Science.gov

Sample records for crystal field

  1. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  2. Crystal field and magnetic properties

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at theta = 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) x 10 to the -6th Weber m/kg Tesla. The saturation moment is 3.84 + or - 1 - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is on the order of 160 to 180 K.

  3. Crystal-field effects in fluoride crystals for optical refrigeration

    SciTech Connect

    Hehlen, Markus P

    2010-01-01

    The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass. The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts

  4. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  5. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  6. Consistent Hydrodynamics for Phase Field Crystals.

    PubMed

    Heinonen, V; Achim, C V; Kosterlitz, J M; Ying, See-Chen; Lowengrub, J; Ala-Nissila, T

    2016-01-15

    We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission. PMID:26824543

  7. Phase-Field Simulations of Crystal Growth

    NASA Astrophysics Data System (ADS)

    Plapp, Mathis

    2010-07-01

    This course gives an elementary introduction to the phase-field method and to its applications for the modeling of crystal growth. Two different interpretations of the phase-field variable are given and discussed. It can be seen as a physical order parameter that characterizes a phase transition, or as a smoothed indicator function that tracks domain boundaries. Elementary phase-field models for solidification and epitaxial growth are presented and are applied to the dendritic growth of a pure substance and the step-flow growth on a vicinal surface.

  8. Phase-Field Crystals with Elastic Interactions

    SciTech Connect

    Stefanovic, Peter; Provatas, Nikolas; Haataja, Mikko

    2006-06-09

    We report on a novel extension of the recently introduced phase-field crystal (PFC) method [Elder et al., Phys. Rev. Lett. 88, 245701 (2002)], which incorporates elastic interactions as well as crystal plasticity and diffusive dynamics. In our model, elastic interactions are mediated through wave modes that propagate on time scales many orders of magnitude slower than atomic vibrations but still much faster than diffusive time scales. This allows us to preserve the quintessential advantage of the PFC model: the ability to simulate atomic-scale interactions and dynamics on time scales many orders of magnitude longer than characteristic vibrational time scales. We demonstrate the two different modes of propagation in our model and show that simulations of grain growth and elastoplastic deformation are consistent with the microstructural properties of nanocrystals.

  9. Oxidation and crystal field effects in uranium

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Yu, S.-W.; Booth, C. H.; Tyliszczak, T.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Bagus, P. S.

    2015-07-01

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (U O2) , uranium trioxide (U O3) , and uranium tetrafluoride (U F4) . A discussion of the role of nonspherical perturbations, i.e., crystal or ligand field effects, will be presented.

  10. Oxidation and crystal field effects in uranium

    SciTech Connect

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  11. Effects of magnetic fields on dissolution of arthritis causing crystals

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Iwasaka, M.

    2015-05-01

    The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.

  12. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  13. Crystal growth under microgravity conditions with using of magnetic fields

    NASA Astrophysics Data System (ADS)

    Feonychev, A.; Bondareva, N.

    The peculiarities of melt flows and crystal growth by the Bridgman and floating zone methods aboard spacecrafts under the action of steady axial or rotating magnetic field are considered. Steady magnetic field can minimize adverse effect of residual accelerations and vibrations on dopant segregation in crystals growing by the Bridgman method but it requires using strong magnetic fields, which induces specific oscillations. Under strong convection in terrestrial conditions steady magnetic field gives positive effect. Under growth of small-sized crystals by the floating zone method in microgravity conditions an use of steady magnetic field brings into dramatic increase of radial segregation due to convective vortex to free fluid surface. The flows being created by rotating magnetic field and resultant under combination of Marangoni convection with rotating magnetic field were studied for wide range of parameters including the regimes of oscillatory (turbulent) convection. Mathematical model and computer program was tested by published results of two experiments. The dependence of transition from laminar to oscillatory flow was obtained for different boundary conditions, geometric parameters of fluid and intensity of magnetic field. Specific oscillations with very low frequency and oscillations of the beating type had been discovered under the action rotating magnetic field on Marangoni convection. The mutual influence of rotating magnetic field and thermocapillary convection on flow stability was noted. Use of rotating magnetic field under crystal growth by floating zone method leads to reduction of azimuth velocity which is responsible for origin of oscillatory convection and striation of crystals. It was shown on concrete examples that there is a possibility to reduce radial segregation under optimization of rotating velocity and intensity of magnetic field. For the Bridgman method (in general for ampoule methods of crystal growth), the use of rotating magnetic

  14. Energy levels fitting and crystal-field calculations of Nd3+ doped in GYSGG crystal

    NASA Astrophysics Data System (ADS)

    Gao, Jinyun; Zhang, Qingli; Sun, Dunlu; Luo, Jianqiao; Liu, Wenpeng; Yin, Shaotang

    2012-10-01

    The single crystal Nd3+-doped in GdY2Sc2Ga3O12 (Nd3+:GYSGG) was grown by Czochralski method successfully, and its absorption spectra was analyzed in a wider spectral wavelength range at 7.6 K and 300 K, respectively. The free-ions and crystal-field parameters were fitted to the experimental energy levels at 7.6 K and 300 K with the root mean square deviation of 11.25 and 12.48 cm-1, respectively. According to the crystal-field calculations, 116 levels of Nd3+ at 7.6 K and 114 levels of Nd3+ at 300 K were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Nd3+:GSGG and Nd3+:YSAG. The results indicated that the free-ions parameters are similar to those of the Nd3+ in GYSGG, GSGG and YSAG crystals, and the crystal-field interaction of GSGG and YSAG is stronger than that of GYSGG, which results in the dual-wavelength properties of Nd3+:GYSGG crystal.

  15. Electric-field-assisted convective assembly of colloidal crystal coatings.

    PubMed

    Kleinert, Jairus; Kim, Sejong; Velev, Orlin D

    2010-06-15

    A new technique that combines evaporative convective deposition of colloidal crystal coatings with an electric field to achieve more rapid assembly and reduce the defects in the crystal structure is reported. When an ac voltage is applied across the particle suspension and the substrate in the convective assembly process, a longer film spreads from the meniscus by the electrowetting-on-dielectric (EWOD) effect. The data suggest that the EWOD-increased liquid surface area results in increased evaporation-driven particle flux and crystal assembly that is up to five times more rapid. The extended drying film also provides more time for particle rearrangement before the structure becomes fixed, resulting in formation of crystal domains an order of magnitude larger than those deposited by convective assembly alone. The results demonstrate that EWOD is a facile tool for controlling particle assembly processes in wetting films. The technique could be used in improved large-scale colloidal crystal coating processes. PMID:20465234

  16. Crystal field spectra of lunar pyroxenes.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Abu-Eid, R. M.; Huggins, F. E.

    1972-01-01

    Absorption spectra in the visible and near infrared regions have been obtained for pyroxene single crystals in rocks from the Apollo 11, 12, 14, and 15 missions. The polarized spectra are compared with those obtained from terrestrial calcic clinopyroxenes, subcalcic augites, pigeonites, and orthopyroxenes. The lunar pyroxenes contain several broad, intense absorption bands in the near infrared, the positions of which are related to bulk composition, Fe(2+) site occupancy and structure type of the pyroxene. The visible spectra contain several sharp, weak peaks mainly due to spin-forbidden transitions in Fe(2+). Additional weak bands in this region in Apollo 11 pyroxenes are attributed to Ti(3+) ions. Spectral features from Fe(3+), Mn(2+), Cr(3+), and Cr(2+) were not observed.

  17. Magnetic Field Applications in Semiconductor Crystal Growth and Metallurgy

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan; Grugel, Richard; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts, is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, results of experiments with mixing metallic alloys in long ampoules using TMF is presented

  18. Electromagnetic Field Effects in Semiconductor Crystal Growth

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S.

    1996-01-01

    This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.

  19. Ferromagnetic Switching of Knotted Vector Fields in Liquid Crystal Colloids.

    PubMed

    Zhang, Qiaoxuan; Ackerman, Paul J; Liu, Qingkun; Smalyukh, Ivan I

    2015-08-28

    We experimentally realize polydomain and monodomain chiral ferromagnetic liquid crystal colloids that exhibit solitonic and knotted vector field configurations. Formed by dispersions of ferromagnetic nanoplatelets in chiral nematic liquid crystals, these colloidal ferromagnets exhibit spontaneous long-range alignment of magnetic dipole moments of individual platelets, giving rise to a continuum of the magnetization field M(r). Competing effects of surface confinement and chirality prompt spontaneous formation and enable the optical generation of localized twisted solitonic structures with double-twist tubes and torus knots of M(r), which exhibit a strong sensitivity to the direction of weak magnetic fields ∼1  mT. Numerical modeling, implemented through free energy minimization to arrive at a field-dependent three-dimensional M(r), shows a good agreement with experiments and provides insights into the torus knot topology of observed field configurations and the corresponding physical underpinnings. PMID:26371682

  20. Control over colloidal crystallization by shear and electric fields

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.

    2007-05-01

    We used shear flow and an electric field to control colloidal crystallization. The structures were examined in situ with confocal microscopy. For experiments under shear, a new parallel plate shear cell was designed. It had a zero-velocity plane that was stationary with respect to the microscope. The plates were microscopy slides of a few square centimeters. They both had a maximum travel of 1 cm and for the systems that we study an oscillatory shear with such a large amplitude can be regarded as a continuous shear. The gap width was variable between 20- 200 m. The plates were parallel within 1-2 m. The flow profile of a dilute suspension was linear, but that of a crystallizing dispersion appeared to be non-linear. At the walls a sliding layer structure formed of which the local viscosity was 1.5 times smaller than that of the liquid-like structure in the middle of the gap. At low shear rates hexagonal layers of a crystal showed a zigzag motion. We also examined shear melting and crystallization. Shear melting appeared to be a local process in which the local order sometimes increased and sometimes decreased while the average order decreased. Shear induced crystallization occurred uniformly over the sample and the order increased monotonously. By spin coating colloidal crystalline films were fabricated that consisted of randomly stacked hexagonal layers. The structures could be made permanent by using a dispersing medium that could be polymerized. The interparticle spacing was not fixed, but probably depended subtly on the surface charge of the particles and the ionic strength of the medium. Different from crystals formed by sedimentation, spin coated crystals were crystalline to the top. This is one of the indications that crystal formation started at the air interface with a 2D layer that grew into a 3D multilayer structure while it was sedimenting. From these spin coated crystals freestanding colloidal crystalline films could be made. Without crack

  1. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  2. Tailor-made force fields for crystal-structure prediction.

    PubMed

    Neumann, Marcus A

    2008-08-14

    A general procedure is presented to derive a complete set of force-field parameters for flexible molecules in the crystalline state on a case-by-case basis. The force-field parameters are fitted to the electrostatic potential as well as to accurate energies and forces generated by means of a hybrid method that combines solid-state density functional theory (DFT) calculations with an empirical van der Waals correction. All DFT calculations are carried out with the VASP program. The mathematical structure of the force field, the generation of reference data, the choice of the figure of merit, the optimization algorithm, and the parameter-refinement strategy are discussed in detail. The approach is applied to cyclohexane-1,4-dione, a small flexible ring. The tailor-made force field obtained for cyclohexane-1,4-dione is used to search for low-energy crystal packings in all 230 space groups with one molecule per asymmetric unit, and the most stable crystal structures are reoptimized in a second step with the hybrid method. The experimental crystal structure is found as the most stable predicted crystal structure both with the tailor-made force field and the hybrid method. The same methodology has also been applied successfully to the four compounds of the fourth CCDC blind test on crystal-structure prediction. For the five aforementioned compounds, the root-mean-square deviations between lattice energies calculated with the tailor-made force fields and the hybrid method range from 0.024 to 0.053 kcal/mol per atom around an average value of 0.034 kcal/mol per atom. PMID:18642947

  3. Birefringence of the antiferromagnetic crystals linear in a magnetic field

    NASA Astrophysics Data System (ADS)

    Eremenko, V. V.; Kharchenko, N. F.; Beliy, L. I.; Tutakina, O. P.

    1980-01-01

    The new linear magneto-optical effect-birefringence-of a linear polarized light which is directly proportional to the magnetic field strength has been observed. This effect is permitted in crystals which allow piezo-magnetic properties. One was studied in antiferromagnet CoF 2 and CoCO 3 for the longitudinal geometry of an experiment.

  4. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  5. Field Stability of Piezoelectric Shear Properties in PIN-PMN-PT Crystals Under Large Drive Field

    PubMed Central

    Zhang, Shujun; Li, Fei; Luo, Jun; Xia, Ru; Hackenberger, Wesley; Shrout, Thomas R.

    2013-01-01

    The coercive fields (EC) of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ternary single crystals were found to be 5 kV/cm, double the value of binary Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystals, further increased to 6 to 9 kV/cm using Mn modifications. In addition to an increased EC, the acceptor modification resulted in the developed internal bias (Eint), on the order of ~1 kV/cm. The piezoelectric shear properties of unmodified and Mn-modified PIN-PMN-PT crystals with various domain configurations were investigated. The shear piezoelectric coefficients and electromechanical coupling factors for different domain configurations were found to be >2000 pC/N and >0.85, respectively, with slightly reduced properties observed in Mn-modified tetragonal crystals. Fatigue/cycling tests performed on shear-mode samples as a function of ac drive field level demonstrated that the allowable ac field levels (the maximum applied ac field before the occurrence of depolarization) were only ~2 kV/cm for unmodified crystals, less than half of their coercive field. Allowable ac drive levels were on the order of 4 to 6 kV/cm for Mn-modified crystals with rhombohedral/orthorhombic phase, further increased to 5 to 8 kV/cm in tetragonal crystals, because of their higher coercive fields. It is of particular interest that the allowable ac drive field level for Mn-modified crystals was found to be ≥60% of their coercive fields, because of the developed Eint, induced by the acceptor-oxygen vacancy defect dipoles. PMID:21342812

  6. TOPICAL REVIEW: Organic field-effect transistors using single crystals

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo; Takeya, Jun

    2009-04-01

    Organic field-effect transistors using small-molecule organic single crystals are developed to investigate fundamental aspects of organic thin-film transistors that have been widely studied for possible future markets for 'plastic electronics'. In reviewing the physics and chemistry of single-crystal organic field-effect transistors (SC-OFETs), the nature of intrinsic charge dynamics is elucidated for the carriers induced at the single crystal surfaces of molecular semiconductors. Materials for SC-OFETs are first reviewed with descriptions of the fabrication methods and the field-effect characteristics. In particular, a benchmark carrier mobility of 20-40 cm2 Vs-1, achieved with thin platelets of rubrene single crystals, demonstrates the significance of the SC-OFETs and clarifies material limitations for organic devices. In the latter part of this review, we discuss the physics of microscopic charge transport by using SC-OFETs at metal/semiconductor contacts and along semiconductor/insulator interfaces. Most importantly, Hall effect and electron spin resonance (ESR) measurements reveal that interface charge transport in molecular semiconductors is properly described in terms of band transport and localization by charge traps.

  7. Low-field susceptibility anisotropy of some biotite crystals

    NASA Astrophysics Data System (ADS)

    Zapletal, Karel

    1990-10-01

    The low-field magnetic susceptibility anisotropy (LMA) of weakly magnetic rocks is dominated by paramagnetic minerals among which micas, and mainly biotite, is important. For this reason, the LMA of biotite crystals was investigated in detail. Natural biotite crystals (from ten localities) having a wide range of iron concentration were also studied by other methods, including optical microscopy, X-ray microanalysis, Mössbauer spectroscopy and induced isothermal remanent magnetization. Ferromagnetic inclusions disturbing the magnetic properties of biotite were revealed in some crystals. The measured mean bulk susceptibility of pure crystals (four localities) ranges from 1.0 × 10 -3 to 1.8 × 10 -3 SI and agrees with the susceptibility calculated from the iron concentration (ranging from 12 to 20 wt.%) determined for each specimen. The susceptibility ellipsoid of pure biotite crystals is rotational about the minimum susceptibility direction parallel to the crystallographic c'-axis, and the anisotropy degree ranges from 1.34 to 1.36.

  8. Crystal field and magnetic properties of ErH3

    NASA Technical Reports Server (NTRS)

    Flood, D. J.

    1977-01-01

    Magnetization and magnetic susceptibility measurements have been made in the temperature range 1.3 to 4.2 K on powdered samples of ErH3. The susceptibility exhibits Curie-Weiss behavior from 4.2 to 2 K, and intercepts the negative temperature axis at 1.05 + or - 0.05 K, indicating that the material is antiferromagnetic. The low field effective moment is 6.77 + or - 0.27 Bohr magnetons per ion. The magnetization exhibits a temperature independent contribution, the slope of which is (5 + or - 1.2) times 10 to the minus 6 Weber m/kg Tesla. The saturation moment is 3.84 + or - 0.15 Bohr magnetons per ion. The results can be qualitatively explained by the effects of crystal fields on the magnetic ions. No definitive assignment of a crystal field ground state can be given, nor can a clear choice between cubically or hexagonally symmetric crystal fields be made. For hexagonal symmetry, the first excited state is estimated to be 86 to 100 K above the ground state. For cubic symmetry, the splitting is of the order of 160 to 180 K.

  9. Magnetic field controlled FZ single crystal growth of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Hermann, R.; Behr, G.; Gerbeth, G.; Priede, J.; Uhlemann, H.-J.; Fischer, F.; Schultz, L.

    2005-02-01

    Intermetallic rare-earth-transition-metal compounds with their coexistence of magnetic ordering and superconductivity are still of great scientific interest. The crystal growth of bulk single crystals is very often unsuccessful due to an unfavorable solid-liquid interface geometry enclosing concave fringes. The aim of the work is the contactless control of heat and material transport during floating-zone single crystal growth of intermetallic compounds. This control is provided by a tailored design of the electromagnetic field and the resulting electromagnetically driven convection. Numerical simulations for the determination of the electromagnetic field configuration induced by the RF heater coil and the solution of the coupled heat and hydrodynamic equations were done for the model substance Ni with and without additional magnetic field. As a result, an innovative magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt ranging from intensive inwards/outwards flows to flows almost at rest. The selection of parameters necessary for the desired fluid flow is determined from numerical simulation. The basis for the calculations are the process-related fluid flow conditions which are determined by the mode of heating, heat radiation at the free surface and material parameters. This treatment of the problem leads to the customised magnetic field for the special intermetallic compound. The application of the new magnetic system leads to a distinct improvement of the solid-liquid interface validated on experiments with the model substance Nickel.

  10. Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell.

    PubMed

    Zyryanov, Victor Ya; Myslivets, Sergey A; Gunyakov, Vladimir A; Parshin, Alexander M; Arkhipkin, Vasily G; Shabanov, Vasily F; Lee, Wei

    2010-01-18

    Light transmission spectrum of a multilayer photonic crystal with a central liquid-crystal defect layer placed between crossed polarizers has been studied. Transmittance was varied due to the magnetically induced reorientation of the nematic director from homeotropic to planar alignment. Two notable effects were observed for this scheme: the spectral shift of defect modes corresponding to the extraordinary light wave and its superposition with the ordinary one. As a result, the optical cell allows controlling the intensity of interfering defect modes by applied magnetic field. PMID:20173953

  11. 3D crack tip fields for FCC single crystals

    SciTech Connect

    Cuitino, A.M.; Ortiz, M.

    1995-12-31

    Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.

  12. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    PubMed Central

    Quintero, Sully M. M.; Martelli, Cicero; Braga, Arthur M. B.; Valente, Luiz C. G.; Kato, Carla C.

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field. PMID:22247655

  13. Low-frequency electromagnetic field in a Wigner crystal

    SciTech Connect

    Stupka, Anton

    2013-03-15

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  14. Order by virtual crystal field fluctuations in pyrochlore XY antiferromagnets

    NASA Astrophysics Data System (ADS)

    Rau, Jeffrey G.; Petit, Sylvain; Gingras, Michel J. P.

    2016-05-01

    Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7 , with the ground state selection proceeding by order by disorder induced through the effects of quantum fluctuations. This identification assumes the smallness of the effect of virtual crystal field fluctuations that could provide an alternative route to picking the ground state. Here we show that this order by virtual crystal field fluctuations is not only significant, but competitive with the effects of quantum fluctuations. Further, we argue that higher-multipolar interactions that are generically present in rare-earth magnets can dramatically enhance this effect. From a simplified bilinear-biquadratic model of these multipolar interactions, we show how the virtual crystal field fluctuations manifest in Er2Ti2O7 using a combination of strong-coupling perturbation theory and the random-phase approximation. We find that the experimentally observed ψ2 state is indeed selected and the experimentally measured excitation gap can be reproduced when the bilinear and biquadratic couplings are comparable while maintaining agreement with the entire experimental spin-wave excitation spectrum. Finally, we comment on possible tests of this scenario and discuss implications for other order-by-disorder candidates in rare-earth magnets.

  15. Semiconductor Crystal Growth in Static and Rotating Magnetic fields

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2004-01-01

    Magnetic fields have been applied during the growth of bulk semiconductor crystals to control the convective flow behavior of the melt. A static magnetic field established Lorentz forces which tend to reduce the convective intensity in the melt. At sufficiently high magnetic field strengths, a boundary layer is established ahead of the solid-liquid interface where mass transport is dominated by diffusion. This can have a significant effect on segregation behavior and can eliminate striations in grown crystals resulting from convective instabilities. Experiments on dilute (Ge:Ga) and solid solution (Ge-Si) semiconductor systems show a transition from a completely mixed convective state to a diffusion-controlled state between 0 and 5 Tesla. In HgCdTe, radial segregation approached the diffusion limited regime and the curvature of the solid-liquid interface was reduced by a factor of 3 during growth in magnetic fields in excess of 0.5 Tesla. Convection can also be controlled during growth at reduced gravitational levels. However, the direction of the residual steady-state acceleration vector can compromise this effect if it cannot be controlled. A magnetic field in reduced gravity can suppress disturbances caused by residual transverse accelerations and by random non-steady accelerations. Indeed, a joint program between NASA and the NHMFL resulted in the construction of a prototype spaceflight magnet for crystal growth applications. An alternative to the suppression of convection by static magnetic fields and reduced gravity is the imposition of controlled steady flow generated by rotating magnetic fields (RMF)'s. The potential benefits of an RMF include homogenization of the melt temperature and concentration distribution, and control of the solid-liquid interface shape. Adjusting the strength and frequency of the applied magnetic field allows tailoring of the resultant flow field. A limitation of RMF's is that they introduce deleterious instabilities above a

  16. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  17. Plasticity and dislocation dynamics in a phase field crystal model.

    PubMed

    Chan, Pak Yuen; Tsekenis, Georgios; Dantzig, Jonathan; Dahmen, Karin A; Goldenfeld, Nigel

    2010-07-01

    The critical dynamics of dislocation avalanches in plastic flow is examined using a phase field crystal model. In the model, dislocations are naturally created, without any ad hoc creation rules, by applying a shearing force to the perfectly periodic ground state. These dislocations diffuse, interact and annihilate with one another, forming avalanche events. By data collapsing the event energy probability density function for different shearing rates, a connection to interface depinning dynamics is confirmed. The relevant critical exponents agree with mean field theory predictions. PMID:20867460

  18. Discrete dislocation plasticity and crack tip fields in single crystals

    NASA Astrophysics Data System (ADS)

    Van der Giessen, E.; Deshpande, V. S.; Cleveringa, H. H. M.; Needleman, A.

    2001-09-01

    Small-scale yielding around a stationary plane strain mode I crack is analyzed using discrete dislocation plasticity. The dislocations are all of edge character, and are modeled as line singularities in a linear elastic material. Superposition is used to represent the solution in terms of analytical fields for edge dislocations in a half-space and a numerical image solution that enforces the boundary conditions. The description of the dislocation dynamics includes the lattice resistance to dislocation motion, dislocation nucleation, interaction with obstacles and annihilation. A model planar crystal with three slip systems is considered. Two slip system orientations are analyzed that differ by a 90° rotation. The non-hardening, single crystal plasticity continuum slip solution of Rice (Mech. Mater. 6 (1987) 317) for this model crystal predicts that slip and kink bands emerge for both crystal geometries, while Drugan (J. Mech. Phys. Solids 49 (2001) 2155) has obtained kink band free solutions. For a reference set of parameter values, kink band free solutions are found in one orientation while the emergence of kink bands is seen in the other orientation. However, lowering the dislocation source density suppresses the formation of kink bands in this orientation as well. In all calculations, the opening stress in the immediate vicinity of the crack tip is much larger than predicted by continuum slip theory.

  19. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  20. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  1. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  2. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  3. Portable piezoelectric crystal detector for field monitoring of environmental pollutants

    SciTech Connect

    Ho, M.H.; Guilbault, G.G.; Rietz, B.

    1983-09-01

    A portable field monitor was constructed by using a coated piezoelectric crystal for direct monitoring of toluene in a Danish printing plant. Toluene vapor was adsorbed onto the Pluronic F-68 coating on a quartz crystal and a decrease in frequency was observed. Various substances which could interfere with toluene determination were tested. No interference from CO, NH/sub 3/, SO/sub 2/, HCl at 100 ppm are expected. Water vapor interfered and was selectively removed using a Nafion permeation tube. The readings from the piezoelectric detector were compared to two accepted procedures for monitoring toluene, the photoionization detector and the Drager tube. Results indicate that the piezoelectric detector gave data consistent with both other methods and with better relative standard deviations than the other two. 8 references, 2 figures, 1 table.

  4. Field expulsion and reconfiguration in polaritonic photonic crystals.

    PubMed

    Huang, Kerwyn Casey; Bienstman, Peter; Joannopoulos, John D; Nelson, Keith A; Fan, Shanhui

    2003-05-16

    We uncover a rich set of optical phenomena stemming from the incorporation of polar materials exhibiting transverse phonon polariton excitations into a photonic crystal structure. We identify in the frequency spectrum two regimes in which the dielectric response of the polaritonic medium can induce extreme localization of the electromagnetic energy. Our analysis of the effect of polarization and the interaction between the polariton and photonic band gaps on the Bloch states leads to a pair of mechanisms for sensitive frequency-controlled relocation and/or reconfiguration of the fields. PMID:12785962

  5. Vibronic spectra of U4 in octahedral crystal fields

    NASA Astrophysics Data System (ADS)

    Flint, C. D.; Tanner, P. A.

    The absorption spectra of UCl2-6 diluted into the cubic lattices Cs2ZrCl6 and Cs2SnCl6, and of UBr2-6 diluted into Cs2ZrBr6 have been measured at liquid helium temperatures. The derived energy levels, together with earlier luminescence measurements have been used to evaluate the crystal-field, spinorbit coupling, inter-electron repulsion and Trees correction parameters and the corresponding eigenvalues. Several of the states are derived from an almost equal admixture of two or more Russell-Saunders terms. Some magnetic properties are also computed and discussed.

  6. Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Yang, Tao; Du, Xiu-Juan

    2012-11-01

    We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.

  7. Phase-field-crystal methodology for modeling of structural transformations.

    PubMed

    Greenwood, Michael; Rottler, Jörg; Provatas, Nikolas

    2011-03-01

    We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions. PMID:21517507

  8. Subsurface Stress Fields in Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.

    2003-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and fatigue stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. Techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts are presented in this report. Figure 1 shows typical damper contact locations in a turbine blade. The subsurface stress results are used for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades.

  9. Crystal Field Studies on MgGa2O4:Ni2+

    NASA Astrophysics Data System (ADS)

    Andreici, L.; Stanciu, M.; Avram, N. M.

    2010-08-01

    The energy levels scheme of octahedrally coordinated Ni2+ ion in single crystal, powder nano-single crystal, ceramics and glass-ceramics of MgGa2O4 host matrix, has been calculated in the exchange charge model of crystal field. The parameters of the crystal field acting on the Ni2+ ion are calculated from the crystal structure data, after optimization of the geometry of the system. The energy level schemes have been calculated by diagonalization of the crystal field Hamiltonian of this system. The obtained results were compared with experimental data; a good agreement were demonstrated, which confirm the validity of the model and used method.

  10. Convection patterns and temperature fields of ammonothermal GaN bulk crystal growth process

    NASA Astrophysics Data System (ADS)

    Masuda, Yoshio; Sato, Osamu; Tomida, Daisuke; Yokoyama, Chiaki

    2016-05-01

    The natural convection heat transfer in an ammonothermal process for growing GaN bulk single crystals has been examined numerically. We consider only one crystal to simplify the calculation and discuss the relationship between convection patterns and temperature fields. Two types of convection patterns are observed owing to the difference in the crystal radius. When the convection pattern is transformed, the crystal surface temperature decreases as the crystal radius increases.

  11. Control of active liquid crystals with a magnetic field.

    PubMed

    Guillamat, Pau; Ignés-Mullol, Jordi; Sagués, Francesc

    2016-05-17

    Living cells sense the mechanical features of their environment and adapt to it by actively remodeling their peripheral network of filamentary proteins, known as cortical cytoskeleton. By mimicking this principle, we demonstrate an effective control strategy for a microtubule-based active nematic in contact with a hydrophobic thermotropic liquid crystal. By using well-established protocols for the orientation of liquid crystals with a uniform magnetic field, and through the mediation of anisotropic shear stresses, the active nematic reversibly self-assembles with aligned flows and textures that feature orientational order at the millimeter scale. The turbulent flow, characteristic of active nematics, is in this way regularized into a laminar flow with periodic velocity oscillations. Once patterned, the microtubule assembly reveals its intrinsic length and time scales, which we correlate with the activity of motor proteins, as predicted by existing theories of active nematics. The demonstrated commanding strategy should be compatible with other viable active biomaterials at interfaces, and we envision its use to probe the mechanics of the intracellular matrix. PMID:27140604

  12. The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong

    2006-01-01

    An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.

  13. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    NASA Astrophysics Data System (ADS)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  14. An efficient algorithm for solving the phase field crystal model

    SciTech Connect

    Cheng Mowei Warren, James A.

    2008-06-01

    We present and discuss the development of an unconditionally stable algorithm used to solve the evolution equations of the phase field crystal (PFC) model. This algorithm allows for an arbitrarily large algorithmic time step. As the basis for our analysis of the accuracy of this algorithm, we determine an effective time step in Fourier space. We then compare our calculations with a set of representative numerical results, and demonstrate that this algorithm is an effective approach for the study of the PFC models, yielding a time step effectively 180 times larger than the Euler algorithm for a representative set of material parameters. As the PFC model is just a simple example of a wide class of density functional theories, we expect this method will have wide applicability to modeling systems of considerable interest to the materials modeling communities.

  15. Magnetic rotations of uric acid crystals and uratic crystals by static magnetic fields of up to 500 mT.

    PubMed

    Takeuchi, Yuka; Mizukawa, Yuri; Iwasaka, Masakazu

    2013-01-01

    In recent years, the disease concerning ureteral calculus is increasing possibly due to the changing lifestyles. For example, it is well known that the urinary calculi have a large impact to gout. As eating habitual diseases, gout and the hyper-uricemia are related to the formation of urinary calculus. In the previous studies, therapeutic agents were developed to enhance the uric acid excretion. From the viewpoint of side effects induction by the chemical agents, we are motivated to explore an alternative method to control the formation of ureteral crystals stimulator by physical stimulations. Therefore in the present study, we focused on the behaviors of uric acid crystals under magnetic fields of several hundreds of mT (Tesla). The uric acid crystals were re-crystallized from a suspension of uric acid powder, and the micro-crystals were prepared to be floating in the solution. We generated horizontal magnetic fields of maximum 500 mT by an electromagnet which contained a CCD microscope. A permanent magnet with magnetic fields of 200∼400 mT was also utilized. During the magnetic fields were applied to the uric acid crystals, we observed that the uric acid crystals were oriented by the magnetic fields down to 200 mT at the room temperature. It was speculated that the dimagnetic anisotropy in the uric acid crystals exhibited the rotational responses. The results indicate the possible remote control of the uric acid crystals in living body by the magnetic fields of 200 mT to 500 mT. PMID:24110424

  16. Crystal-field levels in UBr 3 determined by neutron spectroscopy

    NASA Astrophysics Data System (ADS)

    Murasik, A.; Furrer, A.; Szczepaniak, W.

    1980-03-01

    Inelastic neutron scattering experiments have been performed in UBr 3 in order to determine the crystal-field levels. Four transitions between the ground state and all excited states have been observed, thus the crystal-field level scheme could be unambigously assigned. The Russell-Saunders coupling scheme has been used to derive the crystal-field parameters which cannot be accounted for by a simple point charge calculation.

  17. Inelastic neutron scattering investigation of crystal-field splittings in UBr 3

    NASA Astrophysics Data System (ADS)

    Murasik, A.; Furrer, A.

    1980-10-01

    An inelastic neutron scattering technique was used to measure the crystal-field splittings in UBr 3 at various temperatures and momentum transfers. In the interpretation of the observed energy spectra it turns out that the Russell-Saunders coupling scheme is a reasonable approximation. The crystal-field level scheme could be unambiguously assigned. The detailed nature of the crystal-field transition from the ground state to the first-excited state is not yet fully understood.

  18. Modeling nuclear field shift isotope fractionation in crystals

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2013-12-01

    In this study nuclear field shift fractionations in solids (and chemically similar liquids) are estimated using calibrated density functional theory calculations. The nuclear field shift effect is a potential driver of mass independent isotope fractionation(1,2), especially for elements with high atomic number such as Hg, Tl and U. This effect is caused by the different shapes and volumes of isotopic nuclei, and their interactions with electronic structures and energies. Nuclear field shift isotope fractionations can be estimated with first principles methods, but the calculations are computationally difficult, limiting most theoretical studies so far to small gas-phase molecules and molecular clusters. Many natural materials of interest are more complex, and it is important to develop ways to estimate field shift effects that can be applied to minerals, solutions, in biomolecules, and at mineral-solution interfaces. Plane-wave density functional theory, in combination with the projector augmented wave method (DFT-PAW), is much more readily adapted to complex materials than the relativistic all-electron calculations that have been the focus of most previous studies. DFT-PAW is a particularly effective tool for studying crystals with periodic boundary conditions, and may also be incorporated into molecular dynamics simulations of solutions and other disordered phases. Initial calibrations of DFT-PAW calculations against high-level all-electron models of field shift fractionation suggest that there may be broad applicability of this method to a variety of elements and types of materials. In addition, the close relationship between the isomer shift of Mössbauer spectroscopy and the nuclear field shift isotope effect makes it possible, at least in principle, to estimate the volume component of field shift fractionations in some species that are too complex even for DFT-PAW models, so long as there is a Mössbauer isotope for the element of interest. Initial results

  19. Effect of an electric field on nucleation and growth of crystals

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Guchenko, S. A.; Gyngazova, M. S.

    2016-02-01

    The effect of the electric field strength on nucleation and growth of the crystals of ammonium halides and alkali metal sulfates has been studied. The optimal electric field strength for NH4Cl and NH4Br crystals was found to be 15 kV/cm, and for NH4I, it equaled 10 kV/cm. No effect of the electric field strength on the crystal growth was found for alkali metal sulfates. This difference is analyzed in terms of the crystal growth thermodynamics. In case, when the electric field is small and the Gibbs energy is of a significant value, the influence of the electric field at the crystal growth is negligible. A method to estimate the critical radius of homogeneous nucleation of the crystal is suggested.

  20. Rashba coupling amplification by a staggered crystal field

    PubMed Central

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-01-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å−1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering. PMID:27089869

  1. Rashba coupling amplification by a staggered crystal field

    NASA Astrophysics Data System (ADS)

    Santos-Cottin, David; Casula, Michele; Lantz, Gabriel; Klein, Yannick; Petaccia, Luca; Le Fèvre, Patrick; Bertran, François; Papalazarou, Evangelos; Marsi, Marino; Gauzzi, Andrea

    2016-04-01

    There has been increasing interest in materials where relativistic effects induce non-trivial electronic states with promise for spintronics applications. One example is the splitting of bands with opposite spin chirality produced by the Rashba spin-orbit coupling in asymmetric potentials. Sizable splittings have been hitherto obtained using either heavy elements, where this coupling is intrinsically strong, or large surface electric fields. Here by means of angular resolved photoemission spectroscopy and first-principles calculations, we give evidence of a large Rashba coupling of 0.25 eV Å, leading to a remarkable band splitting up to 0.15 eV with hidden spin-chiral polarization in centrosymmetric BaNiS2. This is explained by a huge staggered crystal field of 1.4 V Å-1, produced by a gliding plane symmetry, that breaks inversion symmetry at the Ni site. This unexpected result in the absence of heavy elements demonstrates an effective mechanism of Rashba coupling amplification that may foster spin-orbit band engineering.

  2. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-01

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution. PMID:25360544

  3. Crystal-field calculations for transition-metal ions by application of an opposing potential

    DOE PAGESBeta

    Zhou, Fei; Aberg, Daniel

    2016-02-16

    We propose a fully ab initio method, the opposing crystal potential (OCP), to calculate the crystal-field parameters of transition-metal impurities in insulator hosts. Through constrained density functional calculations, OCP obtains the constraining Lagrange multipliers, which act as a cancellation potential against the crystal field and lead to spherical d-electron distribution. Furthermore, the method is applied to several insulators doped with Mn4+ and Mn2+ ions and shown to be in good agreement with experiment.

  4. Crystal-field transitions in f-electron oxides

    NASA Astrophysics Data System (ADS)

    Kern, S.; Loong, C.-K.; Lander, G. H.

    1985-09-01

    Neutron inelastic scattering has been used to measure for the first time the ground- to excited-state crystal-field transitions in PrO2 (130 meV), BaPrO3 (255 meV), and UO2 (~160 meV). Details of these neutron experiments using the epithermal neutrons from the Argonne National Laboratory spallation source are given. From the observed transitions the following values of V4=A4 are deduced: PrO2 (-66 meV), BaPrO3 (119 meV), and UO2 (-385 meV). Comparisons are made with V4 values deduced for metallic systems and those determined by optical techniques for dilute lanthanides in transparent hosts. In the case of UO2, two peaks are seen, one at 155 meV and the other at 172 meV. This structure exists both below and above the Néel temperature TN (30.8 K) and is discussed in terms of mechanisms that might exist in UO2. Several further neutron experiments are suggested now that energy transfers above ~100 meV may be measured at small (i.e., <~5 Å-1) values of the momentum transfer.

  5. Using Magnetic Fields to Control Convection during Protein Crystallization: Analysis and Validation Studies

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    The effect of convection during the crystallization of proteins is not very well understood. In a gravitational field, convection is caused by crystal sedimentation and by solutal buoyancy induced flow and these can lead to crystal imperfections. While crystallization in microgravity can approach diffusion limited growth conditions (no convection), terrestrially strong magnetic fields can be used to control fluid flow and sedimentation effects. In this work, we develop the analysis for magnetic flow control and test the predictions using analog experiments. Specifically, experiments on solutal convection in a paramagnetic fluid were conducted in a strong magnetic field gradient using a dilute solution of Manganese Chloride. The observed flows indicate that the magnetic field can completely counter the settling effects of gravity locally and are consistent with the theoretical predictions presented. This phenomenon suggests that magnetic fields may be useful in mimicking the microgravity environment of space for some crystal growth ana biological applications where fluid convection is undesirable.

  6. Effect of intense magnetic fields on the convection of biogenic guanine crystals in aqueous solution

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Mizukawa, Y.

    2015-05-01

    In this study, the basic magneto-optic properties of biogenic microcrystals in aqueous media were investigated. Microcrystals, mica plates, silica, and microcrystals from a diatom cell and biogenic guanine crystals from goldfish showed light scattering inhibition when the crystals were observed in water under a 5 T magnetic field and dark-field illumination. In particular, in 50% ethanol/water medium, convection of the biogenic guanine particle aggregates was reversibly inhibited when the microcrystal suspension was exposed to a 5 T magnetic field. Microscopic observation comparing the biogenic guanine crystals in water with 95% ethanol or 99% acetone revealed that light flickering on the surface of the crystals was affected by the surface interaction of the crystal with the surrounding medium. By considering both the magnetic orientation of the microcrystals and the possible interactions of crystals with the surrounding medium, a magnetically controllable fluidic tracer was suggested.

  7. Which charge definition for describing the crystal polarizing field and the χ((1)) and χ((2)) of organic crystals?

    PubMed

    Seidler, Tomasz; Champagne, Benoît

    2015-07-15

    The impact of atomic charge definition for describing the crystal polarizing electric field has been assessed in view of predicting the linear and nonlinear optical susceptibilities of molecular crystals. In this approach, the chromophores are embedded in the electric field of its own point charges, which are evaluated through a self-consistent procedure including charge scaling to account for the screening of the dielectric. Once the crystal field is determined, dressed molecular polarizabilities and hyperpolarizabilities are calculated and used as input of an electrostatic interaction scheme to evaluate the crystal linear and nonlinear optical responses. It is observed that many charge definitions (i) based on partitioning the electron density (QTAIM), (ii) obtained by analyzing the quantum-chemical wavefunction (Mulliken, MBS, and NBO), and (iii) derived by fitting to the electrostatic potential (MK, CHelpG, and HLYGAt) give very consistent results and are equally valid whereas Hirshfeld partitioning and CM5 charge parametrizations underestimate the refractive indices and second-order nonlinear optical susceptibilities. An alternative approach omitting charge scaling is demonstrated to overestimate the different crystal optical properties. On the other hand, the molecule embedding approach provides results in close agreement with those calculated with a charge field obtained from periodic boundary condition calculations. PMID:26144533

  8. Neutron study of crystal field excitations in single crystal CeCu2Ge2

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2010-03-01

    CeCu2Ge2 is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN= 4.1 K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/molK^2 [1]. Inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet at 16.5 meV [1] though a splitting of the 4f^1 (J=5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce^3+ ions. We performed detailed inelastic neutron scattering experiments on the thermal triple-axis spectrometer PUMA at FRM II at temperatures between 10 K and 300 K and for different crystallographic directions from low to high momentum transfers. In this way we obtained a reliable separation of magnetic and phonon contributions. From our results we infer that the quasi-quartet consists in fact of two doublets at 17 and 18 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally we will present a new set of crystal field parameters and their implications on other magnetic properties. [1] G. Knopp et al., Z. Physik B 77 (1989) 95

  9. Spatial Distribution of -Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under Combined Thermal and Flow Fields

    SciTech Connect

    Wang, Y.; Pan, J; Mao, Y; Li, Z; Li, L; Hsiao, B

    2010-01-01

    The present Article reports the relationships between molecular orientation, formation, and spatial distribution of {gamma}-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of {gamma}-crystal (f{gamma}) with respect to {alpha}-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f{gamma} increased monotonously from skin to core in CIM samples, whereas the corresponding f{gamma} increased nonmonotonically in OSIM samples. The spatial distribution of {gamma}-crystal in OSIM samples can be explained by the epitaxial arrangement between {gamma}- and {alpha}-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of {alpha}-crystal provide secondary nucleation sites for daughter lamellae of {alpha}-crystal and {gamma}-crystal, and the different content of parent lamellae results in varying amounts of {gamma}-crystal. In OSIM samples, the smallest parent-daughter ratio ([R] = 1.38) in the core region led to the lowest fraction of {gamma}-crystal (0.57), but relatively higher {gamma}-crystal content (0.69) at 600 and 1200 {micro}m depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of {gamma}-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The

  10. Magnetic field sensor based on selectively magnetic fluid infiltrated dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Gangwar, Rahul Kumar; Bhardwaj, Vanita; Singh, Vinod Kumar

    2016-02-01

    We reported the modeling result of selectively magnetic fluid infiltrated dual-core photonic crystal fiber based magnetic field sensor. Inside the cross-section of the designed photonic crystal fiber, the two fiber cores filled with magnetic fluid (Fe3O4) form two independent waveguides with mode coupling. The mode coupling under different magnetic field strengths is investigated theoretically. The sensitivity of the sensor as a function of the structural parameters of the photonic crystal fiber is calculated. The result shows that the proposed sensing device with 1 cm photonic crystal fiber length has a large sensitivity of 305.8 pm/Oe.

  11. Large area mode field photonic crystal fiber design

    NASA Astrophysics Data System (ADS)

    Guo, Shuqin; An, Wensheng; Wang, Kang; Zhu, Guangxin; Le, Zichun

    2005-11-01

    A novel design method about photonic crystal fiber (PCF) with large area model field (LAMF) is demonstrated. Different from ordinarily design that the core of PCF formed by missing one air holes in the center of section, many air holes distributed in heartland all together come into being the core region. Air holes are arranged regularly in core region and outer cladding regions according to different periodical character, respectively. The effective refractive index (n eff ) of core region should be higher than cladding region because of total internal reflection (TIR) requirement. In this paper, two kinds of typical scheme are offered to realize LAMF-PCF. First, Λ, the spacing of neighboring air holes in whole section is fixed, once the radius of air holes in the core region r c is smaller than the cladding air holes r cla, LAMF-PCF will be formed. The modal area only lessens a little as r c is reduced. Especially, optimal size of r c can nearly make MFA insensitive to wavelength. On the contrary, dispersion parameter of PCF will take place visible change along with r c reduced, and ultra-flattened dispersion character can be realized when r c is optimized. Another method of designing LAMF-PCF is keeping all air holes uniform in the whole section of PCF, but the space of neighboring air holes in the core region Λ c is longer than the cladding region Λ cla, so n eff of core region is higher than the cladding region and TIR can take place.

  12. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  13. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed. PMID:21399269

  14. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    NASA Astrophysics Data System (ADS)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N.; Chuprunov, E. V.

    2013-12-01

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  15. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    SciTech Connect

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N. Chuprunov, E. V.

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  16. Dynamic control over the heat field during LBO crystal growth by High temperature solution method

    NASA Astrophysics Data System (ADS)

    Kokh, A.; Vlezko, V.; Kokh, K.; Kononova, N.; Villeval, Ph.; Lupinski, D.

    2012-12-01

    The paper presents LiB3O5 crystal growth under oscillating temperature regime provided by sequential switching of the heaters placed around the crucible. First results have demonstrated the ability to grow high-quality crystals under dynamicaly changed (rotating) heat field confirming the possibility to control over heat-mass-transfer processes by proposed contact free method.

  17. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  18. Transverse magnetic field impact on waveguide modes of photonic crystals.

    PubMed

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features. PMID:27519096

  19. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  20. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  1. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  2. Field localization and enhancement near the Dirac point of a finite defectless photonic crystal

    NASA Astrophysics Data System (ADS)

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Conti, Claudio; Bloemer, Mark J.

    2013-02-01

    We use a rigorous electromagnetic approach to show the existence of strongly localized modes in the stop band of a linear, two-dimensional, finite photonic crystal near its Dirac point. At normal incidence, the crystal exhibits a Dirac point with 100% transmission. At angles slightly off the normal, where the crystal is 100% reflective, instead of exponentially decaying fields as in a photonic stop band, the field becomes strongly localized and enhanced inside the crystal. We explain that this anomalous localization is due to guided mode resonances that are the foundation of the Dirac point itself and also shape its adjacent band gap. Besides shedding new light on the physical origin of Dirac points in finite photonic crystals, our results could have applications in many nonlinear light-matter interaction phenomena in which it is crucial to achieve a high degree of light localization.

  3. Directional growth by low electric-field-controlled crystallization of bulk amorphous lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Kim, J. E.; Yang, Y. S.

    2004-12-01

    Highly oriented rod-shaped crystals were grown during crystallization of bulk amorphous Li2B4O7 under a low ac electric field of ˜5V/mm. The crystal c axis that is the long direction of rods and perpendicular to the flat surface of the sample is parallel to the applied electric-field direction. The oriented crystals, with an alignment within a declined angle of ˜15°, are so long along the c direction compared with those of other directions that the geometrical structure of each rod is quasi-one-dimensional. The measured electromechanical coupling coefficient of kt=0.47 is comparable to that of single-crystal Li2B4O7.

  4. A test of improved force field parameters for urea: molecular-dynamics simulations of urea crystals.

    PubMed

    Özpınar, Gül Altınbaş; Beierlein, Frank R; Peukert, Wolfgang; Zahn, Dirk; Clark, Timothy

    2012-08-01

    Molecular-dynamics (MD) simulations of urea crystals of different shapes (cubic, rectangular prismatic, and sheet) have been performed using our previously published force field for urea. This force field has been validated by calculating values for the cohesive energy, sublimation temperature, and melting point from the MD data. The cohesive energies computed from simulations of cubic and rectangular prismatic urea crystals in vacuo at 300 K agreed very well with the experimental sublimation enthalpies reported at 298 K. We also found very good agreement between the melting points as observed experimentally and from simulations. Annealing the crystals just below the melting point leads to reconstruction to form crystal faces that are consistent with experimental observations. The simulations reveal a melting mechanism that involves surface (corner/edge) melting well below the melting point, and rotational disordering of the urea molecules in the corner/edge regions of the crystal, which then facilitates the translational motion of these molecules. PMID:22281810

  5. Models of Mass Transport During Microgravity Crystal Growth of Alloyed Semiconductors in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Ma, Nancy

    2003-01-01

    Alloyed semiconductor crystals, such as germanium-silicon (GeSi) and various II-VI alloyed crystals, are extremely important for optoelectronic devices. Currently, high-quality crystals of GeSi and of II-VI alloys can be grown by epitaxial processes, but the time required to grow a certain amount of single crystal is roughly 1,000 times longer than the time required for Bridgman growth from a melt. Recent rapid advances in optoelectronics have led to a great demand for more and larger crystals with fewer dislocations and other microdefects and with more uniform and controllable compositions. Currently, alloyed crystals grown by bulk methods have unacceptable levels of segregation in the composition of the crystal. Alloyed crystals are being grown by the Bridgman process in space in order to develop successful bulk-growth methods, with the hope that the technology will be equally successful on earth. Unfortunately some crystals grown in space still have unacceptable segregation, for example, due to residual accelerations. The application of a weak magnetic field during crystal growth in space may eliminate the undesirable segregation. Understanding and improving the bulk growth of alloyed semiconductors in microgravity is critically important. The purpose of this grant to to develop models of the unsteady species transport during the bulk growth of alloyed semiconductor crystals in the presence of a magnetic field in microgravity. The research supports experiments being conducted in the High Magnetic Field Solidification Facility at Marshall Space Flight Center (MSFC) and future experiments on the International Space Station.

  6. Imaging of director fields in liquid crystals using stimulated Raman scattering microscopy.

    PubMed

    Lee, Taewoo; Mundoor, Haridas; Gann, Derek G; Callahan, Timothy J; Smalyukh, Ivan I

    2013-05-20

    We demonstrate an approach for background-free three-dimensional imaging of director fields in liquid crystals using stimulated Raman scattering microscopy. This imaging technique is implemented using a single femtosecond pulsed laser and a photonic crystal fiber, providing Stokes and pump frequencies needed to access Raman shifts of different chemical bonds of molecules and allowing for chemically selective and broadband imaging of both pristine liquid crystals and composite materials. Using examples of model three-dimensional structures of director fields, we show that the described technique is a powerful tool for mapping of long-range molecular orientation patterns in soft matter via polarized chemical-selective imaging. PMID:23736433

  7. A Navier-Stokes phase-field crystal model for colloidal suspensions.

    PubMed

    Praetorius, Simon; Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems. PMID:25903907

  8. Influence of Acoustic Field Structure on Polarization Characteristics of Acousto-optic Interaction in Crystals

    NASA Astrophysics Data System (ADS)

    Muromets, A. V.; Trushin, A. S.

    Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.

  9. Near-field studies of microwave three-dimensional photonic crystals with waveguides.

    PubMed

    Liu, Rong-Juan; Li, Zhi-Yuan; Zhou, Fei; Zhang, Dao-Zhong

    2007-11-12

    By utilizing a vector network analyzer, the field distributions on the surface of a three-dimensional woodpile photonic crystal with a straight waveguide or a bend waveguide buried under the surface were measured in the microwave regime. The information of field profile and propagation characteristics of the guided modes can be successfully extracted from the surface near-field measurement. This work indicates that the near-field detection can become a promising means for experimental characterization of three-dimensional photonic crystal devices in supplement to the usual transmission spectrum measurement. PMID:19550839

  10. Hidden local symmetry of Eu{sup 3+} in xenotime-like crystals revealed by high magnetic fields

    SciTech Connect

    Han, Yibo; Ma, Zongwei; Zhang, Junpei; Wang, Junfeng; Du, Guihuan; Xia, Zhengcai; Han, Junbo Li, Liang; Yu, Xuefeng

    2015-02-07

    The excellent optical properties of europium-doped crystals in visible and near infrared wavelength regions enable them to have broad applications in optoelectronics, laser crystals and sensing devices. The local site crystal fields can affect the intensities and peak positions of the photo-emission lines strongly, but they are usually difficult to be clarified due to magnetically degenerate 4f electronic levels coupling with the crystal fields. Here, we provide an effective way to explore the hidden local symmetry of the Eu{sup 3+} sites in different hosts by taking photoluminescence measurements under pulsed high magnetic fields up to 46 T. The zero-field photoluminescence peaks split further at high magnetic fields when the Zeeman splitting energy is comparable to or larger than that of the crystal field induced zero-field splitting. In particular, a magnetic field induced crossover of the local crystal fields has been observed in the GdVO{sub 4}:Eu{sup 3+} crystal, which resulted from the alignment of Gd{sup 3+} magnetic moment in high magnetic fields; and a hexagonally symmetric local crystal fields was observed in the YPO{sub 4} nanocrystals at the Eu{sup 3+} sites characterized by the special axial and rhombic crystal field terms. These distinct Zeeman splitting behaviors uncover the crystal fields-related local symmetry of luminescent Eu{sup 3+} centers in different hosts or magnetic environments, which are significant for their applications in optics and optoelectronics.

  11. Effect of far-field flow on a columnar crystal in the convective undercooled melt

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-Jian; Chen, Ming-Wen; Xu, Xiao-Hua; Wang, Zi-Dong

    2015-01-01

    The growth behavior of a columnar crystal in the convective undercooled melt affected by the far-field uniform flow is studied and the asymptotic solution for the interface evolution of the columnar crystal is derived by means of the asymptotic expansion method. The results obtained reveal that the far-field flow induces a significant change of the temperature around the columnar crystal and the convective flow caused by the far-field flow accelerates the growth velocity of the interface of the growing columnar crystal in the upstream direction and inhibits its growth velocity in the downstream direction. Our results are similar to the experimental data and numerical simulations. Project supported by the Overseas Distinguished Scholar Program by the Ministry of Education of China (Grant No. MS2010BJKJ005), the National Natural Science Foundation of China (Grant No. 10972030), and the Science and Technology Support Project of Jiangxi, China (Grant No. 20112BBE50006).

  12. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field

    SciTech Connect

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  13. Controlled deposition or organic semiconductor single crystals and its application in field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shuhong

    The search for low-cost, large area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors. Single-crystal organic field-effect transistors (OFETs) are ideal device structures for studying fundamental science associated with charge transport in organic materials and have demonstrated high mobility and outstanding electrical characteristics. For example, an exceptionally high carrier mobility of 20 cm2/Vs has been demonstrated for rubrene single crystal field effect transistors. However, it remains a technical challenge to integrate single-crystal devices into practical electronic applications. A key difficulty is that organic single-crystal devices are usually fabricated one device at a time by handpicking a single crystal and placing it onto the device substrate. This makes it impossible to mass-produce at high density with reasonable throughput. Therefore, there is a great need for a high-throughput method for depositing large arrays of organic semiconductor single crystals directly onto device structures. In this dissertation, I develop several approaches towards realizing this goal. The first approach is a solution-processing technique, which relies on solvent wetting and de-wetting on substrates with patterned wettability to selectively direct the deposition or removal of organic crystals. The assembly of different organic crystals over centimeter-squared areas on Au, SiO 2 and flexible plastic substrates is demonstrated. By designing line features on the substrate, alignment of needle-like crystals is also achieved. As a demonstration of the potential application of this approach, arrays of organic single crystal FETs are fabricated by patterning organic single crystals directly onto and between transistor source and drain electrodes. Besides organic single crystals, this self-assembly strategy is also applicable for patterning other objects such as metallic nanowires. In the second technique, organic

  14. Magnetic field controlled single crystal growth and surface modification of titanium alloys exposed for biocompatibility

    NASA Astrophysics Data System (ADS)

    Hermann, Regina; Uhlemann, Margitta; Wendrock, Horst; Gerbeth, Gunter; Büchner, Bernd

    2011-03-01

    The aim of this work is growth and characterisation of Ti55Nb45 (wt%) single crystals by floating-zone single crystal growth of intermetallic compounds using two-phase radio-frequency (RF) electromagnetic heating. Thereby, the process and, in particular, the flow field in the molten zone is influenced by additional magnetic fields. The growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid-liquid interface geometry enclosing concave fringes. It is generally known that the crystallization process stability is enhanced if the crystallization interface is convex. For this, a tailored magnetic two-phase stirrer system has been developed, which enables a controlled influence on the melt ranging from intensive inwards to outwards flows. Since Ti is favourably light, strong and biocompatible, it is one of the few materials that naturally match the requirements for implantation in the human body. Therefore, the magnetic system was applied to crystal growth of Ti alloys. The grown crystals were oriented and cut to cubes with the desired crystallographic orientations [1 0 0] and [1 0 1] normally on a plane. The electron backscatter diffraction (EBSD) technique was applied to clearly determine crystal orientation and to localize grain boundaries. The formation of oxidic nanotubes on Ti surfaces in dependence of the grain orientation was investigated, performed electrochemically by anodic oxidation from fluoride containing electrolyte.

  15. Three-dimensional electric field visualization utilizing electric-field-induced second-harmonic generation in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, I.-Hsiu; Chu, Shi-Wei; Bresson, Francois; Tien, Ming-Chun; Shi, Jin-Wei; Sun, Chi-Kuang

    2003-08-01

    An electric-field-induced second-harmonic-generation signal in a nematic liquid crystal is used to map the electric field in an integrated-circuit-like sample. Since the electric-field-induced second-harmonic-generation signal intensity exhibits a strong dependence on the polarization of the incident laser beam, both the amplitude and the orientation of the electric field vectors can be measured. Combined with scanning second-harmonic-generation microscopy, three-dimensional electric field distribution can be easily visualized with high spatial resolution of the order of 1 μm.

  16. Spontaneous emission control of quantum dots embedded in photonic crystals: Effects of external fields and dimension

    NASA Astrophysics Data System (ADS)

    Vaseghi, B.; Hashemi, H.

    2016-06-01

    In this paper simultaneous effects of external electric and magnetic fields and quantum confinement on the radiation properties of spherical quantum dot embedded in a photonic crystal are investigated. Under the influence of photonic band-gap, effects of external static fields and dot dimension on the amplitude and spectrum of different radiation fields emitted by the quantum dot are studied. Our results show the considerable effects of external fields and quantum confinement on the spontaneous emission of the system.

  17. Monitoring of hydroxyapatite crystal formation using field-effect transistor

    NASA Astrophysics Data System (ADS)

    Kajisa, Taira; Sakata, Toshiya

    2016-04-01

    The biomineralization process of hydroxyapatite (HAp) in simulated body fluid (SBF) was monitored in realtime using extended-gate FETs whose gate electrode was modified with a variety of alkanethiol self-assembled monolayers (SAMs). It was found that the gate surface potential of the carboxyl- and amino-group-terminated SAM-coated gate FET was increased in SBF as HAp crystals grew on the gate surface. Moreover, in the carboxyl-group-terminated SAM-coated gate FET, the rate of increase and the shift of gate surface potential of the FET were found to depend on the concentration of calcium ions in the SBF. It was concluded that the process of HAp crystallization at a SAM-modified surface can be detected using FETs. Thus, a FET device that enables the easy detection of ionic charges in a real-time and label-free manner, will be useful for evaluating biomaterials based on biomineralization such as those in the bone regeneration process.

  18. Study of Fluid Flow Control In Protein Crystallization Using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F.; Ciszak, E.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in 'microgravity', researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  19. Diffraction and fringing field effects in small pixel liquid crystal devices with homeotropic alignment

    NASA Astrophysics Data System (ADS)

    Vanbrabant, Pieter J. M.; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal

    2010-10-01

    Reducing the pixel dimensions of liquid crystal microdisplays in search of high resolution has a fundamental impact on their electro-optic behavior. The liquid crystal director orientation becomes distorted due to fringing fields and diffraction effects influence the optical characteristics of the device once the structure features approach the wavelength of the incident light. Three-dimensional finite element simulation of the liquid crystal dynamics with a variable order approach is combined with a full-vector beam propagation analysis to investigate how elasticity and diffraction limit the resolution as a function of the pixel size for transmissive and reflective architectures with vertical liquid crystal alignment. The key liquid crystal properties are considered and the importance of materials with high birefringence is confirmed for small pixel devices as these improve the contrast for a fixed pixel size.

  20. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  1. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  2. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  3. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  4. Electric field effects on phase transitions in the 8CB liquid crystal doped with ferroelectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Daoudi, A.; Segovia-Mera, A.; Dubois, F.; Legrand, C.; Douali, R.

    2016-06-01

    The influence of a low ac electric field on phase transitions is discussed in the case of a nematic liquid crystal 4 -n -octyl-4 '-cyanobiphenyl (8CB) doped with Sn2P2S6 ferroelectric nanoparticles. The phase-transition temperatures obtained from temperature-dependent dielectric measurements were higher than those determined by the calorimetric method. This difference is explained by the presence of the measuring electric field which induces two effects. The first one is the amplification of the interactions between the nanoparticle polarization and the liquid-crystal order parameter. The second one is the field-induced disaggregation or aggregation process at high nanoparticle concentrations.

  5. Heat transport in polymer-dispersed liquid crystals under electric field

    NASA Astrophysics Data System (ADS)

    Hadj Sahraoui, Abdelhak; Delenclos, Sylvain; Longuemart, Stéphane; Dadarlat, Dorin

    2011-08-01

    The concepts of effective thermal conductivity and interfacial thermal contact resistance in composite media are applied to study heat transport in polymer-dispersed liquid crystals (PDLC). In these systems, the thermal properties of liquid crystal inclusions are changed by an imposed electric field. The photopyroelectric (PPE) technique with a cell allowing the application of an electric field to the sample is used to measure the thermal parameters. A model based on effective medium approximation is used to assess the impact of interfaces on the flow of heat through the determination of the Kapitza radius. It was found that the effect of interfaces becomes dominant compared to the volume conduction of the droplet when the liquid crystal (LC) droplet radius becomes smaller than 1 micron. The comparison of the thermal behavior of LC in the droplets with that of bulk liquid crystal allowed to evaluate the effect of confinement on the LC nematic phase.

  6. Far-field detection system for laser beam and crystal alignment

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Liu, Daizhong; Zhu, Baoqiang; Tang, Shunxing; Gao, Yanqi

    2016-03-01

    Laser beam far-field alignment as well as frequency-doubling and frequency-tripling crystal adjustment is very important for high-power laser facility. Separate systems for beam and crystal alignment are generally used while the proposed approach by off-axial grating sampling share common optics for these two functions, reducing both space and cost requirements. This detection system has been demonstrated on the National Laser Facility of Israel. The experimental results indicate that the average far-field alignment error is <5% of the spatial filter pinhole diameter, average autocollimation angle error of crystals is <10 μrad, and average frequency-tripling conversion efficiency is 69.3%, which meet the alignment system requirements on the beam direction and crystals.

  7. Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2016-01-19

    We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process. PMID:26695105

  8. Separating different contributions to the crystal-field parameters using Wannier functions.

    PubMed

    Scaramucci, A; Ammann, J; Spaldin, N A; Ederer, C

    2015-05-01

    We discuss the calculation of crystal-field splittings using Wannier functions and show how contributions to the crystal-field splitting that are due to hybridization with different ligand states can be separated from the bare Coulomb contribution by constructing sets of Wannier functions incorporating different levels of hybridization. We demonstrate this method using SrVO3 as a generic example of a transition metal oxide. We then calculate trends in the crystal-field splitting for two series of hypothetical tetragonally distorted perovskite oxides and discuss the relation between the calculated 'electrostatic' contribution to the crystal field and the simple point charge model. Finally, we apply our method to the charge disproportionated 5d electron system CsAuCl3. The proposed procedure elucidates the way in which the negative charge transfer energy in this material leads to a reversal of the p-d ligand contribution to the crystal-field splitting such that the eg states of the nominally Au(3+) cation are energetically lower than the corresponding t2g states. PMID:25872527

  9. Internal bias field in triglycine sulphate crystals with L-, α-alanine grown at negative temperatures

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Ionova, E. V.; Kirichenko, A. P.; Bavykin, S. A.

    2010-09-01

    The dielectric and pyroelectric properties of triglycine sulphate (TGS) crystals with L, α-alanine impurities grown at negative temperatures have been investigated. It is shown that a lower impurity concentration (2 mol % in solution) in this temperature range leads to the formation of internal bias fields of the same order of magnitude (˜800 V/cm) as for TGS crystals grown at T ⩽ 50°C but with an L, α-alanine concentration of 20 mol % in solution.

  10. Application of a rotating magnetic field to semiconductor crystal growth in Space

    NASA Astrophysics Data System (ADS)

    Senchenkov, A. S.; Barmin, I. V.

    2003-12-01

    To eliminate the tremendous influence of the residual accelerations on homogeneity of the crystal growing in a space experiment, a rotating magnetic field (RMF) is used. A number of the experiments have been performed in space within the RMF both in the frame of the Russian national program and together with European scientists. In the paper some theoretical and experimental results illustrating the effectiveness of RMF application to crystal growth under microgravity conditions are presented. Tables 2, Figs 5, Refs 8.

  11. Nonlinear optical tuning of photonic crystal microcavities by near-field probe

    SciTech Connect

    Vignolini, Silvia; Zani, Margherita; Riboli, Francesco; Vinattieri, Anna; Wiersma, Diederik S.; Gurioli, Massimo; Intonti, Francesca; Balet, Laurent; Li, Lianhe; Colocci, Marcello; Francardi, Marco; Gerardino, Annamaria; Fiore, Andrea

    2008-07-14

    We report on a nonlinear way to control and tune the dielectric environment of photonic crystal microcavities exploiting the local heating induced by near-field laser excitation at different excitation powers. The temperature gradient due to the optical absorption results in an index of refraction gradient which modifies the dielectric surroundings of the cavity and shifts the optical modes. Reversible tuning can be obtained either by changing the excitation power density or by exciting in different points of the photonic crystal microcavity.

  12. Electron correlations in semiconductors: Bulk cohesive properties and magnetic-field-induced Wigner crystal at heterojunctions

    SciTech Connect

    Louie, S.G.; Zhu, X.

    1992-08-01

    A correlated wavefunction variational quantum Monte Carlo approach to the studies of electron exchange and correlation effects in semiconductors is presented. Applications discussed include the cohesive and structural properties of bulk semiconductors, and the magnetic-field-induced Wigner electron crystal in two dimensions. Landau level mixing is shown to be important in determining the transition between the quantum Hall liquid and the Wigner crystal states in the regime of relevant experimental parameters.

  13. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  14. Atomic density functional and diagram of structures in the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Ankudinov, V. E.; Galenko, P. K.; Kropotin, N. V.; Krivilyov, M. D.

    2016-02-01

    The phase field crystal model provides a continual description of the atomic density over the diffusion time of reactions. We consider a homogeneous structure (liquid) and a perfect periodic crystal, which are constructed from the one-mode approximation of the phase field crystal model. A diagram of 2D structures is constructed from the analytic solutions of the model using atomic density functionals. The diagram predicts equilibrium atomic configurations for transitions from the metastable state and includes the domains of existence of homogeneous, triangular, and striped structures corresponding to a liquid, a body-centered cubic crystal, and a longitudinal cross section of cylindrical tubes. The method developed here is employed for constructing the diagram for the homogeneous liquid phase and the body-centered iron lattice. The expression for the free energy is derived analytically from density functional theory. The specific features of approximating the phase field crystal model are compared with the approximations and conclusions of the weak crystallization and 2D melting theories.

  15. A phase-field model coupled with lattice kinetics solver for modeling crystal growth in furnaces

    SciTech Connect

    Lin, Guang; Bao, Jie; Xu, Zhijie; Tartakovsky, Alexandre M.; Henager, Charles H.

    2014-02-02

    In this study, we present a new numerical model for crystal growth in a vertical solidification system. This model takes into account the buoyancy induced convective flow and its effect on the crystal growth process. The evolution of the crystal growth interface is simulated using the phase-field method. Two novel phase-field models are developed to model the crystal growth interface in vertical gradient furnaces with two temperature profile setups: 1) fixed wall temperature profile setup and 2) time-dependent temperature profile setup. A semi-implicit lattice kinetics solver based on the Boltzmann equation is employed to model the unsteady incompressible flow. This model is used to investigate the effect of furnace operational conditions on crystal growth interface profiles and growth velocities. For a simple case of macroscopic radial growth, the phase-field model is validated against an analytical solution. Crystal growth in vertical gradient furnaces with two temperature profile setups have been also investigated using the developed model. The numerical simulations reveal that for a certain set of temperature boundary conditions, the heat transport in the melt near the phase interface is diffusion dominant and advection is suppressed.

  16. Giant Magnetic Field-induced Phase Transitions in Dimeric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Salili, Seyyed Muhammad; Salamonczyk, Miroslaw; Tamba, Maria-Gabriela; Sprunt, Samuel; Mehl, Georg; Jakli, Antal; Gleeson, James; Kent Group Collaboration; Hull Group Collaboration

    Liquid crystals are responsive to external fields such as electric, magnetic fields. The first experimental observation of dependence of isotropic to nematic phase transition on the applied magnetic field was done using a strong magnetic field on bent-core nematogens and the phase transition temperature exhibited an upshift of 0.7 C at B =30 T. We report on measurements of giant magnetic field-induced isotropic-nematic transition of chainsticks (nunchuks) type dimeric liquid crystals. Upon using the B =25 T split-helix resistive solenoid magnet at NHMFL, we have observed up to 18 C upshift of the isotropic to nematic phase transition temperature at B =22T. We discuss the results within the context of differential thermodynamic potential and the two basic mean-field theories. To our knowledge, this is the first observation of such huge shifts in the phase transitions of thermotropic liquid ctystals

  17. Semiconductor crystal growth in crossed electric and magnetic fields: Center Director's Discretionary Fund

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    1996-01-01

    A unique growth cell was designed in which crossed electric and magnetic fields could be separately or simultaneously applied during semiconductor crystal growth. A thermocouple was inserted into an InSb melt inside the growth cell to examine the temperature response of the fluid to applied electromagnetic fields. A static magnetic field suppressed time-dependent convection when a destabilizing thermal field was applied. The simultaneous application of electric and magnetic fields resulted in forced convection in the melt. The InSb ingots grown in the cell were polycrystalline. An InGaSb crystal, 0.5 cm in diameter and 23-cm long, was grown without electromagnetic fields applied. The axial composition results indicated that complete mixing in the melt occurred for this large aspect ratio.

  18. Control of Convection by Dynamic Magnetic Fields for VB, FZ and THM Crystal Growth Application

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2000-01-01

    The Traveling Magnetic Field (TMF) technique, recently proposed to control meridional flow in electrically conducting melts is reviewed. In particular, the natural convection damping capability of this technique has been numerically demonstrated with the implication of significantly improving crystal quality. Advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, are discussed. Finally, a detailed one-dimensional planar TMF model has been developed and is presented.

  19. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  20. Fabrication of specimens of metamorphic magnetite crystals for field ion microscopy and atom probe microanalysis.

    PubMed

    Kuhlman, K R; Martens, R L; Kelly, T F; Evans, N D; Miller, M K

    2001-10-01

    Field ion specimens have been successfully fabricated from samples of metamorphic magnetite crystals (Fe3O4) extracted from a polymetamorphosed, granulite-facies marble with the use of a focused ion beam. These magnetite crystals contain nanometer-scale, disk-shaped inclusions making this magnetite particularly attractive for investigating the capabilities of atom probe field ion microscopy (APFIM) for geological materials. Field ion microscope images of these magnetite crystals were obtained in which the observed size and morphology of the precipitates agree with previous results. Samples were analyzed in the energy compensated optical position-sensitive atom probe. Mass spectra were obtained in which peaks for singly ionized 16O, 56Fe and 56FeO and doubly ionized 54Fe, 56Fe and 57Fe peaks were fully resolved. Manganese and aluminum were observed in a limited analysis of a precipitate in an energy compensated position sensitive atom probe. PMID:11770743

  1. Crystal structure analysis of LiTaO3 under electric field

    NASA Astrophysics Data System (ADS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Iwata, Makoto; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-10-01

    Structural changes of a stoichiometric LiTaO3 single crystal accompanied by polarization switching are investigated using high-energy X-ray diffraction under static electric fields. The electric field dependence of the c-axis lattice constant depicts a small hysteresis and shows a butterfly curve. Inversion of the crystal structure accompanied by polarization switching is clearly detected with changes in the diffraction intensities of Friedel pairs. The electric field dependences of the atomic positions and volume ratio of the ferroelectric domains are obtained by crystal structure analyses. The results are fully consistent with the bulk properties and ensure that the present experimental techniques are applicable to detecting the transient atomic motions in the nucleation and growth of the ferroelectric domains during polarization switching.

  2. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    NASA Astrophysics Data System (ADS)

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-01

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  3. Crystal field parameters and energy levels scheme of trivalent chromium doped BSO

    SciTech Connect

    Petkova, P.; Andreici, E.-L.; Avram, N. M.

    2014-11-24

    The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.

  4. Long-range orientational order, local-field anisotropy, and mean molecular polarizability in liquid crystals

    SciTech Connect

    Aver'yanov, E. M.

    2009-01-15

    The problems on the relation of the mean effective molecular polarizability {gamma}-bar to the long-range orientational order of molecules (the optical anisotropy of the medium) in uniaxial and biaxial liquid crystals, the local anisotropy on mesoscopic scales, and the anisotropy of the Lorentz tensor L and the local-field tensor f are formulated and solved. It is demonstrated that the presence of the long-range orientational order of molecules in liquid crystals imposes limitations from below on the molecular polarizability {gamma}-bar, which differs for uniaxial and biaxial liquid crystals. The relation between the local anisotropy and the molecular polarizability {gamma}-bar is investigated for calamitic and discotic uniaxial liquid crystals consisting of lath- and disk-shaped molecules. These liquid crystals with identical macroscopic symmetry differ in the local anisotropy and the relationships between the components L{sub parallel} < L{sub perpendicular} , f{sub parallel} < f{sub perpendicular} (calamitic) and L{sub parallel} > L{sub perpendicular} , f{sub parallel} > f{sub perpendicular} (discotic) for an electric field oriented parallel and perpendicular to the director. The limitations from below and above on the molecular polarizability {gamma}-bar due to the anisotropy of the tensors L and f are established for liquid crystals of both types. These limitations indicate that the molecular polarizability {gamma}-bar depends on the phase state and the temperature. The factors responsible for the nonphysical consequences of the local-field models based on the approximation {gamma}-bar = const are revealed. The theoretical inferences are confirmed by the experimental data for a number of calamitic nematic liquid crystals with different values of birefringence and the discotic liquid crystal Col{sub ho}.

  5. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  6. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  7. Metal electrode dependent field effect transistors made of lanthanide ion-doped DNA crystals

    NASA Astrophysics Data System (ADS)

    Reddy Dugasani, Sreekantha; Hwang, Taehyun; Kim, Jang Ah; Gnapareddy, Bramaramba; Kim, Taesung; Park, Sung Ha

    2016-03-01

    We fabricated lanthanide ion (Ln3+, e.g. Dy3+, Er3+, Eu3+, and Gd3+)-doped self-assembled double-crossover (DX) DNA crystals grown on the surface of field effect transistors (FETs) containing either a Cr, Au, or Ni electrode. Here we demonstrate the metal electrode dependent FET characteristics as a function of various Ln3+. The drain-source current (I ds), controlled by the drain-source voltage (V ds) of Ln3+-doped DX DNA crystals with a Cr electrode on an FET, changed significantly under various gate voltages (V g) due to the relative closeness of the work function of Cr to the energy band gap of Ln3+-DNA crystals compared to those of Au and Ni. For Ln3+-DNA crystals on an FET with either a Cr or Ni electrode at a fixed V ds, I ds decreased with increasing V g ranging from  -2 to 0 V and from 0 to  +3 V in the positive and negative regions, respectively. By contrast, I ds for Ln3+-DNA crystals on an FET with Au decreased with increasing V g in only the positive region due to the greater electronegativity of Au. Furthermore, Ln3+-DNA crystals on an FET exhibited behaviour sensitive to V g due to the appreciable charge carriers generated from Ln3+. Finally, we address the resistivity and the mobility of Ln3+-DNA crystals on an FET with different metal electrodes obtained from I ds-V ds and I ds-V g curves. The resistivities of Ln3+-DNA crystals on FETs with Cr and Au electrodes were smaller than those of pristine DNA crystals on an FET, and the mobility of Ln3+-DNA crystals on an FET with Cr was relatively higher than that associated with other electrodes.

  8. Twist-bend nematic liquid crystals in high magnetic fields.

    PubMed

    Challa, P K; Borshch, V; Parri, O; Imrie, C T; Sprunt, S N; Gleeson, J T; Lavrentovich, O D; Jákli, A

    2014-06-01

    We present magneto-optic measurements on two materials that form the recently discovered twist-bend nematic (N_{tb}) phase. This intriguing state of matter represents a fluid phase that is orientationally anisotropic in three directions and also exhibits translational order with periodicity several times larger than the molecular size. N_{tb} materials may also spontaneously form a visible, macroscopic stripe texture. We show that the optical stripe texture can be persistently inhibited by a magnetic field, and a 25T external magnetic field depresses the N-N_{tb} phase transition temperature by almost 1{∘}C. We propose a quantitative mechanism to account for this shift and suggest a Helfrich-Hurault-type mechanism for the optical stripe formation. PMID:25019707

  9. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method

    NASA Astrophysics Data System (ADS)

    H, Dhaouadi; R, Zgueb; O, Riahi; F, Trabelsi; T, Othman

    2016-05-01

    In ferroelectric liquid crystals, phase transitions can be induced by an electric field. The current constant method allows these transition to be quickly localized and thus the (E,T) phase diagram of the studied product can be obtained. In this work, we make a slight modification to the measurement principles based on this method. This modification allows the characteristic parameters of ferroelectric liquid crystal to be quantitatively measured. The use of a current square signal highlights a phenomenon of ferroelectric hysteresis with remnant polarization at null field, which points out an effect of memory in this compound.

  10. Accurate force fields and methods for modelling organic molecular crystals at finite temperatures.

    PubMed

    Nyman, Jonas; Pundyke, Orla Sheehan; Day, Graeme M

    2016-06-21

    We present an assessment of the performance of several force fields for modelling intermolecular interactions in organic molecular crystals using the X23 benchmark set. The performance of the force fields is compared to several popular dispersion corrected density functional methods. In addition, we present our implementation of lattice vibrational free energy calculations in the quasi-harmonic approximation, using several methods to account for phonon dispersion. This allows us to also benchmark the force fields' reproduction of finite temperature crystal structures. The results demonstrate that anisotropic atom-atom multipole-based force fields can be as accurate as several popular DFT-D methods, but have errors 2-3 times larger than the current best DFT-D methods. The largest error in the examined force fields is a systematic underestimation of the (absolute) lattice energy. PMID:27230942

  11. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-11-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  12. Study of Fluid Flow Control in Protein Crystallization using Strong Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Leslie, Fred; Ciszak, Ewa

    2002-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular crystals for diffraction analyses has been the central focus for biochemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of the container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and sedimentation, as is achieved in "microgravity", researchers have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, formation of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. Whether this limited convection in a magnetic field will provide the environment for the growth of high quality crystals is still a matter of conjecture that our research will address. The approach exploits the variation of fluid magnetic susceptibility with concentration for this purpose and the convective damping is realized by appropriately

  13. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    NASA Astrophysics Data System (ADS)

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; da Como, Enrico; Hall, Simon R.

    2016-05-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal.

  14. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.

    PubMed

    Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A

    2014-12-01

    In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. PMID:25449316

  15. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth

    PubMed Central

    Potticary, Jason; Terry, Lui R.; Bell, Christopher; Papanikolopoulos, Alexandros N.; Christianen, Peter C. M.; Engelkamp, Hans; Collins, Andrew M.; Fontanesi, Claudio; Kociok-Köhn, Gabriele; Crampin, Simon; Da Como, Enrico; Hall, Simon R.

    2016-01-01

    The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle. The β-herringbone polymorph is stable, preserves its structure under ambient conditions and as a result of the altered molecular packing of the crystals, exhibits significant changes to the optical and mechanical properties of the crystal. PMID:27161600

  16. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, Žiga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muševič, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  17. Electric-field-induced weakly chaotic transients in ferroelectric liquid crystals.

    PubMed

    Śliwa, I; Jeżewski, W; Kuczyński, W

    2016-01-01

    Nonlinear dynamics induced in surface stabilized ferroelectric liquid crystals by strong alternating external electric fields is studied both theoretically and experimentally. As has already been shown, molecular reorientations induced by sufficiently strong fields of high-enough frequencies can reveal a long transient behavior that has a weakly chaotic character. The resulting complex dynamics of ferroelectric liquid crystals can be considered not only as a consequence of irregular motions of particular molecules but also as a repercussion of a surface-enforced partial decorrelation of nonlinear molecular motions within smectic layers. To achieve more insight into the nature of this phenomenon and to show that the underlying complex field-induced behavior of smectic liquid crystals is not exceptional, ranges of system parameters for which the chaotic behavior occurs are determined. It is proved that there exists a large enough set of initial phase trajectory points, for which weakly chaotic long-time transitory phenomena occur, and, thereby, it is demonstrated that such a chaotic behavior can be regarded as being typical for strongly field-driven thin liquid crystal systems. Additionally, the influence of low-amplitude random noise on the duration of the transient processes is numerically studied. The strongly nonlinear contribution to the electro-optic response, experimentally determined for liquid crystal samples at frequencies lower than the actual field frequency, is also analyzed for long-time signal sequences. Using a statistical approach to distinguish numerically response signals of samples from noise generated by measuring devices, it is shown that the distribution of sample signals distinctly differs from the device noise. This evidently corroborates the occurrence of the nonlinear low-frequency effect, found earlier for different surface stabilized liquid crystal samples. PMID:26871130

  18. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  19. Pulsed field actuation of Ni-Mn-Ga ferromagnetic shape memory alloy single crystal

    NASA Astrophysics Data System (ADS)

    Marioni, M.; Bono, D.; Banful, A. B.; del Rosario, M.; Rodriguez, E.; Peterson, B. W.; Allen, S. M.; O'Handley, R. C.

    2003-10-01

    Ferromagnetic Shape Memory Alloy Ni-Mn-Ga has twin boundaries in the martensitic phase that move when a suitable magnetic field is applied. In this fashion strains of up to 6% have been observed for static fields in single crystals [1]. Recently 2.5% strain has been demonstrated [2] in Ni-Mn-Ga single crystals for oscillating fields up to frequencies of 75 Hz (150 Hz actuation). This work studies the actuation of single crystals when pulsed fields are applied. Fields in the 0.4-1.5MA/m-range were generated in an air coil with rise times of the order of 1ms and below. The elongation of the samples is measured with a light beam reflected off the tip of the crystal. Single twin boundaries have been observed to advance 0.16 mm during 600 μsec-ong pulses. Actuation has been shown to be possible at least up to frequencies of 1700 Hz.

  20. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D.

    PubMed

    Tóth, Gyula I; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-15

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model. PMID:21386517

  1. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  2. Thermoelectric Magnetohydrodynamic Flow During Crystal Growth with a Moderate or Weak Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Y. Y.; Walker, John S.; Szofran, Frank R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This paper treats a steady, axisymmetric melt motion in a cylindrical ampoule with a uniform, axial magnetic field and with an electric current due to a radial temperature variation along the crystal-melt interface, where the values of the absolute thermoelectric power for the crystal and melt are different. The radial component of the thermoelectric current in the melt produces an azimuthal body force, and the axial variation of the centrifugal force due to the azimuthal motion drives a meridional circulation with radial and axial velocities. For moderate magnetic field strengths, the azimuthal velocity and magnetic field produce a radial induced electric field which partially cancels the Seebeck electromotive force in the melt, so that the thermoelectric current and the melt motion are coupled. For weak magnetic fields, the thermoelectric current is decoupled from the melt motion, which is an ordinary hydrodynamic flow driven by a known azimuthal body force. The results show how the flow varies with the strength of the magnetic field and with the magnitude of the temperature variation along the crystal-melt interface. They also define the parameter ranges for which the simpler weak-field decoupled analysis gives accurate predictions.

  3. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics. PMID:27247284

  4. Crystal field effect on EPR and optical absorption properties of natural green zoisite.

    PubMed

    Javier-Ccallata, Henry; Watanabe, Shigueo

    2013-03-01

    In this study the electron paramagnetic resonance (EPR) and optical absorption (OA) of natural crystal of zoisite were investigated after γ ((60)Co) irradiation and high temperature annealing. EPR measurements show that the zoisite from Tefilo Otoni MG Brazil contain Cr(3+), Fe(3+) and Mn(2+) ions and occupy distorted Al(3+) octahedral and tetrahedral sites which are subjected to the action of a strong crystal field in axial direction. Absorption bands which in principle give rise to sets of EPR lines between 500 and 2500 G were found using the deconvolution method. The application of high doses of gamma ray and high temperature annealing has shown no significant effects on EPR and OA spectra. Spin-allowed, spin-forbidden and crystal field parameters were calculated for 3d(3) configuration and interpreted using the spin Hamiltonian formalism containing axial and rhombic terms in low symmetries. PMID:23291113

  5. Two-prism crystal structures for far-field imaging of subwavelength features at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Barros, D. A.; Dumelow, T.

    2016-08-01

    We investigate how a system of two single crystals can be used for far field imaging of subwavelength features. We make use of the phonon response to induce canalization of narrow collimated beams in crystals with suitably high anisotropy at the appropriate transverse optical phonon frequency. By cutting the crystals into suitably designed prisms, we show that an magnified image can be obtained and projected into the far field by a two-prism structure, noting that a single prism does not give a faithful reproduction of the object and will usually result in total internal reflection of most of the radiation. We show simulations using triglycine sulphate, which is both highly anisotropic and has very low absorption, at low temperature.

  6. Tuning the colloidal crystal structure of magnetic particles by external field.

    PubMed

    Pal, Antara; Malik, Vikash; He, Le; Erné, Ben H; Yin, Yadong; Kegel, Willem K; Petukhov, Andrei V

    2015-02-01

    Manipulation of the self-assembly of magnetic colloidal particles by an externally applied magnetic field paves a way toward developing novel stimuli responsive photonic structures. Using microradian X-ray scattering technique we have investigated the different crystal structures exhibited by self-assembly of core-shell magnetite/silica nanoparticles. An external magnetic field was employed to tune the colloidal crystallization. We find that the equilibrium structure in absence of the field is random hexagonal close-packed (RHCP) one. External field drives the self-assembly toward a body-centered tetragonal (BCT) structure. Our findings are in good agreement with simulation results on the assembly of these particles. PMID:25510837

  7. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution

    NASA Astrophysics Data System (ADS)

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-03-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell.

  8. Electric Field-Controlled Crystallizing CaCO3 Nanostructures from Solution.

    PubMed

    Qi, Jian Quan; Guo, Rui; Wang, Yu; Liu, Xuan Wen; Chan, Helen Lai Wah

    2016-12-01

    The role of electric field is investigated in determining the structure, morphology, and crystallographic characteristics of CaCO3 nanostructures crystallized from solution. It is found that the lattice structure and crystalline morphology of CaCO3 can be tailed by the electric field applied to the solution during its crystallization. The calcite structure with cubic-like morphology can be obtained generally without electric field, and the vaterite structure with the morphology of nanorod is formed under the high electric field. The vaterite nanorods can be piled up to the petaliform layers. Both the nanorod and the petaliform layer can have mesocrystal structures which are piled up by much fine units of the rods with the size of several nanometers. Beautiful rose-like nanoflowers can be self-arranged by the petaliform layers. These structures can have potential application as carrier for medicine to involve into metabolism of living cell. PMID:26932759

  9. Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ke, M.; Qiu, C.; Liu, Z.

    2016-06-01

    We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.

  10. Fringing field-induced monodomain of a polymer-stabilized blue phase liquid crystal

    NASA Astrophysics Data System (ADS)

    Li, Wei-Huan; Hu, De-Chun; Li, Yan; Chen, Chao Ping; Lee, Yung-Jui; Lien, Alan; Lu, Jian-Gang; Su, Yikai

    2015-12-01

    The influence of fringe electric field applied during photopolymerization on the electro-optic properties of polymer-stabilized blue phase liquid crystals (PS-BPLCs) was investigated. It has been found that the thermal stability would not degrade if the electric field was less than a critical value. The contrast ratio of PS-BPLC can be improved significantly because the uniformity of blue phase liquid crystal domain was enhanced by the electric fields, which were applied during photopolymerization. Meanwhile, with the electric filed, the potential energy of the BPLC molecules may lower the anchoring energy of the polymer network resulting in the improvement of electro-optic response properties. With optimized electric field during polymerization, the contrast ratio and the Kerr constant of PS-BPLC can be improved by 4.1 times and 15%, respectively, and the hysteresis can be decreased by 10%, while the response time and residual birefringence have no degradation.

  11. Double perovskite structure: a vibrational and luminescence investigation providing a perspective on crystal field strength.

    PubMed

    Li, Wenyu; Ning, Lixin; Tanner, Peter A

    2012-07-12

    The luminescence spectra of Eu(3+) doped in a series of double perovskite lattices Ba(2)LnMO(6) (Ln = Y, Gd; M = Nb, Ta) have been recorded at room temperature and 10 K. Together with FT-IR and FT-Raman spectra and aided by DFT vibrational energy calculations, assignments have been made for the crystal field levels of the (5)D(J) (J = 0,1) and (7)F(J) (J = 0-2) multiplets. The luminescence spectra are consistent with monoclinic symmetry of these systems. The crystal field parameters from the fitting of the energy level data set of Ba(2)YNbO(6):Eu(3+) enable the crystal field strength to be calculated, and the order of magnitude is Cl(-) < O(2-) < F(-) for the EuX(6)(n-) (n = 6 for halogen, 9 for oxide) moieties. For these systems, an empirical linear relationship between crystal field strength and electronegativity of ligand X has been found. By contrast, the nephelauxetic series from the depression of the Slater parameter F(2) is Cl(-) ≈ O(2-) > F(-) > free ion for these systems. PMID:22703165

  12. Synthesis and field emission behaviour of well faceted In2Se3 micro-crystals

    NASA Astrophysics Data System (ADS)

    Kolhe, Panakj S.; Suryawanshi, Sachin R.; Shisode, Raju T.; More, Mahendra A.

    2015-06-01

    Here in, we report synthesis of crystalline Indium Selenide (In2Se3) elegant microcrystals on Au coated Si substrates using one-step facile thermal evaporation route and their field emission investigations. The as-synthesized In2Se3 micro-crystals were subjected to structural and morphological analysis prior to the field emission studies. The XRD spectrum of the as-synthesized product reveals formation of crystalline hexagonal phase of In2Se3 under the prevailing experimental conditions. Under optimized process variables, the morphology of the as-synthesized product is characterized by presence of well facetted micron size particles of In2Se3. Furthermore, the EDAX analysis confirms the presence of In and Se in the as-synthesized sample. The field emission characteristic of the In2Se3 micro-crystal emitter is found to be superior to the other metal chalcogenides micro-crystal based emitters. The synthesized In2Se3 micro-crystals emitter delivers current density of ˜ 225 µA/cm2 at an applied electric field of ˜ 7.44 V/µm. The emission current stability investigated at pre-set value of ˜ 3 µA is observed to be fairly good. These observed results demonstrate potential of the In2Se3 cathode as an electron source for practical applications in vacuum microelectronic devices.

  13. Crystal field splitting on D<-->S transitions of atomic manganese isolated in solid krypton

    NASA Astrophysics Data System (ADS)

    Byrne, O.; Collier, M. A.; Ryan, M. C.; McCaffrey, J. G.

    2010-05-01

    Narrow excitation features present on the [Ar]3d64s1aD(J=9/2-1/2)6←[Ar]3d54s2aS1/26 transitions of manganese atoms isolated in solid Kr are analyzed within the framework of weak crystal field splitting. Use of the Wp optical lineshape function allowed identification of multiple zero-phonon lines for individual spin-orbit J states of the a aD6←aS6 transition recorded with laser-induced excitation spectroscopy. Excellent agreement exists between the predicted crystal field splitting patterns for the J levels of the aD6 state isolated in the «red» tetravacancy site of solid Kr. The tetrahedral crystal field of the «red» trapping site splits J >3/2 levels of the aDJ6 and aD7/24 states by approximately 30cm-1. This report represents the first definitive evidence of crystal field splitting, induced by the weak van der Waals interactions between a neutral metal atom and the rare gas atoms surrounding it in a well-defined solid-state site.

  14. Crystal Field Theory and the Angular Overlap Model Applied to Hydrides of Main Group Elements.

    ERIC Educational Resources Information Center

    Moore, E. A.

    1990-01-01

    Described is how crystal field theory and the angular overlap model can be applied to very simple molecules which can then be used to introduce such concepts as bonding orbitals, MO diagrams, and Walsh diagrams. The main-group compounds are used as examples and a switch to the transition metal complexes. (KR)

  15. Electronic transitions, crystal field effects and phonons in UO 2

    NASA Astrophysics Data System (ADS)

    Schoenes, J.

    1980-08-01

    An extensive optical study of the 5f magnetic semiconductor UO 2 is presented. The experimental data include near normal incidence reflectivity measurements from 0.0025 to 13 eV, absorption and Faraday rotation measurements as function of temperature and of magnetic fields up to 100 kOe and photoemission results. From the data in the fundamental absorption region an energy level scheme is derived. This level scheme differs markedly from an earlier model but it is quantitatively supported by a calculation using the thermochemical Haber-Born process and also by cluster calculations. The localized nature of the 5f electrons is demonstrated. The absorption edge at 2 eV shows an abrupt shift to lower energies at the first order phase transition of UO 2 to the antiferromagnetic state. This shift is shown to be larger than expected from the lattice contraction indicating a magnetic order induced contribution to the total red shift. Below the absorption edge, intra-5f transitions and multiphonon excitations are reported, showing striking order induced effects at and below TN = 30.8 K. New results are presented for ε st, ε opt, ω TO and ω LO which fulfill the Lyddane-Sachs-Teller relation.

  16. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  17. Measurement of temperature and velocity fields of freezing water using liquid crystal tracers

    NASA Astrophysics Data System (ADS)

    Kowalewski, Tomasz A.

    A new experimental technique based on a computational analysis of the colour and displacement of thermochromic liquid crystal tracers was applied to determine both the temperature and velocity fields of freezing water. The technique combines Digital Particle Image Thermometry and Digital Particle Image Velocimetry. Full 2-D temperature and velocity fields are determined from a pair or a longer sequence, of colour images taken for the selected cross-section of the flow.

  18. Electric-field modulation of liquid crystal structures in contact with structured surfactant monolayers.

    PubMed

    Guillamat, Pau; Sagués, Francesc; Ignés-Mullol, Jordi

    2014-05-01

    We present experiments in which we use an electric field to switch between different configurations in the cellular patterns induced in a confined nematic liquid crystal by the contact with a surfactant monolayer that features lateral order and surface defects. By using different combinations of far-field alignment and mesogen dielectric anisotropy, we unravel the nature and stability of point defects and disclinations resulting from the hybrid boundary conditions. PMID:25353818

  19. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  20. Far-field detection system for laser beams alignment and crystals alignment

    NASA Astrophysics Data System (ADS)

    Liu, D.; Qin, H.; Zhu, B.

    2015-08-01

    Laser beams far-field alignment is very important for the high power laser facility as well as the frequency doubling crystals adjustment. Traditional beams alignment system and crystals alignment system are separated. That means, they use different optical image systems and CCD cameras, which will occupy larger space and use more money. A new farfield detection system of laser beams is presented with a big diffraction grating (37mm*37mm), a set of optical imaging components and a high resolution CCD camera. This detection system, which is fully demonstrated on the National Laser Facility of Israel, can align high power laser facility beams' direction as well as the frequency doubling crystals. The new system occupies small space in the spatial filter through off-axial grating sampling. The experimental results indicate that the average far-field alignment error is less than 5% of spatial filter pinhole diameter, and the average crystals' matching angle error is less than 10urad, which meet the alignment system requirements for beams and crystals.

  1. Self-Action of Light Fields in Waveguide Photon Structures Based on Electro-Optic Crystals

    NASA Astrophysics Data System (ADS)

    Shandarov, V. M.

    2016-02-01

    Special features of spatial self-action of light fields in nonlinear optical photonic waveguide structures formed in strontium barium niobate and lithium niobate electro-optic crystals are discussed. The main methods of forming such structures including photorefractive waveguide elements and systems are briefly considered. The formation of spatial optical solitons in planar waveguides based on lithium niobate and strontium barium niobate crystals as well as in one-dimensional photonic lattices in lithium niobate is demonstrated experimentally for light beams of microwatt power. In regimes of spatial optical solitons, channel optical waveguides are formed not only in the planar waveguides, but also in the volume of photorefractive lithium niobate.

  2. Conoscopic analysis of electric field driven planar aligned nematic liquid crystal.

    PubMed

    Ranjini, Radhakrishnan; Matham, Murukeshan Vadakke; Nguyen, Nam-Trung

    2014-05-01

    This paper illustrates the conoscopic observation of a molecular reconstruction occurring across a nematic liquid crystal (NLC) medium in the presence of an external electric field. Conoscopy is an optical interferometric method, employed to determine the orientation of an optic axis in uniaxial crystals. Here a planar aligned NLC medium is used, and the topological changes with respect to various applied voltages are monitored simultaneously. Homogenous planar alignment is obtained by providing suitable surface treatments to the ITO coated cell walls. The variation in the conoscopic interferometric patterns clearly demonstrates the transition from planar to homeotropic state through various intermediate states. PMID:24921859

  3. Electric field effects in nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Moţoc, Cornelia

    2013-12-01

    The aim of this paper was to investigate electric field induced effects in mixtures of nematic liquid crystals (NLCs) with positive electric anisotropies (MCL 6601 Merck) with carbon nanotubes (MWCNT from Aldrich). In planar alignment, the current-electric field dependence and the current-temperature dependence were explained by assuming a Poole-Frenkel effect (i.e. a tunnelling mechanism) and good agreement with the experimental data was obtained. Within this high field range it resulted that in planar aligned NLC-CNTs mixture the conductivity decreases when the temperature was increased. In homeotropic aligned mixture, the conduction mechanism is similar to the one occurring in a semiconductor: the conductivity increases when increasing temperature. This happens because in thin liquid crystal cells there is a possibility to realize an inner contact between nanotubes and electrodes so the mixture behaves like a semiconductor.

  4. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    SciTech Connect

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.; Hanks, Byron; Battaile, Corbett Chandler

    2015-09-01

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct link between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.

  5. Dislocation dynamics, plasticity and avalanche statistics using the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Angheluta, Luiza

    2013-03-01

    The plastic deformation of stressed crystalline materials is characterized by intermittency and scaling behavior. The sudden strain bursts arise from collective interactions between depinned crystal defects such as dislocations. Recent experiments on sheared nanocrystals provide insights into the connection between the crystal plasticity and the mean field theory of the depinning transition, based on the similar power-law statistics of avalanche events. However, a complete theoretical formulation of this connection is still lacking, as are high quality numerical data. Phase field crystal modelling provides an efficient numerical approach to simulating the dynamics of dislocations in plastic flows at finite temperature. Dislocations are naturally created as defects in a periodic ground state that is being sheared, without any ad hoc creation and annihilation rules. These crystal defects interact and annihilate with one another, generating a collective effect of avalanches in the global plastic strain rate. We examine the statistics of plastic avalanches both at finite and zero temperatures, and find good agreement with the predictions of the mean field interface depinning theory. Moreover, we predict universal scaling forms for the extreme statistics of avalanches and universal relations between the power-law exponents of avalanche duration, size and extreme value. These results account for the observed power-law distribution of the maximum amplitudes in acoustic emission experiments of crystal plasticity, but are also broadly applicable to other systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes. The work reported here was performed in collaboration with: Georgios Tsekenis, Michael LeBlanc, Patrick Y Chan, Jon Dantzig, Karin Dahmen, and Nigel Goldenfeld. The work was supported by the Center for Physics of Geological Processes (Norway) through a post-doctoral grant, the National Science Foundation through grant NSF

  6. Paramagnetic Meissner effect at high fields in YCaBaCuO single crystal

    NASA Astrophysics Data System (ADS)

    Dias, F. T.; Vieira, V. N.; Falck, A. L.; da Silva, D. L.; Pureur, P.; Schaf, J.

    2012-12-01

    We report on systematic magnetization experiments in an Y1-xCaxBa2Cu3O7-δ (x = 0.25 at%) single crystal. The magnetization experiments were made using a superconducting quantum interference device magnetometer (SQUID). Magnetic moments were measured as functions of the temperature according to the zero-field cooling (ZFC), field-cooled cooling (FCC), and field-cooled warming (FCW) prescriptions. The time-dependence of the FC magnetization at fixed magnetic fields was studied. Magnetic fields up to 50 kOe were applied and a paramagnetic response related to the superconducting state was observed when strong enough fields were applied parallel to the c axis. The magnitude of the high field paramagnetic moment (HFPME) increases when the field is augmented. The effect shows strong and anomalous time dependence, such that the paramagnetic moment increases as a function of the time. An YBa2Cu3O7-δ single crystal exhibiting the same effect was used for comparison. We discuss our results in terms of the flux compression scenario into the sample modulated by Ca concentration.

  7. Crystal field excitations in CeCu2Ge2: Revisited employing a single crystal and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Loewenhaupt, Michael; Faulhaber, Enrico; Schneidewind, Astrid; Deppe, Micha; Hradil, Klaudia

    2012-04-01

    The intermetallic compound, CeCu2Ge2, is the counterpart of the heavy-fermion superconductor CeCu2Si2. CeCu2Ge2 is a magnetically ordering (TN = 4.1K) Kondo lattice with a moderate Sommerfeld coefficient of 140 mJ/ molK2. Earlier inelastic neutron measurements on a polycrystalline sample revealed a doublet ground state and a quasi-quartet excited state at 16.5 meV, although a splitting of the 4f1 (J = 5/2) ground state multiplet into 3 doublets is expected from the point symmetry of the Ce3+ ions. We performed detailed inelastic neutron scattering experiments on a single crystal at the thermal triple-axis spectrometer PUMA at FRM II for different crystallographic directions. From our results we infer that the quasi-quartet, in fact, consists of two doublets at 17.0 and 18.3 meV which exhibit a strong directional dependence of their transition matrix elements to the ground state doublet. Finally, we will present a new set of crystal field parameters.

  8. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    NASA Astrophysics Data System (ADS)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  9. Solitary waves in two-dimensional dusty plasma crystal: Effects of weak magnetic field

    SciTech Connect

    Ghosh, Samiran; Gupta, M. R.

    2010-03-15

    It is shown that in the presence of weak magnetic field, the dust lattice solitary wave in two-dimensional (2D) hexagonal dusty plasma crystal is governed by a gyration-modified 2D Korteweg-de Vries equation due to the action of Lorentz force on the dust particles. Numerical solutions reveal that only for weak magnetic field an apparently single hump solitary wave solution exist. But, for strong magnetic field dust lattice solitary wave becomes unstable showing repetitive solitary hump of increasing magnitude with time.

  10. Photorefractive Bragg gratings in nematic liquid crystals aligned by a magnetic field

    SciTech Connect

    Wiederrecht, G.P.; Wasielewski, M.R. |

    1999-06-01

    Photorefractive Bragg gratings are observed in low-molar-mass nematic liquid crystals doped with electron donor and acceptor molecules. This is accomplished by alignment of the nematic liquid crystals in a 0.3 T magnetic field, which produces thicker homeotropic aligned samples than traditional surfactant techniques. Grating fringe spacings as low as 3.7 {mu}m are achieved with 176-{mu}m-thick samples, producing grating {ital Q} values of 33. Up to this point, low molar mass nematic liquid crystals have exhibited photorefractive gratings with Q{le}1. Asymmetric two-beam coupling and photoconductivity experiments are performed to verify the photorefractive origin of the gratings. {copyright} {ital 1999 American Institute of Physics.}

  11. Accurate Full-Field Thermochromic Liquid Crystal Thermography for the Study of Instantaneous Turbulent Heat Transfer

    NASA Astrophysics Data System (ADS)

    Sabatino, D. R.; Praisner, T. J.; Smith, C. R.

    1998-11-01

    The color change of thermochromic liquid crystals with temperature can be effectively utilized as full-field surface temperature sensors to investigate the fundamental structure of wall turbulence. In order to accurately quantify turbulent heat transfer behavior, a new technique has been developed for the calibration of wide-band micro-encapsulated thermochromic liquid crystals. Lighting/viewing arrangements are described and evaluated for ease of implementation and accuracy of the displayed color. This new technique employs images recorded in-situ with the test surface systematically exposed to a series of uniform temperature conditions spanning the bandwidth of the liquid crystals. This sequence of images is used to generate point-wise color/temperature calibration curves for the entire surface. Experimental results will be presented illustrating the application of the technique for assessment of spatial/temporal surface heat transfer behavior due to selected turbulent flows in a water channel

  12. A coupled ductile fracture phase-field model for crystal plasticity

    NASA Astrophysics Data System (ADS)

    Hernandez Padilla, Carlos Alberto; Markert, Bernd

    2015-08-01

    Nowadays crack initiation and evolution play a key role in the design of mechanical components. In the past few decades, several numerical approaches have been developed with the objective to predict these phenomena. The objective of this work is to present a simplified, nonetheless representative phenomenological model to predict the crack evolution of ductile fracture in single crystals. The proposed numerical approach is carried out by merging a conventional elasto-plastic crystal plasticity model and a phase-field model modified to predict ductile fracture. A two-dimensional initial boundary value problem of ductile fracture is introduced considering a single-crystal setup and Nickel-base superalloy material properties. The model is implemented into the finite element context subjected to a quasi-static uniaxial tension test. The results are then qualitatively analyzed and briefly compared to current benchmark results in the literature.

  13. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla

    NASA Astrophysics Data System (ADS)

    Challa, Pavan K.; Curtiss, O.; Williams, J. C.; Twieg, R.; Toth, J.; McGill, S.; Jákli, A.; Gleeson, J. T.; Sprunt, S. N.

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (QαβBαBβ) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field.

  14. Light scattering from liquid crystal director fluctuations in steady magnetic fields up to 25 tesla.

    PubMed

    Challa, Pavan K; Curtiss, O; Williams, J C; Twieg, R; Toth, J; McGill, S; Jákli, A; Gleeson, J T; Sprunt, S N

    2012-07-01

    We report on homodyne dynamic light scattering measurements of orientational fluctuation modes in both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 tesla, which is consistent with strictly lowest order coupling of the tensor order parameter Q to field (Q(αβ)B(α)B(β)) in the nematic free energy. However, we also observe evidence of field dependence of certain nematic material parameters, an effect which may be expected from the mean field scaling of these quantities with the magnitude of Q and the predicted variation of Q with field. PMID:23005438

  15. Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies.

    PubMed

    Chang, Tsung-Wen; Chien, Jia-Ren Chang; Wu, Chien-Jang

    2016-02-01

    The microwave magnetic-field tunable filtering properties in a multichannel filter based on use of a one-dimensional finite magnetized plasma photonic crystal (PPC) are theoretically investigated. The considered PPC has a structure of air/(AB)N/air, where A is a dielectric layer, B is a plasma layer, and N is the stack number. First, in the absence of an externally applied magnetic field, the structure can work as a multichannel filter whose channel number is equal to N-1 for N>1. Next, in the presence of an externally applied field, the filtering properties become tunable, i.e., the channel frequencies can be shifted as a function of the applied magnetic field. We find that the effect of the magnetic field will cause the channel frequencies to be blue-shifted or red-shifted depending on the orientation of the applied magnetic field. PMID:26836104

  16. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2014-05-01

    We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.

  17. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-08-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  18. Selective Precipitation and Concentrating of Perovskite Crystals from Titanium-Bearing Slag Melt in Supergravity Field

    NASA Astrophysics Data System (ADS)

    Gao, Jintao; Zhong, Yiwei; Guo, Zhancheng

    2016-06-01

    Selective precipitation and concentrating of perovskite crystals from titanium-bearing slag melt in the supergravity field was investigated in this study. Since perovskite was the first precipitated phase from the slag melt during the cooling process, and a greater precipitation quantity and larger crystal sizes of perovskite were obtained at 1593 K to 1563 K (1320 °C to 1290 °C), concentrating of perovskite crystals from the slag melt was carried out at this temperature range in the supergravity field, at which the perovskite transforms into solid particles while the other minerals remain in the liquid melt. The layered structures appeared significantly in the sample obtained by supergravity treatment, and all the perovskite crystals moved along the supergravity direction and concentrated as the perovskite-rich phase in the bottom area, whereas the molten slag concentrated in the upper area along the opposite direction, in which it was impossible to find any perovskite crystals. With the gravity coefficient of G = 750, the mass fraction of TiO2 in the perovskite-rich phase was up to 34.65 wt pct, whereas that of the slag phase was decreased to 12.23 wt pct, and the recovery ratio of Ti in the perovskite-rich phase was up to 75.28 pct. On this basis, an amplification experimental centrifugal apparatus was exploited and the continuous experiment with larger scale was further carried out, the results confirming that selective precipitation and concentrating of perovskite crystals from the titanium-bearing slag melt by supergravity was a feasible method.

  19. A phase-field/Monte-Carlo model describing organic crystal growth from solution. Investigation of the diffusion-influenced growth of hydroquinone crystals

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Yürüdü, C.; Ulrich, J.; Emmerich, H.

    2009-08-01

    In this paper work we present a phase-field/Monte-Carlo hybrid algorithm for the simulation of solutal growth of organic crystals. The algorithm is subsequently used for an investigation of diffusion effects on the growth mechanisms. This method combines a two-scale phase-field model of the liquid phase epitaxial growth and a Monte-Carlo algorithm of the 2D nucleation and thus is faster than previous purely Monte Carlo simulations of crystal growth. The inclusion of supersaturation and diffusion in the method allows the study of crystal growth under various growth conditions. Parameters used in the hybrid algorithm are bound to the energetic parameters of crystal faces, which can be estimated from a detailed study of the actual crystal structure based on a connected nets analysis, which allows the prediction of the shape and morphology of real crystals. The study of the diffusion effect is carried out based on an example of a hydroquinone crystal, which grows from the water solution at various supersaturations. The dependencies of the growth rate and the nucleation rate on the supersaturation indicate the change of the growth mechanism from spiral growth to 2D nucleation. The difference in the growth rate for various faces is in agreement with the crystal morphologies derived from the attachment energy method and observed experimentally. The main result of the simulation is the evaluation of engineering limits for choosing appropriate external process conditions.

  20. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  1. Recent developments in Liquid Phase Electroepitaxial growth of bulk crystals under magnetic field

    NASA Astrophysics Data System (ADS)

    Dost, Sadik; Lent, Brian; Sheibani, Hamdi; Liu, Yongcai

    2004-05-01

    This review article presents recent developments in Liquid Phase Electroepitaxial (LPEE) growth of bulk single crystals of alloy semiconductors under an applied static magnetic field. The growth rate in LPEE is proportional to the applied electric current. However, at higher electric current levels the growth becomes unstable due to the strong convection occurring in the liquid zone. In order to address this problem, a significant body of research has been performed in recent years to suppress and control the natural convection for the purpose of prolonging the growth process to grow larger crystals. LPEE growth experiments show that the growth rate under an applied static magnetic field is also proportional and increases with the field intensity level. The modeling of LPEE growth under magnetic field was also the subject of interest. Two-dimensional mathematical models developed for the LPEE growth process predicted that the natural convection in the liquid zone would be suppressed almost completely with increasing the magnetic field level. However, experiments and also three-dimensional models have shown that there is an optimum magnetic field level below which the growth process is stable and the convection in the liquid zone is suppressed, but above such a field level the convective flow becomes very strong and leads to unstable growth with unstable interfaces. To cite this article: S. Dost et al., C. R. Mecanique 332 (2004).

  2. Vertically-Aligned Single-Crystal Nanocone Arrays: Controlled Fabrication and Enhanced Field Emission.

    PubMed

    Duan, Jing Lai; Lei, Dang Yuan; Chen, Fei; Lau, Shu Ping; Milne, William I; Toimil-Molares, M E; Trautmann, Christina; Liu, Jie

    2016-01-13

    Metal nanostructures with conical shape, vertical alignment, large ratio of cone height and curvature radius at the apex, controlled cone angle, and single-crystal structure are ideal candidates for enhancing field electron-emission efficiency with additional merits, such as good mechanical and thermal stability. However, fabrication of such nanostructures possessing all these features is challenging. Here, we report on the controlled fabrication of large scale, vertically aligned, and mechanically self-supported single-crystal Cu nanocones with controlled cone angle and enhanced field emission. The Cu nanocones were fabricated by ion-track templates in combination with electrochemical deposition. Their cone angle is controlled in the range from 0.3° to 6.2° by asymmetrically selective etching of the ion tracks and the minimum tip curvature diameter reaches down to 6 nm. The field emission measurements show that the turn-on electric field of the Cu nanocone field emitters can be as low as 1.9 V/μm at current density of 10 μA/cm(2) (a record low value for Cu nanostructures, to the best of our knowledge). The maximum field enhancement factor we measured was as large as 6068, indicating that the Cu nanocones are promising candidates for field emission applications. PMID:26666466

  3. Influence of electromagnetic field intensity on the metastable zone width of CaCO3 crystallization in circulating water

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Liang, Yandong; Chen, Si

    2016-09-01

    In this study, changes in the metastable zone width of CaCO3 crystallization was determined through conductivity titration by altering electromagnetic field parameters applied to the circulating water system. The critical conductivity value and metastable zone curves of CaCO3 crystallization were determined under different solution concentrations and electromagnetic field intensities. Experimental results indicate that the effect of the electromagnetic field intensity on the critical conductivity value intensifies with the increase of solution concentration. Moreover, the metastable zone width of CaCO3 crystallization increases with the increase of electromagnetic field intensity within 200 Gs, thereby prolonging the induction period of nucleation.

  4. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation.

    PubMed

    Guo, Can; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Guo, Yaolin; Huang, Yunhao

    2016-05-18

    To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory. PMID:27117814

  5. Temperature dependence of Fe/++/ crystal field spectra - Implications to mineralogical mapping of planetary surfaces

    NASA Technical Reports Server (NTRS)

    Sung, C.-M.; Singer, R. B.; Parkin, K. M.; Burns, R. G.; Osborne, M.

    1977-01-01

    Results are reported of Fe(++) crystal field spectral measurements for olivines and pyroxenes up to 400 C. The results are correlated with crystal structure data at elevated temperatures, and the validity of remote-sensed identifications of minerals on hot surfaces of the moon and Mercury is assessed. Two techniques were used to obtain spectra of minerals at elevated temperatures using a spectrophotometer. One employed a diamond cell assembly or a specially designed sample holder to measure polarized absorption spectra of heated single crystals. For the other technique, a sample holder was designed to attach to a diffuse reflectance accessory to produce reflectance spectra of heated powdered samples. Polarized absorption spectra of forsterite at 20-400 C are shown in a graph. Other graphs show the temperature dependence of Fe(++) crystal field bands in olivines, the diffuse reflectance spectra of olivine at 40-400 C, the polarization absorption spectra of orthopyroxene at 30-400 C, the diffuse reflectance spectra of pigeonite at 40-400 C, and unpolarized absorption spectra of lunar pyroxene from Apollo 15 rock 15058.

  6. Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale

    NASA Astrophysics Data System (ADS)

    Rudolph, Peter

    2008-04-01

    After introduction of various types of magnetic fields in crystal growth, their main pros and cons for crystallization processes are discussed. It is shown that their further developments towards industrial maturity are bound up with the cardinal demands—increase of the process output, improvement of the crystal quality, and reduction of costs. In a further section, the advantages of travelling magnetic fields are presented. The central chapter is devoted to the target of the current KRISTMAG˜ project—the development of an internal heater-magnet module for coupled generation of temperature and a travelling magnetic field, suitable for incorporation into industrial Czochralski pullers and vertical gradient freeze equipments. Amplitude, frequency and phase shift of the three-phase current are all adjustable and are combined with a dc component to control the crystallization process effectively. Results of accompanying numeric modelling are presented. The current state of crystal growth experiments in travelling magnetic field and first encouraging results are given.

  7. Magnetostrictive behaviors of Fe-Si(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Aida, Takuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-01

    Magnetostrictive behaviors under rotating magnetic fields are investigated for bcc(001) single-crystal films of Fe100-x-Six(x = 0, 6, 10 at. %). The magnetostriction observation directions are along bcc[100] and bcc[110] of the films. The magnetostriction waveform varies greatly depending on the observation direction. For the observation along [100], the magnetostriction waveform of all the films is bathtub-like and the amplitude stays at almost constant even when the magnetic field is increased up to the anisotropy field. On the other hand, the waveform along [110] is triangular and the amplitude increases with increasing magnetic field up to the anisotropy field and then saturates. In addition, the waveform of Fe90Si10 film is distorted triangular when the applied magnetic fields are less than its anisotropy field. These magnetostrictive behaviors under rotating magnetic fields are well explained by employing a proposed modified coherent rotation model where the anisotropy field and the magnetization reversal field are determined by using measured magnetization curves. The results show that magnetocrystalline anisotropy plays important role on magnetostrictive behavior under rotating magnetic fields.

  8. Phase field crystal study of nano-crack growth and branch in materials

    NASA Astrophysics Data System (ADS)

    Yingjun, Gao; Zhirong, Luo; Lilin, Huang; Hong, Mao; Chuanggao, Huang; Kui, Lin

    2016-06-01

    The phase field crystal (PFC) method is a new multiscale method, which can reproduce physical phenomena on an atomic level and on a diffusion time scale for the microstructure evolution of materials. The morphology of microcrack propagation and the branch of single crystal materials under tensile strain with a fixed grip condition are simulated by using PFC coupling with an external field method. The results show that microcrack propagation depends a lot on the applied strain. The crack starts to grow and branch when the strain reaches a critical value for biaxial tension. The temperature parameter may also have an effect on crack propagation and the branch. In order to indicate the connection between the PFC results and materials behavior, the energy balance approach is used to analyze the mechanism of crack extension, and also the critical value of the strain for crack extension is obtained. The simulated results are in good agreement with other simulation results and experimental results.

  9. Emergence of foams from the breakdown of the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guttenberg, Nicholas; Goldenfeld, Nigel; Dantzig, Jonathan

    2010-06-01

    The phase field crystal (PFC) model captures the elastic and topological properties of crystals with a single scalar field at small undercooling. At large undercooling, new foamlike behavior emerges. We characterize this foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of foam dynamics. This minimal model reproduces von Neumann’s rule for two-dimensional dry foams and Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that its second moment is larger than previously reported experimental and theoretical studies of soap froths, a finding that we attribute to the wetness of the foam increasing with time.

  10. Flow and temperature field measurements of thermal convection in a small vertical gap using liquid crystals

    NASA Astrophysics Data System (ADS)

    Heiland, Hans Georg; Wozniak, Günter; Wozniak, Klaus

    2007-07-01

    Thermal convection in a small vertical gap is studied experimentally applying digital particle image velocimetry/thermometry. This optical method enables the simultaneous measurement of two-dimensional flow and temperature fields in a liquid. The principle is based on seeding the liquid flow medium with thermochromic liquid crystal particles. The temperature is measured by the crystal particles which change their reflected colour as function of temperature. The flow velocity is measured by using the same particles as flow tracers. The investigation shall contribute to the understanding of the fluid mechanical behaviour of biological liquids within micro reactor systems. However, the problem is also of fundamental interest as far as heat and mass transfer is concerned. Measured temperature and flow velocity fields are presented and discussed.

  11. Comprehensive Spectroscopic Determination of the Crystal Field Splitting in an Erbium Single-Ion Magnet.

    PubMed

    Rechkemmer, Yvonne; Fischer, Julia E; Marx, Raphael; Dörfel, María; Neugebauer, Petr; Horvath, Sebastian; Gysler, Maren; Brock-Nannestad, Theis; Frey, Wolfgang; Reid, Michael F; van Slageren, Joris

    2015-10-14

    The electronic structure of a novel lanthanide-based single-ion magnet, {C(NH2)3}5[Er(CO3)4]·11H2O, was comprehensively studied by means of a large number of different spectroscopic techniques, including far-infrared, optical, and magnetic resonance spectroscopies. A thorough analysis, based on crystal field theory, allowed an unambiguous determination of all relevant free ion and crystal field parameters. We show that inclusion of methods sensitive to the nature of the lowest-energy states is essential to arrive at a correct description of the states that are most relevant for the static and dynamic magnetic properties. The spectroscopic investigations also allowed for a full understanding of the magnetic relaxation processes occurring in this system. Thus, the importance of spectroscopic studies for the improvement of single-molecule magnets is underlined. PMID:26394012

  12. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes. PMID:22060323

  13. Direct mapping of local director field of nematic liquid crystals at the nanoscale.

    PubMed

    Xia, Yu; Serra, Francesca; Kamien, Randall D; Stebe, Kathleen J; Yang, Shu

    2015-12-15

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole-dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully "locked," allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  14. Direct mapping of local director field of nematic liquid crystals at the nanoscale

    PubMed Central

    Xia, Yu; Serra, Francesca; Kamien, Randall D.; Stebe, Kathleen J.; Yang, Shu

    2015-01-01

    Liquid crystals (LCs), owing to their anisotropy in molecular ordering, are of wide interest in both the display industry and soft matter as a route to more sophisticated optical objects, to direct phase separation, and to facilitate colloidal assemblies. However, it remains challenging to directly probe the molecular-scale organization of nonglassy nematic LC molecules without altering the LC directors. We design and synthesize a new type of nematic liquid crystal monomer (LCM) system with strong dipole–dipole interactions, resulting in a stable nematic phase and strong homeotropic anchoring on silica surfaces. Upon photopolymerization, the director field can be faithfully “locked,” allowing for direct visualization of the LC director field and defect structures by scanning electron microscopy (SEM) in real space with 100-nm resolution. Using this technique, we study the nematic textures in more complex LC/colloidal systems and calculate the extrapolation length of the LCM. PMID:26621729

  15. Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Do Hyun; Adornato, Peter M.; Brown, Robert A.

    1988-01-01

    A previous finite-element analysis of vertical Bridgman growth for dilute and nondilute alloys is extended to include the effect of a vertically-aligned magnetic field in the limit of zero magnetic Reynolds number. Calculations are presented for growth of a dilute gallium-germanium alloy in a vertically stabilized Bridgman-Stockbarger system and in a furnace with a uniform temperature gradient imposed along the ampoule. Steady cellular convection driven by radial temperature gradients causes good axial and radial mixing in both systems without a magnetic field. A weak magnetic field decreases the intensity of convection and the effectiveness of solute mixing. The radial nonuniformity is greatest for an intermediate field strength. Stronger fields suppress flow recirculation completely, and lead to uniform solute segregation across the crystal and to diffusion-controlled axial segregation.

  16. Low-field magnetic torque of a single crystal MgB 2

    NASA Astrophysics Data System (ADS)

    Atsumi, Toshiyuki; Tsuji, Mitsuyuki; Xu, Mingxiang; Kitazawa, Hideaki; Ishida, Takekazu

    2003-10-01

    We have investigated the magnetic torque of MgB 2 single crystal synthesized by the vapor transport method. We use a torque magnetometer consisting of a 4-K closed cycle refrigerator and a variable field permanent magnet up to 10 kG. The torque can be measured as an off-balance signal of the Wheatstone bridge of the four piezoresistors on a Si cantilever. The torque curves are analyzed by the Kogan model. The superconducting anisotropy γ is rather independent of temperature, but is dependent on field. As expected from the BCS theory, the prefactor of the Kogan formula, which corresponds to the lower critical field Hc1, changes smoothly as a function of temperature. We consider that the field dependence of γ comes from the multiple superconducting gaps and their different upper critical fields Hc2.

  17. Novel magnetic field sensor based on magnetic fluids infiltrated dual-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Wang, Rong; Wang, Jingyuan; Zhang, Baofu; Xu, Zhiyong; Wang, Huali

    2014-03-01

    Novel magnetic field sensor based on magnetic fluids infiltrated dual-core Photonic Crystal Fibers (PCFs) is proposed in this paper. Inside the cross-section of the designed PCFs, the two fiber cores filled with magnetic fluids (Fe3O4) are separated by an air hole, and then form two independent waveguides with mode coupling. The mode coupling under different magnetic field strength is investigated theoretically. A novel and simple magnetic field sensing system is proposed and its sensing performances have been studied numerically. The results show that the magnetic field sensor with 15-cm PCFs has a large sensing range and high sensitivity of 4.80 pm/Oe. It provides a new feasible method to design PCF-based magnetic field sensor.

  18. Electric Field-Induced Skyrmion Crystals via Charged Monopoles in Insulating Helimagets

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Vishwanath, Ashvin

    2016-06-01

    Electrons propagating in a magnetically ordered medium experience an additional gauge field associated with the Berry phase of their spin following the local magnetic texture. In contrast to the usual electromagnetic field, this gauge field admits monopole excitations, corresponding to hedgehog defects of the magnetic order. In an insulator, these hedgehogs carry a well-defined electric charge allowing for them to be controlled by electric fields. One particularly robust mechanism that contributes to the charge is the orbital magnetoelectric effect, captured by a θ angle, which leads to a charge of eθ/2π on hedgehogs. This is a direct consequence of the Witten effect for magnetic monopoles in a θ medium. A physical consequence is that external electric fields can induce skyrmion crystal phases in insulating helimagnets.

  19. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    PubMed Central

    2012-01-01

    Ferronematic materials composed of 4-cyano-4′-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  20. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-05-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δ n) and figure of merit of optical properties ( Q = Δ n/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of Q R exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field.

  1. Enhanced magnetic-field-induced optical properties of nanostructured magnetic fluids by doping nematic liquid crystals.

    PubMed

    Wang, Xiang; Pu, Shengli; Ji, Hongzhu; Yu, Guojun

    2012-01-01

    Ferronematic materials composed of 4-cyano-4'-pentylbiphenyl nematic liquid crystal and oil-based Fe3O4 magnetic fluid were prepared using ultrasonic agitation. The birefringence (Δn) and figure of merit of optical properties (Q = Δn/α, where α is the extinction coefficient) of pure magnetic fluids and the as-prepared ferronematic materials were examined and compared. The figure of merit of optical properties weighs the birefringence and extinction of the materials and is more appropriate to evaluate their optical properties. Similar magnetic-field- and magnetic-particle-concentration-dependent properties of birefringence and figure of merit of optical properties were obtained for the pure magnetic fluids and the ferronematic materials. For the ferronematic materials, the values of Q increase with the volume fractions of nematic liquid crystal under certain fixed field strength and are larger than those of their corresponding pure magnetic fluids at high field region. In addition, the enhancement of Q value increases monotonously with the magnetic field and becomes remarkable when the applied magnetic field is beyond 50 mT. The maximum relative enhanced value of QR exceeds 6.8% in our experiments. The results of this work may conduce to extend the pragmatic applications of nanostructured magnetic fluids in optical field. PMID:22587542

  2. Rheology of Pure Glasses and Crystal Bearing Melts: from the Newtonian Field to the Brittle Onset

    NASA Astrophysics Data System (ADS)

    Cordonnier, B.; Caricchi, L.; Pistone, M.; Castro, J. M.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The brittle-ductile transition remains a central question of modern geology. If rocks can be perceived as a granular flow on geological time-scale, their behavior is brittle in dynamic areas. Understanding rock failure conditions is the main parameter in mitigating geological risks, more specifically the eruptive style transitions from effusive to explosive. If numerical simulations are the only way to fully understanding the physical processes involved, we are in a strong need of an experimental validation of the proposed models. here we present results obtained under torsion and uni-axial compression on both pure glasses and crystal bearing melts. We characterized the brittle onset of two phases magmas from 0 to 65% crystals. The strain-rates span a 5 orders magnitude range, from the Newtonian flow to the Brittle field (10-5 - 100 s-1). We particularly emphasize the time dependency of the measured rheology. The materials tested are a borosilicate glass from the National Bureau of Standards, a natural sample from Mt Unzen volcano and a synthetic sample. The lattest is an HPG8 melt with 7% sodium mole excess. The particles are quasi-isometric corundum crystalschosen for their shape and integrity under the stress range investigated. The crystal fraction ranges from 0 to 0.65. Concerning pure magmas, we recently demonstrated that the material passes from a Newtonian to a non-Nemtonian behavior with increasing strain-rate. This onset can mostly be explained by viscous-heating effects. However, for even greater strain-rates, the material cracks and finally fail. The brittle onset is here explained with the visco-elastic theory and corresponds to a Deborah number greater than 10-2. Concerning crystal bearing melts the departure from the Newtonian state is characterized by two effects: a shear-thinning and a time weakening effect. The first one is instantaneous and loading-unloading cyclic tests suggest an elastic contribution of the crystal network. The second one

  3. Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color

    NASA Astrophysics Data System (ADS)

    Dellinger, Jean; Van Do, K.; Le Roux, Xavier; de Fornel, Frédérique; Cassan, Eric; Cluzel, Benoît

    2012-10-01

    Using a scanning near-field optical microscope operating with a hyperspectral detection scheme, we report the direct observation of the mirage effect within an on-chip integrated artificial material made of a two dimensional graded photonic crystal. The light rainbow due to the material dispersion is quantified experimentally and quantitatively compared to three dimensional plane wave assisted Hamiltonian optics predictions of light propagation.

  4. Dust Lattice Waves in Two-Dimensional Hexagonal Dust Crystals with an External Magnetic Field

    SciTech Connect

    Farokhi, B.; Shahmansouri, M.

    2008-09-07

    The influence of a constant magnetic field on the propagation of dust-lattice (DL) modes in a two-dimensional hexagonal strongly coupled plasma crystal formed by paramagnetic particles is considered. The expression for the wave dispersion relation clearly shows that high-frequency and low-frequency branches exist as a result of the coupling of longitudinal and transverse modes due to the Lorentz force acting on the dust particles.

  5. Consideration of the condensation processes of thin films in the crystal substrate's potential field

    NASA Astrophysics Data System (ADS)

    Tupik, V. A.; Margolin, V. I.; Trong Su, Chu

    2016-07-01

    The condensation process of a single particle in an ideal crystal substrate's potential field is considered. The optimal deposition path and the potential barrier of deposited particle's motion are shown. Some computer modeling examples of thin film's growth process were carried out on the basis of the implemented programs. A fractal analysis of obtained thin films was made, on the basis of which the possibility of estimating the performance of thin film's growth process will be discussed.

  6. Extended phase diagram of the three-dimensional phase field crystal model.

    PubMed

    Jaatinen, A; Ala-Nissila, T

    2010-05-26

    We determine the phase diagram of the phase field crystal model in three dimensions by using numerical free energy minimization methods. Previously published results, based on single mode approximations, have indicated that in addition to the uniform (liquid) phase, there would be regions of stability of body-centered cubic, hexagonal and stripe phases. We find that in addition to these, there are also regions of stability of face-centered cubic and hexagonal close packed structures in this model. PMID:21393705

  7. Crystal-Field and Covalency Effects in Uranates: An X-ray Spectroscopic Study.

    PubMed

    Butorin, Sergei M; Kvashnina, Kristina O; Smith, Anna L; Popa, Karin; Martin, Philippe M

    2016-07-01

    The electronic structure of U(V) - and U(VI) -containing uranates NaUO3 and Pb3 UO6 was studied by using an advanced technique, namely X-ray absorption spectroscopy (XAS) in high-energy-resolution fluorescence-detection (HERFD) mode. Due to a significant reduction in core-hole lifetime broadening, the crystal-field splittings of the 5f shell were probed directly in HERFD-XAS spectra collected at the U 3d edge, which is not possible by using conventional XAS. In addition, the charge-transfer satellites that result from U 5f-O 2p hybridization were clearly resolved. The crystal-field parameters, 5f occupancy, and degree of covalency of the chemical bonding in these uranates were estimated by using the Anderson impurity model by calculating the U 3d HERFD-XAS, conventional XAS, core-to-core (U 4f-3d transitions) resonant inelastic X-ray scattering (RIXS), and U 4f X-ray photoelectron spectra. The crystal field was found to be strong in these systems and the 5f occupancy was determined to be 1.32 and 0.84 electrons in the ground state for NaUO3 and Pb3 UO6 , respectively, which indicates a significant covalent character for these compounds. PMID:27257782

  8. Fabrication of Crystals and Devices for Studies of Field Induced Superconductivity

    NASA Astrophysics Data System (ADS)

    Kloc, Christian

    2002-03-01

    It was demonstrated that injection of electrons or holes into materials using field effect transistor can transform the surface layer into a metal or at low enough temperatures even into a superconductor. Which substances could exhibit electric field induced superconductivity is currently not well know. Superconductivity has been successfully induced in single crystals of arenes, (pentacene Tc = 2 K, tetracene Tc = 2.7K, anthracene Tc = 4 K) oligophenylenevinylenes (trimer Tc =4.2K , tetramer Tc=2.9 K and pentamer, Tc= 2 K) sexithiophene, polymer thin film (regioregular polythiophene, Tc = 2.35 K) and single crystals of pure and intercalated fullerenes (hole and electron doped C60 Tc = 52 and 11K, C70, Tc = 7K and substituted C60, Tc = up to 117 K). Additional, Schon et al. have reported the observation of field induced superconductivity in copper oxide compounds. Despite of relative simple device structures, they consist of semiconducting single crystals or well oriented thin films, metal source and drain electrodes, an aluminum oxide dielectric layer and a conducting gate electrode, the fabrication is onerous and the significance of particular technological steps to functionality of a whole device is not well explored. In this presentation I would like to discuss these technological procedures leading to superconducting devices and further developments in search for high temperature superconducting organics.

  9. A photonic-crystal optical antenna for extremely large local-field enhancement.

    PubMed

    Chang, Hyun-Joo; Kim, Se-Heon; Lee, Yong-Hee; Kartalov, Emil P; Scherer, Axel

    2010-11-01

    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators. PMID:21164762

  10. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  11. Capacitance changes in ferronematic liquid crystals induced by low magnetic fields

    NASA Astrophysics Data System (ADS)

    Tomašovičová, Natália; Timko, Milan; Mitróová, Zuzana; Koneracká, Martina; Rajňak, Michal; Éber, Nándor; Tóth-Katona, Tibor; Chaud, Xavier; Jadzyn, Jan; Kopčanský, Peter

    2013-01-01

    The response in capacitance to low external magnetic fields (up to 0.1 T) of suspensions of spherical magnetic nanoparticles, single-wall carbon nanotubes (SWCNT), SWCNT functionalized with carboxyl group (SWCNT-COOH), and SWCNT functionalized with Fe3O4 nanoparticles in a nematic liquid crystal has been studied experimentally. The volume concentration of nanoparticles was ϕ1=10-4 and ϕ2=10-3. Independent of the type and the volume concentration of the nanoparticles, a linear response to low magnetic fields (far below the magnetic Fréederiksz transition threshold) has been observed, which is not present in the undoped nematic.

  12. Imprint electric field controlled electronic transport in TlGaSe2 crystals

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu; Suleymanov, Rauf A.; Balaban, Ertan; Şale, Yasin

    2013-09-01

    The effect of built-in electric field onto the dc electrical conductivity, photoconductivity, and electrical switching phenomenon were investigated in TlGaSe2 layered semiconductor within the temperature range of 77-300 K. We have used different types of electrodes for different TlGaSe2 samples in both parallel and perpendicular directions to the plane of layers. The effect of electric field was investigated by cooling the samples from the room temperature under the electric field and then removing it at ˜80 K. After the procedure, it was found that a built-in internal electric field which strongly affects transport properties appears in TlGaSe2 crystals. Substantial increasing of both dark currents and photo-conductivities were observed predominantly at low temperatures, where hopping was the main conductivity mechanism. The anomalous decrease of the activation energy in the low temperature region and the switching effect are also the main experimental findings of the present work. Such behavior can be understood by assuming that the built-in electric field greatly increases the contribution of the hopping conductivity at low temperatures. Obtained results are discussed on the basis of the models widely used for disordered semiconductors. It was shown that TlGaSe2 crystal demonstrates the peculiar behavior that is typical to such type of semiconductors.

  13. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  14. In-situ observation of electric-field-induced acceleration in crystal growth of tetrathiafulvalene-tetracyanoquinodimethane

    NASA Astrophysics Data System (ADS)

    Sakai, Masatoshi; Kuniyoshi, Shigekazu; Yamauchi, Hiroshi; Iizuka, Masaaki; Nakamura, Masakazu; Kudo, Kazuhiro

    2013-04-01

    In-situ observations of vapor-phase growth of tetrathiafulvalene (TTF)-tetracyanoquinodimethane (TCNQ) crystals under an electric field were conducted without influencing the actual crystal growth process. The shortest incubation time of TTF-TCNQ nuclei and the highest initial growth rate of the crystals are obtained on the anode side and in high electric field regions. It is demonstrated that the distribution of molecules thermally diffusing on the substrate surface is controlled by an external electric field. These results indicate the potential for selective growth of highly conductive organic wires for micro- and nanoscale wiring in organic nanodevices.

  15. Crystal structure and high-field magnetism of La{sub 2}CuO{sub 4}

    SciTech Connect

    Reehuis, M.; Ulrich, C.; Keimer, B.; Prokes, K.; Gozar, A.; Blumberg, G.; Komiya, Seiki; Ando, Yoichi; Pattison, P.

    2006-04-01

    Neutron diffraction was used to determine the crystal structure and magnetic ordering pattern of a La{sub 2}CuO{sub 4} single crystal, with and without applied magnetic field. A previously unreported, subtle monoclinic distortion of the crystal structure away from the orthorhombic space group Bmab was detected. The distortion is also present in lightly Sr-doped crystals. A refinement of the crystal structure shows that the deviation from orthorhombic symmetry is predominantly determined to drive a continuous reorientation of the copper spins from the orthorhombic b axis to the c axis, directly confirming predictions based on prior magnetoresistance and Raman scattering experiments. A spin-flop transition induced by a c-axis oriented field previously reported for nonstoichiometric La{sub 2}CuO{sub 4} is also observed, but the transition field (11.5 T) is significantly larger than that in the previous work.

  16. Photonic crystal cavities for resonant evanescent field trapping of single bacteria

    NASA Astrophysics Data System (ADS)

    van Leest, Thijs; Heldens, Jeroen; van der Gaag, Bram; Caro, Jaap

    2012-06-01

    In monitoring the quality of drinking water with respect to the presence of hazardous bacteria there is a strong need for on-line sensors that allow quick identification of bacterium species at low cost. In this respect, the combination of photonics and microfluidics is promising for lab-on-a-chip sensing of these contaminants. Photonic crystal slabs have proven to form a versatile platform for controlling the flow of light and creating resonant cavities on a wavelength scale. The goal of our research is to use photonic crystal cavities for optical trapping of microorganisms in water, exploiting the enhanced evanescent field of the cavity mode. We optimize the H0, H1 and L3 cavities for optical trapping of bacteria in water, by reducing out-of-plane losses and taking into account the trapping-induced resonance shift and the in-plane coupling with photonic crystal waveguides. The cavities are fabricated on silicon-on-insulator material, using e-beam lithography and dry etching. A fluidic channel is created on top of the photonic crystal using dry film resist techniques. Transmission measurements show clear resonances for the cavities in water. In the present state of our research, we demonstrate optical trapping of 1 μm diameter polystyrene beads for the three cavities, with estimated trapping forces on the order of 0.7 pN.

  17. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields

    SciTech Connect

    Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P.; Pablo, Juan J. de

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  18. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    SciTech Connect

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  19. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    PubMed

    Armas-Pérez, Julio C; Londono-Hurtado, Alejandro; Guzmán, Orlando; Hernández-Ortiz, Juan P; de Pablo, Juan J

    2015-07-28

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate. PMID:26233107

  20. Magnetic Field Tunable Small-scale Mechanical Properties of Nickel Single Crystals Measured by Nanoindentation Technique

    PubMed Central

    Zhou, Hao; Pei, Yongmao; Fang, Daining

    2014-01-01

    Nano- and micromagnetic materials have been extensively employed in micro-functional devices. However, measuring small-scale mechanical and magnetomechanical properties is challenging, which restricts the design of new products and the performance of smart devices. A new magnetomechanical nanoindentation technique is developed and tested on a nickel single crystal in the absence and presence of a saturated magnetic field. Small-scale parameters such as Young's modulus, indentation hardness, and plastic index are dependent on the applied magnetic field, which differ greatly from their macroscale counterparts. Possible mechanisms that induced 31% increase in modulus and 7% reduction in hardness (i.e., the flexomagnetic effect and the interaction between dislocations and magnetic field, respectively) are analyzed and discussed. Results could be useful in the microminiaturization of applications, such as tunable mechanical resonators and magnetic field sensors. PMID:24695002

  1. Nematic liquid crystals in a spatially step-wise magnetic field

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics.

  2. Nematic liquid crystals in a spatially step-wise magnetic field.

    PubMed

    Napoli, Gaetano; Scaraggi, Michele

    2016-01-01

    We study the molecular reorientation induced by a textured external field in a nematic liquid crystal (nLC). In particular, we consider an infinitely wide cell with strong planar anchoring boundary conditions, subjected to a spatially periodic piecewise magnetic field. In the framework of the Frank's continuum theory, we use the perturbation analysis to study in detail the field-induced splay-bend Fréedericksz transition. A numerical approach, based on the finite differences method, is instead employed to solve the fully nonlinear equations. At high field strengths, an analytic approach allows us to draw the bulk profile of the director in terms of elliptic integrals. Finally, through the application of the Bruggeman texture hydrodynamics theory, we qualitatively discuss on the LCs piecewise director configuration under sliding interfaces, which can be adopted to actively regulate friction. Our study opens the pathway for the application of highly controlled nLC texturing for tribotronics. PMID:26871129

  3. A high-field (30 Tesla) pulsed magnet instrument for single-crystal scattering studies

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Nojiri, Hiroyuki; Narumi, Yasuo; Lang, Jonathan

    2010-03-01

    Pulsed magnets have emerged as a viable approach at synchrotron x-ray facilities for studying materials in high magnetic fields. We are developing a new high-field (30 Tesla) pulsed magnet system for single-crystal x-ray diffraction studies. It consists of a single 18mm-bore solenoid, designed and built at Tohoku University using high-tensile-strength and high conductivity CuAg wires. A dual-cryostat scheme has been developed at Advanced Photon Source in order to cool the coil using liquid nitrogen and the sample using a closed-cycle cryostat independently. Liquid nitrogen cooling allows repetition rate of a few minutes for peak fields near 30 Tesla. This scheme is unique in that it allows the applied magnetic field to be parallel to the scattering plane. Time-resolved scattering data are typically collected using a fast one-dimensional strip detector. Opportunities and challenges for experiments and instrumentation will be discussed.

  4. Magnetic-field-driven surface electromagnetic states in the graphene-antiferromagnetic photonic crystal system

    SciTech Connect

    Averkov, Yu. O. Tarapov, S. I.; Yakovenko, V. M.; Yampol’skii, V. A.

    2015-04-15

    The surface electromagnetic states (SEMSs) on graphene, which has a linear carrier dispersion law and is placed in an antiferromagnetic photonic crystal, are theoretically studied in the terahertz frequency range. The unit cell of such a crystal consists of layers of a nonmagnetic insulator and a uniaxial antiferromagnet, the easy axis of which is parallel to the crystal layers. A dc magnetic field is parallel to the easy axis of the antiferromagnet. An expression that relates the SEMS frequencies to the structure parameters is obtained. The problem of SEMS excitation by an external TE-polarized electromagnetic wave is solved, and the dependences of the transmission coefficient on the dc magnetic field and the carrier concentration are constructed. These dependences are shown to differ substantially from the case of a conventional two-dimensional electron gas with a quadratic electron dispersion law. Thus, the positions of the transmission coefficient peaks related to resonance SEMS excitation can be used to determine the character of carrier dispersion law in a two-dimensional electron gas.

  5. Directed peptide amphiphile assembly using aqueous liquid crystal templates in magnetic fields.

    PubMed

    van der Asdonk, Pim; Keshavarz, Masoumeh; Christianen, Peter C M; Kouwer, Paul H J

    2016-08-21

    An alignment technique based on the combination of magnetic fields and a liquid crystal (LC) template uses the advantages of both approaches: the magnetic fields offer non-contact methods that apply to all sample sizes and shapes, whilst the LC templates offer high susceptibilities. The combination introduces a route to control the spatial organization of materials with low intrinsic susceptibilities. We demonstrate that we can unidirectionally align one such material, peptide amphiphiles in water, on a centimeter scale at a tenfold lower magnetic field by using a lyotropic chromonic liquid crystal as a template. We can transform the aligned supramolecular assemblies into optically active π-conjugated polymers after photopolymerization. Lastly, by reducing the magnetic field strength needed for addressing these assemblies, we are able to create more complex structures by initiating self-assembly of our supramolecular materials under competing alignment forces between the magnetically induced alignment of the assemblies (with a positive diamagnetic anisotropy) and the elastic force dominated alignment of the template (with a negative diamagnetic anisotropy), which is directed orthogonally. Although the approach is still in its infancy and many critical parameters need optimization, we believe that it is a very promising technique to create tailor-made complex structures of (aqueous) functional soft matter. PMID:27320385

  6. Imaging the oblique propagation of electrons in germanium crystals at low temperature and low electric field

    NASA Astrophysics Data System (ADS)

    Moffatt, R. A.; Cabrera, B.; Corcoran, B. M.; Kreikebaum, J. M.; Redl, P.; Shank, B.; Yen, J. J.; Young, B. A.; Brink, P. L.; Cherry, M.; Tomada, A.; Phipps, A.; Sadoulet, B.; Sundqvist, K. M.

    2016-01-01

    Excited electrons in the conduction band of germanium collect into four energy minima, or valleys, in momentum space. These local minima have highly anisotropic mass tensors which cause the electrons to travel in directions which are oblique to an applied electric field at sub-Kelvin temperatures and low electric fields, in contrast to the more isotropic behavior of the holes. This experiment produces a full two-dimensional image of the oblique electron and hole propagation and the quantum transitions of electrons between valleys for electric fields oriented along the [0,0,1] direction. Charge carriers are excited with a focused laser pulse on one face of a germanium crystal and then drifted through the crystal by a uniform electric field of strength between 0.5 and 6 V/cm. The pattern of charge density arriving on the opposite face is used to reconstruct the trajectories of the carriers. Measurements of the two-dimensional pattern of charge density are compared in detail with Monte Carlo simulations developed for the Cryogenic Dark Matter Search (SuperCDMS) to model the transport of charge carriers in high-purity germanium detectors.

  7. Magnetostrictive behaviors of Fe-Al(001) single-crystal films under rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Kawai, Tetsuroh; Abe, Tatsuya; Ohtake, Mitsuru; Futamoto, Masaaki

    2016-05-01

    Magnetostrictive behaviors of Fe100-x - Alx(x = 0 - 30 at.%)(001) single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2) in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001) single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  8. Pressure dependence of upper critical fields in FeSe single crystals

    NASA Astrophysics Data System (ADS)

    Kang, Ji-Hoon; Jung, Soon-Gil; Lee, Sangyun; Park, Eunsung; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2016-03-01

    We investigate the pressure dependence of the upper critical fields (μ 0 H c2) for FeSe single crystals with pressure up to 2.57 GPa. The superconducting (SC) properties show a disparate behavior across a critical pressure where the pressure-induced antiferromagnetic phase coexists with superconductivity. The magnetoresistance for H//ab and H//c is very different: for H//c, magnetic field induces and enhances a hump in the resistivity close to the T c for pressures higher than 1.2 GPa, while it is absent for H//ab. Since the measured μ 0 H c2 for FeSe samples is smaller than the orbital limited upper critical field ({{{H}}{{orb}}}{{c}2}) estimated by the Werthamer, Helfand and Hohenberg model, the Maki parameter (α) related to Pauli spin-paramagnetic effects is additionally considered to describe the temperature dependence of μ 0 H c2(T). Interestingly, the α value is hardly affected by pressure for H//ab, while it strongly increases with pressure for H//c. The pressure evolution of the μ 0 H c2(0) for the FeSe single crystals is found to be almost similar to that of T c(P), suggesting that the pressure-induced magnetic order adversely affects the upper critical fields as well as the SC transition temperature.

  9. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  10. General equations for the motions of ice crystals and water drops in gravitational and electric fields

    NASA Technical Reports Server (NTRS)

    Nisbet, John S.

    1988-01-01

    General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

  11. Phase-field crystal modeling of shape transition of strained islands in heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Zheng; Zhang, Jing; Du, XiuJuan

    2012-11-01

    The phase-field crystal (PFC) model is employed to study the shape transition of strained islands in heteroepitaxy on vicinal substrates. The influences of both substrate vicinal angles β and the lattice mismatch ζ are discussed. The increase of substrate vicinal angles is found to be capable of significantly changing the surface nanostructures of epitaxial films. The surface morphology of films undergoes a series of transitions that include Stranski-Krastonov (SK) islands, the couple growth of islands and the step flow as well as the formation of step bunching. In addition, the larger ζ indicates an increased strained island density after coarsening, and results in the incoherent growth of strained islands with the creation of misfit dislocations. Coarsening, coalescence and faceting of strained islands are also observed. Some facets in the shape transition of strained islands are found to be stable and can be determined by β and crystal symmetry of the film.

  12. Crystal size of epidotes: A potentially exploitable geothermometer in geothermal fields

    SciTech Connect

    Patrier, P.; Beaufort, D.; Touchard, G. ); Fouillac, A.M. )

    1990-11-01

    Crystal size of epidotes crystallized in quartz + epidote veins is used as the basis for a new geothermometer from the fossil geothermal field of Saint Martin (Lesser Antilles). The epidote-bearing alteration paragenesis is developed as far as 3 km from a quartz diorite pluton at temperatures of 220-350C. The length/width ratio of the epidote grains is constant for all the analyzed samples and suggests isotropic growth environments. However, the length and width of the grains vary exponentially with temperature. The obtained results offer new perspectives for simple grain-size geothermomentry but must be extended to other geologic environments to clarify the influence of different rock types.

  13. Three-Dimensional Stress Fields and Slip Systems for Single Crystal Superalloy Notched Specimens

    NASA Technical Reports Server (NTRS)

    Magnan, Shannon M.; Throckmorton, David (Technical Monitor)

    2002-01-01

    Single crystal superalloys have become increasingly popular for turbine blade and vane applications due to their high strength, and creep and fatigue resistance at elevated temperatures. The crystallographic orientation of a single crystal material greatly affects its material properties, including elastic modulus, shear modulus, and ductility. These directional properties, along with the type of loading and temperature, dictate an anisotropic response in the yield strength, creep resistance, creep rupture ductility, fatigue resistance, etc. A significant amount of research has been conducted to determine the material properties in the <001> orientation, yet the material properties deviating from the <001> orientation have not been assessed for all cases. Based on the desired application and design criteria, a crystal orientation is selected to yield the maximum properties. Currently, single crystal manufacturing is able to control the primary crystallographic orientation within 15 of the target orientation, which is an acceptable deviation to meet both performance and cost guidelines; the secondary orientation is rarely specified. A common experiment is the standard load-controlled tensile test, in which specimens with different orientations can be loaded to observe the material response. The deformation behavior of single-crystal materials under tension and compression is known to be a function of not only material orientation, but also of varying microdeformation (i.e. dislocation) mechanisms. The underlying dislocation motion causes deformation via slip, and affects the activation of specific slip systems based on load and orientation. The slip can be analyzed by observing the visible traces left on the surface of the specimen from the slip activity within the single crystal material. The goal of this thesis was to predict the slip systems activated in three-dimensional stress fields of a notched tensile specimen, as a function of crystal orientation, using

  14. AOM reconciling of crystal field parameters for UCl sub 3 , UBr sub 3 , Ul sub 3 series

    SciTech Connect

    Gajek, Z.; Mulak, J. )

    1990-07-01

    Available inelastic neutron scattering interpretations of crystal field effect in the uranium trihalides have been verified in terms of Angular Overlap Model. For UCl{sub 3} a good reconciling of both INS and optical interpretations of crystal field effect has been obtained. On the contrary, the parameterizations for UBr{sub 3} and UI{sub 3} were found to be highly artificial and suggestion is given to experimentalists to reinterpret their INS spectra.

  15. Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field

    NASA Technical Reports Server (NTRS)

    Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar

    2000-01-01

    This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.

  16. Patterns driven by combined ac and dc electric fields in nematic liquid crystals.

    PubMed

    Krekhov, Alexei; Decker, Werner; Pesch, Werner; Eber, Nándor; Salamon, Péter; Fekete, Balázs; Buka, Agnes

    2014-05-01

    The effect of superimposed ac and dc electric fields on the formation of electroconvection and flexoelectric patterns in nematic liquid crystals was studied. For selected ac frequencies, an extended standard model of the electrohydrodynamic instabilities was used to characterize the onset of pattern formation in the two-dimensional parameter space of the magnitudes of the ac and dc electric field components. Numerical as well as approximate analytical calculations demonstrate that depending on the type of patterns and on the ac frequency, the combined action of ac and dc fields may either enhance or suppress the formation of patterns. The theoretical predictions are qualitatively confirmed by experiments in most cases. Some discrepancies, however, seem to indicate the need to extend the theoretical description. PMID:25353815

  17. Field-induced periodic distortions in a nematic liquid crystal: deuterium NMR study and theoretical analysis.

    PubMed

    Sugimura, A; Zakharov, A V

    2011-08-01

    The peculiarities in the dynamic of the director reorientation in a liquid crystal (LC) film under the influence of the electric E field directed at an angle α to the magnetic B field have been investigated both experimentally and theoretically. Time-resolved deuterium NMR spectroscopy is employed to investigate the field-induced director dynamics. Analysis of the experimental results, based on the predictions of hydrodynamic theory including both the director motion and fluid flow, provides an evidence for the appearance of the spatially periodic patterns in 4-n-pentyl-4'-cyanobiphenyl LC film, at the angles α>60∘, in response to the suddenly applied E. These periodic distortions produce a lower effective rotational viscosity. This gives a faster response of the director rotation than for a uniform mode, as observed in our NMR experiment. PMID:21929001

  18. Strain mapping in nanocrystalline grains simulated by phase field crystal model

    NASA Astrophysics Data System (ADS)

    Guo, Yaolin; Wang, Jincheng; Wang, Zhijun; Li, Junjie; Tang, Sai; Liu, Feng; Zhou, Yaohe

    2015-03-01

    In recent years, the phase field crystal (PFC) model has been confirmed as a good candidate to describe grain boundary (GB) structures and their nearby atomic arrangement. To further understand the mechanical behaviours of nanocrystalline materials, strain fields near GBs need to be quantitatively characterized. Using the strain mapping technique of geometric phase approach (GPA), we have conducted strain mapping across the GBs in nanocrystalline grains simulated by the PFC model. The results demonstrate that the application of GPA in strain mapping of low and high angles GBs as well as polycrystalline grains simulated by the PFC model is very successful. The results also show that the strain field around the dislocation in a very low angle GB is quantitatively consistent with the anisotropic elastic theory of dislocations. Moreover, the difference between low angle GBs and high angle GBs is revealed by the strain analysis in terms of the strain contour shape and the structural GB width.

  19. Electric field sensor based on cholesteric liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Lee, Bong Wan; Jeon, Min Yong

    2015-09-01

    We propose an electric field sensor using a cholesteric liquid crystal (CLC) Fabry-Perot etalon and a broadband optical source. The CLC cell consists of glass substrates, polyimide layers, electrodes, and CLC layer. There is a threshold behavior for CLC cell and no change in the transmitted wavelength occurs until a threshold value. The threshold value is 0.8 V/μm for fabricated CLC cell in this experiment. The transmitted or reflected wavelength from the CLC Fabry-Perot etalon depends on the applied electric field. The valley wavelengths of the transmitted light from the CLC device are linearly increased from 1303 nm to 1317 nm as the applied electric field to the CLC device is increased from 0.8 V/μm to 1.9 V/μm.

  20. Molecular simulation of model liquid crystals in a strong aligning field

    NASA Astrophysics Data System (ADS)

    de Miguel, Enrique; Blas, Felipe J.; Martín Del Río, Elvira

    We report a computer simulation study of systems of perfectly aligned molecules interacting through the Gay-Berne (GB) potential model for two different values of the molecular anisotropy parameter κ, namely 3 and 4.4. The models are appropriate to gauge the effects of strong aligning fields on the thermodynamics and structural properties of thermotropic liquid crystals. According to our results, one of the main effects of the external field is to increase the range of stability of the smectic A phase, which indicates the existence of a strong coupling between orientational and translational order. For the κ = 3 GB model the smectic phase, which is not stable in the absence of the field, is promoted when the molecules are constrained to be parallel. According to the simulation results, the smectic A-nematic transition is, in general, continuous; however, this transition appears to be first order at low pressure for the κ = 4.4 GB fluid model.

  1. Field-induced phase transitions in an antiferroelectric liquid crystal using the pyroelectric effect

    PubMed

    Shtykov; Vij; Lewis; Hird; Goodby

    2000-08-01

    The antiferroelectric liquid crystal (AFLC) under investigation possesses different helical polar phases. Measurements of pyroelectric response of these phases as a function of temperature and bias field have elucidated the ability of this method for investigating the nature of antiferroelectric phases and phase transitions under the bias field. The pyroelectric signal as a function of the bias field at fixed temperatures and as a function of temperature for fixed bias fields was measured for different phases of the investigated AFLC material. A theoretical model describing the pyroelectric response in different phases of AFLC is given, and the experimental results are interpreted. The threshold fields for field induced phase transitions are determined. The type of field induced phase transition from the AF phase in particular is found to be dependent on the temperature within its range. The properties of an unusual ferrielectric phase existing between ferrielectric chiral smectic-C (SmC*) and antiferroelectric AF phases are studied in a great detail. The results confirm that this phase is one of the incommensurate phases, predicted by the axial next-nearest neighbor Ising model and Landau model for this temperature region. PMID:11088695

  2. Crystal morphology and thermal EMF of pyrites in the western flank of Sukholozhsky gold ore field (Lenski ore area)

    NASA Astrophysics Data System (ADS)

    Gavrilov, R.; Pshenichkin, A.; Ponamarenko, M.; Abramova, R.

    2015-11-01

    The investigated crystal morphology and thermal EMF of pyrites in the western flank of Sukholozsky ore field showed that the pyrite crystals have cubic habitus with a weakly-developed face {210}. The crystal faces {100} and {210} are covered with multiple irregular-oriented growth laminae. It has been determined that pyrites have such a property as p-type conduction and embrace insignificant thermal EMF variations. The results of the research indicated the fact of upper ore zone erosion in the western flank of Sukholozhsky ore field and its area potential at depth.

  3. Inversion of absorption anisotropy and bowing of crystal field splitting in wurtzite MgZnO

    NASA Astrophysics Data System (ADS)

    Neumann, M. D.; Esser, N.; Chauveau, J.-M.; Goldhahn, R.; Feneberg, M.

    2016-05-01

    The anisotropic optical properties of wurtzite MgxZn1-xO thin films (0 ≤x ≤0.45 ) grown on m-plane ZnO substrates by plasma assisted molecular beam epitaxy are studied using spectroscopic ellipsometry at room temperature. The data analysis provides the dielectric functions for electric field polarizations perpendicular and parallel to the optical axis. The splitting between the absorption edges of the two polarization directions decreases between x = 0 and x = 0.24, while an inverted absorption anisotropy is found at higher Mg content, indicating a sign change of the crystal field splitting Δcr as for the spin orbit parameter. The characteristic energies such as exciton binding energies and band gaps are determined from the analysis of the imaginary parts of the dielectric functions. In particular, these data reveal a bowing parameter of b =-283 meV for describing the compositional dependence of the crystal field splitting and indicate Δcr=-327 meV for wurtzite MgO. The inverted valence band ordering of ZnO ( Γ7-Γ9-Γ7 ) is found to be preserved with increasing Mg content, while the optical selection rules interchange.

  4. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Bauch, Dorothy

    2007-04-01

    The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion. PMID:17410173

  5. Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results

    NASA Astrophysics Data System (ADS)

    Nestler, B.; Danilov, D.; Galenko, P.

    2005-07-01

    A phase-field model for non-isothermal solidification in multicomponent systems [SIAM J. Appl. Math. 64 (3) (2004) 775-799] consistent with the formalism of classic irreversible thermodynamics is used for numerical simulations of crystal growth in a pure material. The relation of this approach to the phase-field model by Bragard et al. [Interface Science 10 (2-3) (2002) 121-136] is discussed. 2D and 3D simulations of dendritic structures are compared with the analytical predictions of the Brener theory [Journal of Crystal Growth 99 (1990) 165-170] and with recent experimental measurements of solidification in pure nickel [Proceedings of the TMS Annual Meeting, March 14-18, 2004, pp. 277-288; European Physical Journal B, submitted for publication]. 3D morphology transitions are obtained for variations in surface energy and kinetic anisotropies at different undercoolings. In computations, we investigate the convergence behaviour of a standard phase-field model and of its thin interface extension at different undercoolings and at different ratios between the diffuse interface thickness and the atomistic capillary length. The influence of the grid anisotropy is accurately analyzed for a finite difference method and for an adaptive finite element method in comparison.

  6. The Structure, Thermodynamics and Solubility of Organic Crystals from Simulation with a Polarizable Force Field

    PubMed Central

    Schnieders, Michael J.; Baltrusaitis, Jonas; Shi, Yue; Chattree, Gaurav; Zheng, Lianqing; Yang, Wei; Ren, Pengyu

    2012-01-01

    An important unsolved problem in materials science is prediction of the thermodynamic stability of organic crystals and their solubility from first principles. Solubility can be defined as the saturating concentration of a molecule within a liquid solvent, where the physical picture is of solvated molecules in equilibrium with their solid phase. Despite the importance of solubility in determining the oral bioavailability of pharmaceuticals, prediction tools are currently limited to quantitative structure–property relationships that are fit to experimental solubility measurements. For the first time, we describe a consistent procedure for the prediction of the structure, thermodynamic stability and solubility of organic crystals from molecular dynamics simulations using the polarizable multipole AMOEBA force field. Our approach is based on a thermodynamic cycle that decomposes standard state solubility into the sum of solid-vapor sublimation and vapor-liquid solvation free energies ΔGsolubilityo=ΔGsubo+ΔGsolvo, which are computed via the orthogonal space random walk (OSRW) sampling strategy. Application to the n-alkylamides series from aeetamide through octanamide was selected due to the dependence of their solubility on both amide hydrogen bonding and the hydrophobic effect, which are each fundamental to protein structure and solubility. On average, the calculated absolute standard state solubility free energies are accurate to within 1.1 kcal/mol. The experimental trend of decreasing solubility as a function of n-alkylamide chain length is recapitulated by the increasing stability of the crystalline state and to a lesser degree by decreasing favorability of solvation (i.e. the hydrophobic effect). Our results suggest that coupling the polarizable AMOEBA force field with an orthogonal space based free energy algorithm, as implemented in the program Force Field X, is a consistent procedure for predicting the structure, thermodynamic stability and solubility of

  7. The crystallization of apo-form UMP kinase from Xanthomonas campestris is significantly improved in a strong magnetic field

    SciTech Connect

    Tu, Jhe-Le; Chin, Ko-Hsin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2007-05-01

    A bacterial UMP kinase from the plant pathogen X. campestris pathovar campestris has been overexpressed in E. coli, purified and crystallized in a strong magnetic field. The crystals diffracted to 2.35 Å. Bacterial UMP kinases (UMPKs) are crucial enzymes that are responsible for microbial UTP biosynthesis. Interestingly, eukaryotic and prokaryotic cells use different enzymes for UMP-phosphorylation reactions. Prokaryotic UMPKs are thus believed to be potential targets for antimicrobial drug development. Here, the cloning, expression and crystallization of SeMet-substituted XC1936, a bacterial UMPK from Xanthomonas campestris pathovar campestris, are reported. The crystallization of the apo-form UMPK was found to be significantly improved in a strong magnetic field; the crystals diffracted to a resolution of 2.35 Å, a dramatic improvement over the original value of 3.6 Å. Preliminary structural analyses of apo-form XC1936 using crystals grown in a strong magnetic field clearly reveal well defined loop regions involved in substrate-analogue binding that were previously not visible. Crystallization in a strong magnetic field thus was found to be indispensable in determining the flexible region of the XC1936 UMPK structure.

  8. Optical electric-field sensor based on angular optical bias using single β-BaB2O4 crystal.

    PubMed

    Li, Changsheng; Shen, Xiaoli; Zeng, Rong

    2013-11-01

    A novel optical electric-field sensor is proposed and demonstrated in experiment by use of a single beta barium borate (β-BaB2O4, BBO) crystal. The optical sensing unit is only composed of one BBO crystal and two polarizers. An optical phase bias of 0.5π is provided by using natural birefringence in the BBO crystal itself. A small angle (e.g., 0.6°) between the sensing light beam and principal axis of the crystal is required in order to produce the above optical bias. Thus the BBO crystal is used as the electric-field-sensing element and quarter waveplate. The ac electric field in the range of (1.4-703.2) kV/m has been measured with measurement sensitivity of 1.39 mV/(kV/m) and nonlinear error of 0.6%. Compared with lithium niobate crystal used as an electric-field sensor, main advantages of the BBO crystal include higher measurement sensitivity, compact configuration, and no ferroelectric ringing effect. PMID:24216661

  9. Magnetic properties of Dy3+ ions and crystal field characterization in YF3:Dy3+ and DyF3 single crystals

    NASA Astrophysics Data System (ADS)

    Savinkov, A. V.; Korableva, S. L.; Rodionov, A. A.; Kurkin, I. N.; Malkin, B. Z.; Tagirov, M. S.; Suzuki, H.; Matsumoto, K.; Abe, S.

    2008-12-01

    The dc magnetic susceptibilities of the orthorhombic DyF3 single crystals have been measured in the temperature range between 1.8 and 300 K. The susceptibility along the b-axis does not depend on temperature below TC = 2.55 K and is equal to the demagnetizing factor of the sample, that gives evidence for the ferromagnetic phase induced by the magnetic dipole-dipole interactions between the Dy3+ ions. The saturation moment of 8.5 μB/Dy3+ along the b-axis was determined from magnetization measurements. The observed strong anisotropy of the magnetic susceptibility at low temperatures agrees with the measured anisotropic g-tensor of the ground state of impurity Dy3+ ions in YF3 single crystals. The results of measurements are interpreted in the frameworks of the crystal field theory and the mean magnetic field approximation.

  10. Tailoring of spectral response and spatial field distribution with corrugated photonic crystal slab.

    PubMed

    Gad, Raanan; Lau, Wah Tung; Nicholaou, Costa; Ahmadi, Soroosh; Sigal, Iliya; Levi, Ofer

    2015-08-15

    We report a new physical mechanism for simultaneous tuning of quality factors, spectral responses, and field distributions in photonic crystal slabs through removal of polarization mode degeneracy using a lattice of elliptical nano-holes. The quality factors in these structures can become higher than those obtained with much smaller circular nano-holes. Furthermore, the modes can be superimposed by either rotating or morphing the elliptical nano-holes into a corrugated grating. These findings will enable improved radiation-matter interaction in optical, microwave, and THZ frequencies along with enhanced opto-acoustic coupling. PMID:26274642