicate that the fusion yield is sensitive to the relative phases between the target offset and the ice-layer perturbations. The results provide a reasonable good guide to understanding the yield degradation in direct-drive, low-adiabat, cryogenic, thin-shell-target implosions. Thick-shell (10 um) implosions generally give lower yield over clean than low-ell-mode DRACO simulation predictions. Simulations including the effect of laser-beam nonuniformities indicate that high-ell-mode perturbations caused by laser imprinting further degrade the neutron yield of thick-shell implosions. To study ICF compression physics, these results suggest a target specification with a <-30 um offset and ice-roughness of sigma_rms < 3 um are required.

  20. Neutron yield study of direct-drive, low-adiabat cryogenic D{sub 2} implosions on OMEGA laser system

    SciTech Connect

    Hu, S. X.; Radha, P. B.; Marozas, J. A.; Betti, R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Skupsky, S.; Smalyuk, V. A.; Elbaz, Y.; Shvarts, D.

    2009-11-15

    Neutron yields of direct-drive, low-adiabat ({alpha}{approx_equal}2 to 3) cryogenic D{sub 2} target implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have been systematically investigated using the two-dimensional (2D) radiation hydrodynamics code DRACO[P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)]. Low-mode (l{<=}12) perturbations, including initial target offset, ice-layer roughness, and laser-beam power imbalance, were found to be the primary source of yield reduction for thin-shell (5 {mu}m), low-{alpha}, cryogenic targets. The 2D simulations of thin-shell implosions track experimental measurements for different target conditions and peak laser intensities ranging from 2.5x10{sup 14}-6x10{sup 14} W/cm{sup 2}. Simulations indicate that the fusion yield is sensitive to the relative phases between the target offset and the ice-layer perturbations. The results provide a reasonable good guide to understanding the yield degradation in direct-drive, low-adiabat, cryogenic, thin-shell-target implosions. Thick-shell (10 {mu}m) implosions generally give lower yield over clean than low-l-mode DRACO simulation predictions. Simulations including the effect of laser-beam nonuniformities indicate that high-l-mode perturbations caused by laser imprinting further degrade the neutron yield of thick-shell implosions. To study ICF compression physics, these results suggest a target specification with a {<=}30 {mu}m offset and ice-roughness of {sigma}{sub rms}<3 {mu}m are required.

  1. Commissioning and operational results of the 12 GeV helium compression system at Jlab

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.

    2015-12-01

    The new compressor system at Jefferson Lab (JLab) for the 12 GeV upgrade was commissioned in the spring of 2013 and incorporates many design changes, discussed in previous publications, to improve the operational range, efficiency, reliability and maintainability as compared to previous compressor skids used for this application. The 12 GeV helium compression system has five compressors configured with four pressure levels supporting three pressure levels in the new cold box. During compressor commissioning the compressors were operated independent of the cold box over a wide range of process conditions to verify proper performance including adequate cooling and oil removal. Isothermal and volumetric efficiencies over these process conditions for several built-involume ratios were obtained. This paper will discuss the operational envelope results and the modifications/improvements incorporated into the skids.

  2. Test bench to commission a third ion source beam line and a newly designed extraction system

    SciTech Connect

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.

    2012-02-15

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  3. Test bench to commission a third ion source beam line and a newly designed extraction system.

    PubMed

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A

    2012-02-01

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed. PMID:22380336

  4. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost effective approaches to the required on-orbit demonstration are suggested.

  5. Cryogenic Fluid Transfer for Exploration

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2008-01-01

    This paper discusses current plans and issues for exploration that involve the use of cryogenic transfer. The benefits of cryogenic transfer to exploration missions are examined. The current state of the art of transfer technology is reviewed. Mission concepts of operation for exploration are presented, and used to qualitatively discuss the performance benefits of transfer. The paper looks at the challenges faced to implement a cryogenic transfer system and suggest approaches to address them with advanced development research. Transfer rates required for exploration are shown to have already been achieved in ground test. Cost-effective approaches to the required on-orbit demonstration are suggested.

  6. Pressure Rise Analysis When Hydrogen Leak from a Cracked Pipe in the Cryogenic Hydrogen System in J-PARC

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Aso, T.; Hasegawa, S.; Ushijima, I.; Kato, T.; Ohtsu, K.; Ikeda, Y.

    2006-04-01

    As one of the main experimental facilities in the Japan Proton Accelerator Research Complex (J-PARC), an intense spallation neutron source (JSNS) driven by a 1 MW proton beam is being constructed. Cryogenic hydrogen at supercritical pressure is selected as a moderator. The total nuclear heating at the moderators is estimated to be a 3.7 kW. A hydrogen system to cool the moderators has been designed. The most severe off-normal event for the cryogenic hydrogen system is considered to be a hydrogen leak when a pipe cracks. In such a case, the hydrogen must be discharged to atmosphere quickly and safely. An analytical code that simulates the pressure change during a hydrogen leak was developed. A pressure rise analysis for various sized cracks was performed, and the required sizes for relief devices were determined. A safety valve size is φ42.7 mm and a rupture disc for vacuum layer should have a diameter of 37.1 mm, respectively.

  7. Pressure Rise Analysis When Hydrogen Leak from a Cracked Pipe in the Cryogenic Hydrogen System in J-PARC

    SciTech Connect

    Tatsumoto, H.; Aso, T.; Hasegawa, S.; Ushijima, I.; Kato, T.; Ohtsu, K.; Ikeda, Y.

    2006-04-27

    As one of the main experimental facilities in the Japan Proton Accelerator Research Complex (J-PARC), an intense spallation neutron source (JSNS) driven by a 1 MW proton beam is being constructed. Cryogenic hydrogen at supercritical pressure is selected as a moderator. The total nuclear heating at the moderators is estimated to be a 3.7 kW. A hydrogen system to cool the moderators has been designed. The most severe off-normal event for the cryogenic hydrogen system is considered to be a hydrogen leak when a pipe cracks. In such a case, the hydrogen must be discharged to atmosphere quickly and safely. An analytical code that simulates the pressure change during a hydrogen leak was developed. A pressure rise analysis for various sized cracks was performed, and the required sizes for relief devices were determined. A safety valve size is {phi}42.7 mm and a rupture disc for vacuum layer should have a diameter of 37.1 mm, respectively.

  8. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  9. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments. PMID:25211121

  10. Advances in cryogenic engineering. Volume 33 - Proceedings of the Cryogenic Engineering Conference, Saint Charles, IL, June 14-18, 1987

    NASA Technical Reports Server (NTRS)

    Fast, R. W. (Editor)

    1988-01-01

    Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.

  11. A study of central cryogenic cooling system for the comet rendezvous spacecraft

    NASA Technical Reports Server (NTRS)

    Salazar, R. P.; Metzger, A. E.; Wu, Y. C.; Malcolm, J.

    1981-01-01

    Several science instruments required temperatures between 100 K and 120 K on a proposed Halley Flyby, Tempel-2 Rendezvous Mission. Significant features of the thermal environment are a large variation in heliocentric as well as comet distance, very large solar panels for a Solar Electric Propulsion stage, and the comet dust environment. The best cooling is achieved by one central radiative cooler connected by insulated cryogenic heat pipes to the instruments. The conceptual design is of a single-stage rectangular shielded radiator deployed on a boom some distance from the spacecraft bus and solar panels. Thermal modeling determined sensitivity to solar and comet distance and was used to optimize cooler geometry.

  12. Polymeric compositions and their method of manufacture. [forming filled polymer systems using cryogenics

    NASA Technical Reports Server (NTRS)

    Moser, B. G.; Landel, R. F. (Inventor)

    1972-01-01

    Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation.

  13. Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems

    NASA Technical Reports Server (NTRS)

    Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.

    1974-01-01

    By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.

  14. Commissioning and benchmarking a 3D dosimetry system for clinical use

    PubMed Central

    Thomas, Andrew; Newton, Joseph; Adamovics, John; Oldham, Mark

    2011-01-01

    Purpose: A 3D dosimetry system is described which consists of two parts: a radiochromic plastic dosimeter PRESAGE® (which responds to absorbed dose with a linear change in optical-density) and the Duke large-field-of-view optical-CT scanner (DLOS). The DLOS∕PRESAGE system has recently been commissioned and benchmarked for clinical use and, in particular, for verification and commissioning of complex radiation treatments. Methods: DLOS commissioning involved determining the dynamic range, spatial resolution, noise, temporal, and other characteristics of the light source and imaging components. Benchmarking tests were performed on the combined DLOS∕PRESAGE system to establish baseline dosimetric performance. The tests consisted of delivering simple radiation treatments to PRESAGE dosimeters, and comparing the measured 3D relative dose distributions with the known gold standard. The gold standard distribution was obtained from machine beam-data or the treatment planning system (TPS). All studies used standardized procedures to ensure consistency. Results: For commissioning, isotropic spatial resolution was submillimeter (MTF > 0.5 for frequencies of 1.5 lp∕mm) and the dynamic range was ∼60 dB. Flood field uniformity was within 10% and stable after 45 min of warm-up. Stray-light is small, due to telecentricity, but even the residual can be removed through deconvolution by a point-spread-function. For benchmarking, the mean 3D passing NDD (normalized dose distribution) rate (3%, 3mm, 5% dose threshold) over the benchmark data sets was 97.3% ± 0.6% (range 96%–98%), which is on par with other planar dosimeters used in external beam radiation therapy indicating excellent agreement. Noise was low at <2% of maximum dose (4–12 Gy) for 2 mm reconstructions. The telecentric design was critical to enabling fast imaging with minimal stray-light artifacts. Conclusions: This work presents the first comprehensive benchmarking of a 3D dosimetry system for

  15. Control mechanism for attenuation of thermal energy pulses using cold circulators in the cryogenic distribution system of fusion devices in tokamak configuration

    SciTech Connect

    Bhattacharya, R.; Sarkar, B.; Vaghela, H.; Shah, N.

    2014-01-29

    Operation and control of superconducting (SC) magnets in the fusion devices having tokamak configuration opens up the domain of varying peak thermal energy environment as a function of time, commensurate with the plasma pulses. The varied thermal energy environment, thus propagated to upstream of the cooling system, is responsible for the system level instability of the overall cryogenic system. The cryogenic distribution system, the regime of first impact point, therefore, has to be tuned so as to stay at the nearly stable zone of operation. The configuration of the cryogenic distribution system, considered in the present study, involves a liquid helium (LHe) bath as a thermal buffer, LHe submerged heat exchangers and cold circulator apart from the valves for implementations of the precise controls. The cold circulator supplies the forced flow supercritical helium, used for the cooling of SC magnets. The transients of the thermal energy pulses can be attenuated in the cryogenic distribution system by various methodologies. One of the adopted methodologies in the present study is with the precise speed control of the cold circulators. The adopted methodology is applied to various configurations of arrangements of internal components in the distribution system for obtaining system responses with superior attenuation of energy pulses. The process simulation approach, assumptions, considered inputs and constraints, process modeling with different configuration as well as results to accomplish the control scheme for the attenuation of the thermal energy pulses are described.

  16. COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS.

    SciTech Connect

    HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.

    2006-06-26

    Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies.

  17. Commissioning of the LHC Low Level RF System Remote Configuration Tools

    SciTech Connect

    Van Winkle, Daniel; Fox, John; Mastorides, Themis; Rivetta, Claudio; Baudrenghien, Philippe; Butterworth, Andrew; Molendijk, John; /CERN

    2010-08-26

    The LHC Low Level RF system (LLRF) is a complex multi-loop system used to regulate the superconductive cavity gap voltage as well as to reduce the impedance presented by RF stations to the beam. The RF system can have a profound impact on the stability of the beam; a mis-configured RF system has the potential of causing longitudinal instabilities, beam diffusion and beam loss. To configure the RF station for operation, a set of parameters in the LLRF multi-loop system have to be defined. Initial system commissioning as well as ongoing operation requires a consistent method of computer based remote measurement and model-based design of each RF station feedback system. This paper describes the suite of Matlab tools used for configuring the LHC RF system during the start up in Nov2009-Feb2010. We present a brief overview of the tool, examples of commissioning results, and basics of the model-based design algorithms. This work complements our previous presentation, where the algorithms and methodology followed in the tools were described.

  18. Commissions of audit in Australia: health system privatisation directives and civil conscription protections.

    PubMed

    Colton, Caroline; Faunce, Thomas

    2014-03-01

    The use of commissions of audit as vehicles to drive privatisation policy agendas in areas such as health service delivery has become popular with conservative federal and State governments. Such commissions have characteristically been established early in the terms of such governments with carefully planned terms of reference and membership. The policy directions they advocate, unlike election policies, have not come under the intense scrutiny, wide public debate or the opportunities for (dis)endorsement afforded by the electoral process. Governments do, however, anticipate and often accept recommendations from these reviews, and use them as justification to implement policy based on their findings. This highlights the power entrusted to review bodies and the risks to the public interest arising from limited public consultation. An example can be seen in the proposed privatisation of important aspects of Australia's public sector, particularly including those related to health systems delivery, currently entering a new iteration through the work of the National Commission of Audit appointed in October 2013. The NCA follows on from various State audit commissions which in recent years have directed the divestment of government responsibilities to the private and not-for-profit sectors. Through a discussion on the formation of policy frameworks by the NCA and the Queensland Commission of Audit, this column examines the ideological thrust of the commissions and how they synergise to produce a national directive on the future of public sector health services. The practical impacts on health service procurement and delivery in critical areas are examined, using the case of the federally contracted out medical service for asylum seekers and two hospitals in Western Australia, a State which is well advanced in the privatisation of public hospitals. The column then examines the release to the media early in the NCA's process of the submission to introduce a $6 general

  19. Design and Development of a Robot-Based Automation System for Cryogenic Crystal Sample Mounting at the Advanced Photon Source

    SciTech Connect

    Shu, D.; Preissner, C.; Nocher, D.; Han, Y.; Barraza, J.; Lee, P.; Lee, W.-K.; Cai, Z.; Ginell, S.; Alkire, R.; Lazarski, K.; Schuessler, R.; Joachimiak, A.

    2004-05-12

    X-ray crystallography is the primary method to determine the 3D structures of complex macromolecules at high resolution. In the years to come, the Advanced Photon Source (APS) and similar 3rd-generation synchrotron sources elsewhere will become the most powerful tools for studying atomic structures of biological molecules. One of the major bottlenecks in the x-ray data collection process is the constant need to change and realign the crystal sample. This is a very time- and manpower-consuming task. An automated sample mounting system will help to solve this bottleneck problem. We have developed a novel robot-based automation system for cryogenic crystal sample mounting at the APS. Design of the robot-based automation system, as well as its on-line test results at the Argonne Structural Biology Center (SBC) 19-BM experimental station, are presented in this paper.

  20. Cryogenics for the superconducting module test facility

    SciTech Connect

    Klebaner, A.L.; Theilacker, J.C.; /Fermilab

    2006-01-01

    A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

  1. LARP LHC 4.8 GHZ Schottky System Initial Commissioning with Beam

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; Jones, O.Rhodri; Caspers, Fritz; /CERN

    2011-03-18

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place from spring through fall of 2010. With nominal bunch beam currents of 10{sup 11} protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system. The Schottky system for the LHC was proposed in 2004 under the auspices of the LARP collaboration. Similar systems were commissioned in 2003 in the Fermilab Tevatron and Recycler accelerators as a means of measuring tunes noninvasively. The Schottky detector is based on the stochastic cooling pickups that were developed for the Fermilab Antiproton Source Debuncher cooling upgrade completed in 2002. These slotted line waveguide pickups have the advantage of large aperture coupled with high beam coupling characteristics. For stochastic cooling, wide bandwidths are integral to cooling performance. The bandwidth of slotted waveguide pickups can be tailored by choosing the length of the pickup and slot spacing. The Debuncher project covered the 4-8 GHz band with eight bands of pickups, each with approximately 500 MHz of bandwidth. For use as a Schottky detector, bandwidths of 100-200 MHz are required for gating, resulting in higher transfer impedance than those used for stochastic cooling. Details of hardware functionality are reported previously.

  2. Acquisition/expulsion system for earth orbital propulsion system study. Volume 2: Cryogenic design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Detailed designs were made for three earth orbital propulsion systems; (1) the space shuttle (integrated) OMS/RCS, (2) the space shuttle (dedicated) OMS (LO2), and (3) the space tug. The preferred designs from the integrated OMS/RCS were used as the basis for the flight test article design. A plan was prepared that outlines the steps, cost, and schedule required to complete the development of the prototype DSL tank and feedline (LH2 and LO2) systems. Ground testing of a subscale model using LH2 verified the expulsion characteristics of the preferred DSL designs.

  3. Cryogenic thermal diodes

    NASA Astrophysics Data System (ADS)

    Paulsen, Brandon R.; Batty, J. C.; Agren, John

    2000-01-01

    Space based cryogenic thermal management systems for advanced infrared sensor platforms are a critical failure mode to the spacecraft missions they are supporting. Recent advances in cryocooler technologies have increased the achievable cooling capacities and decreased the operating temperatures of these systems, but there is still a fundamental need for redundancy in these systems. Cryogenic thermal diodes act as thermal switches, allowing heat to flow through them when in a conduction mode and restricting the flow of heat when in an isolation mode. These diodes will allow multiple cryocoolers to cool a single infrared focal plane array. The Space Dynamics Laboratory has undertaken an internal research and development effort to develop this innovative technology. This paper briefly describes the design parameters of several prototype thermal diodes that were developed and tested. .

  4. Commissioning and quality assurance of Calypso four-dimensional target localization system in linear accelerator facility.

    PubMed

    Muralidhar, K R; Komanduri, Krishna; Rout, Birendra Kumar; Ramesh, K K D

    2013-07-01

    Four dimensional (4D) target localization system (Calypso System) was installed at our hospital, which is equipped with Beacon Transponders, Console, Electromagnetic Array, Optical System, Tracking Station, Treatment table overlay, and Calypso kVue Couch top. The objective of this presentation is to describe the results of commissioning measurements carried out on the Calypso System to verify the manufacturer specifications and also to evolve a quality assurance (QA) procedure which can be used to test its performance routinely. The QA program consists of a series of tests (QA for checking the calibration or system accuracy, Camera Calibration with L-frame fixture, Camera Calibration with T-frame fixture, System calibration Fixture targets test, Localization, and Tracking). These tests were found to be useful to assess the performance of the Calypso System. PMID:24049322

  5. Commissioning and quality assurance of Calypso four-dimensional target localization system in linear accelerator facility

    PubMed Central

    Muralidhar, K. R.; Komanduri, Krishna; Rout, Birendra Kumar; Ramesh, K. K. D.

    2013-01-01

    Four dimensional (4D) target localization system (Calypso System) was installed at our hospital, which is equipped with Beacon Transponders, Console, Electromagnetic Array, Optical System, Tracking Station, Treatment table overlay, and Calypso kVue Couch top. The objective of this presentation is to describe the results of commissioning measurements carried out on the Calypso System to verify the manufacturer specifications and also to evolve a quality assurance (QA) procedure which can be used to test its performance routinely. The QA program consists of a series of tests (QA for checking the calibration or system accuracy, Camera Calibration with L-frame fixture, Camera Calibration with T-frame fixture, System calibration Fixture targets test, Localization, and Tracking). These tests were found to be useful to assess the performance of the Calypso System. PMID:24049322

  6. D0 Silicon Upgrade: Pipe Sizing for Solenoid / VLPC Cryogenic Systems

    SciTech Connect

    Rucinski, Russ; Sakla, Steve; /Fermilab

    1995-02-20

    The addition of a solenoid magnet and VLPC detectors are two of a number of upgrades which will occur at the D-Zero detector in the near future. Both of these upgrades will require cryogenic services for their operation. The purpose of this engineering note is to document the pipe/tube size choices made for these cryogenic services. This was done by calculating the required flow rates to cool down the magnet and VLPC's over a reasonable length of time and to determine the required piping sizes for a given allowable pressure drop. The pressure drops for steady state conditions also are addressed. The cool down requirements drove the pipe size decision. The raw engineering calculations that were done for this project are included as an appendix to this note. The body of this document discusses the methods and results of the calculations. As a quick summary, Figures 1 and 2 show the size selections. Tables 1 and 2 give a more detailed size and description of each section of Solenoid and VLPC transfer line.

  7. A review of experimental methods for solid solubility determination in cryogenic systems

    NASA Astrophysics Data System (ADS)

    De Stefani, V.; Baba-Ahmed, A.; Richon, D.

    2004-09-01

    Over the past years, there have been a number of serious explosions in air industry, which have resulted in workers injuries and fatalities. At the same time, there has been an increase in the use of air separation products for industrial activities. The quality of air entering an air separation plant is of crucial importance for its safe and reliable operation and the interest in the solubility data of solids in cryogenic liquid solvents is closely connected to the problem of impurities accumulation in the process plant and storage tanks. Such accumulations, especially in liquid oxygen, may cause fouling and blockage in heat exchangers and pipelines and they may eventually cause serious explosions. For this reason the air contaminants composition in liquid oxygen must be determined with great precision. This paper aims at reviewing experimental methods for determining the solubility of solid compounds that may be present in the cryogenic liquefaction processing of air distillation. A review of the literature data on solubility of solids in liquid oxygen and nitrogen is included as well. Emphasis is given to the difficulties in setting-up measuring apparatuses working at extreme conditions, i.e. low compositions and low temperatures.

  8. Design, development and testing of a cryogenic temperature heat pipe for the icicle system. [breadboard models

    NASA Technical Reports Server (NTRS)

    Trimmer, D. S.

    1974-01-01

    An analytical model was formulated for a cryogenic heat pipe, and thermal and transport analyses were developed to predict the performance characteristics of various heat pipe designs. These analyses permitted optimization of various design parameters. A series of four breadboard heat pipes were fabricated and tested to provide inputs such as internal film coefficients, minimum capillary radii, and wick permeabilities which are required for the analyses. The results of instrumentation, charging, and testing of cryogenic heat pipes were applied to the prototype heat pipes. After a thorough design analysis of three potential heat pipe wicks (slab, artery, and axial groove), the first two were chosen for application to two prototype heat pipes. Detailed designs were made of the two heat pipes and the units were fabricated. Tests were conducted which verified the integrity and safety margin of the design to withstand the internal pressure at ambient temperature and fatigue of thermal cycling. During the acceptance testing in the vacuum chamber, no difficulty was experienced in priming the slab-wick heat pipe and it met the performance design requirements. The artery-wick heat pipe would not prime with nitrogen working fluid for any test conditions.

  9. A Piezoelectric Cryogenic Heat Switch

    NASA Technical Reports Server (NTRS)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  10. Cryogenic Technology for Superconducting Accelerators

    NASA Astrophysics Data System (ADS)

    Hosoyama, Kenji

    2012-01-01

    Superconducting devices such as magnets and cavities are key components in the accelerator field for increasing the beam energy and intensity, and at the same time making the system compact and saving on power consumption in operation. An effective cryogenic system is required to cool and keep the superconducting devices in the superconducting state stably and economically. The helium refrigeration system for application to accelerators will be discussed in this review article. The concept of two cooling modes -- the liquefier and refrigerator modes -- will be discussed in detail because of its importance for realizing efficient cooling and stable operation of the system. As an example of the practical cryogenic system, the TRISTAN cryogenic system of KEK Laboratory will be treated in detail and the main components of the cryogenic system, including the high-performance multichannel transfer line and liquid nitrogen circulation system at 80K, will also be discussed. In addition, we will discuss the operation of the cryogenic system, including the quench control and safety of the system. The satellite refrigeration system will be discussed because of its potential for wide application in medium-size accelerators and in industry.

  11. D-Zero Cryogenic System VLPC & Solenoid Vacuum System Instrumentation, Control, and Logic

    SciTech Connect

    Markley, D.; /Fermilab

    1998-01-16

    The DZERO VLPC Cryostat and the Superconducting Solenoid both require an insulating Vacuum of 10{sup -5} Torr or less. There is a vacuum system on the Detector Platform consisting of 2 Turbomolecular vacuum pumps and their associated piping, valves, instrumentation that are dedicated to this task. This vacuum equipment requires an operator interface and control logic in order to function properly. The operator interface allows an operator to monitor, control and configure the proper pumping setup required at any given time. The control logic is needed to protect the Vacumm vessels and Vacuum equipment from catastrophic events that may harm them. This is typically done with interlock chains or strings.

  12. Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Barnes, P. D., Jr.; Brink, P. L.; Cabrera, B.; Clarke, R. M.; Gaitskell, R. J.; Golwala, S. R.; Huber, M. E.; Kurylowicz, M.; Mandic, V.; Martinis, J. M.; Meunier, P.; Mirabolfathi, N.; Nam, S. W.; Perillo-Isaac, M.; Saab, T.; Sadoulet, B.; Schnee, R. W.; Seitz, D. N.; Shutt, T.; Smith, G. W.; Stockwell, W. K.; Sundqvist, K. M.; White, S.

    2008-07-01

    The Cryogenic Dark Matter Search (CDMS) experiment employs ultra-cold solid-state detectors to search for rare events resulting from WIMP-nucleus scattering. An innovative detector packaging and readout system has been developed to meet the unusual combination of requirements for: low temperature, low radioactivity, low energy threshold, and large channel count. Features include use of materials with low radioactivity such as multi-layer KAPTON laminates for circuit boards; immunity to microphonic noise via a vacuum coaxial wiring design, manufacturability, and modularity. The detector readout design had to accommodate various electronic components which have to be operated in close proximity to the detector as well maintaining separate individual temperatures (ranging from 600 mK to 150 K) in order to achieve optimal noise performance. The paper will describe the general electrical, thermal, and mechanical designs of the CDMS readout system, as well as presenting the theoretical and measured performance of the detector readout channels.

  13. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  14. A new guide for commissioning air handling systems: Using a model functional test

    SciTech Connect

    Haasl, Tudi; Sellers, David; Friedman, Hannah; Piette, Mary Ann; Bourassa, Norman; Gillespie, Ken

    2002-05-01

    Functional tests are a set of detailed instructions for building commissioning that demand extensive HVAC system knowledge to write and perform. Understanding the energy use implications and theory behind the test procedures, estimating the costs and benefits of doing a particular test, implementing the tests correctly, and resolving problems require years of field experience. As part of a large research project now underway, a practical guide is being developed that communicates this knowledge. This paper presents the components and intended use of the Functional Testing Guide and Model Functional Test for Air Handling Systems. A series of model functional tests, starting at the outdoor air intake section and proceeding through the air handling unit, distribution system, and terminal equipment and ending at the exhaust air discharge point, are provided for many commonly installed air handling system configurations. The model functional tests contain advice for tailoring the test procedures to specific system configurations, desirable and undesirable testing outcomes, a calculation appendix, references to other resources, and examples of completed test forms. The guide is an educational resource, with background information that clarifies the principles behind testing configurations and results. The functional tests have been selected from an extensive commissioning test protocol library compiled by Pacific Gas and Electric in 2001. The guide also includes a design guideline for the selection of control and monitoring points and a design intent documentation form.

  15. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  16. Cryogenic Selective Surfaces

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Nurge, Mark

    2015-01-01

    Under our NASA Innovative Advanced Concepts (NIAC) project we have theoretically demonstrated a novel selective surface that reflects roughly 100 times more solar radiation than any other known coating. If this prediction holds up under experimental tests it will allow cryogenic temperatures to be reached in deep space even in the presence of the sun. It may allow LOX to be carried to the Moon and Mars. It may allow superconductors to be used in deep space without a refrigeration system.

  17. Cryogenics and the Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  18. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  19. Cryogenics at the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Weisend, J. G., II; Arnold, P.; Hees, J. Fydrych. W.; Jurns, J. M.; Wang, X. L.

    Cryogenics plays an important role at the European Spallation Source, a world class neutron science center, currently under construction in Lund, Sweden. Three principal applications of cryogenics are found at ESS. The SRF cryomodules of the ESS proton linac require cooling at 2 K, 4.5 K and 40 K; the hydrogenmoderator surrounding the target that produces neutrons, requires cooling via 16.5 K helium and LHe is required for many of the scientific instruments. These needs will be met by a set of three cryogenic refrigeration/liquefaction plants and an extensive cryogenic distribution system. Significant progress has been made on the ESS cryogenic system in preparation for the expected first beam on target in 2019. This work includes: funding of industry studies for the accelerator cryoplant, preliminary design of the cryogenic distribution system, investigation of possible in kind contributors and release of the invitation to tender for the accelerator cryoplant.This paper describes the requirements, design solutions and current status of the ESS cryogenic system. The planned recovery of waste heat from the cryogenic plants, a unique aspect of ESS, is described. The procurement of the cryogenic system, expected to be done via a combination of purchase via competitive bids and in kind contributions is also discussed.

  20. Overview and Status of the 12 GeV Cryogenic System Upgrade At Jlab

    SciTech Connect

    Dana Arenius, Jonathan Creel, Venkatarao Ganni, Kelly Dixon, Peter Knudsen

    2010-04-01

    As part of the planned Jefferson Laboratory's electron accelerator (CEBAF) power upgrade, ten additional superconducting RF cryomodules will be added to its accelerator linacs. Although physically the same size as each of the original 40 linac cryomodules, each new cryomodule will have approximately 4 times the acceleration power. To support the additional cryomodule heat loads generated, the existing 2K, 4600W Central Helium Liquefier (CHL) plant capacity will be doubled to a total of 9200W at 2K plus 24,000W at 35K for shield loads. The specified base line process cycle has been modeled after the laboratory s "Ganni Helium Cycle" process technology. In addition, a fourth physics experimental "Hall D" will be constructed which will have an additional stand alone 200W at 4K helium cryogenic plant. In October of 2008, Jefferson Laboratory (JLab) received approval for project "Critical Decision 3" construction phase status from the US Department of Energy.

  1. Cryogenic System for Interferometry of High-precision Optics at 20 K: Design and Performance

    NASA Technical Reports Server (NTRS)

    Blake,Peter; Chambers, John; Mink, Ronald G.; Content, David; Davila, Pamela; Robinson, F. David; Chrzanowski, Chris; Shirgur, Badri; Frohlich, chip

    2005-01-01

    This report describes the facility and experimental methods at the Goddard Space Flight Center Optics Branch for the measurement of the surface figure of cryogenically-cooled spherical mirrors using standard phase-shifting interferometry, with a standard uncertainty below 2nm rms. Two developmental silicon carbide mirrors were tested: both were spheres with radius of curvature of 600 mm, and clear apertures of 150 mm. The mirrors were cooled within a cryostat, and the surface figure error measured through a fused-silica window. The GSFC team developed methods to measure the in-situ SFE at 20 K with a combined standard uncertainty below 2 nm rms and the change in SFE with temperature (the cryochange) with a combined standard uncertainty of 0.25 -- 0.75 nm rms. This paper will present the measurement facility, methods, and uncertainty analysis.

  2. Lightweight thermally efficient composite feedlines for the space tug cryogenic propulsion system

    NASA Technical Reports Server (NTRS)

    Spond, D. E.

    1975-01-01

    Six liquid hydrogen feedline design concepts were developed for the cryogenic space tug. The feedlines include composite and all-metal vacuum jacketed and nonvacuum jacketed concepts, and incorporate the latest technological developments in the areas of thermally efficient vacuum jacket end closures and standoffs, radiation shields in the vacuum annulus, thermal coatings, and lightweight dissimilar metal flanged joints. The feedline design concepts are evaluated on the basis of thermal performance, weight, cost, reliability, and reusability. Design concepts were proved in a subscale test program. Detail design was completed on the most promising composite feedline concept and an all-metal feedline. Three full scale curved composite feedlines and one all-metal feedline assembly were fabricated and subjected to a test program representative of flight hardware qualification. The test results show that composite feedline technology is fully developed. Composite feedlines are ready for space vehicle application and offer significant reduction in weights over the conventional all-metal feedlines presently used.

  3. The CUORE cryostat: commissioning and performance

    NASA Astrophysics Data System (ADS)

    Singh, V.; Alduino, C.; Alessandria, F.; Bersani, A.; Biassoni, M.; Bucci, C.; Caminata, A.; Canonica, L.; Cappelli, L.; Cereseto, R.; Chott, N.; Copello, S.; Cremonesi, O.; Cushman, J. S.; D’Addabbo, A.; Davis, C. J.; Dell’Oro, S.; Drobizhev, A.; Franceschi, M. A.; Gladstone, L.; Gorla, P.; Guetti, M.; Ligi, C.; Napolitano, T.; Nucciotti, A.; Orlandi, D.; Ouellet, J. L.; Pagliarone, C. E.; Pattavina, L.; Rusconi, C.; Santone, D.; Taffarello, L.; Terranova, F.; Wallig, J.; Wise, T.; Uttaro, S.

    2016-05-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) will search for the 0vββ decay in 130Te using a cryogenic array of TeO2 bolometers, operated at a base temperature of ~10mK. CUORE will consist of a closely packed array of 19 towers each containing 52 crystals, for a total mass of 741kg. The detector assembly is hosted in one of the largest cryostats ever constructed and will be cooled down to base temperature using a custom-built cryogen free dilution refrigerator. The CUORE cryostat along with the pulse tube based dilution refrigerator has been already commissioned at Laboratori Nazionali del Gran Sasso (LNGS) and a record base temperature, on a cubic meter scale, of ~6mK was achieved during one of the integration runs. We present the results from integration runs, characterizing the system and the cooling performance of the dilution refrigerator, effectively showcasing its stability at base temperature for the expected thermal load.

  4. Commissioning and quality assurance of the Pinnacle(3) radiotherapy treatment planning system for external beam photons.

    PubMed

    Bedford, J L; Childs, P J; Nordmark Hansen, V; Mosleh-Shirazi, M A; Verhaegen, F; Warrington, A P

    2003-03-01

    The commissioning of a Pinnacle(3) treatment planning system is described. Four Elekta linear accelerators were commissioned for external beam photons. Measured data were used to derive parameter values for the Pinnacle(3) beam model by (1). fitting a Monte Carlo model of the accelerator head to measured data and then extracting the parameters for the Pinnacle(3) beam model, and by (2). using the auto-modelling facility within Pinnacle(3). Both of these methods yielded dose distributions in accord with published recommendations. A separate small-field beam model, customized for an in-house compact blocking system, was also created, which satisfied appropriate acceptance criteria for stereotactically guided conformal brain treatments. Inhomogeneous, oblique, asymmetrical and irregular fields were also assessed, with calculated and measured doses agreeing to within +/-3%. Dose-volume histogram calculation was found to be accurate to within +/-5% dose or volume for a grid size of 4 mm x 4 mm x 4 mm, with better accuracy being achieved for finer grids. Isocentric doses were compared between Pinnacle(3)'s collapsed cone convolution algorithm and the Bentley-Milan algorithm within the Target-2 treatment planning system. Dose differences were generally less than 3% in the dose prescribed, with larger values for breast plans, where the Pinnacle(3) algorithm calculated scatter more accurately. Pelvic and thoracic plans were also verified using an anthropomorphic phantom, with local dose differences between calculated and delivered dose of up to 8%, but mainly less than 3%, and with no systematic difference. Ionization chamber verifications using START and RT-01 trial procedures demonstrated differences between calculated and measured doses of less than 2%. Following satisfactory performance in the commissioning process, Pinnacle(3) has now been introduced into routine clinical use. PMID:12684232

  5. Specification of Selected Performance Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect

    Brambley, Michael R.; Katipamula, Srinivas

    2006-10-06

    Pacific Northwest National Laboratory (PNNL) is assisting the U.S. Department of Energy (DOE) Distributed Energy (DE) Program by developing advanced control algorithms that would lead to development of tools to enhance performance and reliability, and reduce emissions of distributed energy technologies, including combined heat and power technologies. This report documents phase 2 of the program, providing a detailed functional specification for algorithms for performance monitoring and commissioning verification, scheduled for development in FY 2006. The report identifies the systems for which algorithms will be developed, the specific functions of each algorithm, metrics which the algorithms will output, and inputs required by each algorithm.

  6. 201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system.

    PubMed

    Kowalewski, Katie; Zembek, Jason; Envid, Victoria; Brown, David C

    2012-11-15

    We have generated 201 W of green (514.5 nm) average power from a frequency-doubled picosecond cryogenic Yb:YAG laser system driven by a 50 MHz, 12.4 ps mode-locked Yb fiber laser producing 430 W of average power at 1029 nm, using direct pulse amplification. The fundamental beam produced was near-diffraction-limited (M(2)<1.3). Second-harmonic-generation is achieved using a 20 mm long noncritically phase-matched Lithium triborate (LiB3O5) crystal; conversion efficiencies as high as 58% have been observed. At 100 W of 514.5 nm output power, the average M(2) value was 1.35. To the best of our knowledge, this is the highest average power picosecond green pulsed laser. PMID:23164862

  7. Plasmon spectrum in low-dimensional electron systems over insulating cryogenic films: Screening, quantum degeneracy, and multisubband effects

    NASA Astrophysics Data System (ADS)

    Sokolov, Sviatoslav S.; Studart, Nelson

    2003-11-01

    Plasmon modes in low-dimensional (quasi-one- and quasi-two-) electron systems floating over a cryogenic (liquid helium among others) film covering a solid substrate are calculated. Screening effects on the electron-electron interaction due to the substrate are taken into account and the plasmon spectrum is evaluated in the random-phase approximation. The spectrum consists of longitudinal and transverse branches whose frequencies depend on the film thickness and the dielectric constant of the substrate. For a metal substrate the gapless longitudinal mode has a dispersion quite different from that for the bulk case. The transverse plasma mode is optical like with the gap close to the spectroscopic intersubband frequency.

  8. CRYOGENIC DEWAR

    DOEpatents

    Chamberlain, W.H.; Maseck, H.E.

    1964-01-28

    This patent relates to a dewar for storing cryogenic gase and is of the type having aii inner flask surrounded by a vacuum jacket and having a vent spout through which evaporating gas escapes. Heretofore substantial gas loss has resulted from the radiation of heat towards the flask from the warmer outer elements of the dewar. In this invention, the mask is surrounded by a thermally conducting shield which is disposed in the vacuum space between the flask and the outer elements of the dewar. The shield contacts only the vent spout, which is cooled by the evaporating gas, and thus is maintained at a temperature very close to that of the flask itself. Accordingly, heat radiated toward the flask is intercepted and conducted to the evaporating gas rather than being re-radiated towards the hask. In a liquid helium dewar of typical configniration the mention reduces the boil-off rate by approximately one-half.(AEC)

  9. Commissioning the new high power rf system for the AGS with high intensity beam

    SciTech Connect

    Brennan, J.M.; Ciardullo, D.J.; Deng, D.P; Hayes, T.; Onillon, E.; Otis, A.; Sanders, R.T.; Zaltsman, A.

    1994-08-01

    A new high power rf system has been installed in the AGS in order to raise the beam loading limit to beyond 6 {times} 10{sup 13} protons per pulse. The old system was limited to 2.2 {times} 10{sup l3} ppp by: available real power, multi-loop instability, and transient beam loading during batch filling from the Booster. The key components of the new system are: new power amplifiers in the tunnel using the Thomson-CSF TH573 300kW tetrode, rf feedback around the power stage, and reduction of the 10 cavities` R/Q by 1.8 by additional gap capacitors. Commissioning of the new rf system with high intensity beam is described. The intensity goal for the 1994 running period is 4 {times} 10{sup 13} ppp. To date, 3.7 {times} 10{sup 13} ppp has been achieved.

  10. Commissioning of helium compression system for the 12 GeV refrigerator

    SciTech Connect

    Knudsen, Peter N.; Ganni, Venkatarao; Dixon, Kelly D.; Norton, Robert O.; Creel, Jonathan D.; Arenius, Dana M.

    2014-01-01

    The compressor system used for the Jefferson Lab (JLab) 12 GeV upgrade, also known as the CHL-2 compressor system, incorporates many design changes to the typical compressor skid design to improve the efficiency, reliability and maintainability from previous systems. These include a considerably smaller bulk oil separator design that does not use coalescing elements/media, automated control of cooling oil injection based on the helium discharge temperature, a helium after-cooler design that is designed for and promotes coalescing of residual oil and a variable speed bearing oil pump to reduce oil bypass. The CHL-2 helium compression system has five compressors configured with four pressure levels that supports the three pressure levels in the cold box. This paper will briefly review several of these improvements and discuss some of the recent commissioning results.

  11. Cryogenic transfer options for exploration missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The literature of in-space cryogenic transfer is reviewed in order to propose transportation concepts to support the Space Exploration Initiative (SEI). Forty-nine references are listed and key findings are synopsized. An assessment of the current maturity of cryogenic transfer system technology is made. Although the settled transfer technique is the most mature technology, the No-Vent Fill technology is maturing rapidly. Future options for development of cryogenic transfer technology are also discussed.

  12. The evolution of cryogenic safety at Fermilab

    SciTech Connect

    Stanek, R.; Kilmer, J.

    1992-12-01

    Over the past twenty-five years, Fermilab has been involved in cryogenic technology as it relates to pursuing experimentation in high energy physics. The Laboratory has instituted a strong cryogenic safety program and has maintained a very positive safety record. The solid commitment of management and the cryogenic community to incorporating safety into the system life cycle has led to policies that set requirements and help establish consistency for the purchase and installation of equipment and the safety analysis and documentation.

  13. Investigation of cryogenic rupture disc design

    NASA Technical Reports Server (NTRS)

    Keough, J. B.; Oldland, A. H.

    1973-01-01

    Rupture disc designs of both the active (command actuated) and passive (pressure ruptured) types were evaluated for performance characteristics at cryogenic temperatures and for capability to operate in a variety of cryogens, including gaseous and liquid fluorine. The test results, coupled with information from literature and industry searches, were used to establish a statement of design criteria and recommended practices for application of rupture discs to cryogenic rocket propellant feed and vent systems.

  14. Cryogenic treatment of gas

    DOEpatents

    Bravo, Jose Luis; Harvey, III, Albert Destrehan; Vinegar, Harold J.

    2012-04-03

    Systems and methods of treating a gas stream are described. A method of treating a gas stream includes cryogenically separating a first gas stream to form a second gas stream and a third stream. The third stream is cryogenically contacted with a carbon dioxide stream to form a fourth and fifth stream. A majority of the second gas stream includes methane and/or molecular hydrogen. A majority of the third stream includes one or more carbon oxides, hydrocarbons having a carbon number of at least 2, one or more sulfur compounds, or mixtures thereof. A majority of the fourth stream includes one or more of the carbon oxides and hydrocarbons having a carbon number of at least 2. A majority of the fifth stream includes hydrocarbons having a carbon number of at least 3 and one or more of the sulfur compounds.

  15. Commissioning of a multiple-frequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP

    NASA Astrophysics Data System (ADS)

    Kruschwitz, B. E.; Kelly, J. H.; Dorrer, C.; Okishev, A. V.; Waxer, L. J.; Balonek, G.; Begishev, I. A.; Bittle, W.; Consentino, A.; Cuffney, R.; Hill, E.; Marozas, J. A.; Moore, M.; Roides, R. G.; Zuegel, J. D.

    2013-02-01

    A one-dimensional smoothing by spectral dispersion (SSD) demonstration system for smoothing focal-spot nonuniformities using multiple modulation frequencies (multi-FM SSD) was commissioned on one long-pulse beamline of OMEGA EP—the first use of such a system in a high-energy laser. System models of frequency modulation-to-amplitude modulation (FM-to-AM) conversion in the OMEGA EP beamline and final optics were used to develop an AM budget. The AM budget in turn provided a UV power limit of 0.85 TW, based on accumulation of B-integral in the final optics. The front end of the demonstration system utilized a National Ignition Facility preamplifier module (PAM) with a custom SSD grating inserted into the PAM's multipass amplifier section. The dispersion of the SSD grating was selected to cleanly propagate the dispersed SSD bandwidth through various pinholes in the system while maintaining sufficient focal-spot smoothing performance. A commissioning plan was executed that systematically introduced the new features of the demonstration system into OMEGA EP. Ultimately, the OMEGA EP beamline was ramped to the UV power limit with various pulse shapes. The front-end system was designed to provide flexibility in pulse shaping. Various combinations of pickets and nanosecond-scale drive pulses were demonstrated, with multi-FM SSD selectively applied to portions of the pulse. Analysis of the dispersion measured by the far-field diagnostics at the outputs of the infrared beamline and the frequency-conversion crystals indicated that the SSD modulation spectrum was maintained through both the beamline and the frequency-conversion process. At the completion of the plan, a series of equivalent-target-plane measurements with distributed phase plates installed were conducted that confirmed the expected timeintegrated smoothing of the focal spot.

  16. Cryogenic Technology Development for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2007-01-01

    This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary.

  17. Design and evaluation of thermodynamic vent/screen baffle cryogenic storage system. [for space shuttles, space tugs, and spacelab

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1975-01-01

    A comprehensive analytical program was performed to compare an integrated thermodynamic vent/screen baffle orbital cryogenic propellant storage and transfer system with other concepts. The screen systems were found to be 20% to 29% lighter in weight than a propulsively accelerated Tug-scale LH2/LO2 resupply module. The screen systems were compared with small-scale supercritical storage systems for the space shuttle fuel cell reactant and life support system fluid supply and were lighter by up to 556 kg (1225 lb) for the extended 30-day mission. When compared with high-pressure gas storage for the spacelab atmosphere supply, the screen system saved 79% of the inert system weight for the 30-day mission. An experimental program found that heat flux rates up to 9,450 watts/sq m (3,000 Btu/hr-sq ft) degraded the LH2 bubble point performance of eight screens by a maximum of 12.5%. No effects of helium pressurant, screen material, or LH2 superheat were observed.

  18. Design of a simple cryogenic system for ultraviolet-visible absorption spectroscopy with a back-reflectance fiber optic probe.

    PubMed

    Vinyard, Andrew; Hansen, Kaj A; Byrd, Ross; Stuart, Douglas A; Hansen, John E

    2014-01-01

    We report a convenient and inexpensive technique for the rapid acquisition of absorption spectra from small samples at cryogenic temperatures using a home built cryostat with novel collection optics. A cylindrical copper block was constructed with a coaxial bore to hold a 4.00 mm diameter electron paramagnetic resonance (EPR) tube and mounted on a copper feed in thermal contact with liquid nitrogen. A 6.35 mm diameter hole was bored into the side of the cylinder so a fiber optic cable bundle could be positioned orthogonally to the EPR tube. The light passing through the sample is reflected off of the opposing surfaces of the EPR tube and surrounding copper, back through the sample. The emergent light is then collected using the fiber optic bundle and analyzed using a dispersive spectrometer. Absorption spectra for KMnO4 were measured between 400 and 700 nm. Absorption intensity at 506, 525, 545, and 567 nm was found to be proportional to concentration, displaying Beer's law-like behavior. The EPR tube had an internal diameter of 3.2 mm; the double pass of the probe beam through the sample affords a central path length of about 6.4 mm. Comparing these measurements with those recorded on a conventional tabletop spectrometer using a cuvette with a 10.00 mm path length, we consistently found a ratio between intensities of 0.58 rather than the anticipated 0.64. These 6% smaller values we attribute to the curvature of the EPR tube and transmission/reflection losses. This system is particularly well-suited to studying the kinetics and dynamics of chemical reactions at cryogenic temperatures. The rapid response (100 ms) and multiplex advantage provided the opportunity of recording simultaneous time courses at several wavelengths following initiation of a chemical reaction with a pulsed laser source. PMID:24405962

  19. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  20. Dosimetric and QA aspects of Konrad inverse planning system for commissioning intensity-modulated radiation therapy.

    PubMed

    Deshpande, Shrikant; Sathiyanarayanan, V K; Bhangle, Janhavi; Swamy, Kumara; Basu, Sumit

    2007-04-01

    The intensity-modulated radiation therapy (IMRT) planning is performed using the Konrad inverse treatment planning system and the delivery of the treatment by using Siemens Oncor Impression Plus linear accelerator (step and shoot), which has been commissioned recently. The basic beam data required for commissioning the system were generate. The quality assurance of relative and absolute dose distribution was carried out before clinical implementation. The salient features of Konrad planning system, like dependence of grid size on dose volume histogram (DVH), number of intensity levels and step size in sequencer, are studied quantitatively and qualitatively.To verify whether the planned dose [from treatment planning system (TPS)] and delivered dose are the same, the absolute dose at a point is determined using CC01 ion chamber and the axial plane dose distribution is carried out using Kodak EDR2 in conjunction with OmniPro IMRT Phantom and OmniPro IMRT software from Scanditronix Wellhofer. To obtain the optimum combination in leaf sequencer module, parameters like number of intensity levels, step size are analyzed. The difference between pixel values of optimum fluence profile and the fluence profile obtained for various combinations of number of intensity levels and step size is compared and plotted. The calculations of the volume of any RT structure in the dose volume histogram are compared using grid sizes 3 mm and 4 mm. The measured and planned dose at a point showed good agreement (<3%) except for a few cases wherein the chamber was placed in a relatively high dose gradient region. The axial plane dose distribution using film dosimetry shows excellent agreement (correlation coefficient >0.97) in all the cases. In the leaf sequencer module, the combination of number of intensity level 7 with step size of 3 is the optimal solution for obtaining deliverable segments. The RT structure volume calculation is found to be more accurate with grid size of 3 mm for