Science.gov

Sample records for cryosorption vacuum pumping

  1. Chemical oxygen-iodine laser with cryosorption vacuum pump

    NASA Astrophysics Data System (ADS)

    Vetrovec, John

    2000-05-01

    In a chemical oxygen-iodine laser (COIL), chemically prepared, gaseous gain medium at 3-10 Torr pressure is drawn through the laser cavity by vacuum suction. Multiple-stage vacuum pumps such as Roots blowers or steam ejectors are typically used to receive and compress the gas flowing from the laser and exhaust it to the atmosphere. The size and weight of such vacuum pumps present a significant challenge to engineering and packaging a transportable COIL system.

  2. Chemical oxygen-iodine laser with a cryosorption vacuum pump with different buffer gases

    NASA Astrophysics Data System (ADS)

    Xu, Mingxiu; Fang, Benjie; Sang, Fengting; Geng, Zicai; Li, Yongzhao; JIn, Yuqi

    2015-02-01

    A traditional pressure recovery system is the major obstacle to mobile chemical oxygen-iodine laser (COIL) for its huge volume. A cryosorption vacuum pump was used as the pressure recovery system for different buffer gases. It made COIL become a flexible, quiet and pressure-tight. Experiments were carried out on a verti- COIL, which was designed for N2 and energized by a square-pipe jet singlet oxygen generator (JSOG). The output power with CO2 was 27.3% lower than that with N2, but the zeolite bed showed an adsorption capacity threefold higher for CO2 than for N2 in the continuous operation. The great volume efficiency interested researchers.

  3. Cryogenic Subsystem to Provide for Nominal Operation and Fast Regeneration of the ITER Primary Cryo-sorption Vacuum Pumps

    SciTech Connect

    Kalinine, V.; Haange, R.; Shatil, N.; Millet, F.; Guillemet, L.; Wykes, M.; Day, C.; Mack, A.

    2004-06-23

    The ITER cryogenic system includes provision for cooling the eight cryo-sorption pumps that maintain vacuum conditions within the tokamak plasma vacuum vessel. The eight pumps are operated such that at any given instant four pumps pump the plasma vessel and four pumps are undergoing four sequential stages of regeneration, each having a duration of 150 s. The regeneration includes a cold helium exhaust stage, warm-up from 4.5 K to 80-100 K, desorption and pump-out of released gases and cool-down from 80-100 K to 4.5 K. Thus after every 150 s of operation one of the four pumps is taken off-line for regeneration and another just-regenerated pump is restored to the set of four pumps that provide the nominal pumping.This paper presents the current design status of the cryogenic subsystems for cooling and heating the cryopumps during pumping and fast regeneration and details of the fluid-dynamic numerical analysis of the cryopumps (Vincenta code) used to study the transient behaviour of helium flow in the cryo-sorption panels during regeneration.

  4. Cryogenic Subsystem to Provide for Nominal Operation and Fast Regeneration of the ITER Primary Cryo-sorption Vacuum Pumps

    NASA Astrophysics Data System (ADS)

    Kalinine, V.; Haange, R.; Shatil, N.; Millet, F.; Guillemet, L.; Wykes, M.; Day, C.; Mack, A.

    2004-06-01

    The ITER cryogenic system includes provision for cooling the eight cryo-sorption pumps that maintain vacuum conditions within the tokamak plasma vacuum vessel. The eight pumps are operated such that at any given instant four pumps pump the plasma vessel and four pumps are undergoing four sequential stages of regeneration, each having a duration of 150 s. The regeneration includes a cold helium exhaust stage, warm-up from 4.5 K to 80-100 K, desorption and pump-out of released gases and cool-down from 80-100 K to 4.5 K. Thus after every 150 s of operation one of the four pumps is taken off-line for regeneration and another just-regenerated pump is restored to the set of four pumps that provide the nominal pumping. This paper presents the current design status of the cryogenic subsystems for cooling and heating the cryopumps during pumping and fast regeneration and details of the fluid-dynamic numerical analysis of the cryopumps (Vincenta code) used to study the transient behaviour of helium flow in the cryo-sorption panels during regeneration.

  5. Carbonaceous adsorbents in cryosorption pump applications; Future trends

    NASA Astrophysics Data System (ADS)

    Tripathi, S. Vijai; Kasthurirengan, S.; Udgata, S. S.; Gangradey, R.; Krishnamoorthy, V.; Surendra, Bhati

    2013-06-01

    Use of granular activated carbon in commercial cryosorption pumps is now, more or less well established. The development of advanced polymeric precursor based activated carbon adsorbents in various forms has opened a flood gate of possibilities vis-a-vis improvements in performance of cryosorption pumps, both in rate of adsorption and their ultimate capacity. This paper gives a summary of indigenous efforts towards this direction.

  6. Studies of cryocooler based cryosorption pump with activated carbon panels operating at 11K

    NASA Astrophysics Data System (ADS)

    Kasthurirengan, S.; Behera, Upendra; Gangradey, Ranjana; Udgata, Swarup; Krishnamoorthy, V.

    2012-11-01

    Cryosorption pump is the only solution for pumping helium and hydrogen in fusion reactors. It is chosen because it offers highest pumping speed as well as the only suitable pump for the harsh environments in a tokamak. Towards the development of such cryosorption pumps, the optimal choice of the right activated carbon panels is essential. In order to characterize the performance of the panels with indigenously developed activated carbon, a cryocooler based cryosorption pump with scaled down sizes of panels is experimented. The results are compared with the commercial cryopanel used in a CTI cryosorption (model: Cryotorr 7) pump. The cryopanel is mounted on the cold head of the second stage GM cryocooler which cools the cryopanel down to 11K with first stage reaching about ~50K. With no heat load, cryopump gives the ultimate vacuum of 2.1E-7 mbar. The pumping speed of different gases such as nitrogen, argon, hydrogen, helium are tested both on indigenous and commercial cryopanel. These studies serve as a bench mark towards the development of better cryopanels to be cooled by liquid helium for use with tokamak.

  7. Cryosorption Pumps for a Neutral Beam Injector Test Facility

    SciTech Connect

    Dremel, M.; Mack, A.; Day, C.; Jensen, H.

    2006-04-27

    We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

  8. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, Ganapati R.; Kneisel, Peter

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area.

  9. Metal sponge for cryosorption pumping applications

    DOEpatents

    Myneni, G.R.; Kneisel, P.

    1995-12-26

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs.

  10. TIMO-2-A cryogenic test bed for the ITER cryosorption pumps

    NASA Astrophysics Data System (ADS)

    Haas, Horst; Day, Christian; Herzog, Friedhelm

    2012-06-01

    The Karlsruhe Institute of Technology (KIT) has been carrying out research and development in the field of vacuum cryopumps for nuclear fusion devices over the last decade. Together with the development activities also experience in the operation of the needed cryogenic systems necessary for such type of large scale cryopumps was collected. Due to the specific requirements of a large fusion device, such as ITER, the cryogenic distribution is based on gaseous helium at the needed temperature levels rather than liquid nitrogen or liquid helium. KIT has set up a large scale research facility, called TIMO-2, fully equipped with supercritical helium supply at large flow rates to be able to perform cryogenic tests of components under ITER-relevant conditions. During first test campaigns at TIMO-2 with a large scale model cryopump the ITER cryosorption vacuum pumping concept was successfully validated. After major refurbishments and upgrades, the TIMO-2 facility is now ready for the acceptance tests of the ITER torus cryopump. This paper describes the modified test facility TIMO-2 with particular attention to the available cryogenic supply at different temperature levels. The new 100 K helium supply facility will be described in detail.

  11. High Specific Surface area Aerogel Cryoadsorber for Vacuum Pumping Applications

    SciTech Connect

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    1998-12-22

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  12. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  13. Studies of adsorption characteristics of activated carbons down to 4.5 K for the development of cryosorption pumps for fusion systems

    SciTech Connect

    Kasthurirengan, S.; Behera, U.; Vivek, G. A.; Krishnamoorthy, V.; Gangradey, R.; Udgata, S. S.; Tripati, V. S.

    2014-01-29

    Cryosorption pump is the only possible device to pump helium, hydrogen and its isotopes in fusion environment, such as high magnetic field and high plasma temperatures. Activated carbons are known to be the most suitable adsorbent in the development of cryosorption pumps. For this purpose, the data of adsorption characteristics of activated carbons in the temperature range 4.5 K to 77 K are needed, but are not available in the literature. For obtaining the above data, a commercial micro pore analyzer operating at 77 K has been integrated with a two stage GM cryocooler, which enables the cooling of the sample temperature down to 4.5 K. A heat switch mounted between the second stage cold head and the sample chamber helps to raise the sample chamber temperature to 77 K without affecting the performance of the cryocooler. The detailed description of this system is presented elsewhere. This paper presents the results of experimental studies of adsorption isotherms measured on different types of activated carbons in the form of granules, globules, flake knitted and non-woven types in the temperature range 4.5 K to 10 K using Helium gas as the adsorbate. The above results are analyzed to obtain the pore size distributions and surface areas of the activated carbons. The effect of adhesive used for bonding the activated carbons to the panels is also studied. These results will be useful to arrive at the right choice of activated carbon to be used for the development of cryosorption pumps.

  14. Minimisation of the Hydrogenic Inventory of the ITER Neutral Beamline and Torus Cryo-Sorption Pumps

    SciTech Connect

    Wykes, M

    2005-07-15

    The tritium inventory of all the ITER torus cryopumps open to the vacuum vessel has an administrative limit of 120 g, including tritium bound to hydrocarbon compounds formed by combination of fuel gas with carbon plasma-facing components. The total hydrogenic inventory of each of the torus cryopumps has to be less than that resulting in a deflagration pressure of 0.2 MPa (the design pressure of the ITER vacuum vessel of which the torus and neutral beam cryopump pressure boundaries are a part) following a hydrogen-air ignition. Since the neutral beamline fuelling is with protium and deuterium only, these pumps do not significantly contribute to the 120 g tritium limit. The hydrogenic inventories of both the torus and neutral beam cryopumps add to the total for the vacuum vessel following an in-vessel ingress of coolant from a failed water-cooled component, wherein hydrogen is produced from steam reacting with hot metallic dust. There is therefore a large incentive to keep the peak inventories of both the torus and neutral beamline cryopumps as low as practicable. The paper describes the regeneration patterns of the torus and neutral beamline cryopumps that are used to attain this goal while achieving the required vacuum conditions commensurate with the reference ITER pulse scenarios.

  15. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  16. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  17. Vacuum system pump down analysis

    SciTech Connect

    Rohrdanz, D.R.

    1990-08-01

    My assignment on the SP-100 Vacuum Vessel Vacuum System Team was to perform a transient pump down analysis for the vacuum vessel that will house the SP-100 reactor during testing. Pump down time was calculated for air and helium. For all cases the proposed vacuum system will be able to pump down the vessel within the required time. The use of a larger rotary piston pump (DUO250) improves the pump down time by 35 minutes and therefore should be considered. The 6-inch duct for the roughing line is optimal, however, because all cases are well below the 24 hour time frame, the 4-inch duct is sufficient. The use of the single turbomolecular pump during pump down is sufficient. A pump down with helium in the vessel and a helium inleakage delays the time to achieve the base pressure marginally and is acceptable.

  18. SHINE Vacuum Pump Test Verification

    SciTech Connect

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this

  19. Demonstrations with a Vacuum: Old Demonstrations for New Vacuum Pumps.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1989-01-01

    Explains mechanisms of 19th-century vacuum pumps. Describes demonstrations using the pump including guinea and feather tube, aurora tube, electric egg, Gassiots cascade, air mill, bell in vacuum, density and buoyancy of air, fountain in vacuum, mercury shower, palm and bladder glasses, Bacchus demonstration, pneumatic man-lifter, and Magdeburg…

  20. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  1. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  2. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  3. Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Feldman, Jason; Svehla, Danielle

    2003-01-01

    Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric

  4. A High Vacuum High Speed Ion Pump

    DOE R&D Accomplishments Database

    Foster, J. S. Jr.; Lawrence, E. O.; Lofgren, E. J.

    1952-08-27

    A vacuum pump based on the properties of a magnetically collimated electric discharge is described. It has a speed in the range 3000 to 7000 liters a second and a base pressure in the order of 10{sup -6} mm. (auth)

  5. Extended ion pumped vacuum friction test

    NASA Technical Reports Server (NTRS)

    Hammel, R. L.

    1971-01-01

    Boundary layer friction data under ion pumped vacuum was taken for sixteen material couples. The test series was an extension of a previous study of the effects of modified ion pumped environments. Sliding distances imposed in the present effort greatly exceeded any studied in the previous contiguous, flight or ground tests. Wear out of specific couples, in particular, thin film lubricants was noted. The behavior of the test hardware including wear out of the mechanisms was noted. As a result, the impact of test interruption was observed for several test couples. Recovery of the friction upon re-establishing sliding in vacuum was generally rapid. The results of the extended sliding study reinforce the previous conclusion that sliding distance (mechanical history) is the primary factor in establishing the force limiting boundary layer friction. General friction value under the extended sliding confirm those observed in previous orbital and the related ground test studies.

  6. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  7. A new oil-free mechanical vacuum pump

    NASA Astrophysics Data System (ADS)

    Bez, E.; Guarnaccia, D.; Hablanian, M.

    1988-09-01

    A number of entirely oil-free, four-stage reciprocating-piston vacuum pumps which produce an ultimate pressure of approximately 15 mTorr have been in operation for periods approaching two years. These pumps have been used for pre-evacuation of high and ultra-high vacuum chambers and devices, backing of turbomolecular pumps, molecular drag pumps and Roots-type blowers, regeneration of cryo-pumps, pumping of vacuum furnances and process chambers for degassing solids and liquids. Basic performance characteristics are generally similar to conventional mechanical vacuum pumps with a comparable ultimate pressure but with the advantage of being free of hydrocarbons in the residual gas content. Practical operational experience regarding longevity, maintenance requirements, inlet pressure, and power relationships are presented.

  8. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    SciTech Connect

    2001-08-01

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  9. A Road Map to Extreme High Vacuum

    SciTech Connect

    Myneni, Ganapati Rao

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1× 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEG’s [3] for turbo molecular pumps will be presented.

  10. 32. VIEW LOOKING WEST SHOWING UNIT #3. VACUUM PUMP ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW LOOKING WEST SHOWING UNIT #3. VACUUM PUMP ON LEFT, CONDENSER TURBINE ON RIGHT, JET CONDENSER IN CENTER REAR - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  11. 4. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Buckstaff Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 Mile North of U.S. Highway 70, Hot Springs, Garland County, AR

  12. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Hale Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. Testing of vacuum pumps for APT/LEDA RFQ

    SciTech Connect

    Kishiyama, K.; Shen, S.; Behne, D.; Wilson, N.G.; Schrage, D.; Valdiviez, R.

    1998-12-31

    Two vacuum systems were designed and built for the RFQ (Radio Frequency Quadrupole) cavity in the APT/LEDA (Low Energy Demonstration Accelerator) linac. The gas load from the proton beam required very high hydrogen pump speed and capacity, The gas load from the high power RF windows also required very high hydrogen pump speed for the RF window vacuum system. Cryopumps were chosen for the RFQ vacuum system and ST185 sintered nonevaporable getter (NEG) cartridges were chosen for the RF window vacuum system. Hydrogen pump speed and capacity measurements were carried out for a commercial cryopump and a NEG pump. This paper will discuss the test procedures and the results of the measurements.

  14. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  15. Better vacuum by removal of diffusion-pump-oil contaminants

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1975-01-01

    The complex problem of why large space simulation chambers do not realize true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance were identified, and some advances in vacuum distillation-fractionation technology were achieved which resulted in a two-decade-or-more lower ultimate pressure. Data are presented to show the overall or individual contaminating effects of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and for reclaiming contaminated oil by high-vacuum molecular distillation are described. Conceptual self-cleansing designs and operating procedures are proposed for modifying large diffusion pumps into high-efficiency distillation devices. The potential exists for application of these technological advancements to other disciplines, such as medicine, biomedical materials, metallurgy, refining, and chemical (diffusion-enrichment) processing.

  16. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  17. Ultra-high vacuum force, low air consumption pumps

    SciTech Connect

    Lasto, C.S.

    1989-11-14

    This patent describes a multi stage ejector assembly. It includes a solid elongate housing, a longitudinal cylindrical bore through the housing comprising a first venturi pump having a first converging-diverging venturi inlet nozzle opening through a first vacuum chamber in the cylindrical bore into the converging entrance of a first exit passage which opens through a second vacuum chamber into a second vacuum chamber into a second exit passage communicating with an outlet end of the cylindrical bore, first and second transverse bores inwardly from a side of the housing and each opening into the cylindrical bore at the first vacuum chamber, and a third transverse bore inwardly from a side of the housing and opening into the cylindrical bore at the second vacuum chamber. The first transverse bore comprising a second venturi pump having a second venturi inlet nozzle having an air flow consumption which is from about 5 to 15 times smaller than the air flow consumption of the first venturi inlet nozzle. The second venturi inlet nozzle opening through a maximum vacuum chamber into a converging-diverging venturi exit passage which opens into the cylindrical bore at the first vacuum chamber of the first venturi pump adjacent the converging entrance of the first exit passage.

  18. PNEUMATIC PUMPING TEST FOR SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. etermination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. ressure propaga...

  19. High vacuum portable pumping station suitable for accelerator use

    SciTech Connect

    Stattel, P.; Briggs, J.; DeBoer, W.; Skelton, R.

    1985-01-01

    The need for a Portable Pump Station for Ultra High Vacuum use became apparent when the ''Isabelle'' collider was first being designed. A Portable Pump Station had to be developed which contained the following features: maneuverability, compact size, rugged, self protected against various failures, capable of running unattended, and capable of reaching 10/sup -9/ torr. The Pump Station that was developed and other variations are the subject of this paper. Emphasis will be on the Isabelle and HITL versions. 1 ref., 2 figs., 1 tab.

  20. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  1. Tritium contamination and decontamination of sealing oil for vacuum pump

    SciTech Connect

    Takeishi, T.; Kotoh, K.; Kawabata, Y.; Tanaka, J.I.; Kawamura, S.; Iwata, M.

    2015-03-15

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.

  2. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  3. Large area, surface discharge pumped, vacuum ultraviolet light source

    DOEpatents

    Sze, R.C.; Quigley, G.P.

    1996-12-17

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source is disclosed. A contamination-free VUV light source having a 225 cm{sup 2} emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm{sup 2} at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing. 3 figs.

  4. Fusion reactor high vacuum pumping: Charcoal cryosorber tritium exposure results

    SciTech Connect

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M. )

    1991-01-01

    Recent experiments, have shown the practically of using activated charcoal (coconut charcoal) at 4{degrees}K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were shown to be satisfactory. The long term effects of tritium on the charcoal/cement system developed by Grumman and LLNL were not known and a program was undertaken to see what, if any, effect long term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77{degrees}K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately half way through and after the exposure. Modest effects were noted which would not seriously restrict charcoal's use as a cryosorber for fusion reactor high vacuum pumping applications. 4 refs., 8 figs.

  5. Mathematical models of gear rattle in Roots blower vacuum pumps

    NASA Astrophysics Data System (ADS)

    Mason, Joanna; Homer, Martin; Eddie Wilson, R.

    2007-12-01

    This paper is concerned with the modelling of gear rattle in Roots blower vacuum pumps. Analysis of experimental data reveals that the source of the noise and vibration problem is the backlash nonlinearity due to gear teeth losing and re-establishing contact. We derive simple non-smooth models for the lightly damped, lightly loaded dynamics of the pump. The models include a time-dependent forcing term which arises from the eccentric mounting of the gears acting at the gross rotation rate. We use a combination of explicit construction, asymptotic methods and numerical techniques to classify complicated dynamic behaviour in realistic parametric regimes. We first present a linear analysis of permanent-contact motions, and derive upper bounds on eccentricity for silent operation. We then develop a nonlinear analysis of 'backlash oscillations', where the gears lose and re-establish contact, corresponding to noisy pump operation. We show that noisy solutions can coexist with silent ones, explaining why geared systems can rattle intermittently. Finally, we consider possible design solutions, and show implications for pump design in terms of existence and stability of solutions.

  6. Pressure distribution along the AGS vacuum chambers with new types of pump out conduits

    SciTech Connect

    Nayak, S.; Mapes, M.; Smart, L.; Weiss, D.

    2015-10-28

    The AGS HEBT and ring vacuum system is monitored by the discharge current of the magnet ion pumps, which is proportional to the pressure at the inlet port of these ion pumps. The discharge current is measured and suitably calibrated to indicate the ion pump pressure. In order to calculate the vacuum chamber pressure from the ion pump pressure, a detailed analysis is essential to compute their difference in different scenarios. Such analysis has been carried out numerically in the past for the system with the older type of pump out conduits, and similar analysis using FEM in ANSYS is presented in this paper with the newer type of pump out conduit.

  7. A large high vacuum, high pumping speed space simulation chamber for electric propulsion

    NASA Technical Reports Server (NTRS)

    Grisnik, Stanley P.; Parkes, James E.

    1994-01-01

    Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.

  8. Design Document for Control Dewar and Vacuum Pump Platforms

    SciTech Connect

    Rucinksi, R.; /Fermilab

    1997-08-27

    This engineering note documents the design of the control dewar and vacuum pump platform that is to be installed on the D-Zero detector. It's purpose is twofold. Firstly it is a summary and repository of the final design calculations of the structure. Secondly, it documents that design follows the American Institute of Steel Construction (AISC) manual and applicable OSHA requirements with respect to walking working surfaces. The information contained in the main body of this note is supported by raw calculations included as the appendix. The platform is a truss type frame strucrure constructed primarily of rectangular steel tubing. The upper platform is for support of the control dewar (cryogenic/electrical interface for the solenoid), visible light photon counter (VLPC) cryogenic bayonet can, and infrequently, personnel during the connection and disconnection of the detector to building services. Figure 1 shows a layout of the structure as mounted on the detector and with the installed equipment. The connection of the platform to the detector is not conventional. Two main booms cantilever the structure to a location outside of the detector. The mounting location and support booms allow for the uninhibited motion of the detector components.

  9. The effect of vacuum pump oil on the chemotactic behavior of soil bacteria

    SciTech Connect

    Dunifon, R.E.; Hazen, T.C.

    1990-01-01

    The use of biodegradation in the cleanup and transformation of waste materials is an economical and environmentally safe practice. Using chemotaxis, or the movement of bacteria toward or away from compounds, in biodegradation is an area that is being studied at the Savannah River Laboratory. This study investigates the inhibition of vacuum pump oil on the chemotaxis of soil bacteria. It was found that vacuum pump oil does have an inhibitory effect on the movement of bacteria. This inhibition will have to be considered when studying the possibility of using chemotaxis to degrade vacuum pump oil, or any other petroleum products. 5 refs., 5 figs.

  10. Vacuum hand pump apparatus for collecting water samples from a horizontal intragravel pipe

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.

    1996-01-01

    We describe a lightweight, portable vacuum hand pump apparatus for use in collecting water samples from horizontal intragravel pipe samplers buried in the stream bottom. The apparatus is easily fabricated from relatively inexpensive materials available at many laboratory supply houses.

  11. Under Pressure: Activities with a Vacuum Pump (and Some Marshmallows) Help Students Learn about Pressure.

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    Introduces a science demonstration that illustrates the effects of pressure and gravity on humans using a marshmallow man and a vacuum pump. Demonstrates the same concept with shaving cream, balloons, and boiling water without raising temperature. (YDS)

  12. D0 Solenoid Upgrade Project: Vacuum Pumping Calculations for the D0 Solenoid

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-08-02

    This engineering note documents the calculations done to determine the vacuum pumping speed for the D-Zero solenoid. The raw calculations are attached. A summary of the results are listed. The vacuum pumping speed of the solenoid is determined by the conductance of the pumping path. At higher pressure ranges during initial pumpdown, the conductances will be rather high. Calculations were not done for the transient pumpdown period, only the steady state type pumping situation. The pressure is assumed to be on the order of 10E-7 torr. This is the free molecular flow regime based on Knudsen number. This pressure regime is also where the pumping speed would be least. The conductances were calculated based on pumping helium gas at a temperature of 300 Kelvin. The total conductance of the pumping path from the solenoid to the inlet of the turbomolecular pump is 11.8 L/s. The effective pumping speed of a 1000 L/s turbo pump attached to this pumping path is 11.7 L/s. The minimum required pumping speed for design purposes was set at 4.3 L/s. This value was arrived at by assuming a warm leak size (10E-8 atm-cc/sec) was not detected during fabrication of the solenoid. It is then assumed that the leak leaks cold liquid helium into the vacuum space. With this leak rate, a 4.3 L/s pumping speed would be able to maintain a 2 x 10E-7 torr pressure in the solenoid vacuum jacket. The solenoid would be able to be operated with this small leak with continuous pumping.

  13. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  14. Design of a tritium-compatible vacuum pumping system for the Compact Ignition Tokamak

    SciTech Connect

    Haines, J.R.

    1987-01-01

    The conceptual design for the Compact Ignition Tokamak (CIT) vacuum pumping system features high-speed, magnetic-bearing turbomolecular pumps (TMPs), metal-sealed scroll pumps for roughing and backing, and all-metal valves and flange seals. Because the plasma chamber exhaust is handled in a throughput instead of hold-up fashion with no organic seal or lubricating materials exposed to the vacuum stream, inventories of tritium, which are vulnerable to release during an accident and which inhibit maintenance of the vacuum pumping equipment, are minimized. To achieve an initial base pressure of 1.3 /times/ 10/sup /minus/6/ Pa in the plasma chamber, the design includes a large vacuum pumping duct and multiple high-speed TMPs arranged in two stages. The design studies discussed in this paper examine the feasibility and cost impact of providing a low-tritium-inventory, easily maintained vacuum pumping system for a deuterium-tritium (D-T) burning tokamak. 7 refs., 3 figs., 2 tabs.

  15. Monte Carlo simulations of the vacuum performance of differential pumps at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, C.; Shu, D.; Kuzay, T. M.; Kersevan, R.

    1996-09-01

    Monte Carlo computer simulations have been successfully applied in the design of vacuum systems. These simulations allow the user to check the vacuum performance without the need of making a prototype of the vacuum system. In this paper we demonstrate the effectiveness and aptitude of these simulations in the design of differential pumps for synchrotron radiation beamlines. Eventually a good number of the beamline front ends at the Advanced Photon Source (APS) will use differential pumps to protect the synchrotron storage ring vacuum. A Monte Carlo computer program is used to calculate the molecular flow transmission and pressure distribution across the differential pump. A differential pump system, which consists of two 170 l/s ion pumps with three conductance-limiting apertures, was previously tested on an APS insertion-device beamline front end. Pressure distribution measurements using controlled leaks demonstrated a pressure difference of over two decades across the differential pump. A new differential pump utilizes a fixed mask between two 170 l/s ion pumps. The fixed mask, which has a conical channel with a small cross section of 4.5×4.5 mm2 in the far end, is used in the beamline to confine the photon beam. Monte Carlo simulations indicate that this configuration with the fixed mask significantly improves the pressure reduction capability of the differential pump, to ˜3×10-5, within the operational range from ˜10-4 to 10-10 Torr. The lower end of pressure is limited by outgassing from front-end components and the higher end by the pumping ability of the ion pump.

  16. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    EPA Science Inventory

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  17. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  18. Fluid Dynamics of Small, Rugged Vacuum Pumps of Viscous-Drag Type

    NASA Technical Reports Server (NTRS)

    Russell, John M.

    2002-01-01

    The need to identify spikes in the concentration of hazardous gases during countdowns to space shuttle launches has led Kennedy Space Center to acquire considerable expertise in the design, construction, and operation of special-purpose gas analyzers of mass-spectrometer type. If such devices could be miniaturized so as to fit in a small airborne package or backpack them their potential applications would include integrated vehicle health monitoring in later-generation space shuttles and in hazardous material detection in airports, to name two examples. The bulkiest components of such devices are vacuum pumps, particularly those that function in the low vacuum range. Now some pumps that operate in the high vacuum range (e.g. molecular-drag and turbomolecular pumps) are already small and rugged. The present work aims to determine whether, on physical grounds, one may or may not adopt the molecular-drag principle to the low-vacuum range (in which case viscous-drag principle is the appropriate term). The deliverable of the present effort is the derivation and justification of some key formulas and calculation methods for the preliminary design of a single-spool, spiral-channel viscous-drag pump.

  19. Study on Design of Rotor Profile for the Twin Screw Vacuum Pump with Single Thread Tooth

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Guo, B.; Geng, M. F.

    2015-08-01

    The trapezoidal profile is always used as part of tooth profile in the screw vacuum pump. However, interferential phenomenon occurs when using trapezoidal tooth profile. The arc is added to the trapezoidal profile to obtain the self-conjugate curve. The geometric characters of new profiles are compared with the old ones from view point of area of leakage triangle, length of contacting line, area utility coefficient, and etc. The rotor with the selfconjugate curve has characteristics of the small axial leakage area. Radial leakage from the carryover was within the same volume and would not influence the mass flow rate of the vacuum pump. High ultimate vacuum can be reached by utilizing this profile.

  20. Impurity control and vacuum pumping system design and analysis for next-generation tokamaks

    SciTech Connect

    Haines, J.R.

    1985-01-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) preconceptual design. Efforts concentrated on the pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. Analysis results indicate that the limiter/vacuum pumping system design provides marginally adequate helium ash removal. Difficulties in providing adequate helium ash removal for more compact or higher fusion-power-density devices are addressed. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs.

  1. Windowless transition between atmospheric pressure and high vacuum via differential pumping for synchrotron radiation applications.

    PubMed

    Gog, T; Casa, D M; Kuzmenko, I; Krakora, R J; Bolin, T B

    2007-07-01

    A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in-air sample environment and the high-vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X-ray beam from a modern third-generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X-ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X-rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high-vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X-rays, possible applications are discussed in the context of coherent and small-angle scattering. PMID:17587659

  2. Leak testing of cryogenically pumped large-volume high-vacuum systems

    NASA Astrophysics Data System (ADS)

    Sherlock, Charles N.

    1988-01-01

    The problems that may occur in the cryogenically pumped large-volume high-vacuum chambers (LVHVCs), used for the environmental testing of aerospace components and systems, are examined. Consideration is given to the designs of the LVHVCs and the cryogenic pumps. In the procedure of leak testing with tracer gas, the success of testing depends on attaining the required test sensitivity with speed, economy, and reliability. The steps required to speed up the leak location phase of the leak testing procedure and to thoroughly clean every penetration (i.e., fitting or nozzle) of the system are discussed.

  3. Miniature Electrostatic, High-Vacuum Ion Pump Architecture Using A Nanostructured Field Emission Electron Source

    NASA Astrophysics Data System (ADS)

    Basu, A.; Perez, M. A.; Velásquez-García, L. F.

    2015-12-01

    We report a field emission-based, electrostatic ion pump architecture for generation of high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. The design increases the ionization probability using a helical electron collector. To create vacuum, electrons from a nanostructured field emitter array impact-ionize the gas molecules within the chamber; then, the ions generated are gettered by a negatively charged annular-shaped titanium ion collector. A proof-of-concept pump prototype was developed and characterized using a 200 cm3 stainless steel vacuum chamber. The pressure inside the chamber was observed to decrease from 7.8×10-7 Torr to 7.2×10-7 Torr as the bias voltage on the ion collector was varied from -100 V to -1000 V while the emission current was kept constant at approximately 3.2 μA. The functional form of the experimental pump characteristics is in agreement with a proposed reduced-order model.

  4. Testing of vacuum pumps for the Accelerator Production of Tritium/Low Energy Demonstration Accelerator radio frequency quadrupole

    SciTech Connect

    Kishiyama, K.; Shen, S.; Behne, D.; Wilson, N.G.; Schrage, D.; Valdiviez, R.

    1998-12-31

    Two vacuum systems were designed and built for the RFQ (Radio Frequency Quadrupole) cavity in the APT/LEDA (Low Energy Demonstration Accelerator) linac. The gas load from the proton beam required very high hydrogen pump speed and capacity. The gas load from the high power RF windows also required very high hydrogen pump speed for the RF window vacuum system. Cryopumps were chosen for the RFQ vacuum system and ST185 sintered non-evaporable getter (NEG) cartridges were chosen for the RF window vacuum system. Hydrogen pump speed and capacity measurements were carried out for a commercial cryopump and a NEG pump. This paper will discuss the test procedures and the results of the measurements.

  5. Generation of multi-mode squeezed vacuum using pulse pumped fiber optical parametric amplifiers.

    PubMed

    Liu, Nannan; Liu, Yuhong; Li, Jiamin; Yang, Lei; Li, Xiaoying

    2016-02-01

    Multimode squeezed states are essential resources in quantum information processing and quantum metrology with continuous variables. Here we present the experimental generation of squeezed vacuum via the degenerate four wave mixing realized by pumping a piece of dispersion shifted fiber with mode-locked ultrafast pulse trains. The noise fluctuation is lower than the shot noise limit by 1.1 ± 0.08 dB (1.95 ± 0.17 dB after correction for detection losses). The detailed investigation illustrates that the results can be further improved by suppressing Raman scattering and by reshaping the spectrum of the local oscillator to achieve the required mode-matching of the homodyne detection system. Our study is useful for developing a compact fiber source of multi-mode squeezed vacuum. PMID:26906788

  6. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  7. Calculation methodology of the heat pump in the process of oscillating vacuum-conductive drying of lumber

    NASA Astrophysics Data System (ADS)

    Safin, R. R.; Khasanshin, R. R.; Shaikhutdinova, A. R.; Khakimzyanov, I. F.

    2016-04-01

    The oscillating technologies consisting in alternating of the stage of heating of the material and vacuumization are the most advanced in the process of wood drying. In this regard, the article examines the energy-saving technology of the oscillating vacuum-conductive drying of lumber, during which the thermal energy of the moisture evaporated from the material under vacuum in one chamber by using the heat pump is transferred to the heating of the material in the other chamber. The authors develop the method of calculating the rate of removal of moisture from the heated material at the stage of vacuumization depending on the depth of vacuum, temperature, humidity and thickness of the material, which is the initial condition for calculating the heat pump.

  8. The adsorption of Congo red and vacuum pump oil by rice hull ash.

    PubMed

    Chou, K S; Tsai, J C; Lo, C T

    2001-06-01

    Rice hull ash (RHA) of large surface area was obtained by acid wash and then calcination at 600 degrees C for 4 h. The white ash was then mixed with kaolin and starch to make pellet adsorbents with reasonable strength to be utilized in a packed column. Both ash and pellet samples showed good adsorption capacities toward the organic substances in wastewater. Furthermore, the surface nature of the white ash and pellet adsorbent could be modified through either hydration or esterification reactions. Corresponding changes in silanol concentrations were successfully correlated to changes in adsorption capacity toward either Congo red or vacuum pump oil molecules. PMID:11333045

  9. RF impedance studies of a beam chamber and longitudinally slot-coupled vacuum pumping antechamber

    SciTech Connect

    Kustom, R.L.; Nicholls, G.L.; Kramer, S.L.; Khoe, T.K.; Cook, J.M.

    1987-01-01

    The storage ring vacuum chamber of the proposed 7-GeV synchrotron light source at Argonne National Laboratory is planned to have a semi-elliptical beam chamber, with a longitudinal slot coupled to an antechamber containing NEG pumping strips. Concern over the RF impedance of this complex chamber has stimulated the need to understand the limitations it will have on the beam intensity, the RF acceleration system and on the beam lifetime. Calculations using numerical EM field programs have estimated the waveguide modes of this chamber and the impedance and loss parameter for the expected 1 to 2 cm beam bunch length. The loss parameter is shown to differ little from an elliptical beam chamber without the slot and antechamber. An experimental program has begun to verify the estimates of the impedance for these complex vacuum chamber components using laboratory methods. Preliminary results are presented for the measured loss parameter for a short length of beam vacuum chamber and for other components. These results are compared with their calculated values.

  10. Description of an innovative vacuum pumping and energy absorption system for a multi-megawatt electric propulsion test facility

    SciTech Connect

    Coomes, E.P.; Bennett, D.W.; Lundgren, R.A.; McClanahan, E.D.; Moss, R.W.

    1988-03-01

    The development of high power magnetoplasmadynamic (MPD) thrusters is rapidly approaching an impasse to further development: the lack of a facility with adequate vacuum pumping and energy removal capacity to support the resolution of key MPD life and performance issues by FY-93. Several studies have been performed that identify vacuum systems or facility concepts that would alleviate this problem. Although feasible, the proposed vacuum systems require significant research and development; and the proposed facility concepts all require the added development of a gas dynamic diffuser. 8 refs., 4 figs.

  11. Can Vacuum Assisted Venous Drainage be Achieved using a Roller Pump in an Emergency? A Pilot Study using Neonatal Circuitry

    PubMed Central

    Hill, S. L.; Holt, D. W.

    2007-01-01

    Abstract: There has been much advancement in perfusion technology over its 50 years of progression. One of these techniques is vacuum-assisted venous drainage (VAVD). Many perfusionists augment venous drainage using VAVD, typically from a wall vacuum source. This study explores alternates to providing VAVD if the wall vacuum fails. In two porcine laboratories, ∼36 in. of 3/16-in. tubing was connected to a sucker return port and placed into the roller head next to the arterial pump. The vacuum was monitored with a DLP pressure monitoring system (Medtronic). This system was connected to small-bore tubing and attached to a stopcock on top of the reservoir. The vacuum was regulated using another stopcock connected to a non-filtered luer lock port on top of the reservoir or by a segment of 3 × 0.25-in.-diameter tubing attached to the vent port with a c-clamp. Vacuum drainage was achieved, ranging from −18 mmHg to −71 mmHg by manipulating the stopcock or c-clamp. Changes in venous drainage were seen by volume fluctuations in the venous reservoir. The vacuum was adjusted to account for dramatic changes. Augmented venous drainage using a roller pump can be achieved successfully during cardiopulmonary bypass (CPB). This method of active drainage can be used in lieu of wall suction or during times of emergency if wall suction fails. PMID:18293812

  12. Vacuum-enhanced pumping to improve DNAPL recovery in a confined aquifer

    SciTech Connect

    Reisinger, H.J.; Mountain, S.A.; Hubbard, P. Jr.; Carlson, K.; Montney, P.A.

    1995-12-31

    Dense, nonaqueous-phase liquids (DNAPLs) in the form of chlorinated solvents have been used in various phases of US industry for many years. As a result of their use prior to the advent of standardized handling and disposal regulations, they have found their way into the environment at many active and inactive industrial sites. Because of their unique physiochemical characteristics, DNAPLs present unique challenges in the site remediation process. At one such site in the northeast US, dichloromethane, or methylene chloride, entered a confined aquifer from underground storage tanks (USTs) and became subject to environmental remediation. The initial remediation approach was conventional groundwater extraction and treatment via physical separation and diffused aeration. The expansion of the dichloromethane plume resulted in the need for improved DNAPL recovery and dissolved-phase hydraulic control. Through conceptual analysis and pilot testing, vacuum-enhanced dual-phase recovery was determined to be a feasible remedial alternative. Vacuum-enhanced recovery, using a custom-designed pump, was implemented in this confined aquifer, increasing the volume of methylene chloride impacted groundwater recovered by a factor of nearly three, and hydraulic control of the plume was realized.

  13. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1997-01-01

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10.sup.-13 atm cc s.sup.-1. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces backstreaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium.

  14. Ultra high vacuum pumping system and high sensitivity helium leak detector

    DOEpatents

    Myneni, G.R.

    1997-12-30

    An improved helium leak detection method and apparatus are disclosed which increase the leak detection sensitivity to 10{sup {minus}13} atm cc/s. The leak detection sensitivity is improved over conventional leak detectors by completely eliminating the use of o-rings, equipping the system with oil-free pumping systems, and by introducing measured flows of nitrogen at the entrances of both the turbo pump and backing pump to keep the system free of helium background. The addition of dry nitrogen flows to the system reduces back streaming of atmospheric helium through the pumping system as a result of the limited compression ratios of the pumps for helium. 2 figs.

  15. Design and Analysis of a Getter-Based Vacuum Pumping System for a Rocket-Borne Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Everett, E. A.; Syrstad, E. A.; Dyer, J. S.

    2010-12-01

    The mesosphere / lower thermosphere (MLT) is a transition region where the turbulent mixing of earth’s lower atmosphere gives way to the molecular diffusion of space. This region hosts a rich array of chemical processes and atmospheric phenomena, and serves to collect and distribute particles of all sizes in thin layers. Spatially resolved in situ characterization of these layers is very difficult, due to the elevated pressure of the MLT, limited access via high-speed sounding rockets, and the enormous variety of charged and neutral species that range in size from atoms to smoke and dust particles. In terrestrial applications, time-of-flight mass spectrometry (TOF-MS) is the technique of choice for performing fast, sensitive composition measurements with extremely large mass range. However, because of its reliance on high voltages and microchannel plate (MCP) detectors prone to discharge at elevated pressures, TOF-MS has rarely been employed for measurements of the MLT, where ambient pressures approach 10 mTorr. We present a novel, compact mass spectrometer design appropriate for deployment aboard sounding rockets. This Hadamard transform time-of-flight mass spectrometer (HT-TOF-MS) applies a multiplexing technique through pseudorandom beam modulation and spectral deconvolution to achieve very high measurement duty cycles (50%), with a theoretically unlimited mass range. The HT-TOF-MS employs a simple, getter-based vacuum pumping system and pressure-tolerant MCP to allow operation in the MLT. The HT-TOF-MS must provide sufficient vacuum pumping to 1) maintain a minimum mean free path inside the instrument, to avoid spectral resolution loss, and 2) to avoid MCP failure through electrostatic discharge. The design incorporates inexpensive, room temperature tube getters loaded with nano-structured barium to meet these pumping speed requirements, without the use of cryogenics or mechanical pumping systems. We present experimental results for gettering rates and

  16. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  17. BRIEF COMMUNICATIONS: Copper halide laser pumped with vacuum-tube and thyratron oscillators

    NASA Astrophysics Data System (ADS)

    Abas-Ogly, Ya R.; Aboyan, S. A.; Abrosimov, G. V.; Andrianov, V. A.; Vasil'tsov, V. V.; Semykin, B. I.; Shilin, A. M.; Shulakov, V. N.

    1981-03-01

    A copper halide laser was excited by vacuum-tube and thyratron oscillators. Several laser tubes were arranged in parallel and operated synchronously in order to increase the output power. It was found that not only the average but also the peak powers were additive. One laser tube produced output radiation of 18.5 W power, whereas three tubes arranged in parallel and focused at the same point produced 30 W.

  18. DSMC Modeling of the Differentially Pumped Magnum-PSI Vacuum System

    SciTech Connect

    Eck, H. J. N. van; Goedheer, W. J.; Koppers, W. R.; Kleyn, A. W.; Cardozo, N. J. Lopes

    2008-12-31

    The FOM Institute for Plasma Physics Rijnhuizen (FOM = Foundation for Fundamental Research on Matter) has started a new line of research to study the interaction of intense plasma fluxes with a material surface. An important experimental tool for this programme will be the Magnum-PSI high-flux linear plasma generator operating in the ITER-relevant regime of plasma surface interaction (PSI). ITER is the next step in fusion reactor research (ITER is Latin for 'the way'). In Magnum-PSI a plasma beam is guided from the source to a target by a strong axial magnetic field. Besides ionized particles, the plasma source produces hot neutral gas which has to be prevented from reaching the target region. In this paper it is investigated to what extent a differential pumping scheme can prevent the influx of neutral gas from the source in the target region. The results of neutral gas simulations using the Direct Simulation Monte Carlo (DSMC) method will be discussed. We will focus on the supersonic expansion as a function of background pressure and determine the influence of the skimmers on the expansion. We will demonstrate that differential pumping can be used in Magnum-PSI to reach low enough pressures in the target region. Finally, we give the optimum position of the skimmer.

  19. A differentially pumped secondary electron detector for low-vacuum scanning electron microscopy.

    PubMed

    Jacka, M; Zadrazil, M; Lopour, F

    2003-01-01

    A new design of secondary electron (SE) detector is described for use in low-vacuum scanning electron microscopes. Its distinguishing feature is a separate detector chamber, which can be maintained at a pressure independent of the pressure in the specimen chamber. The two chambers are separated by a perforated membrane or mesh across which an electric field is applied, making it relatively transparent to low-energy electrons but considerably less so to the gas molecules. The benefits of this arrangement are discussed. The final means of detecting the electrons can be a conventional scintillator and photomultiplier arrangement or any of the methods using the ambient gas as an amplifying medium. Images obtained with the detector show good SE contrast and low backscattered electron contribution. PMID:14748387

  20. Robert Hooke, inventor of the vacuum pump and the first altitude chamber (1671).

    PubMed

    Harsch, Viktor

    2006-08-01

    Robert Hooke (1635-1703), an assistant researcher to Robert Boyle (1627-1691), invented the first functional British air pump. Applying it to scientific research, Hooke operated the world's first hypobaric chamber in 1671, using it for self-experimentation. He recorded the first physiological observations in an artificial altitude-equivalent environment up to 2400 m. Though Hooke's experiment showed some methodological insufficiencies, his imaginative experimental techniques were remarkable for their time and were indicative of the lively intellectual atmosphere of the Royal Society and the significant contributions of Hooke, who was a member. Two centuries passed before the French physiologist Paul Bert (1830-1886) conducted his famous laboratory-supported investigations of high altitude physiology. Bert played a decisive role in the discovery of the causes of decompression sickness; a contribution Hooke could not make due to the technical deficiencies of the 17th century. PMID:16909884

  1. Vacuum Technology

    SciTech Connect

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  2. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high reflection coatings.

    DOE PAGESBeta

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-06-01

    Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less

  3. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  4. Vacuum pump apparatus

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1985-01-01

    An improved cryopumping apparatus which comprises a cryopumping space which may be alternately opened and closed from the surrounding area by moveable panels, trubular cryopanels within said cryopumping space through which a coolant such as liquid helium may be passed, and an apparatus for spraying liquid argon onto said cylindrical cryopanels in order to enhance the cryogenic entrapment of such low-z ions, atoms, and molecules as hydrogen and helium.

  5. Stabilization of He2(A(sup 3)Sigma(sub u)(+)) molecules in liquid helium by optical pumping for vacuum UV laser

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S. (Inventor)

    1978-01-01

    A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.

  6. K-130 Cyclotron vacuum system

    NASA Astrophysics Data System (ADS)

    Yadav, R. C.; Bhattacharya, S.; Bhole, R. B.; Roy, Anindya; Pal, Sarbajit; Mallik, C.; Bhandari, R. K.

    2012-11-01

    The vacuum system for K-130 cyclotron has been operational since 1977. It consists of two sub-systems, main vacuum system and beam line vacuum system. The main vacuum system is designed to achieve and maintain vacuum of about 1 × 10-6 mbar inside the 23 m3 volume of acceleration chamber comprising the Resonator tank and the Dee tank. The beam line vacuum system is required for transporting the extracted beam with minimum loss. These vacuum systems consist of diffusion pumps backed by mechanical pumps like roots and rotary pumps. The large vacuum pumps and valves of the cyclotron vacuum system were operational for more than twenty five years. In recent times, problems of frequent failures and maintenance were occurring due to aging and lack of appropriate spares. Hence, modernisation of the vacuum systems was taken up in order to ensure a stable high voltage for radio frequency system and the extraction system. This is required for efficient acceleration and transportation of high intensity ion beam. The vacuum systems have been upgraded by replacing several pumps, valves, gauges and freon units. The relay based control system for main vacuum system has also been replaced by PLC based state of the art control system. The upgraded control system enables inclusion of additional operational logics and safety interlocks into the system. The paper presents the details of the vacuum system and describes the modifications carried out for improving the performance and reliability of the vacuum system.

  7. Time-Resolved UV-Pump (4.8eV) and Vacuum-UV (8eV) Probe Experiments of Neutral Excited State Dynamics

    NASA Astrophysics Data System (ADS)

    Horton, Spencer; Liu, Yusong; Matsika, Spiridoula; Weinacht, Thomas

    2016-05-01

    Excited state dynamics in polyatomic molecules involve a rich mixture of internal conversion, intersystem crossing, isomerization, and dissociation. Probing these dynamics with ultrafast laser pulses poses a number of challenges, in terms of both the execution of the measurements and their interpretation. We have developed an apparatus for probing excited state dynamics using a 260nm UV-pump pulse and a 156nm Vacuum-UV (VUV) probe pulse. For many systems of interest, an 8eV probe pulse can ionize the molecule from essentially any position along the excited state potential, while not having a background ionization yield from the ground state. Furthermore, given the perturbative interaction of each pulse with the molecule, it is possible interpret and model the experimental results with greater ease and confidence than more complicated probe interactions such as strong field ionization. We compare UV-IR strong-field ionization pump-probe experiments previously conducted directly with our 8eV probing and explore the differences between the two.

  8. The RHIC vacuum systems

    NASA Astrophysics Data System (ADS)

    Burns, R.; Hseuh, H. C.; Lee, R. C.; McIntyre, G.; Pate, D.; Smart, L.; Sondericker, J.; Weiss, D.; Welch, K.

    2003-03-01

    There are three vacuum systems in RHIC: the insulating vacuum vessels housing the superconducting magnets, the cold beam tubes surrounded by the superconducting magnets, and the warm beam tube sections at the insertion regions and the experimental regions. These systems have a cumulative length over 10 km and a total volume over 3000 m 3. Conventional ultrahigh vacuum technology was used in the design and construction of the cold and warm beam vacuum systems with great success. The long and large insulating vacuum volumes without vacuum barriers require careful management of the welding and leak checking of the numerous helium line joints. There are about 1500 vacuum gauges and pumps serial-linked to eight PLCs distributed around RHIC, which allow the monitoring and control of these devices through Ethernet networks to remote control consoles. With the exception of helium leaks through the cryogenic valve boxes into the insulating vacuum volumes, the RHIC vacuum systems have performed well beyond expectations.

  9. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  10. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 to 80 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, Shannon; Gausa, Michael; Robertson, Scott; Sternovsky, Zoltan

    2013-04-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 80 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on two sounding rockets to the mesosphere. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void behind (relative to the direction of motion) an aft-facing surface. An enclosure containing the CEM was placed forward of an aft-facing deck and a valve was opened during flight to expose the CEM to the aerodynamically evacuated region behind it. The CEM operated successfully from apogee down to ∼80 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  11. Channel electron multiplier operated on a sounding rocket without a cryogenic vacuum pump from 120 - 75 km altitude

    NASA Astrophysics Data System (ADS)

    Dickson, S.; Gausa, M. A.; Robertson, S. H.; Sternovsky, Z.

    2012-12-01

    We demonstrate that a channel electron multiplier (CEM) can be operated on a sounding rocket in the pulse-counting mode from 120 km to 75 km altitude without the cryogenic evacuation used in the past. Evacuation of the CEM is provided only by aerodynamic flow around the rocket. This demonstration is motivated by the need for additional flights of mass spectrometers to clarify the fate of metallic compounds and ions ablated from micrometeorites and their possible role in the nucleation of noctilucent clouds. The CEMs were flown as guest instruments on the two sounding rockets of the CHAMPS (CHarge And mass of Meteoritic smoke ParticleS) rocket campaign which were launched into the mesosphere in October 2011 from Andøya Rocket Range, Norway. Modeling of the aerodynamic flow around the payload with Direct Simulation Monte-Carlo (DSMC) code showed that the pressure is reduced below ambient in the void beneath an aft-facing surface. An enclosure containing the CEM was placed above an aft-facing deck and a valve was opened on the downleg to expose the CEM to the aerodynamically evacuated region below. The CEM operated successfully from apogee down to ~75 km. A Pirani gauge confirmed pressures reduced to as low as 20% of ambient with the extent of reduction dependent upon altitude and velocity. Additional DSMC simulations indicate that there are alternate payload designs with improved aerodynamic pumping for forward mounted instruments such as mass spectrometers.

  12. Insertion device vacuum system designs

    SciTech Connect

    Hoyer, E.

    1988-05-01

    Synchrotron light source insertion device vacuum systems now in operation and systems proposed for the future are reviewed. An overview of insertion devices is given and four generic vacuum chamber designs, transition section design and pumping considerations are discussed. Examples of vacuum chamber systems are presented.

  13. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO2/SiO2 antireflection and high-reflection coatings

    NASA Astrophysics Data System (ADS)

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2015-11-01

    Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out of commission. In light of this circumstance, we decided to explore how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO2 and SiO2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45° angle of incidence (AOI), in P-polarization (P-pol).

  14. NSLS II Vacuum System

    SciTech Connect

    Ferreira, M.; Doom, L.; Hseuh, H.; Longo, C.; Settepani, P.; Wilson, K.; Hu, J.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning and mounting the chambers are given.

  15. D-Zero Vacuum System

    SciTech Connect

    Wintercorn, S.J.; /Fermilab

    1986-04-07

    The system pumping speed was calculated by taking the reciprocal of the sum of the reciprocal pump speed and the reciprocal line conductances. The conductances of the pipe were calculated from the following formulas taken from the Varian vacuum manual. This report updates the original to reflect the pumping curves and basic vacuum system characteristics for the purchased components and installed piping of the D-Zero vacuum system. The system consists of two Edward's E2M275 two stage mechanical pumps, a Leybold-Heraeus WSU2000 Blower and three Varian 4' diffusion pumps (one for each cryostat). Individual pump and system pumping speed curves and a diagram of the system is included.

  16. R&D ERL: Vacuum

    SciTech Connect

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  17. ISABELLE vacuum systems

    SciTech Connect

    Halama, H J

    1980-01-01

    The Intersecting Storage Accelerator (ISABELLE) consists of two rings having a circumference of 3.8 km each. In these rings superconducting magnets, held at 4 K, bend and focus the proton beam which is accelerated up to 400 GeV. Due to very different pressure requirements, ISABELLE has two completely independent vacuum systems. One, which operates at 1 x 10/sup -11/ Torr, provides a very clean environment for the circulating proton beam. Here only ion and titanium sublimation pumps are used to provide the vacuum. The other system maintains superconducting magnet vessels at a pressure below 1 x 10/sup -4/ Torr, since at this pressure the gas conduction becomes negligible. In this so-called insulating vacuum system, turbomolecular pumps pump the inadvertent small helium leaks. Other gases are cryocondensed on the cold surfaces of the cryogenic system. The basic element of ISABELLE known as Full Cell containing 45 meters of beam tube, 8 pumping stations, 8 superconducting magnets and complete instrumentation has been constructed, leak checked and tested. All design parameters have been achieved in both vacuum systems. The two vacuum systems are described with particular emphasis on the influence of superconducting magnets in the selection of materials and UHV components.

  18. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  19. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  20. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  1. Sorption vacuum trap

    NASA Technical Reports Server (NTRS)

    Barrington, A. E.; Caruso, A. J.

    1970-01-01

    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap.

  2. Tara vacuum system

    SciTech Connect

    Post, R.S.; Brindza, P.; Goodrich, P.; Gaudreau, M.P.

    1985-11-01

    The Tara tandem mirror experiment vacuum system will be discussed including system design, specifications, and performance required for plug thermal barrier operation. A detailed description of the major pumpig systems, reflux control, plasma pumping, measurement and control, fast gas handling and quality control procedures will be presented. Data from the two 5 month periods of operation will be presented.

  3. Performance of BNL-TSTA compound cryopump

    SciTech Connect

    Hseuh, H C; Worwetz, H A

    1980-01-01

    A compound cryopump using cryocondensation pumping for hydrogen isotopes and cryosorption pumping with coconut charcoal as adsorbent for helium was designed. This compound cryopump was subsequently built (by Janis Research, Stoneham, MA) and has been tested at Brookhaven, fulfilling the design requirements and are delivered to Tritium Systems Test Assembly (TSTA) Vacuum Facility at Los Alamos Scientific Laboratory (LASL) for on-line operations.

  4. Control Dewar Secondary Vacuum Container

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-10-04

    This engineering note provides background information regarding the control dewar secondary vacuum container. The secondary vacuum container has it's origin with the CDP control dewar design. The name secondary vacuum container replaced the CDP term 'Watt can' which was named after Bob Watt (SLAC), a PAC/DOE review committee member who participated in a review of CDP and recommended a secondary vacuum enclosure. One of the most fragile parts of the control dewar design is the ceramic electrical feed throughs located in the secondary vacuum container. The secondary vacuum container is provided to guard against potential leaks in these ceramic insulating feed throughs. The secondary vacuum container has a pumping line separate from the main solenoid/control dewar insulating vacuum. This pumping line is connected to the inlet of the turbo pump for initial pumpdown. Under normal operation the container is isolated. Should a feedthrough develop a small leak, alternate pumping arrangements for the secondary vacuum container could be arranged. The pressure in the secondary vacuum container should be kept in a range that the breakdown voltage is kept at a maximum. The breakdown voltage is known to be a function of pressure and is described by a Paschen curve. I cannot find a copy of the curve at this time, but from what I remember, the breakdown voltage is a minimum somewhere around 10-3 torr. Ideally the pressure in the secondary vacuum can should be kept very low, around 10 E-6 or 10 E-7 torr for maximum breakdown voltage. If however a leak developed and this was not possible, then one could operate at a pressure higher than the minima point.

  5. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  6. Welding space vacuum technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    The objective was to assist the EH 42 Division in putting together a vacuum system that could attain the desired pressure and be large enough to accommodate the gas-metal arc (GMA) welding fixture apparatus. A major accomplishment was the design and fabrication of the controller/annunciator for the 4' by 8' system. It contains many safety features such as thermocouple set point relays that will only allow inlet and exit gas and vacuum valves to be operated at pre-selected system pressures, and a fail safe mode for power interruptions and operator mistakes. It is felt that significant progress was made in this research effort to weld in a vacuum environment. With continued efforts to increase the pump speeds for vacuum chambers and further studies on weld fixtures and gas inlet pressures, the NASA program will be successful.

  7. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  8. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  9. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  10. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  11. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  12. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe....

  13. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes...

  14. Vacuum force

    NASA Astrophysics Data System (ADS)

    Han, Yongquan

    2015-03-01

    To study on vacuum force, we must clear what is vacuum, vacuum is a space do not have any air and also ray. There is not exist an absolute the vacuum of space. The vacuum of space is relative, so that the vacuum force is relative. There is a certain that vacuum vacuum space exists. In fact, the vacuum space is relative, if the two spaces compared to the existence of relative vacuum, there must exist a vacuum force, and the direction of the vacuum force point to the vacuum region. Any object rotates and radiates. Rotate bend radiate- centripetal, gravity produced, relative gravity; non gravity is the vacuum force. Gravity is centripetal, is a trend that the objects who attracted wants to Centripetal, or have been do Centripetal movement. Any object moves, so gravity makes the object curve movement, that is to say, the radiation range curve movement must be in the gravitational objects, gravity must be existed in non vacuum region, and make the object who is in the region of do curve movement (for example: The earth moves around the sun), or final attracted in the form gravitational objects, and keep relatively static with attract object. (for example: objects on the earth moves but can't reach the first cosmic speed).

  15. Detail unit 5, showing discharge pipe and vacuum valve on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail unit 5, showing discharge pipe and vacuum valve on discharge side of pump - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  16. THERMOCOUPLE VACUUM GAUGE

    DOEpatents

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  17. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  18. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  19. Vacuum applications of metal foams

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1980-01-01

    Several vacuum applications of copper foams in the density range 2-5% and pore sizes of 0.5-0.7 mm are discussed, such as a foreline hydrocarbon trap in a mechanical vacuum pump, a molecular-flow resistor, a diffuser, and a water injector. Other suggested applications include the use of foam copper in the form of an externally heated plug to remove traces of oxygen from inert gases bled into a vacuum system through a stainless steel line and the use of the porous surface for minimizing release of secondary electrons from electrodes in the path of charged particle beams.

  20. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  1. Vacuum Virtues

    ERIC Educational Resources Information Center

    Rathey, Allen

    2007-01-01

    Upright vacuums, like cars, vary in quality, features and performance. Like automobiles, some uprights are reliable, others may be problematic, and some become a problem as a result of neglect or improper use. So, how do education institutions make an informed choice and, having done so, ensure that an upright vacuum goes the distance? In this…

  2. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  3. The LHC Vacuum System

    NASA Astrophysics Data System (ADS)

    Gröbner, O.

    1997-05-01

    The Large Hadron Collider (LHC) at CERN, involves two proton storage rings with colliding beams of 7 TeV. The machine will be housed in the existing LEP tunnel and requires 16 m long superconducting bending magnets. The vacuum chamber will be the inner wall of the cryostat and hence at the temperature of the magnet cold bore, i.e. at 1.9 K and therefore a very good cryo-pump. To reduce the cryogenic power consumption, the heat load from synchrotron radiation and from the image currents in the vacuum chamber will be absorbed on a 'beam screen', which operates between 5 and 20 K, inserted in the magnet cold bore. The design pressure necessary for operation must provide a lifetime of many days and a stringent requirement comes from the power deposition in the superconducting magnet coils due to protons scattered on the residual gas which could lead to a magnet quench. Cryo-pumping of gas on the cold surfaces provides the necessary low gas densities but it must be ensured that the vapour pressure of cryo-sorbed molecules, of which H2 and He would be the most critical species, remains within acceptable limits. The room temperature sections of the LHC, specifically in the experiments, the vacuum must be stable against ion induced desorption and ISR-type 'pressure bumps'.

  4. VACUUM TRAP AND VALVE COMBINATION

    DOEpatents

    Milleron, N.; Levenson, L.

    1963-02-19

    This patent relates to a vacuum trap and valve combination suitable for use in large ultra-high vacuum systems. The vacuum trap is a chamber having an inlet and outlet opening which may be made to communicate with a chamber to be evacuated and a diffusion pump, respectively. A valve is designed to hermeticaliy seal with inlet opening and, when opened, block the line-of- sight'' between the inlet and outlet openings, while allowing a large flow path between the opened vaive and the side walls of the trap. The interior of the trap and the side of the valve facing the inlet opening are covered with an impurity absorbent, such as Zeolite or activated aluminum. Besides the advantage of combining two components of a vacuum system into one, the present invention removes the need for a baffle between the pump and the chamber to be evacuated. In one use of a specific embodiment of this invention, the transmission probability was 45 and the partial pressure of the pump fluid vapor in the vacuum chamber was at least 100 times lower than its vapor pressure. (AEC)

  5. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  6. Vacuum arc deposition devices

    SciTech Connect

    Boxman, R.L.; Zhitomirsky, V.N.

    2006-02-15

    The vacuum arc is a high-current, low-voltage electrical discharge which produces a plasma consisting of vaporized and ionized electrode material. In the most common cathodic arc deposition systems, the arc concentrates at minute cathode spots on the cathode surface and the plasma is emitted as a hypersonic jet, with some degree of contamination by molten droplets [known as macroparticles (MPs)] of the cathode material. In vacuum arc deposition systems, the location and motion of the cathode spots are confined to desired surfaces by an applied magnetic field and shields around undesired surfaces. Substrates are mounted on a holder so that they intercept some portion of the plasma jet. The substrate often provides for negative bias to control the energy of depositing ions and heating or cooling to control the substrate temperature. In some systems, a magnetic field is used to guide the plasma around an obstacle which blocks the MPs. These elements are integrated with a deposition chamber, cooling, vacuum gauges and pumps, and power supplies to produce a vacuum arc deposition system.

  7. An automated vacuum system

    SciTech Connect

    Atkins, W.H. ); Vaughn, G.D. ); Bridgman, C. )

    1991-01-01

    Software tools available with the Ground Test Accelerator (GTA) control system provide the capability to express a control problem as a finite state machine. System states and transitions are expressed in terms of accelerator parameters and actions are taken based on state transitions. This is particularly useful for sequencing operations which are modal in nature or are unwieldy when implemented with conventional programming. State diagrams are automatically translated into code which is executed by the control system. These tools have been applied to the vacuum system for the GTA accelerator to implement automatic sequencing of operations. With a single request, the operator may initiate a complete pump-down sequence. He can monitor the progress and is notified if an anomaly occurs requiring intervention. The operator is not required to have detailed knowledge of the vacuum system and is protected from taking inappropriate actions. 1 ref., 6 figs.

  8. Vacuum coupling of rotating superconducting rotor

    DOEpatents

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  9. Vacuum-ultraviolet laser uses superfluid helium

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1979-01-01

    Vacuum ultra violet laser in wavelength around 0.800 microns is produced by using optical pumping to increase lifetimes of excited metastable molecules in super fluid helium. In method, super fluid helium is pumped electronically to produce excited HE2, and then pumped by circularly polarized 0.9096 - micron radiation to aline excited HE2 molecular spins. High power ultraviolet radiation has potential applications in molecular reaction studies, power transmission in space, and biomedical research.

  10. MEANS AND METHOD FOR PRODUCING A VACUUM

    DOEpatents

    Otavka, M.A.

    1960-08-01

    A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.

  11. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  12. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  13. Autonomous pump against concentration gradient

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Cheng; Zheng, Dong-Qin; Ai, Bao-Quan; Zhong, Wei-Rong

    2016-03-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process.

  14. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  15. APS storage ring vacuum system development

    SciTech Connect

    Niemann, R.C.; Benaroya, R.; Choi, M.; Dortwegt, R.J.; Ferry, R.; Goeppner, G.A.; Gonczy, J.D.; Krieger, C.; Howell, J.; Nielsen, R.W.; Roop, B.; Wehrle, R.B.

    1991-01-01

    The Advanced Photon Source synchrotron radiation facility, under construction at the Argonne National Laboratory, incorporates a large ring for the storage of 7 GeV positrons for the generation of photon beams for the facility's materials research program. The Storage Ring's 1104 m circumference is divided into 40 sectors which contain vacuum, beam transport, control, rf and insertion device systems. The vacuum system will operate at a pressure of 1 nTorr and is fabricated from aluminum. The system includes distributed NeG pumping, photon absorbers with lumped pumping, beam position monitors, vacuum diagnostics and valving. An overview of the vacuum system design and details of selected development program results are presented. 5 refs.

  16. Microscale Thermal-Transpiration Gas Pump

    NASA Technical Reports Server (NTRS)

    Vargo, Stephen; Muntz, Phillip; Shiflett, Geoff

    2003-01-01

    A recent addition to the growing class of microelectromechanical systems (MEMS) is a single stage of a Knudsen compressor. This device was fabricated and tested to demonstrate the feasibility of Knudsen compressors as miniature vacuum pumps for future portable scientific instruments. The attributes of Knudsen compressors that make them attractive as miniature vacuum pumps are that they contain no moving parts and operate without need for lubricants or working fluids.

  17. Very-Low-Cost, Rugged Vacuum System

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve

    2013-01-01

    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP

  18. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  19. Quartz crystals detect gas contaminants during vacuum chamber evacuation

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.

    1967-01-01

    Piezoelectric quartz crystals detect condensable gas contaminants backstreaming into a vacuum chamber when a pump is evacuating the chamber. One crystal acts as a thermometer, the other detects mass change. They are energized by electronic equipment which records frequency changes.

  20. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  1. Quantum theory of multiwave mixing - Squeezed-vacuum model

    NASA Astrophysics Data System (ADS)

    An, Sunghyuck; Sargent, Murray, III

    1989-12-01

    The present paper combines a Langevin quantum-regression method with a denisty-operator approach to derive the master equation for the quantum theory of multiwave mixing in a very efficient way. The approach is quite general and is particularly valuable for analyzing complicated media such as semiconductors. It is used in the present paper to derive the quantum multiwave-mixing equations in a squeezed vacuum. Improved formulas are found for resonance fluorescence in a squeezed vacuum as well as the squeezing coefficients in a squeezed vacuum. Comparing squeezing spectra in squeezed and ordinary vacuums, significantly enhanced squeezing for the appropriate pump-vacuum relative phase is found.

  2. PLASMA WINDOW FOR VACUUM - ATMOSPHERE INTERFACE AND FOCUSING LENS OF SOURCES FOR NON-VACUUM MATERIAL MODIFICATION.

    SciTech Connect

    HERSHCOVITCH,A.

    1997-09-07

    Material modifications by ion implantation, dry etching, and micro-fabrication are widely used technologies, all of which are performed in vacuum, since ion beams at energies used in these applications are completely attenuated by foils or by long differentially pumped sections, which ate currently used to interface between vacuum and atmosphere. A novel plasma window, which utilizes a short arc for vacuum-atmosphere interface has been developed. This window provides for sufficient vacuum atmosphere separation, as well as for ion beam propagation through it, thus facilitating non-vacuum ion material modification.

  3. DC photogun vacuum characterization through photocathode lifetime studies

    SciTech Connect

    Marcy Stutzman; Joseph Grames; Matt Poelker; Kenneth Surles-Law; Philip Adderley

    2007-07-02

    Excellent vacuum is essential for long photocathode lifetimes in DC high voltage photoelectron guns. Vacuum Research at Thomas Jefferson National Accelerator Facility has focused on characterizing the existing vacuum systems at the CEBAF polarized photoinjector and on quantifying improvements for new systems. Vacuum chamber preprocessing, full activation of NEG pumps and NEG coating the chamber walls should improve the vacuum within the electron gun, however, pressure measurement is difficult at pressures approaching the extreme-high-vacuum (XHV) region and extractor gauge readings are not significantly different between the improved and original systems. The ultimate test of vacuum in a DC high voltage photogun is the photocathode lifetime, which is limited by the ionization and back-bombardment of residual gasses. Discussion will include our new load-locked gun design as well as lifetime measurements in both our operational and new photo-guns, and the correlations between measured vacuum and lifetimes will be investigated.

  4. Computer design and analysis of vacuum systems

    SciTech Connect

    Santeler, D.J.

    1987-07-01

    A computer program has been developed for an IBM compatible personal computer to assist in the design and analysis of vacuum systems. The program has a selection of 12 major schematics with several thousand minor variants incorporating diffusion, turbomolecular, cryogenic, ion, mechanical, and sorption pumps as well as circular tubes, bends, valves, traps, and purge gas connections. The gas throughput versus the inlet pressure of the pump is presented on a log--log graphical display. The conductance of each series component is sequentially added to the graph to obtain the net system behavior Q/sub (//sub P//sub )/. The component conductances may be calculated either from the inlet area and the transmission probability or from the tube length and the diameter. The gas-flow calculations are valid for orifices, short tubes, and long tubes throughout the entire pressure range from molecular through viscous to choked and nonchoked exit flows. The roughing-pump and high-vacuum-pump characteristic curves are numerically integrated to provide a graphical presentation of the system pumpdown. Outgassing data for different materials is then combined to produce a graph of the net system ''outgassing pressure.'' Computer routines are provided for differentiating a real pumpdown curve for system analysis. The computer program is included with the American Vacuum Society course, ''Advanced Vacuum System Design and Analysis,'' or it may be purchased from Process Applications, Inc.

  5. Vacuum phenomenon.

    PubMed

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome. PMID:27147527

  6. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  7. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  8. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  9. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  10. Large-capacity pump vaporizer for liquid hydrogen and nitrogen

    NASA Technical Reports Server (NTRS)

    Hauser, J. A.

    1970-01-01

    Pump vaporizer system delivers 500 standard cubic feet per minute of hydrogen or nitrogen, one system delivers both gases. Vacuum-jacketed pump discharges liquid hydrogen or liquid nitrogen into vaporizing system heated by ambient air. Principal characteristics of the flow and discharge system, pump, and vaporizer are given.

  11. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  12. VIEW OF THE HEATING ELEMENTS AND VACUUM GAUGE OF A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE HEATING ELEMENTS AND VACUUM GAUGE OF A PUMP-DOWN STATION IN BUILDING 991. THE PUMP-DOWN STATION REMOVED OUT-GASES FROM INSIDE THE TRIGGERS. (9/26/61) - Rocky Flats Plant, Final Assembly & Shipping, Eastern portion of plant site, south of Spruce Avenue, east of Tenth Street & north of Central Avenue, Golden, Jefferson County, CO

  13. Helium cryopumping for fusion applications

    SciTech Connect

    Sedgley, D.W.; Batzer, T.H.; Call, W.R.

    1988-05-01

    Large quantities of helium and hydrogen isotopes will be exhausted continuously from fusion power reactors. This paper summarizes two development programs undertaken to address vacuum pumping for this application: (i) A continuous duty cryopump for pumping helium and/or hydrogen species using charcoal sorbent and (ii) a cryopump configuration with an alternative shielding arrangement using charcoal sorbent or argon spray. A test program evaluated automatic pumping of helium, helium pumping by charcoal cryosorption and with argon spray, and cryosorption of helium/hydrogen mixtures. The continuous duty cryopump pumped helium continuously and conveniently. Helium pumping speed was 7.7 l/s/cm/sup 2/ of charcoal, compared to 5.8 l/s/cm/sup 2/ for the alternative pump. Helium speed using argon spray was 18% of that obtained by charcoal cryosorption in the same (W-panel) pump. During continuous duty cryopump mixture tests with helium and hydrogen copumped on charcoal, gas was released sporadically. Testing was insufficient to explain this unacceptable event.

  14. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  15. SXLS Phase 2 vacuum system

    SciTech Connect

    Schuchman, J.C.; Chou, T.S.; Halama, H.; Hsieh, H.; Kim, T.; Pjerov, S.; Staicu, F.

    1991-01-01

    Phase 1 of the SXLS (Superconducting X-Ray Lithography Source) is described. It is a room temperature, racetrack-shaped electron storage ring, 8.5 meters in circumference. The Phase 2 design consists of replacing the two room temperature 180{degree} dipole magnets of Phase 1 with superconducting magnets. However, even though superconducting magnets are used, the vacuum chambers within them will operate at room temperature. The chambers are constructed as weldments and are made of INCONEL-625. They are bakeable to 150{degrees}C in-situ and incorporate nine photon beam ports. Each have built-in distributed sputter-ion pumps (DIP), non-evaporable getter (NEG) pumps, beam position monitors, and ion clearing electrodes. R D is underway to optimize the DIP, which much operate at 3.86 Tesla, and to develop a low photo yield coating or treatment for the internal surfaces of the chambers.

  16. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  17. Vacuum system of the cyclotrons in VECC, Kolkata

    SciTech Connect

    Roy, Anindya; Bhole, R.B.; Akhtar, J.; Yadav, R.C.; Pal, Sarbajit; Sarkar, D.; Bhandari, R.K. E-mail: rbb@vecc.gov.in E-mail: yadav@vecc.gov.in E-mail: dsarkar@vecc.gov.in

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system also has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)

  18. D-Zero Cryogenic System VLPC & Solenoid Vacuum System Instrumentation, Control, and Logic

    SciTech Connect

    Markley, D.; /Fermilab

    1998-01-16

    The DZERO VLPC Cryostat and the Superconducting Solenoid both require an insulating Vacuum of 10{sup -5} Torr or less. There is a vacuum system on the Detector Platform consisting of 2 Turbomolecular vacuum pumps and their associated piping, valves, instrumentation that are dedicated to this task. This vacuum equipment requires an operator interface and control logic in order to function properly. The operator interface allows an operator to monitor, control and configure the proper pumping setup required at any given time. The control logic is needed to protect the Vacumm vessels and Vacuum equipment from catastrophic events that may harm them. This is typically done with interlock chains or strings.

  19. Degradation of the lunar vacuum by a moon base

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey

    1990-01-01

    Several industrial processes requiring high and ultra-high vacuum similar to the lunar vacuum are outlined. The effects of a 20-person lunar base and a 250-person industrial facility on this vacuum are discussed. It is shown that exhaust from transport spacecraft and leakage from the habitat will be comparable to the daytime gas pressure for the 20-person base, and will degrade the vacuum to the range of 2 x 10 to the -9th torr for the use of 250-person facility. This will result in replacing the mostly nonreactive gases hydrogen, helium, and neon with more reactive gases containing carbon and oxygen. This vacuum is still good enough to perform many important vacuum processes such as plasma-deposition of amorphous silicon for solar cells, but processes such as molecular beam epitaxy or locating an intersecting beam accelerator on the moon will require additional vacuum pumping.

  20. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  1. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  2. Vacuum chamber-free centrifuge with magnetic bearings

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  3. Elimination of Thermal Acoustic Oscillations in Cryogenic Pumps

    NASA Astrophysics Data System (ADS)

    Miller, T. J.; Gu, Y.

    2006-04-01

    Thermal acoustic oscillations (TAOs) were recently observed and eliminated in two vacuum-housing cryogenic pumps. This paper documents the results of research performed to identify the critical parameters that affect thermal acoustic oscillations in a vacuum-housing cryogenic pump. Techniques for simplifying this complex oscillation system were developed so that an existing mathematical model for a straight tube with uniform radius could be applied. Based on the simplified model, criteria were defined. These criteria provide design guidelines to prevent thermal acoustic oscillations from occurring inside vacuum-housing cryogenic pumps.

  4. High vacuum facility for hydrazine thruster testing

    NASA Technical Reports Server (NTRS)

    Neary, Patrick F.

    1990-01-01

    An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

  5. Vacuum system for Advanced Test Accelerator

    SciTech Connect

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  6. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  7. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy; Dowling, Jonathan P.

    2016-05-01

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology and quantum memory applications. Additionally, we model a multi-pass beam configuration and show that this can lead to a further improvement of vacuum squeezing.

  8. Indian Vacuum Society: The Indian Vacuum Society

    NASA Astrophysics Data System (ADS)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  9. Miniature Scroll Pumps Fabricated by LIGA

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  10. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  11. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  12. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  13. Optimizing process vacuum condensers

    SciTech Connect

    Lines, J.R.; Tice, D.W.

    1997-09-01

    Vacuum condensers play a critical role in supporting vacuum processing operations. Although they may appear similar to atmospheric units, vacuum condensers have their own special designs, considerations and installation needs. By adding vacuum condensers, precondensers and intercondensers, system cost efficiency can be optimized. Vacuum-condensing systems permit reclamation of high-value product by use of a precondenser, or reduce operating costs with intercondensers. A precondenser placed between the vacuum vessel and ejector system will recover valuable process vapors and reduce vapor load to an ejector system--minimizing the system`s capital and operating costs. Similarly, an intercondenser positioned between ejector stages can condense motive steam and process vapors and reduce vapor load to downstream ejectors as well as lower capital and operating costs. The paper describes vacuum condenser systems, types of vacuum condensers, shellside condensing, tubeside condensing, noncondensable gases, precondenser pressure drop, system interdependency, equipment installation, and equipment layout.

  14. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-03-06

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  15. Radiation hard vacuum switch

    DOEpatents

    Boettcher, Gordon E.

    1990-01-01

    A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction.

  16. The Classical Vacuum.

    ERIC Educational Resources Information Center

    Boyer, Timothy H.

    1985-01-01

    The classical vacuum of physics is not empty, but contains a distinctive pattern of electromagnetic fields. Discovery of the vacuum, thermal spectrum, classical electron theory, zero-point spectrum, and effects of acceleration are discussed. Connection between thermal radiation and the classical vacuum reveals unexpected unity in the laws of…

  17. Development and Implementation of an Ultrafast Vacuum-UV (8eV) Light Source for use in UV-VUV Pump Probe Experiments of Neutral Excited State Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yusong; Horton, Spencer; Matsika, Spiridoula; Weinacht, Thomas

    2016-05-01

    Probing neutral excited state dynamics in polyatomic molecules with ultrafast laser systems enables us to study phenomena such as internal conversion, isomerization, intersystem crossing, and dissociation. Using the third harmonic (260 nm) and the fifth harmonic (156 nm) of our laser system we have developed an apparatus to perform pump-probe experiments for the study neutral excited state dynamics in various polyatomic molecules. The fifth harmonic of our laser system is generated through the four-wave-mixing process of k5 ω = 2k3 ω -kω performed with a non-collinear geometry in an argon gas cell. In several polyatomic molecular systems of interest a photon with 8 eV of energy gives us the unique ability to ionize from essentially anywhere along the excited state potential, but does not produce any ionization yield from the ground state. This enables us to measure excited state lifetimes without the photon energy becoming too low to ionize while the nuclear wave-packet is traveling on the excited state potential. We also have the advantage of working in the perturbative weak-field ionization regime. These experiments can also be directly compare to strong-field ionization experiments conducted with a UV-pump and an IR-probe conducted on the same molecules.

  18. Self-pumping impurity control

    DOEpatents

    Brooks, J.N.; Mattas, R.F.

    1983-12-21

    It is an object of the present invention to provide an apparatus for removing impurities from the plasma in a fusion reactor without an external vacuum pumping system. It is also an object of the present invention to provide an apparatus for removing the helium ash from a fusion reactor. It is another object of the present invention to provide an apparatus which removes helium ash and minimizes tritium recycling and inventory.

  19. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  20. Low-Cost, Rugged High-Vacuum System

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert

    2012-01-01

    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  1. The PEP-II Lower Pressure HER Vacuum Chamber

    SciTech Connect

    DeBarger, S.; Metcalfe, S.; Seeman, J.; Sullivan, M.; Wienands, U.; Wright, D.; /SLAC

    2006-03-13

    This new vacuum chamber has been installed from 12 to 21 meters upstream of the BaBar detector in the PEP-II High Energy Ring (HER) to reduce lost particle backgrounds. The backgrounds from HER now dominate the backgrounds in the BaBar detector and the present vacuum pressure is 1 x 10{sup -9} Torr. The new chamber will increase the pumping significantly by adding 18 x 2000 l/s titanium sublimation pumps to the existing 5 x 440 l/s ion pumps, and is expected to reduce the pressure by about a factor of five. Features of the chamber include improved water cooling, improved vacuum conductance through copper RF screens featuring over 15,000 small square holes and the ability to sublimate titanium while the beam is still on.

  2. Vacuum birefringence in strong inhomogeneous electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Gies, Holger; Reuter, Maria; Zepf, Matt

    2015-10-01

    Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

  3. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  4. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  5. Measurement of NSLS distributed diode sputter ion pump characteristics

    SciTech Connect

    Foerster, C.L.

    1984-01-01

    For the DI pump to have acceptable pumping speed, the pump must be glow discharge conditioned after the 150/sup 0/C max vacuum bakeout. Other DI pump conditioning procedures have not been investigated. Glow discharge conditioning of the system using the DI pump anode significantly improves the pumping speed at low pressures and high pressure pumping speed is slightly improved. The NSLS DI pump speed is not linear with pressure even though the average current is. Pumping speed drops to less than 25% of the high pressure speed at pressures below 10/sup -9/ torr, depending on the pump condition. The pumping speed is sufficiently close to its calculated value at high pressure. These results agree with actual ring experience with the distributed pump. The DI pump is most efficient pumping distributed gas loads from beam operation rather than gas loads introduced at the ends of the pump. Most of the gas load is distributed adjacent to the pump during beam operation due synchrotron radiation included desorption. 11 references, 5 figures.

  6. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  7. Cleaning of a thermal vacuum chamber with shrouds in place

    NASA Technical Reports Server (NTRS)

    Bond, William R.

    1992-01-01

    In February, 1991, a failure of a rotary booster pump caused the diffusion pumps to backstream into a 10 ft x 15 ft thermal vacuum chamber. Concerns existed about the difficulty of removing and reinstalling the shrouds without causing leaks. The time required for the shroud removal was also of concern. These concerns prompted us to attempt to clean the chamber without removing the shrouds.

  8. Vacuum leak detector

    NASA Technical Reports Server (NTRS)

    Kazokas, G. P. (Inventor)

    1975-01-01

    A leak detector for use with high vacuum seals as used in feedthroughs and hatch covers for manned spacecraft and vacuum systems is described. Two thermistors are used, one exposed directly to vacuum and the other exposed to a secondary chamber formed by the seal being monitored and a second auxiliary seal. Leakage into the secondary chamber causes an unbalance of an electrical bridge circuit in which the thermistors are connected.

  9. Vacuum probe surface sampler

    NASA Technical Reports Server (NTRS)

    Zahlava, B. A. (Inventor)

    1973-01-01

    A vacuum probe surface sampler is described for rapidly sampling relatively large surface areas which possess relatively light loading densities of micro-organism, drug particles or the like. A vacuum head with a hollow handle connected to a suitable vacuum source is frictionally attached to a cone assembly terminating in a flared tip adapted to be passed over the surface to be sampled. A fine mesh screen carried by the vacuum head provides support for a membrane filter which collects the microorganisms or other particles. The head assembly is easily removed from the cone assembly without contacting the cone assembly with human hands.

  10. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  11. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  12. Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity.

    PubMed

    Lähteenmäki, Pasi; Paraoanu, Gheorghe Sorin; Hassel, Juha; Hakonen, Pertti J

    2016-01-01

    The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump. Here we show that by double parametric pumping of a superconducting microwave cavity, it is possible to generate another type of correlation, namely coherence between photons in separate frequency modes. The coherence correlations are tunable by the phases of the pumps and are established by a quantum fluctuation that stimulates the simultaneous creation of two photon pairs. Our analysis indicates that the origin of this vacuum-induced coherence is the absence of which-way information in the frequency space. PMID:27562246

  13. Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity

    PubMed Central

    Lähteenmäki, Pasi; Paraoanu, Gheorghe Sorin; Hassel, Juha; Hakonen, Pertti J.

    2016-01-01

    The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump. Here we show that by double parametric pumping of a superconducting microwave cavity, it is possible to generate another type of correlation, namely coherence between photons in separate frequency modes. The coherence correlations are tunable by the phases of the pumps and are established by a quantum fluctuation that stimulates the simultaneous creation of two photon pairs. Our analysis indicates that the origin of this vacuum-induced coherence is the absence of which-way information in the frequency space. PMID:27562246

  14. Pump room level, looking west in the service bay area. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pump room level, looking west in the service bay area. Cable trays and two ventilation fans (part of the evaporative-cooling system) are visible at right. The vacuum pump is in the center in front of a concrete partition, and a water discharge pipe is visible beyond the partition at left - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  15. Main Vacuum Technical Issues of Evacuated Tube Transportation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Li, S. S.; Wang, M. X.

    In the future, Evacuated Tube Transportation (ETT) would be built and faster than jets. ETT tube with diameter 2∼4m and length over 1000 km will be the largest scale vacuum equipment on earth. This paper listed some main vacuum technical issues to be solved in ETT as follow. How to build ultra-large-scale vacuum chamber like ETT tube with low cost and high reliability? How to pump gas out off the ETT tube in short time? How to release heat or reduce temperature in the vacuum tube? Hot to avoid vacuum electricity discharge? How to manufacture vehicles with airproof shells and equip the life support system? How to detect leakage and find leakage position efficiently and fast as possible? Some relative solutions and suggestions are put up.

  16. Review of vacuum systems for x-ray lithography light sources

    SciTech Connect

    Schuchman, J.C.

    1990-01-01

    This paper will review and give a status report on vacuum systems for X-Ray lithography light sources. It will include conventional machines and compact machines (machines using superconducting magnets). The vacuum systems will be described and compared with regard to basic machine parameters, pumping systems, types of pumps, chamber design and material, gauging and diagnostics, and machine performane. 23 refs., 8 figs., 1 tab.

  17. Vacuum system design for the PEP-II B Factory High-Energy Ring

    SciTech Connect

    Perkins, C.; Bostic, D.; Daly, E.

    1994-06-01

    The design of the vacuum system for the PEP-II B Factory High-Energy Ring is reviewed. The thermal design and vacuum requirements are particularly challenging in PEP-II due to high stored beam currents up to 3.0 amps in 1658 bunches. The vacuum chambers for the HER arcs are fabricated by electron beam welding extruded copper sections up to 6 m long. Design of these chambers and the vacuum PumPing configuration is described with results from vacuum and thermal analyses.

  18. Requirements and guidelines for NSLS experimental beam line vacuum systems: Revision A

    SciTech Connect

    Foerster, C.; Halama, H.; Thomlinson, W.

    1986-10-01

    Requirements are provided for NSLS beam line front ends and vacuum interlocks. Guidelines are provided for UHV beam line vacuum systems, including materials, vacuum hardware (pumps, valves, and flanges), acoustic delay lines and beam line fast valves, instrumentation, fabrication and testing, and the NSLS cleaning facility. Also discussed are the design review for experimenters' equipment that would be connected to the NSLS and acceptance tests for any beam line to be connected with the ring vacuum. Also appended are a description of the acoustic delay line as well as the NSLS vacuum standards and NSLS procedures. (LEW)

  19. Working in a Vacuum

    ERIC Educational Resources Information Center

    Rathey, Allen

    2005-01-01

    In this article, the author discusses several myths about vacuum cleaners and offers tips on evaluating and purchasing this essential maintenance tool. These myths are: (1) Amps mean performance; (2) Everyone needs high-efficiency particulate air (HEPA): (3) Picking up a "bowling ball" shows cleaning power; (4) All vacuum bags are the same; (5)…

  20. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  1. Applications of vacuum technology to novel accelerator problems

    SciTech Connect

    Garwin, E.L.

    1983-01-01

    Vacuum requirements for electron storage rings are most demanding to fulfill, due to the presence of gas desorption caused by large quantities of synchrotron radiation, the very limited area accessible for pumping ports, the need for 10/sup -9/ torr pressures in the ring, and for pressures a decade lower in the interaction regions. Design features of a wide variety of distributed ion sublimation pumps (DIP) developed at SLAC to meet these requirements are discussed, as well as NEG (non-evaporable getter) pumps tested for use in the Large Electron Positron Collider at CERN. Application of DIP to much higher pressures in electron damping rings for the Stanford Linear Collider are discussed.

  2. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  3. Custom Unit Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis

    2010-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

  4. Vacuum and the electron tube industry

    NASA Astrophysics Data System (ADS)

    Redhead, P. A.

    2005-07-01

    The electron tube industry started with the patenting of the thermionic diode by John Ambrose Fleming in 1904. The vacuum technology used by the infant tube industry was copied from the existing incandescent lamp industry. The growing demands for electron tubes for the military in the first world war led to major improvements in pumps and processing methods. By the 1920s, mass production methods were developing to satisfy the demands for receiving tubes by the burgeoning radio industry. Further expansion in the 1930s and 1940s resulted in improvements in automatic equipment for pumping vacuum tubes leading to the massive production rates of electron tubes in the second world war and the following two decades. The demand for radar during the war resulted in the development of techniques for large-scale production of microwave tubes and CRTs, the latter technology being put to good use later in TV picture tube production. The commercial introduction of the transistor ended the massive demand for receiving tubes. This review concentrates on the vacuum technology developed for receiving tube production.

  5. Semipermanent sealing of leaks in high vacuum systems

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1974-01-01

    Silicone-rubber adhesive is applied externally to seal hair-line cracks in sections of high vacuum system while system is partially evacuated. No pretreatment of surface is required since adhesive will be drawn into crack while diffusion or ion pump is off.

  6. Housing protects laser in vacuum

    NASA Technical Reports Server (NTRS)

    Canali, V. G.

    1978-01-01

    Airtight housing encloses laser for easy alinement and operation in high-vacuum chamber. Beam is transmitted through window into vacuum chamber. Flexible line runs through vacuum chamber to outside, maintaining laser enclosure at atmospheric pressure.

  7. APPARATUS FOR VACUUM DEPOSITION OF METALS

    DOEpatents

    Milleron, N.

    1962-03-13

    An apparatus and a method are described for continuous vacuum deposition of metals for metallic coatings, for ultra-high vacuum work, for purification of metals, for maintaining high-density electron currents, and for other uses. The apparatus comprises an externally cooled feeder tube extending into a container and adapted to feed metal wire or strip so that it emerges in a generally vertical position therein. The tube also provides shielding from the heat produced by an electron beam therein focused to impinge from a vertical direction upon the tip of the emerging wire. By proper control of the wire feed, coolant feed, and electron beam intensity, a molten ball of metal forms upon the emerging tip and remains self-supported thereon by the interaction of various forces. The metal is vaporized and travels in a line of sight direction, while additional wire is fed from the tube, so that the size of the molten ball remains constant. In the preferred embodiments, the wire is selected from a number of gettering metals and is degassed by electrical resistance in an adjacent chamber which is also partially evacuated. The wire is then fed through the feed tube into the electron beam and vaporizes and adsorbs gases to provide pumping action while being continuously deposited upon surfaces within the chamber. Ion pump electrodes may also be provided within line of sight of the vaporizing metal source to enhance the pumping action. (AEC)

  8. Vacuum deposition system

    SciTech Connect

    Austin, S.; Bark, D.

    1990-05-31

    The Physics Section vacuum deposition system is available for several types of thin film techniques. This vacuum evaporation system operates in the high vacuum range. The evaporation source is a resistive heating element, either a boat or a filament design. Coating is then line of sight from the source. Substrates to be coated can have a maximum diameter of 17 inches. At this time the variations in the thickness of the coatings can be controlled, by monitor, to within about 100 angstroms. The system diagrams follow the Operation Procedures and the Sample Coating Procedures provided in this document. 3 figs.

  9. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2000-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  10. Thermophoretic vacuum wand

    DOEpatents

    Klebanoff, Leonard Elliott; Rader, Daniel John

    2001-01-01

    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  11. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  12. The water outgassing rate of internal surfaces of vacuum systems

    NASA Astrophysics Data System (ADS)

    Rozanov, L. N.

    2016-07-01

    On the basis of experimental adsorption isotherm the ratio between the real and geometrical surfaces was calculated and the amount of gas required to form a monolayer was defined. Simultaneous usage of Henry and Frendlih equations allowed to determine the dependence of the heat of adsorption on the logarithm of the absorbed gas amount A mathematical model of pumping of the vacuum systems with adsorbing walls is presented. This model uses the parameters of the vacuum system and the dependence of the adsorption heat on the amount of the adsorbed gas .The conditions of the existence of regular pumping regime are discussed. The structure database vacuum adsorption properties of materials was proposed. The experimental data on the determination of the adsorption outgassing rate were released.

  13. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  14. A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST

    SciTech Connect

    Klein, J.; Fowley, M.; Steeper, T.

    2010-12-20

    Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

  15. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  16. SNS Vacuum Instrumentation and Control System

    SciTech Connect

    J. Y. Tang; L. A. Smart; H. C. Hseuh; P. S. Marroquin; L. R. Dalesio; S. A. Lewis; C. A. Lionberger; K. Kishiyama; D. P. Gurd; M. Hechler; W. Schneider

    2001-11-01

    The Spallation Neutron Source (SNS) vacuum instrumentation and control systems are being designed at Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), Thomas Jefferson National Accelerator facility (TJNAF) and Los Alamos National Laboratory (LANL). Each participating lab is responsible for a different section of the machine: LBNL for the Front-End section, LANL for the warm LINAC section, TJNAF for the cold LINAC section and BNL for the Ring and transfer line sections. The vacuum instrumentation and control systems are scheduled to be installed and be in operation at Oak Ridge National Laboratory in 2004 or 2005. Although the requirements vary for different sections of the machine, a collaborative effort has been made to standardize vacuum instrumentation components and the global control system interfaces. This paper summarizes the design of each sub-section of vacuum instrumentation and control system and discusses SNS standards for Ion Pump and Gauge controllers, Programmable Logic Controller (PLC) interfaces, Ladder Logic programming and the SNS global control system interfaces.

  17. Demountable vacuum seals for fusion reactor applications

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1987-10-16

    Demountable vacuum seals for fusion reactor applications must be compatible with the reactor environment, easily scalable, very reliable and readily maintained by remote handling methods. We are investigating gate valves as well as flanges in our efforts to provide such seals. They are all metal and scalable without becoming massive and require no axial fasteners. Preliminary tests on an initial 30 cm aluminum flange using no soft metal coatings or gaskets have given several vacuum tight closures. Weld fatigue of this preliminary design caused degradation of the seal with further cycling to leakage levels of 10/sup -6/ Tl/sec, which is acceptable with differential pumping for either valves or flanges. Additional flange pairs using slightly altered geometry, fabrication techniques, and seal plating materials will be tested and reported on.

  18. MMS Observatory Thermal Vacuum Results Contamination Summary

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos

    2014-01-01

    The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.

  19. Vacuum Camera Cooler

    NASA Technical Reports Server (NTRS)

    Laugen, Geoffrey A.

    2011-01-01

    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  20. Infrared detector Dewars - Increased LN2 hold time and vacuum jacket life spans

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Boyd, W. J.; Blass, W. E.

    1976-01-01

    IR detector Dewars commonly suffer from shorter than desired LN2 hold times and insulation jacket vacuum corruption over relatively short time periods. In an attempt to solve this problem for a 9144 detector Dewar, small 1 liter/s appendage ion pumps were selected for continuous pumping of the vacuum jackets. This procedure extended LN2 hold times from 20 to 60 h and virtually eliminated vacuum jacket corruption. Thus the detector systems are usable continuously over periods of 6 months or more.

  1. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  2. Modelling Spatial Modes of Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.

    We develop a fully quantum model to describe the spatial mode properties of squeezed light generated as a strong laser beam propagates through a Rb vapor cell. Our results show that a Gaussian pump beam can generate a collection of higher order Laguerre-Gaussian squeezed vacuum modes, each carrying a particular squeeze parameter and squeeze angle. We show that a proper sorting of modes could lead to improved noise suppression and thus make this method of squeezed light generation very useful for precision metrology.

  3. Space simulation ultimate pressure lowered two decades by removal of diffusion pump oil contaminants during operation

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1973-01-01

    The complex problem why large space simulation chambers do not realize the true ultimate vacuum was investigated. Some contaminating factors affecting diffusion pump performance have been identified and some advances in vacuum/distillation/fractionation technology have been achieved which resulted in a two decade or more lower ultimate pressure. Data are presented to show the overall or individual contaminating effect of commonly used phthalate ester plasticizers of 390 to 530 molecular weight on diffusion pump performance. Methods for removing contaminants from diffusion pump silicone oil during operation and reclaiming contaminated oil by high vacuum molecular distillation are described.

  4. Electric field divertor plasma pump

    DOEpatents

    Schaffer, M.J.

    1994-10-04

    An electric field plasma pump includes a toroidal ring bias electrode positioned near the divertor strike point of a poloidal divertor of a tokamak, or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix of the poloidal divertor contacts the ring electrode, which then also acts as a divertor plate. A plenum or other duct near the electrode includes an entrance aperture open to receive electrically-driven plasma. The electrode is insulated laterally with insulators, one of which is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode and a vacuum vessel wall, with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E [times] B/B[sup 2] drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable. 11 figs.

  5. Electric field divertor plasma pump

    DOEpatents

    Schaffer, Michael J.

    1994-01-01

    An electric field plasma pump includes a toroidal ring bias electrode (56) positioned near the divertor strike point of a poloidal divertor of a tokamak (20), or similar plasma-confining apparatus. For optimum plasma pumping, the separatrix (40) of the poloidal divertor contacts the ring electrode (56), which then also acts as a divertor plate. A plenum (54) or other duct near the electrode (56) includes an entrance aperture open to receive electrically-driven plasma. The electrode (56) is insulated laterally with insulators (63,64), one of which (64) is positioned opposite the electrode at the entrance aperture. An electric field E is established between the ring electrode (56) and a vacuum vessel wall (22), with the polarity of the bias applied to the electrode being relative to the vessel wall selected such that the resultant electric field E interacts with the magnetic field B already existing in the tokamak to create an E.times.B/B.sup.2 drift velocity that drives plasma into the entrance aperture. The pumped plasma flow into the entrance aperture is insensitive to variations, intentional or otherwise, of the pump and divertor geometry. Pressure buildups in the plenum or duct connected to the entrance aperture in excess of 10 mtorr are achievable.

  6. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  7. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    SciTech Connect

    Stutzman, M L; Adderley, P; Brittian, J; Clark, J; Grames, J; Hansknecht, J; Myneni, G R; Poelker, M

    2007-05-01

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower part of the UHV range. Measured NEG pump speed is high at pressures above 5×10-11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.

  8. Characterization of the CEBAF 100 kV DC GaAs photoelectron gun vacuum system

    NASA Astrophysics Data System (ADS)

    Stutzman, M. L.; Adderley, P.; Brittian, J.; Clark, J.; Grames, J.; Hansknecht, J.; Myneni, G. R.; Poelker, M.

    2007-05-01

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower part of the UHV range. Measured NEG pump speed is high at pressures above 5×10 -11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.

  9. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, Robert F.

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  10. Miniature thermo-electric cooled cryogenic pump

    DOEpatents

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  11. A simple, high-yield, apparatus for NEG coating of vacuum beamline elements

    SciTech Connect

    Ron, Guy; Oort, Ron; Lee, Daniel

    2010-12-01

    Non-Evaporable Getter (NEG) materials are extremely useful in vacuum systems for achieving Ultra High Vacuum. Recently, these materials have been used to coat the inner surfaces of vacuum components, acting as an internal, passive, vacuum pump. We have constructed a low cost apparatus, which allows coating of very small diameter vacuum tubes, used as differential pumping stages. Despite the relative ease of construction, we are routinely able to achieve high coating yields. We further describe an improvement to our system, which is able to achieve the same yield, at an even lower complexity by using an easily manufactured permanent magnet arrangement. The designs described are extendible to virtually any combination of length and diameter of the components to be coated.

  12. Design, Installation and Commissioning of new Vacuum chamber for Analysing Magnet of K-130 Cyclotron

    NASA Astrophysics Data System (ADS)

    Mandal, Bidhan Chandra; Saha, S.; Sarkar, S. C.; Adak, D.; Viswanathan, T.; Hemram, B.; Chakraborty, P. S.; Yadav, R. C.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    In view of up-gradation of K-130 Cyclotron at VECC, Kolkata, we have designed a new Vacuum chamber to modify the existing vacuum chamber system. This new chamber is meant for C-shaped 1T dipole type 159.5° Analysing Magnet of 4710 OD × 2750 ID × 1075 mm tall in the RIB feeder beam-line. The welded type vacuum chamber is made of SS-304. The chamber with trapezoidal cross-section is of 4447 OD × 4057 ID × 61.5 mm average height. Pumping ports and modules are selected accordingly to ensure the required high vacuum for beam transport. The chamber improves the base vacuum and reduces the complicated O-ring replacement mandatory for existing chamber made of aluminium alloy. The new chamber is installed at site along with all the pumping module and beam line components. This paper presents the detailed design, installation and commissioning results.

  13. Improving Vacuum Cleaners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  14. Jet Engines as High-Capacity Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1983-01-01

    Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.

  15. Evaluation of CBA first string full cell vacuum system

    SciTech Connect

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10/sup -11/ Torr and the other, known as insulating vacuum, operates at less than 10/sup -7/ Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0/sup 0/K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10/sup -11/ Torr beam vacuum requirement and below 2 x 10/sup -7/ Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing.

  16. DYNAVAC: a transient-vacuum-network analysis code

    SciTech Connect

    Deis, G.A.

    1980-07-08

    This report discusses the structure and use of the program DYNAVAC, a new transient-vacuum-network analysis code implemented on the NMFECC CDC-7600 computer. DYNAVAC solves for the transient pressures in a network of up to twenty lumped volumes, interconnected in any configuration by specified conductances. Each volume can have an internal gas source, a pumping speed, and any initial pressure. The gas-source rates can vary with time in any piecewise-linear manner, and up to twenty different time variations can be included in a single problem. In addition, the pumping speed in each volume can vary with the total gas pumped in the volume, thus simulating the saturation of surface pumping. This report is intended to be both a general description and a user's manual for DYNAVAC.

  17. VACUUM SEALING MEANS FOR LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-12

    S>A vacuum seal is designed in which the surface tension of a thin layer of liquid metal of low vapor pressure cooperates with adjacent surfaces to preclude passages of gases across pressure differentials as low as 10/sup -8/ mm Hg. Mating contiguous surfaces composed of copper, brass, stainless steel, nickel, molybdenum, tungsten, tantalum, glass, quartz, and/or synthetic mica are disposed to provide a maximum tolerance, D, expressed by 2 gamma /P/sub 1/, where gamma is the coefflcient of the surface tension of the metal sealant selected in dynes/cm/sub 2/. Means for heating the surfaces remotely is provided where temperatures drop below about 250 deg C. A sealant consisting of an alloy of gallium, indium, and tin, among other combinations tabulated, is disposed therebetween after treating the surfaces to improve wettability, as by ultrasonic vibrations, the surfaces and sealants being selected according to the anticipated experimental conditions of use. (AEC)

  18. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  19. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  20. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  1. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  2. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  3. Vacuum system design of the SRRC 1. 3 GeV Synchrotron radiation source

    SciTech Connect

    Chen, J.R.; Hsiung, G.Y.; Chen, D.C.; Wang, D.J.; Chen, G.S.; Liu, Y.C.

    1988-09-30

    The vacuum system design for the SRRC 1.3 GeV synchrotron light source is described. The design goal of the vacuum system is to achieve a 10 h beam life time at 200 mA beam current. Aluminum alloys are chosen as the vacuum chamber materials. Machining and extrusion methods will be applied to the fabrication of bending magnet chambers and straight chambers respectively. In order to locate pumps effectively, a computer program was written to calculate the pressure distribution around the storage ring. In the ring, the major pumps will be ion pumps and titanium sublimation pumps. Turbomolecular pumps will be used for evacuation during roughing and baking processes. At the downstream side of the bending magnet chamber, where the photon-induced desorption is ''concentrated'', a pumping port is designed to reduce the average pressure effectively; this design results in a triangular-shaped bending magnet chamber. Also, a distributed ion pumps is built in the bending magnet chamber to pump out scattered gas molecules in this region.

  4. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  5. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    We report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182-A radiation. The holograms were recorded in polymethyl methacrylate and examined with an electron microscope. A holographic grating with a fringe spacing of 386 A was produced and far-field Fraunhofer holograms of submicron particles were recorded.

  6. Vacuum Kundt waves

    NASA Astrophysics Data System (ADS)

    McNutt, David; Milson, Robert; Coley, Alan

    2013-03-01

    We discuss the invariant classification of vacuum Kundt waves using the Cartan-Karlhede algorithm and determine the upper bound on the number of iterations of the Karlhede algorithm to classify the vacuum Kundt waves (Collins (1991 Class. Quantum Grav. 8 1859-69), Machado Ramos (1996 Class. Quantum Grav. 13 1589)). By choosing a particular coordinate system we partially construct the canonical coframe used in the classification to study the functional dependence of the invariants arising at each iteration of the algorithm. We provide a new upper bound, q ⩽ 4, and show that this bound is sharp by analyzing the subclass of Kundt waves with invariant count beginning with (0, 1,…) to show that the class with invariant count (0, 1, 3, 4, 4) exists. This class of vacuum Kundt waves is shown to be unique as the only set of metrics requiring the fourth covariant derivatives of the curvature. We conclude with an invariant classification of the vacuum Kundt waves using a suite of invariants.

  7. Langmuir vacuum and superconductivity

    NASA Astrophysics Data System (ADS)

    Veklenko, B. A.

    2012-06-01

    It is shown that, in the "jelly" model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  8. Vacuum ultraviolet holography

    NASA Technical Reports Server (NTRS)

    Bjorklund, G. C.; Harris, S. E.; Young, J. F.

    1974-01-01

    The authors report the first demonstration of holographic techniques in the vacuum ultraviolet spectral region. Holograms were produced with coherent 1182 A radiation. The holograms were recorded in polymethyl methacrylate and read out with an electron microscope. A holographic grating with a fringe spacing of 836 A was produced and far-field Fraunhofer holograms of sub-micron particles were recorded.

  9. Various unique vacuum holders

    SciTech Connect

    Gregar, J.S.

    1992-12-01

    Glassblowers use vacuum holding devices to support a flat plate in the glassflowing lathe to seal onto the end of, or inside of, a glass cylinder. Glassblowing blowhose swivels tend to leak; a rotating union from the hydraulics industry is better. Various graphite holder designs are described.

  10. Optical testing cryogenic thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Dohogne, Patrick W.; Carpenter, Warren A.

    1990-01-01

    The construction of a turnkey cryogenic vacuum test facility was recently completed. The facility will be used to measure and record the surface profile of large diameter and 540 kg optics under simulated space conditions. The vacuum test chamber is a vertical stainless steel cylinder with a 3.5 diameter and a 7 m tangent length. The chamber was designed to maximize optical testing quality by minimizing the vibrations between the laser interferometer and the test specimen. This was accomplished by designing the chamber for a high natural frequency and vibration isolating the chamber. An optical test specimen is mounted on a movable presentation stage. During thermal vacuum testing, the specimen may be positioned to + or - 0.00025 cm accuracy with a fine adjustment mechanism. The chamber is evacuated by a close coupled Roots-type blower and rotary vane pump package and two cryopumps. The chamber is equipped with an optically dense gaseous nitrogen cooled thermal shroud. The thermal shroud is used to cool or warm the optical test specimen at a controlled rate. A control system is provided to automatically evacuate the chamber and cooldown the test specimen to the selected control temperature.