Science.gov

Sample records for crystal field states

  1. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  2. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  3. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    SciTech Connect

    Averkov, Yu. O. Tarapov, S. I.; Yakovenko, V. M.; Yampol’skii, V. A.

    2015-04-15

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  4. Ground-state zero-field splitting of Mn 2+ ions in ZnO and CdSe crystals

    NASA Astrophysics Data System (ADS)

    Kuang, Xiao-Yu

    1996-02-01

    ZnO and CdSe crystals have similar hexagonal wurtzite structures with a contraction along the c-axis of the crystal, but contrary electronic fine structures for ZnO:Mn 2+ ( D < 0) and CdSe:Mn 2+ ( D > 0) have been found in EPR experiments. We demonstrate that the ground-state splitting in ZnO:Mn 2+ is due to a trigonal ligand field, whereas the main physical mechanism of the splitting in CdSe:Mn 2+ can be attributed to the combined effect of a slight trigonal distortion and a covalence spin-orbit coupling interaction.

  5. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  6. Crystal-field states of Kondo lattice heavy fermions CeRuSn3 and CeRhSn3

    NASA Astrophysics Data System (ADS)

    Anand, V. K.; Adroja, D. T.; Britz, D.; Strydom, A. M.; Taylor, J. W.; Kockelmann, W.

    2016-07-01

    Inelastic neutron scattering experiments have been carried out to determine the crystal-field states of the Kondo lattice heavy fermions CeRuSn3 and CeRhSn3. Both the compounds crystallize in LaRuSn3-type cubic structure (space group P m 3 ¯n ) in which the Ce atoms occupy two distinct crystallographic sites with cubic (m 3 ¯ ) and tetragonal (4 ¯m .2 ) point symmetries. The INS data of CeRuSn3 reveal the presence of a broad excitation centered around 6-8 meV, which is accounted by a model based on crystal electric field (CEF) excitations. On the other hand, the INS data of isostructural CeRhSn3 reveal three CEF excitations around 7.0, 12.2, and 37.2 meV. The neutron intensity sum rule indicates that the Ce ions at both cubic and tetragonal Ce sites are in Ce3 + state in both CeRuSn3 and CeRhSn3. The CEF level schemes for both the compounds are deduced. We estimate the Kondo temperature TK=3.1 (2 ) K for CeRuSn3 from neutron quasielastic linewidth in excellent agreement with that determined from the scaling of magnetoresistance which gives TK=3.2 (1 ) K. For CeRhSn3, the neutron quasielastic linewidth gives TK≈4.6 K. For both CeRuSn3 and CeRhSn3, the ground state of Ce3 + turns out to be a quartet for the cubic site and a doublet for the tetragonal site.

  7. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7

    NASA Astrophysics Data System (ADS)

    Xu, J.; Anand, V. K.; Bera, A. K.; Frontzek, M.; Abernathy, D. L.; Casati, N.; Siemensmeyer, K.; Lake, B.

    2015-12-01

    We present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below TN≈0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26 (2 ) μB /Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65 μB /Nd for the local <111 > Ising ground state of Nd3 + (J =9 /2 ) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3 + and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. The crystal-field level scheme and ground state wave function have been determined.

  8. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7

    DOE PAGESBeta

    Xu, J.; Anand, V. K.; Bera, A. K.; Frontzek, Matthias D.; Abernathy, Douglas L.; Casati, N.; Siemensmeyer, K.; Lake, B.

    2015-12-28

    In this paper, we present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below TN≈0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) μB/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65μB/Nd for the localmore » <111> Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3+ and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. Lastly, the crystal-field level scheme and ground state wave function have been determined.« less

  9. Quenched crystal-field disorder and magnetic liquid ground states in Tb2Sn2-xTixO7 [Crystal field disorder in the quantum spin ice ground state of Tb2Sn2-xTixO7

    DOE PAGESBeta

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; et al

    2015-06-01

    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground and first excited states present as continua in energy,more » while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb3+ ion.« less

  10. Crystal Field Disorder in the Quantum Spin Ice Ground State of Tb2Sn2 xTixO7

    SciTech Connect

    Gaulin, Bruce D.; Zhang, J.; Dahlberg, M. L.; Matthews, Maria J.; Bert, F.; Kermarrec, E.; Fritsch, Katharina; Granroth, Garrett E; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Mendels, P.; Schiffer, P

    2015-01-01

    Spin ice physics marries that of hydrogen disorder in water ice, first discussed almost 60 years ago by Pauling, and that of low temperature magnetism on certain networks of connected tetrahedra. Recently the classical spin ice mag- nets Ho2Ti2O7 and Dy2Ti2O7 have shown an emergent artificial magneto- statics , which manifests itself as Coulombic spin correlations and excitations behaving as diffusive magnetic monopoles. The related pyrochlore magnet, Tb2Ti2O7, has been proposed as a quantum variant of spin ice, stabilized by 1 virtual excitations between the crystal field (CF) ground state doublet appro- priate to Tb3+, and its low lying excited state doublet. Isostructural Tb2Sn2O7 displays soft spin ice order, and its Tb3+ ground and excited CF eigenstates are known to differ relative to those of Tb2Ti2O7. We present a comprehensive study of Tb2Sn2 xTixO7 showing a novel, dynamic spin liquid state for all x other than the end members (0, 2). This state is the result of disorder in the low lying Tb3+ CF environments which de-stabilizes the mechanism by which quantum fluctuations contribute to ground state selection in Tb2Sn2 xTixO7.

  11. Optical characterization and crystal field calculations for some erbium based solid state materials for laser refrigeration

    NASA Astrophysics Data System (ADS)

    Hasan, Z.; Qiu, Z.; Johnson, Jackie; Homerick, Uwe

    2009-02-01

    The potential of three erbium based solids hosts has been investigated for laser cooling. Absorption and emission spectra have been studied for the low lying IR transitions of erbium that are relevant to recent reports of cooling using the 4I15/2-4I9/2 and4I15/2 -4I13/2 transitions. Experimental studies have been performed for erbium in three hosts; ZBLAN glass and KPb2Cl5 and Cs2NaYCl6 crystals. In order to estimate the efficiencies of cooling, theoretical calculations have been performed for the cubic Elpasolite (Cs2NaYCl6 ) crystal. These calculations also provide a first principle insight into the cooling efficiency for non-cubic and glassy hosts where such calculations are not possible.

  12. Quenched crystal-field disorder and magnetic liquid ground states in Tb2Sn2 -xTixO7

    NASA Astrophysics Data System (ADS)

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Schiffer, P.

    2015-06-01

    Solid solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7 with B = Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac susceptibility and μ SR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb3 + crystal-field levels appropriate to high B-site mixing (0.5 states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb3 + ion.

  13. Quenched crystal-field disorder and magnetic liquid ground states in Tb₂Sn2-xTixO₇

    DOE PAGESBeta

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; et al

    2015-06-18

    Solid solutions of the “soft” quantum spin ice pyrochlore magnets Tb₂B₂O₇ with B = Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac susceptibility and μSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb³⁺ crystal-field levels appropriate to high B-site mixing (0.5 < x < 1.5 in Tb₂Sn2-xTixO₇) reveal that the doublet ground and first excited states present as continuamore » in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb³⁺ ion.« less

  14. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    PubMed Central

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-01-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields. PMID:26100597

  15. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    NASA Astrophysics Data System (ADS)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  16. The evolution of crystal electric field states and magnetic scattering in Sc_1-xU_xPd_3

    NASA Astrophysics Data System (ADS)

    Wilson, S.; Dai, P.; Adroja, D.; Lee, S.-H.; Dickey, R. P.; Maple, M.

    2004-03-01

    Despite extensive work in studying f-electron materials that exhibit deviations from the Landau's Fermi Liquid theory, there is still no agreement on the microscopic origin of this Non-Fermi Liquid (NFL) behavior. One possible microscopic origin of the NFL behavior is the two-channel quadropolar Kondo effect, where the NFL behavior is due the nonmagnetic ground state of the U crystal electric field (CEF) in cubic host lattice. Previous data on the Y_1-xU_xPd3 system has been interpreted with this model. However, Y_1-xU_xPd3 system has large U concentration inhomogeneity. Due to its higher uniformity in uranium concentrations, the Sc_1-xU_xPd3 system emerges as an attractive avenue to study the microscopic origins of this NFL behavior. We have carried out a systematic study of the doping evolution of the CEF level scheme for x=.35 and x=.25 in Sc_1-xU_xPd_3. Conflicting conclusions from previous experiments toward the CEF groundstate of the system suggest a possible crossover in the groundstate as a function of doping. Recent experiments performed at ISIS and NIST will be presented and the resulting CEF level schemes for Sc_.65U_.35Pd3 and Sc_.75U_.25Pd3 will be discussed. This work was supported by U.S. NSF DMR-0139882 and DOE under Contract No. DE-AC05-00OR22725.

  17. Crystal-field effects in fluoride crystals for optical refrigeration

    SciTech Connect

    Hehlen, Markus P

    2010-01-01

    thermal energy from the solid and carries it away as high-entropy light, thereby cooling the material. In the ideal case, the respective laser-cooling power is given by the pump wavelength ({lambda}{sub p}), the mean fluorescence wavelength ({bar {lambda}}{sub L}), and the absorption coefficient (a{sub r}) of the pumped transition. These quantities are solely determined by crystal field interactions. On one hand, a large crystal-field splitting offers a favorably large difference of {lambda}{sub p} - {bar {lambda}}{sub L} and thus a high cooling efficiency {eta}{sub cool} = ({lambda}{sub p} - {bar {lambda}}{sub L})/{bar {lambda}}{sub L}. On the other hand, a small crystal-field splitting offers a high thermal population (n{sub i}) of the initial state of the pumped transition, giving a high pump absorption coefficient and thus high laser cooling power, particularly at low temperatures. A quantitative description of crystal-field interactions is therefore critical to the understanding and optimization of optical refrigeration. In the case of Yb3+ as the laser cooling ion, however, development of a crystal-field model is met with substantial difficulties. First, Yb3+ has only two 4/multiplets, {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2}, which lead to at most 7 crystal-field levels. This makes it difficult, and in some cases impossible, to evaluate the crystal-field Hamiltonian, which has at least 4 parameters for any Yb3+ point symmety lower than cubic. Second, {sup 2}F{sub 7/2}{leftrightarrow}{sup 2}F{sub 5/2} transitions exhibit an exceptionally strong electron-phonon coupling compared to 4f transitions of other rare earths. This makes it difficult to distinguish electronic from vibronic transitions in the absorption and luminescence spectra and to reliably identify the crystal-field levels. Yb3+ crystal-field splittings reported in the literature should thus generally be viewed with caution. This paper explores the effects of crystal-field interactions on the laser cooling

  18. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  19. BPS States, Crystals, and Matrices

    DOE PAGESBeta

    Sułkowski, Piotr

    2011-01-01

    We review free fermion, melting crystal, and matrix model representations of wall-crossing phenomena on local, toric Calabi-Yau manifolds. We consider both unrefined and refined BPS counting of closed BPS states involving D2- and D0-branes bound to a D6-brane, as well as open BPS states involving open D2-branes ending on an additional D4-brane. Appropriate limit of these constructions provides, among the others, matrix model representation of refined and unrefined topological string amplitudes.

  20. Quenched crystal-field disorder and magnetic liquid ground states in Tb₂Sn2-xTixO₇

    SciTech Connect

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Schiffer, P.

    2015-06-18

    Solid solutions of the “soft” quantum spin ice pyrochlore magnets Tb₂B₂O₇ with B = Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac susceptibility and μSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb³⁺ crystal-field levels appropriate to high B-site mixing (0.5 < x < 1.5 in Tb₂Sn2-xTixO₇) reveal that the doublet ground and first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb³⁺ ion.

  1. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  2. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  3. Quenched crystal-field disorder and magnetic liquid ground states in Tb2Sn2−xTixO7 [Crystal field disorder in the quantum spin ice ground state of Tb2Sn2-xTixO7

    DOE PAGESBeta

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; et al

    2015-06-01

    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground and first excited states present as continua in energy,more » while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb3+ ion.« less

  4. Squeezed state generation in photonic crystal microcavities.

    PubMed

    Banaee, M G; Young, Jeff F

    2008-12-01

    The feasibility of using a parametric down-conversion process to generate squeezed electromagnetic states in three dimensional photonic crystal microcavity structures is investigated for the first time. The spectrum of the squeezed light is theoretically calculated by using an open cavity quantum mechanical formalism. The cavity communicates with two main channels, which model vertical radiation losses and coupling into a single-mode waveguide respectively. The amount of squeezing is determined by the correlation functions relating the field quadratures of light coupled into the waveguide. All of the relevant model parameters are realistically estimated for structures made in Al0.3Ga0.7As, using finite-difference time-domain simulations. Squeezing up to approximately 30% below the shot noise level is predicted for 10 mW average power, 80 MHz repetition, 500 ps excitation pulses using in a [111] oriented wafer. PMID:19065230

  5. Crystal-field levels in UBr 3 determined by neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Murasik, A.; Furrer, A.; Szczepaniak, W.

    1980-03-01

    Inelastic neutron scattering experiments have been performed in UBr 3 in order to determine the crystal-field levels. Four transitions between the ground state and all excited states have been observed, thus the crystal-field level scheme could be unambigously assigned. The Russell-Saunders coupling scheme has been used to derive the crystal-field parameters which cannot be accounted for by a simple point charge calculation.

  6. Inelastic neutron scattering investigation of crystal-field splittings in UBr 3

    NASA Astrophysics Data System (ADS)

    Murasik, A.; Furrer, A.

    1980-10-01

    An inelastic neutron scattering technique was used to measure the crystal-field splittings in UBr 3 at various temperatures and momentum transfers. In the interpretation of the observed energy spectra it turns out that the Russell-Saunders coupling scheme is a reasonable approximation. The crystal-field level scheme could be unambiguously assigned. The detailed nature of the crystal-field transition from the ground state to the first-excited state is not yet fully understood.

  7. Consistent Hydrodynamics for Phase Field Crystals.

    PubMed

    Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T

    2016-01-15

    We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543

  8. Phase-Field Simulations of Crystal Growth

    NASA Astrophysics Data System (ADS)

    Plapp, Mathis

    2010-07-01

    This course gives an elementary introduction to the phase-field method and to its applications for the modeling of crystal growth. Two different interpretations of the phase-field variable are given and discussed. It can be seen as a physical order parameter that characterizes a phase transition, or as a smoothed indicator function that tracks domain boundaries. Elementary phase-field models for solidification and epitaxial growth are presented and are applied to the dendritic growth of a pure substance and the step-flow growth on a vicinal surface.

  9. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  10. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  11. Crystal field and magnetic properties of ErH3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) times 10 to the minus 6 Weber m/kg Tesla. The saturation moment is 3.84 + or - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is of the order of 160 to 180 K.

  12. Phase-Field Crystals with Elastic Interactions

    SciTech Connect

    Stefanovic, Peter; Provatas, Nikolas; Haataja, Mikko

    2006-06-09

    We report on a novel extension of the recently introduced phase-field crystal (PFC) method [Elder et al., Phys. Rev. Lett. 88, 245701 (2002)], which incorporates elastic interactions as well as crystal plasticity and diffusive dynamics. In our model, elastic interactions are mediated through wave modes that propagate on time scales many orders of magnitude slower than atomic vibrations but still much faster than diffusive time scales. This allows us to preserve the quintessential advantage of the PFC model: the ability to simulate atomic-scale interactions and dynamics on time scales many orders of magnitude longer than characteristic vibrational time scales. We demonstrate the two different modes of propagation in our model and show that simulations of grain growth and elastoplastic deformation are consistent with the microstructural properties of nanocrystals.

  13. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  14. States of water adsorbed on perindopril crystals

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Khmelevskaya, V. S.; Bogdanov, N. Yu.; Gorchakov, K. A.

    2011-10-01

    The relationship between the structural state of adsorbed water, the crystal structure of the substances, and the solubility of the perindopril salt C19H32N2O5 · C4H11N in water was studied by IR spectroscopy and X-ray diffractometry. The high-frequency shift of the stretching vibrations of adsorbed water and the solubility depend on the crystal structure of the drug substance. A reversible chemical reaction occurred between the adsorbed water and the perindopril salt.

  15. Collective sliding states for colloidal molecular crystals

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  16. Oxidation and crystal field effects in uranium

    SciTech Connect

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  17. Oxidation and crystal field effects in uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.

    2015-07-01

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.

  18. Laser-induced excited-state crossover and spectral variation of Cr3+ in the high-crystal-field environment of CaGa2O4.

    PubMed

    Rai, M; Singh, S K; Morthekai, P

    2016-08-01

    We have studied a wide-bandgap oxide semiconductor, CaGa1.99Cr0.01O4, which possesses high crystal field strength and develops deep traps. These traps efficiently store electric charges after excitation with ultraviolet light. Stimulation of trap charges using infrared radiation (both coherent and incoherent) gives wideband emission of Cr3+ in the red-infrared region, which is similar to the photon upconversion process in lanthanides. Under laser excitation, high photon density and local heating pronounce the coupling of E2 and T24 states and causes an excited state crossover of the population from the E2 to T24 state. This expands the emission band-width of Cr3+ up to 900 nm. PMID:27472637

  19. Plasticity and dislocation dynamics in a phase field crystal model.

    PubMed

    Chan, Pak Yuen; Tsekenis, Georgios; Dantzig, Jonathan; Dahmen, Karin A; Goldenfeld, Nigel

    2010-07-01

    The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal model. In the model, dislocations are naturally created, without any ad hoc creation rules, by applying a shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions. PMID:20867460

  20. Er3+ -doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence.

    PubMed

    Luo, Wenqin; Fu, Chengyu; Li, Renfu; Liu, Yongsheng; Zhu, Haomiao; Chen, Xueyuan

    2011-11-01

    A comprehensive survey of electronic structure and optical properties of rare-earth ions embedded in semiconductor nanocrystals (NCs) is of vital importance for their potential applications in areas as diverse as luminescent bioprobes, lighting, and displays. Er3+ -doped anatase TiO2 NCs, synthesized via a facile sol-gel solvothermal method, exhibit intense and well-resolved intra-4f emissions of Er3+ . Crystal-field (CF) spectra of Er3+ in TiO2 NCs are systematically studied by means of high-resolution emission and excitation spectra at 10-300 K. The CF analysis of Er3+ assuming a site symmetry of C(2v) yields a small root-mean-square deviation of 25.1 cm(-1) and reveals the relatively large CF strength (549 cm(-1) ) of Er3+, thus verifying the rationality of the C(2v) symmetry assignment of Er3+ in anatase TiO2 NCs. Based on a simplified thermalization model for the temperature-dependent photoluminescence (PL) dynamics from (4) S(3/2) , the intrinsic radiative luminescence lifetimes of (4) S(3/2) and (2) H(11/2) are experimentally determined to be 3.70 and 1.73 μs, respectively. Green and red upconversion (UC) luminescence of Er3+ can be achieved upon laser excitation at 974.5 nm. The UC intensity of Er3+ in Yb/Er-codoped NCs is found to be about five times higher than that of Er-singly-doped counterparts as a result of efficient Yb3+ sensitization and energy transfer upconversion (ETU) evidenced by its distinct UC luminescence dynamics. Furthermore, the origin of defect luminescence is revealed based on the temperature-dependent PL spectra upon excitation above the TiO2 bandgap at 325 nm. PMID:21932290

  1. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  2. Crystal Ball evidence for new states

    SciTech Connect

    Coyne, D.G.

    1981-09-01

    Evidence for three new particles observed in the Crystal Ball detector is presented. The first particle, at 3592 MeV, is seen inclusively in ..gamma.. transitions from psi', and is thus a candidate for eta/sub c/'. The other two, at 1440 and 1640 MeV, are best seen in exclusive decays of psi involving a prompt ..gamma.., and are thus candidates for bound states of two gluons. Detailed reasons are presented to support the contention that these states are distinct from previously observed candidates such as E(1420). Alternative hypotheses are discussed.

  3. Field expulsion and reconfiguration in polaritonic photonic crystals.

    PubMed

    Huang, Kerwyn Casey; Bienstman, Peter; Joannopoulos, John D; Nelson, Keith A; Fan, Shanhui

    2003-05-16

    We uncover a rich set of optical phenomena stemming from the incorporation of polar materials exhibiting transverse phonon polariton excitations into a photonic crystal structure. We identify in the frequency spectrum two regimes in which the dielectric response of the polaritonic medium can induce extreme localization of the electromagnetic energy. Our analysis of the effect of polarization and the interaction between the polariton and photonic band gaps on the Bloch states leads to a pair of mechanisms for sensitive frequency-controlled relocation and/or reconfiguration of the fields. PMID:12785962

  4. Vibronic spectra of U4 in octahedral crystal fields

    NASA Astrophysics Data System (ADS)

    Flint, C. D.; Tanner, P. A.

    The absorption spectra of UCl2-6 diluted into the cubic lattices Cs2ZrCl6 and Cs2SnCl6, and of UBr2-6 diluted into Cs2ZrBr6 have been measured at liquid helium temperatures. The derived energy levels, together with earlier luminescence measurements have been used to evaluate the crystal-field, spinorbit coupling, inter-electron repulsion and Trees correction parameters and the corresponding eigenvalues. Several of the states are derived from an almost equal admixture of two or more Russell-Saunders terms. Some magnetic properties are also computed and discussed.

  5. Pair Crystallization in the Pseudogap State

    NASA Astrophysics Data System (ADS)

    Chen, Han-Dong; Vafek, Oskar; Yazdani, Ali; Zhang, Shou-Cheng

    2004-03-01

    Recent STM experiments of BiSrCaCuO have shown evidence of real-space organization of electronic states in the pseudogap state[1]. In this talk, we argue based on symmetry considerations as well as model calculations that the experimentally observed ordering is due to organization of d-wave hole pairs into a static lattice, similar to those previously proposed in the vicinity of vortices[2]. In addition to these results, we also make prediction on how to further distinguish between a pair-crystal and more typical electronic modulations due to charge density wave ordering or those due to simple scattering from a periodic potential. [1] M. Vershinin, S. Misra, S. Ono, S. Abe, Y. Ando, and A. Yazdani, submitted. [2] H.D. Chen, J.P. Hu, S. Capponi, E. Arrigoni and S.C. Zhang, Phys. Rev. Lett., 89, 137004 (2002).

  6. Static-field-induced states

    NASA Astrophysics Data System (ADS)

    Gets, Artem V.; Tolstikhin, Oleg I.

    2013-01-01

    Considering an electron interacting with an atomic or molecular potential and an external static electric field, one usually focuses on narrow resonances at negative energies originating from the bound states in the absence of the field; we call them tunneling states (TSs). Meanwhile, there also exist relatively broad resonances at positive energies having no counterparts in the absence of the field; we call them static-field-induced states (SFISs). In this paper, the recently developed weak-field asymptotic theory of TSs [O. I. Tolstikhin , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.053423 84, 053423 (2011)] is extended to SFISs. An asymptotic quantization condition defining the energies of SFISs in an arbitrary potential in the three-dimensional case is derived. The parabolic scattering amplitudes appearing in this quantization condition are defined. The theory is illustrated by calculations for the zero-range and Coulomb potentials. The SFISs in these potentials are found and their energies are shown to be in good agreement with the asymptotic results over a wide interval of the values of the field.

  7. Quenched crystal-field disorder and magnetic liquid ground states in Tb2Sn2-xTixO7 [Crystal field disorder in the quantum spin ice ground state of Tb2Sn2-xTixO7

    SciTech Connect

    Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; Matthews, M. J.; Bert, F.; Zhang, J.; Mendels, P.; Fritsch, K.; Granroth, G. E.; Jiramongkolchai, P.; Amato, A.; Baines, C.; Cava, R. J.; Schiffer, P.

    2015-06-01

    Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb2B2O7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb2Sn2-xTixO7) reveal that the doublet ground and first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb3+ ion.

  8. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  9. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  10. Crystal growth under microgravity conditions with using of magnetic fields

    NASA Astrophysics Data System (ADS)

    Feonychev, A.; Bondareva, N.

    The peculiarities of melt flows and crystal growth by the Bridgman and floating zone methods aboard spacecrafts under the action of steady axial or rotating magnetic field are considered. Steady magnetic field can minimize adverse effect of residual accelerations and vibrations on dopant segregation in crystals growing by the Bridgman method but it requires using strong magnetic fields, which induces specific oscillations. Under strong convection in terrestrial conditions steady magnetic field gives positive effect. Under growth of small-sized crystals by the floating zone method in microgravity conditions an use of steady magnetic field brings into dramatic increase of radial segregation due to convective vortex to free fluid surface. The flows being created by rotating magnetic field and resultant under combination of Marangoni convection with rotating magnetic field were studied for wide range of parameters including the regimes of oscillatory (turbulent) convection. Mathematical model and computer program was tested by published results of two experiments. The dependence of transition from laminar to oscillatory flow was obtained for different boundary conditions, geometric parameters of fluid and intensity of magnetic field. Specific oscillations with very low frequency and oscillations of the beating type had been discovered under the action rotating magnetic field on Marangoni convection. The mutual influence of rotating magnetic field and thermocapillary convection on flow stability was noted. Use of rotating magnetic field under crystal growth by floating zone method leads to reduction of azimuth velocity which is responsible for origin of oscillatory convection and striation of crystals. It was shown on concrete examples that there is a possibility to reduce radial segregation under optimization of rotating velocity and intensity of magnetic field. For the Bridgman method (in general for ampoule methods of crystal growth), the use of rotating magnetic

  11. Thermodynamic States in Explosion Fields

    SciTech Connect

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T < 3,000 K and p < 1k-bar. This model is used to derive a Fundamental Equation u(v,s) for C-4. Given u(v,s), one can use Maxwell's Relations to derive all other thermodynamic functions, such as temperature: T(v,s), pressure: p(v,s), enthalpy: h(v,s), Gibbs free energy: g(v,s) and Helmholz free energy: f(v,s); these loci are displayed in figures for C-4. Such complete equations of state are needed for numerical simulations of blast waves from explosive charges, and their reflections from surfaces.

  12. Thermodynamic States in Explosion Fields

    SciTech Connect

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  13. Paramagnetic vortex state in Pr 2- xCe xCuO 4 single crystals

    NASA Astrophysics Data System (ADS)

    Sonier, J. E.; Poon, K. F.; Luke, G. M.; Kyriakou, P.; Miller, R. I.; Fournier, P.; Greene, R. L.

    2003-05-01

    Transverse-field muon spin rotation (TF-μSR) measurements of the internal magnetic field distribution of Pr 2- xCe xCuO 4 single crystals reveal a large increase in the magnitude of the average field in the vortex state under field-cooling conditions. The observed increase in the average internal magnetic field measured by μSR is discussed in the context of the paramagnetic Meissner effect.

  14. Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal

    NASA Astrophysics Data System (ADS)

    Gao, Jinyun; Zhang, Qingli; Sun, Dunlu; Luo, Jianqiao; Liu, Wenpeng; Yin, Shaotang

    2012-10-01

    The single crystal Nd3+-doped in GdY2Sc2Ga3O12 (Nd3+:GYSGG) was grown by Czochralski method successfully, and its absorption spectra was analyzed in a wider spectral wavelength range at 7.6 K and 300 K, respectively. The free-ions and crystal-field parameters were fitted to the experimental energy levels at 7.6 K and 300 K with the root mean square deviation of 11.25 and 12.48 cm-1, respectively. According to the crystal-field calculations, 116 levels of Nd3+ at 7.6 K and 114 levels of Nd3+ at 300 K were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Nd3+:GSGG and Nd3+:YSAG. The results indicated that the free-ions parameters are similar to those of the Nd3+ in GYSGG, GSGG and YSAG crystals, and the crystal-field interaction of GSGG and YSAG is stronger than that of GYSGG, which results in the dual-wavelength properties of Nd3+:GYSGG crystal.

  15. Electron correlations in semiconductors: Bulk cohesive properties and magnetic-field-induced Wigner crystal at heterojunctions

    SciTech Connect

    Louie, S.G.; Zhu, X.

    1992-08-01

    A correlated wavefunction variational quantum Monte Carlo approach to the studies of electron exchange and correlation effects in semiconductors is presented. Applications discussed include the cohesive and structural properties of bulk semiconductors, and the magnetic-field-induced Wigner electron crystal in two dimensions. Landau level mixing is shown to be important in determining the transition between the quantum Hall liquid and the Wigner crystal states in the regime of relevant experimental parameters.

  16. Separating different contributions to the crystal-field parameters using Wannier functions.

    PubMed

    Scaramucci, A; Ammann, J; Spaldin, N A; Ederer, C

    2015-05-01

    We discuss the calculation of crystal-field splittings using Wannier functions and show how contributions to the crystal-field splitting that are due to hybridization with different ligand states can be separated from the bare Coulomb contribution by constructing sets of Wannier functions incorporating different levels of hybridization. We demonstrate this method using SrVO3 as a generic example of a transition metal oxide. We then calculate trends in the crystal-field splitting for two series of hypothetical tetragonally distorted perovskite oxides and discuss the relation between the calculated 'electrostatic' contribution to the crystal field and the simple point charge model. Finally, we apply our method to the charge disproportionated 5d electron system CsAuCl3. The proposed procedure elucidates the way in which the negative charge transfer energy in this material leads to a reversal of the p-d ligand contribution to the crystal-field splitting such that the eg states of the nominally Au(3+) cation are energetically lower than the corresponding t2g states. PMID:25872527

  17. Method for solid state crystal growth

    DOEpatents

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  18. Electric-field-assisted convective assembly of colloidal crystal coatings.

    PubMed

    Kleinert, Jairus; Kim, Sejong; Velev, Orlin D

    2010-06-15

    A new technique that combines evaporative convective deposition of colloidal crystal coatings with an electric field to achieve more rapid assembly and reduce the defects in the crystal structure is reported. When an ac voltage is applied across the particle suspension and the substrate in the convective assembly process, a longer film spreads from the meniscus by the electrowetting-on-dielectric (EWOD) effect. The data suggest that the EWOD-increased liquid surface area results in increased evaporation-driven particle flux and crystal assembly that is up to five times more rapid. The extended drying film also provides more time for particle rearrangement before the structure becomes fixed, resulting in formation of crystal domains an order of magnitude larger than those deposited by convective assembly alone. The results demonstrate that EWOD is a facile tool for controlling particle assembly processes in wetting films. The technique could be used in improved large-scale colloidal crystal coating processes. PMID:20465234

  19. Crystal field spectra of lunar pyroxenes.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.

    1972-01-01

    Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.

  20. Neutron study of crystal field excitations in single crystal CeCu2Ge2

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2010-03-01

    CeCu2Ge2 is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN= 4.1 K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/molK^2 [1]. Inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet at 16.5 meV [1] though a splitting of the 4f^1 (J=5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce^3+ ions. We performed detailed inelastic neutron scattering experiments on the thermal triple-axis spectrometer PUMA at FRM II at temperatures between 10 K and 300 K and for different crystallographic directions from low to high momentum transfers. In this way we obtained a reliable separation of magnetic and phonon contributions. From our results we infer that the quasi-quartet consists in fact of two doublets at 17 and 18 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally we will present a new set of crystal field parameters and their implications on other magnetic properties. [1] G. Knopp et al., Z. Physik B 77 (1989) 95

  1. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  2. Rashba coupling amplification by a staggered crystal field

    PubMed Central

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-01-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869

  3. Rashba coupling amplification by a staggered crystal field

    NASA Astrophysics Data System (ADS)

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-04-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å-1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering.

  4. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  5. Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.

    PubMed

    Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I

    2015-08-28

    We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1  mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings. PMID:26371682

  6. Crystal field splitting on D<-->S transitions of atomic manganese isolated in solid krypton

    NASA Astrophysics Data System (ADS)

    Byrne, O.; Collier, M. A.; Ryan, M. C.; McCaffrey, J. G.

    2010-05-01

    Narrow excitation features present on the [Ar]3d64s1aD(J=9/2-1/2)6←[Ar]3d54s2aS1/26 transitions of manganese atoms isolated in solid Kr are analyzed within the framework of weak crystal field splitting. Use of the Wp optical lineshape function allowed identification of multiple zero-phonon lines for individual spin-orbit J states of the a aD6←aS6 transition recorded with laser-induced excitation spectroscopy. Excellent agreement exists between the predicted crystal field splitting patterns for the J levels of the aD6 state isolated in the «red» tetravacancy site of solid Kr. The tetrahedral crystal field of the «red» trapping site splits J >3/2 levels of the aDJ6 and aD7/24 states by approximately 30cm-1. This report represents the first definitive evidence of crystal field splitting, induced by the weak van der Waals interactions between a neutral metal atom and the rare gas atoms surrounding it in a well-defined solid-state site.

  7. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-05-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  8. Control over colloidal crystallization by shear and electric fields

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.

    2007-05-01

    We used shear flow and an electric field to control colloidal crystallization. The structures were examined in situ with confocal microscopy. For experiments under shear, a new parallel plate shear cell was designed. It had a zero-velocity plane that was stationary with respect to the microscope. The plates were microscopy slides of a few square centimeters. They both had a maximum travel of 1 cm and for the systems that we study an oscillatory shear with such a large amplitude can be regarded as a continuous shear. The gap width was variable between 20- 200 m. The plates were parallel within 1-2 m. The flow profile of a dilute suspension was linear, but that of a crystallizing dispersion appeared to be non-linear. At the walls a sliding layer structure formed of which the local viscosity was 1.5 times smaller than that of the liquid-like structure in the middle of the gap. At low shear rates hexagonal layers of a crystal showed a zigzag motion. We also examined shear melting and crystallization. Shear melting appeared to be a local process in which the local order sometimes increased and sometimes decreased while the average order decreased. Shear induced crystallization occurred uniformly over the sample and the order increased monotonously. By spin coating colloidal crystalline films were fabricated that consisted of randomly stacked hexagonal layers. The structures could be made permanent by using a dispersing medium that could be polymerized. The interparticle spacing was not fixed, but probably depended subtly on the surface charge of the particles and the ionic strength of the medium. Different from crystals formed by sedimentation, spin coated crystals were crystalline to the top. This is one of the indications that crystal formation started at the air interface with a 2D layer that grew into a 3D multilayer structure while it was sedimenting. From these spin coated crystals freestanding colloidal crystalline films could be made. Without crack

  9. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  10. Conoscopic analysis of electric field driven planar aligned nematic liquid crystal.

    PubMed

    Ranjini, Radhakrishnan; Matham, Murukeshan Vadakke; Nguyen, Nam-Trung

    2014-05-01

    This paper illustrates the conoscopic observation of a molecular reconstruction occurring across a nematic liquid crystal (NLC) medium in the presence of an external electric field. Conoscopy is an optical interferometric method, employed to determine the orientation of an optic axis in uniaxial crystals. Here a planar aligned NLC medium is used, and the topological changes with respect to various applied voltages are monitored simultaneously. Homogenous planar alignment is obtained by providing suitable surface treatments to the ITO coated cell walls. The variation in the conoscopic interferometric patterns clearly demonstrates the transition from planar to homeotropic state through various intermediate states. PMID:24921859

  11. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  12. Influence of magnetic field on electric-field-induced local polar states in manganites

    NASA Astrophysics Data System (ADS)

    Mamin, R. F.; Strle, J.; Bizyaev, D. A.; Yusupov, R. V.; Kabanov, V. V.; Kranjec, A.; Borovsak, M.; Mihailovic, D.; Bukharaev, A. A.

    2015-11-01

    It is shown that creation of local charged states at the surface of the lanthanum-strontium manganite single crystals by means of bias application via a conducting atomic force microscope tip is strongly affected by magnetic field. Both a charge and a size of created structures increase significantly on application of the magnetic field during the induction. We argue that the observed phenomenon originates from a known tendency of manganites toward charge segregation and its intimate relation to magnetic ordering.

  13. Influence of magnetic field on electric-field-induced local polar states in manganites

    SciTech Connect

    Mamin, R. F.; Strle, J.; Kabanov, V. V.; Kranjec, A.; Borovsak, M.; Mihailovic, D.; Bizyaev, D. A.; Yusupov, R. V.; Bukharaev, A. A.

    2015-11-09

    It is shown that creation of local charged states at the surface of the lanthanum-strontium manganite single crystals by means of bias application via a conducting atomic force microscope tip is strongly affected by magnetic field. Both a charge and a size of created structures increase significantly on application of the magnetic field during the induction. We argue that the observed phenomenon originates from a known tendency of manganites toward charge segregation and its intimate relation to magnetic ordering.

  14. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  15. Crystal-field transitions in f-electron oxides

    NASA Astrophysics Data System (ADS)

    Kern, S.; Loong, C.-K.; Lander, G. H.

    1985-09-01

    Neutron inelastic scattering has been used to measure for the first time the ground- to excited-state crystal-field transitions in PrO2 (130 meV), BaPrO3 (255 meV), and UO2 (~160 meV). Details of these neutron experiments using the epithermal neutrons from the Argonne National Laboratory spallation source are given. From the observed transitions the following values of V4=A4 are deduced: PrO2 (-66 meV), BaPrO3 (119 meV), and UO2 (-385 meV). Comparisons are made with V4 values deduced for metallic systems and those determined by optical techniques for dilute lanthanides in transparent hosts. In the case of UO2, two peaks are seen, one at 155 meV and the other at 172 meV. This structure exists both below and above the Néel temperature TN (30.8 K) and is discussed in terms of mechanisms that might exist in UO2. Several further neutron experiments are suggested now that energy transfers above ~100 meV may be measured at small (i.e., <~5 Å-1) values of the momentum transfer.

  16. Defect-induced solid state amorphization of molecular crystals

    NASA Astrophysics Data System (ADS)

    Lei, Lei; Carvajal, Teresa; Koslowski, Marisol

    2012-04-01

    We investigate the process of mechanically induced amorphization in small molecule organic crystals under extensive deformation. In this work, we develop a model that describes the amorphization of molecular crystals, in which the plastic response is calculated with a phase field dislocation dynamics theory in four materials: acetaminophen, sucrose, γ-indomethacin, and aspirin. The model is able to predict the fraction of amorphous material generated in single crystals for a given applied stress. Our results show that γ-indomethacin and sucrose demonstrate large volume fractions of amorphous material after sufficient plastic deformation, while smaller amorphous volume fractions are predicted in acetaminophen and aspirin, in agreement with experimental observation.

  17. Atomic density functional and diagram of structures in the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  18. Field Stability of Piezoelectric Shear Properties in PIN-PMN-PT Crystals Under Large Drive Field

    PubMed Central

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas R.

    2013-01-01

    The coercive fields (EC) of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (Eint), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shear-mode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥60% of their coercive fields, because of the developed Eint, induced by the acceptor-oxygen vacancy defect dipoles. PMID:21342812

  19. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  20. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics. PMID:27247284

  1. Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale

    NASA Astrophysics Data System (ADS)

    Rudolph, Peter

    2008-04-01

    After introduction of various types of magnetic fields in crystal growth, their main pros and cons for crystallization processes are discussed. It is shown that their further developments towards industrial maturity are bound up with the cardinal demands—increase of the process output, improvement of the crystal quality, and reduction of costs. In a further section, the advantages of travelling magnetic fields are presented. The central chapter is devoted to the target of the current KRISTMAG˜ project—the development of an internal heater-magnet module for coupled generation of temperature and a travelling magnetic field, suitable for incorporation into industrial Czochralski pullers and vertical gradient freeze equipments. Amplitude, frequency and phase shift of the three-phase current are all adjustable and are combined with a dc component to control the crystallization process effectively. Results of accompanying numeric modelling are presented. The current state of crystal growth experiments in travelling magnetic field and first encouraging results are given.

  2. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  3. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  4. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  5. Low-field susceptibility anisotropy of some biotite crystals

    NASA Astrophysics Data System (ADS)

    Zapletal, Karel

    1990-10-01

    The low-field magnetic susceptibility anisotropy (LMA) of weakly magnetic rocks is dominated by paramagnetic minerals among which micas, and mainly biotite, is important. For this reason, the LMA of biotite crystals was investigated in detail. Natural biotite crystals (from ten localities) having a wide range of iron concentration were also studied by other methods, including optical microscopy, X-ray microanalysis, Mössbauer spectroscopy and induced isothermal remanent magnetization. Ferromagnetic inclusions disturbing the magnetic properties of biotite were revealed in some crystals. The measured mean bulk susceptibility of pure crystals (four localities) ranges from 1.0 × 10 -3 to 1.8 × 10 -3 SI and agrees with the susceptibility calculated from the iron concentration (ranging from 12 to 20 wt.%) determined for each specimen. The susceptibility ellipsoid of pure biotite crystals is rotational about the minimum susceptibility direction parallel to the crystallographic c'-axis, and the anisotropy degree ranges from 1.34 to 1.36.

  6. Magnetic field controlled FZ single crystal growth of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Behr, G.; Gerbeth, G.; Priede, J.; Uhlemann, H.-J.; Fischer, F.; Schultz, L.

    2005-02-01

    Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid-liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by the RF heater coil and the solution of the coupled heat and hydrodynamic equations were done for the model substance Ni with and without additional magnetic field. As a result, an innovative magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt ranging from intensive inwards/outwards flows to flows almost at rest. The selection of parameters necessary for the desired fluid flow is determined from numerical simulation. The basis for the calculations are the process-related fluid flow conditions which are determined by the mode of heating, heat radiation at the free surface and material parameters. This treatment of the problem leads to the customised magnetic field for the special intermetallic compound. The application of the new magnetic system leads to a distinct improvement of the solid-liquid interface validated on experiments with the model substance Nickel.

  7. Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell.

    PubMed

    Zyryanov, Victor Ya; Myslivets, Sergey A; Gunyakov, Vladimir A; Parshin, Alexander M; Arkhipkin, Vasily G; Shabanov, Vasily F; Lee, Wei

    2010-01-18

    Light transmission spectrum of a multilayer photonic crystal with a central liquid-crystal defect layer placed between crossed polarizers has been studied. Transmittance was varied due to the magnetically induced reorientation of the nematic director from homeotropic to planar alignment. Two notable effects were observed for this scheme: the spectral shift of defect modes corresponding to the extraordinary light wave and its superposition with the ordinary one. As a result, the optical cell allows controlling the intensity of interfering defect modes by applied magnetic field. PMID:20173953

  8. Long-range orientational order, local-field anisotropy, and mean molecular polarizability in liquid crystals

    SciTech Connect

    Aver'yanov, E. M.

    2009-01-15

    The problems on the relation of the mean effective molecular polarizability {gamma}-bar to the long-range orientational order of molecules (the optical anisotropy of the medium) in uniaxial and biaxial liquid crystals, the local anisotropy on mesoscopic scales, and the anisotropy of the Lorentz tensor L and the local-field tensor f are formulated and solved. It is demonstrated that the presence of the long-range orientational order of molecules in liquid crystals imposes limitations from below on the molecular polarizability {gamma}-bar, which differs for uniaxial and biaxial liquid crystals. The relation between the local anisotropy and the molecular polarizability {gamma}-bar is investigated for calamitic and discotic uniaxial liquid crystals consisting of lath- and disk-shaped molecules. These liquid crystals with identical macroscopic symmetry differ in the local anisotropy and the relationships between the components L{sub parallel} < L{sub perpendicular} , f{sub parallel} < f{sub perpendicular} (calamitic) and L{sub parallel} > L{sub perpendicular} , f{sub parallel} > f{sub perpendicular} (discotic) for an electric field oriented parallel and perpendicular to the director. The limitations from below and above on the molecular polarizability {gamma}-bar due to the anisotropy of the tensors L and f are established for liquid crystals of both types. These limitations indicate that the molecular polarizability {gamma}-bar depends on the phase state and the temperature. The factors responsible for the nonphysical consequences of the local-field models based on the approximation {gamma}-bar = const are revealed. The theoretical inferences are confirmed by the experimental data for a number of calamitic nematic liquid crystals with different values of birefringence and the discotic liquid crystal Col{sub ho}.

  9. 3D crack tip fields for FCC single crystals

    SciTech Connect

    Cuitino, A.M.; Ortiz, M.

    1995-12-31

    Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.

  10. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    PubMed Central

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  11. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  12. Collective field theory for quantum Hall states

    NASA Astrophysics Data System (ADS)

    Laskin, M.; Can, T.; Wiegmann, P.

    2015-12-01

    We develop a collective field theory for fractional quantum Hall (FQH) states. We show that in the leading approximation for a large number of particles, the properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian field theory arise from the covariant ultraviolet regularization of the theory, which produces the gravitational anomaly. These corrections are described by a theory closely related to the Liouville theory of quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies.

  13. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  14. Ground states of finite spherical Yukawa crystals

    NASA Astrophysics Data System (ADS)

    Baumgartner, H.; Asmus, D.; Golubnychiy, V.; Ludwig, P.; Kählert, H.; Bonitz, M.

    2008-09-01

    Small three-dimensional strongly coupled clusters of charged particles in a spherical confinement potential arrange themselves in nested concentric shells. If the particles are immersed into a background plasma the interaction is screened. The cluster shell configuration is known to be sensitive to the screening strength. With increased screening, an increased population of the inner shell(s) is observed. Here, we present a detailed analysis of the ground state shell configurations and configuration changes in a wide range of screening parameters for clusters with particle numbers N in the range of 11 to 60. We report three types of anomalous behaviors which are observed upon increase of screening, at fixed N or for an increase of N at fixed screening. The results are obtained by means of extensive first principle molecular dynamics simulations.

  15. Discrete dislocation plasticity and crack tip fields in single crystals

    NASA Astrophysics Data System (ADS)

    Van der Giessen, E.; Deshpande, V. S.; Cleveringa, H. H. M.; Needleman, A.

    2001-09-01

    Small-scale yielding around a stationary plane strain mode I crack is analyzed using discrete dislocation plasticity. The dislocations are all of edge character, and are modeled as line singularities in a linear elastic material. Superposition is used to represent the solution in terms of analytical fields for edge dislocations in a half-space and a numerical image solution that enforces the boundary conditions. The description of the dislocation dynamics includes the lattice resistance to dislocation motion, dislocation nucleation, interaction with obstacles and annihilation. A model planar crystal with three slip systems is considered. Two slip system orientations are analyzed that differ by a 90° rotation. The non-hardening, single crystal plasticity continuum slip solution of Rice (Mech. Mater. 6 (1987) 317) for this model crystal predicts that slip and kink bands emerge for both crystal geometries, while Drugan (J. Mech. Phys. Solids 49 (2001) 2155) has obtained kink band free solutions. For a reference set of parameter values, kink band free solutions are found in one orientation while the emergence of kink bands is seen in the other orientation. However, lowering the dislocation source density suppresses the formation of kink bands in this orientation as well. In all calculations, the opening stress in the immediate vicinity of the crack tip is much larger than predicted by continuum slip theory.

  16. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  17. Dynamically Induced Frustration as a Route to a Quantum Spin Ice State in Tb2Ti2O7 via Virtual Crystal Field Excitations and Quantum Many-Body Effects

    NASA Astrophysics Data System (ADS)

    Molavian, Hamid R.; Gingras, Michel J. P.; Canals, Benjamin

    2007-04-01

    The Tb2Ti2O7 pyrochlore magnetic material is attracting much attention for its spin liquid state, failing to develop long-range order down to 50 mK despite a Curie-Weiss temperature θCW˜-14K. In this Letter we reinvestigate the theoretical description of this material by considering a quantum model of independent tetrahedra to describe its low-temperature properties. The naturally tuned proximity of this system near a Néel to spin ice phase boundary allows for a resurgence of quantum fluctuation effects that lead to an important renormalization of its effective low-energy spin Hamiltonian. As a result, Tb2Ti2O7 is argued to be a quantum spin ice. We put forward an experimental test of this proposal using neutron scattering on a single crystal.

  18. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  19. Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet.

    PubMed

    Rechkemmer, Yvonne; Fischer, Julia E; Marx, Raphael; Dörfel, María; Neugebauer, Petr; Horvath, Sebastian; Gysler, Maren; Brock-Nannestad, Theis; Frey, Wolfgang; Reid, Michael F; van Slageren, Joris

    2015-10-14

    The electronic structure of a novel lanthanide-based single-ion magnet, {C(NH2)3}5[Er(CO3)4]·11H2O, was comprehensively studied by means of a large number of different spectroscopic techniques, including far-infrared, optical, and magnetic resonance spectroscopies. A thorough analysis, based on crystal field theory, allowed an unambiguous determination of all relevant free ion and crystal field parameters. We show that inclusion of methods sensitive to the nature of the lowest-energy states is essential to arrive at a correct description of the states that are most relevant for the static and dynamic magnetic properties. The spectroscopic investigations also allowed for a full understanding of the magnetic relaxation processes occurring in this system. Thus, the importance of spectroscopic studies for the improvement of single-molecule magnets is underlined. PMID:26394012

  20. Thermochromism of a novel organic compound in the solid state via crystal-to-crystal transformation

    NASA Astrophysics Data System (ADS)

    Lee, Sang Cheol; Jeong, Young Gyu; Jo, Won Ho; Kim, Hee-Joon; Jang, Jinho; Park, Ki-Min; Chung, Ihn Hee

    2006-12-01

    A novel thermochromic organic compound, 1,5-bis(hydroxyethylamino)-2,4-dinitrobenzene (BDB), was synthesized and characterized using X-ray diffraction, differential scanning calorimetry, visible and infrared spectroscopy. It was observed that BDB exists in two different crystal structures of A- and B-forms at room temperature. In each crystal structure, there exist intra- and intermolecular hydrogen bonds between hydroxy, amino, and nitro groups. As the temperature is increased, the color of BDB crystalline powder changes from yellow to orange. The yellow color was recovered for a specific period of time when it is cooled again, indicating that thermochromism of BDB in the solid state is reversible. Both crystals of A- and B-forms are transformed to the C-form crystal at the transition temperature. From the results of X-ray diffraction, thermal data, and infrared spectra, it is suggested that the thermochromism of BDB originates from the crystal-to-crystal transition accompanying with the configurational transformation between nitro-form and acid-form via intramolecular hydrogen transfer.

  1. Crystal field excitations in CeCu2Ge2: Revisited employing a single crystal and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2012-04-01

    The intermetallic compound, CeCu2Ge2, is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN = 4.1K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/ molK2. Earlier inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet excited state at 16.5 meV, although a splitting of the 4f1 (J = 5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce3+ ions. We performed detailed inelastic neutron scattering experiments on a single crystal at the thermal triple-axis spectrometer PUMA at FRM II for different crystallographic directions. From our results we infer that the quasi-quartet, in fact, consists of two doublets at 17.0 and 18.3 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally, we will present a new set of crystal field parameters.

  2. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  3. Portable piezoelectric crystal detector for field monitoring of environmental pollutants

    SciTech Connect

    Ho, M.H.; Guilbault, G.G.; Rietz, B.

    1983-09-01

    A portable field monitor was constructed by using a coated piezoelectric crystal for direct monitoring of toluene in a Danish printing plant. Toluene vapor was adsorbed onto the Pluronic F-68 coating on a quartz crystal and a decrease in frequency was observed. Various substances which could interfere with toluene determination were tested. No interference from CO, NH/sub 3/, SO/sub 2/, HCl at 100 ppm are expected. Water vapor interfered and was selectively removed using a Nafion permeation tube. The readings from the piezoelectric detector were compared to two accepted procedures for monitoring toluene, the photoionization detector and the Drager tube. Results indicate that the piezoelectric detector gave data consistent with both other methods and with better relative standard deviations than the other two. 8 references, 2 figures, 1 table.

  4. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  5. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  6. Remote State Preparation for Quantum Fields

    NASA Astrophysics Data System (ADS)

    Ber, Ran; Zohar, Erez

    2016-07-01

    Remote state preparation is generation of a desired state by a remote observer. In spite of causality, it is well known, according to the Reeh-Schlieder theorem, that it is possible for relativistic quantum field theories, and a "physical" process achieving this task, involving superoscillatory functions, has recently been introduced. In this work we deal with non-relativistic fields, and show that remote state preparation is also possible for them, hence obtaining a Reeh-Schlieder-like result for general fields. Interestingly, in the nonrelativistic case, the process may rely on completely different resources than the ones used in the relativistic case.

  7. Crystal-field excitations and magnetic properties of Ho{sup 3+} in HoVO{sub 4}

    SciTech Connect

    Skanthakumar, S.; Loong, C.; Soderholm, L.; Abraham, M.M.; Boatner, L.A.

    1995-05-01

    The magnetic excitations in HoVO{sub 4} were studied by neutron scattering and susceptibility techniques. Well-defined transitions between the crystal-field-split states of the Ho{sup 3+} ions were observed at 15, 40, and 100 K. The magnetic spectra were analyzed using a single-ion crystal-field model which includes intermediate coupling of the LS states of Ho. A quantitative comparison of the observed energies and intensities with the model was made and used to refine the five crystal-field parameters needed to calculate the Ho ionic wave functions and other magnetic properties. The nonmagnetic {Gamma}{sub 1}-singlet ground state (containing about 90% pure {vert_bar}8,0{r_angle} component) of the Ho ions, in conjunction with the next higher doublet state situated at 2.5 meV, strongly influences the low-temperature magnetic behavior. The calculated magnetic susceptibility, which exhibits an easy plane coinciding with the crystallographic {ital a}-{ital b} plane at low temperatures, agrees very well with the experimental data obtained from single-crystal measurements. The magnetic properties of HoVO{sub 4} are contrasted with those of an isostructural compound HoPO{sub 4} which has a 98% pure {vert_bar}8,7{r_angle}-doublet ground state. The difference in the crystal-field-level structure between these two compounds is reflected in a sign change of the {ital B}{sub 0}{sup 2} crystal-field parameter. Despite the overall tetragonal crystal structure of HoVO{sub 4}, which predicts double degeneracy for each {Gamma}{sub 5} state, a small splitting in the first-excited doublet was clearly observed at low temperatures.

  8. Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Yang, Tao; Du, Xiu-Juan

    2012-11-01

    We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.

  9. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions. PMID:21517507

  10. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  11. Crystal Field Studies on MgGa2O4:Ni2+

    NASA Astrophysics Data System (ADS)

    Andreici, L.; Stanciu, M.; Avram, N. M.

    2010-08-01

    The energy levels scheme of octahedrally coordinated Ni2+ ion in single crystal, powder nano-single crystal, ceramics and glass-ceramics of MgGa2O4 host matrix, has been calculated in the exchange charge model of crystal field. The parameters of the crystal field acting on the Ni2+ ion are calculated from the crystal structure data, after optimization of the geometry of the system. The energy level schemes have been calculated by diagonalization of the crystal field Hamiltonian of this system. The obtained results were compared with experimental data; a good agreement were demonstrated, which confirm the validity of the model and used method.

  12. State of the Field Survey, 2006

    ERIC Educational Resources Information Center

    Forum on Education Abroad, 2006

    2006-01-01

    In 2006, the Forum on Education Abroad conducted a State of the Field Survey of its membership. This survey is meant to be the first of an annual assessment of what is on the minds of Forum members and, by extension, the field of education abroad in general. The 2006 survey was developed and designed by the Forum Data Committee with input form the…

  13. Paramagnetic Meissner effect at high fields in YCaBaCuO single crystal

    NASA Astrophysics Data System (ADS)

    Dias, F. T.; Vieira, V. N.; Falck, A. L.; da Silva, D. L.; Pureur, P.; Schaf, J.

    2012-12-01

    We report on systematic magnetization experiments in an Y1-xCaxBa2Cu3O7-δ (x = 0.25 at%) single crystal. The magnetization experiments were made using a superconducting quantum interference device magnetometer (SQUID). Magnetic moments were measured as functions of the temperature according to the zero-field cooling (ZFC), field-cooled cooling (FCC), and field-cooled warming (FCW) prescriptions. The time-dependence of the FC magnetization at fixed magnetic fields was studied. Magnetic fields up to 50 kOe were applied and a paramagnetic response related to the superconducting state was observed when strong enough fields were applied parallel to the c axis. The magnitude of the high field paramagnetic moment (HFPME) increases when the field is augmented. The effect shows strong and anomalous time dependence, such that the paramagnetic moment increases as a function of the time. An YBa2Cu3O7-δ single crystal exhibiting the same effect was used for comparison. We discuss our results in terms of the flux compression scenario into the sample modulated by Ca concentration.

  14. Nonradiative relaxation in tunable solid-state laser crystals

    SciTech Connect

    Gayen, S.K.; Wang, W.B.; Pettricevic, V.; Alfano, R.R.

    1985-12-01

    The picosecond excite-and-probe adsorption technique is used to study the nonradiative transition dynamics between the /sup 4/T/sub 2/ and the /sup 2/ E excited states of two trivalent-chromium-ion-activated laser crystals -- ruby and alexandrite. A 527-nm 7-ps pulse excites the /sup 4/T/sub 2/ pump band of the Cr/sup 3 +/ ion in these crystals, and the subsequent population kinetics among excited states is monitored by an infrared picosecond probe pulse as a function of pump-probe delay. In ruby, a resolution-limited sharp rise in the excited-state population followed by a long-lifetime decay is observed. This leads to an upper limit of 7 ps for the /sup 4/T/sub 2/ state nonradiative lifetime in ruby. In alexandrite, a longer risetime followed by a multicomponent decay is observed. A theoretical model is proposed for explaining the observed induced absorption and kinetics from excited states of the Cr/sup 3 +/ ion in these crystals. In alexandrite, vibrational relaxation rate for transition from the higher-lying vibrational states of /sup 4/T/sub 2/ to the bottom of /sup 4/T/sub 2/ energy parabola is estimated to be approx. 6 x 10/sup 10/ (relaxation time approx. 17 ps). Transition rate from the bottom of /sup 4/T/sub 2/ parabola to the /sup 2/E is found to be of the order of 3.7 x 10/sup 10//s (relaxation time approx. 27 ps), while the thermal refilling rate of /sup 4/T/sub 2/ from /sup 2/E is approx. 3.5 x 10/sup 9//s. The infrared absorption cross section from the excited /sup 4/T/sub 2/ state is estimated to about an order-of-magnitude higher than that from the metastable /sup 2/E level.

  15. Topological states in one dimensional solids and photonic crystals

    NASA Astrophysics Data System (ADS)

    Atherton, Timothy; Mathur, Harsh

    2011-03-01

    We show that the band structure of a one-dimensional solid with particle-hole symmetry may be characterized by a topological index that owes its existence to the non-trivial homotopy of the space of non-degenerate real symmetric matrices. Moreover we explicitly demonstrate a theorem linking the topological index to the existence of bound states on the surface of a semi-infinite one dimensional solid. Our analysis is a one-dimensional analogue of the analysis of topological insulators in two and three dimensions by Balents and Moore; our results may be relevant to long molecules that are the one dimensional analogue of topological insulators. We propose the realization of this physics in a one-dimensional photonic crystal. In this case the topology of the bandstructure reveals itself not as a bound surface state but as a Lorentzian feature in the time delay of light that is otherwise perfectly reflected by the photonic crystal.

  16. Dislocation dynamics, plasticity and avalanche statistics using the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza

    2013-03-01

    The plastic deformation of stressed crystalline materials is characterized by intermittency and scaling behavior. The sudden strain bursts arise from collective interactions between depinned crystal defects such as dislocations. Recent experiments on sheared nanocrystals provide insights into the connection between the crystal plasticity and the mean field theory of the depinning transition, based on the similar power-law statistics of avalanche events. However, a complete theoretical formulation of this connection is still lacking, as are high quality numerical data. Phase field crystal modelling provides an efficient numerical approach to simulating the dynamics of dislocations in plastic flows at finite temperature. Dislocations are naturally created as defects in a periodic ground state that is being sheared, without any ad hoc creation and annihilation rules. These crystal defects interact and annihilate with one another, generating a collective effect of avalanches in the global plastic strain rate. We examine the statistics of plastic avalanches both at finite and zero temperatures, and find good agreement with the predictions of the mean field interface depinning theory. Moreover, we predict universal scaling forms for the extreme statistics of avalanches and universal relations between the power-law exponents of avalanche duration, size and extreme value. These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity, but are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes. The work reported here was performed in collaboration with: Georgios Tsekenis, Michael LeBlanc, Patrick Y Chan, Jon Dantzig, Karin Dahmen, and Nigel Goldenfeld. The work was supported by the Center for Physics of Geological Processes (Norway) through a post-doctoral grant, the National Science Foundation through grant NSF

  17. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes. PMID:22060323

  18. Crystal-field parameters of the rare-earth pyrochlores R2Ti2O7 (R =Tb , Dy, and Ho)

    NASA Astrophysics Data System (ADS)

    Ruminy, M.; Pomjakushina, E.; Iida, K.; Kamazawa, K.; Adroja, D. T.; Stuhr, U.; Fennell, T.

    2016-07-01

    In this work, we present inelastic neutron scattering experiments which probe the single ion ground states of the rare-earth pyrochlores R2Ti2O7 (R =Tb , Dy, Ho). Dy2Ti2O7 and Ho2Ti2O7 are dipolar spin ices, now often described as hosts of emergent magnetic monopole excitations; the low-temperature state of Tb2Ti2O7 has features of both spin liquids and spin glasses, and strong magnetoelastic coupling. We measured the crystal-field excitations of all three compounds and obtained a unified set of crystal-field parameters. Additional measurements of a single crystal of Tb2Ti2O7 clarified the assignment of the crystal-field levels in this material and also revealed an example of a bound state between a crystal-field level and an optical phonon mode.

  19. Spectroscopic manifestations of local crystal distortions in excited 4f states in crystals of huntite structure

    SciTech Connect

    Malakhovskii, A. V.; Gnatchenko, S. L.; Kachur, I. S.; Piryatinskaya, V. G.; Sukhachev, A. L.; Sokolov, A. E.; Strokova, A. Ya.; Kartashev, A. V.; Temerov, V. L.

    2013-01-15

    Optical absorption spectra of YbAl{sub 3}(BO{sub 3}){sub 4}, TmAl{sub 3}(BO{sub 3}){sub 4} and TbFe{sub 3}(BO{sub 3}){sub 4} trigonal crystals have been studied in temperature range 2-300 K. Temperature behavior of absorption lines parameters has shown, that during some f-f transitions the local environment of rare earth ions undergo distortions, which are absent in the ground state.

  20. Convection patterns and temperature fields of ammonothermal GaN bulk crystal growth process

    NASA Astrophysics Data System (ADS)

    Masuda, Yoshio; Sato, Osamu; Tomida, Daisuke; Yokoyama, Chiaki

    2016-05-01

    The natural convection heat transfer in an ammonothermal process for growing GaN bulk single crystals has been examined numerically. We consider only one crystal to simplify the calculation and discuss the relationship between convection patterns and temperature fields. Two types of convection patterns are observed owing to the difference in the crystal radius. When the convection pattern is transformed, the crystal surface temperature decreases as the crystal radius increases.

  1. Surface states in crystals with low-index surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Ping; Tao, Rui-Bao

    2015-11-01

    For most of the conventional crystals with low-index surfaces, the hopping between the nearest neighbor (1NN) crystal planes (CPs) is dominant and the ones from the nNN (2 ≤ n < ∞) CPs are relatively weak, considered as small perturbations. The recent theoretical analysis[1] has demonstrated the absence of surface states at the level of the hopping approximation between the 1NN CPs when the original infinite crystal has the geometric reflection symmetry (GRS) for each CP. Meanwhile, based on the perturbation theory, it has also been shown that small perturbations from the hopping between the nNN (2 ≤ n < ∞) CPs and surface relaxation have no impact on the above conclusion. However, for the crystals with strong intrinsic spin-orbit coupling (SOC), the dominant terms of intrinsic SOC associate with two 1NN bond hoppings. Thus SOC will significantly contribute the hoppings from the 1NN and/or 2NN CPs except the ones within each CP. Here, we will study the effect of the hopping between the 2NN CPs on the surface states in model crystals with three different type structures (Type I: “···-P-P-P-P-···”, Type II: “···-P-Q-P-Q-···” and Type III: “···-P=Q-P=Q-···” where P and Q indicate CPs and the signs “-” and “=” mark the distance between the 1NN CPs). In terms of analytical and numerical calculations, we study the behavior of surface states in three types after the symmetric/asymmetric hopping from the 2NN CPs is added. We analytically prove that the symmetric hopping from the 2NN CPs cannot induce surface states in Type I when each CP has only one electron mode. The numerical calculations also provide strong support for the conclusion, even up to 5NN. However, in general, the coupling from the 2NN CPs (symmetric and asymmetric) is favorable to generate surface states except Type I with single electron mode only. Project supported by the National Natural Science Foundation of China (Grant No. 11447601) and the National Basic

  2. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory. PMID:27117814

  3. Magnetic field effects and the role of spin states in singlet fission

    NASA Astrophysics Data System (ADS)

    Burdett, Jonathan J.; Piland, Geoffrey B.; Bardeen, Christopher J.

    2013-10-01

    Singlet fission is a photophysical process that has promise for increasing the efficiency of solar cells. The dynamics depend on triplet spin states and can be influenced by external magnetic fields. In 4-electron systems, fission takes an initial singlet state into a superposition of triplet pair states. Direct evidence for this superposition state is provided by quantum beats in the delayed fluorescence of tetracene crystals. The beat frequencies depend on crystal orientation with respect to the magnetic field, consistent with predictions based on solving the full spin Hamiltonian. Magnetic field effects on the kinetics are analyzed in terms of a hybrid quantum-kinetic model. The magnetic field has no effect on the initial fluorescence decay rate but affects the decay after the triplet pair states begin to equilibrate with the singlets. The long-time behavior of the fluorescence decay reflects association and separation of triplet pairs and relaxation into different spin states.

  4. Cubic zero-field splitting of a 6state ion

    NASA Astrophysics Data System (ADS)

    Yu, Wan-Lun

    1989-01-01

    The zero-field splitting of a 6state ion in a cubic field has been studied in detail within the d5 configuration. It is found that the splitting arises mainly from the coupling among the excited states 4T1, 2T2, and 2E and the ground state 6A1 via the spin-orbit interaction. The splitting parameter a can be expressed approximately as F0ζ4+F1ζ5, where F0 and F1 are independent of the spin-orbit coupling constant ζ and have a property ||F0||>>||F1||. Analytical formulas of F0 and F1 are derived by a perturbation calculation with the help of the procedure suggested by Macfarlane. Based on this, a very simple expression of a is obtained semiempirically. Calculations are carried out for the splittings of Fe3+ and Mn2+ ions substituted as impurities in several octahedrally coordinated lattices and for the splitting parameter dependences on pressure for Fe3+ and Mn2+ in MgO crystals. The results are in good agreement with the values observed experimentally, indicating a successful interpretation of the crystal-field theory for the cubic zero-field splittings of 6state ions in octahedral coordinations. The power law a~R-m has been investigated on a theoretical basis. This is indicated to be able to reasonably account for the observed data for a system that has Dq or a values close to each other. In particular, a reasonable value m=12+/-2 is expected for Mn2+ ions having Dq<~B.

  5. Continuous Time Finite State Mean Field Games

    SciTech Connect

    Gomes, Diogo A.; Mohr, Joana Souza, Rafael Rigao

    2013-08-01

    In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.

  6. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    SciTech Connect

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P.; Pablo, Juan J. de

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  7. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    SciTech Connect

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  8. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    PubMed

    Armas-Pérez, Julio C; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate. PMID:26233107

  9. Crystal structure optimisation using an auxiliary equation of state.

    PubMed

    Jackson, Adam J; Skelton, Jonathan M; Hendon, Christopher H; Butler, Keith T; Walsh, Aron

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1. PMID:26567640

  10. Crystal structure optimisation using an auxiliary equation of state

    SciTech Connect

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-14

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy–volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other “beyond” density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu{sub 2}ZnSnS{sub 4} and the magnetic metal-organic framework HKUST-1.

  11. Crystal structure optimisation using an auxiliary equation of state

    NASA Astrophysics Data System (ADS)

    Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron

    2015-11-01

    Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.

  12. Maximally polarized states for quantum light fields

    SciTech Connect

    Sanchez-Soto, Luis L.; Yustas, Eulogio C.; Bjoerk, Gunnar; Klimov, Andrei B.

    2007-10-15

    The degree of polarization of a quantum field can be defined as its distance to an appropriate set of states. When we take unpolarized states as this reference set, the states optimizing this degree for a fixed average number of photons N present a fairly symmetric, parabolic photon statistic, with a variance scaling as N{sup 2}. Although no standard optical process yields such a statistic, we show that, to an excellent approximation, a highly squeezed vacuum can be taken as maximally polarized. We also consider the distance of a field to the set of its SU(2) transformed, finding that certain linear superpositions of SU(2) coherent states make this degree to be unity.

  13. Nonradiative relaxation in tunable solid state laser crystals

    NASA Technical Reports Server (NTRS)

    Gayen, S. K.; Wang, W. B.; Petricevic, V.; Alfano, R. R.

    1986-01-01

    The characteristics of nonradiative transitions between the 4T2 and 2E excited states of trivalent-chromium-ion-activated ruby (containing 0.04 percent Cr2O3 by weight) and alexandrite (containing 0.4 at. percent chromium ion) laser crystals were studied using the technique described by Gayen et al. (1985). In this technique, a 527-nm pulse excites the 4T2 band of the Cr(3+), and the subsequent population kinetics among excited states is monitored by an IR picosecond probe pulse as a function of pump-probe delay. In ruby, a resolution-limited sharp rise in the excited state population was followed by a long-lifetime decay, leading to an upper limit of 7 ps for the 4T2-state nonradiative lifetime. In alexandrite, a longer rise time was followed by a multicomponent decay. A theoretical model is proposed for explaining the induced absorption and the transition dynamics observed in these crystals.

  14. Control of active liquid crystals with a magnetic field.

    PubMed

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  15. The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong

    2006-01-01

    An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.

  16. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    NASA Astrophysics Data System (ADS)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  17. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7

    SciTech Connect

    Xu, J.; Anand, V. K.; Bera, A. K.; Frontzek, Matthias D.; Abernathy, Douglas L.; Casati, N.; Siemensmeyer, K.; Lake, B.

    2015-12-28

    In this paper, we present synchrotron x-ray diffraction, neutron powder diffraction, and time-of-flight inelastic neutron scattering measurements on the rare earth pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and cystal-field states. The structural characterization by high-resolution synchrotron x-ray diffraction confirms that the pyrochlore structure has no detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals long-range all-in/all-out antiferromagnetic order below TN≈0.4 K with propagation vector k = (0 0 0) and an ordered moment of 1.26(2) μB/Nd at 0.1 K. The ordered moment is much smaller than the estimated moment of 2.65μB/Nd for the local <111> Ising ground state of Nd3+ (J=9/2) suggesting that the ordering is partially suppressed by quantum fluctuations. The inelastic neutron scattering experiment further confirms the Ising anisotropic ground state of Nd3+ and also reveals its dipolar-octupolar character which possibly induces the quantum fluctuation. Lastly, the crystal-field level scheme and ground state wave function have been determined.

  18. Magnetic properties of Dy3+ ions and crystal field characterization in YF3:Dy3+ and DyF3 single crystals

    NASA Astrophysics Data System (ADS)

    Savinkov, A. V.; Korableva, S. L.; Rodionov, A. A.; Kurkin, I. N.; Malkin, B. Z.; Tagirov, M. S.; Suzuki, H.; Matsumoto, K.; Abe, S.

    2008-12-01

    The dc magnetic susceptibilities of the orthorhombic DyF3 single crystals have been measured in the temperature range between 1.8 and 300 K. The susceptibility along the b-axis does not depend on temperature below TC = 2.55 K and is equal to the demagnetizing factor of the sample, that gives evidence for the ferromagnetic phase induced by the magnetic dipole-dipole interactions between the Dy3+ ions. The saturation moment of 8.5 μB/Dy3+ along the b-axis was determined from magnetization measurements. The observed strong anisotropy of the magnetic susceptibility at low temperatures agrees with the measured anisotropic g-tensor of the ground state of impurity Dy3+ ions in YF3 single crystals. The results of measurements are interpreted in the frameworks of the crystal field theory and the mean magnetic field approximation.

  19. An efficient algorithm for solving the phase field crystal model

    SciTech Connect

    Cheng Mowei Warren, James A.

    2008-06-01

    We present and discuss the development of an unconditionally stable algorithm used to solve the evolution equations of the phase field crystal (PFC) model. This algorithm allows for an arbitrarily large algorithmic time step. As the basis for our analysis of the accuracy of this algorithm, we determine an effective time step in Fourier space. We then compare our calculations with a set of representative numerical results, and demonstrate that this algorithm is an effective approach for the study of the PFC models, yielding a time step effectively 180 times larger than the Euler algorithm for a representative set of material parameters. As the PFC model is just a simple example of a wide class of density functional theories, we expect this method will have wide applicability to modeling systems of considerable interest to the materials modeling communities.

  20. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    PubMed Central

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-01-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA–surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA–surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices. PMID:27157494

  1. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals.

    PubMed

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y; Polyakov, Alexey O; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T M; Clark, Noel A; Herrmann, Andreas

    2016-01-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices. PMID:27157494

  2. Quantum ground state of self-organized atomic crystals in optical resonators

    SciTech Connect

    Fernandez-Vidal, Sonia; De Chiara, Gabriele; Larson, Jonas; Morigi, Giovanna

    2010-04-15

    Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.

  3. Magnetic rotations of uric acid crystals and uratic crystals by static magnetic fields of up to 500 mT.

    PubMed

    Takeuchi, Yuka; Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In recent years, the disease concerning ureteral calculus is increasing possibly due to the changing lifestyles. For example, it is well known that the urinary calculi have a large impact to gout. As eating habitual diseases, gout and the hyper-uricemia are related to the formation of urinary calculus. In the previous studies, therapeutic agents were developed to enhance the uric acid excretion. From the viewpoint of side effects induction by the chemical agents, we are motivated to explore an alternative method to control the formation of ureteral crystals stimulator by physical stimulations. Therefore in the present study, we focused on the behaviors of uric acid crystals under magnetic fields of several hundreds of mT (Tesla). The uric acid crystals were re-crystallized from a suspension of uric acid powder, and the micro-crystals were prepared to be floating in the solution. We generated horizontal magnetic fields of maximum 500 mT by an electromagnet which contained a CCD microscope. A permanent magnet with magnetic fields of 200∼400 mT was also utilized. During the magnetic fields were applied to the uric acid crystals, we observed that the uric acid crystals were oriented by the magnetic fields down to 200 mT at the room temperature. It was speculated that the dimagnetic anisotropy in the uric acid crystals exhibited the rotational responses. The results indicate the possible remote control of the uric acid crystals in living body by the magnetic fields of 200 mT to 500 mT. PMID:24110424

  4. Crystal-Field and Covalency Effects in Uranates: An X-ray Spectroscopic Study.

    PubMed

    Butorin, Sergei M; Kvashnina, Kristina O; Smith, Anna L; Popa, Karin; Martin, Philippe M

    2016-07-01

    The electronic structure of U(V) - and U(VI) -containing uranates NaUO3 and Pb3 UO6 was studied by using an advanced technique, namely X-ray absorption spectroscopy (XAS) in high-energy-resolution fluorescence-detection (HERFD) mode. Due to a significant reduction in core-hole lifetime broadening, the crystal-field splittings of the 5f shell were probed directly in HERFD-XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge-transfer satellites that result from U 5f-O 2p hybridization were clearly resolved. The crystal-field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD-XAS, conventional XAS, core-to-core (U 4f-3d transitions) resonant inelastic X-ray scattering (RIXS), and U 4f X-ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO3 and Pb3 UO6 , respectively, which indicates a significant covalent character for these compounds. PMID:27257782

  5. Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Faqiang; Yang, Qunbao; Liu, Zhifu; Li, Yongxiang; Liu, Yun; Zhang, Qiming

    2016-05-01

    We report lead-free single crystals with a nominal formula of (K0.45Na0.55)0.96Li0.04NbO3 grown using a simple low-cost seed-free solid-state crystal growth method (SFSSCG). The crystals thus prepared can reach maximum dimensions of 6 mm × 5 mm × 2 mm and exhibit a large piezoelectric coefficient d33 of 689 pC/N. Moreover, the effective piezoelectric coefficient d33 * , obtained under a unipolar electric field of 30 kV/cm, can reach 967 pm/V. The large piezoelectric response plus the high Curie temperature (TC) of 432 °C indicate that SFSSCG is an effective approach to synthesize high-performance lead-free piezoelectric single crystals.

  6. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results

  7. The Structure, Thermodynamics and Solubility of Organic Crystals from Simulation with a Polarizable Force Field

    PubMed Central

    Schnieders, Michael J.; Baltrusaitis, Jonas; Shi, Yue; Chattree, Gaurav; Zheng, Lianqing; Yang, Wei; Ren, Pengyu

    2012-01-01

    An important unsolved problem in materials science is prediction of the thermodynamic stability of organic crystals and their solubility from first principles. Solubility can be defined as the saturating concentration of a molecule within a liquid solvent, where the physical picture is of solvated molecules in equilibrium with their solid phase. Despite the importance of solubility in determining the oral bioavailability of pharmaceuticals, prediction tools are currently limited to quantitative structure–property relationships that are fit to experimental solubility measurements. For the first time, we describe a consistent procedure for the prediction of the structure, thermodynamic stability and solubility of organic crystals from molecular dynamics simulations using the polarizable multipole AMOEBA force field. Our approach is based on a thermodynamic cycle that decomposes standard state solubility into the sum of solid-vapor sublimation and vapor-liquid solvation free energies ΔGsolubilityo=ΔGsubo+ΔGsolvo, which are computed via the orthogonal space random walk (OSRW) sampling strategy. Application to the n-alkylamides series from aeetamide through octanamide was selected due to the dependence of their solubility on both amide hydrogen bonding and the hydrophobic effect, which are each fundamental to protein structure and solubility. On average, the calculated absolute standard state solubility free energies are accurate to within 1.1 kcal/mol. The experimental trend of decreasing solubility as a function of n-alkylamide chain length is recapitulated by the increasing stability of the crystalline state and to a lesser degree by decreasing favorability of solvation (i.e. the hydrophobic effect). Our results suggest that coupling the polarizable AMOEBA force field with an orthogonal space based free energy algorithm, as implemented in the program Force Field X, is a consistent procedure for predicting the structure, thermodynamic stability and solubility of

  8. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  9. Effect of an electric field on nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  10. Photonic crystal cavities for resonant evanescent field trapping of single bacteria

    NASA Astrophysics Data System (ADS)

    van Leest, Thijs; Heldens, Jeroen; van der Gaag, Bram; Caro, Jaap

    2012-06-01

    In monitoring the quality of drinking water with respect to the presence of hazardous bacteria there is a strong need for on-line sensors that allow quick identification of bacterium species at low cost. In this respect, the combination of photonics and microfluidics is promising for lab-on-a-chip sensing of these contaminants. Photonic crystal slabs have proven to form a versatile platform for controlling the flow of light and creating resonant cavities on a wavelength scale. The goal of our research is to use photonic crystal cavities for optical trapping of microorganisms in water, exploiting the enhanced evanescent field of the cavity mode. We optimize the H0, H1 and L3 cavities for optical trapping of bacteria in water, by reducing out-of-plane losses and taking into account the trapping-induced resonance shift and the in-plane coupling with photonic crystal waveguides. The cavities are fabricated on silicon-on-insulator material, using e-beam lithography and dry etching. A fluidic channel is created on top of the photonic crystal using dry film resist techniques. Transmission measurements show clear resonances for the cavities in water. In the present state of our research, we demonstrate optical trapping of 1 μm diameter polystyrene beads for the three cavities, with estimated trapping forces on the order of 0.7 pN.

  11. Collective states of non-Abelian quasiparticles in a magnetic field

    NASA Astrophysics Data System (ADS)

    Levin, Michael; Halperin, Bertrand I.

    2009-05-01

    Motivated by the physics of the Moore-Read ν=1/2 state away from half filling, we investigate collective states of non-Abelian e/4 quasiparticles in a magnetic field. We consider two types of collective states: incompressible liquids and Wigner crystals. In the incompressible liquid case, we construct a natural series of states which can be thought of as a non-Abelian generalization of the Laughlin states. These states are associated with a series of hierarchical states derived from the Moore-Read state—the simplest of which occur at filling fraction 8/17 and 7/13. Interestingly, we find that the hierarchical states are Abelian even though their parent state is non-Abelian. In the Wigner crystal case, we construct two candidate states. We find that they, too, are Abelian—in agreement with previous analysis.

  12. Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies.

    PubMed

    Hughes, Mark A; Lourenço, Manon A; Carey, J David; Murdin, Ben; Homewood, Kevin P

    2014-12-01

    We report the lattice site and symmetry of optically active Dy3+ and Tm3+ implanted Si. Local symmetry was determined by fitting crystal field parameters (CFPs), corresponding to various common symmetries, to the ground state splitting determined by photoluminescence measurements. These CFP values were then used to calculate the splitting of every J manifold. We find that both Dy and Tm ions are in a Si substitution site with local tetragonal symmetry. Knowledge of rare-earth ion symmetry is important in maximising the number of optically active centres and for quantum technology applications where local symmetry can be used to control decoherence. PMID:25606863

  13. Nonorthogonal FDTD simulations for photonic band structures, states density, and transmission/reflection of photonic crystals

    NASA Astrophysics Data System (ADS)

    Le, Zichun; Yang, Yang; Quan, Bisheng; Wang, Weibiao; Wang, Xiaoxiao; Chi, Yongjiang; Ma, Lingfang

    2005-01-01

    Photonic crystals have been widely studied in the fields of physics, material science and optical information technology. In general, the standard rectangular finite difference time domain (FDTD) method is used to predict the performances of photonic crystals. It is however very time consuming and inefficient. The current authors developed a software called GCFE, which is based on a non-orthogonal FDTD method. The software can be used to predict the photonic band structures, photonic states density and transmission and/or reflection coefficients for one-dimensional to three-dimensional photonic crystals. In the present paper, the derivations of the discrete Maxwell"s equations in time-domain and space-domain and the derivation of the discrete transfer matrix in real-space domain are briefly described firstly. In addition, the design idea and the functions of GCFE version 2.0.00 are introduced. Moreover, the band structures, transmission and reflection coefficients and photonic states density for the photonic crystal with cube lattice are calculated by our GCFE software, and numerical application results are also shown.

  14. Crystal structures of human peroxiredoxin 6 in different oxidation states.

    PubMed

    Kim, Kyung Hee; Lee, Weontae; Kim, Eunice EunKyeong

    2016-09-01

    Peroxiredoxins (Prxs) are a family of antioxidant enzymes found ubiquitously. Prxs function not only as H2O2 scavengers but also as highly sensitive H2O2 sensors and signal transducers. Since reactive oxygen species are involved in many cellular metabolic and signaling processes, Prxs play important roles in various diseases. Prxs can be hyperoxidized to the sulfinic acid (SO2H) or sulfonic acid (SO3H) forms in the presence of high concentrations of H2O2. It is known that oligomerization of Prx is changed accompanying oxidation states, and linked to the function. Among the six Prxs in mammals, Prx6 is the only 1-Cys Prx. It is found in all organs in humans, unlike some 2-Cys Prxs, and is present in all species from bacteria to humans. In addition, Prx6 has Ca(2+)-independent phospholipase A2 (PLA2) activity. Thus far only the crystal structure of Prx in the oxidized state has been reported. In this study, we present the crystal structures of human Prx6 in the reduced (SH) and the sulfinic acid (SO2H) forms. PMID:27353378

  15. Density of photonic states in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  16. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-01

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution. PMID:25360544

  17. Bound states in a strong magnetic field

    SciTech Connect

    Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.

    2013-03-25

    We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB{approx}m{sup 2}{sub {pi}}{approx} 0.02 GeV{sup 2} at the RHIC and eB{approx} 15m{sup 2}{sub {pi}}{approx} 0.3 GeV{sup 2} at the LHC. We investigate the effects of the magnetic field on B{sup 0} and D{sup 0} mesons, focusing on the changes of the energy levels and of the mass of the bound states.

  18. Crystal-field calculations for transition-metal ions by application of an opposing potential

    DOE PAGESBeta

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  19. Matrix product states for gauge field theories.

    PubMed

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field. PMID:25215973

  20. Hall Crystal States in Fractionally Filled Chern Bands

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy; Shankar, Ramamurti

    2012-02-01

    Two-dimensional time-reversal-invariant topological insulators can be thought of as a time-reversed pair of Chern bands. Numerical evidence shows the existence of states at fractional filling which are analogous to FQH states[1]. In [2] it was noted that at small momenta, the algebra of the density operators projected to the Chern band resembles the magnetic translation algebra. The authors have constructed a mapping[3] between Chern bands and a Landau level in a periodic potential which works at all momenta. This mapping is dynamically faithful, and reproduces the commutators of the projected density operator. There turn out to be Hall Crystal states, characterized by a Hall conductance, and another integer which described the charged dragged when the potential is adiabatically moved by a lattice unit. Using the Hamiltonian formalism developed by the authors some time ago for the FQHE[4], we calculate gaps and collective mode dispersions for such states. 1. D. N. Sheng et al, arxiv:1102.2568, N. Regnault and B. A. Bernevig, arxiv:1105.4867. 2. S. Parameswaran, R. Roy, and S. L. Sondhi, arxiv:1106.4025. 3. G. Murthy and R. Shankar, arxiv:1108.5501 4. G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101 (2003)

  1. Twist-bend nematic liquid crystals in high magnetic fields.

    PubMed

    Challa, P K; Borshch, V; Parri, O; Imrie, C T; Sprunt, S N; Gleeson, J T; Lavrentovich, O D; Jákli, A

    2014-06-01

    We present magneto-optic measurements on two materials that form the recently discovered twist-bend nematic (N_{tb}) phase. This intriguing state of matter represents a fluid phase that is orientationally anisotropic in three directions and also exhibits translational order with periodicity several times larger than the molecular size. N_{tb} materials may also spontaneously form a visible, macroscopic stripe texture. We show that the optical stripe texture can be persistently inhibited by a magnetic field, and a 25T external magnetic field depresses the N-N_{tb} phase transition temperature by almost 1{∘}C. We propose a quantitative mechanism to account for this shift and suggest a Helfrich-Hurault-type mechanism for the optical stripe formation. PMID:25019707

  2. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  3. Solid-state 13C NMR study of cholesteric liquid crystals.

    PubMed

    Yamada, Kazuhiko; Marumo, Kazuhiro; Kang, Sungmin; Deguchi, Kenzo; Nakai, Toshihito; Shimizu, Tadashi; Watanabe, Junji

    2013-12-19

    We investigated the structural behavior of cholesteric liquid crystals of 4-(hexyloxy)-4'-cyanobiphenyl (6OCB) in an 11.7 T magnetic field by solid-state (13)C nuclear magnetic resonance. Five 6OCB cholesteric liquid crystal systems were prepared with 4-methoxyphenyl 3,4-O-isopropylidene-2,6-bis-O-(4-methylbenzoyl)-β-d-galactopyranoside (CR), in which 6OCB was doped with 0.51, 1.00, 2.34, 5.60, and 6.47 mol % CR, giving products with helical twisting powers (HTPs) of 0.28, 0.54, 1.27, 3.05, and 3.52 μm(-1), respectively. Analyses of the alignment-induced shifts showed that the liquid crystals directors in pure 6OCB and 6OCB doped with 0.51 and 1.00 mol % CR become aligned with the 11.7 T magnetic field direction. However, 6OCB doped with 2.34, 5.60, and 6.47 mol % CR retained their cholesteric structures when the magnetic field was applied. The critical HTP value for resisting realignment by magnetic field was estimated to be approximately 1.27 μm(-1). A biaxiality of the phase was partially considered during spectral simulations, although the molecular shape of 6OCB can be defined as cylinderical when it is rotating rapidly. Our current understanding is that the order parameters in the cholesteric structures are not uniform; i.e., the molecular directors already aligned almost perpendicular to the magnetic field are significantly perturbed by the external field. PMID:24188010

  4. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  5. Which charge definition for describing the crystal polarizing field and the χ((1)) and χ((2)) of organic crystals?

    PubMed

    Seidler, Tomasz; Champagne, Benoît

    2015-07-15

    The impact of atomic charge definition for describing the crystal polarizing electric field has been assessed in view of predicting the linear and nonlinear optical susceptibilities of molecular crystals. In this approach, the chromophores are embedded in the electric field of its own point charges, which are evaluated through a self-consistent procedure including charge scaling to account for the screening of the dielectric. Once the crystal field is determined, dressed molecular polarizabilities and hyperpolarizabilities are calculated and used as input of an electrostatic interaction scheme to evaluate the crystal linear and nonlinear optical responses. It is observed that many charge definitions (i) based on partitioning the electron density (QTAIM), (ii) obtained by analyzing the quantum-chemical wavefunction (Mulliken, MBS, and NBO), and (iii) derived by fitting to the electrostatic potential (MK, CHelpG, and HLYGAt) give very consistent results and are equally valid whereas Hirshfeld partitioning and CM5 charge parametrizations underestimate the refractive indices and second-order nonlinear optical susceptibilities. An alternative approach omitting charge scaling is demonstrated to overestimate the different crystal optical properties. On the other hand, the molecule embedding approach provides results in close agreement with those calculated with a charge field obtained from periodic boundary condition calculations. PMID:26144533

  6. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    PubMed Central

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-01-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems. PMID:27320787

  7. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2.

    PubMed

    Haravifard, S; Graf, D; Feiguin, A E; Batista, C D; Lang, J C; Silevitch, D M; Srajer, G; Gaulin, B D; Dabkowska, H A; Rosenbaum, T F

    2016-01-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems. PMID:27320787

  8. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-06-01

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. The magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.

  9. Spatial Distribution of -Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under Combined Thermal and Flow Fields

    SciTech Connect

    Wang, Y.; Pan, J; Mao, Y; Li, Z; Li, L; Hsiao, B

    2010-01-01

    The present Article reports the relationships between molecular orientation, formation, and spatial distribution of {gamma}-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of {gamma}-crystal (f{gamma}) with respect to {alpha}-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f{gamma} increased monotonously from skin to core in CIM samples, whereas the corresponding f{gamma} increased nonmonotonically in OSIM samples. The spatial distribution of {gamma}-crystal in OSIM samples can be explained by the epitaxial arrangement between {gamma}- and {alpha}-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of {alpha}-crystal provide secondary nucleation sites for daughter lamellae of {alpha}-crystal and {gamma}-crystal, and the different content of parent lamellae results in varying amounts of {gamma}-crystal. In OSIM samples, the smallest parent-daughter ratio ([R] = 1.38) in the core region led to the lowest fraction of {gamma}-crystal (0.57), but relatively higher {gamma}-crystal content (0.69) at 600 and 1200 {micro}m depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of {gamma}-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The

  10. Effects of three-dimensional polymer networks in vertical alignment liquid crystal display controlled by in-plane field.

    PubMed

    Lim, Young Jin; Choi, Young Eun; Lee, Jun Hee; Lee, Gi-Dong; Komitov, Lachezar; Lee, Seung Hee

    2014-05-01

    Polymer network in vertical alignment liquid crystal cell driven by in-plane field (VA-IPS) is formed in three dimensions to achieve fast response time and to keep the liquid crystal alignment even when an external pressure is applied to the cell. The network formed by UV irradiation to vertically aligned liquid crystal cell with reactive mesogen does not disturb a dark state while exhibiting very fast decaying response time less than 2ms in all grey scales and almost zero pooling mura. The proposed device has a strong potential to be applicable to field sequential display owing to super-fast response time and flexible display owing to polymer network in bulk which supports a gap between two substrates. PMID:24921764

  11. Self-consistent-field studies of core-level shifts in ionic crystals: LiF

    SciTech Connect

    Broughton, J.Q.; Bagus, P.S.

    1984-10-15

    Restricted-Hartree-Fock, self-consistent-field calculations have been performed for the ground and ionic states of clusters of lithium and fluorine atoms. These clusters are appropriately charged to represent an Li/sup +/F/sup -/ ionic crystal and point charges are used to represent the Madelung field due to ions not explicitly included in the cluster. Factors giving rise to core- and valence-level binding-energy shifts have been examined and separated into compressional, relaxational, and effective Madelung contributions. Many tests of ionicity are shown to be well satisfied, although this is often caused by fortuitous cancellations. Extra-ionic relaxation energies on both the cation and anion are shown to be small, and shakeup probabilities are calculated.

  12. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  13. Large area mode field photonic crystal fiber design

    NASA Astrophysics Data System (ADS)

    Guo, Shuqin; An, Wensheng; Wang, Kang; Zhu, Guangxin; Le, Zichun

    2005-11-01

    A novel design method about photonic crystal fiber (PCF) with large area model field (LAMF) is demonstrated. Different from ordinarily design that the core of PCF formed by missing one air holes in the center of section, many air holes distributed in heartland all together come into being the core region. Air holes are arranged regularly in core region and outer cladding regions according to different periodical character, respectively. The effective refractive index (n eff ) of core region should be higher than cladding region because of total internal reflection (TIR) requirement. In this paper, two kinds of typical scheme are offered to realize LAMF-PCF. First, Λ, the spacing of neighboring air holes in whole section is fixed, once the radius of air holes in the core region r c is smaller than the cladding air holes r cla, LAMF-PCF will be formed. The modal area only lessens a little as r c is reduced. Especially, optimal size of r c can nearly make MFA insensitive to wavelength. On the contrary, dispersion parameter of PCF will take place visible change along with r c reduced, and ultra-flattened dispersion character can be realized when r c is optimized. Another method of designing LAMF-PCF is keeping all air holes uniform in the whole section of PCF, but the space of neighboring air holes in the core region Λ c is longer than the cladding region Λ cla, so n eff of core region is higher than the cladding region and TIR can take place.

  14. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  15. An inhomogeneously distorted state of the crystal structure of a Zn0.95Fe0.05Se cubic crystal

    NASA Astrophysics Data System (ADS)

    Maksimov, V. I.; Surkova, T. P.; Parkhomenko, V. D.; Yushkova, E. N.

    2016-04-01

    The structural state of a bulk Zn0.95Fe0.05Se cubic crystal grown by the chemical transport method from the gas phase has been investigated using thermal neutron diffraction at room temperature. It has been found that the measured neutron diffraction patterns of the crystal, in addition to structural Bragg peaks, contain a clearly identified system of superstructure reflections with the wave vector k = (1/3 1/3 1/3)2π/ a (where a is the parameter of the cubic unit cell), which is interpreted as a clear evidence of the incipient transition state preceding the concentration phase transformation fcc ↔ hcp. It has been shown that the resulting structural state includes an inhomogeneous microstrain field with the possible appearance of long-wavelength modulations based on the initial sphalerite structure.

  16. Influence of a random field on particle fractionation and solidification in liquid-crystal colloid mixtures

    NASA Astrophysics Data System (ADS)

    Popa-Nita, V.; van der Schoot, P.; Kralj, S.

    2006-11-01

    The influence of a random-anisotropy (RA) type disorder on the phase separation of nematogen-colloid mixtures is studied theoretically by combining the phenomenological Landau-de Gennes, Carnahan-Starling, and hard-sphere crystal theories. We assume that the colloids enforce the RA disorder on the surrounding thermotropic liquid-crystal (LC) molecules. We adopt the Imry-Ma argument according to which the lower-temperature phase exhibits a domain-type pattern. The colloids impose a finite degree of orientational ordering even in the isotropic (paranematic) phase. In the ordered phase they give rise to a domain-type structure, resulting in the distorted nematic (speronematic) phase. The RA field opposes the phase separation tendency. With increasing disorder the difference between the paranematic and speronematic ordering decreases. Consequently there is a critical disorder, above which both phases become identical from the orientation point of view, but have different concentrations of colloids. We have also estimated another characteristic value of disorder above which the isotropic phase can exist only in a liquid state, the crystal phase being suppressed completely.

  17. An adaptive time-stepping strategy for solving the phase field crystal model

    SciTech Connect

    Zhang, Zhengru; Ma, Yuan; Qiao, Zhonghua

    2013-09-15

    In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. The numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.

  18. The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.

    2016-08-01

    We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1–43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n  =  3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31–68), from where we deduce the periodicity property of minimizers.

  19. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  20. Spherical, cylindrical and tetrahedral symmetries; hydrogenic states at high magnetic field in Si:P

    PubMed Central

    Lewis, R. A.; Bruno-Alfonso, A.; de Souza, G. V. B.; Vickers, R. E. M.; Colla, J. A.; Constable, E.

    2013-01-01

    Phosphorous donors in silicon have an electronic structure that mimics the hydrogen atom, albeit on a larger length, smaller energy and smaller magnetic field scale. While the hydrogen atom is spherically symmetric, an applied magnetic field imposes cylindrical symmetry, and the solid-state analogue involves, in addition, the symmetry of the Si crystal. For one magnetic field direction, all six conduction-band valleys of Si:P become equivalent. New experimental data to high laboratory fields (30 T), supported by new calculations, demonstrate that this high symmetry field orientation allows the most direct comparison with free hydrogen. PMID:24336145

  1. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed. PMID:21399269

  2. Solution and Solid-State Studies of DNA-Programmable Nanoparticle Single Crystals

    NASA Astrophysics Data System (ADS)

    Auyeung, Evelyn

    This thesis lays the foundation for three main areas that have significantly advanced the field of DNA-programmable nanoparticle assembly: (1) the synthesis of nanoparticle superlattices with novel lattice symmetries (2) post-assembly characterization and applications of superlattices that have been transferred from solution to the solid state and (3) the realization of a slow-cooling strategy for synthesizing faceted nanoparticle single crystals. Together, these advances mark a turning point in the evolution of DNA-programmable assembly from a simple proof-of-concept demonstrated in 1996 to a powerful materials development strategy that has inspired many ongoing investigations in fields including catalysis, plasmonics, and electronics. Chapter 1 begins with an overview of controlled crystallization and its importance across fields including chemistry and materials science. This followed by a description of DNA-programmable assembly and a discussion on its advantages as an assembly strategy. Chapter 2 describes a powerful strategy for synthesizing nanoparticle superlattices using a coreless nanoparticle consisting purely of spherically-oriented oligonucleotides. This "three dimensional spacer approach" allows for the synthesis of nanoparticle superlattices with exotic structures, including one with no mineral equivalent. While DNA is a versatile ligand for nanoparticle assembly, the resulting superlattices are only stable in solution. Chapter 3 addresses these limitations and presents a method for transitioning these materials from solution to the solid state through silica encapsulation. This encapsulation process has transformed the ability to interrogate these materials using electron microscopy, and it has enabled all the studies in subsequent chapters of this thesis. In Chapter 4, a slow-cooling crystallization technique is described that allows for the synthesis of single crystalline microcrystals with well-defined facets from DNA-nanoparticle building blocks

  3. Anisotropic magnetic behavior of PrAg2Ge2—a crystal field study

    NASA Astrophysics Data System (ADS)

    Chatterji, A.; Chatterjee, Tania; Mitra, S.

    2012-02-01

    A crystal field (CF) analysis of the experimental, single crystal magnetic susceptibility data (300-1.8 K) along and perpendicular to the [0 0 1] axis, of the Ag based rare earth intermetallic compound PrAg 2Ge 2, has been carried out for the first time, thus yielding first reliable set of CF parameters for the system. The susceptibility feature at 12 K is possibly due to CF effects rather than the magnetic order as proposed earlier. This removes the issue of the transition temperature being too large to scale properly with the de Gennes factor. We have used the set of CF parameters to find the Stark energies of the ground state and the excited states together with their corresponding eigenvectors, and the thermal variation of the magnetic specific heat. Possible explanation of the absence of magnetic ordering of the Pr sublattice and the nature of variation of the CF parameters with the substitution of transition-metal ion in PrAg 2Ge 2 is studied and discussed in relation to PrAu 2Ge 2. All computations have been carried out using the intermediate coupling scheme including the J-mixing.

  4. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    SciTech Connect

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N. Chuprunov, E. V.

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  5. Dynamic control over the heat field during LBO crystal growth by High temperature solution method

    NASA Astrophysics Data System (ADS)

    Kokh, A.; Vlezko, V.; Kokh, K.; Kononova, N.; Villeval, Ph.; Lupinski, D.

    2012-12-01

    The paper presents LiB3O5 crystal growth under oscillating temperature regime provided by sequential switching of the heaters placed around the crucible. First results have demonstrated the ability to grow high-quality crystals under dynamicaly changed (rotating) heat field confirming the possibility to control over heat-mass-transfer processes by proposed contact free method.

  6. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    NASA Astrophysics Data System (ADS)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N.; Chuprunov, E. V.

    2013-12-01

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  7. The In-Gap Electronic State Spectrum of Methylammonium Lead Iodide Single-Crystal Perovskites.

    PubMed

    Adinolfi, Valerio; Yuan, Mingjian; Comin, Riccardo; Thibau, Emmanuel S; Shi, Dong; Saidaminov, Makhsud I; Kanjanaboos, Pongsakorn; Kopilovic, Damir; Hoogland, Sjoerd; Lu, Zheng-Hong; Bakr, Osman M; Sargent, Edward H

    2016-05-01

    The density of trap states within the bandgap of methylammonium lead iodide single crystals is investigated. Defect states close to both the conduction and valence bands are probed. Additionally, a comprehensive electronic characterization of crystals is carried out, including measurements of the electron and hole mobility, and the energy landscape (band diagram) at the surface. PMID:26932458

  8. Chiralization and ferroelectric state induction in nanostructured liquid crystals

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Rafailov, P. M.; Todorov, N.

    2016-02-01

    The liquid crystals (LC), due to their naturally high bulk ordering, strong birefringence and easy electrooptical driving, serve as matrix in the nanocomposites doped with non-mesogenic or mesogenic nanoparticles. The nanocomposite's structural units exhibit very complex molecular form indicating the strength and the intermolecular interaction between the matrix and dopant's molecules. Hydrogen bonds are of particular significance for the formation of the nanocomposite structural units, since the symmetry of the LC nanocomposite could be controlled and controllably decreased due to the acceptor-donor interaction between the dimeric matrix and the dopants. As a result, the LC nanocomposite can reach the lowest symmetry, known as triclinic - C1. Using the LC p,n-alkyloxybensoic acids (nOBA) in form of hydrogen-bonded dimers as matrix and non-mesogenics - single walls carbon nanotubes (SWCNT), perfluorooctanoic acid (PFOA), 4-hydrooxypiridin (HOPY) or mesogen - cholesteryl benzoate (ChB) as dopants and choosing optimal concentrations (where the typical LC state was preserved), we obtained nanocomopsites 7OBA/SWCNT, 7OBA/PFOA, 9OBA/HOPY and 8OBA/ChB. We indicate two forms of ferroelectricity in the studied nanocomposites: developable ferroelectricity, characteristic for the 9OBA/HOPY, 7OBA/PFOA compounds and developed ferroelectricity characteristic for 8OBA/SWCNT, 8OBA/ChB.

  9. Changes in mobility of plastic crystal ethanol during its transformation into the monoclinic crystal state

    SciTech Connect

    Sanz, Alejandro Nogales, Aurora; Ezquerra, Tiberio A.; Puente-Orench, Inés; Jiménez-Ruiz, Mónica

    2014-02-07

    Transformation of deuterated ethanol from the plastic crystal phase into the monoclinic one is investigated by means of a singular setup combining simultaneously dielectric spectroscopy with neutron diffraction. We postulate that a dynamic transition from plastic crystal to supercooled liquid-like configuration through a deep reorganization of the hydrogen-bonding network must take place as a previous step of the crystallization process. Once these precursor regions are formed, subsequent crystalline nucleation and growth develop with time.

  10. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  11. Transverse magnetic field impact on waveguide modes of photonic crystals.

    PubMed

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features. PMID:27519096

  12. Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Jagan, R.; Paulraj, Rajesh; Ramasamy, P.

    2015-10-01

    Metal-organic bis(hydrogenmaleate)-Co(II) tetrahydrate single crystals have been grown by slow evaporation solution growth technique at room temperature. The crystal structure and the unit cell parameters were analyzed from the X-ray diffraction studies. Single-crystal X-ray diffraction analyses reveal that the grown crystal belongs to triclinic system with the space group P-1. Functional groups in bis(hydrogenmaleate)-Co(II) tetrahydrate were identified by Fourier transform infrared spectral analysis. The peak observed at 663 cm-1 is assigned to the (Co-O) stretching vibrations. The optical transmission of the crystal was studied by UV-vis-NIR spectral analysis. The photoluminescence emission studies were carried out for the title compound in a wide wavelength range between 350 nm and 550 nm at 303 K. Mechanical strength was tested by Vickers microhardness test. The laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm. At various frequencies and temperatures the dielectric behavior of the material was investigated. Solid state parameters such as plasma energy, Penn gap, Fermi energy and electronic polarizability were evaluated. Photoconductivity measurements were carried out for the grown crystal in the presence of DC electric field at room temperature. Thermal stability and decomposition of the crystal were studied by TG-DTA. The weight loss of the title compound occurs in different steps.

  13. Solid state crystal physics at very low temperatures

    NASA Technical Reports Server (NTRS)

    Davis, W.; Krack, K.; Richard, J. P.; Weber, J.

    1980-01-01

    The properties of nearly perfect crystals was studied at cryogenic temperatures. A large Helium 3 and Helium 4 dilution refrigerator has been assembled, and is described. A cryostat suitable for cooling a 35 liter volume to .020 Kelvin was designed and constructed, together with instrumentation to observe the properties of nearly perfect crystals.

  14. Nodal superconducting state in clean single crystals of FeSe

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Mikami, T.; Mizukami, Y.; Kawamoto, Y.; Kurata, S.; Watanabe, D.; Shibauchi, T.; Matsuda, Y.; Böhmer, A. E.; Wolf, T.; Meingast, C.; Löhneysen, H. V.

    2014-03-01

    Among iron-based superconductors, the binary ``11'' family offers the possibility to investigate systems consisting of just the iron arsenic/selenium layers without the intermediate layers which are present in the ``111'', ``122'' and ``1111'' families. This simplest iron based superconductor may therefore yield vital information about the origin of superconductivity in the iron pnictides/chalcogenides. Here we measured the penetration depth and thermal conductivity in very clean single crystals of FeSe with RRR > 200. Presence of line nodes is evident by the quasi T-linear dependence of the penetration depth. Moreover, a large residual thermal conductivity, which is much larger than that expected for d-wave symmetry, suggests that nodes are accidental and nearly vanishing. The field dependence of thermal conductivity suggests a possible field induced phase transition in the superconducting state.

  15. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  16. Electronic transitions, crystal field effects and phonons in UO 2

    NASA Astrophysics Data System (ADS)

    Schoenes, J.

    1980-08-01

    An extensive optical study of the 5f magnetic semiconductor UO 2 is presented. The experimental data include near normal incidence reflectivity measurements from 0.0025 to 13 eV, absorption and Faraday rotation measurements as function of temperature and of magnetic fields up to 100 kOe and photoemission results. From the data in the fundamental absorption region an energy level scheme is derived. This level scheme differs markedly from an earlier model but it is quantitatively supported by a calculation using the thermochemical Haber-Born process and also by cluster calculations. The localized nature of the 5f electrons is demonstrated. The absorption edge at 2 eV shows an abrupt shift to lower energies at the first order phase transition of UO 2 to the antiferromagnetic state. This shift is shown to be larger than expected from the lattice contraction indicating a magnetic order induced contribution to the total red shift. Below the absorption edge, intra-5f transitions and multiphonon excitations are reported, showing striking order induced effects at and below TN = 30.8 K. New results are presented for ε st, ε opt, ω TO and ω LO which fulfill the Lyddane-Sachs-Teller relation.

  17. Nonlinear smectic elasticity of helical state in cholesteric liquid crystals and helimagnets

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo; Lubensky, T. C.

    2011-05-01

    General symmetry arguments, dating back to de Gennes, dictate that at scales longer than the pitch, the low-energy elasticity of a chiral nematic liquid crystal (cholesteric) and of a Dzyaloshinskii-Morya (DM) spiral state in a helimagnet with negligible crystal symmetry fields (e.g., MnSi, FeGe) is identical to that of a smectic liquid crystal, thereby inheriting its rich phenomenology. Starting with a chiral Frank free energy (exchange and DM interactions of a helimagnet) we present a transparent derivation of the fully nonlinear Goldstone mode elasticity, which involves an analog of the Anderson-Higgs mechanism that locks the spiral orthonormal (director or magnetic moment) frame to the cholesteric (helical) layers. This shows explicitly the reduction of three orientational modes of a cholesteric down to a single-phonon Goldstone mode that emerges on scales longer than the pitch. At a harmonic level our result reduces to that derived many years ago by Lubensky and collaborators.

  18. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.

    PubMed

    Pavarini, E; Andreani, L C

    2002-09-01

    The photonic band dispersion and density of states (DOS) are calculated for the three-dimensional (3D) hexagonal structure corresponding to a distributed Bragg reflector patterned with a 2D triangular lattice of circular holes. Results for the Si/SiO(2) and GaAs/Al(x)Ga(1-x)As systems determine the optimal parameters for which a gap in the 2D plane occurs and overlaps the 1D gap of the multilayer. The DOS is considerably reduced in correspondence with the overlap of 2D and 1D gaps. Also, the local density of states (i.e., the DOS weighted with the squared electric field at a given point) has strong variations depending on the position. Both results imply substantial changes of spontaneous emission rates and patterns for a local emitter embedded in the structure and make this system attractive for the fabrication of a 3D photonic crystal with controlled radiative properties. PMID:12366275

  19. Formation of substrate and transition-state analogue complexes in crystals of phosphoglucomutase after removing the crystallization salt.

    PubMed

    Ray, W J; Puvathingal, J M; Liu, Y W

    1991-07-16

    Crystals of phosphoglucomutase, grown in 2.1 M ammonium sulfate, "desalted", and suspended in a 30% polyoxyethylene-8000/1 M glycine solution as described in the accompanying paper [Ray, W. J., Jr., Puvathingal, J. M., Bolin, J. T., Minor, W., Liu, Y., & Muchmore, S. W. (1991) Biochemistry 30 (preceding paper in this issue)], were treated with glucose phosphates to form an equilibrium mixture of the catalytically active substrate/product complexes. However, this treatment extensively fractured the crystals, even when very dilute solutions of glucose phosphates were used. But formation of the desired complexes was achieved, without fracturing, by introducing the glucose phosphates at high salt concentration, where they do not bind significantly to the enzyme, and maintaining their presence during subsequent sulfate-removal steps, in order to obtain essentially uniform binding throughout the crystal at all times. Although this procedure produced unfractured crystals of the catalytically active complexes, an adjustment in water activity was required to prevent the crystals from slowly liquefying in the presence of the added glucose phosphates. After this adjustment, the quality of diffraction-grade crystals subjected to this treatment was not significantly altered. An even larger adjustment in water activity was required to stabilize crystals that had been largely converted into a mixture of vanadate-based transition-state analogue complexes [cf. Ray, W. J., Jr., & Puvathingal, J. M. (1990) Biochemistry 29, 2790-2801] by means of an analogous procedure. The rationale for, and the implications of, this adjustment of water activity are discussed. The phenomenon of lattice-based binding cooperativity also is discussed together with a possible role for such cooperativity in the fracturing of protein crystals during formation of ligand complexes and possible ways to circumvent such fracturing based on the annealing of crystals at fractional saturation. An assay for

  20. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  1. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  2. Vectorial near-field imaging of a GaN based photonic crystal cavity

    SciTech Connect

    La China, F. Intonti, F.; Caselli, N.; Lotti, F.; Vinattieri, A.; Gurioli, M.; Vico Triviño, N.; Carlin, J.-F.; Butté, R.; Grandjean, N.

    2015-09-07

    We report a full optical deep sub-wavelength imaging of the vectorial components of the electric local density of states for the confined modes of a modified GaN L3 photonic crystal nanocavity. The mode mapping is obtained with a scanning near-field optical microscope operating in a resonant forward scattering configuration, allowing the vectorial characterization of optical passive samples. The optical modes of the investigated cavity emerge as Fano resonances and can be probed without the need of embedded light emitters or evanescent light coupling into the nanocavity. The experimental maps, independently measured in the two in-plane polarizations, turn out to be in excellent agreement with numerical predictions.

  3. Crystal-field level inversion in lightly Mn-doped Sr3Ru2O7

    SciTech Connect

    Hossain, M. A.; Hu, Z.; Haverkort, M. W.; Burnus, T.; Chang, C. F.; Klein, S.; Denlinger, J. D.; Lin, H.-J.; Chen, C. T.; Mathieu, R.; Kaneko, Y.; Tokura, Y.; Satow, S.; Yoshida, Y.; Takagi, H.; Tanaka, A.; Elfimov, I. S.; Sawatzky, G. A.; Tjeng, L. H.; Damascelli, A.

    2008-01-15

    Sr3(Ru1-xMnx)2O7, in which 4d-Ru is substituted by the more localized 3d-Mn, is studied by x-ray dichroism and spin-resolved density functional theory. We find that Mn impurities do not exhibit the same 4+ valence of Ru, but act as 3+ acceptors; the extra eg electron occupies the in-plane 3dx2-y2 orbital instead of the expected out-of-plane 3d3z2-r2. We propose that the 3d-4d interplay, via the ligand oxygen orbitals, is responsible for this crystal-field level inversion and the material's transition to an antiferromagnetic, possibly orbitally ordered, low-temperature state.

  4. Directional growth by low electric-field-controlled crystallization of bulk amorphous lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Kim, J. E.; Yang, Y. S.

    2004-12-01

    Highly oriented rod-shaped crystals were grown during crystallization of bulk amorphous Li2B4O7 under a low ac electric field of ˜5V/mm. The crystal c axis that is the long direction of rods and perpendicular to the flat surface of the sample is parallel to the applied electric-field direction. The oriented crystals, with an alignment within a declined angle of ˜15°, are so long along the c direction compared with those of other directions that the geometrical structure of each rod is quasi-one-dimensional. The measured electromechanical coupling coefficient of kt=0.47 is comparable to that of single-crystal Li2B4O7.

  5. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules. PMID:22281810

  6. Field localization and enhancement near the Dirac point of a finite defectless photonic crystal

    NASA Astrophysics Data System (ADS)

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Conti, Claudio; Bloemer, Mark J.

    2013-02-01

    We use a rigorous electromagnetic approach to show the existence of strongly localized modes in the stop band of a linear, two-dimensional, finite photonic crystal near its Dirac point. At normal incidence, the crystal exhibits a Dirac point with 100% transmission. At angles slightly off the normal, where the crystal is 100% reflective, instead of exponentially decaying fields as in a photonic stop band, the field becomes strongly localized and enhanced inside the crystal. We explain that this anomalous localization is due to guided mode resonances that are the foundation of the Dirac point itself and also shape its adjacent band gap. Besides shedding new light on the physical origin of Dirac points in finite photonic crystals, our results could have applications in many nonlinear light-matter interaction phenomena in which it is crucial to achieve a high degree of light localization.

  7. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  8. Imaging of director fields in liquid crystals using stimulated Raman scattering microscopy.

    PubMed

    Lee, Taewoo; Mundoor, Haridas; Gann, Derek G; Callahan, Timothy J; Smalyukh, Ivan I

    2013-05-20

    We demonstrate an approach for background-free three-dimensional imaging of director fields in liquid crystals using stimulated Raman scattering microscopy. This imaging technique is implemented using a single femtosecond pulsed laser and a photonic crystal fiber, providing Stokes and pump frequencies needed to access Raman shifts of different chemical bonds of molecules and allowing for chemically selective and broadband imaging of both pristine liquid crystals and composite materials. Using examples of model three-dimensional structures of director fields, we show that the described technique is a powerful tool for mapping of long-range molecular orientation patterns in soft matter via polarized chemical-selective imaging. PMID:23736433

  9. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems. PMID:25903907

  10. Influence of Acoustic Field Structure on Polarization Characteristics of Acousto-optic Interaction in Crystals

    NASA Astrophysics Data System (ADS)

    Muromets, A. V.; Trushin, A. S.

    Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.

  11. Influence of the three dimensionality of the HF electromagnetic field on resistivity variations in Si single crystals during FZ growth

    NASA Astrophysics Data System (ADS)

    Ratnieks, G.; Muiznieks, A.; Buligins, L.; Raming, G.; Mühlbauer, A.; Lüdge, A.; Riemann, H.

    2000-06-01

    Three-dimensional numerical modelling is carried out to analyse the floating zone crystal growth with the needle-eye technique used for the production of high-quality silicon single crystals with large diameters ( ⩾100 mm ). Since the pancake inductor has only one turn, the EM field and the distribution of heat sources and EM forces are only roughly axisymmetric. The non-symmetry together with crystal rotation reflects itself on the hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. The non-symmetric high-frequency electromagnetic field of the pancake inductor is calculated by boundary element method. The obtained non-symmetric power distribution on the free melt surface and the corresponding EM forces are used for the coupled calculation of the 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with control volume approach. The buoyancy, Marangoni and EM forces are considered. The afterwards calculated corresponding 3D dopant concentration field is used to derive the variations of resistivity in a longitudinal cut of the grown crystal. The results are compared with experimental measurements (photo-scanning method) and with results of 2D transient flow calculations. Rotational striations are found in both 3D-calculated and experimental resistivity distributions and show a qualitative agreement. A Fourier analysis for the resistivity variations is performed and the observed differences are explained by modelling limitations.

  12. Dependence of the Bose-Glass state on the magnetic field angle

    NASA Astrophysics Data System (ADS)

    Smith, A. W.; Anders, S.; Parthasarathy, R.; Fabijanic, J. M.; Jaeger, H. M.; Rosenbaum, T. F.; Kwok, W.; Crabtree, G.

    1998-03-01

    We investigate the effect of a transverse magnetic field, H_⊥, on the Bose-Glass state in heavy ion irradiated YBa_2Cu_3O_7-δ single crystals. Using InAs Hall probe arrays we measure the local component of the magnetic field parallel to the columnar defects with single vortex resolution. We study the critical current density and the relaxation rate of local magnetic field gradients as a function of H_⊥. A sufficiently large transverse magnetic field is expected to pull vortices off the columnar defects and melt the Bose-Glass(D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48), 13 060 (1993)..

  13. Nonclassical Properties of Q-Deformed Superposition Light Field State

    NASA Technical Reports Server (NTRS)

    Ren, Min; Shenggui, Wang; Ma, Aiqun; Jiang, Zhuohong

    1996-01-01

    In this paper, the squeezing effect, the bunching effect and the anti-bunching effect of the superposition light field state which involving q-deformation vacuum state and q-Glauber coherent state are studied, the controllable q-parameter of the squeezing effect, the bunching effect and the anti-bunching effect of q-deformed superposition light field state are obtained.

  14. Near-field studies of microwave three-dimensional photonic crystals with waveguides.

    PubMed

    Liu, Rong-Juan; Li, Zhi-Yuan; Zhou, Fei; Zhang, Dao-Zhong

    2007-11-12

    By utilizing a vector network analyzer, the field distributions on the surface of a three-dimensional woodpile photonic crystal with a straight waveguide or a bend waveguide buried under the surface were measured in the microwave regime. The information of field profile and propagation characteristics of the guided modes can be successfully extracted from the surface near-field measurement. This work indicates that the near-field detection can become a promising means for experimental characterization of three-dimensional photonic crystal devices in supplement to the usual transmission spectrum measurement. PMID:19550839

  15. Hidden local symmetry of Eu{sup 3+} in xenotime-like crystals revealed by high magnetic fields

    SciTech Connect

    Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo Li, Liang; Yu, Xuefeng

    2015-02-07

    The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu{sup 3+} sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO{sub 4}:Eu{sup 3+} crystal, which resulted from the alignment of Gd{sup 3+} magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO{sub 4} nanocrystals at the Eu{sup 3+} sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu{sup 3+} centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.

  16. Effect of far-field flow on a columnar crystal in the convective undercooled melt

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Jian; Chen, Ming-Wen; Xu, Xiao-Hua; Wang, Zi-Dong

    2015-01-01

    The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations. Project supported by the Overseas Distinguished Scholar Program by the Ministry of Education of China (Grant No. MS2010BJKJ005), the National Natural Science Foundation of China (Grant No. 10972030), and the Science and Technology Support Project of Jiangxi, China (Grant No. 20112BBE50006).

  17. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  18. Numerical investigation of optical Tamm states in two-dimensional hybrid plasmonic-photonic crystal nanobeams

    SciTech Connect

    Meng, Zi-Ming E-mail: lizy@aphy.iphy.ac.cn; Hu, Yi-Hua; Ju, Gui-Fang; Zhong, Xiao-Lan; Ding, Wei; Li, Zhi-Yuan E-mail: lizy@aphy.iphy.ac.cn

    2014-07-28

    Optical Tamm states (OTSs) in analogy with its electronic counterpart confined at the surface of crystals are optical surface modes at the interfaces between uniform metallic films and distributed Bragg reflectors. In this paper, OTSs are numerically investigated in two-dimensional hybrid plasmonic-photonic crystal nanobeams (HPPCN), which are constructed by inserting a metallic nanoparticle into a photonic crystal nanobeam formed by periodically etching square air holes into dielectric waveguides. The evidences of OTSs can be verified by transmission spectra and the field distribution at resonant frequency. Similar to OTSs in one-dimensional multilayer structures OTSs in HPPCN can be excited by both TE and TM polarization. The physical origin of OTSs in HPPCN is due to the combined contribution of strong reflection imposed by the photonic band gap (PBG) of the photonic crystal (PC) nanobeam and strong backward scattering exerted by the nanoparticle. For TE, incidence OTSs can be obtained at the frequency near the center of the photonic band gap. The transmissivity and the resonant frequency can be finely tuned by the dimension of nanoparticles. While for TM incidence OTSs are observed for relatively larger metallic nanoparticles compared with TE polarization. The differences between TE and TM polarization can be explained by two reasons. For one reason stronger backward scattering of nanoparticles for TE polarization can be achieved by the excitation of localized surface plasmon polariton of nanoparticles. This assumption has been proved by examining the scattering, absorption, and extinction cross section of the metallic nanoparticle. The other can be attributed to the deep and wide PBG available for TE polarization with less number of air holes compared with TM polarization. Our results show great promise in extending the application scope of OTSs from one-dimensional structures to practical integrated photonic devices and circuits.

  19. Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth

    PubMed Central

    Valenzuela, Carlos Díaz; Carriedo, Gabino A.; Valenzuela, María L.; Zúñiga, Luis; O'Dwyer, Colm

    2013-01-01

    Growing complex metallic crystals, supported high index facet nanocrystal composites and tunable porosity metals, and exploiting factors that influence shape and morphology is crucial in many exciting developments in chemistry, catalysis, biotechnology and nanoscience. Assembly, organization and ordered crystallization of nanostructures into complex shapes requires understanding of the building blocks and their association, and this relationship can define the many physical properties of crystals and their assemblies. Understanding crystal evolution pathways is required for controlled deposition onto surfaces. Here, complex metallic crystals on the nano- and microscale, carbon supported nanoparticles, and spinodal porous noble metals with defined inter-feature distances in 3D, are accomplished in the solid-state for Au, Ag, Pd, and Re. Bottom-up growth and positioning is possible through competitive coarsening of mobile nanoparticles and their site-specific crystallization in a nucleation-dewetted matrix. Shape evolution, density and growth mechanism of complex metallic crystals and porous metals can be imaged during growth. PMID:24026532

  20. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  1. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  2. Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal

    SciTech Connect

    Chandran, Senthilkumar; Jagan, R.; Paulraj, Rajesh; Ramasamy, P.

    2015-10-15

    Metal-organic bis(hydrogenmaleate)-Co(II) tetrahydrate single crystals have been grown by slow evaporation solution growth technique at room temperature. The crystal structure and the unit cell parameters were analyzed from the X-ray diffraction studies. Single-crystal X-ray diffraction analyses reveal that the grown crystal belongs to triclinic system with the space group P-1. Functional groups in bis(hydrogenmaleate)-Co(II) tetrahydrate were identified by Fourier transform infrared spectral analysis. The peak observed at 663 cm{sup −1} is assigned to the (Co–O) stretching vibrations. The optical transmission of the crystal was studied by UV–vis–NIR spectral analysis. The photoluminescence emission studies were carried out for the title compound in a wide wavelength range between 350 nm and 550 nm at 303 K. Mechanical strength was tested by Vickers microhardness test. The laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm. At various frequencies and temperatures the dielectric behavior of the material was investigated. Solid state parameters such as plasma energy, Penn gap, Fermi energy and electronic polarizability were evaluated. Photoconductivity measurements were carried out for the grown crystal in the presence of DC electric field at room temperature. Thermal stability and decomposition of the crystal were studied by TG–DTA. The weight loss of the title compound occurs in different steps. - Graphical abstract: Molecular structure of the bis(hydrogenmaleate)-Co(II) tetrahydrate drawn at 40% ellipsoid probability level. - Highlights: • Bis(hydrogenmaleate)-Co(II) tetrahydrate single crystal is grown by slow evaporation method. • Structural and optical properties were discussed. • The title complex crystal is thermally stable up to 91 °C. • Plasma energy, Fermi energy and electronic polarizability are evaluated. • It exhibits positive photoconductivity.

  3. Direct observation of solid-state reversed transformation from crystals to quasicrystals in a Mg alloy

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Fang; Yang, Zhi-Qing; Ye, Heng-Qiang

    2015-06-01

    Phase transformation of quasicrystals is of interest in various fields of science and technology. Interestingly, we directly observed unexpected solid-state epitaxial nucleation and growth of Zn6Mg3Y icosahedral quasicrystals in a Mg alloy at about 573 K which is about 300 K below the melting point of Zn6Mg3Y, in contrast to formation of quasicrystals through solidification that was usually found in many alloys. Maximizing local packing density of atoms associated with segregation of Y and Zn in Mg adjacent to Mg/Zn3MgY interfaces triggered atomic rearrangement in Mg to form icosahedra coupled epitaxially with surface distorted icosahedra of Zn3MgY, which plays a critical role in the nucleation of icosahedral clusters. A local Zn:Mg:Y ratio close to 6:3:1, corresponding to a valence electron concentration of about 2.15, should have been reached to trigger the formation of quasicrystals at Mg/Zn3MgY interfaces. The solid-state icosahedral ordering in crystals opens a new window for growing quasicrystals and understanding their atomic origin mechanisms. Epitaxial growth of quasicrystals onto crystals can modify the surface/interface structures and properties of crystalline materials.

  4. Crystal structure and orbital-singlet state of AgxVP2O7

    NASA Astrophysics Data System (ADS)

    Onoda, Masashige; Sakamoto, Takuma

    2014-12-01

    The crystal structure and electronic properties of AgxVP2O7 with a wide composition range of 0.7≤x≤1 synthesized newly are explored through measurements of X-ray four-circle diffraction, electrical resistivity, and magnetization. This system is monoclinic with space group P21/c and the lattice constants for x=1 are a=7.3358(3) Å, b=8.0235(3) Å, c=9.5782(5) Å, β=111.940(4)°, and V=522.93(5) Å3. The structure is described in terms of VO6 octahedra which are bridged with P2O7 groups to form a three-dimensional network with the hexagonal tunnels that a pair of Ag ions apparently resides in. The crystal field of V ions is intermediate and the electron configuration has the orbital-singlet ground state with a gap of the order of 10 K to the doublet state.

  5. Direct observation of solid-state reversed transformation from crystals to quasicrystals in a Mg alloy

    PubMed Central

    Liu, Jian-Fang; Yang, Zhi-Qing; Ye, Heng-Qiang

    2015-01-01

    Phase transformation of quasicrystals is of interest in various fields of science and technology. Interestingly, we directly observed unexpected solid-state epitaxial nucleation and growth of Zn 6 Mg 3 Y icosahedral quasicrystals in a Mg alloy at about 573 K which is about 300 K below the melting point of Zn 6 Mg 3 Y, in contrast to formation of quasicrystals through solidification that was usually found in many alloys. Maximizing local packing density of atoms associated with segregation of Y and Zn in Mg adjacent to Mg/Zn 3 MgY interfaces triggered atomic rearrangement in Mg to form icosahedra coupled epitaxially with surface distorted icosahedra of Zn 3 MgY, which plays a critical role in the nucleation of icosahedral clusters. A local Zn:Mg:Y ratio close to 6:3:1, corresponding to a valence electron concentration of about 2.15, should have been reached to trigger the formation of quasicrystals at Mg/Zn 3 MgY interfaces. The solid-state icosahedral ordering in crystals opens a new window for growing quasicrystals and understanding their atomic origin mechanisms. Epitaxial growth of quasicrystals onto crystals can modify the surface/interface structures and properties of crystalline materials. PMID:26066096

  6. Direct observation of solid-state reversed transformation from crystals to quasicrystals in a Mg alloy.

    PubMed

    Liu, Jian-Fang; Yang, Zhi-Qing; Ye, Heng-Qiang

    2015-01-01

    Phase transformation of quasicrystals is of interest in various fields of science and technology. Interestingly, we directly observed unexpected solid-state epitaxial nucleation and growth of Zn6Mg3Y icosahedral quasicrystals in a Mg alloy at about 573 K which is about 300 K below the melting point of Zn6Mg3Y, in contrast to formation of quasicrystals through solidification that was usually found in many alloys. Maximizing local packing density of atoms associated with segregation of Y and Zn in Mg adjacent to Mg/Zn3MgY interfaces triggered atomic rearrangement in Mg to form icosahedra coupled epitaxially with surface distorted icosahedra of Zn3MgY, which plays a critical role in the nucleation of icosahedral clusters. A local Zn:Mg:Y ratio close to 6:3:1, corresponding to a valence electron concentration of about 2.15, should have been reached to trigger the formation of quasicrystals at Mg/Zn3MgY interfaces. The solid-state icosahedral ordering in crystals opens a new window for growing quasicrystals and understanding their atomic origin mechanisms. Epitaxial growth of quasicrystals onto crystals can modify the surface/interface structures and properties of crystalline materials. PMID:26066096

  7. Crystal field and magnetism of Pr³⁺ and Nd³⁺ ions in orthorhombic perovskites.

    PubMed

    Novák, P; Knížek, K; Maryško, M; Jirák, Z; Kuneš, J

    2013-11-01

    Fifteen parameters characterizing the crystal field of rare-earth ions in the RMO3 perovskites (R=Pr, Nd, M=Ga, Co) are calculated using a first-principles electronic structure and the Wannier projection. The method contains a single adjustable parameter that characterizes the hybridization of R(4f) states with the states of oxygen ligands. Subsequently the energy levels and magnetic moments of the trivalent R ion are determined by diagonalization of an effective Hamiltonian which, besides the crystal field, contains the 4f electron-electron repulsion, spin-orbit coupling and interaction with magnetic field. In the Ga compounds the energy levels of the ground multiplet agree within a few meV with those determined experimentally by other authors. For all four compounds in question the temperature dependence of magnetic susceptibility is measured on polycrystalline samples and compared with the results of calculation. For NdGaO3 the theory is also compared with the magnetic measurements on a single crystal presented by Luis et al (1998 Phys. Rev. B 58 798). Good agreement between the experiment and theory is found. PMID:24113417

  8. Three-dimensional electric field visualization utilizing electric-field-induced second-harmonic generation in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, I.-Hsiu; Chu, Shi-Wei; Bresson, Francois; Tien, Ming-Chun; Shi, Jin-Wei; Sun, Chi-Kuang

    2003-08-01

    An electric-field-induced second-harmonic-generation signal in a nematic liquid crystal is used to map the electric field in an integrated-circuit-like sample. Since the electric-field-induced second-harmonic-generation signal intensity exhibits a strong dependence on the polarization of the incident laser beam, both the amplitude and the orientation of the electric field vectors can be measured. Combined with scanning second-harmonic-generation microscopy, three-dimensional electric field distribution can be easily visualized with high spatial resolution of the order of 1 μm.

  9. Field-induced confined states in graphene

    SciTech Connect

    Moriyama, Satoshi; Morita, Yoshifumi; Watanabe, Eiichiro; Tsuya, Daiju

    2014-02-03

    We report an approach to confine the carriers in single-layer graphene, which leads to quantum devices with field-induced quantum confinement. We demonstrated that the Coulomb-blockade effect evolves under a uniform magnetic field perpendicular to the graphene device. Our experimental results show that field-induced quantum dots are realized in graphene, and a quantum confinement-deconfinement transition is switched by the magnetic field.

  10. Spontaneous emission control of quantum dots embedded in photonic crystals: Effects of external fields and dimension

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Hashemi, H.

    2016-06-01

    In this paper simultaneous effects of external electric and magnetic fields and quantum confinement on the radiation properties of spherical quantum dot embedded in a photonic crystal are investigated. Under the influence of photonic band-gap, effects of external static fields and dot dimension on the amplitude and spectrum of different radiation fields emitted by the quantum dot are studied. Our results show the considerable effects of external fields and quantum confinement on the spontaneous emission of the system.

  11. Tuning the band structures of a one-dimensional width-modulated magnonic crystal by a transverse magnetic field

    SciTech Connect

    Di, K.; Lim, H. S. Zhang, V. L.; Ng, S. C.; Kuok, M. H.; Nguyen, H. T.; Cottam, M. G.

    2014-02-07

    Theoretical studies, based on three independent techniques, of the band structure of a one-dimensional width-modulated magnonic crystal under a transverse magnetic field are reported. The band diagram is found to display distinct behaviors when the transverse field is either larger or smaller than a critical value. The widths and center positions of bandgaps exhibit unusual non-monotonic and large field-tunability through tilting the direction of magnetization. Some bandgaps can be dynamically switched on and off by simply tuning the strength of such a static field. Finally, the impact of the lowered symmetry of the magnetic ground state on the spin-wave excitation efficiency of an oscillating magnetic field is discussed. Our finding reveals that the magnetization direction plays an important role in tailoring magnonic band structures and hence in the design of dynamic spin-wave switches.

  12. Monitoring of hydroxyapatite crystal formation using field-effect transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2016-04-01

    The biomineralization process of hydroxyapatite (HAp) in simulated body fluid (SBF) was monitored in realtime using extended-gate FETs whose gate electrode was modified with a variety of alkanethiol self-assembled monolayers (SAMs). It was found that the gate surface potential of the carboxyl- and amino-group-terminated SAM-coated gate FET was increased in SBF as HAp crystals grew on the gate surface. Moreover, in the carboxyl-group-terminated SAM-coated gate FET, the rate of increase and the shift of gate surface potential of the FET were found to depend on the concentration of calcium ions in the SBF. It was concluded that the process of HAp crystallization at a SAM-modified surface can be detected using FETs. Thus, a FET device that enables the easy detection of ionic charges in a real-time and label-free manner, will be useful for evaluating biomaterials based on biomineralization such as those in the bone regeneration process.

  13. Transferability of coarse-grained force field for nCB liquid crystal systems.

    PubMed

    Zhang, Jianguo; Guo, Hongxia

    2014-05-01

    In this paper, the transferability of the coarse-grained (CG) force field originally developed for the liquid crystal (LC) molecule 5CB ( Zhang et al. J. Phys. Chem. B 2012 , 116 , 2075 - 2089 ) was investigated by its homologues 6CB and 8CB molecules. Note that, to construct the 5CB CG force field, we combined the structure-based and thermodynamic quantities-based methods and at the same time attempted to use several fragment molecular systems to derive the CG nonbonded interaction parameters. The resultant 5CB CG force field exhibits a good transferability to some extent. For example, not only the experimental densities, the local packing of atom groups, and the antiparallel arrangements of nearest neighboring molecules, but also the unique LC mesophases as well as the nematic-isotropic phase transition temperatures of 6CB and 8CB were reproduced. Meanwhile, the limitations of this 5CB CG force field were also observed, such as the phase transition from nematic to smectic was postponed to the lower temperature and the resulting smectic phase structure is single-layer-like instead of partially interdigitated bilayer-like as observed in underlying atomistic model. Apparently, more attention should be paid when applying a CG force field to the state point which is quite different from which the force field is explicitly parametrized for. The origin of the above limitations can be potentially traced back to the inherent simplifications and some approximations often adopted in the creation process of CG force field, for example, choosing symmetric CG potentials which do not explicitly include electrostatic interactions and are parametrized by reproducing the target properties of the specific nematic 5CB phase at 300 K and 1 atm, as well as using soft nonbonded potential and excluding torsion barriers. Moreover, although by construction this CG force field could inevitably incorporate both thermodynamic and local structural information on the nematic 5CB phase, the

  14. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  15. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  16. Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2010-10-01

    Reducing the pixel dimensions of liquid crystal microdisplays in search of high resolution has a fundamental impact on their electro-optic behavior. The liquid crystal director orientation becomes distorted due to fringing fields and diffraction effects influence the optical characteristics of the device once the structure features approach the wavelength of the incident light. Three-dimensional finite element simulation of the liquid crystal dynamics with a variable order approach is combined with a full-vector beam propagation analysis to investigate how elasticity and diffraction limit the resolution as a function of the pixel size for transmissive and reflective architectures with vertical liquid crystal alignment. The key liquid crystal properties are considered and the importance of materials with high birefringence is confirmed for small pixel devices as these improve the contrast for a fixed pixel size.

  17. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  18. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  19. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  20. Electric field effects on phase transitions in the 8CB liquid crystal doped with ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Daoudi, A.; Segovia-Mera, A.; Dubois, F.; Legrand, C.; Douali, R.

    2016-06-01

    The influence of a low ac electric field on phase transitions is discussed in the case of a nematic liquid crystal 4 -n -octyl-4 '-cyanobiphenyl (8CB) doped with Sn2P2S6 ferroelectric nanoparticles. The phase-transition temperatures obtained from temperature-dependent dielectric measurements were higher than those determined by the calorimetric method. This difference is explained by the presence of the measuring electric field which induces two effects. The first one is the amplification of the interactions between the nanoparticle polarization and the liquid-crystal order parameter. The second one is the field-induced disaggregation or aggregation process at high nanoparticle concentrations.

  1. The Forum State of the Field Survey 2009

    ERIC Educational Resources Information Center

    Blessing, Charlotte; Rayner, Elise; Kreutzer, Kim

    2010-01-01

    In October/November 2009, the Forum on Education Abroad conducted its third State of the Field Survey. This survey provides an annual or biannual assessment of key education abroad issues and topics of interest to Forum members and the field of education abroad at large. Previous State of the Field surveys were conducted in 2006 and 2008. The 2009…

  2. Far-field detection system for laser beam and crystal alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Liu, Daizhong; Zhu, Baoqiang; Tang, Shunxing; Gao, Yanqi

    2016-03-01

    Laser beam far-field alignment as well as frequency-doubling and frequency-tripling crystal adjustment is very important for high-power laser facility. Separate systems for beam and crystal alignment are generally used while the proposed approach by off-axial grating sampling share common optics for these two functions, reducing both space and cost requirements. This detection system has been demonstrated on the National Laser Facility of Israel. The experimental results indicate that the average far-field alignment error is <5% of the spatial filter pinhole diameter, average autocollimation angle error of crystals is <10 μrad, and average frequency-tripling conversion efficiency is 69.3%, which meet the alignment system requirements on the beam direction and crystals.

  3. Heat transport in polymer-dispersed liquid crystals under electric field

    NASA Astrophysics Data System (ADS)

    Hadj Sahraoui, Abdelhak; Delenclos, Sylvain; Longuemart, Stéphane; Dadarlat, Dorin

    2011-08-01

    The concepts of effective thermal conductivity and interfacial thermal contact resistance in composite media are applied to study heat transport in polymer-dispersed liquid crystals (PDLC). In these systems, the thermal properties of liquid crystal inclusions are changed by an imposed electric field. The photopyroelectric (PPE) technique with a cell allowing the application of an electric field to the sample is used to measure the thermal parameters. A model based on effective medium approximation is used to assess the impact of interfaces on the flow of heat through the determination of the Kapitza radius. It was found that the effect of interfaces becomes dominant compared to the volume conduction of the droplet when the liquid crystal (LC) droplet radius becomes smaller than 1 micron. The comparison of the thermal behavior of LC in the droplets with that of bulk liquid crystal allowed to evaluate the effect of confinement on the LC nematic phase.

  4. Zn-67 Solid-State and Single-Crystal NMR Spectroscopy and X-ray Crystal Structure of Zinc Formate Dihydrate

    SciTech Connect

    Lipton, Andrew S.; Smith, Mark D.; Adams, Richard D.; Ellis, Paul D.

    2002-01-23

    The crystal structure, quadrupole coupling parameters, and the orientation of the electric field gradient tensors for each site of zinc formate hydrate have been determined. There are two district sites in the asymmetric unit; one containing four in plane waters with two bridging formats, the other containing six bridging formates. The solid state NMR lineshapes have been assigned to their respective sites using isotopic labeling and cross polarization methods. The hydrated site corresponds to the lineshape having a quadrupole coupling constant (Cq) of 9.6 MHzx and the anhydrous site has a Cq of 6.2 MHz. The absence of chemical shielding contributions to the observed lineshapes have been verified with a high field solid state NMR experiment performed at 18.8 T.

  5. Thickness-Dependent and Magnetic-Field-Driven Suppression of Antiferromagnetic Order in Thin V5S8 Single Crystals.

    PubMed

    Hardy, Will J; Yuan, Jiangtan; Guo, Hua; Zhou, Panpan; Lou, Jun; Natelson, Douglas

    2016-06-28

    With materials approaching the 2D limit yielding many exciting systems with intriguing physical properties and promising technological functionalities, understanding and engineering magnetic order in nanoscale, layered materials is generating keen interest. One such material is V5S8, a metal with an antiferromagnetic ground state below the Néel temperature TN ∼ 32 K and a prominent spin-flop signature in the magnetoresistance (MR) when H∥c ∼ 4.2 T. Here we study nanoscale-thickness single crystals of V5S8, focusing on temperatures close to TN and the evolution of material properties in response to systematic reduction in crystal thickness. Transport measurements just below TN reveal magnetic hysteresis that we ascribe to a metamagnetic transition, the first-order magnetic-field-driven breakdown of the ordered state. The reduction of crystal thickness to ∼10 nm coincides with systematic changes in the magnetic response: TN falls, implying that antiferromagnetism is suppressed; and while the spin-flop signature remains, the hysteresis disappears, implying that the metamagnetic transition becomes second order as the thickness approaches the 2D limit. This work demonstrates that single crystals of magnetic materials with nanometer thicknesses are promising systems for future studies of magnetism in reduced dimensionality and quantum phase transitions. PMID:27163511

  6. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.

    PubMed

    Pindelska, Edyta; Sokal, Agnieszka; Szeleszczuk, Lukasz; Pisklak, Dariusz Maciej; Kolodziejski, Waclaw

    2014-11-01

    In this work, three polycrystalline materials containing co-crystals of theophylline with malonic, maleic, and glutaric acids were studied using (13)C, (15)N and (1)H solid-state NMR and FT-IR spectroscopy. The NMR assignments were supported by gauge including projector augmented waves (GIPAW) calculations of chemical shielding, performed using X-ray determined geometry. The experimental (13)C cross polarization/magic angle spinning (CP/MAS) NMR results and the calculated isotropic chemical shifts were in excellent agreement. A rapid and convenient method for theophylline co-crystals crystal structure analysis has been proposed for co-crystals, which are potentially new APIs. PMID:25194346

  7. Angular dependences of the luminescence and density of photon states in a chiral liquid crystal

    SciTech Connect

    Umanskii, B A; Blinov, L M; Palto, S P

    2013-11-30

    Luminescence spectra of a laser dye-doped chiral liquid crystal have been studied in a wide range of angles (up to 60°) to the axis of its helical structure using a semicylindrical quartz prism, which made it possible to observe the shift and evolution of the photonic band gap in response to changes in angle. Using measured spectra and numerical simulation, we calculated the spectral distributions of the density of photon states in such a cholesteric crystal for polarised and unpolarised light, which characterise its structure as that of a chiral one-dimensional photonic crystal. (optics of liquid crystals)

  8. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  9. Internal bias field in triglycine sulphate crystals with L-, α-alanine grown at negative temperatures

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Ionova, E. V.; Kirichenko, A. P.; Bavykin, S. A.

    2010-09-01

    The dielectric and pyroelectric properties of triglycine sulphate (TGS) crystals with L, α-alanine impurities grown at negative temperatures have been investigated. It is shown that a lower impurity concentration (2 mol % in solution) in this temperature range leads to the formation of internal bias fields of the same order of magnitude (˜800 V/cm) as for TGS crystals grown at T ⩽ 50°C but with an L, α-alanine concentration of 20 mol % in solution.

  10. Application of a rotating magnetic field to semiconductor crystal growth in Space

    NASA Astrophysics Data System (ADS)

    Senchenkov, A. S.; Barmin, I. V.

    2003-12-01

    To eliminate the tremendous influence of the residual accelerations on homogeneity of the crystal growing in a space experiment, a rotating magnetic field (RMF) is used. A number of the experiments have been performed in space within the RMF both in the frame of the Russian national program and together with European scientists. In the paper some theoretical and experimental results illustrating the effectiveness of RMF application to crystal growth under microgravity conditions are presented. Tables 2, Figs 5, Refs 8.

  11. Nonlinear optical tuning of photonic crystal microcavities by near-field probe

    SciTech Connect

    Vignolini, Silvia; Zani, Margherita; Riboli, Francesco; Vinattieri, Anna; Wiersma, Diederik S.; Gurioli, Massimo; Intonti, Francesca; Balet, Laurent; Li, Lianhe; Colocci, Marcello; Francardi, Marco; Gerardino, Annamaria; Fiore, Andrea

    2008-07-14

    We report on a nonlinear way to control and tune the dielectric environment of photonic crystal microcavities exploiting the local heating induced by near-field laser excitation at different excitation powers. The temperature gradient due to the optical absorption results in an index of refraction gradient which modifies the dielectric surroundings of the cavity and shifts the optical modes. Reversible tuning can be obtained either by changing the excitation power density or by exciting in different points of the photonic crystal microcavity.

  12. Some Chemical and Electronic Considerations of Solid State Semiconductor Crystals.

    ERIC Educational Resources Information Center

    Hinitz, Herman J.

    1986-01-01

    Describes the trend toward the use of electronic instrumentation to monitor and measure various parameters in chemical reactions. Stresses that a knowledge of the operational relationships involved in such instruments is essential for students beginning in science. Discusses electrostatic charges, semiconductor crystals, electronic conductors,…

  13. Unsteady-state transfer of impurities during crystal growth of sucrose in sugarcane solutions

    NASA Astrophysics Data System (ADS)

    Martins, P. M.; Ferreira, A.; Polanco, S.; Rocha, F.; Damas, A. M.; Rein, P.

    2009-07-01

    In this work, we present growth rate data of sucrose crystals in the presence of impurities that can be used by both sugar technologists and crystal growth scientists. Growth rate curves measured in a pilot-scale evaporative crystallizer suggest a period of slow growth that follows the seeding of crystals into supersaturated technical solutions. The observed trend was enhanced by adding typical sugarcane impurities such as starch, fructose or dextran to the industrial syrups. Maximum growth rates of sucrose resulted at intermediate rather than high supersaturation levels in the presence of the additives. The effects of the additives on the sucrose solubility and sucrose mass transfer in solution were taken into account to explain the observed crystal growth kinetics. A novel mechanism was identified of unsteady-state adsorption of impurities at the crystal surface and their gradual replacement by the crystallizing solute towards the equilibrium occupation of the active sites for growth. Specifically designed crystallization experiments at controlled supersaturation confirmed this mechanism by showing increasing crystal growth rates with time until reaching a steady-state value for a given supersaturation level and impurity content.

  14. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  15. Giant Magnetic Field-induced Phase Transitions in Dimeric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Salili, Seyyed Muhammad; Salamonczyk, Miroslaw; Tamba, Maria-Gabriela; Sprunt, Samuel; Mehl, Georg; Jakli, Antal; Gleeson, James; Kent Group Collaboration; Hull Group Collaboration

    Liquid crystals are responsive to external fields such as electric, magnetic fields. The first experimental observation of dependence of isotropic to nematic phase transition on the applied magnetic field was done using a strong magnetic field on bent-core nematogens and the phase transition temperature exhibited an upshift of 0.7 C at B =30 T. We report on measurements of giant magnetic field-induced isotropic-nematic transition of chainsticks (nunchuks) type dimeric liquid crystals. Upon using the B =25 T split-helix resistive solenoid magnet at NHMFL, we have observed up to 18 C upshift of the isotropic to nematic phase transition temperature at B =22T. We discuss the results within the context of differential thermodynamic potential and the two basic mean-field theories. To our knowledge, this is the first observation of such huge shifts in the phase transitions of thermotropic liquid ctystals

  16. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  17. Teleportation of a Weak Coherent Cavity Field State

    NASA Astrophysics Data System (ADS)

    Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.

    2016-07-01

    In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.

  18. Teleportation of a Weak Coherent Cavity Field State

    NASA Astrophysics Data System (ADS)

    Cardoso, Wesley B.; Qiang, Wen-Chao; Avelar, Ardiley T.

    2016-02-01

    In this paper we propose a scheme to teleport a weak coherent cavity field state. The scheme relies on the resonant atom-field interaction inside a high-Q cavity. The mean photon-number of the cavity field is assumed much smaller than one, hence the field decay inside the cavity can be effectively suppressed.

  19. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    SciTech Connect

    Ouskova, Elena; Sio, Luciano De Vergara, Rafael; Tabiryan, Nelson; White, Timothy J.; Bunning, Timothy J.

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  20. Control of Convection by Dynamic Magnetic Fields for VB, FZ and THM Crystal Growth Application

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2000-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, a detailed one-dimensional planar TMF model has been developed and is presented.

  1. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  2. Entropy of Field Interacting With Two Atoms in Bell State

    NASA Astrophysics Data System (ADS)

    Jiao, Zhi-Yong; Ma, Jun-Mao; Li, Ning; Fu, Xia

    2009-01-01

    In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial states of the two atoms lead to different evolutions of field entropy and the intensity of the field plays an important role for the evolution properties of field entropy.

  3. Fabrication of specimens of metamorphic magnetite crystals for field ion microscopy and atom probe microanalysis.

    PubMed

    Kuhlman, K R; Martens, R L; Kelly, T F; Evans, N D; Miller, M K

    2001-10-01

    Field ion specimens have been successfully fabricated from samples of metamorphic magnetite crystals (Fe3O4) extracted from a polymetamorphosed, granulite-facies marble with the use of a focused ion beam. These magnetite crystals contain nanometer-scale, disk-shaped inclusions making this magnetite particularly attractive for investigating the capabilities of atom probe field ion microscopy (APFIM) for geological materials. Field ion microscope images of these magnetite crystals were obtained in which the observed size and morphology of the precipitates agree with previous results. Samples were analyzed in the energy compensated optical position-sensitive atom probe. Mass spectra were obtained in which peaks for singly ionized 16O, 56Fe and 56FeO and doubly ionized 54Fe, 56Fe and 57Fe peaks were fully resolved. Manganese and aluminum were observed in a limited analysis of a precipitate in an energy compensated position sensitive atom probe. PMID:11770743

  4. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  5. Crystal structure analysis of LiTaO3 under electric field

    NASA Astrophysics Data System (ADS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Iwata, Makoto; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-10-01

    Structural changes of a stoichiometric LiTaO3 single crystal accompanied by polarization switching are investigated using high-energy X-ray diffraction under static electric fields. The electric field dependence of the c-axis lattice constant depicts a small hysteresis and shows a butterfly curve. Inversion of the crystal structure accompanied by polarization switching is clearly detected with changes in the diffraction intensities of Friedel pairs. The electric field dependences of the atomic positions and volume ratio of the ferroelectric domains are obtained by crystal structure analyses. The results are fully consistent with the bulk properties and ensure that the present experimental techniques are applicable to detecting the transient atomic motions in the nucleation and growth of the ferroelectric domains during polarization switching.

  6. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  7. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  8. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín

    2009-02-01

    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  9. Progressive Transformation between Two Magnetic Ground States for One Crystal Structure of a Chiral Molecular Magnet.

    PubMed

    Li, Li; Nishihara, Sadafumi; Inoue, Katsuya; Kurmoo, Mohamedally

    2016-03-21

    We report the exceptional observation of two different magnetic ground states (MGS), spin glass (SG, T(B) = 7 K) and ferrimagnet (FI, T(C) = 18 K), for one crystal structure of [{Mn(II)(D/L-NH2ala)}3{Mn(III)(CN)6}]·3H2O obtained from [Mn(CN)6](3-) and D/L-aminoalanine, in contrast to one MGS for [{Mn(II)(L-NH2ala)}3{Cr(III)(CN)6}]·3H2O. They consist of three Mn(NH2ala) helical chains bridged by M(III)(CN)6 to give the framework with disordered water molecules in channels and between the M(III)(CN)6. Both MGS are characterized by a negative Weiss constant, bifurcation in ZFC-FC magnetizations, blocking of the moments, both components of the ac susceptibilities, and hysteresis. They differ in the critical temperatures, absolute magnetization for 5 Oe FC (lack of spontaneous magnetization for the SG), and the shapes of the hysteresis and coercive fields. While isotropic pressure increases both T(crit) and the magnetizations linearly and reversibly in each case, dehydration progressively transforms the FI into the SG as followed by concerted in situ magnetic measurements and single-crystal diffraction. The relative strengths of the two moderate Mn(III)-CN-Mn(II) antiferromagnetic (J1 and J2), the weak Mn(II)-OCO-Mn(II) (J3), and Dzyaloshinkii-Moriya antisymmetric (DM) interactions generate the two sets of characters. Examination of the bond lengths and angles for several crystals and their corresponding magnetic properties reveals a correlation between the distortion of Mn(III)(CN)6 and the MGS. SG is favored by higher magnetic anisotropy by less distorted Mn(III)(CN)6 in good accordance with the Mn-Cr system. This conclusion is also born out of the magnetization measurements on orientated single crystals with fields parallel and perpendicular to the unique c axis of the hexagonal space group. PMID:26893217

  10. Superoscillations underlying remote state preparation for relativistic fields

    NASA Astrophysics Data System (ADS)

    Ber, Ran; Kenneth, Oded; Reznik, Benni

    2015-05-01

    We present a physical (gedanken) implementation of a generalized remote state preparation of relativistic quantum field states for an arbitrary set of observers. The prepared states are created in regions that are outside the future light cone of the generating region. The mechanism, which is based on utilizing the vacuum state of a relativistic quantum field as a resource, sheds light on the well known Reeh-Schlieder theorem, indicating its strong connection with the mathematical phenomenon of superoscillations.

  11. Solid state crystal physics at very low temperatures

    NASA Technical Reports Server (NTRS)

    Davis, W.; Krack, K.; Richard, J. P.; Weber, J.

    1980-01-01

    The mechanical dissipation (Q) and resonant frequency of a 15 kg silicon crystal were measured at cryogenic temperatures. In the experiment described, temperature control was incorporated to reduce the time derivative of the temperature. The results of the Q measurements with and without this temperature control are quite different. Measurements of the resonant frequency of the fundamental longitudinal mode of the silicon crystal from 6 to 300 Kelvin are presented and discussed with respect to temperature, df/dT. It is observed that frequency increases as temperature decreases down to about 16 Kelvin, i.e. dt/dT is negative. However, below this temperature the frequency decreases as temperature decreases, i.e. dt/dT is positive. It is suggested that this behavior is related to the coefficient of thermal contraction of silicon, which changes sign at 18 Kelvin. Continuation of these experiments to 20 mK is discussed.

  12. Metal electrode dependent field effect transistors made of lanthanide ion-doped DNA crystals

    NASA Astrophysics Data System (ADS)

    Reddy Dugasani, Sreekantha; Hwang, Taehyun; Kim, Jang Ah; Gnapareddy, Bramaramba; Kim, Taesung; Park, Sung Ha

    2016-03-01

    We fabricated lanthanide ion (Ln3+, e.g. Dy3+, Er3+, Eu3+, and Gd3+)-doped self-assembled double-crossover (DX) DNA crystals grown on the surface of field effect transistors (FETs) containing either a Cr, Au, or Ni electrode. Here we demonstrate the metal electrode dependent FET characteristics as a function of various Ln3+. The drain-source current (I ds), controlled by the drain-source voltage (V ds) of Ln3+-doped DX DNA crystals with a Cr electrode on an FET, changed significantly under various gate voltages (V g) due to the relative closeness of the work function of Cr to the energy band gap of Ln3+-DNA crystals compared to those of Au and Ni. For Ln3+-DNA crystals on an FET with either a Cr or Ni electrode at a fixed V ds, I ds decreased with increasing V g ranging from  -2 to 0 V and from 0 to  +3 V in the positive and negative regions, respectively. By contrast, I ds for Ln3+-DNA crystals on an FET with Au decreased with increasing V g in only the positive region due to the greater electronegativity of Au. Furthermore, Ln3+-DNA crystals on an FET exhibited behaviour sensitive to V g due to the appreciable charge carriers generated from Ln3+. Finally, we address the resistivity and the mobility of Ln3+-DNA crystals on an FET with different metal electrodes obtained from I ds-V ds and I ds-V g curves. The resistivities of Ln3+-DNA crystals on FETs with Cr and Au electrodes were smaller than those of pristine DNA crystals on an FET, and the mobility of Ln3+-DNA crystals on an FET with Cr was relatively higher than that associated with other electrodes.

  13. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  14. A new real-time non-coherent to coherent light image converter - The hybrid field effect liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A.; Bleha, W.; Miller, L.; Fraas, L.; Boswell, D.; Myer, G.

    1975-01-01

    A new, high-performance device has been developed for application to real-time coherent optical data processing. The new device embodies a CdS photoconductor, a CdTe light-absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The noncoherent image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the ac voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state and the optical birefringence effect to create the bright on-state. The liquid crystal modulates the polarization of the coherent read-out light so an analyzer must be used to create an intensity modulated output beam.

  15. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942

  16. Photonic Crystals with a Reversibly Inducible and Erasable Defect State Using External Stimuli.

    PubMed

    Chen, Mao; Zhang, Yapeng; Jia, Siyu; Zhou, Lin; Guan, Ying; Zhang, Yongjun

    2015-08-01

    The controlled introduction of artificial extrinsic defects is critical to achieve the functions of photonic crystals. Smart defects capable of responding to external stimuli lead to more advanced applications. Here we report a microgel colloidal crystal with a defect state which could be induced and erased reversibly by external stimuli. The crystal was assembled from PNIPAM microgel and P(NIPAM-AAc) microgel of the same size. The resulting doped crystal does not exhibit a defect state in its stop band because of the similar optical properties of the dopant and the host. By increasing the pH value, however, the dopant P(NIPAM-AAc) spheres swell to a larger size and turn into real defects in the crystal, resulting in the appearance of defect state. Adjusting the pH value back restores the size of the dopant spheres, and thus erases the defect state. Temperature, a second external stimulus, could also be used to induce and erase defect states of the crystal. PMID:26102095

  17. Matched elastic constants for a perfect helical planar state and a fast switching time in chiral nematic liquid crystals.

    PubMed

    Yu, Meina; Zhou, Xiaochen; Jiang, Jinghua; Yang, Huai; Yang, Deng-Ke

    2016-05-11

    Chiral nematic liquid crystals possess a self-assembled helical structure and exhibit unique selective reflection in visible and infrared light regions. Their optical properties can be electrically tuned. The tuning involves the unwinding and restoring of the helical structure. We carried out an experimental study on the mechanism of the restoration of the helical structure. We constructed chiral nematic liquid crystals with variable elastic constants by doping bent-dimers and studied their impact on the restoration. With matched twist and bend elastic constants, the helical structure can be restored dramatically fast from the field-induced homeotropic state. Furthermore, defects can be eliminated to produce a perfect planar state which exhibits high selective reflection. PMID:27116620

  18. 3D mathematical model system for melt hydrodynamics in the silicon single crystal FZ-growth process with rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Lacis, K.; Muiznieks, A.; Ratnieks, G.

    2005-06-01

    A system of three-dimensional numerical models is described to analyse the melt hydrodynamics in the floating zone crystal growth by the needle-eye technique under a rotating magnetic field for the production of high quality silicon single crystals of large diameters big( 100dots 200 mm big). Since the pancake inductor has only one turn, the high frequency (HF) electromagnetic (EM) field and the distribution of heat sources and EM forces on the melt free surface have distinct asymmetric features. This asymmetry together with the displacement of the crystal and feed rod axis and crystal rotation manifests itself as three dimensional hydrodynamic, thermal and dopant concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as the so-called rotational striations. Additionally, the rotating magnetic field can be used to influence the melt hydrodynamics and to reduce the flow asymmetry. In the present 3D model system, the shape of the molten zone is obtained from symmetric FZ shape calculations. The asymmetric HF EM field is calculated by the 3D boundary element method. The low-frequency rotating magnetic field and a corresponding force density distribution in the melt are calculated by the 3D finite element method. The obtained asymmetric HF field power distribution on the free melt surface, the corresponding HF EM forces and force density of the rotating magnetic field are used for the coupled calculation of 3D steady-state hydrodynamic and temperature fields in the molten zone on a body fitted structured 3D grid by a commercial program package with a control volume approach. Beside the EM forces, also the buoyancy and Marangoni forces are considered. After HD calculations a corresponding 3D dopant concentration field is calculated and used to derive the variations resistivity in the grown crystal. The capability of the system of models is illustrated by a calculation example of a realistic FZ system

  19. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  20. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  1. Direct Measurement of Water States in Cryopreserved Cells Reveals Tolerance toward Ice Crystallization.

    PubMed

    Huebinger, Jan; Han, Hong-Mei; Hofnagel, Oliver; Vetter, Ingrid R; Bastiaens, Philippe I H; Grabenbauer, Markus

    2016-02-23

    Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth. PMID:26541066

  2. Resonant coherent excitation of Mg sup 11+ : Electronic collisions of state specified short-lived excited states in a crystal channel

    SciTech Connect

    Datz, S.; Dittner, P.F.; Gomez del Campo, J.; Krause, H.F.; Rosseel, T.M.; Vane, C.R. ); Iwata, I.; Komaki, I.; Kimura, M.; Yamazaki, Y. ); Fujimoto, F.; Honda, F. )

    1990-01-01

    Hydrogenic ions passing through axial and planar channels can be excited from n = 1 to n = 2 when the frequency of perturbation by the atoms in the crystal spaced a distance d apart comes into resonance with the spacing between eigenstates i and j {Delta}E{sub ij} = hK(v{sub i}/d) where K is a harmonic 1,2,3{hor ellipsis} of the (v{sub i}/d) frequency. The degeneracy in the n = 2 levels is removed; first by the assymetry in the crystal field and second by Stark mixing of 2s with 2p{sub x} which is caused by the wake field. Thus, the resonant frequency, and hence velocity, for excitation to 2p{sub x,y} is different than that for 2p{sub x} and they can be excited selectively. In the present work we used Mg{sup 11+}, where the n = 2 ionization cross section is small enough to permit escape of some of the excited ions from the crystal without being ionized by subsequent collisions and with the subsequent emission of radiation. Since we can excite different orientations of the ion selectively by varying the velocity we can measure the separate ionization cross sections for these states by determining the yields of totally stripped ions compared to those which emit a Ly {alpha} x-ray. A comparison of the two channels shows that the probability of escape from the crystal without ionizations is greater for ions in the 2p{sub x} state than those in the 2p{sub x,y} state. These RCE data and are presented as proof of principal for experiments which measure electron bombardment ionization cross sections for short lived excited states with specific polarization.

  3. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.

    PubMed

    Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A

    2014-12-01

    In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. PMID:25449316

  4. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    PubMed Central

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.

    2016-01-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal. PMID:27161600

  5. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, Žiga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muševič, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  6. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    NASA Astrophysics Data System (ADS)

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; da Como, Enrico; Hall, Simon R.

    2016-05-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.

  7. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  8. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.

    PubMed

    Śliwa, I; Jeżewski, W; Kuczyński, W

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples. PMID:26871130

  9. Pulsed field actuation of Ni-Mn-Ga ferromagnetic shape memory alloy single crystal

    NASA Astrophysics Data System (ADS)

    Marioni, M.; Bono, D.; Banful, A. B.; del Rosario, M.; Rodriguez, E.; Peterson, B. W.; Allen, S. M.; O'Handley, R. C.

    2003-10-01

    Ferromagnetic Shape Memory Alloy Ni-Mn-Ga has twin boundaries in the martensitic phase that move when a suitable magnetic field is applied. In this fashion strains of up to 6% have been observed for static fields in single crystals [1]. Recently 2.5% strain has been demonstrated [2] in Ni-Mn-Ga single crystals for oscillating fields up to frequencies of 75 Hz (150 Hz actuation). This work studies the actuation of single crystals when pulsed fields are applied. Fields in the 0.4-1.5MA/m-range were generated in an air coil with rise times of the order of 1ms and below. The elongation of the samples is measured with a light beam reflected off the tip of the crystal. Single twin boundaries have been observed to advance 0.16 mm during 600 μsec-ong pulses. Actuation has been shown to be possible at least up to frequencies of 1700 Hz.

  10. Investigation of Three-Dimensional Stress Fields and Slip Systems for FCC Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis

    2004-01-01

    Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.

  11. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  12. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  13. The Forum State of the Field Survey 2011

    ERIC Educational Resources Information Center

    Kreutzer, Kim

    2012-01-01

    In the summer of 2011, the Forum on Education Abroad conducted its fourth State of the Field Survey. This survey is an annual or biannual assessment of the very latest trends and issues in the field of education abroad. As in the past, questions on new topics have been combined with questions that have been asked on previous State of the Field…

  14. Fluoride-modified electrical properties of lead borate glasses and electrochemically induced crystallization in the glassy state

    SciTech Connect

    M'Peko, Jean-Claude; Souza, Jose E. de; Rojas, Seila S.; Hernandes, Antonio C.

    2008-02-15

    Lead fluoroborate glasses were prepared by the melt-quenching technique and characterized in terms of (micro)structural and electrical properties. The study was conducted on as prepared as well as temperature- and/or electric field-treated glass samples. The results show that, in the as-prepared glassy-state materials, electrical conductivity improved with increasing the PbF{sub 2} glass content. This result involves both an increase of the fluoride charge carrier density and, especially, a decrease of the activation energy from a glass structure expansion improving charge carrier mobility. Moreover, for the electric field-treated glass samples, surface crystallization was observed even below the glass transition temperature. As previously proposed in literature, and shown here, the occurrence of this phenomenon arose from an electrochemically induced redox reaction at the electrodes, followed by crystallite nucleation. Once nucleated, growth of {beta}-PbF{sub 2} crystallites, with the indication of incorporating reduced lead ions (Pb{sup +}), was both (micro)structurally and electrically detectable and analyzed. The overall crystallization-associated features observed here adapt well with the floppy-rigid model that has been proposed to further complete the original continuous-random-network model by Zachariasen for closely addressing not only glasses' structure but also crystallization mechanism. Finally, the crystallization-modified kinetic picture of the glasses' electrical properties, through application of polarization/depolarization measurements originally combined with impedance spectroscopy, was extensively explored.

  15. Field-linked states of ultracold polar molecules

    SciTech Connect

    Avdeenkov, A.V.; Bortolotti, D.C.E.; Bohn, J.L.

    2004-01-01

    We explore the character of a novel set of 'field-linked' states that were predicted by Avdeenkov and Bohn [Phys. Rev. Lett. 90, 043006 (2003)]. These states exist at ultralow temperatures in the presence of an electrostatic field, and their properties are strongly dependent on the field's strength. We clarify the nature of these quasibound states by constructing their wave functions and determining their approximate quantum numbers. As the properties of field-linked states are strongly defined by anisotropic dipolar and Stark interactions, we construct adiabatic surfaces as functions of both the intermolecular distance and the angle that the intermolecular axis makes with the electric field. Within an adiabatic approximation we solve the two-dimensional Schroedinger equation to find bound states, whose energies correlate well with resonance features found in fully converged multichannel scattering calculations.

  16. Quantum dynamics of charge state in silicon field evaporation

    NASA Astrophysics Data System (ADS)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki

    2016-08-01

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to the ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.

  17. Phase Operator and Phase State in Thermo Field Dynamics

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Jiang, Nian-Quan

    We extend the Susskind-Glogower phase operator and phase state in quantum optics to thermo field dynamics (TFD). Based on the thermo entangled state representation, we introduce thermo excitation and de-excitation operators with which the phase operator and phase state in TFD can be constructed. The phase state treated as a limiting case of a new SU(1, 1) coherent states is also exhibited.

  18. Thermoelectric Magnetohydrodynamic Flow During Crystal Growth with a Moderate or Weak Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Y. Y.; Walker, John S.; Szofran, Frank R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This paper treats a steady, axisymmetric melt motion in a cylindrical ampoule with a uniform, axial magnetic field and with an electric current due to a radial temperature variation along the crystal-melt interface, where the values of the absolute thermoelectric power for the crystal and melt are different. The radial component of the thermoelectric current in the melt produces an azimuthal body force, and the axial variation of the centrifugal force due to the azimuthal motion drives a meridional circulation with radial and axial velocities. For moderate magnetic field strengths, the azimuthal velocity and magnetic field produce a radial induced electric field which partially cancels the Seebeck electromotive force in the melt, so that the thermoelectric current and the melt motion are coupled. For weak magnetic fields, the thermoelectric current is decoupled from the melt motion, which is an ordinary hydrodynamic flow driven by a known azimuthal body force. The results show how the flow varies with the strength of the magnetic field and with the magnitude of the temperature variation along the crystal-melt interface. They also define the parameter ranges for which the simpler weak-field decoupled analysis gives accurate predictions.

  19. Two-prism crystal structures for far-field imaging of subwavelength features at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Barros, D. A.; Dumelow, T.

    2016-08-01

    We investigate how a system of two single crystals can be used for far field imaging of subwavelength features. We make use of the phonon response to induce canalization of narrow collimated beams in crystals with suitably high anisotropy at the appropriate transverse optical phonon frequency. By cutting the crystals into suitably designed prisms, we show that an magnified image can be obtained and projected into the far field by a two-prism structure, noting that a single prism does not give a faithful reproduction of the object and will usually result in total internal reflection of most of the radiation. We show simulations using triglycine sulphate, which is both highly anisotropic and has very low absorption, at low temperature.

  20. Crystal field effect on EPR and optical absorption properties of natural green zoisite.

    PubMed

    Javier-Ccallata, Henry; Watanabe, Shigueo

    2013-03-01

    In this study the electron paramagnetic resonance (EPR) and optical absorption (OA) of natural crystal of zoisite were investigated after γ ((60)Co) irradiation and high temperature annealing. EPR measurements show that the zoisite from Tefilo Otoni MG Brazil contain Cr(3+), Fe(3+) and Mn(2+) ions and occupy distorted Al(3+) octahedral and tetrahedral sites which are subjected to the action of a strong crystal field in axial direction. Absorption bands which in principle give rise to sets of EPR lines between 500 and 2500 G were found using the deconvolution method. The application of high doses of gamma ray and high temperature annealing has shown no significant effects on EPR and OA spectra. Spin-allowed, spin-forbidden and crystal field parameters were calculated for 3d(3) configuration and interpreted using the spin Hamiltonian formalism containing axial and rhombic terms in low symmetries. PMID:23291113

  1. Ground-state zero-field splitting for the Fe3+ ion in a cubic field

    NASA Astrophysics Data System (ADS)

    Xiao-Yu, Kuang; Zhong-Hou, Chen

    1987-07-01

    At present the parameter a of the Fe3+ ion in a crystal has still not been determined. In this paper we discuss this problem by diagonalizing the complete matrices for a ligand-field spin-orbit-coupling perturbation. The results obtained are in good agreement with experimental findings. Furthermore, possible resonances for the difference between our results and previous ones are given.

  2. Equation of state and stability of metal crystals at high pressure by DFT calculations

    NASA Astrophysics Data System (ADS)

    Minakov, Dmitry; Levashov, Pavel

    2013-06-01

    In this work we present ab initio equation-of-state calculations for crystals of some metals. Density functional theory at finite temperature (VASP code) is used to obatin the properties of electrons; lattice is simulated in quasi-harmonic approximation at non-zero temperature of electrons. Anharmonic effects are taken into account by the thermal expansion of a crystal. All calculations were performed for aluminum, copper and gold. We compare our results with available shock-wave data in crystal phase, including isentropic expansion. The melting curves are calculated by different criteria; the effect of different temperatures of electrons and ions is taken into account. Also we determine thermodynamic and kinetic boundaries of stability of crystals. Our calculations demonstrate that ab initio approaches can be used to theoretically reconstruct thermodynamically complete EOS of metallic crystals. This work was supported by RFBR grant 12-08-31475 mol a.

  3. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  4. Crystallization of spin superlattices with pressure and field in the layered magnet SrCu2(BO3)2

    DOE PAGESBeta

    Haravifard, S.; Graf, D.; Feiguin, A. E.; Batista, C. D.; Lang, J. C.; Silevitch, D. M.; Srajer, G.; Gaulin, B. D.; Dabkowska, H. A.; Rosenbaum, T. F.

    2016-06-20

    An exact mapping between quantum spins and boson gases provides fresh approaches to the creation of quantum condensates and crystals. Here we report on magnetization measurements on the dimerized quantum magnet SrCu2(BO3)2 at cryogenic temperatures and through a quantum-phase transition that demonstrate the emergence of fractionally filled bosonic crystals in mesoscopic patterns, specified by a sequence of magnetization plateaus. We apply tens of Teslas of magnetic field to tune the density of bosons and gigapascals of hydrostatic pressure to regulate the underlying interactions. Simulations help parse the balance between energy and geometry in the emergent spin superlattices. In conclusion, themore » magnetic crystallites are the end result of a progression from a direct product of singlet states in each short dimer at zero field to preferred filling fractions of spin-triplet bosons in each dimer at large magnetic field, enriching the known possibilities for collective states in both quantum spin and atomic systems.« less

  5. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution

    NASA Astrophysics Data System (ADS)

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-03-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  6. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution.

    PubMed

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-12-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell. PMID:26932759

  7. Fringing field-induced monodomain of a polymer-stabilized blue phase liquid crystal

    NASA Astrophysics Data System (ADS)

    Li, Wei-Huan; Hu, De-Chun; Li, Yan; Chen, Chao Ping; Lee, Yung-Jui; Lien, Alan; Lu, Jian-Gang; Su, Yikai

    2015-12-01

    The influence of fringe electric field applied during photopolymerization on the electro-optic properties of polymer-stabilized blue phase liquid crystals (PS-BPLCs) was investigated. It has been found that the thermal stability would not degrade if the electric field was less than a critical value. The contrast ratio of PS-BPLC can be improved significantly because the uniformity of blue phase liquid crystal domain was enhanced by the electric fields, which were applied during photopolymerization. Meanwhile, with the electric filed, the potential energy of the BPLC molecules may lower the anchoring energy of the polymer network resulting in the improvement of electro-optic response properties. With optimized electric field during polymerization, the contrast ratio and the Kerr constant of PS-BPLC can be improved by 4.1 times and 15%, respectively, and the hysteresis can be decreased by 10%, while the response time and residual birefringence have no degradation.

  8. Tuning the colloidal crystal structure of magnetic particles by external field.

    PubMed

    Pal, Antara; Malik, Vikash; He, Le; Erné, Ben H; Yin, Yadong; Kegel, Willem K; Petukhov, Andrei V

    2015-02-01

    Manipulation of the self-assembly of magnetic colloidal particles by an externally applied magnetic field paves a way toward developing novel stimuli responsive photonic structures. Using microradian X-ray scattering technique we have investigated the different crystal structures exhibited by self-assembly of core-shell magnetite/silica nanoparticles. An external magnetic field was employed to tune the colloidal crystallization. We find that the equilibrium structure in absence of the field is random hexagonal close-packed (RHCP) one. External field drives the self-assembly toward a body-centered tetragonal (BCT) structure. Our findings are in good agreement with simulation results on the assembly of these particles. PMID:25510837

  9. Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ke, M.; Qiu, C.; Liu, Z.

    2016-06-01

    We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.

  10. Synthesis and field emission behaviour of well faceted In2Se3 micro-crystals

    NASA Astrophysics Data System (ADS)

    Kolhe, Panakj S.; Suryawanshi, Sachin R.; Shisode, Raju T.; More, Mahendra A.

    2015-06-01

    Here in, we report synthesis of crystalline Indium Selenide (In2Se3) elegant microcrystals on Au coated Si substrates using one-step facile thermal evaporation route and their field emission investigations. The as-synthesized In2Se3 micro-crystals were subjected to structural and morphological analysis prior to the field emission studies. The XRD spectrum of the as-synthesized product reveals formation of crystalline hexagonal phase of In2Se3 under the prevailing experimental conditions. Under optimized process variables, the morphology of the as-synthesized product is characterized by presence of well facetted micron size particles of In2Se3. Furthermore, the EDAX analysis confirms the presence of In and Se in the as-synthesized sample. The field emission characteristic of the In2Se3 micro-crystal emitter is found to be superior to the other metal chalcogenides micro-crystal based emitters. The synthesized In2Se3 micro-crystals emitter delivers current density of ˜ 225 µA/cm2 at an applied electric field of ˜ 7.44 V/µm. The emission current stability investigated at pre-set value of ˜ 3 µA is observed to be fairly good. These observed results demonstrate potential of the In2Se3 cathode as an electron source for practical applications in vacuum microelectronic devices.

  11. Double perovskite structure: a vibrational and luminescence investigation providing a perspective on crystal field strength.

    PubMed

    Li, Wenyu; Ning, Lixin; Tanner, Peter A

    2012-07-12

    The luminescence spectra of Eu(3+) doped in a series of double perovskite lattices Ba(2)LnMO(6) (Ln = Y, Gd; M = Nb, Ta) have been recorded at room temperature and 10 K. Together with FT-IR and FT-Raman spectra and aided by DFT vibrational energy calculations, assignments have been made for the crystal field levels of the (5)D(J) (J = 0,1) and (7)F(J) (J = 0-2) multiplets. The luminescence spectra are consistent with monoclinic symmetry of these systems. The crystal field parameters from the fitting of the energy level data set of Ba(2)YNbO(6):Eu(3+) enable the crystal field strength to be calculated, and the order of magnitude is Cl(-) < O(2-) < F(-) for the EuX(6)(n-) (n = 6 for halogen, 9 for oxide) moieties. For these systems, an empirical linear relationship between crystal field strength and electronegativity of ligand X has been found. By contrast, the nephelauxetic series from the depression of the Slater parameter F(2) is Cl(-) ≈ O(2-) > F(-) > free ion for these systems. PMID:22703165

  12. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    ERIC Educational Resources Information Center

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  13. Extrinsic optical recombination in pentacene single crystals: Evidence of gap states

    NASA Astrophysics Data System (ADS)

    He, Rui; Chi, X.; Pinczuk, Aron; Lang, D. V.; Ramirez, A. P.

    2005-11-01

    Two luminescence bands observed in pentacene single crystals with different degrees of purity are identified as due to extrinsic optical emissions. A band at 1.49 eV remains in the crystal with the highest purity. Its redshift of about 0.3 eV from the free exciton optical recombination suggests that the extrinsic transitions could involve gap states recently discovered in pentacene transistors. Absence of resonance Raman scattering when photon energies overlap the extrinsic recombination suggests that the gap states are likely due to impurities. The temperature dependence of luminescence intensities is interpreted by activated decay of excitons to radiative and nonradiative states.

  14. Direct detection of density of gap states in C60 single crystals by photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bussolotti, Fabio; Yang, Janpeng; Hiramoto, Masahiro; Kaji, Toshihiko; Kera, Satoshi; Ueno, Nobuo

    2015-09-01

    We report on the direct and quantitative evaluation of density of gap states (DOGS) in large-size C60 single crystals by using ultralow-background, high-sensitivity ultraviolet photoemission spectroscopy. The charging of the crystals during photoionization was overcome using photoconduction induced by simultaneous laser irradiation. By comparison with the spectra of as-deposited and gas exposed C60 thin films the following results were found: (i) The DOGS near the highest occupied molecular orbital edge in the C60 single crystals (1019-1021states e V-1c m-3) mainly originates from the exposure to inert and ambient gas atmosphere during the sample preparation, storage, and transfer; (ii) the contribution of other sources of gap states such as structural imperfections at grain boundaries is negligible (<1018states e V-1c m-3) .

  15. Measurement of temperature and velocity fields of freezing water using liquid crystal tracers

    NASA Astrophysics Data System (ADS)

    Kowalewski, Tomasz A.

    A new experimental technique based on a computational analysis of the colour and displacement of thermochromic liquid crystal tracers was applied to determine both the temperature and velocity fields of freezing water. The technique combines Digital Particle Image Thermometry and Digital Particle Image Velocimetry. Full 2-D temperature and velocity fields are determined from a pair or a longer sequence, of colour images taken for the selected cross-section of the flow.

  16. Electric-field modulation of liquid crystal structures in contact with structured surfactant monolayers.

    PubMed

    Guillamat, Pau; Sagués, Francesc; Ignés-Mullol, Jordi

    2014-05-01

    We present experiments in which we use an electric field to switch between different configurations in the cellular patterns induced in a confined nematic liquid crystal by the contact with a surfactant monolayer that features lateral order and surface defects. By using different combinations of far-field alignment and mesogen dielectric anisotropy, we unravel the nature and stability of point defects and disclinations resulting from the hybrid boundary conditions. PMID:25353818

  17. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  18. Crystal-field analysis and calculation of two-photon absorption line strengths of dicesium sodium hexachlorogadolinate(III).

    PubMed

    Duan, Chang-Kui; Tanner, Peter A

    2010-03-31

    The crystal-field energy level calculation of the 4f(7) ion Gd(3+) in the crystal Cs(2)NaGdCl(6) has fitted 45 levels with standard deviation 12 cm(-1), with the energy parameters being consistent with those from other studies. The resulting eigenvectors have been employed in the calculation of two-photon absorption (TPA) intensities of transitions from the electronic ground state (8)S(7/2) to the crystal-field levels of excited (6)P, (6)I and (6)D multiplet terms. The TPA line strengths are highly polarization dependent and exhibit striking differences for linearly polarized incident radiation compared with circularly polarized radiation. The relative intensities are compared with those available from previous experimental studies and some reassignments have been made. Good agreement of calculated and experimental TPA spectra is found, except for the intensity ratio of the transitions to (6)P(7/2) or (6)P(5/2) compared with that to (6)P(3/2), for linear and circular polarizations, where the calculation overestimates the ratio. Reasons for this disagreement are presented. PMID:21389490

  19. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air

    NASA Astrophysics Data System (ADS)

    He, Tao; Stolte, Matthias; Burschka, Christian; Hansen, Nis Hauke; Musiol, Thomas; Kälblein, Daniel; Pflaum, Jens; Tao, Xutang; Brill, Jochen; Würthner, Frank

    2015-01-01

    Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (β-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (α-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm2 V-1 s-1 (α-phase) and up to 3.5 cm2 V-1 s-1 (β-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on β-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm2 V-1 s-1. The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps.

  20. Uniaxial crystal growth in thin film by utilizing supercooled state of mesogenic phthalocyanine

    NASA Astrophysics Data System (ADS)

    Fiderana Ramananarivo, Mihary; Higashi, Takuya; Ohmori, Masashi; Sudoh, Koichi; Fujii, Akihiko; Ozaki, Masanori

    2016-06-01

    A method of uniaxial crystal growth in wet-processed thin films of the mesogenic phthalocyanine 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) is proposed. It consists of applying geometrically linear thermal stimulation to a supercooled state of liquid crystalline C6PcH2. The thin film showed highly ordered molecular stacking structure and uniaxial alignment over a macroscopic scale. An explanation of the crystal growth mechanism is suggested by taking into account the temperature range of crystal growth and the hysteresis property of C6PcH2 in the phase transition.

  1. Paramagnetic Meissner effect at high fields in YCaBaCuO single crystal and melt-textured YBaCuO

    NASA Astrophysics Data System (ADS)

    Dias, F. T.; Vieira, V. N.; de Almeida, M. L.; Falck, A. L.; Pureur, P.; Pimentel, J. L.; Obradors, X.

    2010-12-01

    We report on systematic field-cooled magnetization experiments in an Y0.98Ca0.02Ba2Cu3O7-δ single crystal and melt-textured YBa2Cu3O7-δ samples. Magnetic fields up to 50 kOe were applied and a paramagnetic response related to the superconducting state was observed. We discuss our results in terms of the flux compression scenario into the sample.

  2. Imaging Modulated Reflections from a Semi-Crystalline State of Profilin:Actin Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Bellamy, H.; Snell, E. H.; Borgstahl, G.

    2003-01-01

    Commensurate and incommensurate modulation in protein crystals remain terra incognita for crystallographers. While small molecule crystallographers have successfully wrestled with this type of structure, no modulated macromolecular structures have been determined to date. In this work, methods and strategies have been developed to collect and analyze data from modulated macromolecular crystals. Preliminary data using these methods are presented for a semi-crystalline state of profilin:actin.

  3. Crystal fields in YbInNi4 determined with magnetic form factor and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Severing, A.; Givord, F.; Boucherle, J.-X.; Willers, T.; Rotter, M.; Fisk, Z.; Bianchi, A.; Fernandez-Diaz, M. T.; Stunault, A.; Rainford, B. D.; Taylor, J.; Goremychkin, E.

    2011-04-01

    The magnetic form factor of YbInNi4 has been determined via the flipping ratios R with polarized neutron diffraction, and the scattering function S(Q,ω) was measured in an inelastic neutron scattering experiment. Both experiments were performed with the aim of determining the crystal-field scheme. The magnetic form factor clearly excludes the possibility of a Γ7 doublet as the ground state. The inelastic neutron data exhibit two almost equally strong peaks at 3.2 meV and 4.4 meV which points, in agreement with earlier neutron data, toward a Γ8 quartet ground state. Further possibilities such as a quasiquartet ground state are discussed.

  4. Far-field detection system for laser beams alignment and crystals alignment

    NASA Astrophysics Data System (ADS)

    Liu, D.; Qin, H.; Zhu, B.

    2015-08-01

    Laser beams far-field alignment is very important for the high power laser facility as well as the frequency doubling crystals adjustment. Traditional beams alignment system and crystals alignment system are separated. That means, they use different optical image systems and CCD cameras, which will occupy larger space and use more money. A new farfield detection system of laser beams is presented with a big diffraction grating (37mm*37mm), a set of optical imaging components and a high resolution CCD camera. This detection system, which is fully demonstrated on the National Laser Facility of Israel, can align high power laser facility beams' direction as well as the frequency doubling crystals. The new system occupies small space in the spatial filter through off-axial grating sampling. The experimental results indicate that the average far-field alignment error is less than 5% of spatial filter pinhole diameter, and the average crystals' matching angle error is less than 10urad, which meet the alignment system requirements for beams and crystals.

  5. Anisotropic physical properties of PrRhAl4Si2 single crystal: A non-magnetic singlet ground state compound

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Kulkarni, R.; Thamizhavel, A.; Dhar, S. K.

    2016-08-01

    We have grown the single crystal of PrRhAl4Si2, which crystallizes in the tetragonal crystal structure. From the low temperature physical property measurements like, magnetic susceptibility, magnetization, heat capacity and electrical resistivity, we found that this compound does not show any magnetic ordering down to 70 mK. Our crystal field calculations on the magnetic susceptibility and specific heat measurements reveal that the 9-fold degenerate (2 J + 1) levels of Pr atom in PrRhAl4Si2 split into 7 levels, with a singlet ground state and a well-separated excited doublet state at 123 K, with a overall level splitting energy of 320 K.

  6. Quasiequilibrium states in thermotropic liquid crystals studied by multiple-quantum NMR

    NASA Astrophysics Data System (ADS)

    Buljubasich, L.; Monti, G. A.; Acosta, R. H.; Bonin, C. J.; González, C. E.; Zamar, R. C.

    2009-01-01

    Previous work showed that by means of the Jeener-Broekaert (JB) experiment, two quasiequilibrium states can be selectively prepared in the proton spin system of thermotropic nematic liquid crystals (LCs) in a strong magnetic field. The similarity of the experimental results obtained in a variety of LC in a broad Larmor frequency range, with crystal hydrates, supports the assumption that also in LC the two spin reservoirs, into which the Zeeman order is transferred, originate in the dipolar energy and that they are associated with a separation in energy scales: A constant of motion related to the stronger dipolar interactions (S), and a second one (W) corresponding to the secular part of the weaker dipolar interactions with regard to the Zeeman and the strong dipolar part. We study the nature of these quasi-invariants in nematic 5CB (4'-pentyl-4-biphenyl-carbonitrile) and measure their relaxation times by encoding the multiple-quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X. The experiments were also performed in powder adamantane at 301K which is used as a reference compound having only one dipolar quasi-invariant. We show that the evolution of the quantum states during the buildup of the quasiequilibrium state in 5CB prepared under the S condition is similar to the case of powder adamantane and that their quasiequilibrium density operators have the same tensor structure. In contrast, the second constant of motion, whose explicit operator form is not known, involves a richer composition of multiple-quantum coherences of even order on the X basis, in consistency with the truncation inherent in its definition. We exploited the exclusive presence of coherences of ±4,±6,±8, besides 0 and ±2 under the W condition to measure the spin-lattice relaxation time TW accurately, so avoiding experimental difficulties that usually impair dipolar order relaxation measurement such as Zeeman contamination at high fields and also

  7. Defining the Magnetic Field of the Early Earth Through Rock Magnetic and Paleomagnetic Analyses of Single Silicate Crystals

    NASA Astrophysics Data System (ADS)

    Bauch, D. G.; Tarduno, J. A.; Cottrell, R. D.; Watkeys, M. K.

    2005-12-01

    The current uncertainty on the age of the inner core, and its role in the geodynamo, highlights the need for improved paleomagnetic constraints based on Proterozoic to Archean-age rocks. However, most of the rocks available for sampling have seen low-grade metamorphic conditions; extreme care is needed in selecting suitable samples, conducting rock magnetic and paleomagnetic analyses, and interpreting the results. David Dunlop's many contributions in rock magnetism, from efforts to understand the time-temperature characteristics crucial for the preservation of magnetizations, to more recent work defining the domain state and recording characteristics of mafic minerals separated from dikes, have greatly assisted our efforts to learn more about the early magnetic field. Here we present new rock magnetic, paleomagnetic and paleointensity data from single silicate crystals separated from plutonic rocks of the Kaapvaal Craton of southern Africa. Magnetic hysteresis data demonstrates that different silicate minerals from these rocks have magnetic inclusions with vastly different magnetic domain states, suggesting that their potential to preserve primary magnetizations should vary considerably. In particular hornblende carries multidomain inclusions, whereas quartz and microcline have single to pseudo-single domain inclusions. Warming of an SIRM acquired at low temperatures (data acquired using the MPMS at the IRM) shows the Verwey transition for quartz and microcline crystals, indicating the presence of magnetite. We also will present joint paleomagnetic and paleointensity data derived from oriented crystals obtained using a stepwise CO2 laser heating approach, and field tests of the age of magnetization. These analyses will be used to discuss the strength of the mid-Archean field (3.0-3.6 Ga), its geometry and variation, and the implications for magnetic shielding in the early Earth.

  8. Bistatic radar sea state monitoring field test

    NASA Technical Reports Server (NTRS)

    Ruck, G. T.; Kirchbaum, G. K.; Everly, J. O.

    1975-01-01

    Recent advances in understanding the physical phenomena controlling the interaction of electromagnetic energy with the ocean surface have revealed the possiblity of remote measurement of the two-dimensional surface wave height spectrum of the ocean using bistatic radar techniques. The basic feasibility of such a technique operating at frequencies in the HF region (3 to 30 MHz) was examined during previous studies and hardware for an experimental verification experiment was specified. The activities have resulted in a determination of the required hardware and system parameters for both satellite and aircraft systems, the development, assembly, and testing of hardware for an experimental aircraft system, the development and initial testing of data processing procedures, and the conduct of an initial flight test experiment. Activities were devoted to completing the assembly and testing of the experimental hardware, completing the experiment planning, conducting a field test experiment, and the processing and analysis of the experimental data. Even though directional spectrum maps of the test area cannot be generated from the measured data, the hardware concept employed appears viable, and solutions to the problems encountered have been identified.

  9. Self-Action of Light Fields in Waveguide Photon Structures Based on Electro-Optic Crystals

    NASA Astrophysics Data System (ADS)

    Shandarov, V. M.

    2016-02-01

    Special features of spatial self-action of light fields in nonlinear optical photonic waveguide structures formed in strontium barium niobate and lithium niobate electro-optic crystals are discussed. The main methods of forming such structures including photorefractive waveguide elements and systems are briefly considered. The formation of spatial optical solitons in planar waveguides based on lithium niobate and strontium barium niobate crystals as well as in one-dimensional photonic lattices in lithium niobate is demonstrated experimentally for light beams of microwatt power. In regimes of spatial optical solitons, channel optical waveguides are formed not only in the planar waveguides, but also in the volume of photorefractive lithium niobate.

  10. Strong-Field Photoionization as Excited-State Tunneling.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2016-03-25

    We show that, in an intense laser field, ultrafast photoionization can occur through quantum pathways that cannot be categorized as multiphoton ionization or ground-state tunneling. In this regime, the subcycle electron-wave-packet dynamics leading to photoionization occurs via electron excited states, from where the electrons tunnel to the continuum within a tiny fraction of the field cycle. For high field intensities, this ionization pathway is shown to drastically enhance the dynamic leakage of the electron wave packet into the continuum, opening an ionization channel that dominates over ground-state electron tunneling. PMID:27058079

  11. Strong-Field Photoionization as Excited-State Tunneling

    NASA Astrophysics Data System (ADS)

    Serebryannikov, E. E.; Zheltikov, A. M.

    2016-03-01

    We show that, in an intense laser field, ultrafast photoionization can occur through quantum pathways that cannot be categorized as multiphoton ionization or ground-state tunneling. In this regime, the subcycle electron-wave-packet dynamics leading to photoionization occurs via electron excited states, from where the electrons tunnel to the continuum within a tiny fraction of the field cycle. For high field intensities, this ionization pathway is shown to drastically enhance the dynamic leakage of the electron wave packet into the continuum, opening an ionization channel that dominates over ground-state electron tunneling.

  12. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  13. Electric field effects in nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Moţoc, Cornelia

    2013-12-01

    The aim of this paper was to investigate electric field induced effects in mixtures of nematic liquid crystals (NLCs) with positive electric anisotropies (MCL 6601 Merck) with carbon nanotubes (MWCNT from Aldrich). In planar alignment, the current-electric field dependence and the current-temperature dependence were explained by assuming a Poole-Frenkel effect (i.e. a tunnelling mechanism) and good agreement with the experimental data was obtained. Within this high field range it resulted that in planar aligned NLC-CNTs mixture the conductivity decreases when the temperature was increased. In homeotropic aligned mixture, the conduction mechanism is similar to the one occurring in a semiconductor: the conductivity increases when increasing temperature. This happens because in thin liquid crystal cells there is a possibility to realize an inner contact between nanotubes and electrodes so the mixture behaves like a semiconductor.

  14. Switching ferroelectric domain configurations using both electric and magnetic fields in Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 single-crystal lamellae

    PubMed Central

    Evans, D. M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Katiyar, R. S.; Scott, J. F.; Gregg, J. M.

    2014-01-01

    Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching. PMID:24421376

  15. Bound states of neutral particles in external electric fields

    NASA Astrophysics Data System (ADS)

    Lin, Qiong-Gui

    2000-02-01

    Neutral fermions of spin 12 with magnetic moment can interact with electromagnetic fields through nonminimal coupling. The Dirac-Pauli equation for such a fermion coupled to a spherically symmetric or central electric field can be reduced to two simultaneous ordinary differential equations by separation of variables in spherical coordinates. For a wide variety of central electric fields, bound-state solutions of critical energy values can be found analytically. The degeneracy of these energy levels turns out to be numerably infinite. This reveals the possibility of condensing infinitely many fermions into a single energy level. For radially constant and radially linear electric fields, the system of ordinary differential equations can be completely solved, and all bound-state solutions are obtained in closed forms. The radially constant field supports scattering solutions as well. For radially linear fields, more energy levels (in addition to the critical one) are infinitely degenerate. The simultaneous presence of central magnetic and electric fields is discussed.

  16. Study of crystal-field excitations and infrared active phonons in the multiferroic hexagonal DyMnO3

    NASA Astrophysics Data System (ADS)

    Jandl, S.; Mansouri, S.; Vermette, J.; Mukhin, A. A.; Ivanov, V. Yu; Balbashov, A.; Orlita, M.

    2013-11-01

    In hexagonal DyMnO3, Dy3+ crystal-field excitations are studied as a function of temperature and applied magnetic field. They are complemented with the measurements of infrared active phonon frequency shifts under applied magnetic field at T = 4.2 K. Between TN = 68 K and T = 10 K, the absence of Dy3+ Kramers doublet splittings at either the C3 or the C3v site symmetries indicates that the Mn3+ magnetic order effective exchange field has no component parallel to the c-axis at either site. Below T = 10 K, the ground state Kramers doublet splits under the Dy3+ internal effective field as well as the applied magnetic field. Also, relatively strong infrared active phonon energy shifts are observed in magneto-infrared reflectance measurements at T = 4.2 K, allowing the calculation of the induced electric polarization changes as a function of the applied magnetic field. Such changes are associated with a large magnetoelectric effect in DyMnO3, arising from a charge transfer between Dy3+ and apical oxygen ions.

  17. Solitary waves in two-dimensional dusty plasma crystal: Effects of weak magnetic field

    SciTech Connect

    Ghosh, Samiran; Gupta, M. R.

    2010-03-15

    It is shown that in the presence of weak magnetic field, the dust lattice solitary wave in two-dimensional (2D) hexagonal dusty plasma crystal is governed by a gyration-modified 2D Korteweg-de Vries equation due to the action of Lorentz force on the dust particles. Numerical solutions reveal that only for weak magnetic field an apparently single hump solitary wave solution exist. But, for strong magnetic field dust lattice solitary wave becomes unstable showing repetitive solitary hump of increasing magnitude with time.

  18. FROM THE CURRENT LITERATURE: Radiation-induced states in crystals with ionic-covalent bonds

    NASA Astrophysics Data System (ADS)

    Kolontsova, E. V.

    1987-01-01

    Based on a review of data in the literature and on the results of a systematic investigation of the effect of various kinds of radiation on a number of crystals with ionic-covalent bonds (ICB crystals), the author describes mechanisms and regularities associated with the creation of radiation-induced structural states. A classification of these states is given, along with their characteristics and models of their behavior. The author proposes a criterion, tested on specially selected compounds, for high-temperature structural instability leading to the realization of a structural state, which in terms of the symmetry and parameters of the unit cell is close to the high-temperature modification of the unirradiated crystal. As a basis for choosing this special class of compounds thermodynamic parameters are adopted which determine the character of their thermal phase transitions. It is shown that, apart from amorphization and decomposition of the original compound, this is the only possible overall change in the structure of ICB crystals which extends throughout their entire volume. The author concludes that for the majority of ICB crystals in which such changes in crystal structure are observed, a decisive role is played by isolated point defects caused by radiation. She also investigates the influence of impurities, growth conditions and conditions of irradiation on the radiation hardness of a structure. In conclusion, she points out factors which determine the structural states of an irradiated ICB crystal, and analyzes the causes of discrepancies in the experimental data of various authors regarding the eifect of radiation on the structure of the same material.

  19. Accurate Full-Field Thermochromic Liquid Crystal Thermography for the Study of Instantaneous Turbulent Heat Transfer

    NASA Astrophysics Data System (ADS)

    Sabatino, D. R.; Praisner, T. J.; Smith, C. R.

    1998-11-01

    The color change of thermochromic liquid crystals with temperature can be effectively utilized as full-field surface temperature sensors to investigate the fundamental structure of wall turbulence. In order to accurately quantify turbulent heat transfer behavior, a new technique has been developed for the calibration of wide-band micro-encapsulated thermochromic liquid crystals. Lighting/viewing arrangements are described and evaluated for ease of implementation and accuracy of the displayed color. This new technique employs images recorded in-situ with the test surface systematically exposed to a series of uniform temperature conditions spanning the bandwidth of the liquid crystals. This sequence of images is used to generate point-wise color/temperature calibration curves for the entire surface. Experimental results will be presented illustrating the application of the technique for assessment of spatial/temporal surface heat transfer behavior due to selected turbulent flows in a water channel

  20. A coupled ductile fracture phase-field model for crystal plasticity

    NASA Astrophysics Data System (ADS)

    Hernandez Padilla, Carlos Alberto; Markert, Bernd

    2015-08-01

    Nowadays crack initiation and evolution play a key role in the design of mechanical components. In the past few decades, several numerical approaches have been developed with the objective to predict these phenomena. The objective of this work is to present a simplified, nonetheless representative phenomenological model to predict the crack evolution of ductile fracture in single crystals. The proposed numerical approach is carried out by merging a conventional elasto-plastic crystal plasticity model and a phase-field model modified to predict ductile fracture. A two-dimensional initial boundary value problem of ductile fracture is introduced considering a single-crystal setup and Nickel-base superalloy material properties. The model is implemented into the finite element context subjected to a quasi-static uniaxial tension test. The results are then qualitatively analyzed and briefly compared to current benchmark results in the literature.

  1. Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1999-06-01

    Photorefractive Bragg gratings are observed in low-molar-mass nematic liquid crystals doped with electron donor and acceptor molecules. This is accomplished by alignment of the nematic liquid crystals in a 0.3 T magnetic field, which produces thicker homeotropic aligned samples than traditional surfactant techniques. Grating fringe spacings as low as 3.7 {mu}m are achieved with 176-{mu}m-thick samples, producing grating {ital Q} values of 33. Up to this point, low molar mass nematic liquid crystals have exhibited photorefractive gratings with Q{le}1. Asymmetric two-beam coupling and photoconductivity experiments are performed to verify the photorefractive origin of the gratings. {copyright} {ital 1999 American Institute of Physics.}

  2. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla

    NASA Astrophysics Data System (ADS)

    Challa, Pavan K.; Curtiss, O.; Williams, J. C.; Twieg, R.; Toth, J.; McGill, S.; Jákli, A.; Gleeson, J. T.; Sprunt, S. N.

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (QαβBαBβ) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.

  3. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla.

    PubMed

    Challa, Pavan K; Curtiss, O; Williams, J C; Twieg, R; Toth, J; McGill, S; Jákli, A; Gleeson, J T; Sprunt, S N

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αβ)B(α)B(β)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field. PMID:23005438

  4. Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies.

    PubMed

    Chang, Tsung-Wen; Chien, Jia-Ren Chang; Wu, Chien-Jang

    2016-02-01

    The microwave magnetic-field tunable filtering properties in a multichannel filter based on use of a one-dimensional finite magnetized plasma photonic crystal (PPC) are theoretically investigated. The considered PPC has a structure of air/(AB)N/air, where A is a dielectric layer, B is a plasma layer, and N is the stack number. First, in the absence of an externally applied magnetic field, the structure can work as a multichannel filter whose channel number is equal to N-1 for N>1. Next, in the presence of an externally applied field, the filtering properties become tunable, i.e., the channel frequencies can be shifted as a function of the applied magnetic field. We find that the effect of the magnetic field will cause the channel frequencies to be blue-shifted or red-shifted depending on the orientation of the applied magnetic field. PMID:26836104

  5. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2014-05-01

    We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.

  6. Growth of high quality single crystals of Bi2Se3 topological insulator via solid state reaction method

    NASA Astrophysics Data System (ADS)

    Yadav, Anil K.; Majhi, Kunjalata; Banerjee, Abhishek; Devi, Poonam; Ganesan, R.; Mishra, P.; Lohani, H.; Sekhar, B. R.; Kumar, P. S. Anil

    2016-05-01

    Recently discovered, Topological Insulators (TIs) have garnered enormous amount of attention owing to its unique surface properties which has potential applications in the field of spintronics and other modern technologies. For all this, it should require a very good quality samples. There are a number of techniques suggested by people for the growth of good quality TIs. Here, we are reporting the growth of high quality single crystals of Bi2Se3 (a TI) by slow cooling solid-state reaction method. X-ray diffraction measurements performed on a cleaved flake of single crystal Bi2Se3 showed up with proper orientations of the crystal planes. High energy X-ray diffraction has been performed to confirm the stoichiometry of the compound and also recorded Laue patterns prove the single crystalline nature of Bi2Se3. Moreover, angle resolved photo-emission spectroscopy (ARPES) carried out on a flat crystal flake shows distinct Dirac dispersion of surface bands at the gamma point clarifying it as a 3D topological insulator.

  7. Novel Transrotational Solid State Order Discovered by TEM in Crystallizing Amorphous Films

    NASA Astrophysics Data System (ADS)

    Kolosov, Vladimir

    Exotic thin crystals with unexpected transrotational microstructures have been discovered by transmission electron microscopy (TEM) for crystal growth in thin (10-100 nm) amorphous films of different chemical nature (oxides, chalcogenides, metals and alloys) prepared by various methods. Primarily we use our TEM bend contour technique. The unusual phenomenon can be traced in situ in TEM column: dislocation independent regular internal bending of crystal lattice planes in a growing crystal. Such transrotation (unit cell trans lation is complicated by small rotationrealized round an axis lying in the film plane) can result in strong regular lattice orientation gradients (up to 300 degrees per micrometer) of different geometries: cylindrical, ellipsoidal, toroidal, saddle, etc. Transrotation is increasing as the film gets thinner. Transrotational crystal resembles ideal single crystal enclosed in a curved space. Transrotational micro crystals have been eventually recognized by other authors in some vital thin film materials, i.e. PCMs for memory, silicides, SrTiO3. Atomic model and possible mechanisms of the phenomenon are discussed. New transrotational nanocrystalline model of amorphous state is also proposed Support of RF Ministry of Education and Science is acknowledged.

  8. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  9. Formulation and Solid State Characterization of Nicotinamide-based Co-crystals of Fenofibrate

    PubMed Central

    Shewale, Sheetal; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V.

    2015-01-01

    The present investigation deals with formulation of nicotinamide-based co-crystals of fenofibrate by different methods and solid-state characterization of the prepared co-crystals. Fenofibrate and nicotinamide as a coformer in 1:1 molar ratio were used to formulate molecular complexes by kneading, solution crystallization, antisolvent addition and solvent drop grinding methods. The prepared molecular complexes were characterized by powder X-ray diffractometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and in vitro dissolution study. Considerable improvement in the dissolution rate of fenofibrate from optimized co-crystal formulation was due to an increased solubility that is attributed to the super saturation from the fine co-crystals is faster because of large specific surface area of small particles and prevention of phase transformation to pure fenofibrate. In vitro dissolution study showed that the formation of co-crystals improves the dissolution rate of fenofibrate. Nicotinamide forms the co-crystals with fenofibrate, theoretically and practically. PMID:26180279

  10. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-06-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  11. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  12. A phase-field/Monte-Carlo model describing organic crystal growth from solution. Investigation of the diffusion-influenced growth of hydroquinone crystals

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Yürüdü, C.; Ulrich, J.; Emmerich, H.

    2009-08-01

    In this paper work we present a phase-field/Monte-Carlo hybrid algorithm for the simulation of solutal growth of organic crystals. The algorithm is subsequently used for an investigation of diffusion effects on the growth mechanisms. This method combines a two-scale phase-field model of the liquid phase epitaxial growth and a Monte-Carlo algorithm of the 2D nucleation and thus is faster than previous purely Monte Carlo simulations of crystal growth. The inclusion of supersaturation and diffusion in the method allows the study of crystal growth under various growth conditions. Parameters used in the hybrid algorithm are bound to the energetic parameters of crystal faces, which can be estimated from a detailed study of the actual crystal structure based on a connected nets analysis, which allows the prediction of the shape and morphology of real crystals. The study of the diffusion effect is carried out based on an example of a hydroquinone crystal, which grows from the water solution at various supersaturations. The dependencies of the growth rate and the nucleation rate on the supersaturation indicate the change of the growth mechanism from spiral growth to 2D nucleation. The difference in the growth rate for various faces is in agreement with the crystal morphologies derived from the attachment energy method and observed experimentally. The main result of the simulation is the evaluation of engineering limits for choosing appropriate external process conditions.

  13. Expectation Value Theorem for Thermo Vacuum States of Optical Chaotic Field and Negative-Binomial Field

    NASA Astrophysics Data System (ADS)

    Wan, Zhi-Long; Fan, Hong-Yi

    2016-02-01

    For the density operator (mixed state) describing chaotic light and negative-binomial field there exist the corresponding thermal vacuum state (pure state) in the real-fictitious space. Using the method of integration within ordered product of operators we find the expectation value theorem in these two thermo vacuum states respectively. The thermal average theorem of translation operator is also deduced. Application of the new thermo vacuum state in calculating photon number disturibution and fluctuation and thermal average is presented.

  14. Expectation Value Theorem for Thermo Vacuum States of Optical Chaotic Field and Negative-Binomial Field

    NASA Astrophysics Data System (ADS)

    Wan, Zhi-Long; Fan, Hong-Yi

    2016-07-01

    For the density operator (mixed state) describing chaotic light and negative-binomial field there exist the corresponding thermal vacuum state (pure state) in the real-fictitious space. Using the method of integration within ordered product of operators we find the expectation value theorem in these two thermo vacuum states respectively. The thermal average theorem of translation operator is also deduced. Application of the new thermo vacuum state in calculating photon number disturibution and fluctuation and thermal average is presented.

  15. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.

    PubMed

    Duan, Jing Lai; Lei, Dang Yuan; Chen, Fei; Lau, Shu Ping; Milne, William I; Toimil-Molares, M E; Trautmann, Christina; Liu, Jie

    2016-01-13

    Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/μm at current density of 10 μA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications. PMID:26666466

  16. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  17. Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field

    NASA Astrophysics Data System (ADS)

    Dost, Sadik; Lent, Brian; Sheibani, Hamdi; Liu, Yongcai

    2004-05-01

    This review article presents recent developments in Liquid Phase Electroepitaxial (LPEE) growth of bulk single crystals of alloy semiconductors under an applied static magnetic field. The growth rate in LPEE is proportional to the applied electric current. However, at higher electric current levels the growth becomes unstable due to the strong convection occurring in the liquid zone. In order to address this problem, a significant body of research has been performed in recent years to suppress and control the natural convection for the purpose of prolonging the growth process to grow larger crystals. LPEE growth experiments show that the growth rate under an applied static magnetic field is also proportional and increases with the field intensity level. The modeling of LPEE growth under magnetic field was also the subject of interest. Two-dimensional mathematical models developed for the LPEE growth process predicted that the natural convection in the liquid zone would be suppressed almost completely with increasing the magnetic field level. However, experiments and also three-dimensional models have shown that there is an optimum magnetic field level below which the growth process is stable and the convection in the liquid zone is suppressed, but above such a field level the convective flow becomes very strong and leads to unstable growth with unstable interfaces. To cite this article: S. Dost et al., C. R. Mecanique 332 (2004).

  18. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  19. Temperature dependence of Fe/++/ crystal field spectra - Implications to mineralogical mapping of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.

    1977-01-01

    Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.

  20. Crystallization of solid-state materials via decomplexation of soluble complexes

    SciTech Connect

    Doxsee, K.M.

    1998-10-01

    A variety of compounds which are at best sparingly soluble in aqueous media may be readily brought into solution through the formation of soluble coordination complexes. Modification of experimental conditions through, e.g., dilution or slow removal of the complexing agent, leads to supersaturation and, consequently, crystallization of the original solid-state phase. This technique of decomplexation crystallization, both of simple inorganic coordination complexes and of complexes with macrocyclic organic chelating agents, offers the opportunity both to effect the recrystallization of sparingly soluble species and to modify their crystal morphology. Similarly, precursors for solid-state materials may be solubilized in nonaqueous solvents through the formation of soluble complexes and then allowed to undergo reaction crystallization, allowing the examination of both solvent effects and chelation effects on the morphology and phase of the resulting solid-state materials. These effects are often dramatic, and such complexation-mediated crystallization approaches offer promise for the facile preparation of metastable phases from simple precursors under ambient conditions.

  1. Steady-State Squeezing in the Micromaser Cavity Field

    NASA Technical Reports Server (NTRS)

    Nayak, N.

    1996-01-01

    It is shown that the radiation field in the presently operated micromaser cavity may be squeezed when pumped with polarized atoms. The squeezing is in the steady state field corresponding to the action similar to that of the conventional micromaser, with the effect of cavity dissipation during entire t(sub c) = tau + t(sub cav).

  2. State of the Literacy and Essential Skills Field

    ERIC Educational Resources Information Center

    Harwood, Chris

    2012-01-01

    The purpose of the "State of the Literacy and Essential Skills Field" report is to provide an environmental scan showing the state of Literacy and Essential Skills (L/ES) across the country, from the perspective of the Canadian Literacy and Learning Network (CLLN) and its national network of partners, both within and outside the Literacy…

  3. Multiscale modeling of polycrystalline graphene: A comparison of structure and defect energies of realistic samples from phase field crystal models

    NASA Astrophysics Data System (ADS)

    Hirvonen, Petri; Ervasti, Mikko M.; Fan, Zheyong; Jalalvand, Morteza; Seymour, Matthew; Vaez Allaei, S. Mehdi; Provatas, Nikolas; Harju, Ari; Elder, Ken R.; Ala-Nissila, Tapio

    2016-07-01

    We extend the phase field crystal (PFC) framework to quantitative modeling of polycrystalline graphene. PFC modeling is a powerful multiscale method for finding the ground state configurations of large realistic samples that can be further used to study their mechanical, thermal, or electronic properties. By fitting to quantum-mechanical density functional theory (DFT) calculations, we show that the PFC approach is able to predict realistic formation energies and defect structures of grain boundaries. We provide an in-depth comparison of the formation energies between PFC, DFT, and molecular dynamics (MD) calculations. The DFT and MD calculations are initialized using atomic configurations extracted from PFC ground states. Finally, we use the PFC approach to explicitly construct large realistic polycrystalline samples and characterize their properties using MD relaxation to demonstrate their quality.

  4. Numerical model of protein crystal growth in a diffusive field such as the microgravity environment.

    PubMed

    Tanaka, Hiroaki; Sasaki, Susumu; Takahashi, Sachiko; Inaka, Koji; Wada, Yoshio; Yamada, Mitsugu; Ohta, Kazunori; Miyoshi, Hiroshi; Kobayashi, Tomoyuki; Kamigaichi, Shigeki

    2013-11-01

    It is said that the microgravity environment positively affects the quality of protein crystal growth. The formation of a protein depletion zone and an impurity depletion zone due to the suppression of convection flow were thought to be the major reasons. In microgravity, the incorporation of molecules into a crystal largely depends on diffusive transport, so the incorporated molecules will be allocated in an orderly manner and the impurity uptake will be suppressed, resulting in highly ordered crystals. Previously, these effects were numerically studied in a steady state using a simplified model and it was determined that the combination of the diffusion coefficient of the protein molecule (D) and the kinetic constant for the protein molecule (β) could be used as an index of the extent of these depletion zones. In this report, numerical analysis of these depletion zones around a growing crystal in a non-steady (i.e. transient) state is introduced, suggesting that this model may be used for the quantitative analysis of these depletion zones in the microgravity environment. PMID:24121357

  5. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  6. Flow and temperature field measurements of thermal convection in a small vertical gap using liquid crystals

    NASA Astrophysics Data System (ADS)

    Heiland, Hans Georg; Wozniak, Günter; Wozniak, Klaus

    2007-07-01

    Thermal convection in a small vertical gap is studied experimentally applying digital particle image velocimetry/thermometry. This optical method enables the simultaneous measurement of two-dimensional flow and temperature fields in a liquid. The principle is based on seeding the liquid flow medium with thermochromic liquid crystal particles. The temperature is measured by the crystal particles which change their reflected colour as function of temperature. The flow velocity is measured by using the same particles as flow tracers. The investigation shall contribute to the understanding of the fluid mechanical behaviour of biological liquids within micro reactor systems. However, the problem is also of fundamental interest as far as heat and mass transfer is concerned. Measured temperature and flow velocity fields are presented and discussed.

  7. Phase field crystal study of nano-crack growth and branch in materials

    NASA Astrophysics Data System (ADS)

    Yingjun, Gao; Zhirong, Luo; Lilin, Huang; Hong, Mao; Chuanggao, Huang; Kui, Lin

    2016-06-01

    The phase field crystal (PFC) method is a new multiscale method, which can reproduce physical phenomena on an atomic level and on a diffusion time scale for the microstructure evolution of materials. The morphology of microcrack propagation and the branch of single crystal materials under tensile strain with a fixed grip condition are simulated by using PFC coupling with an external field method. The results show that microcrack propagation depends a lot on the applied strain. The crack starts to grow and branch when the strain reaches a critical value for biaxial tension. The temperature parameter may also have an effect on crack propagation and the branch. In order to indicate the connection between the PFC results and materials behavior, the energy balance approach is used to analyze the mechanism of crack extension, and also the critical value of the strain for crack extension is obtained. The simulated results are in good agreement with other simulation results and experimental results.

  8. Emergence of foams from the breakdown of the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas; Goldenfeld, Nigel; Dantzig, Jonathan

    2010-06-01

    The phase field crystal (PFC) model captures the elastic and topological properties of crystals with a single scalar field at small undercooling. At large undercooling, new foamlike behavior emerges. We characterize this foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of foam dynamics. This minimal model reproduces von Neumann’s rule for two-dimensional dry foams and Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that its second moment is larger than previously reported experimental and theoretical studies of soap froths, a finding that we attribute to the wetness of the foam increasing with time.

  9. Direct mapping of local director field of nematic liquid crystals at the nanoscale.

    PubMed

    Xia, Yu; Serra, Francesca; Kamien, Randall D; Stebe, Kathleen J; Yang, Shu

    2015-12-15

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole-dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully "locked," allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  10. Direct mapping of local director field of nematic liquid crystals at the nanoscale

    PubMed Central

    Xia, Yu; Serra, Francesca; Kamien, Randall D.; Stebe, Kathleen J.; Yang, Shu

    2015-01-01

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole–dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully “locked,” allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  11. Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Xu, Zhiyong; Wang, Huali

    2014-03-01

    Novel magnetic field sensor based on magnetic fluids infiltrated dual-core Photonic Crystal Fibers (PCFs) is proposed in this paper. Inside the cross-section of the designed PCFs, the two fiber cores filled with magnetic fluids (Fe3O4) are separated by an air hole, and then form two independent waveguides with mode coupling. The mode coupling under different magnetic field strength is investigated theoretically. A novel and simple magnetic field sensing system is proposed and its sensing performances have been studied numerically. The results show that the magnetic field sensor with 15-cm PCFs has a large sensing range and high sensitivity of 4.80 pm/Oe. It provides a new feasible method to design PCF-based magnetic field sensor.

  12. Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Do Hyun; Adornato, Peter M.; Brown, Robert A.

    1988-01-01

    A previous finite-element analysis of vertical Bridgman growth for dilute and nondilute alloys is extended to include the effect of a vertically-aligned magnetic field in the limit of zero magnetic Reynolds number. Calculations are presented for growth of a dilute gallium-germanium alloy in a vertically stabilized Bridgman-Stockbarger system and in a furnace with a uniform temperature gradient imposed along the ampoule. Steady cellular convection driven by radial temperature gradients causes good axial and radial mixing in both systems without a magnetic field. A weak magnetic field decreases the intensity of convection and the effectiveness of solute mixing. The radial nonuniformity is greatest for an intermediate field strength. Stronger fields suppress flow recirculation completely, and lead to uniform solute segregation across the crystal and to diffusion-controlled axial segregation.

  13. Low-field magnetic torque of a single crystal MgB 2

    NASA Astrophysics Data System (ADS)

    Atsumi, Toshiyuki; Tsuji, Mitsuyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2003-10-01

    We have investigated the magnetic torque of MgB 2 single crystal synthesized by the vapor transport method. We use a torque magnetometer consisting of a 4-K closed cycle refrigerator and a variable field permanent magnet up to 10 kG. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature, but is dependent on field. As expected from the BCS theory, the prefactor of the Kogan formula, which corresponds to the lower critical field Hc1, changes smoothly as a function of temperature. We consider that the field dependence of γ comes from the multiple superconducting gaps and their different upper critical fields Hc2.

  14. Electric Field-Induced Skyrmion Crystals via Charged Monopoles in Insulating Helimagets

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Vishwanath, Ashvin

    2016-06-01

    Electrons propagating in a magnetically ordered medium experience an additional gauge field associated with the Berry phase of their spin following the local magnetic texture. In contrast to the usual electromagnetic field, this gauge field admits monopole excitations, corresponding to hedgehog defects of the magnetic order. In an insulator, these hedgehogs carry a well-defined electric charge allowing for them to be controlled by electric fields. One particularly robust mechanism that contributes to the charge is the orbital magnetoelectric effect, captured by a θ angle, which leads to a charge of eθ/2π on hedgehogs. This is a direct consequence of the Witten effect for magnetic monopoles in a θ medium. A physical consequence is that external electric fields can induce skyrmion crystal phases in insulating helimagnets.

  15. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  16. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals.

    PubMed

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-01-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  17. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4′-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  18. Dust Lattice Waves in Two-Dimensional Hexagonal Dust Crystals with an External Magnetic Field

    SciTech Connect

    Farokhi, B.; Shahmansouri, M.

    2008-09-07

    The influence of a constant magnetic field on the propagation of dust-lattice (DL) modes in a two-dimensional hexagonal strongly coupled plasma crystal formed by paramagnetic particles is considered. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorentz force acting on the dust particles.

  19. Consideration of the condensation processes of thin films in the crystal substrate's potential field

    NASA Astrophysics Data System (ADS)

    Tupik, V. A.; Margolin, V. I.; Trong Su, Chu

    2016-07-01

    The condensation process of a single particle in an ideal crystal substrate's potential field is considered. The optimal deposition path and the potential barrier of deposited particle's motion are shown. Some computer modeling examples of thin film's growth process were carried out on the basis of the implemented programs. A fractal analysis of obtained thin films was made, on the basis of which the possibility of estimating the performance of thin film's growth process will be discussed.

  20. Extended phase diagram of the three-dimensional phase field crystal model.

    PubMed

    Jaatinen, A; Ala-Nissila, T

    2010-05-26

    We determine the phase diagram of the phase field crystal model in three dimensions by using numerical free energy minimization methods. Previously published results, based on single mode approximations, have indicated that in addition to the uniform (liquid) phase, there would be regions of stability of body-centered cubic, hexagonal and stripe phases. We find that in addition to these, there are also regions of stability of face-centered cubic and hexagonal close packed structures in this model. PMID:21393705

  1. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color

    NASA Astrophysics Data System (ADS)

    Dellinger, Jean; Van Do, K.; Le Roux, Xavier; de Fornel, Frédérique; Cassan, Eric; Cluzel, Benoît

    2012-10-01

    Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.

  2. Van der Waals Dispersion Interactions and Excited States of Oligoacene Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Rangel Gordillo, Tonatiuh; Sharifzadeh, Sahar; Berland, Kristian; Altvater, Florian; Lee, Kyuho; Hyldgaard, Per; Kronik, Leeor; Neaton, Jeffrey B.

    2015-03-01

    Molecular crystals are a prototypical class of van der Waals (vdWs)-bound organic materials with novel excited state properties relevant for photovoltaics applications. Predicting the structure and excited state properties of oligoacene crystals presents a challenge for standard density functional theory (DFT), as standard functionals do not have long-range dispersion, and DFT does not yield excited-state properties. In this work, we use a combination of vdW-corrected DFT - both pair-wise correction methods and correlation functionals - and many-body perturbation theory to study the geometry and excited states of oligoacene crystals. We find that vdWs methods can predict lattice constants up to 1% of the experimental measurements. Low lying excited states computed with MBPT compare well with experiments, and are found to be quite sensitive to geometry. Our study reveals the importance of vdWs dispersion interactions to the determination of excited states; moreover, our work suggests routes for predictive calculations, in which both structures and excited states are calculated entirely from first-principles. We thank DOE for external funds, and NERSC for computational resources.

  3. Solid-state stability studies of crystal form of tebipenem.

    PubMed

    Talaczyńska, Alicja; Lewandowska, Kornelia; Garbacki, Piotr; Zalewski, Przemysław; Skibiński, Robert; Miklaszewski, Andrzej; Mizera, Mikołaj; Cielecka-Piontek, Judyta

    2016-01-01

    The aim of this study was to determine the kinetic and thermodynamic parameters of tebipenem degradation in the solid state. The process was analyzed based on the results obtained by a high performance liquid chromatography (HPLC) method using ultraviolet diode-array detector (DAD)/electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopic (RS) studies. In dry air, the degradation of tebipenem was a first-order reaction depending on the substrate concentration while at an increased relative air humidity tebipenem was degraded according to the kinetic model of autocatalysis. The thermodynamic parameters: energy of activation (Ea), enthalpy (ΔH(≠a)) and entropy (ΔS(≠a)) of tebipenem degradation were calculated. Following a spectroscopic analysis of degraded samples of tebipenem, a cleavage of the β-lactam bond was proposed as the main degradation pathway, next confirmation using HPLC-Q-TOF-MS/MS method. PMID:26043654

  4. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen

    NASA Technical Reports Server (NTRS)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.

    1991-01-01

    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  5. Fabrication of Crystals and Devices for Studies of Field Induced Superconductivity

    NASA Astrophysics Data System (ADS)

    Kloc, Christian

    2002-03-01

    It was demonstrated that injection of electrons or holes into materials using field effect transistor can transform the surface layer into a metal or at low enough temperatures even into a superconductor. Which substances could exhibit electric field induced superconductivity is currently not well know. Superconductivity has been successfully induced in single crystals of arenes, (pentacene Tc = 2 K, tetracene Tc = 2.7K, anthracene Tc = 4 K) oligophenylenevinylenes (trimer Tc =4.2K , tetramer Tc=2.9 K and pentamer, Tc= 2 K) sexithiophene, polymer thin film (regioregular polythiophene, Tc = 2.35 K) and single crystals of pure and intercalated fullerenes (hole and electron doped C60 Tc = 52 and 11K, C70, Tc = 7K and substituted C60, Tc = up to 117 K). Additional, Schon et al. have reported the observation of field induced superconductivity in copper oxide compounds. Despite of relative simple device structures, they consist of semiconducting single crystals or well oriented thin films, metal source and drain electrodes, an aluminum oxide dielectric layer and a conducting gate electrode, the fabrication is onerous and the significance of particular technological steps to functionality of a whole device is not well explored. In this presentation I would like to discuss these technological procedures leading to superconducting devices and further developments in search for high temperature superconducting organics.

  6. Towards the Structure Determination of a Modulated Protein Crystal: The Semicrystalline State of Profilin:Actin

    NASA Technical Reports Server (NTRS)

    Borgstahl, G.; Lovelace, J.; Snell, E. H.; Bellamy, H.

    2003-01-01

    One of the remaining challenges to structural biology is the solution of modulated structures. While small molecule crystallographers have championed this type of structure, to date, no modulated macromolecular structures have been determined. Modulation of the molecular structures within the crystal can produce satellite reflections or a superlattice of reflections in reciprocal space. We have developed the data collection methods and strategies that are needed to collect and analyze these data. If the macromolecule's crystal lattice is composed of physiologically relevant packing contacts, structural changes induced under physiological conditions can cause distortion relevant to the function and biophysical processes of the molecule making up the crystal. By careful measurement of the distortion, and the corresponding three-dimensional structure of the distorted molecule, we will visualize the motion and mechanism of the biological macromolecule(s). We have measured the modulated diffraction pattern produced by the semicrystalline state of profilin:actin crystals using highly parallel and highly monochromatic synchrotron radiation coupled with fine phi slicing (0.001-0.010 degrees) for structure determination. These crystals present these crystals present a unique opportunity to address an important question in structural biology. The modulation is believed to be due to the formation of actin helical filaments from the actin beta ribbon upon the pH-induced dissociation of profilin. To date, the filamentous state of actin has resisted crystallization and no detailed structures are available. The semicrystalline state profilin:actin crystals provides a unique opportunity to understand the many conformational states of actin. This knowledge is essential for understanding the dynamics underlying shape changes and motility of eukaryotic cells. Many essential processes, such as cytokinesis, phagocytosis, and cellular migration depend upon the capacity of the actin

  7. Multiple chiral topological states in liquid crystals from unstructured light beams

    SciTech Connect

    Loussert, Charles; Brasselet, Etienne

    2014-02-03

    It is shown experimentally that unstructured light beams can generate a wealth of distinct metastable defect structures in thin films of chiral liquid crystals. Various kinds of individual chiral topological states are obtained as well as dimers and trimers, which correspond to the entanglement of several topological unit cells. Self-assembled nested assemblies of several metastable particle-like topological states can also be formed. Finally, we propose and experimentally demonstrate an opto-electrical approach to generate tailor-made architectures.

  8. A photonic-crystal optical antenna for extremely large local-field enhancement.

    PubMed

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-01

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators. PMID:21164762

  9. Capacitance changes in ferronematic liquid crystals induced by low magnetic fields

    NASA Astrophysics Data System (ADS)

    Tomašovičová, Natália; Timko, Milan; Mitróová, Zuzana; Koneracká, Martina; Rajňak, Michal; Éber, Nándor; Tóth-Katona, Tibor; Chaud, Xavier; Jadzyn, Jan; Kopčanský, Peter

    2013-01-01

    The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH), and SWCNT functionalized with Fe3O4 nanoparticles in a nematic liquid crystal has been studied experimentally. The volume concentration of nanoparticles was ϕ1=10-4 and ϕ2=10-3. Independent of the type and the volume concentration of the nanoparticles, a linear response to low magnetic fields (far below the magnetic Fréederiksz transition threshold) has been observed, which is not present in the undoped nematic.

  10. New Ground-State Crystal Structure of Elemental Boron.

    PubMed

    An, Qi; Reddy, K Madhav; Xie, Kelvin Y; Hemker, Kevin J; Goddard, William A

    2016-08-19

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β-B). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β-B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ-B, is based on the Cmcm orthorhombic space group. Quantum mechanics predicts that the newly identified τ-B structure is 13.8  meV/B more stable than β-B. The τ-B structure allows 6% more charge transfer from B_{57} units to nearby B_{12} units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ-B structure to be the ground state structure for elemental boron at atmospheric pressure. PMID:27588864

  11. New Ground-State Crystal Structure of Elemental Boron

    NASA Astrophysics Data System (ADS)

    An, Qi; Reddy, K. Madhav; Xie, Kelvin Y.; Hemker, Kevin J.; Goddard, William A.

    2016-08-01

    Elemental boron exhibits many polymorphs in nature based mostly on an icosahedral shell motif, involving stabilization of 13 strong multicenter intraicosahedral bonds. It is commonly accepted that the most thermodynamic stable structure of elemental boron at atmospheric pressure is the β rhombohedral boron (β -B ). Surprisingly, using high-resolution transmission electron microscopy, we found that pure boron powder contains grains of two different types, the previously identified β -B containing a number of randomly spaced twins and what appears to be a fully transformed twinlike structure. This fully transformed structure, denoted here as τ -B , is based on the C m c m orthorhombic space group. Quantum mechanics predicts that the newly identified τ -B structure is 13.8 meV /B more stable than β -B . The τ -B structure allows 6% more charge transfer from B57 units to nearby B12 units, making the net charge 6% closer to the ideal expected from Wade's rules. Thus, we predict the τ -B structure to be the ground state structure for elemental boron at atmospheric pressure.

  12. Analysis of a teleportation scheme involving cavity field states in a linear superposition of Fock states

    NASA Astrophysics Data System (ADS)

    Carvalho, C. R.; Guerra, E. S.; Jalbert, Ginette

    2008-04-01

    We analyse a teleportation scheme of cavity field states. The experimental sketch discussed makes use of cavity quantum electrodynamics involving the interaction of Rydberg atoms with superconducting (micromaser) cavities as well as with classical microwave (Ramsey) cavities. In our scheme the Ramsey cavities and the atoms play the role of auxiliary systems used to teleport a field state, which is formed by a linear superposition of vacuum |∅> and the one-photon state |1>, from a micromaser cavity to another.

  13. Imprint electric field controlled electronic transport in TlGaSe2 crystals

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu; Suleymanov, Rauf A.; Balaban, Ertan; Şale, Yasin

    2013-09-01

    The effect of built-in electric field onto the dc electrical conductivity, photoconductivity, and electrical switching phenomenon were investigated in TlGaSe2 layered semiconductor within the temperature range of 77-300 K. We have used different types of electrodes for different TlGaSe2 samples in both parallel and perpendicular directions to the plane of layers. The effect of electric field was investigated by cooling the samples from the room temperature under the electric field and then removing it at ˜80 K. After the procedure, it was found that a built-in internal electric field which strongly affects transport properties appears in TlGaSe2 crystals. Substantial increasing of both dark currents and photo-conductivities were observed predominantly at low temperatures, where hopping was the main conductivity mechanism. The anomalous decrease of the activation energy in the low temperature region and the switching effect are also the main experimental findings of the present work. Such behavior can be understood by assuming that the built-in electric field greatly increases the contribution of the hopping conductivity at low temperatures. Obtained results are discussed on the basis of the models widely used for disordered semiconductors. It was shown that TlGaSe2 crystal demonstrates the peculiar behavior that is typical to such type of semiconductors.

  14. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  15. In-situ observation of electric-field-induced acceleration in crystal growth of tetrathiafulvalene-tetracyanoquinodimethane

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro

    2013-04-01

    In-situ observations of vapor-phase growth of tetrathiafulvalene (TTF)-tetracyanoquinodimethane (TCNQ) crystals under an electric field were conducted without influencing the actual crystal growth process. The shortest incubation time of TTF-TCNQ nuclei and the highest initial growth rate of the crystals are obtained on the anode side and in high electric field regions. It is demonstrated that the distribution of molecules thermally diffusing on the substrate surface is controlled by an external electric field. These results indicate the potential for selective growth of highly conductive organic wires for micro- and nanoscale wiring in organic nanodevices.

  16. Ground state alignment as a tracer of interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Yan, H.

    2012-12-01

    We demonstrate a new way of studying interplanetary magnetic field -- spectropolarimetry based on ground state alignment. Ground state alignment is a new promising way of sub-gausian magnetic fields in radiation-dominated environment. The polarization of spectral lines that are pumped by the anisotropic radiation from the sun is influenced by the magnetic alignment, which happens for sub-gausian magnetic field. As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic obser- vation of the Jupiter's Io and comet Halley. A uniform density distribution of Na was considered and polar- ization at each point was then constructed. Both spa- tial and temporal variations of turbulent magnetic field can be traced with this technique as well. Instead of sending thousands of space probes, ground state alignment allows magnetic mapping with any ground telescope facilities equipped with spectrometer and polarimeter. For remote regions like the the boundary of interstellar medium, ground state alignment provides a unique diagnostics of magnetic field, which is crucial for understanding the physical processes such as the IBEX ribbons.

  17. Crystal structure and high-field magnetism of La{sub 2}CuO{sub 4}

    SciTech Connect

    Reehuis, M.; Ulrich, C.; Keimer, B.; Prokes, K.; Gozar, A.; Blumberg, G.; Komiya, Seiki; Ando, Yoichi; Pattison, P.

    2006-04-01

    Neutron diffraction was used to determine the crystal structure and magnetic ordering pattern of a La{sub 2}CuO{sub 4} single crystal, with and without applied magnetic field. A previously unreported, subtle monoclinic distortion of the crystal structure away from the orthorhombic space group Bmab was detected. The distortion is also present in lightly Sr-doped crystals. A refinement of the crystal structure shows that the deviation from orthorhombic symmetry is predominantly determined to drive a continuous reorientation of the copper spins from the orthorhombic b axis to the c axis, directly confirming predictions based on prior magnetoresistance and Raman scattering experiments. A spin-flop transition induced by a c-axis oriented field previously reported for nonstoichiometric La{sub 2}CuO{sub 4} is also observed, but the transition field (11.5 T) is significantly larger than that in the previous work.

  18. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  19. Nematic liquid crystals in a spatially step-wise magnetic field.

    PubMed

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics. PMID:26871129

  20. A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Nojiri, Hiroyuki; Narumi, Yasuo; Lang, Jonathan

    2010-03-01

    Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been developed at Advanced Photon Source in order to cool the coil using liquid nitrogen and the sample using a closed-cycle cryostat independently. Liquid nitrogen cooling allows repetition rate of a few minutes for peak fields near 30 Tesla. This scheme is unique in that it allows the applied magnetic field to be parallel to the scattering plane. Time-resolved scattering data are typically collected using a fast one-dimensional strip detector. Opportunities and challenges for experiments and instrumentation will be discussed.

  1. Nematic liquid crystals in a spatially step-wise magnetic field

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics.

  2. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    NASA Astrophysics Data System (ADS)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be

  3. Strong modification of density of optical states in biotemplated photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Yonkee, Benjamin; Bartl, Michael H.

    2011-06-01

    Nature has developed sophisticated methods to create structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  4. Relaxation dynamics and crystallization study of sildenafil in the liquid and glassy states.

    PubMed

    Kolodziejczyk, K; Paluch, M; Grzybowska, K; Grzybowski, A; Wojnarowska, Z; Hawelek, L; Ziolo, J D

    2013-06-01

    In this paper, the physical stability and molecular dynamics of amorphous sildenafil are investigated in both the liquid and glassy states. We have established that the amorphous sildenafil is resistant to recrystallization at temperatures below the glass transition temperature Tg during the experimental period of its storage (i.e., above 6 months), however, it easily undergoes cold crystallization at T > Tg. To determine the crystallization mechanism, the isothermal and non-isothermal studies of the cold crystallization kinetics of the drug are performed by using the broadband dielectric spectroscopy (BDS) and the differential scanning calorimetry (DSC), respectively. The cold crystallization mechanism has been found to be similar in both the isothermal and non-isothermal cases. This mechanism has been analyzed from the point of view of the molecular mobility of sildenafil investigated in the supercooled liquid and glassy states by using the BDS measurements in the wide temperature range. This analysis has been enriched with a new approach based on a recently reported measure of dynamic heterogeneity given by a four-point dynamic susceptibility function. No tendency to recrystallization of glassy sildenafil at T < Tg is also discussed in relation to molecular dynamics of sildenafil in the glassy state. The relatively small molecular mobility reflected in one secondary relaxation as well as the predicted large time scale of structural relaxation of glassy sildenafil suggests that amorphous sildenafil should not recrystallize during its long-term storage at room temperature. PMID:23594226

  5. Creation and survival of autoionizing states in strong laser fields

    NASA Astrophysics Data System (ADS)

    Fechner, Lutz; Camus, Nicolas; Krupp, Andreas; Ullrich, Joachim; Pfeifer, Thomas; Moshammer, Robert

    2015-11-01

    Very sharp, low-energy structures observed in photoelectron spectra reveal the population of autoionizing states in krypton and argon in strong laser fields over a large range of different wavelengths. The energies of the electrons, emitted by autoionization in a field-free environment, provide direct information about the spectrum of states involved. Despite their ability to resist ionization by the populating laser pulse, we demonstrate the possibility to promote the excited electrons into the continuum by subsequent absorption of a single photon. Thus, applying a classical pump-probe scheme, we are able to manipulate the autoionization contribution on a picosecond time scale. Different scenarios for the creation of autoionizing states in strong laser fields are discussed.

  6. Neutron spectroscopic study of crystal field excitations in Tb2Ti2O7 and Tb2Sn2O7

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Fritsch, K.; Hao, Z.; Bagheri, B. V.; Gingras, M. J. P.; Granroth, G. E.; Jiramongkolchai, P.; Cava, R. J.; Gaulin, B. D.

    2014-04-01

    We present time-of-flight inelastic neutron scattering measurements at low temperature on powder samples of the magnetic pyrochlore oxides Tb2Ti2O7 and Tb2Sn2O7. These two materials possess related, but different ground states, with Tb2Sn2O7 displaying "soft" spin ice order below TN˜0.87 K, while Tb2Ti2O7 enters a hybrid, glassy spin ice state below Tg˜0.2 K. Our neutron measurements, performed at T =1.5 and 30 K, probe the crystal field states associated with the J = 6 states of Tb3+ within the appropriate Fd3¯m pyrochlore environment. These crystal field states determine the size and anisotropy of the Tb3+ magnetic moment in each material's ground state, information that is an essential starting point for any description of the low-temperature phase behavior and spin dynamics in Tb2Ti2O7 and Tb2Sn2O7. While these two materials have much in common, the cubic stanate lattice is expanded compared to the cubic titanate lattice. As our measurements show, this translates into a factor of ˜2 increase in the crystal field bandwidth of the 2J+1=13 states in Tb2Ti2O7 compared with Tb2Sn2O7. Our results are consistent with previous measurements on crystal field states in Tb2Sn2O7, wherein the ground-state doublet corresponds primarily to mJ=|±5> and the first excited state doublet to mJ=|±4>. In contrast, our results on Tb2Ti2O7 differ markedly from earlier studies, showing that the ground-state doublet corresponds to a significant mixture of mJ=|±5>, |∓4>, and |±2>, while the first excited state doublet corresponds to a mixture of mJ=|±4>, |∓5>, and |±1>. We discuss these results in the context of proposed mechanisms for the failure of Tb2Ti2O7 to develop conventional long-range order down to 50 mK.

  7. Electronic transport within a quasi-two-dimensional model for rubrene single-crystal field effect transistors

    NASA Astrophysics Data System (ADS)

    Gargiulo, F.; Perroni, C. A.; Ramaglia, V. Marigliano; Cataudella, V.

    2011-12-01

    Spectral and transport properties of the quasi-two-dimensional adiabatic Su-Schrieffer-Heeger model are studied, adjusting the parameters in order to model rubrene single-crystal field effect transistors with small but finite density of injected charge carriers. We show that, with increasing temperature T, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions is calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. With increasing temperature, the transport properties reach the Ioffe-Regel limit, which is ascribed to less and less appreciable contribution of itinerant states to the conduction process. The model provides features of the mobility in close agreement with experiments: right order of magnitude, scaling as a power law T-γ (with γ close or larger than two), and correct anisotropy ratio between different in-plane directions. Due to a realistic high-dimensional model, the results are not biased by uncontrolled approximations.

  8. Structural and excited-state properties of oligoacene crystals from first principles

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Berland, Kristian; Sharifzadeh, Sahar; Brown-Altvater, Florian; Lee, Kyuho; Hyldgaard, Per; Kronik, Leeor; Neaton, Jeffrey B.

    2016-03-01

    Molecular crystals are a prototypical class of van der Waals (vdW) bound organic materials with excited-state properties relevant for optoelectronics applications. Predicting the structure and excited-state properties of molecular crystals presents a challenge for electronic structure theory, as standard approximations to density functional theory (DFT) do not capture long-range vdW dispersion interactions and do not yield excited-state properties. In this work, we use a combination of DFT including vdW forces, using both nonlocal correlation functionals and pairwise correction methods, together with many-body perturbation theory (MBPT) to study the geometry and excited states, respectively, of the entire series of oligoacene crystals, from benzene to hexacene. We find that vdW methods can predict lattice constants within 1% of the experimental measurements, on par with the previously reported accuracy of pairwise approximations for the same systems. We further find that excitation energies are sensitive to geometry, but if optimized geometries are used MBPT can yield excited-state properties within a few tenths of an eV from experiment. We elucidate trends in MBPT-computed charged and neutral excitation energies across the acene series and discuss the role of common approximations used in MBPT.

  9. Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.

    PubMed

    van der Asdonk, Pim; Keshavarz, Masoumeh; Christianen, Peter C M; Kouwer, Paul H J

    2016-08-21

    An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter. PMID:27320385

  10. Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    NASA Astrophysics Data System (ADS)

    Moffatt, R. A.; Cabrera, B.; Corcoran, B. M.; Kreikebaum, J. M.; Redl, P.; Shank, B.; Yen, J. J.; Young, B. A.; Brink, P. L.; Cherry, M.; Tomada, A.; Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-01

    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors.

  11. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  12. Pressure dependence of upper critical fields in FeSe single crystals

    NASA Astrophysics Data System (ADS)

    Kang, Ji-Hoon; Jung, Soon-Gil; Lee, Sangyun; Park, Eunsung; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2016-03-01

    We investigate the pressure dependence of the upper critical fields (μ 0 H c2) for FeSe single crystals with pressure up to 2.57 GPa. The superconducting (SC) properties show a disparate behavior across a critical pressure where the pressure-induced antiferromagnetic phase coexists with superconductivity. The magnetoresistance for H//ab and H//c is very different: for H//c, magnetic field induces and enhances a hump in the resistivity close to the T c for pressures higher than 1.2 GPa, while it is absent for H//ab. Since the measured μ 0 H c2 for FeSe samples is smaller than the orbital limited upper critical field ({{{H}}{{orb}}}{{c}2}) estimated by the Werthamer, Helfand and Hohenberg model, the Maki parameter (α) related to Pauli spin-paramagnetic effects is additionally considered to describe the temperature dependence of μ 0 H c2(T). Interestingly, the α value is hardly affected by pressure for H//ab, while it strongly increases with pressure for H//c. The pressure evolution of the μ 0 H c2(0) for the FeSe single crystals is found to be almost similar to that of T c(P), suggesting that the pressure-induced magnetic order adversely affects the upper critical fields as well as the SC transition temperature.

  13. Random crystal field effect on the kinetic spin-3/2 Blume-Capel model under a time-dependent oscillating field

    NASA Astrophysics Data System (ADS)

    El Hachimi, A. G.; Dakir, O.; Sidi Ahmed, S.; Zaari, H.; El Yadari, M.; Benyoussef, A.; El Kenz, A.

    2016-09-01

    The effect of random crystal-field on the stationary states of the kinetic spin-3/2 Blume-Capel model is investigated within the framework of the mean-field approach. The Glauber-type stochastic dynamics is used to describe the time evolution of the system which is subject to a time-dependent oscillating external magnetic field. In addition to the well-known phase transitions and the appearance of the partly ferromagnetic phase characterized by the magnetization m = 1 in equilibrium case, a new dynamical regions between the ferromagnetic phases F1/2, F1 and F3/2 are found where F3/2 +F 1 / 2 ,F3/2 +F1, F1 +F1/2 phases coexist for a weak value of the reduced magnetic field (h). Whereas for higher value of h both solutions ordered F and disordered P phases coexist. Hence we present six types topologies of phase diagrams which exhibit dynamical first-order, second-order transition lines, dynamical tricritical and isolated critical end points. Furthermore, the dynamical thermal behavior magnetizations, susceptibilities and phase space trajectories are given and discussed.

  14. Steady state magnetic field configurations for the earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.

    1989-01-01

    A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).

  15. Vortex Lattice Formation in High Magnetic Fields in an Underdoped Single Crystal of Hg1201 from 17O NMR

    NASA Astrophysics Data System (ADS)

    Lee, Jeongseop; Xin, Yizhou; Halperin, W. P.; Reyes, A. P.; Kuhns, P. L.

    The vortex lattice in HgBa2CuO4+δ forms at a vortex melting temperature, Tv, typically ~40K for underdoped crystals with a hole doping ~ 0.11. We present our results from 17O NMR for investigation of the vortex lattice as a function of external magnetic field up to 30 T and temperature as low as 5 K. The vortex contribution to the NMR linewidth can be separated from inhomogeneous broadening by deconvolution of the normal state spectra which was measured separately above, Tv. The vortex melting temperature was measured for two underdoped samples marked by the onset of extra linewidth broadening due to the inhomogeneous magnetic field distribution from the solid vortex lattice consistent with transverse relaxation measurements. We have found evidence for a change in the vortex lattice symmetry as a function of external fields. This work was supported by the DOE BES under Grant No. DE-FG02-05ER46248 and the NHMFL through the NSF and State of Florida.

  16. Crystallization from the amorphous state: nucleation-growth decoupling, polymorphism interplay, and the role of interfaces.

    PubMed

    Descamps, Marc; Dudognon, Emeline

    2014-09-01

    The physical stability of the amorphous state is governed by crystallization, which results from the complex interplay of nucleation and growth processes. These processes can be further complicated by the preferred initial nucleation of less-stable phases, and interpretation requires the evaluation of the relative roles of structure, dynamics, and thermodynamics on the kinetics of the recrystallization. As a contribution to this issue, we reanalyze data sets concerning recrystallization of two pharmaceutical compounds: L-arabitol and RS ibuprofen. These compounds share the property of being good glass formers and present monotropic polymorphism. In the present analysis, we are mainly focusing on the localization of nucleation and growth zones and the role of a transient crystallization of the metastable phase. On the basis of the elementary theories, the results offer the opportunity to discuss the impact of interfacial energies, molecular mobility, crystal disorder, liquid short-range order, and crack formation in the glass. PMID:24902677

  17. Valence state change and defect centers induced by infrared femtosecond laser in Yb:YAG crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xinshun; Liu, Yang; Zhao, Panjuan; Guo, Zhongyi; Li, Yan; Qu, Shiliang

    2015-04-01

    The broad band upconversion luminescence in Yb3+:YAG crystal has been observed in experiments under the irradiation of focused infrared femtosecond laser. The dependence of the fluorescence intensity on the pump power shows that the upconversion luminescence is due to simultaneous two-photon absorption process, which indicates that the broad emission bands at 365 and 463 nm could be assigned to the 5d → 4f transitions of Yb2+ ions and the one at 692 nm could be attributed to the electron-hole recombination process on (Yb2+-F+) centers. The absorption spectra of the Yb:YAG crystal samples before and after femtosecond laser irradiation, and after further annealing reveal that permanent valence state change of Yb ions from Yb3+ to Yb2+ and (Yb2+-F+) centers have been induced by infrared femtosecond laser irradiation in Yb3+:YAG crystal.

  18. Modular Hamiltonian for Excited States in Conformal Field Theory.

    PubMed

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories. PMID:27494465

  19. Modular Hamiltonian for Excited States in Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Lashkari, Nima

    2016-07-01

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Zn replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  20. Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates

    SciTech Connect

    Jin, Geng Bang Soderholm, L.

    2015-01-15

    Colorless crystals of ThSiO{sub 4} (huttonite) (1) and (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaThSi{sub 8}O{sub 20} (2) have been synthesized by the solid-state reactions of ThO{sub 2}, CaSiO{sub 3}, and Na{sub 2}WO{sub 4} at 1073 K. Green crystals of (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaUSi{sub 8}O{sub 20} (3) have been synthesized by the solid-state reactions of UO{sub 2}, CaSiO{sub 3}, and Na{sub 2}WO{sub 4} at 1003 K. All three compounds have been characterized by single-crystal X-ray diffraction. Compound 1 adopts a monazite-type three-dimensional condensed structure, which is built from edge- and corner-shared ThO{sub 9} polyhedra and SiO{sub 4} tetrahedra. Compounds 2 and 3 are isostructural and they crystallize in a steacyite-type structure. The structure consists of discrete pseudocubic [Si{sub 8}O{sub 20}]{sup 8−} polyanions, which are connected by An{sup 4+} cations into a three-dimensional framework. Each An atom coordinates to eight monodentate [Si{sub 8}O{sub 20}]{sup 8−} moieties in a square antiprismatic geometry. Na{sup +} and Ca{sup 2+} ions reside in the void within the framework. Raman spectra of 1, 2, and 3 were collected on single crystal samples. 1 displays more complex vibrational bands than thorite. Raman spectra of 2 and 3 are analogous with most of vibrational bands located at almost the same regions. - Graphical abstract: A Raman spectrum and crystal structures of (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaAnSi{sub 8}O{sub 20} (An=Th, U), which contain pseudocubic [Si{sub 8}O{sub 20}]{sup 8−} polyanions and eight-coordinate An{sup 4+} cations. - Highlights: • Single crystal growth of three tetravalent actinide silicates from melts. • Single-crystal structures and Raman spectra of (Ca{sub 0.5}Na{sub 0.5}){sub 2}NaAnSi{sub 8}O{sub 20} (An=Th, U). • First report of Raman spectrum of huttonite on single crystal samples.

  1. Phase-field crystal modeling of shape transition of strained islands in heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Du, XiuJuan

    2012-11-01

    The phase-field crystal (PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates. The influences of both substrate vicinal angles β and the lattice mismatch ζ are discussed. The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films. The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov (SK) islands, the couple growth of islands and the step flow as well as the formation of step bunching. In addition, the larger ζ indicates an increased strained island density after coarsening, and results in the incoherent growth of strained islands with the creation of misfit dislocations. Coarsening, coalescence and faceting of strained islands are also observed. Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.

  2. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  3. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  4. Crystal size of epidotes: A potentially exploitable geothermometer in geothermal fields

    SciTech Connect

    Patrier, P.; Beaufort, D.; Touchard, G. ); Fouillac, A.M. )

    1990-11-01

    Crystal size of epidotes crystallized in quartz + epidote veins is used as the basis for a new geothermometer from the fossil geothermal field of Saint Martin (Lesser Antilles). The epidote-bearing alteration paragenesis is developed as far as 3 km from a quartz diorite pluton at temperatures of 220-350C. The length/width ratio of the epidote grains is constant for all the analyzed samples and suggests isotropic growth environments. However, the length and width of the grains vary exponentially with temperature. The obtained results offer new perspectives for simple grain-size geothermomentry but must be extended to other geologic environments to clarify the influence of different rock types.

  5. Network Analysis of Free Energy Landscape of Metastable States of Hexatic Smectic B Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Aoki, Keiko M.

    2014-10-01

    The topology of the free-energy landscape of a model system, which gives rise to multiple metastable states of hexatic smectic B (HexB) liquid crystals, is investigated using network theory. Directed and weighted networks of HexB states are constructed from a series of dynamical data calculated by constant-pressure and constant-temperature molecular dynamics simulations. The k-shell decomposition is extended to directed networks, and the networks of HexB metastable states are analyzed. Singular values of the weighted adjacency matrix, with elements consisting of the weight of the directed edge, are used to distinguish important vertices for evolution.

  6. Unconventional optical Tamm states in metal-terminated three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Korovin, Alexander V.; Romanov, Sergei G.

    2016-03-01

    Unconventional optical Tamm surface states have been demonstrated in transmission and reflectance spectra of three-dimensional opal photonic crystals coated by thin metal films. These states appear in registry with diffraction resonances and localize the electromagnetic energy in asymmetric resonators formed by stacks of lattice planes and metal semishells. Tamm defect states provide the bypass for light at the edges of the Bragg diffraction resonances and thus reduce the diffraction efficiency. Despite the hidden nature of this effect, its magnitude is comparable to the extraordinary transmission associated with the surface-plasmon polaritons that are simultaneously excited at the surfaces of the corrugated metal films.

  7. Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Magnan, Shannon M.; Throckmorton, David (Technical Monitor)

    2002-01-01

    Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using

  8. AOM reconciling of crystal field parameters for UCl sub 3 , UBr sub 3 , Ul sub 3 series

    SciTech Connect

    Gajek, Z.; Mulak, J. )

    1990-07-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl{sub 3} a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr{sub 3} and UI{sub 3} were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.

  9. Patterns driven by combined ac and dc electric fields in nematic liquid crystals.

    PubMed

    Krekhov, Alexei; Decker, Werner; Pesch, Werner; Eber, Nándor; Salamon, Péter; Fekete, Balázs; Buka, Agnes

    2014-05-01

    The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric patterns in nematic liquid crystals was studied. For selected ac frequencies, an extended standard model of the electrohydrodynamic instabilities was used to characterize the onset of pattern formation in the two-dimensional parameter space of the magnitudes of the ac and dc electric field components. Numerical as well as approximate analytical calculations demonstrate that depending on the type of patterns and on the ac frequency, the combined action of ac and dc fields may either enhance or suppress the formation of patterns. The theoretical predictions are qualitatively confirmed by experiments in most cases. Some discrepancies, however, seem to indicate the need to extend the theoretical description. PMID:25353815

  10. Field-induced periodic distortions in a nematic liquid crystal: deuterium NMR study and theoretical analysis.

    PubMed

    Sugimura, A; Zakharov, A V

    2011-08-01

    The peculiarities in the dynamic of the director reorientation in a liquid crystal (LC) film under the influence of the electric E field directed at an angle α to the magnetic B field have been investigated both experimentally and theoretically. Time-resolved deuterium NMR spectroscopy is employed to investigate the field-induced director dynamics. Analysis of the experimental results, based on the predictions of hydrodynamic theory including both the director motion and fluid flow, provides an evidence for the appearance of the spatially periodic patterns in 4-n-pentyl-4'-cyanobiphenyl LC film, at the angles α>60∘, in response to the suddenly applied E. These periodic distortions produce a lower effective rotational viscosity. This gives a faster response of the director rotation than for a uniform mode, as observed in our NMR experiment. PMID:21929001

  11. Strain mapping in nanocrystalline grains simulated by phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guo, Yaolin; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Tang, Sai; Liu, Feng; Zhou, Yaohe

    2015-03-01

    In recent years, the phase field crystal (PFC) model has been confirmed as a good candidate to describe grain boundary (GB) structures and their nearby atomic arrangement. To further understand the mechanical behaviours of nanocrystalline materials, strain fields near GBs need to be quantitatively characterized. Using the strain mapping technique of geometric phase approach (GPA), we have conducted strain mapping across the GBs in nanocrystalline grains simulated by the PFC model. The results demonstrate that the application of GPA in strain mapping of low and high angles GBs as well as polycrystalline grains simulated by the PFC model is very successful. The results also show that the strain field around the dislocation in a very low angle GB is quantitatively consistent with the anisotropic elastic theory of dislocations. Moreover, the difference between low angle GBs and high angle GBs is revealed by the strain analysis in terms of the strain contour shape and the structural GB width.

  12. Electric field sensor based on cholesteric liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Lee, Bong Wan; Jeon, Min Yong

    2015-09-01

    We propose an electric field sensor using a cholesteric liquid crystal (CLC) Fabry-Perot etalon and a broadband optical source. The CLC cell consists of glass substrates, polyimide layers, electrodes, and CLC layer. There is a threshold behavior for CLC cell and no change in the transmitted wavelength occurs until a threshold value. The threshold value is 0.8 V/μm for fabricated CLC cell in this experiment. The transmitted or reflected wavelength from the CLC Fabry-Perot etalon depends on the applied electric field. The valley wavelengths of the transmitted light from the CLC device are linearly increased from 1303 nm to 1317 nm as the applied electric field to the CLC device is increased from 0.8 V/μm to 1.9 V/μm.

  13. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  14. Molecular simulation of model liquid crystals in a strong aligning field

    NASA Astrophysics Data System (ADS)

    de Miguel, Enrique; Blas, Felipe J.; Martín Del Río, Elvira

    We report a computer simulation study of systems of perfectly aligned molecules interacting through the Gay-Berne (GB) potential model for two different values of the molecular anisotropy parameter κ, namely 3 and 4.4. The models are appropriate to gauge the effects of strong aligning fields on the thermodynamics and structural properties of thermotropic liquid crystals. According to our results, one of the main effects of the external field is to increase the range of stability of the smectic A phase, which indicates the existence of a strong coupling between orientational and translational order. For the κ = 3 GB model the smectic phase, which is not stable in the absence of the field, is promoted when the molecules are constrained to be parallel. According to the simulation results, the smectic A-nematic transition is, in general, continuous; however, this transition appears to be first order at low pressure for the κ = 4.4 GB fluid model.

  15. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals.

    PubMed

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  16. Ultrafast state detection and 2D ion crystals in a Paul trap

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2016-05-01

    Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.

  17. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  18. Transient and steady state photoelectronic analysis in TlInSe{sub 2} crystals

    SciTech Connect

    Qasrawi, A.F.; Gasanly, N.M.

    2011-08-15

    Highlights: {yields} The steady state and time dependent photoconductivity kinetics of the TlInSe{sub 2} crystals are investigated in the temperature region of 100-350 K. {yields} The photocurrent of the sample exhibited linear, sublinear, and supralinear recombination mechanisms, at, above and below 160 K, respectively. {yields} Steady state photoconductivity revealed two recombination centres located at 234 and 94 meV. {yields} The transient photoconductivity is limited by a trapping center located at 173 meV. {yields} The capture coefficient of the trap for holes was determined as 3.11 x 10{sup -22} cm{sup -2}. -- Abstract: The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe{sub 2} crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10{sup -22} cm{sup -2}.

  19. Field-induced phase transitions in an antiferroelectric liquid crystal using the pyroelectric effect

    PubMed

    Shtykov; Vij; Lewis; Hird; Goodby

    2000-08-01

    The antiferroelectric liquid crystal (AFLC) under investigation possesses different helical polar phases. Measurements of pyroelectric response of these phases as a function of temperature and bias field have elucidated the ability of this method for investigating the nature of antiferroelectric phases and phase transitions under the bias field. The pyroelectric signal as a function of the bias field at fixed temperatures and as a function of temperature for fixed bias fields was measured for different phases of the investigated AFLC material. A theoretical model describing the pyroelectric response in different phases of AFLC is given, and the experimental results are interpreted. The threshold fields for field induced phase transitions are determined. The type of field induced phase transition from the AF phase in particular is found to be dependent on the temperature within its range. The properties of an unusual ferrielectric phase existing between ferrielectric chiral smectic-C (SmC*) and antiferroelectric AF phases are studied in a great detail. The results confirm that this phase is one of the incommensurate phases, predicted by the axial next-nearest neighbor Ising model and Landau model for this temperature region. PMID:11088695

  20. Crystal structure and orbital-singlet state of Ag{sub x}VP{sub 2}O{sub 7}

    SciTech Connect

    Onoda, Masashige Sakamoto, Takuma

    2014-12-15

    The crystal structure and electronic properties of Ag{sub x}VP{sub 2}O{sub 7} with a wide composition range of 0.7≤x≤1 synthesized newly are explored through measurements of X-ray four-circle diffraction, electrical resistivity, and magnetization. This system is monoclinic with space group P2{sub 1}/c and the lattice constants for x=1 are a=7.3358(3) Å, b=8.0235(3) Å, c=9.5782(5) Å, β=111.940(4)°, and V=522.93(5) Å{sup 3}. The structure is described in terms of VO{sub 6} octahedra which are bridged with P{sub 2}O{sub 7} groups to form a three-dimensional network with the hexagonal tunnels that a pair of Ag ions apparently resides in. The crystal field of V ions is intermediate and the electron configuration has the orbital-singlet ground state with a gap of the order of 10 K to the doublet state. - Graphical abstract: (a) The temperature dependencies of inverse magnetic susceptibilities for Ag{sub x}VP{sub 2}O{sub 7} with x=0.7−1 and (b) the low-temperature susceptibilities. - Highlights: • Ag{sub x}VP{sub 2}O{sub 7} system with 0.7crystal structure and electronic properties are clarified. • The electron configuration has the orbital-singlet ground state. • The electron hopping and the V–O covalency are reduced significantly. • The Ag deficiency gives rise to the charge separation of V{sup 3+} and V{sup 5+}.

  1. Elastic Softening in HoFe2Al10 due to the Quadrupole Interaction under an Orthorhombic Crystal Electric Field

    NASA Astrophysics Data System (ADS)

    Kamikawa, Shuhei; Ishii, Isao; Noguchi, Yoshihito; Goto, Hiroki; Fujita, Takahiro K.; Nakagawa, Fumiya; Tanida, Hiroshi; Sera, Masafumi; Suzuki, Takashi

    2016-07-01

    To investigate 4f electronic states in HoFe2Al10 under an orthorhombic crystal electric field (CEF), we measured the specific heat, magnetic susceptibility, magnetization, and elastic modulus of single-crystalline samples. We found elastic softening of the transverse elastic moduli C55 and C66 below 20 and 130 K, respectively. With further decreasing temperature, C66 shows further elastic softening below 5 K. We observed two Schottky peaks in the specific heat at 2.2 and 20 K and small anisotropy of the magnetic susceptibility and magnetization in the paramagnetic region. By analyzing these experimental data, we obtained the CEF parameters of HoFe2Al10. From the analysis, we clarified that the softening of C55 and C66 originates from indirect quadrupole interactions of Ozx and Oxy, and propose that the overall CEF splitting is about 85 K.

  2. The Forum State of the Field Survey, 2008

    ERIC Educational Resources Information Center

    Kreutzer, Kim; Blessing, Charlotte; Rayner, Elise

    2009-01-01

    This paper presents the results from the Forum on Education Abroad's 2008 State of the Field Survey. The Survey provides information on the funding, cost and value of education abroad that will be useful to incorporate into strategic planning. While the Survey shows that there is concern about the rising costs of and relative lack of funding for…

  3. Crystal morphology and thermal EMF of pyrites in the western flank of Sukholozhsky gold ore field (Lenski ore area)

    NASA Astrophysics Data System (ADS)

    Gavrilov, R.; Pshenichkin, A.; Ponamarenko, M.; Abramova, R.

    2015-11-01

    The investigated crystal morphology and thermal EMF of pyrites in the western flank of Sukholozsky ore field showed that the pyrite crystals have cubic habitus with a weakly-developed face {210}. The crystal faces {100} and {210} are covered with multiple irregular-oriented growth laminae. It has been determined that pyrites have such a property as p-type conduction and embrace insignificant thermal EMF variations. The results of the research indicated the fact of upper ore zone erosion in the western flank of Sukholozhsky ore field and its area potential at depth.

  4. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. PMID:17410173

  5. Inversion of absorption anisotropy and bowing of crystal field splitting in wurtzite MgZnO

    NASA Astrophysics Data System (ADS)

    Neumann, M. D.; Esser, N.; Chauveau, J.-M.; Goldhahn, R.; Feneberg, M.

    2016-05-01

    The anisotropic optical properties of wurtzite MgxZn1-xO thin films (0 ≤x ≤0.45 ) grown on m-plane ZnO substrates by plasma assisted molecular beam epitaxy are studied using spectroscopic ellipsometry at room temperature. The data analysis provides the dielectric functions for electric field polarizations perpendicular and parallel to the optical axis. The splitting between the absorption edges of the two polarization directions decreases between x = 0 and x = 0.24, while an inverted absorption anisotropy is found at higher Mg content, indicating a sign change of the crystal field splitting Δcr as for the spin orbit parameter. The characteristic energies such as exciton binding energies and band gaps are determined from the analysis of the imaginary parts of the dielectric functions. In particular, these data reveal a bowing parameter of b =-283 meV for describing the compositional dependence of the crystal field splitting and indicate Δcr=-327 meV for wurtzite MgO. The inverted valence band ordering of ZnO ( Γ7-Γ9-Γ7 ) is found to be preserved with increasing Mg content, while the optical selection rules interchange.

  6. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  7. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal.

    PubMed

    Li, Changsheng; Shen, Xiaoli; Zeng, Rong

    2013-11-01

    A novel optical electric-field sensor is proposed and demonstrated in experiment by use of a single beta barium borate (β-BaB2O4, BBO) crystal. The optical sensing unit is only composed of one BBO crystal and two polarizers. An optical phase bias of 0.5π is provided by using natural birefringence in the BBO crystal itself. A small angle (e.g., 0.6°) between the sensing light beam and principal axis of the crystal is required in order to produce the above optical bias. Thus the BBO crystal is used as the electric-field-sensing element and quarter waveplate. The ac electric field in the range of (1.4-703.2) kV/m has been measured with measurement sensitivity of 1.39 mV/(kV/m) and nonlinear error of 0.6%. Compared with lithium niobate crystal used as an electric-field sensor, main advantages of the BBO crystal include higher measurement sensitivity, compact configuration, and no ferroelectric ringing effect. PMID:24216661

  8. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  9. Thermal conductivity of Glycerol's liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures

    NASA Astrophysics Data System (ADS)

    Andersson, Ove; Johari, G. P.

    2016-02-01

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κcrystal is 3.6-times the κliquid value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T-0.95; (ii) the ratio κliquid (p)/κliquid (0.1 MPa) is 1.45 GPa-1 at 280 K, which, unexpectedly, is about the same as κcrystal (p)/κcrystal (0.1 MPa) of 1.42 GPa-1 at 298 K; (iii) κglass is relatively insensitive to T but sensitive to the applied p (1.38 GPa-1 at 150 K); (iv) κglass-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κcrystal of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  10. Mean-field theory of echo state networks

    NASA Astrophysics Data System (ADS)

    Massar, Marc; Massar, Serge

    2013-04-01

    Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study “echo state networks,” networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion.

  11. Mean-field theory of echo state networks.

    PubMed

    Massar, Marc; Massar, Serge

    2013-04-01

    Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study "echo state networks," networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion. PMID:23679475

  12. Topological Growing of Laughlin States in Synthetic Gauge Fields

    NASA Astrophysics Data System (ADS)

    Grusdt, Fabian; Letscher, Fabian; Hafezi, Mohammad; Fleischhauer, Michael

    2014-10-01

    We suggest a scheme for the preparation of highly correlated Laughlin states in the presence of synthetic gauge fields, realizing an analogue of the fractional quantum Hall effect in photonic or atomic systems of interacting bosons. It is based on the idea of growing such states by adding weakly interacting composite fermions along with magnetic flux quanta one by one. The topologically protected Thouless pump ("Laughlin's argument") is used to create two localized flux quanta and the resulting hole excitation is subsequently filled by a single boson, which, together with one of the flux quanta, forms a composite fermion. Using our protocol, filling 1/2 Laughlin states can be grown with particle number N increasing linearly in time and strongly suppressed number fluctuations. To demonstrate the feasibility of our scheme, we consider two-dimensional lattices subject to effective magnetic fields and strong on-site interactions. We present numerical simulations of small lattice systems and also discuss the influence of losses.

  13. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  14. Fluoride Binding and Crystal-Field Analysis of Lanthanide Complexes of Tetrapicolyl-Appended Cyclen.

    PubMed

    Blackburn, Octavia A; Kenwright, Alan M; Jupp, Andrew R; Goicoechea, Jose M; Beer, Paul D; Faulkner, Stephen

    2016-06-20

    Lanthanide complexes of tetrapicolyl cyclen displayed remarkably high affinities for fluoride (log K≈5) in water, and were shown to form 1:1 complexes. The behaviour of these systems can be rationalised by changes to the magnitude of the crystal-field parameter, B20 . However, such changes are not invariably accompanied by a change in sign of this parameter: for early lanthanides, the N8 donor set with a coordinated axial water molecule ensures that the magnetic anisotropy has the opposite sense to that observed in the analogous dehydrated lanthanide complexes. PMID:27167830

  15. Oxygen content and crystal field effects in RBa sub 2 Cu sub 3 O sub x

    SciTech Connect

    Podlesnyak, A.A.; Mirmelstein, A.V.; Bobrovskii, V.I.; Zhadhin, I.L.; Blinovskov, Y.N.; Kozhenvnikov, V.L.; Goshchitskii, B.N. )

    1991-05-10

    Effects of crystal electrical field (CEF) in the orthorhombic phase of RBa{sub 2}Cu{sub 3}O{sub x} (R = Ho, Er; x = 6.9, 6.4) are investigated by inelastic magnetic neutron scattering (IMNS). The level schemes of the lowest multiplet of 4f-shell of the rare-earth ion are found. In this paper it is shown that the experimental scattering spectra and their variation depending on the oxygen content may be explained by spacial distribution of the negative charge within the unit cell.

  16. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  17. Tailoring of spectral response and spatial field distribution with corrugated photonic crystal slab.

    PubMed

    Gad, Raanan; Lau, Wah Tung; Nicholaou, Costa; Ahmadi, Soroosh; Sigal, Iliya; Levi, Ofer

    2015-08-15

    We report a new physical mechanism for simultaneous tuning of quality factors, spectral responses, and field distributions in photonic crystal slabs through removal of polarization mode degeneracy using a lattice of elliptical nano-holes. The quality factors in these structures can become higher than those obtained with much smaller circular nano-holes. Furthermore, the modes can be superimposed by either rotating or morphing the elliptical nano-holes into a corrugated grating. These findings will enable improved radiation-matter interaction in optical, microwave, and THZ frequencies along with enhanced opto-acoustic coupling. PMID:26274642

  18. Molecular simulations elucidate electric field actuation in swollen liquid crystal elastomers

    PubMed Central

    Skačej, Gregor; Zannoni, Claudio

    2012-01-01

    Swollen elastomer liquid crystals undergo significant deformations by application of an electric field perpendicular to their alignment axis, as shown in experiments by Urayama et al. [Urayama K, Honda S, Takigawa T (2006) Macromolecules 39:1943–1949]. Here we clarify this surprising effect at the molecular level using large-scale Monte Carlo simulations of an off-lattice model based on a soft Gay–Berne potential. We provide the internal change of molecular organization, as well as the key observables during the actuation cycle. PMID:22679288

  19. Molecular simulations elucidate electric field actuation in swollen liquid crystal elastomers.

    PubMed

    Skačej, Gregor; Zannoni, Claudio

    2012-06-26

    Swollen elastomer liquid crystals undergo significant deformations by application of an electric field perpendicular to their alignment axis, as shown in experiments by Urayama et al. [Urayama K, Honda S, Takigawa T (2006) Macromolecules 39:1943-1949]. Here we clarify this surprising effect at the molecular level using large-scale Monte Carlo simulations of an off-lattice model based on a soft Gay-Berne potential. We provide the internal change of molecular organization, as well as the key observables during the actuation cycle. PMID:22679288

  20. Epitaxial crystal growth and solid-state polymerization of piperonyl muconate on the {001} surface of KCl crystal for controlling polymer chain alignment.

    PubMed

    Onodera, Katsuya; Tanioku, Chiaki; Matsumoto, Akikazu

    2012-04-01

    We investigated the crystal growth of piperonyl (E,E)-muconate [bis(3,4-methylenedioxybenzyl) (E,E)-muconate, MDO] on inorganic crystalline substrates during vapor deposition for the control of polymer chain alignment by the subsequent solid-state photopolymerization of the MDO monomer thin films deposited on the substrate. We controlled the arrangement of the MDO molecules and the polymer chains produced on the substrate, depending on the lattice parameters of the substrate surfaces used. The epitaxial crystal growth of MDO on the {001} plane of a KCl single crystal was observed under the condition that the crystal lattice lengths of MDO agreed well with the specific space distance of the substrate; i.e., the KCl cubic crystal resulted in a d(110) value of 4.45 Å, which was very close to the value of the monomer stacking distance in the MDO crystal (d(s) = 4.43 Å). On the other hand, slightly large and too small d(110) values for KBr and NaCl, respectively, resulted in the less controlled and no epitaxial crystal growth of MDO. The irradiation of polarized UV light on the MDO thin-film crystal produced highly regulated polymer alignment in a specific direction on the KCl substrate. PMID:22476888

  1. The zero-field glassy ground state and field-induced ferromagnetic transition in (La₀.₄Pr₀.₆)₁.₂Sr₁.₈Mn₂O₇.

    PubMed

    Tackett, R; Lawes, G; Suryanarayanan, R; Apostu, M; Revcolevschi, A

    2011-04-20

    We have investigated glassy magnetic freezing in(La₀.₄Pr₀.₆)₁.₂Sr₁.₈Mn₂O₇ single crystals together with the field-induced transition to a metastable ferromagnetic phase using ac magnetic susceptibility and heat capacity measurements. The magnetization measurements show evidence for the development of a zero-field glassy ground state below 45 K along with a hysteretic, field-induced change in susceptibility associated with the transition to the ferromagnetic phase above 5 T. The heat capacity develops a clear peak at higher temperatures with the application of large magnetic fields, consistent with the development of a ferromagnetic order, while at low temperatures the Sommerfeld coefficient is monotonically reduced by an applied field, suggesting suppression of spin fluctuations. The heat capacity shows hysteretic behaviour, accompanied by a sharp decrease at a critical field, when held at fixed temperature, which does not recover on reducing the field back to zero. These measurements suggest that the zero-field ground state for (La₀.₄Pr₀.₆)₁.₂Sr₁.₈Mn₂O₇ consists of frozen disordered spin clusters, which develop into a metastable ferromagnetic state in modest magnetic fields. PMID:21460425

  2. Two-dimensional liquid crystalline growth within a phase-field-crystal model.

    PubMed

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings. PMID:26274192

  3. Two-dimensional liquid crystalline growth within a phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tang, Sai; Praetorius, Simon; Backofen, Rainer; Voigt, Axel; Yu, Yan-Mei; Wang, Jincheng

    2015-07-01

    By using a two-dimensional phase-field-crystal (PFC) model, the liquid crystalline growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from an isotropic phase is compared with that grown from a columnar or smectic-A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of the classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process, we analyze the topological structure of the nematic order, which starts from nucleation of +1/2 and -1/2 disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of +1 vortices surrounded by six satellite -1/2 disclinations. It is found that the orientational and the positional order do not evolve simultaneously; the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  4. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  5. Upper critical fields in a FeSe0.5Te0.5 superconducting single crystal

    NASA Astrophysics Data System (ADS)

    Velasco-Soto, D.; Rivera-Gómez, F. J.; Santillán-Rodríguez, C. R.; Sáenz-Hernández, R. J.; Botello-Zubiate, M. E.; Matutes Aquino, J. A.

    2013-05-01

    A single crystal with a nominal composition FeSe0.5Te0.5 was obtained by the Bridgman method. A quartz ampulla with the sample inside was vacuum-sealed and maintained at 1050 °C for 37 h to homogenize the sample. Subsequently, the quartz ampulla with the sample was moved with a speed of 2.2 mm/h to a furnace which was at 450 °C. X-ray diffraction confirmed the tetragonal structure of the grown single crystal with the cleavage plane corresponding to the ab plane. Resistance measurements were carried out with magnetic fields from 0 to 9 T, applied parallel to the c axis and ab plane, respectively. A zero-field critical temperature Tc = 14 K was determined. The upper critical field vs. temperature phase diagram was built for temperatures where the resistance drops to 90%, 50%, and 10% of the normal state resistance. The linear extrapolation to T = 0 K gave upper critical fields of 57.2, 51.8, and 46.0 T for Hǁc axis and 109.6, 95.5, and 80.9 T for Hǁab. Applying the Werthamer-Helfand-Hohenberg (WHH) theory, upper critical fields of 39.6, 35.9, and 31.8 T and coherence lengths of 28.8, 30.3, and 32.1 Å were obtained for Hǁc; while for Hǁab, upper critical fields of 51.3, 40.7, and 37.5 T and coherence lengths of 22.3, 26.7, and 31.5 Å were obtained. The value of μ0Hc2/kBTc calculated by the WHH theory exceeds the Pauli limit (1.84 T/K) indicating the unconventional nature of superconductivity. The activation energy U0 has two different rates of change with the applied magnetic field probably due to two different thermal activation mechanisms; the origin of which requires further investigation. A similar behavior is observed in the irreversibility lines.

  6. Electronic Energy-Level Structures, Optical Line Strengths, and Correlation Crystal-Field Interactions in NEODYMIUM(3+) and ERBIUM(3+) Crystalline Compounds.

    NASA Astrophysics Data System (ADS)

    Quagliano, John Romolo

    Energy-level state structures of Nd^ {3+} (4f^3) and Er^{3+} (4f^ {11}) electronic configurations were analyzed in a total of 13 distinct chemical systems. The 13 systems included seven crystalline hosts that contain Nd ^{3+} ions (four garnets, one nonahydrate, one hexachloride, and one hexabromide), and six that contain Er^{3+} ions (three garnets, one oxalate-bioxalate, one hexachloride, and one hexabromide). Single crystal absorption spectra (polarized and unpolarized) and optical intensity data have been acquired for neat (rm Nd(H_2O)_9) (CF _3rm SO_3)_3 at cryogenic temperatures over the UV to near-IR energy range. Single crystal polarized orthoaxial absorption, excitation, and emission experiments were performed on Er^{3+}-doped CsCdBr _3. Model Hamiltonians were developed and used to calculate lanthanide 4f^{rm N } electronic structures. These Hamiltonians were constructed and parametrized to represent both atomic and crystal-field interactions in various host materials. A Hamiltonian with atomic and first-order crystal-field operators gave a very good initial description of the energy-level structures, and a second-order correlation crystal-field (CCF) refinement produced excellent results for some multiplet manifolds that are not well characterized by the first -order (one-particle) crystal-field interactions alone. The ^2rm H(2)_{11/2} , ^2{F}(2)_ {5/2}, and ^2rm F(2) _{7/2} multiplet manifolds of Nd ^{3+} and the ^2rm H(2)_{9/2}, ^2H(2) _{11/2}, and ^4 rm G_{11/2} multiplet manifolds of Er^{3+} were markedly improved after a maximum of three CCF operators were added to the Hamiltonian. The studies showed that since the Nd^{3+} and Er ^{3+} ions share the same SLJ (Russell -Saunders) basis of atomic states, then their respective energy-level structures are sensitive to the same CCF operators. The magnitudes of the CCF interactions were found to be typically 10% of the first-order one-particle crystal-field interactions. The present work establishes a new

  7. Crystal structure of a group II intron in the pre-catalytic state

    SciTech Connect

    Chan, Russell T.; Robart, Aaron R.; Rajashankar, Kanagalaghatta R.; Pyle, Anna Marie; Toor, Navtej

    2012-12-10

    Group II introns are self-splicing catalytic RNAs that are thought to be ancestral to the spliceosome. Here we report the 3.65-{angstrom} crystal structure of the group II intron from Oceanobacillus iheyensis in the pre-catalytic state. The structure reveals the conformation of the 5' splice site in the catalytic core and represents the first structure of an intron prior to the first step of splicing.

  8. Direct mapping of local director field of nematic liquid crystals at the nano-scale

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Serra, Francesca; Yang, Shu; Kamien, Randall

    2015-03-01

    The director field in liquid crystals (LCs) has been characterized mainly via polarized optical microscopy, fluorescence confocal microscopy, and Raman spectroscopy, all of which are limited by optical wavelengths - from hundreds of nanometers to several micrometers. Since LC orientation cannot be resolved directly by these methods, theory is needed to interpret the local director field of LC alignment. In this work, we introduce a new approach to directly visualize the local director field of a nematic LC (NLC) at the nano-scale using scanning electron microscopy (SEM). A new type of NLC monomer bearing crosslinkable groups was designed and synthesized. It can be well-oriented at particle surfaces and patterned polymer substrates, including micron-sized silica colloids, porous membranes, micropillar arrays, and 1D channels. After carefully crosslinking, the molecular orientation of NLCs around the particles or within the patterns could be directly visualized by SEM, showing oriented nanofibers representing LC director from the fractured samples. Here, we could precisely resolve not only the local director field by this approach, but the defect structures of NLCs, including hedgehogs and line defects. The direct mapping of LC directors at the nanoscale using this method will improve our understanding of NLC local director field, and thus their manipulation and applications. More importantly, a theoretical interpretation will no longer be a necessity to resolve a new material system in this field.

  9. Evidence for topological surface states in metallic single crystals of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Barua, Sourabh; Rajeev, K. P.; Gupta, Anjan K.

    2015-01-01

    Bi2Te3 is a member of a new class of materials known as topological insulators which are supposed to be insulating in the interior and conducting on the surface. However, experimental verification of the conductive qualities of the surface states has been hindered by parallel bulk conductions. We report low temperature magnetotransport measurements on single crystal samples of Bi2Te3. We observe metallic character in our samples and large and linear magnetoresistance from 1.5 K to 290 K with prominent Shubnikov-de Haas (SdH) oscillations whose traces persist up to 20 K. Even though our samples are metallic, we are able to obtain a Berry phase close to the value of π, which is expected for Dirac fermions of the topological surface states. This indicates that we have obtained evidence for the topological surface states in metallic single crystals of Bi2Te3. Other physical measurements obtained from the analysis of the SdH oscillations are also in close agreement with those reported for the topological surface states. The linear magnetoresistance observed in our sample, which is considered as a signature of the Dirac fermions of the surface states, lends further credence to the existence of topological surface states.

  10. Density Functional Calculations of Surface States in Field-Effect-Doped C_60

    NASA Astrophysics Data System (ADS)

    Mozos, J. L.; Ordejón, P.; Martin, Richard M.

    2002-03-01

    We present density functional calculations using the SIESTA package[1] to determine the nature of the electron or hole states in the 2D metallic layers at the interface of C_60 crystals by field-effect doping. The purpose is to make realistic predictions for the nature of the states created in recent experiments[2], in which a continuous range of carrier densities has been created, leading to metallic behavior and superconductivity with transition temperatures reaching Tc ~ 117 K. Our conclusions are: 1) in C_60 the doped carriers are confined to the interface in an extremely thin layer; 2) the states are highly distorted from bulk-like states due to the high applied field; and 3) states near the Fermi energy are greatly affected by local molecular orientation. As a consequence of the localization and orientation dependence, we expect large effects of disorder and electron-electron interactions. [1] D. Sanchez-Portal, P. Ordejon, E. Artacho, and J. M. Soler, Int. Journ. of Quant. Chem. 65, 453 (1999). [2] J. H. Schon, C. Kloc, and B. Batlogg, Nature 408, 549 (2000); Science 293, 2432 (2001).

  11. Crystal structure of carbonmonoxy sickle hemoglobin in R-state conformation.

    PubMed

    Ghatge, Mohini S; Ahmed, Mostafa H; Omar, Abdel Sattar M; Pagare, Piyusha P; Rosef, Susan; Kellogg, Glen E; Abdulmalik, Osheiza; Safo, Martin K

    2016-06-01

    The fundamental pathophysiology of sickle cell disease is predicated by the polymerization of deoxygenated (T-state) sickle hemoglobin (Hb S) into fibers that distort red blood cells into the characteristic sickle shape. The crystal structure of deoxygenated Hb S (DeoxyHb S) and other studies suggest that the polymer is initiated by a primary interaction between the mutation βVal6 from one Hb S molecule, and a hydrophobic acceptor pocket formed by the residues βAla70, βPhe85 and βLeu88 of an adjacent located Hb S molecule. On the contrary, oxygenated or liganded Hb S does not polymerize or incorporate in the polymer. In this paper we present the crystal structure of carbonmonoxy-ligated sickle Hb (COHb S) in the quaternary classical R-state at 1.76Å. The overall structure and the pathological donor and acceptor environments of COHb S are similar to those of the isomorphous CO-ligated R-state normal Hb (COHb A), but differ significantly from DeoxyHb S as expected. More importantly, the packing of COHb S molecules does not show the typical pathological interaction between βVal6 and the βAla70, βPhe85 and βLeu88 hydrophobic acceptor pocket observed in DeoxyHb S crystal. The structural analysis of COHb S, COHb A and DeoxyHb S provides atomic level insight into why liganded hemoglobin does not form a polymer. PMID:27085422

  12. Solid-state syntheses and single-crystal characterizations of three tetravalent thorium and uranium silicates

    NASA Astrophysics Data System (ADS)

    Jin, Geng Bang; Soderholm, L.

    2015-01-01

    Colorless crystals of ThSiO4 (huttonite) (1) and (Ca0.5Na0.5)2NaThSi8O20 (2) have been synthesized by the solid-state reactions of ThO2, CaSiO3, and Na2WO4 at 1073 K. Green crystals of (Ca0.5Na0.5)2NaUSi8O20 (3) have been synthesized by the solid-state reactions of UO2, CaSiO3, and Na2WO4 at 1003 K. All three compounds have been characterized by single-crystal X-ray diffraction. Compound 1 adopts a monazite-type three-dimensional condensed structure, which is built from edge- and corner-shared ThO9 polyhedra and SiO4 tetrahedra. Compounds 2 and 3 are isostructural and they crystallize in a steacyite-type structure. The structure consists of discrete pseudocubic [Si8O20]8- polyanions, which are connected by An4+ cations into a three-dimensional framework. Each An atom coordinates to eight monodentate [Si8O20]8- moieties in a square antiprismatic geometry. Na+ and Ca2+ ions reside in the void within the framework. Raman spectra of 1, 2, and 3 were collected on single crystal samples. 1 displays more complex vibrational bands than thorite. Raman spectra of 2 and 3 are analogous with most of vibrational bands located at almost the same regions.

  13. Observation of high field DHVA-effect and induced magnetism in single crystal TiBe/sub 2/

    SciTech Connect

    van Deursen, A.P.J.; van Ruitenbeek, J.M.; Verhoef, W.A.; de Vroomen, A.R.; Smith, J.L.; de Groot, R.A.; Koelling, D.D.; Mueller, F.M.

    1981-01-01

    Recently much interest has been given to itinerant magnetism in cubic Laves phase or C15 materials. Primarily this stems from the discussion of the relationship of p-state pairing and ferromagnetism in ZrZn/sub 2/ by Enz and Matthias, and the possibility of triplet superconductivity. The most recent work in this field has focused on the isoelectronic, isostructural material TiBe/sub 2/, and the possibility that this material is metamagnetic. That TiBe/sub 2/ is close to some form of magnetic instability can be infered indirectly from the peaked nature of its density of states near the fermi level, but also from the observation of ferromagnetism in TiBe/sub 2-x/Cu/sub x/, when x is greater than about 0.15. In this paper a single crystal of pure TiBe/sub 2/ is considered in fields larger than 15 Tesla (T) and at a temperature of 1.3/sup 0/K.

  14. Enhanced mobility in organic field-effect transistors due to semiconductor/dielectric interface control and very thin single crystal

    NASA Astrophysics Data System (ADS)

    Dong, Ji; Yu, Peng; Atika Arabi, Syeda; Wang, Jiawei; He, Jun; Jiang, Chao

    2016-07-01

    A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a ‘seed-controlled’ pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm2 V‑1 s‑1—more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.

  15. Dynamic state of a crystal ahead of the sock-wave front

    NASA Astrophysics Data System (ADS)

    Mokhova, V. V.; Volkov, D. A.; Til'kunov, A. V.; Orlov, N. I.

    2015-08-01

    Results of X-ray diffraction studies of shock-compressed single crystals indicate the rotation of crystallites by ˜3° ahead of the shock-wave front both in the plastic-flow and elastic-compression regions. Two dynamic states of the lattice have been detected. The brightness of reflections evolves with time. The position of the first dynamic reflection coincides with the position of a reflection from the initial structure. The second reflection corresponds to an equilibrium-compressed structure. Possible reasons of the formation of these two states of the lattice have been discussed.

  16. Determination of forced convection parameters by interferometric imaging of the concentration field during growth of KDP crystals

    NASA Astrophysics Data System (ADS)

    Verma, Sunil; Muralidhar, K.

    2011-07-01

    Growth of a potassium dihydrogen phosphate (KDP) crystal from its aqueous solution has been considered under forced convection conditions. The KDP crystal is grown in a conventional top hanging geometry. Forced convection conditions are created by rotating the crystal about a vertical axis. The rotational RPM is varied in a cycle, creating an accelerated rotation (AR) paradigm. The effect of varying the rotational RPM on the concentration field around the crystal was investigated. Mach-Zehnder interferometry was adopted as an optical technique to image the evolving concentration fields. Six different experiments were performed to obtain the specific set of time periods and rotation rates of the acceleration cycle that result in a uniform concentration field around the growing crystal. The Reynolds number, an index of the strength of forced convection, was optimized through the experiments. The optimized parameters of the accelerated rotation cycle were found to be as follows: maximum rotation rate of 32 RPM, spin up period=40 s, spin down period=40 s, steady period=40 s, and stationary period=40 s. The parametric study further revealed that concentration was highly sensitive to the maximum rotation rate adopted during the AR cycle. It did not depend crucially on the time periods that could be varied by as much as ±25% around the respective average values. Finally, a KDP crystal was grown using the optimized forced convection parameters and the crystal quality was found to be good.

  17. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    NASA Astrophysics Data System (ADS)

    Gudyma, Iu.; Maksymov, A.; Spinu, L.

    2015-10-01

    The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems' bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  18. Reconstruction of crystal band structure from the power spectrum of strong-field generated high harmonics

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ming; Ho, Tak-San; Chu, Shih-I.

    2016-05-01

    The study of high harmonic generation in solid driven by intense laser fields is a subject of much current interest. Recently we introduce a new optimization method to directly reconstruct the band structure of the crystal from the power spectrum of strong-field generated high harmonics. Without loss of generality, the reconstruction is formulated for a one-dimensional single band model as a minimization problem and solved by a derivative-free unconstrained optimization algorithm-NEWUOA. The method can be readily generalized to treat multi-band problems. Numerical simulations are presented to demonstrate the applicability of the method, and the reconstructed band structure is found to be in excellent agreement with the exact one. It is also shown that our optimization method remains robust and efficient even starting from the poorly guessed band structure.

  19. Optical properties and electric field enhancement in cholesteric liquid crystal containing different periodicities

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Matsuhisa, Yuko; Yoshida, Hiroyuki; Yoshino, Katsumi; Ozaki, Masanori

    2006-07-01

    We study a defect mode in a one-dimensional photonic band gap of a cholesteric liquid crystal (CLC) consisting of two helicoidal periodicities. The optical properties of this CLC are analyzed using 4×4 transfer matrix and finite difference time domain (FDTD) methods. In calculated transmission spectra of this CLC, one of the defect modes always appears at the band edge wavelength of the inner CLC having a different helix to that of two sides of CLCs. Furthermore, the electric field analysis of this CLC has also been demonstrated by the FDTD method. At the defect mode wavelength, the electric field enhancement is found to be significant larger than a normal CLC.

  20. Interaction of intrinsic point defects with dislocation stress fields in hcp zirconium crystal

    SciTech Connect

    Chernov, V. M. Chulkin, D. A.; Sivak, A. B.

    2010-01-15

    The crystallographic, energetic, and kinetic characteristics of intrinsic point defects (vacancy-self-interstitial atom) in stable, metastable, and saddle configurations in hcp zirconium crystal have been calculated by the molecular-statics method. The spatial dependences of the interaction energies of intrinsic point defects and stress fields of rectilinear dislocations with Burgers vectors of 1/3[112 bar 0], 1/3 [112 bar 3], and [0001] have been found within the anisotropic linear theory of elasticity. The most likely trajectories of intrinsic point defects in dislocation stress fields (trajectories with minimum energy barriers for motion) have been constructed. Such trajectories result in dislocation only for the interaction of self-interstitial atoms with an edge dislocation that has a Burgers vector of 1/3 [112 bar 3].

  1. Transferred large area single crystal MoS2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; McCulloch, William; Lee, Edwin W.; Ma, Lu; Krishnamoorthy, Sriram; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2015-11-01

    Transfer of epitaxial, two-dimensional (2D) MoS2 on sapphire grown via synthetic approaches is a prerequisite for practical device applications. We report centimeter-scale, single crystal, synthesized MoS2 field effect transistors (FETs) transferred onto SiO2/Si substrates, with a field-effect mobility of 4.5 cm2 V-1 s-1, which is among the highest mobility values reported for the transferred large-area MoS2 transistors. We demonstrate simple and clean transfer of large-area MoS2 films using deionized water, which can effectively avoid chemical contamination. The transfer method reported here allows standard i-line stepper lithography process to realize multiple devices over the entire film area.

  2. Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres.

    PubMed

    Liu, Z; Wen, X D; Wu, X L; Gao, Y J; Chen, H T; Zhu, J; Chu, P K

    2009-07-01

    Novel uniform-sized, core-shell ZnO mesocrystal microspheres have been synthesized on a large scale using a facile one-pot hydrothermal method in the presence of the water-soluble polymer poly(sodium 4-styrenesulfonate). The mesocrystal forms via a nonclassical crystallization process. The intrinsic dipole field introduced by the nanoplatelets as a result of selective adsorption of the polyelectrolyte on some polar surfaces of the nanoparticles acts as the driving force. In addition, it plays an important role throughout the mesoscale assembly process from the creation of the bimesocrystalline core to the apple-like structure and finally the microsphere. Our calculation based on a dipole model confirms the dipole-field-driven mechanism forming the apple-like structure. PMID:19518047

  3. Long-wavelength properties of phase-field-crystal models with second-order dynamics

    NASA Astrophysics Data System (ADS)

    Heinonen, V.; Achim, C. V.; Ala-Nissila, T.

    2016-05-01

    The phase-field-crystal (PFC) approach extends the notion of phase-field models by describing the topology of the microscopic structure of a crystalline material. One of the consequences is that local variation of the interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission. To this end, several different models with fast dynamics have been proposed. In this article we use the amplitude expansion of the PFC model to compare the recently proposed hydrodynamic PFC amplitude model with two simpler models with fast dynamics. We compare these different models analytically and numerically. The results suggest that in order to have proper relaxation of elastic excitations, the full hydrodynamical description of the PFC amplitudes is required.

  4. Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state

    PubMed Central

    Barros, Tiago; Royant, Antoine; Standfuss, Jörg; Dreuw, Andreas; Kühlbrandt, Werner

    2009-01-01

    Plants dissipate excess excitation energy as heat by non-photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC-II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC-II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC-II emit strong, orientation-dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC-II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC-II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy-transmitting state of LHC-II. We conclude that quenching of excitation energy in the light-harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex. PMID:19131972

  5. Electrostimulation of the magnetoplastic effect in LiF crystals by an "internal" electric field induced during indentation

    NASA Astrophysics Data System (ADS)

    Galustashvili, M. V.; Driaev, D. G.; Akopov, F. Kh.; Tsakadze, S. D.

    2013-08-01

    Indented LiF crystals demonstrate a change in the length of the dislocation rosette rays during their exposure to jointly acting dc magnetic and electric fields. It is shown that magnetic field with induction B = 1 T causes the electrostimulation or electrosuppression depending on the magnitude and direction of the external electric field with respect to the "internal" electric field induced by the charge transfer due to dislocations moving during the indentation.

  6. Deposition and field emission properties of highly crystallized silicon films on aluminum-coated polyethylene napthalate

    NASA Astrophysics Data System (ADS)

    Li, Junshuai; Wang, Jinxiao; Yin, Min; Gao, Pingqi; He, Deyan; Chen, Qiang; Shirai, Hajime

    2007-08-01

    Highly crystallized silicon films were deposited on aluminum-coated polyethylene napthalate (PEN) substrates by inductively coupled plasma (ICP-) chemical vapor deposition (CVD) at room temperature. The films with uniform grains about 50 nm have the (1 1 1) preferred orientation. By studying the relation of the silicon film crystallinity to the flow ratio of SiH 4 to H 2, it was found that the interaction between precursors and aluminum layers plays an important role in the crystallization process. The surface roughness of the resultant films was analyzed by atomic force microscopy (AFM). The results reveal that the roughness of the silicon films on aluminum-coated PEN substrates, compared to the films on bare PEN substrates, is dependent on the film phase rather than the substrate morphology. The measurement of field electron emission of the crystalline silicon film indicates that the threshold field is about 8.3 V/μm and the emission is reproducible in the emission region.

  7. Phase-field crystal model for a diamond-cubic structure.

    PubMed

    Chan, V W L; Pisutha-Arnond, N; Thornton, K

    2015-05-01

    We present a structural phase-field crystal model [M. Greenwood et al., Phys. Rev. Lett. 105, 045702 (2010)] that yields a stable dc structure. The stabilization of a dc structure is accomplished by constructing a two-body direct correlation function (DCF) approximated by a combination of two Gaussian functions in Fourier space. A phase diagram containing a dc-liquid phase coexistence region is calculated for this model. We examine the energies of solid-liquid interfaces with normals along the [100], [110], and [111] directions. The dependence of the interfacial energy on a temperature parameter, which controls the heights of the peaks in the two-body DCF, is described by a Gaussian function. Furthermore, the dependence of the interfacial energy on the peak widths of the two-body DCF, which controls the excess energy associated with interfaces, defects, and strain, is described by an inverse power law. These relationships can be used to parametrize the phase-field crystal model for the dc structure to match solid-liquid interfacial energies to those measured experimentally or calculated from atomistic simulations. PMID:26066277

  8. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling

    PubMed Central

    Reyes-Martinez, Marcos A.; Crosby, Alfred J.; Briseno, Alejandro L.

    2015-01-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure–function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices. PMID:25939864

  9. Modified phase-field-crystal model for solid-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k =km will enhance the stability of the ordered phase, while the increase of peak height at k =0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k =km will decrease the interface width and the velocity coefficient C , but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.

  10. Modified phase-field-crystal model for solid-liquid phase transitions.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Tang, Sai

    2015-07-01

    A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure. PMID:26274309

  11. Structural phase field crystal approach for modeling graphene and other two-dimensional structures

    NASA Astrophysics Data System (ADS)

    Seymour, Matthew; Provatas, Nikolas

    2016-01-01

    This paper introduces a new structural phase field crystal (PFC) type model that expands the PFC methodology to a wider class of structurally complex crystal structures than previously possible. Specifically, our approach allows for stabilization of graphene, as well as its coexistence with a disordered phase. It also preserves the ability to model the usual triangular and square lattices previously reported in two-dimensional (2D) PFC studies. Our approach is guided by the formalism of classical field theory, wherein the free-energy functional is expanded to third order in PFC density correlations. It differs from previous PFC approaches in two main features. First, it utilizes a hard-sphere repulsion to describe two-point correlations. Second, and more important, is that it uses a rotationally invariant three-point correlation function that provides a unified way to control the formation of crystalline structures that can be described by a specific bond angle, such as graphene, triangular, or square symmetries. Our approach retains much of the computational simplicity of previous PFC models and allows for efficient simulation of nucleation and growth of polycrystalline 2D materials. In preparation for future applications, this paper details the mathematical derivation of the model and its equilibrium properties and uses dynamical simulations to demonstrate defect structures produced by the model.

  12. Flow-induced Crystallization of Long Chain Aliphatic Polyamides under a Complex Flow Field

    NASA Astrophysics Data System (ADS)

    Dong, Xia; Gao, Yunyun; Wang, Lili; Wang, Dujin

    The present work deals with the flow-induced multiple orientations and crystallization structure of polymer melts under a complex flow field. This complex flow field is characteristic of the consistent coupling of extensional ``pulse'' and closely followed shear flow in a narrow channel. Utilizing an ingenious combination of an advanced micro-injection device and long chain aliphatic polyamides, the flow-induced crystallization morphology was well preserved for ex-situ synchrotron micro-focused wide angle X-ray scattering as well as small angle X-ray scattering. The experimental results clearly indicate that the effect of extensional pulse on the polymer melt is restrained and further diminished due to either the transverse tumble of fountain flow or the rapid retraction of stretched high molecular weight tails. However, the residual shish-kebab structures in the core layer of the far-end of channel suggest that the effect of extensional pulse should be considered in the small-scaled geometries or under the high strain rate condition. The authors thank the financial support from MOST (2013BAE02B02, 2014CB643600) and NSFC(21574140).

  13. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling.

    PubMed

    Reyes-Martinez, Marcos A; Crosby, Alfred J; Briseno, Alejandro L

    2015-01-01

    With the impending surge of flexible organic electronic technologies, it has become essential to understand how mechanical deformation affects the electrical performance of organic thin-film devices. Organic single crystals are ideal for the systematic study of strain effects on electrical properties without being concerned about grain boundaries and other defects. Here we investigate how the deformation affects the field-effect mobility of single crystals of the benchmark semiconductor rubrene. The wrinkling instability is used to apply local strains of different magnitudes along the conducting channel in field-effect transistors. We discover that the mobility changes as dictated by the net strain at the dielectric/semiconductor interface. We propose a model based on the plate bending theory to quantify the net strain in wrinkled transistors and predict the change in mobility. These contributions represent a significant step forward in structure-function relationships in organic semiconductors, critical for the development of the next generation of flexible electronic devices. PMID:25939864

  14. Single molecule spectroscopy of conjugated polymer chains in an electric field-aligned liquid crystal.

    PubMed

    Chang, Wei-Shun; Link, Stephan; Yethiraj, Arun; Barbara, Paul F

    2008-01-17

    Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media. PMID:17975912

  15. Field-driven dynamics of microcapillaries filled with nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fu, Fred; Khayyatzadeh, Pouya; Abukhdeir, Nasser M.

    Polymer-dispersed liquid crystal (PDLC) composites have long been a focus of study for their unique electro-optical properties and the feasibility of manufacturing them on a large scale, resulting in applications such as switchable windows. LC domains within PDLCs are typically spheroidal, as opposed to rectangular in LCD technology, and thus exhibit substantially different behaviour in the presence of an external field. In this work, continuum simulations were performed in order to capture the complex formation and electric field-driven switching dynamics of approximations of PDLC domains. A simplified elliptic cylinder (microcapillary) geometry is used and the effects of varying aspect ratio, surface anchoring, and external field strength were studied using the Landau-de Gennes model. The observed nematic formation and reorientation dynamics were found to be governed by the presence and motion of defects within the domain. Aspect ratio was found to strongly influence domain texture by providing regions of high curvature to which defects are attracted. Simulations also predict the presence of a geometry-controlled transition from nematic order enhanced by an external field (low aspect ratio) to nematic order frustrated by an external field (high aspect ratio). This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  16. Motion of polymer cholesteric liquid crystal flakes in an electric field

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Zoriana

    Polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid can be manipulated with an electric field. Controlling a flake's orientation provides the opportunity to change and control the amount of selective reflection from the flake surface. Flake motion results from charge accumulation and an induced dipole moment established due to Maxwell-Wagner polarization. The type of flake behavior, whether random motion or uniform reorientation, depends upon the dielectric properties of the host fluid, which in turn dictate whether a DC or an AC electric field must be applied. PCLC flakes suspended in highly dielectric silicone oil host fluids tend to move randomly in the presence of a DC electric field, and no motion is seen in AC fields. Flakes suspended in a moderately conductive host fluid reorient 90° in the presence of an AC field within a specific frequency range. The flake shape and size are also important parameters that need to be controlled in order to produce uniform motion. Several methods for patterning flakes were investigated and identical square flakes were produced. Square PCLC flakes (80 mum sides) suspended in propylene carbonate reorient in 400 ms when a 40mVrms/mum field at 70 Hz is applied to the test device. Theoretical modeling supported experimental observations well, particularly in identifying the inverse quadratic dependence on the applied electric field and the electric field frequency dependence that is governed by the host fluid conductivity. Future goals and suggested experiments are provided, as well as an explanation and comparison of possible commercial applications for PCLC flakes. This research has resulted in one patent application and a series of invention disclosures that could place this research group and any industrial collaborators in a strong position to pursue commercial applications, particularly in the area of displays, and more specifically, electronic paper.

  17. A three-dimensional phase field model coupled with lattice kinetics solver for modeling crystal growth in furnaces with accelerated crucible rotation and traveling magnetic field

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie

    2014-11-01

    In this study, which builds on other related work, we present a new three-dimensional numerical model for crystal growth in a vertical solidification system. This model accounts for buoyancy, accelerated crucible rotation technique (ACRT), and traveling magnetic field (TMF) induced convective flow and their effect on crystal growth and the chemical component's transport process. The evolution of the crystal growth interface is simulated using the phase field method. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. A one-way coupled concentration transport model is used to simulate the component fraction variation in both the liquid and solid phases, which can be used to check the quality of the crystal growth.

  18. Relativistic Killingbeck energy states under external magnetic fields

    NASA Astrophysics Data System (ADS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S. M.

    2016-07-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states.

  19. Isomeric state in {sup 53}Co: A mean field analysis

    SciTech Connect

    Patra, S. K.; Bhat, F. H.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-04-15

    We study the ground and the first excited intrinsic states of {sup 53}Co and its mirror nucleus {sup 53}Fe, within the frameworks of the relativistic and nonrelativistic mean field formalisms. The analysis of the single-particle energy spectra of these nuclei show a competition of spins 1/2{sup -} and 3/2{sup -} in a low-lying excited state, which agrees well with the recent experimental observation [D. Rudolph et al., Eur. Phys. J. A 36, 131 (2008)] of spin and parity J{sup {pi}}=3/2{sup -} for the isomeric configuration in {sup 53}Co.

  20. Production of number states of the electomagnetic field

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Rajagopal, A. K.

    1989-04-01

    It has been demonstrated recently that it is possible to generate a pure number state, or Fock state, of the electromagnetic field in a resonant cavity when a ``micromaser'' is operated under the appropriate conditions. This prospect is examined here by a direct analysis of the equation for the density-matrix-governing operation of the lossless micromaser, without having to solve the equation or perform numerical analyses. This model micromaser affords a unique example of an open quantum system whose von Neumann entropy may increase at first, but must subsequently vanish.