Science.gov

Sample records for crystal growth mechanisms

  1. Fluid mechanics in crystal growth - The 1982 Freeman scholar lecture

    NASA Technical Reports Server (NTRS)

    Ostrach, S.

    1983-01-01

    An attempt is made to unify the current state of knowledge in crystal growth techniques and fluid mechanics. After identifying important fluid dynamic problems for such representative crystal growth processes as closed tube vapor transport, open reactor vapor deposition, and the Czochralski and floating zone melt growth techniques, research results obtained to date are presented. It is noted that the major effort to date has been directed to the description of the nature and extent of bulk transport under realistic conditions, where bulk flow determines the heat and solute transport which strongly influence the temperature and concentration fields in the vicinity of the growth interface. Proper treatment of near field, or interface, problems cannot be given until the far field, or global flow, involved in a given crystal growth technique has been adequately described.

  2. Crystal growth mechanisms of the (0 1 0) face of ?-lactose monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2009-04-01

    The growth rates of the (0 1 0) face of ?-lactose monohydrate crystals were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The mechanisms of growth were investigated. Spiral growth was found to be the mechanism of growth up to a critical relative supersaturation ( s-1) crit=1.9 at 30 °C. Above the critical relative supersaturation, the crystal growth mechanisms were predicted to change. All growth models fit equally well to the growth rates. No two-dimensional nucleation was observed above critical supersaturation by AFM. On the other hand increased step height and roughness on the edges of steps were observed. It was concluded that the growth mechanism of the (0 1 0) face of ?-lactose monohydrate crystal is spiral growth. A parabolic relationship was obtained below critical supersaturation followed by a linear relationship with relative supersaturation.

  3. The mechanism of growth of quartz crystals into fused silica

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Spaepen, F.; Turnbull, D.

    1980-01-01

    It is proposed that the growth of quartz crystals into fused silica is effected by a mechanism involving the breaking of an Si-O bond and its association with an OH group, followed by cooperative motion of the nonbridging oxygen and the hydroxyl group which results in the crystallization of a row of several molecules along a crystalline-amorphous interfacial ledge. This mechanism explains, at least qualitatively, all the results of the earlier experimental study of the dependence of quartz crystal growth upon applied pressure: large negative activation volume; single activation enthalpy below Si-O bond energy; growth velocity constant in time, proportional to the hydroxyl and chlorine content, decreasing with increasing degree of reduction, and enhanced by nonhydrostatic stresses; lower pre-exponential for the synthetic than for the natural silica.

  4. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    Calcite crystal growth experiments were undertaken to test a recently proposed model that relates crystal growth mechanisms to the shapes of crystal size distributions (CSDs). According to this approach, CSDs for minerals have three basic shapes: (1) asymptotic, which is related to a crystal growth mechanism having constant-rate nucleation accompanied by surface-controlled growth; (2) lognormal, which results from decaying-rate nucleation accompanied by surface-controlled growth; and (3) a theoretical, universal, steady-state curve attributed to Ostwald ripening. In addition, there is a fourth crystal growth mechanism that does not have a specific CSD shape, but which preserves the relative shapes of previously formed CSDs. This mechanism is attributed to supply-controlled growth. All three shapes were produced experimentally in the calcite growth experiments by modifying nucleation conditions and solution concentrations. The asymptotic CSD formed when additional reactants were added stepwise to the surface of solutions that were supersaturated with respect to calcite (initial ? = 20, where ? = 1 represents saturation), thereby leading to the continuous nucleation and growth of calcite crystals. Lognormal CSDs resulted when reactants were added continuously below the solution surface, via a submerged tube, to similarly supersaturated solutions (initial ? = 22 to 41), thereby leading to a single nucleation event followed by surface-controlled growth. The Ostwald CSD resulted when concentrated reactants were rapidly mixed, leading initially to high levels of supersaturation (? >100), and to the formation and subsequent dissolution of very small nuclei, thereby yielding CSDs having small crystal size variances. The three CSD shapes likely were produced early in the crystallization process, in the nanometer crystal size range, and preserved during subsequent growth. Preservation of the relative shapes of the CSDs indicates that a supply-controlled growth mechanism was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial ? = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.

  5. Mechanisms of protein and virus crystal growth: An atomic force microscopy study of Canavalin crystallization

    SciTech Connect

    Land, T.A.; De Yoreo, J.J.; Malkin, A.J.; Kutznesov, Y.G.; McPherson, A.

    1995-03-10

    The evolution of surface morphology and step dynamics during growth of single crystals of the protein Canavalin and of the cubic satellite tobacco mosaic virus crystals (STMV) have been investigated by in situ atomic force microscopy. These two crystals were observed to grow by very different mechanisms. Growth of Canavalin occurs on complex vicinal hillocks formed by multiple, independently acting screw dislocations. Small cluster were observed on the terraces. STMV on the other hand, was observed to grow by 2D nucleation of islands. No dislocations were found on the crystal. The results are used to determine the growth mechanisms and estimate fundamental materials parameters. The images also illustrate the important mechanism of defect incorporation and provide insight to the processes that limit the growth rate and uniformity of these crystals.

  6. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth unit dimensions to be measured as they were being incorporated into the crystal. These measurements showed that growth on the (110) face proceeded by the formation of new 4(sub 3) helices from the addition of many growth units of at least tetramer size. This is the first time that a time-resolved AFM technique has been used to observe individual molecular events during crystal growth.

  7. Crystal Growth and Fluid Mechanics Problems in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Baker, G. R.; Foster, M. R.

    1996-01-01

    An investigation of a more complete theoretical understanding of convection effects in a vertical Bridgman apparatus is described. The aim is to develop a clear understanding of scalings of various features of dendritic crystal growth in the case that both the surface energy and undercooling are small.

  8. Mechanisms of protein and virus crystal growth: An atomic force microscopy study of canavalin and STMV crystallization

    SciTech Connect

    Land, T.A.; De Yoreo, J.J.; Malkin, A.J.; Kutznesov, Yu.G.; McPherson, A.

    1996-05-01

    The evolution of surface morphology and step dynamics during growth of rhombohedral crystals of the protein canavalin and crystals of the cubic satellite tobacco mosaic virus (STMV) have been investigated for the first time by in situ atomic force microscopy. These two crystals were observed to grow by very different mechanisms. Growth of canavalin occurs on complex vicinal hillocks formed by multiple, independently acting screw dislocations. Small clusters were observed on the terraces. STMV on the other hand, was observed to grow by 2D nucleation of islands. No dislocations were found on the crystal. The results are used to determine the growth mechanisms and estimate the fundamental materials parameters. The images also illustrate the important mechanism of defect incorporation and provide insight to the processes that limit the growth rate and uniformity of these crystals.

  9. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    SciTech Connect

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michaël

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  10. Crystal growth and fluid mechanics problems in directional solidification

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh; Baker, Gregory R.; Foster, Michael R.

    1994-01-01

    Broadly speaking, our efforts have been concentrated in two aspects of directional solidification: (A) a more complete theoretical understanding of convection effects in a Bridgman apparatus; and (B) a clear understanding of scalings of various features of dendritic crystal growth in the sensitive limit of small capillary effects. For studies that fall within class A, the principal objectives are as follows: (A1) Derive analytical formulas for segregation, interfacial shape and fluid velocities in mathematically amenable asymptotic limits. (A2) Numerically verify and extend asymptotic results to other ranges of parameter space with a view to a broader physical understanding of the general trends. With respect to studies that fall within class B, the principal objectives include answering the following questions about dendritic crystal growth: (B1) Are there unsteady dendrite solutions in 2-D to the completely nonlinear time evolving equations in the small surface tension limit with only a locally steady tip region with well defined tip radius and velocity? Is anisotropy in surface tension necessary for the existence of such solutions as it is for a true steady state needle crystal? How does the size of such a local region depend on capillary effects, anisotropy and undercooling? (B2) How do the different control parameters affect the nonlinear amplification of tip noise and dendritic side branch coarsening?

  11. Deducing growth mechanisms for minerals from the shapes of crystal size distributions

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Srodon, J.

    1998-01-01

    Crystal size distributions (CSDs) of natural and synthetic samples are observed to have several distinct and different shapes. We have simulated these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a mass balance equation, and equations for Ostwald ripening. The following crystal growth mechanisms are simulated using these equations and their modifications: (1) continuous nucleation and growth in an open system, during which crystals nucleate at either a constant, decaying, or accelerating nucleation rate, and then grow according to the LPE; (2) surface-controlled growth in an open system, during which crystals grow with an essentially unlimited supply of nutrients according to the LPE; (3) supply-controlled growth in an open system, during which crystals grow with a specified, limited supply of nutrients according to the LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during which the relative rate of crystal dissolution and growth is controlled by differences in specific surface area and by diffusion rate; and (5) supply-controlled random ripening in a closed system, during which the rate of crystal dissolution and growth is random with respect to specific surface area. Each of these mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a constant nucleation rate yields asymptotically-shaped CSDs for which the variance of the natural logarithms of the crystal sizes (??2) increases exponentially with the mean of the natural logarithms of the sizes (??). Mechanism (2) yields lognormally-shaped CSDs, for which ??2 increases linearly with ??, whereas mechanisms (3) and (5) do not change the shapes of CSDs, with ??2 remaining constant with increasing ??. During supply-controlled Ostwald ripening (4), initial lognormally-shaped CSDs become more symmetric, with ??2 decreasing with increasing ??. Thus, crystal growth mechanisms often can be deduced by noting trends in ?? versus ??2 of CSDs for a series of related samples.

  12. Crystal growth mechanisms in miarolitic cavities in the Lake George ring complex and vicinity, Colorado

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    1999-01-01

    The Crystal Peak area of the Pikes Peak batholith, near Lake George in central Colorado, is world-renowned for its crystals of amazonite (the blue-green variety of microcline) and smoky quartz. Such crystals, collected from individual miarolitic pegmatites, have a remakably small variation in crystal size within each pegmatite, and the shapes of plots of their crystal size distributions (CSDs) are invariably lognormal or close to lognormal in all cases. These observations are explained by a crystal growth mechanism that was governed initially by surface-controlled kinetics, during which crystals tended to grow larger in proportion to their size, thereby establishing lognormal CSDs. Surface-controlled growth was followed by longer periods of supply controlled growth, during which growth rate was predominantly size-independent, consequently preserving the lognormal shapes of the CSDs and the small size variation. The change from surface- to supply controlled growth kinetics may have resulted from an increasing demand for nutrients that exceeded diffusion limitations of the system. The proposed model for crystal growth in this locality appears to be common in the geologic record, and can be used with other information, such as isotopic data, to deduce physico-chemical conditions during crystal formation.

  13. Crystal growth and mechanical hardness of In2Se2.7Sb0.3 single crystal

    NASA Astrophysics Data System (ADS)

    Patel, Piyush; Vyas, S. M.; Patel, Vimal; Pavagadhi, Himanshu; Solanki, Mitesh; Jani, Maunik P.

    2015-08-01

    The III-VI compound semiconductors is important for the fabrication of ionizing radiation detectors, solid-state electrodes, and photosensitive heterostructures, solar cell and ionic batteries. In this paper, In2Se2.7 Sb0.3 single crystals were grown by the Bridgman method with temperature gradient of 60 °C/cm and the growth velocity 0.5cm/hr. The as-grown crystals were examined under the optical microscope for surface study, a various growth features observed on top free surface of the single crystal which is predominant of layers growth mechanism. The lattice parameters of as-grown crystal was determined by the XRD analysis. A Vickers' projection microscope were used for the study of microhardness on the as-cleaved, cold-worked and annealed samples of the crystals, the results were discussed, and reported in detail.

  14. Structural Correspondence of the Oriented Attachment Growth Mechanism of Crystals of the Pharmaceutical Dirithromycin.

    PubMed

    Liang, Zuozhong; Wang, Yuan; Wang, Wei; Han, Xianglong; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2015-12-29

    The oriented attachment (OA) mechanism is promising for designing novel nanomaterials, yet an intensive understanding of the relationship between the crystal structure and attachment orientation is still lacking. In this work, we report layered hexagonal crystals of the pharmaceutical dirithromycin (DIR) containing multiple layers fabricated via a solvothermal method for a certain period of time at 40 °C. These elongated hexagonal crystals experience an OA that is preferentially on the face (001) of the initial crystals to assemble the final crystals into layered stacks. Through agreement with molecular modeling calculations, we predicted the final crystal growth morphology and confirmed the favored attachment surface based on the energy change ?E following an OA event. These simulation results at the molecular level yielded good agreement with the crystal growth experiments. This study demonstrates the critical importance of combining experiments with a computational approach to understand the intrinsic molecular details of the OA growth mechanism of other compounds and to design nanomaterials with a desirable morphology and physical and chemical properties. PMID:26632998

  15. Advanced Crystal Growth Technology

    SciTech Connect

    Land, T A; Hawley-Fedder, R A

    2005-03-01

    Although the fundamental mechanism of crystal growth has received and continues to receive deserved attention as a research activity, similar research efforts addressing the need for advanced materials and processing technology required to grow future high quality crystals has been sorely lacking. The purpose of this research effort is to develop advanced rapid growth processing technologies and materials suitable for providing the quality of products needed for advanced laser and photonics applications. In particular we are interested in developing a methodology for growing high quality KDP crystals based on an understanding of the fundamental mechanisms affecting growth. One problem in particular is the issue of control of impurities during the growth process. Many unwanted impurities are derived from the growth system containers and can adversely affect the optical quality and aspect ratio (shape) of the crystals. Previous studies have shown that even trace concentrations ({approx}10{sup -9} M) of impurities affect growth and even 'insignificant' species can have a large impact. It is also known that impurities affect the two growth faces of KDP very differently. Traces of trivalent metal impurities such as Fe{sup 3+}, Cr{sup 3+}, and Al{sup 3+} in solution are known to inhibit growth of the prismatic {l_brace}100{r_brace} faces of KDP while having little effect on the growth of the pyramidal {l_brace}101{r_brace} faces. This differentiation opens the possibility of intentionally adding select ions to control the aspect ratio of the crystal to obtain a more advantageous shape. This document summarizes our research efforts to improve KDP crystal growth. The first step was to control unwanted impurity addition from the growth vessel by developing an FEP liner to act as a barrier to the glass container. The other focus to develop an understanding of select impurities on growth rates in order to be able to use them to control the habit or shape of the crystal for yield improvement.

  16. Hydrothermal crystallization of barium titanate: Mechanisms of nucleation and growth

    NASA Astrophysics Data System (ADS)

    Chun, Chang-Min

    Barium titanate is synthesized under hydrothermal conditions by the reaction of a variety of titania precursors with aqueous solutions of Ba(OH)sb2 at 80sp°C. Particles processed at relatively low concentrations of Ba(OH)sb2 are micro-sized and highly aggregated, but increasing concentrations cause the particle size to decrease, resulting in nanometer-sized and fairly monodispersed particles. The change in particle size and morphology at various Ba(OH)sb2 concentrations is controlled by the dissolution of titania and precipitation of BaTiOsb3. In order to explain the origin of "raspberry-like" BaTiOsb3 particles and the generation of hierarchically ordered BaTiOsb3 aggregate comprised of primary, crystalline particles, which exhibit an unusually high degree of crystallographic alignment, the role of colloidal stability and therefore controlled aggregation of precipitated primary particles is taken into account. Formation of SrTiOsb3 on BaTiOsb3 particles reveal that two different morphologies for the growing SrTiOsb3 exists and that the form taken by SrTiOsb3 depends on the degree of supersaturation. In concentrated solutions, homogeneous nucleation and aggregation growth occur. In dilute solutions, heterogeneous nucleation and continuous growth of SrTiOsb3 promote epitaxial growth. BaTiOsb3 particles prepared by the alkoxide (Ti(OCsb3Hsb7)sb4) -hydroxide (Ba(OH)sb2) route under hydrothermal conditions show that secondary processed such as aggregation and recrystallization are important to control the particle size and morphology. Particle clustering, and rearrangement of nanometer-sized BaTiOsb3 particles, and particulate uniformity can then be explained in terms of solution reactions and colloidal behavior.

  17. Mechanism of abnormally slow crystal growth of CuZr alloy

    NASA Astrophysics Data System (ADS)

    Yan, X. Q.; Lü, Y. J.

    2015-10-01

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed.

  18. Mechanism of abnormally slow crystal growth of CuZr alloy.

    PubMed

    Yan, X Q; Lü, Y J

    2015-10-28

    Crystal growth of the glass-forming CuZr alloy is shown to be abnormally slow, which suggests a new method to identify the good glass-forming alloys. The crystal growth of elemental Cu, Pd and binary NiAl, CuZr alloys is systematically studied with the aid of molecular dynamics simulations. The temperature dependence of the growth velocity indicates the different growth mechanisms between the elemental and the alloy systems. The high-speed growth featuring the elemental metals is dominated by the non-activated collision between liquid-like atoms and interface, and the low-speed growth for NiAl and CuZr is determined by the diffusion across the interface. We find that, in contrast to Cu, Pd, and NiAl, a strong stress layering arisen from the density and the local order layering forms in front of the liquid-crystal interface of CuZr alloy, which causes a slow diffusion zone. The formation of the slow diffusion zone suppresses the interface moving, resulting in much small growth velocity of CuZr alloy. We provide a direct evidence of this explanation by applying the compressive stress normal to the interface. The compression is shown to boost the stress layering in CuZr significantly, correspondingly enhancing the slow diffusion zone, and eventually slowing down the crystal growth of CuZr alloy immediately. In contrast, the growth of Cu, Pd, and NiAl is increased by the compression because the low diffusion zones in them are never well developed. PMID:26520523

  19. User's Guide to Galoper: A Program for Simulating the Shapes of Crystal Size Distributions from Growth Mechanisms - and Associated Programs

    USGS Publications Warehouse

    Eberl, Dennis D.; Drits, V.A.; Srodon, J.

    2000-01-01

    GALOPER is a computer program that simulates the shapes of crystal size distributions (CSDs) from crystal growth mechanisms. This manual describes how to use the program. The theory for the program's operation has been described previously (Eberl, Drits, and Srodon, 1998). CSDs that can be simulated using GALOPER include those that result from growth mechanisms operating in the open system, such as constant-rate nucleation and growth, nucleation with a decaying nucleation rate and growth, surface-controlled growth, supply-controlled growth, and constant-rate and random growth; and those that result from mechanisms operating in the closed system such as Ostwald ripening, random ripening, and crystal coalescence. In addition, CSDs for two types weathering reactions can be simulated. The operation of associated programs also is described, including two statistical programs used for comparing calculated with measured CSDs, a program used for calculating lognormal CSDs, and a program for arranging measured crystal sizes into size groupings (bins).

  20. Total immersion crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (inventor)

    1987-01-01

    Crystals of wide band gap materials are produced by positioning a holder receiving a seed crystal at the interface between a body of molten wide band gap material and an overlying layer of temperature-controlled, encapsulating liquid. The temperature of the layer decreases from the crystallization temperature of the crystal at the interface with the melt to a substantially lower temperature at which formation of crystal defects does not occur, suitably a temperature of 200 to 600 C. After initiation of crystal growth, the leading edge of the crystal is pulled through the layer until the leading edge of the crystal enters the ambient gas headspace which may also be temperature controlled. The length of the column of liquid encapsulant may exceed the length of the crystal such that the leading edge and trailing edge of the crystal are both simultaneously with the column of the crystal. The crystal can be pulled vertically by means of a pulling-rotation assembly or horizontally by means of a low-angle withdrawal mechanism.

  1. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces. Measuring these units was not attempted before and most studies have assumed that the growth unit consisted of individual protein molecules. The linescan mode of AFM instruments allows the crystal surface to be scanned along a single line. By scanning across a growth step an image showing the motion of the step is obtained. Normally such an image shows a straight line for continuous and constant step velocity. In this study by increasing the scan rate and by decreasing the step velocity (by decreasing the supersaturation), we were able to capture images of individual growth events, shown by jump discontinuities in the step line. By suitable integration of the image the growth unit dimension in the scanned direction can be obtained. Since multiple units can be involved in the growth process it is necessary to collect a statistically relevant sample before drawing conclusions about the growth mechanism. This technique was successfully employed to obtain the dimensions of growth units for the (110) face, showing that they consisted of various aggregates corresponding to the 43 helices in the crystal structure.

  2. Growth, mechanical, thermal and dielectric properties of pure and doped KHP single crystal

    NASA Astrophysics Data System (ADS)

    M, Lakshmipriya.; Babu, D. Rajan; Vizhi, R. Ezhil

    2015-06-01

    L-Arginine doped potassium hydrogen phthalate and L-Histidine doped potassium hydrogen phthalate single crystals were grown by slow evaporation method at room temperature. The grown crystal crystallizes in orthorhombic system which is confirmed by single crystal XRD analysis. The grown crystals are subjected to thermal, mechanical and dielectric analysis.

  3. Supra- and nanocrystallinity: specific properties related to crystal growth mechanisms and nanocrystallinity.

    PubMed

    Pileni, M P

    2012-11-20

    The natural arrangement of atoms or nanocrystals either in well-defined assemblies or in a disordered fashion induces changes in their physical properties. For example, diamond and graphite show marked differences in their physical properties though both are composed of carbon atoms. Natural colloidal crystals have existed on earth for billions of years. Very interestingly, these colloidal crystals are made of a fixed number of polyhedral magnetite particles uniform in size. Hence, opals formed of assemblies of silicate particles in the micrometer size range exhibit interesting intrinsic optical properties. A colorless opal is composed of disordered particles, but changes in size segregation within the self-ordered silica particles can lead to distinct color changes and patterning. In this Account, we rationalize two simultaneous supracrystal growth processes that occur under saturated conditions, which form both well-defined 3D superlattices at the air-liquid interface and precipitated 3D assemblies with well-defined shapes. The growth processes of these colloidal crystals, called super- or supracrystals, markedly change the mechanical properties of these assemblies and induce the crystallinity segregation of nanocrystals. Therefore, single domain nanocrystals are the primary basis in the formation of these supracrystals, while multiply twinned particles (MTPs) and polycrystals remain dispersed within the colloidal suspension. Nanoindentation measurements show a drop in the Young's moduli for interfacial supracrystals in comparison with the precipitated supracrystals. In addition, the value of the Young's modulus changes markedly with the supracrystal growth mechanism. Using scanning tunneling microscopy/spectroscopy, we successfully imaged very thick supracrystals (from 200 nm up to a few micrometers) with remarkable conductance homogeneity and showed electronic fingerprints of isolated nanocrystals. This discovery of nanocrystal fingerprints within supracrystals could lead to promising applications in nanotechnology. PMID:23003577

  4. Growth, Mechanical, Thermal and Spectral Properties of Cr3+?MgMoO4 Crystal

    PubMed Central

    Li, Lingyun; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Wang, Guofu

    2012-01-01

    This paper reports the growth, mechanical, thermal and spectral properties of Cr3+?MgMoO4 crystals. The Cr3+?MgMoO4 crystals with dimensions up to 30 mm×18 mm×14 mm were obtained by TSSG method. The absorption cross-sections of 4A2?4T1 and 4A2?4T2 transitions are 12.94×10?20 cm2 at 493 nm and 7.89×10?20 cm2 at 705 nm for E//Ng, respectively. The Cr3+?MgMoO4 crystal shows broad band emission extending from 750 nm to 1300 nm with peak at about 705 nm. The emission cross-section with FWHM of 188 nm is 119.88×10?20 cm2 at 963 nm for E//Ng. The investigated results showed that the Cr3+?MgMoO4 crystal may be regarded as a potential tunable laser gain medium. PMID:22291935

  5. Mechanism for diamond nucleation and growth on single crystal copper surfaces implanted with carbon

    NASA Technical Reports Server (NTRS)

    Ong, T. P.; Xiong, Fulin; Chang, R. P. H.; White, C. W.

    1992-01-01

    The nucleation and growth of diamond crystals on single-crystal copper surfaces implanted with carbon ions is studied. Microwave plasma-enhanced chemical-vapor deposition is used for diamond growth. The single-crystal copper substrates were implanted either at room or elevated temperature with carbon ions prior to diamond nucleation. This procedure leads to the formation of a graphite film on the copper surface which greatly enhances diamond crystallite nucleation. A simple lattice model is constructed for diamond growth on graphite as 111 line (diamond) parallel to 0001 line (graphite) and 110 line (diamond) parallel to 1 1 -2 0 (graphite).

  6. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  7. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  8. Growth of ice discs from the vapor and the mechanism of habit change of ice crystals

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Mcknight, C. V.; Hallett, J.

    1980-01-01

    Ice crystals nucleated on a liquid nitrogen cooled glass fiber grow first as thin disks which subsequently transform to plates and columns as they thicken and extend to regions of higher supersaturation. Crystals are often found to be dislocation-free, which suggests that growth results from surface nucleation, the habit depending on preferential nucleation in an adsorbed multilayer on basal or prism face.

  9. Determining the Molecular Growth Mechanisms of Protein Crystal faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height (Li et al., 1998). Theoretical analyses of the packing had also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces. The growth process of tetragonal lysozyme crystals was slowed down by employing very low supersaturations. As a result images of individual growth events on the (110) face were observed, shown by jump discontinuities in the growth step in the linescan images. The growth unit dimension in the scanned direction was obtained by suitably averaging these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme aggregate sizes were obtained. A variety of growth units, all of which were 43 helical lysozyme aggregates, were shown to participate in the growth process with a 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  10. Growth, thermal and mechanical properties of new nonlinear optical barium bis-paranitrophenolate paranitrophenol tetrahydrate single crystal

    SciTech Connect

    Varjula, A. Jonie; Ramanand, A.; Das, S. Jerome

    2008-02-05

    Barium bis paranitrophenolate paranitrophenol tetrahydrate, a new semiorganic nonlinear optical single crystal has been grown by slow evaporation solution growth technique at room temperature of 30 deg. C. Crystal of dimensions of 29 mm x 11 mm x 5 mm was obtained in a period of 30 days. X-ray diffraction analysis reveal the newness of the crystal structure belonging to the orthorhombic class with lattice parameters a = 19.899(5) A, b = 28.019(8) A, c = 10.745(4) A and {alpha} = {beta} = {gamma} = 90{sup o}. The grown crystal is examined for its nonlinear optical nature with Kurtz powder technique after being sieved for particle sizes between 5 and 100 {mu}m and analyzed for its thermal and mechanical properties. The effective nonlinear optical coefficient being 16 times greater than that of KDP crystal, good thermal stability up to 120 deg. C with the Meyer's constant n < 2 helps fashion the crystal towards device geometry.

  11. Determining the Molecular Growth Mechanisms of Protein Crystal Faces by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Huayu; Pusey, Marc L.

    1999-01-01

    A high resolution atomic force microscopy (AFM) study had shown that the molecular packing on the tetragonal lysozyme (110) face corresponded to only one of two possible packing arrangements, suggesting that growth layers on this face were of bimolecular height. Theoretical analyses of the packing also indicated that growth of this face should proceed by the addition of growth units of at least tetramer size corresponding to the 43 helices in the crystal. In this study an AFM linescan technique was devised to measure the dimensions of individual growth units on protein crystal faces as they were being incorporated into the lattice. Images of individual growth events on the (110) face of tetragonal lysozyme crystals were observed, shown by jump discontinuities in the growth step in the linescan images as shown in the figure. The growth unit dimension in the scanned direction was obtained from these images. A large number of scans in two directions on the (110) face were performed and the distribution of lysozyme growth unit sizes were obtained. A variety of unit sizes corresponding to 43 helices, were shown to participate in the growth process, with the 43 tetramer being the minimum observed size. This technique represents a new application for AFM allowing time resolved studies of molecular process to be carried out.

  12. Crystal growth, structural, thermal and mechanical behavior of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals.

    PubMed

    Mahadevan, M; Ramachandran, K; Anandan, P; Arivanandhan, M; Bhagavannarayana, G; Hayakawa, Y

    2014-12-10

    Single crystals of l-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of l-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method. PMID:24967545

  13. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  14. Crystal growth of semiconductor bulk crystals

    SciTech Connect

    Kakimoto, Koichi

    2010-07-22

    This course is aimed at showing how to grow bulk crystals by using several methods. The course involves the following points. The growth methods of Bridgman and Czochralski will be introduced. The course also focuses on the mechanism of some processes with consideration of the basic phenomenon. Experimental and numerical examples of the methods will also be introduced.

  15. Investigation on growth, structural, optical, thermal, dielectric and mechanical properties of organic L-prolinium trichloroacetate single crystals

    SciTech Connect

    Boopathi, K.; Rajesh, P.; Ramasamy, P.

    2012-09-15

    Graphical abstract: L-Prolinium trichloroacetate is an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that L-PTCA crystallizes in trigonal crystal system. The optical band gab is found to be 4.26 eV. Second harmonic conversion efficiency of L-PTCA has been found to be half that of KDP. Highlights: ? It deals with the synthesis, growth and characterization of L-PTCA an organic NLO crystal. ? Wide optical transparency window between 260 nm and 1100 nm. ? Thermal study reveals that the grown crystal is stable up to 127 °C. ? L-PTCA crystal exhibits the second order nonlinear optical properties. -- Abstract: A new organic nonlinear optical material L-prolinium trichloroacetate (L-PTCA) single crystal has been synthesized and grown by slow solvent evaporation technique at room temperature using water as solvent. Single-crystal X-ray diffractometer was utilized to measure unit cell parameters and to confirm lattice parameter. The powder X-ray diffraction pattern of the grown L-PTCA has been indexed. The modes of vibration of different molecular groups present in the sample were identified by the FTIR spectral analysis. The optical transmittance window and the lower cutoff wavelength of the L-PTCA have been identified by UV–vis–NIR studies. Thermal stability of the L-prolinium trichloroacetate was determined by TGA/DTA measurements. Dielectric measurements were carried out at various temperatures at frequency range 10–1 MHz. The mechanical properties of the grown crystals have been analyzed by Vickers microhardness method. The chemical etching studies were carried out on the grown crystals. Its SHG efficiency has been tested by Kurtz powder method.

  16. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  17. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 ?m3 in 1 s.

  18. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  19. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1989-01-01

    The mechanisms involved in protein crystallization and those parameters which influence the growth process and crystalline perfection were studied. The analysis of the flows around growing crystals is detailed. The preliminary study of the growth of isocitrate lyase and the crystal morphologies found are discussed. Preliminary results of controlled nucleation studies are presented.

  20. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  1. Studies on growth defects and mechanical properties of nonlinear optical crystal: L-arginine hydrofluoride

    NASA Astrophysics Data System (ADS)

    Pal, Tanusri; Kar, Tanusree

    2005-03-01

    Chemical etching technique has been used for the first time to reveal dislocation structure of the cleavage plane of L-arginine hydrofluoride monohydrate (LAHF). Selective behaviour of the etchants for revealing macrosteps and cooperating spirals has been demonstrated. Presence of growth spirals on (1 0 0) face indicates that growth of this face is governed by screw dislocation mechanism. Microhardness measurement reveals that LAHF is harder than LAP.

  2. Rapid crystallization of faujasitic zeolites: mechanism and application to zeolite membrane growth on polymer supports.

    PubMed

    Severance, Michael; Wang, Bo; Ramasubramanian, Kartik; Zhao, Lin; Ho, W S Winston; Dutta, Prabir K

    2014-06-17

    Zeolites are microporous, crystalline aluminosilicates with the framework made up of T-O-T (T = Si, Al) bonds and enclosed cages and channels of molecular dimensions. Influencing and manipulating the nucleation and growth characteristics of zeolites can lead to novel frameworks and morphologies, as well as decreased crystallization time. In this study, we show that manipulating the supersaturation during synthesis of zeolite X/Y (FAU) via dehydration led to extensive nucleation. Controlled addition of water to this nucleated state promotes the transport of nutrients, with a 4-fold increase in the rate of crystal growth, as compared to conventional hydrothermal process. Structural signature of the nucleated state was obtained by electron microscopy, NMR, and Raman spectroscopy. This extensively intermediate nucleated state was isolated and used as the starting material for zeolite membrane synthesis on porous polymer supports, with membrane formation occurring within an hour. With this time frame for growth, it becomes practical to fabricate zeolite/polymer membranes using roll-to-roll technology, thus making possible new commercial applications. PMID:24758695

  3. Mechanisms for Species-Selective Oriented Crystal Growth at Organic Templates

    SciTech Connect

    Kewalramani,S.; Kim, K.; Evmenenko, G.; Zschack, P.; Karapetrova, E.; Bai, J.; Dutta, P.

    2007-01-01

    Langmuir monolayers floating on supersaturated aqueous subphases can act as templates for the growth of oriented inorganic films--a 'bioinspired' nucleation process. We have performed in situ grazing incidence x-ray diffraction studies of the selective nucleation of BaClF and BaF2 under fatty acid monolayers. The arrangement of the fatty acid headgroups, the monolayer charge, and ion-specific effects all play important roles in selecting the inorganic species. When the monolayer is in a neutral state, both BaClF and BaF2 nucleate at the interface and are well aligned, but when the monolayer headgroup is deprotonated, only oriented BaF2 grows at the interface. We also observe an enhanced alignment of BaF2 crystals during growth from highly supersaturated solutions, presumably due to reorganization of preformed crystals at the organic template. These results show that a delicate interplay between multiple factors governs the oriented growth of inorganic films at organic templates.

  4. Crystal Growth Control

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1997-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.

  5. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  6. Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, Frederick

    1990-01-01

    The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.

  7. Quartz crystal growth

    SciTech Connect

    Baughman, R.J.

    1992-08-04

    This patent describes a process for growing high quality single crystals of a nutrient substance that can undergo phase transformation from the amorphous to the crystalline state in an appropriate solvent, charging the substance, seed crystals of the substance, and the solvent in an autoclave having a lower dissolution zone connecting with an upper crystallization zone; allowing the close charged autoclave to stand at ambient temperature for a time sufficient to reach internal equilibrium; gradually heating the autoclave at a rate such that a very small temperature differential ([Delta]T) is maintained between the cooler upper zone and the warmer lower zone until the nutrient substance has undergone transformation to the crystalline phase; and increasing the heating rate to achieve and maintain a larger temperature differential ([Delta]T) between the zones sufficient to allow increased material transport between the zones and rapid controlled crystal growth.

  8. Quartz crystal growth

    DOEpatents

    Baughman, Richard J. (Albuquerque, NM)

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  9. Fluid mechanics and mass transfer in melt crystal growth: Analysis of the floating zone and vertical Bridgman processes

    NASA Technical Reports Server (NTRS)

    Brown, R. A.

    1986-01-01

    This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.

  10. Growth morphologies of crystal surfaces

    NASA Technical Reports Server (NTRS)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-01-01

    A previously proposed Monte Carlo model (Xiao et al., 1988, 1990) is extended to three dimensions, and reevaporation after accommodation and growth on dislocation-induced steps are included. It is found again that, for a given set of growth parameters, the critical size beyond which a crystal cannot retain its macroscopically faceted shape scales linearly with the mean free path in the vapor. However, the three-dimensional systems show increased shape stability as compared with the corresponding two-dimensional cases. The experimental observation that the critical size of a growing crystal depends on the prevailing growth mechanism is confirmed, and detailed insight into the processes leading to the loss of face and facet stability is obtained.

  11. Protein crystal growth tray assembly

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (inventor); Miller, Teresa Y. (inventor)

    1992-01-01

    A protein crystal growth tray assembly includes a tray that has a plurality of individual crystal growth chambers. Each chamber has a movable pedestal which carries a protein crystal growth compartment at an upper end. The several pedestals for each tray assembly are ganged together for concurrent movement so that the solutions in the various pedestal growth compartments can be separated from the solutions in the tray's growth chambers until the experiment is to be activated.

  12. Reversed crystal growth: implications for crystal engineering.

    PubMed

    Zhou, Wuzong

    2010-07-27

    The discovery of reversed crystal growth routes in zeolite analcime and zeolite A implies that crystal growth does not always follow the classic theory established 100 years ago. Aggregation of nanoparticles may dominate in the early stages of crystal growth, followed by surface crystallization, and then extension from surface to core of the disordered aggregates. A perfect polyhedral morphology can be developed in a thin surface crystalline layer of a particle with a disordered core. Evidence of such a novel crystal growth phenomenon can be also found in many other materials. This article highlights the recent achievements in this topic, which might have a significant impact on crystal engineering, materials science, and mineralogy. PMID:20408135

  13. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  14. Zeolite crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

    1991-01-01

    The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

  15. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described.

  16. Crystal Shape Evolution in Detached Bridgman Growth

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    2013-01-01

    Detached (or dewetted) Bridgman crystal growth defines that process in which a gap exists between a growing crystal and the crucible wall. Existence of the gap provides several advantages, including no sticking of the crystal to the crucible wall, reduced thermal and mechanical stresses, reduced dislocations, and no heterogeneous nucleation by the crucible. Numerical calculations are used to determine the conditions in which a gap can exist. According to crystal shape stability theory, only some of these gap widths will be dynamically stable. Beginning with a crystal diameter that differs from stable conditions, the transient crystal growth process is analyzed. In microgravity, dynamic stability depends only on capillary effects and is decoupled from heat transfer. Depending on the initial conditions and growth parameters, the crystal shape will evolve towards the crucible wall, towards a stable gap width, or towards the center of the crucible, collapsing the meniscus. The effect of a tapered crucible on dynamic stability is also described

  17. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  18. Growth, spectral, thermal, optical, mechanical and etching studies of L-lysine semi-maleate (L-LSM) single crystals

    NASA Astrophysics Data System (ADS)

    Vasudevan, V.; Renuka, N.; Ramesh Babu, R.; Ramamurthi, K.

    2015-02-01

    Organic nonlinear optical material, L-lysine semi-maleate (L-LSM) single crystals were grown by slow cooling solution growth technique. The crystal system of grown L-LSM was confirmed by single crystal and powder X-ray diffraction analyzes. Functional groups of the grown crystal have been identified by Fourier Transform Infrared spectral analysis. The proton and carbon NMR spectral studies confirm the presence of hydrogen and carbon in the grown L-LSM. The melting and thermal decomposition temperatures of the crystal were determined using thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses. Optical transparency, second harmonic generation efficiency, micro hardness, dielectric constant and loss, refractive index and birefringence have also been measured. Further, the growth patterns and dislocations present in the grown crystal are studied.

  19. Growth, spectral, thermal, optical, mechanical and etching studies of l-lysine semi-maleate (l-LSM) single crystals.

    PubMed

    Vasudevan, V; Renuka, N; Ramesh Babu, R; Ramamurthi, K

    2014-10-31

    Organic nonlinear optical material, l-lysine semi-maleate (l-LSM) single crystals were grown by slow cooling solution growth technique. The crystal system of grown l-LSM was confirmed by single crystal and powder X-ray diffraction analyzes. Functional groups of the grown crystal have been identified by Fourier Transform Infrared spectral analysis. The proton and carbon NMR spectral studies confirm the presence of hydrogen and carbon in the grown l-LSM. The melting and thermal decomposition temperatures of the crystal were determined using thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses. Optical transparency, second harmonic generation efficiency, micro hardness, dielectric constant and loss, refractive index and birefringence have also been measured. Further, the growth patterns and dislocations present in the grown crystal are studied. PMID:25467679

  20. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  1. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  2. Protein crystals and their growth

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2003-01-01

    Recent results on the associations between protein molecules in crystal lattices, crystal-solution surface energy, elastic properties, strength, and spontaneous crystal cracking are reviewed and discussed. In addition, some basic approaches to understanding the solubility of proteins are followed by an overview of crystal nucleation and growth. It is argued that variability of mixing in batch crystallization may be a source of the variation in the number of crystals ultimately appearing in the sample. The frequency at which new molecules join a crystal lattice is measured by the kinetic coefficient and is related to the observed crystal growth rate. Numerical criteria used to discriminate diffusion- and kinetic-limited growth are discussed on this basis. Finally, the creation of defects is discussed with an emphasis on the role of impurities and convection on macromolecular crystal perfection.

  3. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.; Clifford, D. W.

    1987-01-01

    The advantages of protein crystallization in space, and the applications of protein crystallography to drug design, protein engineering, and the design of synthetic vaccines are examined. The steps involved in using protein crystallography to determine the three-dimensional structure of a protein are discussed. The growth chamber design and the hand-held apparatus developed for protein crystal growth by vapor diffusion techniques (hanging-drop method) are described; the experimental data from the four Shuttle missions are utilized to develop hardware for protein crystal growth in space and to evaluate the effects of gravity on protein crystal growth.

  4. Modular design of locally ordered tetrahedral structures: III. Structural mechanism of nonequilibrium fibrous and rough-layer normal growth of diamond crystals

    NASA Astrophysics Data System (ADS)

    Bul'enkov, N. A.; Zheligovskaya, E. A.

    2015-05-01

    Structural mechanisms of nontangential nonequilibrium normal growth of natural and synthetic diamond crystals with a fibrous or layered structure, formed under particularly nonequilibrium conditions, are proposed. It is shown that their growth is based on strained noncrystalline structures rapidly growing in length: 30/11 and 40/9 helices. The fibrous growth of diamond crystals along the <111> and <100> directions occurs according to the helicoidal mechanism, with helicoid axes in the form of 30/11 and 40/9 helices, respectively. Stacks of rough {110} lamellae can be formed via branching of 30/11 helices, which are then overgrown by a crystalline layer. Lamellae with orientation {100}, formed during the growth of diamond and silicon from vapor phase, also grow according to the helicoidal mechanism based on 40/9 helices via the aggregation of helicoids into these lamellae. Due to the complicated internal structure of these diamond crystals, their physical properties differ from those of diamond single crystals grown according to the tangential growth mechanism.

  5. Crystal growth apparatus

    NASA Astrophysics Data System (ADS)

    Herrmann, Frederick T.; Herren, Blair J.

    1990-04-01

    This invention relates generally to crystal growth devices, and more particularly to a device in which protein crystals are grown in a hanging drop. The drop is suspended from a surface positioned in the interior of an enclosure which is sealably coupled via a valve to a vessel containing solvent used in the drop. A second opening in the enclosure is coupled via a valve to a vessel containing a selected desiccant material. The valve may be fully or partially opened to add a selected quantity of solvent in a vapor phase to the drop, and the valve may be fully or partially opened to cause a selected quantity of solvent to evaporate from the drop. The process is monitored by a camera, and in conjunction with a graduated pattern superimposed over the drop, relative volumes of the drop are determined. Alternately, the process may be automated by using a computer coupled to servo motors, which in turn are coupled to and operate a cap and valves, respectively. The computer is responsive to a detection device which detects changes of light passing through the drop from the light source.

  6. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E. (Tracy, CA); Milanovich, Fred P. (Lafayette, CA)

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  7. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  8. Asteroid core crystallization by inward dendritic growth

    NASA Technical Reports Server (NTRS)

    Haack, Henning; Scott, Edward R. D.

    1992-01-01

    The physics of the asteroid core crystallization process in metallic asteroids is investigated, with special attention given to the initial conditions for core crystallization, the manner of crystallization, the mechanisms acting in the stirring of the liquid, and the effects of elements such as sulfur on crystallization of Fe-Ni. On the basis of theoretical considerations and the published data on iron meteorites, it is suggested that the mode of crystallization in asteroid core was different from the apparent outward concentric crystallization of the earth core, in that the crystallization of asteroidal cores commenced at the base of the mantle and proceeded inward. The inward crystallization resulted in complex dendritic growth. These dendrites may have grown to lengths of hundreds of meters or perhaps even as large as the core radius, thereby dividing the core into separate magma chambers.

  9. Interface control and snow crystal growth

    E-print Network

    Jessica Li; Laura P. Schaposnik

    2015-05-08

    The growth of snow crystals is dependent on the temperature and saturation of the environment. In the case of dendrites, Reiter's local two-dimensional model provides a realistic approach to the study of dendrite growth. In this paper we obtain a new geometric rule that incorporates interface control, a basic mechanism of crystallization that is not taken into account in the original Reiter's model. By defining two new variables, growth latency and growth direction, our improved model gives a realistic model not only for dendrite but also for plate forms.

  10. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Bugg, Charles E.

    1991-01-01

    Studies of protein crystal growth in the microgravity environment in space are described with special attention given to the crystal growth facilities and the techniques used in Space Shuttle experiments. The properties of large space-grown crystals of gamma interferon, elastase, lathyros ochrus lectin I, and few other proteins grown on various STS flights are described. A comparison of the microgravity-grown crystals with the bast earth-grown crystals demonstrated that the space-grown crystals are more highly ordered at the molecular level than their earth-grown counterparts. When crystallization conditions were optimized, the microgravity-grown protein crystals were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolution than their earth-grown counterparts.

  11. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  12. Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado

    USGS Publications Warehouse

    Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P.

    2002-01-01

    Mean thickness measurements and crystal-thickness distributions (CTDs) of illite particles vary systematically with changes in hydrothermal alteration type, fracture density, and attendant mineralization in a large acid-sulfate/Mo-porphyry hydrothermal system at Red Mountain, near Lake City, Colorado. The hydrothermal illites characterize an extensive zone of quartz-sericite-pyrite alteration beneath two deeply rooted bodies of magmatic-related, quartz-alunite altered rock. Nineteen illites from a 3000 ft vertical drill hole were analyzed by XRD using the PVP-10 intercalation method and the computer program MudMaster (Bertaut-Warren-Averbach technique). Mean crystallite thicknesses, as determined from 001 reflections, range from 5-7 nanometers (nm) at depths from 0-1700 ft, then sharply increase to 10-16 nm at depths between 1800-2100 ft, and decrease again to 4-5 nm below this level. The interval of largest particle thickness correlates strongly with the zone of most intense quartz-sericite-pyrite alteration (QSP) and attendant high-density stockwork fracturing, and with the highest concentrations of Mo within the drill core. CTD shapes for the illite particles fall into two main categories: asymptotic and lognormal. The shapes of the CTDs are dependent on conditions of illite formation. The asymptotic CTDs correspond to a nucleation and growth mechanism, whereas surface-controlled growth was the dominant mechanism for the lognormal CTDs. Lognormal CTDs coincide with major through-going fractures or stockwork zones, whereas asymptotic CTDs are present in wallrock distal to these intense fracture zones. The increase in illite particle size and the associated zone of intense QSP alteration and stockwork veining was related by proximity to the dacitic magma(s), which supplied both reactants and heat to the hydrothermal system. However, no changes in illite polytype, which in other studies reflect temperature transitions, were observed within this interval.

  13. Automated protein crystal growth facility

    NASA Technical Reports Server (NTRS)

    Donald, Stacey

    1994-01-01

    A customer for the protein crystal growth facility fills the specially designed chamber with the correct solutions, fills the syringes with their quenching solutions, and submits the data needed for the proper growth of their crystal. To make sure that the chambers and syringes are filled correctly, a NASA representative may assist the customer. The data needed is the approximate growth time, the growth temperature, and the desired crystal size, but this data can be changed anytime from the ground, if needed. The chambers are gathered and placed into numbered slots in special drawers. Then, data is entered into a computer for each of the chambers. Technicians map out when each chamber's growth should be activated so that all of the chambers have enough time to grow. All of this data is up-linked to the space station when the previous growth session is over. Anti-vibrational containers need to be constructed for the high forces encountered during the lift off and the landing of the space shuttle, and though our team has not designed these containers, we do not feel that there is any reason why a suitable one could not be made. When the shuttle reaches the space station, an astronaut removes a drawer of quenched chambers from the growth facility and inserts a drawer of new chambers. All twelve of the drawers can be replaced in this fashion. The optical disks can also be removed this way. The old drawers are stored for the trip back to earth. Once inside the growth facility, a chamber is removed by the robot and placed in one of 144 active sites at a time previously picked by a technician. Growth begins when the chamber is inserted into an active site. Then, the sensing system starts to determine the size of the protein crystal. All during the crystal's growth, the customer can view the crystal and read all of the crystal's data, such as growth rate and crystal size. When the sensing system determines that the crystal has reached the predetermined size, the robot is told to pick up a syringe filled with the correct quenchant solution and inject it into the chamber to stop the crystal growth. The chamber is then removed from the active site and placed into its original storage slot. Another chamber is then placed into the active site and the process is repeated in all of the active sites until all of the chambers have complted their growth. After ninety days (the scheduled time between shuttle visits), the crystal growth is completed, and the old drawers are replaced with new ones. Once the customer extracts the crystals, the chambers are retrieved for future customers.

  14. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  15. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  16. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals.

    PubMed

    Rose, A S J Lucia; Selvarajan, P; Perumal, S

    2011-10-15

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied. PMID:21775196

  17. Crystal Growth Inside an Octant

    E-print Network

    Jason Olejarz; P. L. Krapivsky

    2013-07-19

    We study crystal growth inside an infinite octant on a cubic lattice. The growth proceeds through the deposition of elementary cubes into inner corners. After re-scaling by the characteristic size, the interface becomes progressively more deterministic in the long-time limit. Utilizing known results for the crystal growth inside a two-dimensional corner, we propose a hyperbolic partial differential equation for the evolution of the limiting shape. This equation is interpreted as a Hamilton-Jacobi equation which helps in finding an analytical solution. Simulations of the growth process are in excellent agreement with analytical predictions. We then study the evolution of the sub-leading correction to the volume of the crystal, the asymptotic growth of the variance of the volume of the crystal, and the total number of inner and outer corners. We also show how to generalize the results to arbitrary spatial dimension.

  18. Journal of Crystal Growth ] (

    E-print Network

    Lowengrub, John

    tension growing in a supercooled melt. The existence of such self-similarly growing crystals). #12;morphological evolution of a growing crystal. Because our analysis shows that interactions among The morphological stability of a growing crystal in the supercooled melt is a fundamental problem in phase

  19. Mechanism of growth of Bi2+ x Sr2- y CuO6+ ? single crystals in gas cavities in a KCl melt

    NASA Astrophysics Data System (ADS)

    Gorina, Yu. I.; Kalyuzhnaya, G. A.; Rodin, V. V.; Sentyurina, N. N.; Stepanov, V. A.; Chernook, S. G.

    2007-07-01

    High-quality Bi2+ x Sr2- y CuO6+ ? single crystals in a wide range of superconducting properties, from optimally doped to strongly underdoped (including insulators), have been obtained by free growth in gas cavities formed in a KCl flux. A model of crystal growth is proposed, in which the decisive parameter is the chemical transport in a cavity at a low partial oxygen pressure and feeding of the gaseous medium from the charge heated to a higher temperature. In this case, layer-by-layer growth through the vapor-solid mechanism is implemented. This growth, as the most ordered process, makes it possible to obtain faceted plates and whiskers with specular faces, without segregation of other phases.

  20. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  1. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  2. Plenum type crystal growth process

    DOEpatents

    Montgomery, Kenneth E. (Tracy, CA)

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  3. Studies on the growth, spectral, structural, electrical, optical and mechanical properties of Uronium 3-carboxy-4-hydroxybenzenesulfonate single crystal for third-order nonlinear optical applications.

    PubMed

    Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Md Zahid, I; Mohan Kumar, R; Umarani, P R

    2015-05-01

    Organic Uronium 3-carboxy-4-hydroxybenzenesulfonate (UCHBS) nonlinear optical single crystal was grown by solution growth technique. The solubility and nucleation studies were performed for UCHBS at different temperatures 30, 35, 40, 45, 50 and 55°C. The crystal structure of UCHBS was elucidated from single crystal X-ray diffraction study. High resolution X-ray diffraction technique was employed to study the perfection and internal defects of UCHBS crystal. Infrared and Raman spectra were recorded to analyze the vibrational behavior of chemical bonds and its functional groups. The physico-chemical changes, stability and decomposition stages of the UCHBS compound were established by TG-DTA studies. The dielectric phenomenon of UCHBS crystal was studied at different temperatures with respect to frequency. Linear optical properties of transmittance, cut-off wavelength, band gap of UCHBS were found from UV-visible spectral studies. Third-order nonlinear optical susceptibility, nonlinear refractive index, nonlinear optical absorption coefficient values were measured by Z-scan technique. The mechanical properties of UCHBS crystal was studied by using Vicker's microhardness test. The growth features of UCHBS crystal were analyzed from etching studies. PMID:25699699

  4. Structure, crystal growth, optical and mechanical studies of poly bis (thiourea) silver (I) nitrate single crystal: a new semi organic NLO material.

    PubMed

    Sivakumar, N; Kanagathara, N; Varghese, B; Bhagavannarayana, G; Gunasekaran, S; Anbalagan, G

    2014-01-24

    A new semi organic non linear optical polymeric crystal, bis (thiourea) silver (I) nitrate (TuAgN) with dimension 8×7×1.5 mm(3) has been successfully grown from aqueous solution by slow evaporation solution technique. Single crystal X-ray diffraction study reveals that the crystal belongs to orthorhombic system with non centrosymmetric space group C2221. The crystalline perfection of the crystal was analyzed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Functional groups present in the crystal were analyzed qualitatively by infrared and Confocal Raman spectral analysis. Effects due to coordination of thiourea with metal ions were also discussed. Optical absorption study on TuAgN crystal shows the minimum absorption in the entire UV-Vis region and the lower cut off wavelength of TuAgN is found to be 318 nm. Thermal analysis shows that the material is thermally stable up to 180°C. The mechanical strength and its parameters of the grown crystal were estimated by Vicker's microhardness test. The second harmonic generation (SHG) efficiency of the crystal was measured by Kurtz's powder technique infers that the crystal has nonlinear optical (NLO) efficiency 0.85 times that of KDP. PMID:24091346

  5. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry. PMID:25892326

  6. Czochralski crystal growth: Modeling study

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  7. A study of crystal growth by solution technique

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1981-01-01

    The mechanism of crystal growth by solution technique was studied. A low temperature solution crystal growth setup was developed. Crystals of triglycine sulfate (TGS) were grown using this arrangement. Some additional tasks were performed toward fabrication of experiments for future space flight.

  8. Ultraslow growth rates of giant gypsum crystals

    PubMed Central

    Van Driessche, A. E. S.; García-Ruíz, J. M.; Tsukamoto, K.; Patiño-Lopez, L. D.; Satoh, H.

    2011-01-01

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55?°C, 1.4 ± 0.2 × 10-5 nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50?°C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58?°C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale. PMID:21911400

  9. High-purity silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Ciszek, T.

    1984-01-01

    Crystal growth parameter effects on minority carrier lifetime and solar cell efficiencies were investigated using high purity techniques such as float zoning. Study objectives include the following: (1) optimize dopants and minority carrier lifetime in FZ material for high efficiency silicon solar cell applications; (2) improve the understanding of lifetime degradation mechanisms (point defects, impurities, thermal history, surface effects, etc.), and (3) crystallographic defect characterization of float zone and ribbon crystals via X-ray topography.

  10. Two puzzling aspects of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Grant, M. L.; Saville, D. A.

    1988-01-01

    A study is presented of several mechanisms which may reduce crystal growth rates and or terminate crystal growth. It is found that salt gradients which change the local chemical potential of the protein are insufficient to account for the slow crystal growth rates which have been reported. Contaminants which adsorb protein from solution may reduce the effective protein concentration, but the impurity's concentration and its affinity for protein are unknown. Association of protein molecules in bulk solution can reduce the monomer concentration significantly, but extant theory and experiment are not sensitive enough to determine the actual concentration of aggregates in solution. For systems of interest, shear-induced effects were found to be too weak to interfere with normal binding of incoming protein molecules. Although we found that most crystal growth occurs in a regime where both interfacial kinetics and diffusion influence crystal growth, the role of mass transfer rates on the terminal size of crystals is unknown, primarily because no data exist which cover the size range of interest (0.1 mm to 1 mm in length).

  11. A study of crystal growth by solution technique. [triglycine sulfate single crystals

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1979-01-01

    The advantages and mechanisms of crystal growth from solution are discussed as well as the effects of impurity adsorption on the kinetics of crystal growth. Uncertainities regarding crystal growth in a low gravity environment are examined. Single crystals of triglycine sulfate were grown using a low temperature solution technique. Small components were assembled and fabricated for future space flights. A space processing experiment proposal accepted by NASA for the Spacelab-3 mission is included.

  12. Interplay between size and crystal structure of molybdenum dioxide nanoparticles--synthesis, growth mechanism, and electrochemical performance.

    PubMed

    Koziej, Dorota; Rossell, Marta D; Ludi, Bettina; Hintennach, Andreas; Novák, Petr; Grunwaldt, Jan-Dierk; Niederberger, Markus

    2011-02-01

    A detailed study is presented on the formation of MoO(2) nanoparticles from the dissolution of the precursor to the final rodlike product, with a focus on the exploration of the inorganic reaction occurring ahead of the nucleation step, and interplay between size and crystal structure of MoO(2). In situ X-ray absorption spectroscopy experiments show that the crystallization and the growth process of MoO(2) nanorods is initiated by rapid reduction of the MoO(2) Cl(2) precursor in benzyl alcohol and acetophenone. This reaction triggers the nucleation of 2 nm MoO(2) particles with spherical shape and hexagonal crystal structure. The transformation from spheres into rods emerges as a complex process driven by oriented attachment. High-resolution transmission electron microscopy and X-ray diffraction results provide evidence that the 2 nm particles first aggregate into 5-20 nm-large oriented assemblies. The increase in particle size induces the phase transition from hexagonal to the less symmetrical monoclinic crystal structure, and finally the transformation into rods. Is it shown that electrodes for lithium-ion batteries based on MoO(2) nanorods have a long-term cycling life. The specific discharge capacity even after 200 cycles at a discharge rate of 1 C is about 300 Ah kg(-1) . PMID:21294267

  13. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites.

    PubMed

    Shtukenberg, Alexander G; Cui, Xiaoyan; Freudenthal, John; Gunn, Erica; Camp, Eric; Kahr, Bart

    2012-04-11

    D-Mannitol belongs to a large and growing family of crystals with helical morphologies (Yu, L. J. Am. Chem. Soc.2003, 125, 6380). Two polymorphs of D-mannitol, ? and ?, when grown in the presence of additives such as poly(vinylpyrrolidone) (PVP) or D-sorbitol, form ring-banded spherulites composed of handed helical fibrils, where the helix axes correspond to the radial growth directions. The two polymorphs form helices with opposite senses in the presence of PVP but the same sense in the presence of D-sorbitol. The characteristic dimensions of the fibrils, including thickness, aspect ratio, and pitch, were determined by scanning probe and electron microscopies. These values must form the basis of any theory that presupposes what forces give rise to crystal twisting, a problem that has been broached but unsettled in the literature of polymer crystallization. The interdependence of the rhythmic variations of both linear and circular birefringence, as determined by Mueller matrix microscopy, informs the cooperative organization of mannitol fibers. The microstructure of mannitol ring-banded spherulites compares favorably to that of high polymers and is evaluated within the context of current theories of crystal twisting. PMID:22413815

  14. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    SciTech Connect

    Wu, Anhua; Jiang, Linwen; Qian, Guoxing; Zheng, Yanqing; Xu, Jun; Shi, Erwei

    2012-09-15

    Highlights: ? YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ? Large size crystal growth is key technology question for YCOB crystal. ? YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ? It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested for high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.

  15. Biomolecular Modification of Inorganic Crystal Growth

    SciTech Connect

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized. Finally, we show that the molecular scale observations are well correlated with macroscopic growth rate data.

  16. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  17. Crystal growth in fused solvent systems

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noone, M. J.; Spear, K. E.; White, W. B.; Henry, E. C.

    1973-01-01

    Research is reported on the growth of electronic ceramic single crystals from solution for the future growth of crystals in a microgravity environment. Work included growth from fused or glass solvents and aqueous solutions. Topics discussed include: crystal identification and selection; aqueous solution growth of triglycine sulphate (TGS); and characterization of TGS.

  18. Optical analysis of crystal growth

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Passeur, Andrea; Harper, Sabrina

    1994-01-01

    Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the image processing software ITEX150, will provide fundamental information for holographic analysis of the space flight data.

  19. Growth Defects in Biomacromolecular Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's ground based program confirmed close similarity between protein and small molecules crystal growth, but also revealed essential differences. No understanding exists as to why and when crystals grown in space are, in approx. 20 percent of cases, of higher quality. More rationale is needed in flight experiments. Ferritin crystals grown in space are 2.5 times cleaner than their terrestrial counterparts. This may occur because of the existence of a zone depleted with respect to impurities around a crystal growing in stagnant solution. This zone should appear since the distribution coefficient for homologous impurities exceeds unity. This impurity depletion zone hypothesis requires verification and development. Thorough purification from homologous impurities brought about resolution improvement from 2.6 to 1.8 angstroms for ferritin and from 2.6 to 2.0 angstroms for canavalin.

  20. Crystal twisting in Cz Si growth

    NASA Astrophysics Data System (ADS)

    Kalaev, Vladimir; Sattler, Andreas; Kadinski, Lev

    2015-03-01

    Crystal twisting during Czochralski growth of silicon crystals is sometimes observed at increased pulling rates. Crystal twisting with spatial fluctuations of the crystal surface and diameter may result in losing growth control or in the need of lowering the pulling speed. There are many ideas in the literature about reasons of spiral growth or twisting during Cz crystal growth of oxides and other materials. We contribute to this research, analyzing large scale Cz Si growth. For varying growth conditions, we have observed correlation between melt supercooling over the free surface and the start of crystal twisting. These findings support the idea that crystal twisting is closely related to a temperature distribution along the melt free surface near the tri-junction point. Correlations of melt supercooling with crystal twisting have favored developments of a predictive criterion of crystal twisting, which can be used to find the maximal stable crystallization rate by computer modeling for a particular hot zone design.

  1. Laboratory studies of crystal growth in magma

    NASA Astrophysics Data System (ADS)

    Hammer, J. E.; Welsch, B. T.; First, E.; Shea, T.

    2012-12-01

    The proportions, compositions, and interrelationships among crystalline phases and glasses in volcanic rocks cryptically record pre-eruptive intensive conditions, the timing of changes in crystallization environment, and the devolatilization history of eruptive ascent. These parameters are recognized as important monitoring tools at active volcanoes and interpreting geologic events at prehistoric and remote eruptions, thus motivating our attempts to understand the information preserved in crystals through an experimental appoach. We are performing laboratory experiments in mafic, felsic, and intermediate composition magmas to study the mechanisms of crystal growth in thermochemical environments relevant to volcanic environments. We target features common to natural crystals in igneous rocks for our experimental studies of rapid crystal growth phenomena: (1) Surface curvature. Do curved interfaces and spongy cores represent evidence of dissolution (i.e., are they corrosion features), or do they record the transition from dendritic to polyhedral morphology? (2) Trapped melt inclusions. Do trapped liquids represent bulk (i.e., far-field) liquids, boundary layer liquids, or something intermediate, depending on individual species diffusivity? What sequence of crystal growth rates leads to preservation of sealed melt inclusions? (3) Subgrain boundaries. Natural phenocrysts commonly exhibit tabular subgrain regions distinguished by small angle lattice misorientations or "dislocation lamellae" and undulatory extinction. Might these crystal defects be produced as dendrites undergo ripening? (4) Clusters. Contacting clusters of polymineralic crystals are the building blocks of cumulates, and are ubiquitous features of mafic volcanic rocks. Are plagioclase and clinopyroxene aligned crystallographically, suggesting an epitaxial (surface energy) relationship? (5) Log-normal size distribution. What synthetic cooling histories produce "natural" distributions of crystal sizes, and are phenocrystic textures uniquely attributed to staged cooling? In addition, we seek to explore the limitations of the experimental approach. Which aspects of natural crystallization sequences are adequately reproduced in experimental charges, and which are compromised by the obligatory reduced temporal and spatial scales of crystal growth experiments? What are the implications of synthetic starting materials and thermal pre-treatments for nucleation, growth, heterophase equilibria, and textural maturation?

  2. Crystal growth of drug materials by spherical crystallization

    NASA Astrophysics Data System (ADS)

    Szabó-Révész, P.; Hasznos-Nezdei, M.; Farkas, B.; Göcz?, H.; Pintye-Hódi, K.; Er?s, I.

    2002-04-01

    One of the crystal growth processes is the production of crystal agglomerates by spherical crystallization. Agglomerates of drug materials were developed by means of non-typical (magnesium aspartate) and typical (acetylsalicylic acid) spherical crystallization techniques. The growth of particle size and the spherical form of the agglomerates resulted in formation of products with good bulk density, flow, compactibility and cohesivity properties. The crystal agglomerates were developed for direct capsule-filling and tablet-making.

  3. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1988-01-01

    The solubility and growth of the protein canavalin, and the application of the schlieren technique to study fluid flow in protein crystal growth systems were investigated. These studies have resulted in the proposal of a model to describe protein crystal growth and the preliminary plans for a long-term space flight experiment. Canavalin, which may be crystallized from a basic solution by the addition of hydrogen (H+) ions, was shown to have normal solubility characteristics over the range of temperatures (5 to 25 C) and pH (5 to 7.5) studies. The solubility data combined with growth rate data gathered from the seeded growth of canavalin crystals indicated that the growth rate limiting step is a screw dislocation mechanism. A schlieren apparatus was constructed and flow patterns were observed in Rochelle salt (sodium potassium tartrate), lysozyme, and canavalin. The critical parameters were identified as the change in density with concentration (dp/dc) and the change in index of refraction with concentration (dn/dc). Some of these values were measured for the materials listed. The data for lyrozyme showed non-linearities in plots of optical properties and density vs. concentration. In conjunction with with W. A. Tiller, a model based on colloid stability theory was proposed to describe protein crystallization. The model was used to explain observations made by ourselves and others. The results of this research has lead to the development for a preliminary design for a long-term, low-g experiment. The proposed apparatus is univeral and capable of operation under microprocessor control.

  4. Efg Crystal Growth Apparatus And Method

    DOEpatents

    Mackintosh, Brian H. (Concord, MA); Ouellette, Marc (Nashua, NH)

    2003-05-13

    An improved mechanical arrangement controls the introduction of silicon particles into an EFG (Edge-defined Film-fed Growth) crucible/die unit for melt replenishment during a crystal growth run. A feeder unit injects silicon particles upwardly through a center hub of the crucible/die unit and the mechanical arrangement intercepts the injected particles and directs them so that they drop into the melt in a selected region of the crucible and at velocity which reduces splashing, whereby to reduce the likelihood of interruption of the growth process due to formation of a solid mass of silicon on the center hub and adjoining components. The invention also comprises use of a Faraday ring to alter the ratio of the electrical currents flowing through primary and secondary induction heating coils that heat the crucible die unit and the mechanical arrangement.

  5. Protein crystal growth; Proceedings of the First International Conference, Stanford University, CA, August 14-16, 1985

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S. (editor)

    1986-01-01

    Papers are presented on mechanisms of nucleation and growth of protein crystals, the role of purification in the crystallization of proteins and nucleic acids, and the effect of chemical impurities in polyethylene glycol on macromolecular crystallization. Also considered are growth kinetics of tetragonal lysozyme crystals, thermodynamic and kinetic considerations for crystal growth of complex molecules from solution, protein single-crystal growth under microgravity, and growth of organic crystals in a microgravity environment. Papers are also presented on preliminary investigations of protein crystal growth using the Space Shuttle, convective diffusion in protein crystal growth, and the growth and characterization of membrane protein crystals.

  6. Crystal growth and morphology of hindered phenol AO-60

    NASA Astrophysics Data System (ADS)

    Cao, Yuanyi; Wang, Shaolei; Mou, Haiyan; Xu, Haiyan; Wu, Chifei

    2010-04-01

    Crystal growth of a hindered phenol compound, tetrakis [methylene-3-(3-5-ditert-butyl-4-hydroxy phenyl) propionyloxy] methane (trade name AO-60), was successfully recorded by optical microscopy (OM) equipped with a hot stage. The morphology of AO-60 crystals, grown at 100 °C from amorphous state, appeared in the form of tetragonal-sloped step growth. Further study using scanning electron microscopy (SEM) and atomic force microscopy (AFM) experimentally demonstrated that AO-60 crystals had a hopper-like morphology, which had occurred rarely in the condition of organic compound crystals but predominantly rather to inorganic compound crystals in the reported literatures. The morphological features observed on the crystal surfaces suggested step growth and hopper growth mechanism. Besides, a raising around the edge of the AO-60 hopper crystal was also experimentally characterized for the first time.

  7. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  8. Crystal Growth Research in Space

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Fripp, A. L.

    1985-01-01

    The objectives of this work are to develop growth techniques and theory leading to improved bulk growth of semiconductor single crystals. Ground based experiments will be complemented by experiments carried out in the low-g environment provided by the space shuttle. Analytical studies and laboratory investigations are being conducted to better define the causes of crystalline defects and inhomogeneities. The compound semiconductor lead-tin-telluride is being used as the modeling material. Theoretical techniques are being developed to predict the thermal and solutal fields which are present during bulk growth from a melt. Techniques for measuring the thermophysical properties of semiconductors at high temperatures have been developed. During the past year electrochemical etching techniques have been developed for delineation of inhomogeneous regions in crystals. Thermal diffusivity measurements have been completed for the solid and liquid phases of PbTe and PbSnTe. Preliminary results have been obtained on the effects on crystal morphology of gravity, interface shape and interaction between the melt and the container.

  9. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E. (Albuquerque, NM); Sparrow, Robert (North Brookfield, MA)

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  10. Protein crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1988-01-01

    Protein crystal growth is a major experimental problem and is the bottleneck in widespread applications of protein crystallography. Research efforts now being pursued and sponsored by NASA are making fundamental contributions to the understanding of the science of protein crystal growth. Microgravity environments offer the possibility of performing new types of experiments that may produce a better understanding of protein crystal growth processes and may permit growth environments that are more favorable for obtaining high quality protein crystals. A series of protein crystal growth experiments using the space shuttle was initiated. The first phase of these experiments was focused on the development of micro-methods for protein crystal growth by vapor diffusion techniques, using a space version of the hanging drop method. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth.

  11. Bending nanowire growth in solution by mechanical disturbance.

    PubMed

    Wang, Chao; Wei, Yujie; Jiang, Hongyuan; Sun, Shouheng

    2010-06-01

    The effect of mechanical disturbance on one-dimensional nanocrystal growth in solution phase is investigated by controlled growth of Au nanowires with and without stirring. While a static growth leads to straight, single-crystal Au nanowires, the mechanic disturbance by stirring tends to bend the nanowire growth, yielding nanowire kinks abundant in various types of crystal defects including dislocations, twin boundaries, and grain boundaries. Mechanical modeling and analysis is introduced to elucidate the nanowire growth mechanisms in these two conditions. The provided fundamental understanding of crystal defect formation at nanoscale could be applied to guide the development of advanced nanomaterials with shape control and unique mechanical properties. PMID:20499890

  12. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    SciTech Connect

    Arjunan, S.; Mohan Kumar, R.; Mohan, R.; Jayavel, R.

    2008-08-04

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-arginine trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.

  13. Growth of Equally-Sized Insulin Crystals

    E-print Network

    Nanev, Christo N; Hodzhaoglu, Feyzim V

    2013-01-01

    Guidelines for growing insulin crystals of a uniform size are formulated and tested experimentally. A simple theoretical model based on the balance of matter predicts the time evolution of the crystal size and supersaturation. The time dependence of the size is checked experimentally. The experimental approach decouples crystal nucleation and growth processes according to the classical nucleation-growth-separation principle. Strict control over the nucleation process is exerted. Crystalline substance dispersity is predetermined during the nucleation stage of a batch crystallization process. To avert nutrition competition during the crystal growth stage, the number density of nucleated crystals is preset to be optimal.

  14. Physical phenomena related to crystal growth in the space environment

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1973-01-01

    The mechanism of crystal growth which may be affected by the space environment was studied. Conclusions as to the relative technical and scientific advantages of crystal growth in space over earth bound growth, without regard to economic advantage, were deduced. It was concluded that the crucibleless technique will most directly demonstrate the unique effects of the greatly reduced gravity in the space environment. Several experiments, including crucibleless crystal growth using solar energy and determination of diffusion coefficients of common dopants in liquid silicon were recommended.

  15. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1991-01-01

    The objective of this research is to study the effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality. The application of graphoepitaxy (artificial epitaxy) to proteins is detailed. The development of a method for the control of nucleation is discussed. The factor affecting the morphology of isocitrate lyase crystals is presented.

  16. Compact spaceflight solution crystal-growth system

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra; Vikram, Chandra; Witherow, William

    1991-01-01

    A versatile, miniaturized, stand alone, crystal solution growth chamber design is presented which is based on fiber optics, diode lasers, and holographic optical elements in conjunction with knowledge gained from previous Spacelab work. Diagnostics instrumentation is based on a crystal growth monitor, a growth/dissolution monitor with feedback, solution diagnostics, multiple wavelength holography, and single wavelength or color Schlieren with video recording.

  17. Modelling the growth of feather crystals

    SciTech Connect

    Wood, H.J.; Hunt, J.D.; Evans, P.V.

    1997-02-01

    An existing numerical model of dendritic growth has been adapted to model the growth of twinned columnar dendrites (feather crystals) in a binary aluminium alloy, Examination of the effect of dendrite tip angle on growth has led to an hypothesis regarding the stability of a pointed tip morphology in these crystals.

  18. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  19. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  20. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1990-01-01

    The effect of low gravity on the growth of protein crystals and those parameters which will affect growth and crystal quality was studied. The proper design of the flight hardware and experimental protocols are highly dependent on understanding the factors which influence the nucleation and growth of crystals of biological macromolecules. Thus, those factors are investigated and the body of knowledge which has been built up for small molecule crystallization. These data also provide a basis of comparison for the results obtained from low-g experiments. The flows around growing crystals are detailed. The preliminary study of the growth of isocitrate lyase, the crystal morphologies found and the preliminary x ray results are discussed. The design of two apparatus for protein crystal growth by temperature control are presented along with preliminary results.

  1. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (inventor); Witherow, William K. (inventor); Carter, Daniel C. (inventor); Bugg, Charles E. (inventor); Suddath, Fred L. (inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  2. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  3. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D. (Richmond, CA)

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  4. (PCG) Protein Crystal Growth Horse Serum Albumin

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Horse Serum Albumin crystals grown during the USML-1 (STS-50) mission's Protein Crystal Growth Glovebox Experiment. These crystals were grown using a vapor diffusion technique at 22 degrees C. The crystals were allowed to grow for nine days while in orbit. Crystals of 1.0 mm in length were produced. The most abundant blood serum protein, regulates blood pressure and transports ions, metabolites, and therapeutic drugs. Principal Investigator was Edward Meehan.

  5. Advanced protein crystal growth programmatic sensitivity study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of this study is to define the costs of various APCG (Advanced Protein Crystal Growth) program options and to determine the parameters which, if changed, impact the costs and goals of the programs and to what extent. This was accomplished by developing and evaluating several alternate programmatic scenarios for the microgravity Advanced Protein Crystal Growth program transitioning from the present shuttle activity to the man tended Space Station to the permanently manned Space Station. These scenarios include selected variations in such sensitivity parameters as development and operational costs, schedules, technology issues, and crystal growth methods. This final report provides information that will aid in planning the Advanced Protein Crystal Growth Program.

  6. Optical Diagnostics of Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, T. G.; Lal, R. B.

    1996-01-01

    Non-contact optical techniques such as, optical heterodyne, ellipsometry and interferometry, for real time in-situ monitoring of solution crystal growth are demonstrated. Optical heterodyne technique has the capability of measuring the growth rate as small as 1A/sec. In a typical Michelson interferometer set up, the crystal is illuminated by a Zeeman laser with frequency omega(sub 1) and the reference beam with frequency omega(sub 2). As the crystal grows, the phase of the rf signal changes with respect to the reference beam and this phase change is related to the crystal growth rate. This technique is demonstrated with two examples: (1) by measuring the copper tip expansion/shrinkage rate and (2) by measuring the crystal growth rate of L-Arginine Phosphate (LAP). The first test shows that the expansion/shrinkage rate of copper tip was fast in the beginning, and gets slower as the expansion begins to stabilize with time. In crystal growth, the phase change due the crystal growth is measured using a phase meter and a strip chart recorder. Our experimental results indicate a varied growth rate from 69.4 to 92.6A per sec. The ellipsometer is used to study the crystal growth interface. From these measurements and a theoretical modeling of the interface, the various optical parameters can be deduced. Interferometry can also be used to measure the growth rate and concentration gradient in the vicinity of the crystal.

  7. Effect of L-tyrosine on the solubility, growth, structural, optical, SHG, dielectric and mechanical properties of KDP single crystals

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Ramasamy, P.

    2014-11-01

    The effect of L-tyrosine doping on various properties of potassium dihydrogen phosphate single crystals grown by slow cooling along with seed rotation method has been investigated. The crystalline nature of the grown crystals has been analyzed by powder X-ray diffraction analysis. The presence of various functional groups is identified by Fourier transform spectroscopy. Optical transparency of the grown crystals has been analyzed by UV-Vis-NIR spectral analysis. 90% of transmittance was observed for L-tyrosine added potassium dihydrogen phosphate crystal. Thermal stability and micro hardness measurement was examined by TG-DTA and Vickers microhardness study. Second harmonic study was carried out using Kurtz and Perry method. Dielectric and laser damage threshold studies were carried out.

  8. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilow, Peter G.

    1998-01-01

    Our work under this grant has significantly contributed to the goals of the NASA supported protein crystallization program. We have achieved the main objectives of the proposed work, as outlined in the original proposal: (1) We have provided important insight into protein nucleation and crystal growth mechanisms to facilitate a rational approach to protein crystallization; (2) We have delineated the factors that currently limit the x-ray diffraction resolution of protein crystals, and their correlation to crystallization conditions; (3) We have developed novel technologies to study and monitor protein crystal nucleation and growth processes, in order to increase the reproducibility and yield of protein crystallization. We have published 17 papers in peer-reviewed scientific journals and books and made more than 15 invited and 9 contributed presentations of our results at international and national scientific meetings.

  9. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    E-print Network

    Cattin, Rodolphe

    Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications the morphometric char- acteristics of spherulites in trachytic melts in quantitative fashion, highlighting

  10. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  11. Economic analysis of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Chung, A. M.; Yan, C. S.; Mccreight, L. R.

    1972-01-01

    Many advanced electronic technologies and devices for the 1980's are based on sophisticated compound single crystals, i.e. ceramic oxides and compound semiconductors. Space processing of these electronic crystals with maximum perfection, purity, and size is suggested. No ecomonic or technical justification was found for the growth of silicon single crystals for solid state electronic devices in space.

  12. Growth of polyhedral crystals from supersaturated vapor

    E-print Network

    Przemyslaw Gorka

    2007-03-26

    We examine the growth of crystals from vapor. We assume that the Wulff shape is a prism with a hexagonal base. The Gibbs-Thomson correction on the crystal surface is included in the model. Assuming that the-initial crystal has an admissible shape we show local in time existence of solutions.

  13. Optical diagnostics of solution crystal growth

    NASA Technical Reports Server (NTRS)

    Kim, Yongkee; Reddy, B. R.; George, Tharayil G.; Lal, Ravindra B.

    1995-01-01

    Solution crystal growth monitoring of LAP/TGS crystals by various optical diagnostics systems, such as conventional and Mach-Zehnder (M-Z) interferometers, optical heterodyne technique, and ellipsometry, is under development. The study of the dynamics of the crystal growth process requires a detailed knowledge of crystal growth rate and the concentration gradient near growing crystals in aqueous solution. Crystal growth rate can be measured using conventional interferometry. Laser beam reflections from the crystal front as well as the back surface interfere with each other, and the fringe shift due to the growing crystal yields information about the growth rate. Our preliminary results indicate a growth rate of 6 A/sec for LAP crystals grown from solution. Single wavelength M-Z interferometry is in use to calculate the concentration gradient near the crystal. Preliminary investigation is in progress using an M-Z interferometer with 2 cm beam diameter to cover the front region of the growing crystal. In the optical heterodyne technique, phase difference between two rf signals (250 KHZ) is measured of which one is a reference signal, and the other growth signal, whose phase changes due to a change in path length as the material grows. From the phase difference the growth rate can also be calculated. Our preliminary results indicate a growth rate of 1.5 A/sec. the seed and solution temperatures were 26.46 C and 27.92 C respectively, and the solution was saturated at 29.0 C. an ellipsometer to measure the growth rate and interface layer is on order from JOBIN YVON, France. All these systems are arranged in such a manner that measurements can be made either sequentially or simultaneously. These techniques will be adapted for flight experiment.

  14. Growth kinetics of tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Naumann, R.

    1986-01-01

    A method for immobilizing protein crystals in small volumes to determine growth rates on various faces is applied to study the growth kinetics of the (100) face of tetragonal hen-egg white lysozyme crystals at different degrees of bulk saturation. In normal gravity, transport is found to be dominated by convection for crystal sizes larger than a few microns, while in a microgravity environment, transport is diffusion-limited for sizes up to a few mm. It is found that convection can be significant even in microgravity for crystals approaching cm sizes, and that lysozyme growth is limited by surface kinetics in normal gravity.

  15. Continuing adventures in lysozyme crystal growth. [in earth laboratory experiments

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1992-01-01

    Results obtained on the crystal nucleation and growth of lysozyme are presented. Special attention is given to the anion-protein binding, the nucleation kinetics, the mechanisms of aggregation, and the conditions that promote or inhibit lysozyme (110)-face growth rate. The emerging theory that is currently being used for data interpretation and for designing new experimental approaches is outlined.

  16. Diffusion, Viscosity and Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.

    1996-01-01

    The diffusivity of TriGlycine Sulfate (TGS), Potassium Dihydrogen Phosphate (KDP), Ammonium Dihydrogen Phosphate (ADF) and other compounds of interest to microgravity crystal growth, in supersaturated solutions as a function of solution concentration, 'age' and 'history was studied experimentally. The factors that affect the growth of crystals from water solutions in microgravity have been examined. Three non-linear optical materials have been studied, potassium dihydrogen phosphate (KDP), ammonium dihydrogen phosphate (ADP) and triglycine sulfate (TGC). The diffusion coefficient and viscosity of supersaturated water solutions were measured. Also theoretical model of diffusivity and viscosity in a metastable state, model of crystal growth from solution including non-linear time dependent diffusivity and viscosity effect and computer simulation of the crystal growth process which allows simulation of the microgravity crystal growth were developed.

  17. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  18. Mechanically tunable photonic crystal lens

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Tamma, V. A.; Lee, J.-B.; Park, W.

    2010-08-01

    We designed, fabricated and characterized MEMS-enabled mechanically-tunable photonic crystal lens comprised of 2D photonic crystal and symmetrical electro-thermal actuators. The 2D photonic crystal was made of a honeycomb-lattice of 340 nm thick, 260 nm diameter high-index silicon rods embedded in low-index 10 ?m thick SU-8 cladding. Silicon input waveguide and deflection block were also fabricated for light in-coupling and monitoring of focused spot size, respectively. When actuated, the electro-thermal actuators induced mechanical strain which changed the lattice constant of the photonic crystal and consequently modified the photonic band structure. This in turn modified the focal-length of the photonic crystal lens. The fabricated device was characterized using a tunable laser (1400~1602 nm) and an infrared camera during actuation. At the wavelength of 1450 nm, the lateral light spot size observed at the deflection block gradually decreased 40%, as applied current increased from 0 to 0.7 A, indicating changes in focal length in response to the mechanical stretching.

  19. Crystal growth of octacyanometalphthalocyanine-metal complexes in thin films

    NASA Astrophysics Data System (ADS)

    Yanagi, Hisao; Maeda, Shigeru; Hayashi, Shigehiko; Ashida, Michio

    1988-10-01

    Octacyanometalphthalocyanine-metal complex (MPc(CN) 8-M, M = Cu, Ni, Co, Fe, Zn and K 2Pc(CN) 8- K) crystals were synthesized by vapor-solid reaction of tetracyanobenzene (TCNB) with metal films and a KCl crystal. Their crystal growth was investigated by electron microscopy. The crystal morphology depended on reaction temperature, pressure and kinds of substrate. Crystals of MPc(CN) 8-M and K 2Pc(CN) 8-K grew long and thick, tentacle-like, on polycrystal metal films and on a KCl (001) surface at the reaction temperature of 350°C. Growth of the crystals was inactive at reaction temperatures below 300°C. Crystal defects such as bends and folds increased with rising reaction pressure. The growth mechanism was assumed as follows: MPc(CN) 8 molecules are formed on a substrate metal by tetramerization of TCNB vapor, and peripheral nitrile groups of MPc(CN) 8 molecules coordinate to metal atoms of the substrate to form a MPc(CN) 8- M complex. MPc(CN) 8 molecules are piled up in parallel to form a column structure and the complex crystal grows by diffusion of metal atoms from the substrate. The crystal growth is well-defined when metal atoms are supplied sufficiently from the substrate.

  20. Hgi2 Sub 2 Crystal Growth for Nuclear Detectors

    NASA Technical Reports Server (NTRS)

    Schnepple, W. F.; Vandenberg, L.

    1985-01-01

    The objectives of this program are to obtain a benchmark quality sample grown at low-g conditions and to study vapor growth phenomena under space conditions. Ground-based crystals show a defect structure which impairs their performance as nuclear radiation detectors. These defects may be caused by the gravitational force acting on the crystal in its weakended state at the elevated growth temperature and by irregular convection patterns in the vapor during growth. Mechanical strength measurements have been performed (uniaxial compression tests) which show that the crystals exhibit slip parallel to the c-planes at stresses as low as 1/2 psi. Preliminary calculations using a simple linearized model indicate the oscillating instabilities in the convection part of the vapor transport system are unlikely, even at 1-g, provided that the utmost care is taken in the preparation of the crystal growth source material.

  1. Growth, thermal, mechanical, structural and optical properties of organic NLO crystals of novel cis-2,6-bis(2-chlorophenyl)-3,3-dimethylpiperidin-4-one

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Mohanraj, V.; Ilango, S. S.; Thenmozhi, M.; Ponnuswamy, M. N.

    2015-02-01

    An organic NLO material viz., cis-2,6-bis(2-chlorophenyl)-3,3-dimethylpiperidin-4-one (2C3DMPO), has been synthesized and a slow evaporation technique was applied to produce a single crystal. X-ray diffraction study on the single crystal 2C3DMPO reveals a non-centro symmetric crystal, possessing a monoclinic space group P21 and prefers to adopt a chair conformation. The crystal has been characterised using UV, FT-IR and NMR spectral studies. Solubility study and mechanical study using micro hardness methods have also been carried out. Furthermore, the thermal stability of the crystal was established by TG/DTA. The second harmonic conversion efficiency of the crystal was determined using the Kurtz and Perry powder technique and the activity observed was 3.83 times greater than that of KDP.

  2. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  3. Protein-crystal growth experiment (planned)

    NASA Technical Reports Server (NTRS)

    Fujita, S.; Asano, K.; Hashitani, T.; Kitakohji, T.; Nemoto, H.; Kitamura, S.

    1988-01-01

    To evaluate the effectiveness of a microgravity environment on protein crystal growth, a system was developed using 5 cubic feet Get Away Special payload canister. In the experiment, protein (myoglobin) will be simultaneously crystallized from an aqueous solution in 16 crystallization units using three types of crystallization methods, i.e., batch, vapor diffusion, and free interface diffusion. Each unit has two compartments: one for the protein solution and the other for the ammonium sulfate solution. Compartments are separated by thick acrylic or thin stainless steel plates. Crystallization will be started by sliding out the plates, then will be periodically recorded up to 120 hours by a still camera. The temperature will be passively controlled by a phase transition thermal storage component and recorded in IC memory throughout the experiment. Microgravity environment can then be evaluated for protein crystal growth by comparing crystallization in space with that on Earth.

  4. Advanced protein crystal growth flight hardware for the Space Station

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.

    1988-01-01

    The operational environment of the Space Station will differ considerably from the previous short term missions such as the Spacelabs. Limited crew availability combined with the near continuous operation of Space Station facilities will require a high degree of facility automation. This paper will discuss current efforts to develop automated flight hardware for advanced protein crystal growth on the Space Station. Particular areas discussed will be the automated monitoring of key growth parameters for vapor diffusion growth and proposed mechanisms for control of these parameters. A history of protein crystal growth efforts will be presented in addition to the rationale and need for improved protein crystals for X-ray diffraction. The facility will be capable of simultaneously processing several hundred protein samples at various temperatures, pH's, concentrations etc., and provide allowances for real time variance of growth parameters.

  5. On growth rate hysteresis and catastrophic crystal growth

    NASA Astrophysics Data System (ADS)

    Ferreira, Cecília; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2013-04-01

    Different crystal growth rates as supersaturation is increasing or decreasing in impure media is a phenomenon called growth rate hysteresis (GRH) that has been observed in varied systems and applications, such as protein crystallization or during biomineralization. We have recently shown that the transient adsorption of impurities onto newly formed active sites for growth (or kinks) is sensitive to the direction and rate of supersaturation variation, thus providing a possible explanation for GRH [6]. In the present contribution, we expand on this concept by deriving the analytical expressions for transient crystal growth based on the energetics of growth hillock formation and kink occupation by impurities. Two types of GRH results are described according to the variation of kink density with supersaturation: for nearly constant density, decreasing or increasing supersaturation induce, respectively, growth promoting or inhibiting effects relative to equilibrium conditions. This is the type of GRH measured by us during the crystallization of egg-white lysozyme. For variable kink density, slight changes in the supersaturation level may induce abrupt variations in the crystal growth rate. Different literature examples of this so-called 'catastrophic' crystal growth are discussed in terms of their fundamental consequences.

  6. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  7. Mechanisms for the Crystallization of ZBLAN

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Tucker, Dennis S.; Kaukler, William; Antar, Basil

    2003-01-01

    The objective of this ground based study is to test the hypothesis that shear thinning (the non-Newtonian response of viscosity to shear rate) is a viable mechanism to explain the observation of enhanced glass formation in numerous low-g experiments. In 1-g, fluid motion results from buoyancy forces and surface tension driven convection. This fluid flow will introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids can be extremely low. It is believed that some fluids may have weak structure in the absence of flow. Very small shear rates could cause this structure to collapse in response to shear resulting in a lowering of the viscosity of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids decreases the viscosity, increasing the rate of nucleation and crystallization of glass forming melts. Shear in the melt can be reduced in low-g, thus enhancing undercooling and glass formation. The viscosity of a model glass (lithium di-silicate, L2S) often used for crystallization studies has been measured at very low shear rates using a dynamic mechanical thermal analyzer. Our results are consistent with increasing viscosity with a lowering of shear rates. The viscosity of L2S may vary as much as an order of magnitude depending on the shear rate in the temperature region of maximum nucleation and crystal growth. Classical equations for nucleation and crystal growth rates, are inversely related to the viscosity and viscosity to the third power respectively. An order of magnitude variation in viscosity (with shear) at a given temperature would have dramatic effects on glass crystallization Crystallization studies with the heavy metal fluoride glass ZBLAN (ZrF2-BaF2-LaF3-AlF3-NaF) to examine the effect of shear on crystallization are being initiated. Samples are to be melted and quenched under quiescent conditions at different shear rates to determine the effect on crystallization. The results from this study are expected to advance the current scientific understanding of glass formation in low-g and glass crystallization under glass molding conditions and will improve the scientific understanding of technological processes such as fiber pulling, bulk amorphous alloys, and glass fabrication processes.

  8. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    Work performed during the period 11 Feb. 1992 to 10 Aug. 1993 on research support for cadmium telluride crystal growth is reported. Work on chemical impurity characterization and mass spectroscopy is described.

  9. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  10. The Growth of Large Single Crystals.

    ERIC Educational Resources Information Center

    Baer, Carl D.

    1990-01-01

    Presented is an experiment which demonstrates principles of experimental design, solubility, and crystal growth and structure. Materials, procedures and results are discussed. Suggestions for adapting this activity to the high school laboratory are provided. (CW)

  11. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  12. Growth Of Oriented Crystals At Polymerized Membranes

    DOEpatents

    Charych, Deborah H. (Albany, CA), Berman, Amir (Ben-Shiva, IL)

    2000-01-25

    The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.

  13. Protein crystal growth (5-IML-1)

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1992-01-01

    Proteins (enzymes, hormones, immunoglobulins) account for 50 pct. or more of the dry weight of most living systems. A detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting projects have terminated at the crystal growth stage. In principle, there are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor is the elimination of density driven convective flow. Other factors that can be controlled in the absence of gravity is the sedimentation of growing crystals in a gravitational field, and the potential advantage of doing containerless crystal growth. As a result of these theories and facts, one can readily understand why the microgravity environment of an Earth orbiting vehicle seems to offer unique opportunities for the protein crystallographer. This perception has led to the establishment of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project. The results of experiments already performed during STS missions have in many cases resulted in large protein crystals which are structurally correct. Thus, the near term objective of the PCG/ME project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  14. Selective anisotropic growth of zeolite crystals 

    E-print Network

    Desai, Tasha April

    2013-02-22

    -1 Selective Anisotropic Growth of Zeolite Crystals A Senior Honors Thesis by TASHA APRIL DESAI Submitted to the Office of Honors Programs & Academic Scholarships Texas A&M University in partial fulfillment of the requirements of the UNIVERSITY... UNDERGRADUATE RESEARCH FELLOWS Apri I 2003 Group: Engineering & Physics 3 Selective Anisotropic Growth of Zeolite Crystals A Senior Honors Thesis by TASFIA APRIL DESAI Submitted to the Office of Honors Programs k Academic Scholarships Texas A...

  15. Convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    Protein crystals for X-ray diffraction study are usually grown resting on the bottom of a hanging drop of a saturated protein solution, with slow evaporation to the air in a small enclosed cell. The evaporation rate is controlled by hanging the drop above a reservoir of water, with its saturation vapor pressure decreased by a low concentration of a passive solute. The drop has a lower solute concentration, and its volume shrinks by evaporation until the molecular concentrations match. Protein crystals can also be grown from a seed crystal suspended or supported in the interior of a supersaturated solution. The main analysis of this report concerns this case because it is less complicated than hanging-drop growth. Convection effects have been suggested as the reason for the apparent cessation of growth at a certain rather small crystal size. It seeems that as the crystal grows, the number of dislocations increases to a point where further growth is hindered. Growth in the microgravity environment of an orbiting space vehicle has been proposed as a method for obtaining larger crystals. Experimental observations of convection effects during the growth of protein crystals have been reported.

  16. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1993-01-01

    This Final Technical Report for NASA Grant NAG8-774 covers the period from April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the influence of growth conditions on the morphology of isocitrate lyase crystals, control of nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren imaging of fluid flows around protein crystals. The isocitrate lyase study compares crystals grown terrestrially under a variety of conditions with those grown in space. The controlling factor governing the morphology of the crystals is the supersaturation. The lack of flow in the interface between the drop and the atmosphere in microgravity causes protein precipitation in the boundary layer and a lowering of the supersaturation in the drop. This lowered supersaturation leads to improved crystal morphology. Preliminary experiments with lysozyme indicated that localized temperature gradients could be used to nucleate crystals in a controlled manner. An apparatus (thermonucleator) was designed to study the controlled nucleation of protein crystals. This apparatus has been used to nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and retrograde (horse serum albumin and alpha chymotrypsinogen A) solubility. These studies have lead to the design of an new apparatus that small and more compatible with use in microgravity. Lysozyme crystals were grown by transporting nutrient from a source (lysozyme powder) to the crystal in a temperature gradient. The influence of path length and cross section on the growth rate was demonstrated. This technique can be combined with the thermonucleator to control both nucleation and growth. Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study, silicon substrates with 10 micron grooves were used to grow crystals of catalase, lysozyme and canavalin. In all cases, the crystals grew oriented to the substrate. The supersaturation needed for nucleation and growth was lower on the patterned substrates. In some cases, isolated, large crystals were grown.

  17. Crystallization mechanisms of stoichiometric monomethylhydrazine—water mixtures

    NASA Astrophysics Data System (ADS)

    Clavaguera, N.; Palumbo-Romand, V.; Ferriol, M.; Cohen-Adad, M. T.

    1997-09-01

    Lights scattering measurements of crystallization under the isothermal regime of stoichiometric mixtures of CH 3NHNH 2·H 2O, in the temperature range 180-200 K are modeled as nucleation-growth of the two crystalline forms, stable and metastable, that result as crystallization products. The modeling procedure is founded on the Johnson—Melh—Avrami—Komolgorov model with introduction of the competition between interface and diffusion growth limiting mechanisms. The nucleation and growth kinetics, and in particular the optimum temperature range for both nucleation and growth have been deduced from calorimetric analysis of the process under continuous heating of previously annealed samples at selected temperatures. The calculation presented here agrees with the experimental results and evidences the importance of: (a) heterogeneous nucleation, (b) diffusion-controlled growth in the last stages of crystallization process and (c) co-crystallization of both crystalline forms in the temperature range 150-200 K.

  18. (PCG) Protein Crystal Growth Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lyase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator for STS-26 was Charles Bugg.

  19. (PCG) Protein Crystal Growth Isocitrate Lysase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Isocitrate Lysase. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator on STS-26 was Charles Bugg.

  20. Growth and optical, thermal, mechanical and surface morphology studies of semiorganic nonlinear optical material: Dichlorobis (l-proline) zinc (II) crystal.

    PubMed

    Anbuselvi, D; Jayaraman, D; Arul Martin Mani, J; Joseph, V

    2014-06-01

    The organometallic nonlinear optical material Dichlorobis (l-proline) zinc (II) (DCBPZ) was crystallized using solution growth technique. XRD data reveal that the grown crystal belongs to orthorhombic system with space group P212121. The crystals were characterized using UV-vis-NIR, FTIR and NMR spectral studies, SEM-EDAX analysis and Atomic force microscopy (AFM), thermal and microhardness studies. Photoconductivity measurements were made to understand the response of the grown material to the visible light. The SHG efficiency of DCBPZ was also measured using Kurtz and Perry powder technique. It is observed that the NLO activity of DCBPZ is found to be twice that of KDP due to improved linear and nonlinear optical properties of the material. PMID:24637277

  1. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    During the fifth semi-annual period under this grant we have pursued the following activities: (1) Characterization of the purity and further purification of lysozyme solutions, these efforts are summarized in Section 2; (2) Crystal growth morphology and kinetics studies with tetragonal lysozyme, our observation on the dependence of lysozyme growth kinetics on step sources and impurities has been summarized in a manuscript which was accepted for publication in the Journal of Crystal Growth; (3) Numerical modelling of the interaction between bulk transport and interface kinetics, for a detailed summary of this work see the manuscript which was accepted for publication in the Journal of Crystal Growth; and (4) Light scattering studies, this work has been summarized in a manuscript that has been submitted for publication to the Journal of Chemical Physics.

  2. Research support for cadmium telluride crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto (n 11) seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  3. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function of temperature.

  4. Space-based crystal growth and thermocapillary flow

    NASA Technical Reports Server (NTRS)

    Shen, Yong-Hong

    1994-01-01

    The demand for larger crystals is increasing especially in applications associated with the electronic industry, where large and pure electronic crystals (notably silicon) are the essential material to make high-performance computer chips. Crystal growth under weightless conditions has been considered an ideal way to produce bigger and hopefully better crystals. One technique which may benefit from a microgravity environment is the float-zone crystal-growth process, a containerless method for producing high-quality electronic material. In this method, a rod of material to be refined is moved slowly through a heating device which melts a portion of it. Ideally, as the melt resolidifies it does so as a single crystal which is then used as substrate for building microelectronic devices. The possibility of contamination by contact with other material is reduced because of the 'float' configuration. However, since the weight of the material contained in the zone is supported by the surface-tension force, the size of the resulting crystal is limited in Earth-based productions; in fact, some materials have properties which prevent this process from being used to manufacture crystals of reasonable size. Consequently, there has been a great deal of interest in exploiting the microgravity environment of space to grow larger size crystals of electronic material using the float-zone method. In addition to allowing larger crystals to be grown, a microgravity environment would also significantly reduce the magnitude of convection induced by buoyancy forces during the melting state. This type of convection was once thought to be at least partially responsible for the presence of undesirable nonuniformities--called striations--in material properties observed in float-zone material. However, past experiments on crystal growth under weightless conditions found that even with the absence of gravity, the float-zone method sometimes still results striations. It is believed that another mechanism is playing a dominant role in the microgravity environment.

  5. Growth of organic benzimidazole (BMZ) single crystal by vertical Bridgman technique and its structural, spectral, thermal, optical, mechanical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Muthuraja, A.; Kalainathan, S.

    2015-09-01

    Benzimidazole (BMZ) single crystal was successfully grown by the vertical Bridgman technique (VBT). The crystal system was identified and lattice parameters have been measured from the powder X-ray diffraction (PXRD) measurement. Fourier transforms infrared spectral studies have been carried out to find out the functional groups of BMZ crystal. The optical transmittance and the cut-off wavelength of BMZ were identified using UV-Vis NIR studies and the cut-off wavelength was found to be 294 nm. The dielectric permittivity and dielectric loss as a function of frequency and temperature was measured for the grown BMZ crystal. Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal. Chemical etching study was carried out using different etchants and the etch pit density (EPD) was calculated and compared. The third order nonlinear optical property of BMZ crystal was studied by using Z-scan technique with He-Ne laser (632.8 nm). The magnitude of nonlinear refractive index (n2), nonlinear absorption (?) and third order nonlinear susceptibility (?3) have been found to be in the range of 10-11 m2/W, 10-4 m/W and 10-5 esu respectively. Photoluminescence spectrum was recorded using a xenon lamp in the range of 330-585 nm and it exhibits ultraviolet light emission.

  6. Growth, spectral, thermal, dielectric, mechanical, linear and nonlinear optical, birefringence, laser damage threshold studies of semi-organic crystal: Dibrucinium sulfate heptahydrate

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Gayathri, K.; Bhagavannarayana, G.; Jayaramakrishnan, V.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Dibrucinium sulfate heptahydrate (DBSH), a semi-organic nonlinear optical material, has been synthesized and single crystals were grown from water-ethanol solution at room temperature up to dimensions of 10 × 7 × 2 mm3. The unit cell parameters were determined from single crystal and powder X-ray diffraction studies. The structural perfection of the grown crystal has been analyzed by high-resolution X-ray diffraction (HRXRD) study. FTIR and Raman studies were performed to identify the functional groups present in the title compound. The activation energy (E), entropy (?S), enthalpy (?H) and Gibbs free energy (?G), of the thermal decomposition reaction have been derived from thermo gravimetric (TGA) and differential thermal (DTA) analysis curves, using Coats-Redfern method. The variation of dielectric properties of the grown crystal with respect to frequency has been investigated at different temperatures. Microhardness measurements revealed the mechanical strength of grown crystal. The optical parameters, the optical band gap Eg and width of localized states Eu were determined using the transmittance data in the spectral range 200-800 nm. The relative second harmonic efficiency of the compound is found to be 1.4 times greater than that of KDP. Birefringence and Laser damage threshold studies were carried out for the grown crystal.

  7. Protein Crystal Growth Apparatus for Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Dowling, Timothy E. (Inventor)

    1997-01-01

    Apparatus for growing protein crystals under microgravity environment includes a plurality of protein growth assemblies stacked one above the other within a canister. Each of the protein growth assemblies includes a tray having a number of spaced apart growth chambers recessed below an upper surface. the growth chambers each having an upstanding pedestal and an annular reservoir about the pedestal for receiving a wick and precipitating agents. A well is recessed below the top of each pedestal to define a protein crystal growth receptacle. A flexible membrane is positioned on the upper surface of each tray and a sealing plate is positioned above each membrane, each sealing plate having a number of bumpers corresponding in number and alignment to the pedestals for forcing the membrane selectively against the upper end of the respective pedestal to seal the reservoir and the receptacle when the sealing plate is forced down.

  8. Method for solid state crystal growth

    DOEpatents

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  9. crystal: growth, crystal structure perfection, piezoelectric, and acoustic properties

    NASA Astrophysics Data System (ADS)

    Roshchupkin, Dmitry; Ortega, Luc; Plotitcyna, Olga; Irzhak, Dmitry; Emelin, Evgenii; Fahrtdinov, Rashid; Alenkov, Vladimir; Buzanov, Oleg

    2014-09-01

    A five-component crystal of lanthanum-gallium silicate group La3Ga5.3Ta0.5Al0.2O14 (LGTA) was grown by the Czochralski method. The LGTA crystal possesses unique thermal properties and substitution of Al for Ga in the unit cell leads to a substantial increase of electrical resistance at high temperatures. The unit cell parameters of LGTA were determined by powder diffraction. X-ray topography was used to study the crystal structure perfection: the growth banding normal to the growth axis were visualized. The independent piezoelectric constants d 11 and d 14 were measured by X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves were studied by the double-crystal X-ray diffraction at the BESSY II synchrotron radiation source. The analysis of the diffraction spectra of acoustically modulated crystals permitted the determination of the velocity of acoustic wave propagation and the power flow angles in different acoustic cuts of the LGTA crystal.

  10. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    The long-term stability of the interferometric setup for the monitoring of protein morphologies has been improved. Growth or dissolution of a crystal on a 100 A scale can now be clearly distinguished from dimensional changes occurring within the optical path of the interferometer. This capability of simultaneously monitoring the local interfacial displacement at several widely-spaced positions on the crystal surface with high local depth resolution, has already yielded novel results. We found with lysozyme that (1) the normal growth rate is oscillatory, and (2) the mean growth step density is greater at the periphery of a facet than in its center. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed to interpret the large body of data in a unified way. The results strongly suggests that (1) the ion to lysozyme ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter on the order of 10 microns. The computational model for diffusive-convective transport in protein crystallization (see the First Report) has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies. These results show that some elements of a moving boundary problem must be incorporated into the model in order to obtain a more realistic description. Our experimental setup for light scattering investigations of aggregation and nucleation in protein solutions has been extensively tested. Scattering intensity measurements with a true Rayleigh scatterer produced systematically increased forward scattering, indicating problems with glare. These have been resolved. Preliminary measurements with supersaturated lysozyme solutions revealed that the scatterers grow with time. Work has begun on a computer program for the unified evaluation of simultaneously obtained, multi-angle static and dynamic light scattering data.

  11. An Apparatus for Growth of Small Crystals From Solutions.

    ERIC Educational Resources Information Center

    Mitrovic, Mico M.

    1995-01-01

    Describes an apparatus for crystal growth that was designed to study growth kinetics of small crystals from solutions and to obtain crystals of various substances. Describes the use of the apparatus in laboratory practical experiments in the field of crystal growth physics within the course "Solid State Physics". (JRH)

  12. Interaction between Convection and Heat Transfer in Crystal Growth

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Crystals are integral components in some of our most sophisticated and rapidly developing industries. Single crystals are solids with the most uniform structures that can be obtained on an atomic scale. Because of their structural uniformity, crystals can transmit acoustic and electromagnetic waves and charged particles with essentially no scattering or interferences. This transparency, which can be selectively modified by controlled additions of impurities known as dopants, is the foundation of modern electronic industry. It has brought about widespread application of crystals in transistors, lasers, microwave devices, infrared detectors, magnetic memory devices, and many other magnets and electro-optic components. The performance of a crystal depends strongly on its compositional homogeneity. For instance, in modern microcircuitry, compositional variations of a few percent (down to a submicron length scale) can seriously jeopardize predicted yields. Since crystals are grown by carefully controlled phase transformations, the compositional adjustment in the solid is often made during growth from the nutrient. Hence, a detailed understanding of mass transfer in the nutrient is essential. Moreover, since mass transfer is often the slowest process during growth, it is usually the rate limiting mechanism. Crystal growth processes are usually classified according to the nature of the parent phase. Nevertheless, whether the growth occurs by solidification from a melt (melt growth), nucleation from a solution (solution growth), condensation from a vapor (physical vapor transport) or chemical reaction of gases (chemical vapor deposition), the parent phase is a fluid. As is with most non-equilibrium processes involving fluids, liquid or vapor, fluid motion plays an important role, affecting both the concentration and temperature gradients at the soli-liquid interface.

  13. Synthesis, growth, structural, spectral, linear and nonlinear optical and mechanical studies of a novel organic NLO single crystal 4-Bromo 4-Nitrostilbene (BONS) for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Dinakaran, Paul M.; Kalainathan, S.

    2013-03-01

    Single crystal of 4-Bromo 4-Nitrostilbene (BONS), a new organic nonlinear optical material was synthesized and crystals were grown with dimensions up to 8 × 6 × 3 mm3 from ethyl methyl ketone (EMK) solvent by slow evaporation method. Single crystal X-ray diffractometer was used to measure the unit cell parameters and confirmed the BONS structure as orthorhombic with the space group P212121. The sample has been subjected to powder X-ray diffraction to identify the crystalline nature and the prominent peaks were indexed. The functional groups were identified from Fourier transform infrared (FTIR) spectral analysis. Proton NMR analysis confirms the protonation in the structure of the title compound. Optical behaviour of BONS has been observed by UV-Vis absorption spectral analysis which shows the low cut off wavelength lies at 405 nm and found that the energy band gap of the crystal is 2.90 eV. Thermal stability of the material has been confirmed by TG/DTA analyses. The BONS compound formation analyzed by mass spectroscopic analysis. The mechanical strength of the crystal was found using Vickers microhardness measurement. The laser damage threshold (LDT) for the grown crystal was measured by using Nd:YAG laser. Photoluminescence spectrum indicated green light emission at 515.44 nm. The Kurtz powder second harmonic generation test shows that the BONS crystal (1.5 V) is a very potential NLO candidate for optical generation and it has SHG efficiency 69 times greater than that of KDP (21.7 mV).

  14. Crystal growth under external electric fields

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-01

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostaticallyeither through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  15. Crystal growth under external electric fields

    SciTech Connect

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  16. Phase-Field Simulations of Crystal Growth

    SciTech Connect

    Plapp, Mathis

    2010-07-22

    This course gives an elementary introduction to the phase-field method and to its applications for the modeling of crystal growth. Two different interpretations of the phase-field variable are given and discussed. It can be seen as a physical order parameter that characterizes a phase transition, or as a smoothed indicator function that tracks domain boundaries. Elementary phase-field models for solidification and epitaxial growth are presented and are applied to the dendritic growth of a pure substance and the step-flow growth on a vicinal surface.

  17. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    DOEpatents

    Bolotnikov, Aleskey E. (South Setauket, NY); James, Ralph B. (Ridge, NY)

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  18. Interfacial supersaturation, secondary nucleation, and crystal growth

    NASA Astrophysics Data System (ADS)

    Tai, Clifford Y.; Wu, Jenn-Fang; Rousseau, Ronald W.

    1992-02-01

    A theory describing the source of nuclei in secondary nucleation is presented and used to rationalize experimental data from the literature, some of which had appeared to be conflicting. The theory rests on a model in which an adsorption layer consisting of clusters of growth units of varying size is formed on the surface of growing crystals. The existence of the layer is related to the two-resistance model of crystal growth; by varying system conditions, the relative importance of the two resistances is altered and thereby changes the interfacial supersaturation even though overall supersaturation remains constant. Interracial supersaturation and contact energy determine kinetics in a system dominated by contact nucleation.

  19. Growth technology of piezoelectric langasite single crystal

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Wang, Shou-Qi; Konishi, Nozomi; Inaba, Hitoshi; Harada, Jiro

    2005-02-01

    Although langasite (La 3Ga 5SiO 14) is an incongruent material, it can directly grow from the "pseudo-congruent melt" via the Czochralski method using a langasite seed crystal when the appropriate supercooling is provided. This may be explained by the extension of the univariant line of langasite+liquid into the primary phase field of Ga-containing lanthanum silicate. Free energies serving to solute transport, growth kinetics, surface creation and defect generation are summed up to be the total supercooling necessary for growth which may be larger for the formation of Ga-containing lanthanum silicate and smaller for langasite than the actual supercooling. The growth technology of 4-in-size crystal along [0 1 1¯ 1] is optimized by understanding (i) the importance of the prior annealing of the melt to acquire the suitable supercooling for growth, (ii) the transform of the unstable growth interface, (0 1 1¯ 1), into the complex of more stable principal planes, and (iii) the necessity of the accurate evaluation method to examine the homogeneity of the grown crystal. Issues of (i) and (ii) are interrelated. Physical crystal properties at high temperature are also demonstrated.

  20. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1994-01-01

    A high-resolution microscopic interferometric setup for the monitoring of protein morphologies has been developed. Growth or dissolution of a crystal can be resolved with a long-term depth resolution of 200 A and a lateral resolution of 2 microns. This capability of simultaneously monitoring the interfacial displacement with high local depth resolution has yielded several novel results. We have found with lysozyme that (1) the normal growth rate is oscillatory, and (2) depending on the impurity content of the solution, the growth step density is either greater or lower at the periphery of a facet than in its center. The repartitioning of Na plus and Cl minus ions between lysozyme solutions and crystals was studied for a wide range of crystallization conditions. A nucleation-growth-repartitioning model was developed, to interpret the large body of data in unified way. The results strongly suggest that (1) the ion to lysozyne ratio in the crystal depends mostly on kinetic rather than crystallographic parameters, and (2) lysozyme crystals possess a salt-rich core with a diameter electron microscopy results appear to confirm this finding, which could have far-reaching consequences for x-ray diffraction studies. A computational model for diffusive-convective transport in protein crystallization has been applied to a realistic growth cell geometry, taking into account the findings of the above repartitioning studies and our kinetics data for the growth of lysozyme. The results show that even in the small cell employed, protein concentration nonuniformities and gravity-driven solutal convection can be significant. The calculated convection velocities are of the same order to magnitude as those found in earlier experiments. As expected, convective transport, i.e., at Og, lysozyme crystal growth remains kinetically limited. The salt distribution in the crystal is predicted to be non-uniform at both 1g and 0g, as a consequence of protein depletion in the solution. Static and dynamic light scattering studies in undersaturated and supersaturated solutions have been performed. Diffusivities in undersaturated solutions, were found to vary with lysozyme concentrations. Depending on the salt concentration, the diffusivities either increase or decrease. Interestingly, the corresponding static scattering intensities behave oppositely, Our current analysis indicates that these changes are inconsistent with aggregation in undersaturated solutions. However, the data are compatible with concentration-dependent changes of the interactions between protein and salt.

  1. Optical monitoring of protein crystal growth

    NASA Technical Reports Server (NTRS)

    Choudry, A.

    1988-01-01

    The possibility of using various optical techniques for detecting the onset of nucleation in protein crystal growth was investigated. Direct microscopy, general metrologic techniques, light scattering, ultraviolet absorption, and interferometry are addressed along with techniques for determining pH value. The necessity for collecting basic data on the optical properties of the growth solution as a prerequisite to the evaluation of monitoring techniques is pointed out.

  2. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Zhao, Xinbao; Liu, Lin; Zhang, Jun

    2015-08-01

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains.

  3. Crystal growth furnace safety system validation

    NASA Technical Reports Server (NTRS)

    Mackowski, D. W.; Hartfield, R.; Bhavnani, S. H.; Belcher, V. M.

    1994-01-01

    The findings are reported regarding the safe operation of the NASA crystal growth furnace (CGF) and potential methods for detecting containment failures of the furnace. The main conclusions are summarized by ampoule leak detection, cartridge leak detection, and detection of hazardous species in the experiment apparatus container (EAC).

  4. (PCG) Protein Crystal Growth Isocitrate Lysase

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Comparison of Earth grown and Space grown Isocitrate Lysase crystals. Target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast. It regulates the flow of metabolic intermediates required for cell growth. Principal Investigator was Charles Bugg.

  5. Spacelab 3 vapor crystal growth experiment

    NASA Technical Reports Server (NTRS)

    Schnepple, W.; Vandenberg, L.; Skinner, N.; Ortale, C.

    1987-01-01

    The Space Shuttle Challenger, with Spacelab 3 as its payload, was launched into orbit April 29, 1985. The mission, number 51-B, emphasized materials processing in space, although a wide variety of experiments in other disciplines were also carried onboard. One of the materials processing experiments on this flight is described, specifically the growth of single crystals of mercuric iodide by physical vapor transport.

  6. Growth of single-crystal gallium nitride

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Use of ultrahigh purity ammonia prevents oxygen contamination of GaN during growth, making it possible to grow the GaN at temperatures as high as 825 degrees C, at which point single crystal wafers are deposited on /0001/-oriented sapphire surfaces.

  7. Method for crystal growth control

    DOEpatents

    Yates, Douglas A. (Burlington, MA); Hatch, Arthur E. (Waltham, MA); Goldsmith, Jeff M. (Medford, MA)

    1981-01-01

    The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.

  8. Crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L. (inventor); Reiss, Donald A. (inventor); Lehoczky, Sandor L. (inventor)

    1992-01-01

    Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.

  9. Nucleation and growth control in protein crystallization

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Nyce, Thomas A.; Meehan, Edward J.; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique.

  10. Determination of growth and breakage kinetics of L-threonine crystals

    NASA Astrophysics Data System (ADS)

    Bao, Ying; Zhang, Jinlong; Yin, Qiuxiang; Wang, Jingkang

    2006-03-01

    The crystal growth and breakage kinetics of L-threonine by evaporation crystallization were studied at the laboratory scale using a 1200 ml crystallizer with draft tube. Evaporation experiments were carried out at three different temperatures and three different stirrer speeds. Crystal breakage phenomena were demonstrated by image analysis and evolution of crystal size distribution. Breakage of binary uniform distribution and volume-independent growth kinetics were extracted by moment method. Moreover, the breakage and growth kinetics were proved to be appropriate for L-threonine/water evaporation process using numeric simulation. The growth kinetic parameters indicated that diffusion should be the rate-controlling step of crystal growth, and higher temperature higher growth rate. The higher exponent of agitation speed for breakage kinetics indicated that the removal of fragments stimulated by stirring should be the main breakage mechanism.

  11. ICCG-10: Tenth International Conference on Crystal Growth. Oral presentation abstracts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Oral presentation abstracts from the tenth International Conference on Crystal Growth (ICCG) (Aug. 16-21, 1992) are provided. Topics discussed at the conference include superconductors, semiconductors, nucleation, crystal growth mechanisms, and laser materials. Organizing committees, ICCG advisory board and officers, and sponsors of the conference are also included.

  12. ICCG-10: Tenth International Conference on Crystal Growth. Poster presentation abstracts

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Poster presentation abstracts from the tenth International Conference on Crystal Growth (ICCG) (Aug. 16-21, 1992) are provided. Topics discussed at the conference include crystal growth mechanisms, superconductors, semiconductors, laser materials, optical materials, and biomaterials. Organizing committees, ICCG advisory board and officers, and sponsors of the conference are also included.

  13. Apparatus for monitoring crystal growth

    DOEpatents

    Sachs, Emanual M. (Watertown, MA)

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  14. Method of monitoring crystal growth

    DOEpatents

    Sachs, Emanual M. (Watertown, MA)

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  15. Method of controlling defect orientation in silicon crystal ribbon growth

    NASA Technical Reports Server (NTRS)

    Leipold, M. H. (inventor)

    1978-01-01

    The orientation of twinning and other effects in silicon crystal ribbon growth is controlled by use of a starting seed crystal having a specific (110) crystallographic plane and (112) crystallographic growth direction.

  16. Growth and characterisation of L-arginine phosphate family crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Ravi, G.; Hossain, MD. M.; Ramasamy, P.

    1999-07-01

    In order to improve the device characteristics of L-arginine phosphate (LAP) family of crystals, metals doping with oxides of copper and magnesium were examined. Mg-doped crystals enhance the growth along the c-axis; X-ray powder diffraction patterns were used to calculate the lattice parameters of the crystals. Fourier transform infra red (FTIR) spectroscopy and thermal analysis (DTA, TGA) were performed to study the molecular vibrations and thermal behaviour of the crystals, respectively. Mechanical characterisations such as micro-hardness studies on (1 0 0) and (0 1 0) planes were also carried out. The weight percentage of the doped copper and magnesium were calculated by atomic absorption spectroscopy (AAS).

  17. Mechanical Properties Of Large Sodium Iodide Crystals

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1988-01-01

    Report presents data on mechanical properties of large crystals of thallium-doped sodium iodide. Five specimens in shape of circular flat plates subjected to mechanical tests. Presents test results for each specimen as plots of differential pressure versus center displacement and differential pressure versus stress at center. Also tabulates raw data. Test program also developed procedure for screening candidate crystals for gamma-ray sensor. Procedure eliminates potentially weak crystals before installed and ensures material yielding kept to minimum.

  18. The Averaged Face Growth Rates of lysozyme Crystals: The Effect of Temperature

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1995-01-01

    Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4-22 C range for several protein concentrations. The growth rate trends with supersaturation were similar to previous microscopic growth rate measurements. However, it was found that at high super-saturations the growth rates attain a maximum and then start decreasing. No 'dead zone' was observed but the growth rates were found to approach zero asymptotically at very low super-saturations. The growth rate data also displayed a dependence on pH and salt concentration which could not be characterized solely by the super-saturation. A complete mechanism for lysozyme crystal growth, involving the formation of an aggregate growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is suggested. Such a mechanism may provide a more consistent explanation for the observed growth rate trends than those suggested by other investigators. The nutrient solution interactions leading to the formation of the aggregate growth unit may, thus, be as important as those occurring at the crystal interface and may account for the differences between small molecule and protein crystal growth.

  19. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  20. Crystal growth and annealing for minimized residual stress

    DOEpatents

    Gianoulakis, Steven E. (Albuquerque, NM)

    2002-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.

  1. FNAS/advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1992-01-01

    A scintillation method is presented for determination of the temperature dependence of the solubility, S(T), of proteins in 50-100 micro-l volumes of solution. S(T) data for lysozyme and horse serum albumin were obtained for various combinations of pH and precipitant concentrations. The resulting kinetics and equilibrium information was used for dynamic control, that is the separation of nucleation and growth stages in protein crystallization. Individual lysozyme and horse serum albumin crystals were grown in 15-20 micro-l solution volumes contained in x-ray capillaries.

  2. Crystal Splitting in the Growth of Bi2S3

    SciTech Connect

    Tang, Jing; Alivisatos, A. Paul

    2006-06-15

    Novel Bi{sub 2}S{sub 3} nanostructures with a sheaf-like morphology are obtained via reaction of bismuth acetate-oleic acid complex with elemental sulfur in 1-octadecence. We propose these structures form by the splitting crystal growth mechanism, which is known to account for the morphology some mineral crystals assume in nature. By controlling the synthetic parameters, different forms of splitting, analogous to observed in minerals, are obtained in our case of Bi{sub 2}S{sub 3}. These new and complex Bi{sub 2}S{sub 3} nanostructures are characterized by TEM, SEM, XRD and ED.

  3. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1994-01-01

    This research involved (1) using the Atomic Force Microscope (AFM) in a study on the growth of lysozyme crystals and (2) refinement of the design of the Thermonucleator which controls the supersaturation required for the nucleation and growth of protein crystals separately. AFM studies of the (110) tetragonal face confirmed that lysozyme crystals grow by step propagation. There appears to be very little step pile up in the growth regimes which we studied. The step height was measured at = 54A which was equal to the (110) interpane spacing. The AFM images showed areas of step retardation and the formation of pits. These defects ranged in size from 0.1 to 0.4 mu. The source of these defects was not determined. The redesign of the Thermonucleator produced an instrument based on thermoelectric technology which is both easier to use and more amenable to use in a mu g environment. The use of thermoelectric technology resulted in a considerable size reduction which will allow for the design of a multi-unit growth apparatus. The performance of the new apparatus was demonstrated to be the same as the original design.

  4. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1993-01-01

    The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.

  5. Lead isotope variation with growth zoning in a galena crystal

    USGS Publications Warehouse

    Cannon, R.S., Jr.; Pierce, A.P.; Delevaux, M.H.

    1963-01-01

    A large crystal of lead sulfide from Picher, Oklahoma, has significant differences in isotopic composition of lead in successive growth zones. Lead isotope ratios in the parent ore-fluid evidently changed with time during crystal growth. The growth history of this crystal, interpreted quantitatively, points to a tentative hypothesis of genesis of Mississippi Valley deposits of lead and zinc.

  6. Growth of equiaxed dendritic crystals settling in an undercooled melt

    E-print Network

    Beckermann, Christoph

    of the grain structure and the development of defects in castings [1­4]. The growth of equiaxed crystals176 Growth of equiaxed dendritic crystals settling in an undercooled melt A. Badillo and C direction relative to the crystal. The average of the measured tip growth velocities of all six dendrite

  7. Crystal growth and furnace analysis

    NASA Technical Reports Server (NTRS)

    Dakhoul, Youssef M.

    1986-01-01

    A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.

  8. Dynamic pressure-induced dendritic and shock crystal growth of ice VI.

    PubMed

    Lee, Geun Woo; Evans, William J; Yoo, Choong-Shik

    2007-05-29

    Crystal growth mechanisms are crucial to understanding the complexity of crystal morphologies in nature and advanced technological materials, such as the faceting and dendrites found in snowflakes and the microstructure and associated strength properties of structural and icy planetary materials. In this article, we present observations of pressure-induced ice VI crystal growth, which have been predicted theoretically, but had never been observed experimentally to our knowledge. Under modulated pressure conditions in a dynamic-diamond anvil cell, rough single ice VI crystal initially grows into well defined octahedral crystal facets. However, as the compression rate increases, the crystal surface dramatically changes from rough to facet, and from convex to concave because of a surface instability, and thereby the growth rate suddenly increases by an order of magnitude. Depending on the compression rate, this discontinuous jump in crystal growth rate or "shock crystal growth" eventually produces 2D carpet-type fractal morphology, and moreover dendrites form under sinusoidal compression, whose crystal morphologies are remarkably similar to those predicted in theoretical simulations under a temperature gradient field. The observed strong dependence of the growth mechanism on compression rate, therefore, suggests a different approach to developing a comprehensive understanding of crystal growth dynamics. PMID:17296943

  9. Crystal Growth in the Presence of Surface Melting and Impurities: An Explanation of Snow Crystal Growth Morphologies

    E-print Network

    Libbrecht, Kenneth G.

    Crystal Growth in the Presence of Surface Melting and Impurities: An Explanation of Snow Crystal Pasadena, California 91125 Abstract. We examine the molecular dynamics of crystal growth in the presence of surface melting and impurities provide a viable solution to the 60-year-old mystery of why snow crystal

  10. Unsteady-state transfer of impurities during crystal growth of sucrose in sugarcane solutions

    NASA Astrophysics Data System (ADS)

    Martins, P. M.; Ferreira, A.; Polanco, S.; Rocha, F.; Damas, A. M.; Rein, P.

    2009-07-01

    In this work, we present growth rate data of sucrose crystals in the presence of impurities that can be used by both sugar technologists and crystal growth scientists. Growth rate curves measured in a pilot-scale evaporative crystallizer suggest a period of slow growth that follows the seeding of crystals into supersaturated technical solutions. The observed trend was enhanced by adding typical sugarcane impurities such as starch, fructose or dextran to the industrial syrups. Maximum growth rates of sucrose resulted at intermediate rather than high supersaturation levels in the presence of the additives. The effects of the additives on the sucrose solubility and sucrose mass transfer in solution were taken into account to explain the observed crystal growth kinetics. A novel mechanism was identified of unsteady-state adsorption of impurities at the crystal surface and their gradual replacement by the crystallizing solute towards the equilibrium occupation of the active sites for growth. Specifically designed crystallization experiments at controlled supersaturation confirmed this mechanism by showing increasing crystal growth rates with time until reaching a steady-state value for a given supersaturation level and impurity content.

  11. Polymer crystallization mechanism through a mesomorphic state

    NASA Astrophysics Data System (ADS)

    Konishi, Takashi; Sakatsuji, Waki; Fukao, Koji; Miyamoto, Yoshihisa

    2011-10-01

    The isothermal crystallization from the molten state of poly(butylene terephthalate) is studied by differential scanning calorimetry and small-angle x-ray scattering. The relations among the crystallization temperature, lamella thickness, and melting temperature give two equilibrium transition temperatures. We propose a model of crystalline lamella formation through a mesomorphic state at the growth front by which these equilibrium transition temperatures are interpreted as the transition temperature between the mesophase and the crystal, and the one between the melt and the crystal of infinitely thick lamellae. These results show that the mesomorphic state plays a key role in the ordering process of polymers.

  12. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah

    2001-01-01

    Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.

  13. A unified description of attachment-based crystal growth.

    PubMed

    Zhang, Hengzhong; De Yoreo, James J; Banfield, Jillian F

    2014-07-22

    Crystal growth is one of the most fundamental processes in nature. Understanding of crystal growth mechanisms has changed dramatically over the past two decades. One significant advance has been the recognition that growth does not only occur atom by atom, but often proceeds via attachment and fusion of either amorphous or crystalline particles. Results from recent experiments and calculations can be integrated to develop a simple, unified conceptual description of attachment-based crystal growth. This enables us to address three important questions: What are the driving forces for attachment-based growth? For crystalline particles, what enables the particles to achieve crystallographic coalignment? What determines the surface on which attachment occurs? We conclude that the extent of internal nanoparticle order controls the degree of periodicity and anisotropy in the surrounding electrostatic field. For crystalline particles, the orienting force stemming from the electrostatic field can promote oriented attachment events, although solvent-surface interactions modulate this control. In cases where perfect crystallographic alignment is not achieved, misorientation gives rise to structural defects that can fundamentally modify nanomaterial properties. PMID:25000275

  14. Subtilisin surface properties and crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Pan, Xiaojing; Bott, Rick; Glatz, Charles E.

    2003-07-01

    Our previous study showed that the solubility and crystal growth rate of the protein subtilisin changed with the substitution of small numbers of surface amino acid residues. Structural and energetic comparisons of crystal structures of two subtilisin mutants were conducted to explore the reason for changes in the growth rate of subtilisin crystals. Unique lattice contact patches were determined for the two mutants. The loss of solvent accessible surface area (ASA), the average hydrophobicity and the number of hydrogen bonds and salt bridges were calculated to quantify surface properties of the contact patches. The structural comparison showed that the three amino acid mutations (Purafect ®?Properase ®) are all in contact patches and provide extra atomic contacts. For Properase ® subtilisin, the number of contacting residues and the loss of ASA increased. Binding energetic calculations, based on the detailed protein structures, were performed to determine non-electrostatic interaction contributions for the required crystallographic orientation and the number of energetically favored, false-binding orientations. The agreement and disparity between molecular structure and macroscopic crystallization behavior are discussed.

  15. Studying Crystal Growth With the Peltier Effect

    NASA Technical Reports Server (NTRS)

    Larsen, David J., Jr.; Dressler, B.; Silberstein, R. P.; Poit, W. J.

    1986-01-01

    Peltier interface demarcation (PID) shown useful as aid in studying heat and mass transfer during growth of crystals from molten material. In PID, two dissimilar "metals" solid and liquid phases of same material. Current pulse passed through unidirectionally solidifying sample to create rapid Peltier thermal disturbance at liquid/solid interface. Disturbance, measured by thermocouple stationed along path of solidification at or near interface, provides information about position and shape of interface.

  16. (PCG) Protein Crystal Growth Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  17. (PCG) Protein Crystal Growth Gamma-Interferon

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Gamma-Interferon. Stimulates the body's immune system and is used clinically in the treatment of cancer. Potential as an anti-tumor agent against solid tumors as well as leukemia's and lymphomas. It has additional utility as an anti-ineffective agent, including antiviral, anti-bacterial, and anti-parasitic activities. Principal Investigator on STS-26 was Charles Bugg.

  18. Growth and adhesion properties of monosodium urate monohydrate (MSU) crystals

    NASA Astrophysics Data System (ADS)

    Perrin, Clare M.

    The presence of monosodium urate monohydrate (MSU) crystals in the synovial fluid has long been associated with the joint disease gout. To elucidate the molecular level growth mechanism and adhesive properties of MSU crystals, atomic force microscopy (AFM), scanning electron microscopy, and dynamic light scattering (DLS) techniques were employed in the characterization of the (010) and (1-10) faces of MSU, as well as physiologically relevant solutions supersaturated with urate. Topographical AFM imaging of both MSU (010) and (1-10) revealed the presence of crystalline layers of urate arranged into v-shaped features of varying height. Growth rates were measured for both monolayers (elementary steps) and multiple layers (macrosteps) on both crystal faces under a wide range of urate supersaturation in physiologically relevant solutions. Step velocities for monolayers and multiple layers displayed a second order polynomial dependence on urate supersaturation on MSU (010) and (1-10), with step velocities on (1-10) generally half of those measured on MSU (010) in corresponding growth conditions. Perpendicular step velocities on MSU (010) were obtained and also showed a second order polynomial dependence of step velocity with respect to urate supersaturation, which implies a 2D-island nucleation growth mechanism for MSU (010). Extensive topographical imaging of MSU (010) showed island adsorption from urate growth solutions under all urate solution concentrations investigated, lending further support for the determined growth mechanism. Island sizes derived from DLS experiments on growth solutions were in agreement with those measured on MSU (010) topographical images. Chemical force microscopy (CFM) was utilized to characterize the adhesive properties of MSU (010) and (1-10). AFM probes functionalized with amino acid derivatives and bio-macromolecules found in the synovial fluid were brought into contact with both crystal faces and adhesion forces were tabulated into histograms for comparison. AFM probes functionalized with -COO-, -CH3, and -OH functionalities displayed similar adhesion force with both crystal surfaces of MSU, while adhesion force on (1-10) was three times greater than (010) for -NH2+ probes. For AFM probes functionalized with bovine serum albumin, adhesion force was three times greater on MSU (1-10) than (010), most likely due to the more ionic nature of (1-10).

  19. Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization.

    PubMed

    McPherson, Alexander; Kuznetsov, Yurii G

    2014-04-01

    The nucleation and growth of protein, nucleic acid and virus crystals from solution are functions of underlying kinetic and thermodynamic parameters that govern the process, and these are all supersaturation-dependent. While the mechanisms of macromolecular crystal growth are essentially the same as for conventional crystals, the underlying parameters are vastly different, in some cases orders of magnitude lower, and this produces very different crystallization processes. Numerous physical features of macromolecular crystals are of serious interest to X-ray diffractionists; the resolution limit and mosaicity, for example, reflect the degree of molecular and lattice order. The defect structure of crystals has an impact on their response to flash-cooling, and terminal crystal size is dependent on impurity absorption and incorporation. The variety and extent of these issues are further unique to crystals of biological macromolecules. All of these features are amenable to study using atomic force microscopy, which provides direct images at the nanoscale level. Some of those images are presented here. PMID:24699728

  20. The effect of microgravity on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Mcpherson, Alexander; Greenwood, Aaron; Day, John

    1991-01-01

    Based on the results of microgravity crystallization experiments using the protein canavalin aboard four separate U.S. Space Shuttle missions, visual observations and diffraction data are presented that support the contention that protein crystals of improved quality can be obtained in a microgravity environment. With canavalin, no significant increase in resolution was noted, but an overall improvement in diffraction quality, as judged by statistical analyses of the data, was clear. This improvement in quality may be due primarily to the elimination of defects and dislocations rather than an overall enhancement of order. The mechanism for this improvement may be microgravity-stabilized depletion zones that develop around growing crystals that establish and maintain optimal growth conditions more rapidly following nucleation. Such zones would be destroyed by convective flow effects in earth's gravity.

  1. The impact of space research on semiconductor crystal growth technology

    NASA Technical Reports Server (NTRS)

    Witt, A. F.

    1983-01-01

    Crystal growth experiments in reduced gravity environment and related ground-based research have contributed significantly to the establishment of a scientific basis for semiconductor growth from the melt. NASA-sponsored research has been instrumental in the introduction of heat pipes for heat and mass transfer control in crystal growth and in the development of magnetic field induced melt stabilization, approaches primarily responsible for recent advances in crystal growth technology.

  2. On the origin of size-dependent and size-independent crystal growth: Influence of advection and diffusion

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.

    2003-01-01

    Crystal growth experiments were conducted using potassium alum and calcite crystals in aqueous solution under both non-stirred and stirred conditions to elucidate the mechanism for size-dependent (proportionate) and size-independent (constant) crystal growth. Growth by these two laws can be distinguished from each other because the relative size difference among crystals is maintained during proportionate growth, leading to a constant crystal size variance (??2) for a crystal size distribution (CSD) as the mean size increases. The absolute size difference among crystals is maintained during constant growth, resulting in a decrease in size variance. Results of these experiments show that for centimeter-sized alum crystals, proportionate growth occurs in stirred systems, whereas constant growth occurs in non-stirred systems. Accordingly, the mechanism for proportionate growth is hypothesized to be related to the supply of reactants to the crystal surface by advection, whereas constant growth is related to supply by diffusion. Paradoxically, micrometer-sized calcite crystals showed proportionate growth both in stirred and in non-stirred systems. Such growth presumably results from the effects of convection and Brownian motion, which promote an advective environment and hence proportionate growth for minute crystals in non-stirred systems, thereby indicating the importance of solution velocity relative to crystal size. Calcite crystals grown in gels, where fluid motion was minimized, showed evidence for constant, diffusion-controlled growth. Additional investigations of CSDs of naturally occurring crystals indicate that proportionate growth is by far the most common growth law, thereby suggesting that advection, rather than diffusion, is the dominant process for supplying reactants to crystal surfaces.

  3. Convective flow effects on protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Monaco, Lisa A.

    1995-01-01

    During the fourth semi-annual period under this grant we have pursued the following activities: (1) crystal growth morphology and kinetics studies with tetragonal lysozyme. These clearly revealed the influence of higher molecular weight protein impurities on interface shape; (2) characterization of the purity and further purification of lysozyme solutions. These efforts have, for the first time, resulted in lysozyme free of higher molecular weight components; (3) continuation of the salt repartitioning studies with Seikagaku lysozyme, which has a lower protein impurity content that Sigma stock. These efforts confirmed our earlier findings of higher salt contents in smaller crystals. However, less salt is in corporated into the crystals grown from Seikagaku stock. This strongly suggests a dependence of salt repartitioning on the concentration of protein impurities in lysozyme. To test this hypothesis, repartitioning studies with the high purity lysozyme prepared in-house will be begun shortly; (4) numerical modelling of the interaction between bulk transport and interface kinetics. These simulations have produced interface shapes which are in good agreement with out experimental observations; and (5) light scattering studies on under- and supersaturated lysozyme solutions. A consistent interpretation of the static and dynamic data leaves little doubt that pre-nucleation clusters, claimed to exist even in undersaturated solutions, are not present. The article: 'Growth morphology response to nutrient and impurity nonuniformities' is attached.

  4. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows. Buoyancy driven convection results from density differences between the bulk solution and fluid close to the crystal surface which has been depleted of macromolecules due to crystal growth. Schlieren photograph of a growing lysozyme crystal illustrating a 'growth plume' resulting from buoyancy driven convection. Both sedimentation and buoyancy driven convection have a negative effect on crystal growth and microgravity is seen as a way to both greatly reduce sedimentation and provide greater stability for 'depletion zones' around growing crystals. Some current crystal growth hardware however such as those based on a vapor diffusion techniques, may also be introducing unwanted Marangoni convection which becomes more pronounced in microgravity. Negative effects of g-jitter on crystal growth have also been observed. To study the magnitude of fluid flows around growing crystals we have attached a number of different fluorescent probes to lysozyme molecules. At low concentrations, less than 40% of the total protein, the probes do not appear to effect the crystal growth process. By using these probes we expect to determine not only the effect of induced flows due to crystal growth hardware design but also hope to optimize crystallization hardware so that destructive flows are minimized both on the ground and in microgravity.

  5. Solid State Pathways to Complex Shape Evolution and Tunable Porosity during Metallic Crystal Growth

    PubMed Central

    Valenzuela, Carlos Díaz; Carriedo, Gabino A.; Valenzuela, María L.; Zúñiga, Luis; O'Dwyer, Colm

    2013-01-01

    Growing complex metallic crystals, supported high index facet nanocrystal composites and tunable porosity metals, and exploiting factors that influence shape and morphology is crucial in many exciting developments in chemistry, catalysis, biotechnology and nanoscience. Assembly, organization and ordered crystallization of nanostructures into complex shapes requires understanding of the building blocks and their association, and this relationship can define the many physical properties of crystals and their assemblies. Understanding crystal evolution pathways is required for controlled deposition onto surfaces. Here, complex metallic crystals on the nano- and microscale, carbon supported nanoparticles, and spinodal porous noble metals with defined inter-feature distances in 3D, are accomplished in the solid-state for Au, Ag, Pd, and Re. Bottom-up growth and positioning is possible through competitive coarsening of mobile nanoparticles and their site-specific crystallization in a nucleation-dewetted matrix. Shape evolution, density and growth mechanism of complex metallic crystals and porous metals can be imaged during growth. PMID:24026532

  6. Alloy Semiconductor Crystal Growth Under Microgravity

    SciTech Connect

    Hayakawa, Yasuhiro; Arivanandhan, Mukannan; Rajesh, Govindasamy; Tanaka, Akira; Ozawa, Tetsuo; Okano, Yasunori; Sankaranarayanan, Krishnasamy; Inatomi, Yuko

    2010-12-01

    Microgravity studies on the dissolution and crystallization of In{sub x}Ga{sub 1-x}Sb have been done using a sandwich combination of InSb and GaSb as the starting material using the Chinese recoverable satellite. The same type of experiment was performed under 1G gravity condition for comparison. From these experiments and the numerical simulation, it is found that the shape of the solid/liquid interface and composition profile in the solution was found to be significantly affected by gravity. GaSb seed was dissolved faster than GaSb feed even though the GaSb feed temperature was higher than that of GaSb seed temperature. These results clearly indicate that solute transport due to gravity affects dissolution and growth processes of alloy semiconductor bulk crystals.

  7. An automated protein crystal growth facility on the space station

    NASA Technical Reports Server (NTRS)

    Herrmann, Melody

    1988-01-01

    The need is addressed for an automated Protein Crystal Growth experiment on the Space Station and how robotics will be integrated into the system design. This automated laboratory system will enable several hundred protein crystals to grow simultaneously in microgravity and will allow the major variables in protein crystal growth to be monitored and controlled during the experiment. Growing good quality crystals is important in determining the complete structure of the protein by X-ray diffraction. This information is useful in the research and development of medicines and other important medical and biotechnological products. Previous Protein Crystal Growth experiments indicate that the microgravity environment of space allows larger crystals of higher quality to be grown as compared to the same crystals grown on the ground. It is therefore important to have a laboratory in space where protein crystals can be grown under carefully controlled conditions so that a crystal type can be reproduced as needed.

  8. Optimization of heating conditions during Cz BGO crystal growth

    NASA Astrophysics Data System (ADS)

    Kolesnikov, A. V.; Galenin, E. P.; Sidletskiy, O. Ts.; Kalaev, V. V.

    2014-12-01

    We have studied the effect of geometrical and physical parameters of additional lower heater on thermal conditions during BGO growth by the Czochralski technique, in particular, on keeping flat melt/crystal interface during the whole growth process. Numerical simulation by CGSim software was used as an efficient tool for the analysis. After revealing optimal growth conditions and hot zone design by modeling, we have modified experimental growth setup and successfully improved crystal growth process in close agreement to modeling predictions.

  9. Continuum Mechanics of Line Defects in Liquid Crystals and Liquid Crystal Elastomers A. Acharya and K. Dayal Continuum Mechanics of Line Defects in Liquid Crystals

    E-print Network

    Acharya, Amit

    Continuum Mechanics of Line Defects in Liquid Crystals and Liquid Crystal Elastomers A. Acharya and K. Dayal Continuum Mechanics of Line Defects in Liquid Crystals and Liquid Crystal Elastomers Amit;Continuum Mechanics of Line Defects in Liquid Crystals and Liquid Crystal Elastomers A. Acharya and K. Dayal

  10. Helical Growth of Aluminum Nitride: New Insights into Its Growth Habit from Nanostructures to Single Crystals

    PubMed Central

    Zhang, Xing-Hong; Shao, Rui-Wen; Jin, Lei; Wang, Jian-Yu; Zheng, Kun; Zhao, Chao-Liang; Han, Jie-Cai; Chen, Bin; Sekiguchi, Takashi; Zhang, Zhi; Zou, Jin; Song, Bo

    2015-01-01

    By understanding the growth mechanism of nanomaterials, the morphological features of nanostructures can be rationally controlled, thereby achieving the desired physical properties for specific applications. Herein, the growth habits of aluminum nitride (AlN) nanostructures and single crystals synthesized by an ultrahigh-temperature, catalyst-free, physical vapor transport process were investigated by transmission electron microscopy. The detailed structural characterizations strongly suggested that the growth of AlN nanostructures including AlN nanowires and nanohelixes follow a sequential and periodic rotation in the growth direction, which is independent of the size and shape of the material. Based on these experimental observations, an helical growth mechanism that may originate from the coeffect of the polar-surface and dislocation-driven growth is proposed, which offers a new insight into the related growth kinetics of low-dimensional AlN structures and will enable the rational design and synthesis of novel AlN nanostructures. Further, with the increase of temperature, the growth process of AlN grains followed the helical growth model. PMID:25976071

  11. Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1998-01-01

    The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.

  12. Morphological stability and kinetics in crystal growth from vapors

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1990-01-01

    The following topics are discussed: (1) microscopy image storage and processing system; (2) growth kinetics and morphology study with carbon tetrabromide; (3) photothermal deflection vapor growth setup; (4) bridgman growth of iodine single crystals; (5) vapor concentration distribution measurement during growth; and (6) Monte Carlo modeling of anisotropic growth kinetics and morphology. A collection of presentations and publications of these results are presented.

  13. Indium antimonide crystal growth experiment M562. [Skylab weightless conditions

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1974-01-01

    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.

  14. Growth aspects of semi-organic nonlinear optical ?-arginine tetrafluoroborate single crystals

    NASA Astrophysics Data System (ADS)

    Babu, D. Rajan; Jayaraman, D.; Kumar, R. Mohan; Ravi, G.; Jayavel, R.

    2003-03-01

    Single crystals of L-arginine tetrafluoroborate ( L-AFB), a semi-organic NLO material, have been grown from aqueous solution. Since L-AFB is known to form highly viscous solution in water, growth by slow cooling has been difficult for optical quality crystals. In this study, highly transparent L-AFB crystals have been successfully grown by slow evaporation by keeping the saturated solution under special condition. The grown crystals were subjected to structural, optical and mechanical property studies. XRD studies reveal that L-AFB crystals possess orthorhombic structure. Fourier transform infrared absorption studies confirm the chemical constituents and presence of functional groups in the grown crystals. L-AFB crystals possess a higher hardness values compared to other semi-organic crystals. The linear and nonlinear optical properties of the grown crystals have also been studied.

  15. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix. PMID:18044830

  16. A novel growth process of calcium carbonate crystals in silk fibroin hydrogel system.

    PubMed

    Ma, Yufei; Feng, Qingling; Bourrat, Xavier

    2013-05-01

    We report an interesting finding of calcium carbonate (CaCO3) crystal growth in the silk fibroin (SF) hydrogel with different concentrations by a simple ion diffusion method. The experimental results indicate that the CaCO3 crystals obtained from silk fibroin gels with low and high concentrations are all calcites with unusual morphologies. Time-dependent growth study was carried out to investigate the crystallization process. It is believed that silk fibroin hydrogel plays an important role in the process of crystallization. The possible formation mechanism of CaCO3 crystals is proposed. This study provides a better explanation of the influence of silk fibroin concentration and its structure on CaCO3 crystals growth. PMID:23498277

  17. Comments on the paper: `Growth structural, spectral, optical and mechanical studies of gamma bis glycinium oxalate (GBGOx) new NLO single crystal by SEST method'

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.; Dhavskar, Kiran T.

    2015-11-01

    The authors of the title paper (Optik, 125 (2014) 1825-1828) claim to have synthesized a new nonlinear optical (NLO) gamma bis glycinium oxalate (GBGOx) crystal by slow evaporation solution technique. In this communication, many points of criticism, concerning the characterization of this so called GBGOx NLO crystal are highlighted to prove that the title paper is completely erroneous.

  18. Growth rate dispersion of single potassium alum crystals

    NASA Astrophysics Data System (ADS)

    Lacmann, Rolf; Tanneberger, Ulrike

    1995-01-01

    The dispersion of growth rates is a lively discussed matter. However, still no acceptable explanation exists for the reason of the phenomenon describing that crystals of the same size growing under the same constant environmental conditions (as supersaturation, temperature and hydrodynamics) might grow with different rates. The individual face-specific growth rates of potassium aluminium alum crystals (diameter 1-3 mm) have been directly determined at different supersaturations ( ? = 0.5-5%). It was found that the order of growth rates of the appearing faces of unhurt and hurt crystals is {111} < {100{ < {110{. Further experiments have shown that face-specific growth rates of unhurt crystals (out of evaporation crystallization) are lower than those of hurt crystals (out of batch crystallization experiments).

  19. Growth phenomena in the surface layer and step generation from the edges of faceted crystals

    SciTech Connect

    Carman, L; Smolsky, I; Zaitseva, N P

    1999-07-29

    The mechanism of growth step generation from the edges of faceted crystals obtained from experimental results with KDP crystals is described. It shows that growth from the crystal edges is initiated by the deviation of the edges from their crystallographic orientation and formation of incomplete shapes of singular facets. The conditions for formation of the incomplete faceted shapes during dislocation growth are considered. It is shown that the process of step generation from the edges is determined by the mutual positions of the vicinal slopes on the adjacent faces.

  20. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29. PMID:16678843

  1. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  2. Organic crystal growth experiment facility (13-IML-1)

    NASA Technical Reports Server (NTRS)

    Kanbayashi, Akio

    1992-01-01

    The interesting nature of metal-like organic compounds composed of charge transfer complexes has been recently realized. Crystals of these complexes can usually be grown by the solution crystallization method. It is difficult to grow such organic crystals on Earth, especially from the chemical reactions through diffusion controlled process in the solutions, because of gravitational disturbances, or sedimentation. The International Microgravity Lab. (IML-1) Organic Crystal Growth with G-Gitter Preventive Measure (OCGP) experiment is expected to grow a single crystal large enough to allow its intrinsic physical properties to be measured and its detailed crystal structure to be determined. This experiment also attempts to assess the experimental conditions including the microgravity environment for further study of the fundamental process of solution crystallization, nucleation, and growth from supersaturated phases including chemical reactions. Microgravity disturbances, G-jitter, may be an important environmental factor in the experimental method to assess. The vibration damping effects on organic crystal growth can be carefully studied.

  3. Defect formation in epitaxial crystal growth

    NASA Astrophysics Data System (ADS)

    Washburn, Jack; Kvam, Eric P.; Liliental-Weber, Zuzanna

    1991-02-01

    Factors affecting the nucleation and propagation of dislocations, stacking faults, microtwins, and inversion domain boundaries in epitaxially grown semiconductor layers are reviewed, with examples for heteroepitaxial MBE-grown layers on substrates having varying degrees of mismatch or different crystal symmetry. Mechanisms for generation of defects at the heterointerface and in the epilayer are discussed. For epilayers with bulk mismatch from 0 to 4%, methods for reducing defect density in the epitaxial layer are considered. Examples of structural details in the epilayers and at heterointerfaces, particularly those which may be revealed by transmission electron microscopy, are given.

  4. Kinetic analysis of quasi-one-dimensional growth of polymer lamellar crystals in dilute solutions.

    PubMed

    Zhou, Yujie; Hu, Wenbing

    2013-03-14

    Flexible polymers are featured with two-dimensional growth of metastable chain-folded lamellar crystals in quiescent dilute solutions. Recently, a massive cylindrical micelle with quasi-one-dimensional (quasi-1D) growth driven by confined crystallization of diblock copolymers in dilute solutions raised a new challenge. We performed dynamic Monte Carlo simulations to investigate the kinetics of quasi-1D growth of lamellar crystals in two typical cases of dilute but not very dilute polymer solutions. We found that in both cases the growth kinetics is dominated by the surface-nucleation-controlled mechanism. Moreover, in the first case corresponding to few and small crystals grown under almost constant polymer concentrations in the huge bulk of solutions, the driving-force term in the kinetic equation dominates a linear concentration dependence of crystal growth rates in the high-concentration region, and the nucleation-barrier term dominates their nonlinear deviation in the low-concentration region. In the second case corresponding to massive crystals grown under depleting polymer concentrations in a limited volume of solutions, the crystal growth rates decay with time, but at the early stage, they follow exactly with the linear-concentration-dependent growth rates of the first case. Therefore, the growth size at the early stage of the second case can be described as an exponential-decay function of time, which provides a theoretical model to the data analysis of corresponding experimental observations. PMID:23419206

  5. Inorganic chemistry: Movies of a growth mechanism

    NASA Astrophysics Data System (ADS)

    Walton, Krista S.

    2015-07-01

    A microscopy technique has been used to study the formation and growth of crystals of porous solids known as metal-organic frameworks in real time. The findings will aid the design of methods for making these useful compounds.

  6. A chain mechanism for flagellum growth.

    PubMed

    Evans, Lewis D B; Poulter, Simon; Terentjev, Eugene M; Hughes, Colin; Fraser, Gillian M

    2013-12-12

    Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip. PMID:24213633

  7. Acquisition of Single Crystal Growth and Characterization Equipment

    SciTech Connect

    Maple, M. Brian; Zocco, Diego A.

    2008-12-09

    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications.

  8. Comment on "Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates," by L. N. Warr and D. R. Peacor

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Drits, V.A.

    2003-01-01

    A recent paper by Warr and Peacor (2002) suggested that our use of the Bertaut-Warren-Averbach technique (MudMaster computer program) for studying changes in crystallite thickness distributions (CTDs) of clay minerals during diagenesis and very low-grade metamorphism is not reliable because it is dependent on many variables which can not be fully controlled. Furthermore, the authors implied that the measured shapes of CTDs cannot be used with confidence to deduce crystal growth mechanisms and histories for clays, based on our CTD simulation approach (using the Galoper computer program). We disagree with both points, and show that the techniques are powerful, reliable and useful for studying clay mineral alteration in rocks. ?? 2003 Schweiz. Mineral. Petrogr. Ges.

  9. Specific mass increment and nonequilibrium crystal growth

    NASA Astrophysics Data System (ADS)

    Martyushev, Leonid M.; Terentiev, Pavel S.

    2013-09-01

    Unsteady nonequilibrium crystallization of ammonium chloride from an aqueous solution resulting in the formation of irregular, so-called seaweed, structures is experimentally investigated. It is shown that specific increment of mass for the coexisting structures (or parts thereof) is the same and changes with time (t) according to the power law a/t-b, where the factor a=1.87±0.09 and the factor b is determined by the system relaxation time. The normalization of the power law to the total time of structure growth allows obtaining a universal law that describes the specific mass increment with time for both seaweed and dendrite structures (including the non-coexisting ones).

  10. Protein Crystal Growth With the Aid of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark

    2003-01-01

    Protein crystallography is one of three well-known methods to obtain the structure of proteins. A major rate limiting step in protein crystallography is protein crystal nucleation and growth, which is still largely a process conducted by trial-and-error methods. Many attempts have been made to improve protein crystal growth by performing growth in microgravity. Although the use of microgravity appears to improve crystal quality in some attempts, this method has been inefficient because several reasons: we lack a fundamental understanding of macromolecular crystal growth in general and of the influence of microgravity in particular, we have to start with crystal growth conditions in microgravity based on conditions on the ground and finally the hardware does not allow for experimental iteration without reloading samples on the ground. To partially accommodate the disadvantages of the current hardware, we have used microfluidic technology (Lab-on-a-Chip devices) to design the concept of a more efficient crystallization device, suitable for use on the International Space Station and in high-throughput applications on the ground. The concept and properties of microfluidics, the application design process, and the advances in protein crystal growth hardware will be discussed in this presentation. Some examples of proteins crystallized in the new hardware will be discussed, including the differences between conventional crystallization versus crystallization in microfluidics.

  11. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  12. Engineered Growth of Organic Crystalline Films Using Liquid Crystal Solvents

    E-print Network

    Patrick, David L.

    into the growing crystals. All experiments involving pentacene were performed under inert gas. Substrates typically existing ones continued to grow. As crystals grew in thickness, additional LC pooled around them, keepingS-1 Engineered Growth of Organic Crystalline Films Using Liquid Crystal Solvents F. Scott Wilkinson

  13. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  14. Preliminary investigations of protein crystal growth using the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Delucas, L. J.; Suddath, F. L.; Snyder, R.; Naumann, R.; Broom, M. B.; Pusey, M.; Yost, V.; Herren, B .; Carter, D.

    1986-01-01

    Four preliminary Shuttle experiments are described which have been used to develop prototype hardware for a more advanced system that will evaluate effects of gravity on protein crystal growth. The first phase of these experiments has centered on the development of micromethods for protein crystal growth by vapor-diffusion techniques (using a space version of the hanging-drop method) and on dialysis using microdialysis cells. Results suggest that the elimination of density-driven sedimentation can effect crystal morphology. In the dialysis experiment, space-grown crystals of concanavalin B were three times longer and 1/3 the thickness of earth-grown crystals.

  15. Simulation of Single Crystal Growth: Heat and Mass Transfer

    E-print Network

    Zhmakin, A I

    2015-01-01

    The heat transfer (conductive, convective, radiative) and the related problems (the unknown phase boundary fluid/crystal, the assessment of the quality of the grown crystals) encountered in the melt and vapour growth of single crystal as well as the corresponding macroscopic models are reviewed. The importance of the adequate description of the optical crystal properties (semitransparency, absorption, scattering, refraction, diffuse and specular reflecting surfaces) and their effect on the heat transfer is stressed. The problems of the code verification and validation are discussed; differences between the crystal growth simulation codes intended for the research and for the industrial applications are indicated.

  16. Space manufacturing in an automated crystal growth facility

    NASA Technical Reports Server (NTRS)

    Quinn, Alberta W.; Herrmann, Melody C.; Nelson, Pamela J.

    1989-01-01

    An account is given of a Space Station Freedom-based robotic laboratory system for crystal growth experiments; the robot must interface with both the experimental apparatus and such human input as may be required for control and display. The goal of the system is the simultaneous growth of several hundred protein crystals in microgravity. The robot possesses six degrees-of-freedom, allowing it to efficiently manipulate the cultured crystals as well as their respective growth cells; the crystals produced are expected to be of sufficiently high quality for complete structural determination on the basis of XRD.

  17. Taylor vortices formed in the melt during paratellurite crystal growth

    SciTech Connect

    Kolesnikov, A. I. Grechishkin, R. M.; Tret'yakov, S. A.; Gritsunova, O. V.; Vorontsova, E. Yu.

    2008-12-15

    The hydrodynamics of tellurium dioxide melt during Czochralski growth of paratellurite crystals with a diameter up to 80 mm was experimentally investigated. The images of the melt surface during crystal growth are obtained. It is shown that a stable system of Taylor vortices in the form of two convection cells is formed at definite Reynolds numbers.

  18. Holographic instrumentation for monitoring crystal growth in space

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.; Lal, Ravindra B.; Batra, Ashok K.

    1990-01-01

    Measurement requirements and candidates for measuring crystal growth in space are described, emphasizing holographic instrumentation. Existing instrumentation planned for the IML-1 Spaceflight is described along with advanced concepts for future application which incorporate diode lasers, fiber optics, and holographic optical elements. Particle image displacement velocimetry in crystal growth chambers is described.

  19. Ground Based Program for the Physical Analysis of Macromolecular Crystal Growth

    NASA Technical Reports Server (NTRS)

    Malkin, Alexander J.

    1998-01-01

    During the past year we have focused on application of in situ Atomic Force Microscopy (AFM) for studies of the growth mechanisms and kinetics of crystallization for different macromolecular systems. Mechanisms of macrostep formation and their decay, which are important in understanding of defect formation, were studied on the surfaces of thaumatin, catalase, canavalin and lysozyme crystals. Experiments revealed that step bunching on crystalline surfaces occurred either due to two- or three-dimensional nucleation on the terraces of vicinal slopes or as a result of uneven step generation by complex dislocation sources. No step bunching arising from interaction of individual steps in the course of the experiment was observed. The molecular structure of the growth steps for thaumatin and lipase crystals were deduced. It was further shown that growth step advance occurs by incorporation of single protein molecules. In singular directions growth steps move by one-dimensional nucleation on step edges followed by lateral growth. One-dimensional nuclei have different sizes, less then a single unit cell, varying for different directions of step movement. There is no roughness due to thermal fluctuations, and each protein molecule which incorporated into the step remained. Growth kinetics for catalase crystals was investigated over wide supersaturation ranges. Strong directional kinetic anisotropy in the tangential step growth rates in different directions was seen. The influence of impurities on growth kinetics and cessation of macromolecular crystals was studied. Thus, for catalase, in addition to pronounced impurity effects on the kinetics of crystallization, we were also able to directly observe adsorption of some impurities. At low supersaturation we repeatedly observed filaments which formed from impurity molecules sedimenting on the surfaces. Similar filaments were observed on the surfaces of thaumatin, canavalin and STMV crystals as well, but the frequency was low compared with catalase crystallization. Cessation of growth of xylanase and lysozyme crystals was also observed and appeared to be a consequence of the formation of dense impurity adsorption layers. Attachment: "An in situ AFM investigation of catalase crystallization", "Atomic force microscopy studies of living cells: visualization of motility, division, aggregation, transformation, and apoptosis", AFM studies on mechanisms of nucleation and growth of macromolecular crystals", and "In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization".

  20. Issues in the growth of bulk crystals of infrared materials

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.; Golowsky, H.

    1987-01-01

    Attention is given to the relevant criteria governing materials choice in the growth of IR optoelectronic bulk single crystals of III-V and II-VI alloy and I-III-VI2 compound types. The most important considerations concern the control of crystal purity, microstructural perfection, stoichiometry, and uniformity during crystal growth, as well as the control of surface properties in wafer fabrication. Specific examples are given to illustrate the problems encountered and their preferred solutions.

  1. Crystal growth in fused solvent systems. [in space environment

    NASA Technical Reports Server (NTRS)

    Ulrich, D. R.; Noval, B. A.; White, W. B.; Spear, K. E.; Henry, E. C.

    1974-01-01

    The successful nucleation of bismuth germanate, B12GeO20 on a high quality seed and the growth of regions of single crystals of the same orientation of the seed are reported. Lead germanate, Pb5Ge3O11 was also identified as a ferroelectric crystal with large electrooptic and nonlinear optic constants. Solvent criteria, solvent/development, and crystal growth are discussed, and recommendations for future studies are included.

  2. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    ?ahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  3. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  4. Vapour phase growth and surface topography of ( ZnSe) x( CdTe) 1- x single crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekharam, P.; Raja Reddy, D.; Reddy, B. K.

    1983-10-01

    Single crystals—a few centimetres in length and 5 mm in diameter—of the ( ZnSe) x( CdTe) 1- x system have been grown in the entire range of composition (0.00? x ? 1.00) using a self-sealing vapour phase growth technique. The optimum growth conditions for these crystals have been established. One hollow crystal with composition x=0.40 has been obtained. Growth spirals were observed on all the mixed crystals, suggesting a screw dislocation mechanism of crystal growth. The room temperature conductivity of these crystals decreased as the composition x is increased. The energy gap of these crystals varied nonlinearly with composition. All the crystals with x?0.60 were p-type and the remaining were n-type.

  5. Simulation of jet cooling effects on Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    The effects of cooling the crystal side surface by blowing a jet of an inert gas are examined in detail for Czochralski crystal growth. A combined model of the crystal + melt, which incorporates the detailed radiation calculations, the shape of the melt-gas meniscus, predicts the growth rate and the crystal-melt interface shape, is used for this study. The convective heat transfer coefficient for the jet is estimated from the correlation available in the literature. The effect of the jet cooling on the interface shape and the pulling rate is significant. The crystal diameter as well as the interface shape tend to be more stable in the environment of the rapid cooling of the crystal by the jet. The crystal diameter or the interface shape can be easily controlled by adjusting the gas flow rate through the jet. This gives the Czochralski pulling an additional degree of freedom facilitating the control of crystal diameter and interface shape.

  6. Synthesis, crystal growth, solubility, structural, optical, dielectric and microhardness studies of Benzotriazole-4-hydroxybenzoic acid single crystals

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Krishna Kumar, M.; Thirunavukkarasu, A.; Mohan Kumar, R.; Umarani, P. R.

    2015-06-01

    Organic Benzotriazole-4-hydroxybenzoic acid (BHBA), a novel second-order nonlinear optical single crystal was grown by solution growth method. The solubility and nucleation studies were performed for BHBA crystal at different temperatures 30, 35, 40 45 and 50 °C. Single crystal X-ray diffraction study reveals that the BHBA belongs to Pna21 space group of orthorhombic crystal system. The crystal perfection of BHBA was examined from powder and high resolution X-ray diffraction analysis. UV-visible and photoluminescence spectra were recorded to study its transmittance and excitation, emission behaviors respectively. Kurtz powder second harmonic generation test reveals that, the frequency conversion efficiency of BHBA is 3.7 times higher than that of potassium dihydrogen phosphate (KDP) crystal. The dielectric constant and dielectric loss values were estimated for BHBA crystal at various temperatures and frequencies. The mechanical property of BHBA crystal was studied on (110), (010) and (012) planes by using Vicker's microhardness test. The chemical etching study was performed on (012) facet of BHBA crystal to analyze its growth feature.

  7. Controlled Growth of Organic Semiconductor Films Using Liquid Crystal Solvents

    NASA Astrophysics Data System (ADS)

    Bufkin, Kevin; Ohlson, Brooks; Hillman, Ben; Johnson, Brad; Patrick, David

    2008-03-01

    Interest in using organic semiconductors in applications such as large area displays, photovoltaic devices, and RFID tags stems in part from their prospects for enabling significantly reduced manufacturing costs compared to traditional inorganic semiconductors. However many of the best performing prototype devices produced so far have involved expensive or time-consuming fabrication methods, such as the use of single crystals or thin films deposited under high vacuum conditions. We present a new approach for growing low molecular weight organic crystalline films at ambient conditions based on a vapor-liquid-solid growth mechanism using thermotropic nematic liquid crystal (LC) solvents. Tetracene is deposited via atmospheric-pressure sublimation onto substrates coated by a LC layer oriented using rubbed polyimide, producing films that are highly crystalline, with large grain sizes, and possessing macroscopic uniaxial orientation. This poster will describe the growth mechanism, discuss the effects of processing conditions such as LC layer thickness, substrate temperature and flux rate, and compare the results to a model of diffusion limited aggregation accounting for the finite thickness of the solvent layer.

  8. Controlled Growth of Organic Semiconductor Films Using Liquid Crystal Solvents

    NASA Astrophysics Data System (ADS)

    Bufkin, Kevin; Ohlson, Brooks; Hillman, Ben; Johnson, Brad; Patrick, David

    2008-05-01

    Interest in using organic semiconductors in applications such as large area displays, photovoltaic devices, and RFID tags stems in part from their prospects for enabling significantly reduced manufacturing costs compared to traditional inorganic semiconductors. However many of the best performing prototype devices produced so far have involved expensive or time-consuming fabrication methods, such as the use of single crystals or thin films deposited under high vacuum conditions. We present a new approach for growing low molecular weight organic crystalline films at ambient conditions based on a vapor-liquid-solid growth mechanism using thermotropic nematic liquid crystal (LC) solvents. Tetracene is deposited via atmospheric-pressure sublimation onto substrates coated by a LC layer oriented using rubbed polyimide, producing films that are highly crystalline, with large grain sizes, and possessing macroscopic uniaxial orientation. This poster will describe the growth mechanism, discuss the effects of processing conditions such as LC layer thickness, substrate temperature and flux rate, and compare the results to a model of deposition-diffusion aggregation accounting for the finite thickness of the solvent layer.

  9. Vapor Growth and Characterization of Cr-Doped ZnSe Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Volz, M. P.; Matyi, R.; George, M. A.; Chattopadhyay, K.; Burger, A.; Lehoczky, S. L.

    1999-01-01

    Cr-doped ZnSe single crystals were grown by a self-seeded physical vapor transport technique in both vertical (stabilized) and horizontal configurations. The source materials were mixtures of ZnSe and CrSe. Growth temperatures were in the range of 1140-1150 C and the furnace translation rates were 1.9-2.2 mm/day. The surface morphology of the as-grown crystals was examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Different features of the as-grown surface of the vertically and horizontally grown crystals suggest that different growth mechanisms were involved in the two growth configurations. The [Cr] doping levels were determined to be in the range of 1.8-8.3 x 10 (exp 19) cm (exp -3) from optical absorption measurements. The crystalline quality of the grown crystals were examined by high-resolution triple-crystal X-ray diffraction (HRTXD) analysis.

  10. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  11. Growth and studies of cyclohexylammonium 4-methoxy benzoate single crystal for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Sathya, P.; Gopalakrishnan, R.

    2015-06-01

    Cyclohexylammonium 4-Methoxy Benzoate (C4MB) was synthesised and the functional groups were confirmed by FTIR analysis. The purified C4MB (by repeated recrystallisation) was used for single crystal growth. Single crystal of cyclohexylammonium 4-methoxy benzoate was successfully grown by slow evaporation solution growth method at ambient temperature. Structural orientations were determined from single crystal X-ray diffractometer. Optical absorption and cut off wavelength were identified by UV-Visible spectroscopy. Thermal stability of the crystal was studied from thermogravimetric and differential thermal analyses curves. Mechanical stability of the grown crystal was analysed by Vicker's microhardness tester. The Second Harmonic Generation (SHG) study revealed that the C4MB compound exhibits the SHG efficiency 3.3 times greater than KDP crystal.

  12. Crystal growth history of quartz in the Ordovician Millbrig K-bentonite

    NASA Astrophysics Data System (ADS)

    Huff, W. D.; Inanli, F. O.

    2011-12-01

    Crystal size distribution (CSD) analysis has been applied to quartz crystals of the Ordovician Millbrig K-bentonite, which represents one of the largest known fallout ash deposits in the Phanerozoic Era, to establish crystal growth histories and conditions in the magma chamber prior to eruption. Specific CSDs of the quartz crystals of the Millbrig K-bentonite were examined to establish their growth conditions prior to the eruption. On the crystal size distribution plot, all Millbrig samples exhibit concave-down shapes in agreement with previously reported CSDs on large silicic systems [1] but in contrast to more mafic systems characterized by linear CSDs. Crystal growth mechanisms responsible for the concave down CSDs are thought to be surface-controlled crystal growth followed by a episode of textural coarsening. Although all samples follow concave-down shapes, two samples exhibit rather different CSD shapes. These findings appear to fingerprint a separate magma batch with different crystal growth conditions. These ash beds appear to be a product of a series of separate eruptions that represent separate magma layers or batches, each with slightly different crystal growth conditions. Haynes [2] interpreted the multiple ash layers as either a product of several periods of eruptive activity or the cumulative effect of an evolving magma chamber during a single massive eruptive event. Our data support the model of several periods of eruptive activity that was closely spaced in time. The two of the eight Millbrig samples must have come from an earlier phase eruption and are part of a basal section that have not been preserved in the stratigraphic record and lacks lateral continuity in distal parts of the deposits. Therefore, the multiple ash beds in the Millbrig must have been a product of series of separate eruptions that represent separate magma layers or batches that had different crystal growth conditions. Although conclusions on crystallization processes and the origin of deposits cannot be drawn from CSD shapes alone, it is shown here that CSDs of a fallout ash deposit can be used to fingerprint separate magma batches, provide valuable information on crystal growth rates as well as the nature of the crystal growth mechanisms of quartz crystals. [1] Bindeman (2003) Geology 31, 367-370. [2] Haynes (1994) Geol. Soc. Am Spec. Pap. 290, 1-80.

  13. Kinetic mechanism of chain folding in polymer crystallization.

    PubMed

    Stepanow, S

    2014-09-01

    I develop a kinetic mechanism to explain chain folding in polymer crystallization which is based on the competition between the formation of stems, which is due to frequent occupations of trans states along the chains in the supercooled polymer melt, and the random coil structure of the polymer chains. Setting equal the average formation time of stems of length d(l) with the Rouse time of a piece of polymer of the same arc length d(l) yields a lower bound for the thickness of stems and bundles. The estimated lamellar thickness is inversely proportional to the supercooling. The present approach emphasizes the importance of repulsive interactions in polymer crystallization, which are expected to be responsible for the logarithmic lamellar thickening and the increase of lamellar thickness with pressure. An expression for the growth rate for formation and deposition of stems is derived by considering the growth as a dynamic multistage process. PMID:25314466

  14. Kinetic mechanism of chain folding in polymer crystallization

    E-print Network

    S. Stepanow

    2014-09-22

    I develop a kinetic mechanism to explain chain folding in polymer crystallization which is based on the competition between the formation of stems, which is due to frequent occupations of trans states along the chains in the supercooled polymer melt, and the random coil structure of the polymer chains. Setting equal the average formation time of stems of length $% d_l$ with the Rouse time of a piece of polymer of the same arc length $d_l$ yields a lower bound for the thickness of stems and bundles. The estimated lamellar thickness is inversely proportional to the supercooling. The present approach emphasizes the importance of repulsive interactions in polymer crystallization, which are expected to be responsible for the logarithmic lamellar thickening and the increase of lamellar thickness with pressure. An expression for the growth rate is derived by considering the growth as a dynamic multistage process.

  15. Kinetic mechanism of chain folding in polymer crystallization

    NASA Astrophysics Data System (ADS)

    Stepanow, S.

    2014-09-01

    I develop a kinetic mechanism to explain chain folding in polymer crystallization which is based on the competition between the formation of stems, which is due to frequent occupations of trans states along the chains in the supercooled polymer melt, and the random coil structure of the polymer chains. Setting equal the average formation time of stems of length dl with the Rouse time of a piece of polymer of the same arc length dl yields a lower bound for the thickness of stems and bundles. The estimated lamellar thickness is inversely proportional to the supercooling. The present approach emphasizes the importance of repulsive interactions in polymer crystallization, which are expected to be responsible for the logarithmic lamellar thickening and the increase of lamellar thickness with pressure. An expression for the growth rate for formation and deposition of stems is derived by considering the growth as a dynamic multistage process.

  16. Universality classes for unstable crystal growth.

    PubMed

    Biagi, Sofia; Misbah, Chaouqi; Politi, Paolo

    2014-06-01

    Universality has been a key concept for the classification of equilibrium critical phenomena, allowing associations among different physical processes and models. When dealing with nonequilibrium problems, however, the distinction in universality classes is not as clear and few are the examples, such as phase separation and kinetic roughening, for which universality has allowed to classify results in a general spirit. Here we focus on an out-of-equilibrium case, unstable crystal growth, lying in between phase ordering and pattern formation. We consider a well-established 2+1-dimensional family of continuum nonlinear equations for the local height h(x,t) of a crystal surface having the general form ?_{t}h(x,t)=-?·[j(?h)+?(?^{2}h)]: j(?h) is an arbitrary function, which is linear for small ?h, and whose structure expresses instabilities which lead to the formation of pyramidlike structures of planar size L and height H. Our task is the choice and calculation of the quantities that can operate as critical exponents, together with the discussion of what is relevant or not to the definition of our universality class. These aims are achieved by means of a perturbative, multiscale analysis of our model, leading to phase diffusion equations whose diffusion coefficients encapsulate all relevant information on dynamics. We identify two critical exponents: (i) the coarsening exponent, n, controlling the increase in time of the typical size of the pattern, L?t^{n}; (ii) the exponent ?, controlling the increase in time of the typical slope of the pattern, M?t^{?}, where M?H/L. Our study reveals that there are only two different universality classes, according to the presence (n=1/3, ?=0) or the absence (n=1/4, ?>0) of faceting. The symmetry of the pattern, as well as the symmetry of the surface mass current j(?h) and its precise functional form, is irrelevant. Our analysis seems to support the idea that also space dimensionality is irrelevant. PMID:25019732

  17. Large-aperture YCOB crystal growth for frequency conversion in the high average power laser system

    NASA Astrophysics Data System (ADS)

    Fei, Yiting; Chai, Bruce H. T.; Ebbers, C. A.; Liao, Z. M.; Schaffers, K. I.; Thelin, P.

    2006-04-01

    Yttrium calcium oxyborate YCa4O(BO3)3 (YCOB) is a novel non-linear optical crystal possessing good thermal, mechanical and non-linear optical properties. Large-aperture YCOB crystals with 75 mm diameter were grown for high-average power frequency conversion on the mercury laser system. The growth morphology (included facet and spiral growth), cracking and inclusions in the as-grown crystal boule were discussed as the critical problem for large-aperture YCOB crystal growth. This can be minimized through modification of the growth program, including pulling rate, separation procedure, and cooling program. High-average power frequency conversion of the mercury laser using YCOB has been demonstrated, and experimental validation of YCOB material yields 50% conversion at 10 Hz has been achieved.

  18. Protein and virus crystal growth on international microgravity laboratory-2.

    PubMed Central

    Koszelak, S; Day, J; Leja, C; Cudney, R; McPherson, A

    1995-01-01

    Two T = 1 and one T = 3 plant viruses, along with a protein, were crystallized in microgravity during the International Microgravity Laboratory-2 (IML-2) mission in July of 1994. The method used was liquid-liquid diffusion in the European Space Agency's Advanced Protein Crystallization Facility (APCF). Distinctive alterations in the habits of Turnip Yellow Mosaic Virus (TYMV) crystals and hexagonal canavalin crystals were observed. Crystals of cubic Satellite Tobacco Mosaic Virus (STMV) more than 30 times the volume of crystals grown in the laboratory were produced in microgravity. X-ray diffraction analysis demonstrated that both crystal forms of canavalin and the cubic STMV crystals diffracted to significantly higher resolution and had superior diffraction properties as judged by relative Wilson plots. It is postulated that the establishment of quasi-stable depletion zones around crystals growing in microgravity are responsible for self-regulated and more ordered growth. Images FIGURE 1 FIGURE 2 FIGURE 6 PMID:7669890

  19. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  20. Needs and Opportunities in Crystal Growth.

    ERIC Educational Resources Information Center

    Mroczkowski, Stanley

    1980-01-01

    Presents a survey of the scientific basis for single crystals production, discussing some of the theoretical and experimental advances in the area. Future prospects for semiconductors, magnetic lasers, nonlinear optics, piezoelectrics, and other crystals are surveyed. (Author/CS)

  1. Antifreeze effect of carboxylated ?-poly-L-lysine on the growth kinetics of ice crystals.

    PubMed

    Vorontsov, Dmitry A; Sazaki, Gen; Hyon, Suong-Hyu; Matsumura, Kazuaki; Furukawa, Yoshinori

    2014-08-28

    Some biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ?-poly-L-lysine (COOH-PLL). In order to reveal the characteristics and the mechanism of its antifreeze effect, free-growth experiments of ice crystals were carried out in solutions with various COOH-PLL concentrations and degrees of supercooling, and the depression of the freezing point and growth rates of the tips of ice dendrites were obtained using optical microscopy. Hysteresis of growth rates and depression of the freezing point was revealed in the presence of COOH-PLL. The growth-inhibition effect of COOH-PLL molecules could be explained on the basis of the Gibbs-Thomson law and the use of Langmuir's adsorption isotherm. Theoretical kinetic curves for hysteresis calculated on the basis of Punin-Artamonova's model were in good agreement with experimental data. We conclude that adsorption of large biological molecules in the case of ice crystallization has a non-steady-state character and occurs more slowly than the process of embedding of crystal growth units. PMID:25113284

  2. Silicon isotope fractionation during FZ growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Morishita, Y.; Satoh, H.

    2003-01-01

    We have carried out evaporation and crystal growth experiments, and precisely determined silicon isotopic ratios for the run products of the experiments using the ims-1270 SIMS with multicollectors at the Geological Survey of Japan. The silicon isotope fractionation factor between vapor and melt under vacuum was determined to be 0.9821 at a temperature of 1680 °C, while that under 10 5 Pa of Ar was 0.9947. The SIMS microanalysis revealed isotopic zoning in a single silicon crystal which was produced during its growth. It is inferred that the silicon isotopic ratios in a silicon crystal during the floating zone growth were controlled by the growth conditions such as the growth and rotation rates as well as the fractionation factor between the crystal and its melt.

  3. Nucleation and Growth of Discotic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengdong; Wang, Xuezhen; Zhang, Lecheng; Shinde, Abhijeet; Liquid Crystals of Nanoplates in Microgravity Team

    2015-03-01

    We investigate the nucleation and growth of liquid crystals of plate-shaped charged zirconium phosphate (ZrP) monolayers with various sizes, temperature and salt concentrations. The smaller the platelets size, or the higher the temperature, or the higher the salt concentration (from 0 to 0.6M), the faster the Isotropic-Nematic (I-N) separation took place. We established the I-N transition phase diagram of charged platelets in the temperature verse volume fraction plane, and discovered that N phase can be melted by increasing temperature, and coexistent samples are more sensitive to polydispersity at higher temperature and higher concentrations. We also found that salt concentration in the ZrP suspensions contributed to the formation of an apparently twisted phase. This work is supported by NSF (DMR-1006870) and NASA (NASA-NNX13AQ60G). X.Z. Wang acknowledges support from the Mary Kay O'Connor Process Safety Center (MKOPSC) at Texas A&M University.

  4. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.; Watring, D. A.

    1999-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and serious has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; mercury cadmium telluride with 80.0 mole percent of HgTe and 84.8 mole percent respectively. These alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed of residual acceleration effects. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system by a previously processed sample, the sample was not received until May 1998, and the preliminary analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. Early results are indicating that the sample may not accomplish the desired objectives. As with the USMP-2 mission, the results of the ground based experiments were compared with the crystal grown in orbit under microgravity conditions. On the earth, it has been demonstrated that the application of the magnetic field leads to a significant reduction in fluid flow, with improved homogeneity of composition. The field strength required to suppress flow increases with diameter of the material. The 8 mm diameter sample used here was less than the upper diameter limit for a ST magnet. The configuration for USMP-4 was changed so that the material was seeded and other processing techniques were also modified. It was decided to examine the effects of a strong magnetic field under the modified configuration and parameters. A further change from USMP-2 was that a different composition of material was grown, namely with 0.152 mole fraction of cadmium telluride rather than the 0.200 of the USMP-2 experiment. The objective was to grow highly homogeneous, low defect density material of a composition at which the conduction band and the valence band of the material impinge against each other. As indicated, the furnace was contaminated during the mission. As a result of solid debris remaining in the furnace bore, the cartridge in this experiment, denoted as SL1-417, was significantly bent during the insertion phase. During translation the cartridge scraped against the plate which isolates the hot and cold zones of the furnace. Thermocouples indicated that a thermal assymetry resulted. The scraping in the slow translation or crystal growth part of the processing was not smooth and it is probable that the jitter was sufficient to give rise to convection in the melt. Early measurements of composition from the surface of the sample have shown that the composition varies in an oscillatory manner.

  5. Investigation on crystalline perfection, mechanical, piezoelectric and ferroelectric properties of L-tartaric acid single crystal

    SciTech Connect

    Murugan, G. Senthil Ramasamy, P.

    2014-04-24

    Polar organic nonlinear optical material, L-tartaric acid single crystals have been grown from slow evaporation solution growth technique. Single crystal X-ray diffraction study indicates that the grown crystal crystallized in monoclinic system with space group P2{sub 1}. Crystalline perfection of the crystal has been evaluated by high resolution X-ray diffraction technique and it reveals that the crystal quality is good and free from structural grain boundaries. Mechanical stability of the crystal has been analyzed by Vickers microhardness measurement and it exhibits reverse indentation size effect. Piezoelectric d{sub 33} co-efficient for the crystal has been examined and its value is 47 pC/N. The ferroelectric behaviour of the crystal was analyzed by polarization-electric field hysteresis loop measurement.

  6. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  7. Growth of zeolite crystals in the microgravity environment of space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

    1986-01-01

    Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

  8. Synthesis and crystallization mechanism of europium-titanate Eu2Ti2O7

    NASA Astrophysics Data System (ADS)

    Mrázek, Jan; Surýnek, Martin; Bakardjieva, Snejana; Buršík, Ji?í; Kašík, Ivan

    2014-04-01

    The synthesis of nanocrystalline europium-titanate pyrochlore Eu2Ti2O7 by a generic sol gel approach is presented. The size of the formed nanocrystals was tailored from 20 nm to 100 nm. The nucleation process and the crystallization mechanism were studied. The activation energies of the crystallization process and crystal growth were calculated. It was found; from the calculated Avrami's parameters; that the crystallization process starts by homogenous nucleation followed by three dimensional growth. The activation energies of the crystallization process were about 700 kJ mol-1. The energy of nanocrystal growth was 26.5±3.9 kJ mol-1. The results present fundamental information about the crystallization behavior of RE2Ti2O7 prepared by the condensation of titanium alkoxides with inorganic salts of rare-earth elements.

  9. Method For Growth of Crystal Surfaces and Growth of Heteroepitaxial Single Crystal Films Thereon

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor); Larkin, David J. (Inventor); Neudeck, Philip G. (Inventor); Matus, Lawrence G. (Inventor)

    2000-01-01

    A method of growing atomically-flat surfaces and high quality low-defect crystal films of semiconductor materials and fabricating improved devices thereon is discussed. The method is also suitable for growing films heteroepitaxially on substrates that are different than the film. The method is particularly suited for growth of elemental semiconductors (such as Si), compounds of Groups III and V elements of the Periodic Table (such as GaN), and compounds and alloys of Group IV elements of the Periodic Table (such as SiC).

  10. [Crystal growth and spectroscopy of Er/Yb:KGW crystal].

    PubMed

    Zhu, Zhao-jie; Tu, Chao-yang; Li, Jian-fu; Wu, Bai-chang; Huang, Yan

    2005-09-01

    The Er3 /Yb3+:KGW crystal with the dimensions of 30 mm x 25 mm x 15 mm was grown from K2W2O7 solvent by modified Czochralski method. The absorption spectrum was measured at room temperature and its absorption peaks were assigned. The emission spectrum was obtained under the excitation of 980 nm. There are two broad emission bands at 1024 and 1535 nm, whose FHWM are 60 and 36 nm respectively. It shows that this crystal is suitable for InGaAs LD pumping, and may be a promising laser crystal tunable at near 1 024 and 1 535 nm. PMID:16379283

  11. Initial development of a high-pressure crystal growth facility: Center director's discretionary fund

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Lehoczky, S. L.; Cobb, S. D.; Gillies, D. C.

    1993-01-01

    A low-cost, flexible, high-pressure (600 psi) system for crystal growth and related thermophysical properties measurements was designed, assembled, and tested. The furnace system includes a magnetically coupled translation mechanism that eliminates the need for a high-pressure mechanical feedthru. The system is currently being used for continuing crystal growth experiments and thermophysical properties measurements on several material systems including Hg(1-x)Cd(x)Te, Hg(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Se.

  12. The effects of polydispersity and metastability on crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Williamson, John J.; Evans, R. Mike L.

    We investigate the effect of metastable gas-liquid (G-L) separation on crystal growth in a system of either monodisperse or slightly size-polydisperse square well particles, using a simulation setup that allows us to focus on the growth of a single crystal. Our system parameters are such that, inside the metastable G-L binodal, a macroscopic layer of the gas phase "coats" the crystal as it grows, consistent with experiment and theoretical free energy considerations. Crucially, the effect of this metastable G-L separation on the crystal growth rate depends qualitatively on whether the system is polydisperse. We measure reduced polydispersity and qualitatively different local size ordering in the crystal relative to the fluid, proposing that the required fractionation is dynamically facilitated by the gas layer. Our results show that polydispersity and metastability, both ubiquitous in soft matter, must be considered in tandem if their dynamical effects are to be understood.

  13. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, M.; Snell, E.; Judge, R.; Chayen, N.; Boggon, T.; Helliwell, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The molecular structure of biological macromolecules is important in understanding how these molecules work and has direct application to rational drug design for new medicines and for the improvement and development of industrial enzymes. In order to obtain the molecular structure, large, well formed, single macromolecule crystals are required. The growth of macromolecule crystals is a difficult task and is often hampered on the ground by fluid flows that result from the interaction of gravity with the crystal growth process. One such effect is the bulk movement of the crystal through the fluid due to sedimentation. A second is buoyancy driven convection close to the crystal surface. On the ground the crystallization process itself induces both of these flows.

  14. Growth of large KDP crystals in the form of plates

    SciTech Connect

    Beriot, E; Tatartchenko, V

    1998-05-01

    This paper suggests a new technique of growth-oriented KDP crystals in the form of plates. The technique includes: using small oriented seeds spaced between two parallel platforms with a rapid growth of crystals between these two platforms, in a tank containing a KDP solution. As a result, crystals in the form of plates can be obtained. The thickness of the crystal plate depends on the distance between platforms. The horizontal dimensions of the plate depend on the volume of solution and the diameter of the platforms. The orientation of the plates are defined by the orientation of the seed. KDP crystals in the form of plates of two orientations are grown. The peculiarities of morphology and some characteristics of crystals are discussed.

  15. Large-volume protein crystal growth for neutron macromolecular crystallography.

    PubMed

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  16. Viscous Fingering and Dendritic Growth of Surface Crystallized Sr2TiSi2O8 Fresnoite

    PubMed Central

    Wisniewski, Wolfgang; Patschger, Marek; Rüssel, Christian

    2013-01-01

    During the quenching of a melt with the composition 2SrO·TiO2·2.75SiO2, cubic SrTiO3- and tetragonal Sr2TiSi2O8-crystals are formed at the surface. Subsequent crystal growth leads to dendritic fresnoite structures which become increasingly finer until the mechanism changes to viscous fingering during further cooling. In the final stages of this initial growth step, the crystal orientations of these dendrites systematically change. Due to a complete absence of bulk nucleation in this system, crystal growth is resumed upon reheating to 970°C and fractal growth with the c-axis tilted by about 45° from the main growth direction is observed. The results are interpreted to confirm the link between viscous fingering and dendritic growth in the case of a true crystallization process. PMID:24356207

  17. Chamber Design For Slow Nucleation Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee

    1995-01-01

    Multiple-chamber dialysis apparatus grows protein crystals on Earth or in microgravity with minimum of intervention by technician. Use of multiple chambers provides gradation of nucleation and growth rates.

  18. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process. At the same time, however, there is increased urgency to develop such an understanding in order to more accurately quantify the process. In order to better understand the results obtained from our prior space experiments, and design future experiments, a detailed fluid dynamic model simulating the crystal growth mechanism is required. This will not only add to the fundamental knowledge on the crystallization of zeolites, but also be useful in predicting the limits of size and growth of these important industrial materials. Our objective is to develop macro/microscopic theoretical and computational models to study the effect of transport phenomena in the growth of crystals grown in solutions. Our effort has concentrated so far in the development of separate macroscopic and microscopic models. The major highlights of our accomplishments are described.

  19. Growth of Solid Solution Single Crystals

    NASA Technical Reports Server (NTRS)

    Lehoczky, Sandor L.; Szofran, F. R.; Gillies, Donald C.

    2001-01-01

    The solidification of a solid solution semiconductor, having a wide separation between liquidus and solidus has been extensively studied in ground based, high magnetic field and Spacelab experiments. Two alloys of mercury cadmium telluride have been studied; with 80.0 mole percent of HgTe and 84.8 mole percent of HgTe respectively, the remainder being cadmium telluride. Such alloys are extremely difficult to grow by directional solidification on earth due to high solutal and thermal density differences that give rise to fluid flow and consequent loss of interface shape and composition. Diffusion controlled growth is therefore impossible to achieve in conventional directional solidification. The ground based experiments consisted of growing crystals in several different configurations of heat pipe furnaces, NASA's Advanced Automated Directional Solidification Furnace (AADSF), and a similar furnace incorporated in a superconducting magnet capable of operating at up to 5T. The first microgravity experiment took place during the flight of STS-62 in March 1994, with the AADSF installed on the second United States Microgravity Payload (USMP-2). The alloy was solidified at 3/4 inch per day over a 9 day period, and for the first time a detailed evaluation was performed correlating composition variations to measured residual acceleration. The second flight experiment took place in the fourth United States Microgravity Payload Mission (USMP-4) in November 1997. Due to contamination of the furnace system, analysis shows that the conditions prevailing during the experiment were quite different from the requirements requested prior to the mission. The results indicate that the sample did accomplish the desired objectives.

  20. Generation and Propagation of Defects During Crystal Growth

    NASA Astrophysics Data System (ADS)

    Klapper, Helmut

    This chapter presents a review of the typical growth defects of crystals fully grown on (planar) habit faces, i.e., of crystals grown in all kinds of solutions, in supercooled melt (mainly low-melting organics) and in the vapor phase. To a smaller extent growth on rounded faces from the melt is also considered when this seems appropriate to bring out analogies or discuss results in a more general context. The origins and typical configurations of defects developing during growth and after growth are illustrated by a series of selected x-ray diffraction topographs (Lang technique) and, in a few cases, by optical photographs.

  1. Definition study for temperature control in advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz; Sowers, Jennifer W.; Monaco, Lisa A.

    1990-01-01

    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules.

  2. Simulation study of twisted crystal growth in organic thin films

    NASA Astrophysics Data System (ADS)

    Fang, Alta; Haataja, Mikko

    2015-10-01

    Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate.

  3. Simulation study of twisted crystal growth in organic thin films.

    PubMed

    Fang, Alta; Haataja, Mikko

    2015-10-01

    Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate. PMID:26565254

  4. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  5. Protein Crystal Movements and Fluid Flows During Microgravity Growth

    NASA Technical Reports Server (NTRS)

    Boggon, Titus J.; Chayen, Naomi E.; Snell, Edward H.; Dong, Jun; Lautenschlager, Peter; Potthast, Lothar; Siddons, D. Peter; Stojanoff, Vivian; Gordon, Elspeth; Thompson, Andrew W.; Zagalsky, Peter F.; Bi, Ru-Chang; Helliwell, John R.

    1997-01-01

    The growth of protein crystals suitable for X-ray crystal structure analysis is an important topic. The methods of protein crystal growth are under increasing study whereby different methods are being compared via diagnostic monitoring including Charge Coupled Device (CCD) video and interferometry. The quality (perfection) of protein crystals is now being evaluated by mosaicity analysis (rocking curves) and X-ray topographic images as well as the diffraction resolution limit and overall data quality. Choice of a liquid-liquid linear crystal growth geometry and microgravity can yield a spatial stability of growing crystals and fluid, as seen in protein crystallization experiments on the unmanned platform EURICA. A review is given here of existing results and experience over several microgravity missions. The results include CCD video as well as interferometry during the mission, followed, on return to earth, by rocking curve experiments and full X-ray data collection on LMS and earth control lysozyme crystals. Diffraction data recorded from LMS and ground control apocrustacyanin C(sub 1) crystals are also described.

  6. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization

    PubMed Central

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-01-01

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100°C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12?nm at growth temperature of 1000°C to ~32?nm at growth temperature of 1100°C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics. PMID:24810224

  7. Autocatalytic Decomposition Mechanisms in Energetic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija; Rashkeev, Sergey

    2009-06-01

    Atomic scale mechanisms of the initiation of chemical processes in energetic molecular crystals, which lead to the decomposition and ultimately to an explosive chain reaction, are still far from being understood. In this work, we investigate the onset of the initiation processes in two high explosive crystals - diamino-dinitroethylene (DADNE) and triamino- trinitrobenzene (TATB). We found that an autocatalytic decomposition mechanism is likely to take place in DADNE crystal that consists of corrugated, dashboard-shaped molecular layers. The presence of a dissociated NO2 group in the interstitial space between two layers induces a significant shear-strain between these layers, which, in turn, facilitates the further dissociation of NO2 groups from surrounding molecules through lowering the C-NO2 decomposition barrier. Unlike this, in TATB (that consists of flat, graphite-like molecular layers), an interstitial NO2 group positioned between two layers tends to produce a tensile stress (rather than a shear-strain), which leads to local molecular disorder in these layers without any significant modification of the C-NO2 decomposition barrier. The observed differences between the two materials are discussed in terms of their structural, electronic, and chemical properties.

  8. Ames Lab 101: Single Crystal Growth

    SciTech Connect

    Schlagel, Deborah

    2013-09-27

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  9. Ames Lab 101: Single Crystal Growth

    ScienceCinema

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  10. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  11. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm crystal to be viewed in the vertical dimension on a standard NTSC monitor (4:3 aspect ratio). Images of the 10 crystals are collected periodically and stored in sets by the DACU.

  12. Crocodile: An automated apparatus for organic crystal growth from solution

    NASA Astrophysics Data System (ADS)

    Gonzalez, F.; Cunisse, M.; Perigaud, A.

    CROCODILE ( CROissance de Cristaux Organiques par DIffusion Liquide dans l' Espace) is a space instrument dedicated to crystal growth from solution. The selected material N (4 nitrophenyl) (L) prolinol (NPP) is the result of studies on organic crystal in the frame of an extended program initiated by CNES for many years. The apparatus was flown aboard PHOTON, an automatic satellite, in April 1990, for a flight duration of more than 15 days. This paper describes the instrument design, with emphasis on specific and original technology well adapted to crystal growth from solution, and extendable to any space experiment on fluids. Preliminary details of the flight campaign will also be discussed.

  13. Journal of Crystal Growth 136 (1994) 235--240 oo~~ o, CRYSTAL North-Holland GROWTH

    E-print Network

    Komatitsch, Dimitri

    1994-01-01

    Journal of Crystal Growth 136 (1994) 235--240 oo~~ o, CRYSTAL North-Holland GROWTH Quasi-planar GaAs and stable In the present study, we have investigated a p-type C-doping concentrations in GaAs, using new HBT de Bagnewc, 196 Avenue Henri Ravera, BP 107, F-92225 Bagneux Cedex, France Quasi-planar GaAs

  14. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform

    SciTech Connect

    Talreja, S.; Kenis, P; Zukoski, C

    2007-01-01

    The quality, size, and number of protein crystals grown under conditions of continuous solvent extraction are dependent on the rate of solvent extraction and the initial protein and salt concentration. An increase in the rate of solvent extraction leads to a larger number of crystals. The number of crystals decreases, however, when the experiment is started with an initial protein concentration that is closer to the solubility boundary. Here we develop a kinetic model capable of predicting changes in the number and size of protein crystals as a function of time under continuous evaporation. Moreover, this model successfully predicts the initial condition of drops that will result in gel formation. We test this model with experimental crystal growth data of hen egg white lysozyme for which crystal nucleation and growth rate parameters are known from other studies. The predicted and observed rates of crystal growth are in excellent agreement, which suggests that kinetic constants for nucleation and crystal growth for different proteins can be extracted by applying a kinetic model in combination with observations from a few evaporation-based crystallization experiments.

  15. (PCG) Protein Crystal Growth HIV Reverse Transcriptase

    NASA Technical Reports Server (NTRS)

    1992-01-01

    HIV Reverse Transcriptase crystals grown during the USML-1 (STS-50) mission using Commercial Refrigerator/Incubator Module (CR/IM) at 4 degrees C and the Vapor Diffusion Apparatus (VDA). Reverse transcriptase is an enzyme responsible for copying the nucleic acid genome of the AIDS virus from RNA to DNA. Studies indicated that the space-grown crystals were larger and better ordered (beyond 4 angstroms) than were comparable Earth-grown crystals. Principal Investigators were Charles Bugg and Larry DeLucas.

  16. Dislocation Elimination in Czochralski Silicon Crystal Growth Revealed by White X-ray Topography Combined with Topo-tomographic Technique

    SciTech Connect

    Kawado, Seiji; Iida, Satoshi; Kajiwara, Kentaro; Suzuki, Yoshifumi; Chikaura, Yoshinori

    2007-01-19

    We have examined the neck of a large-diameter [001]-oriented Czochralski silicon crystal by synchrotron white X-ray topography combined with a topo-tomographic technique in order to explain the mechanism of dislocation elimination due to Dash necking in industrial-scale crystal growth. In the portion where the grown crystal was transformed from a dislocated region to a dislocation-free region, dislocation half loops were first generated at the dislocation tangles. These loops then expanded on the {l_brace}111{r_brace} glide planes and then terminated inside the crystal. In some cases, they reached the side of the crystal. A new mechanism for the elimination of dislocations is proposed based on the fact that dislocations in the neck are not accompanied by the solid-melt interface during the crystal growth, and they proceed in the crystal after the movement of the interface.

  17. Growth of Sb-Bi gradient single crystals

    SciTech Connect

    Kozhemyakin, G. N. Lutskiy, D. V.; Rom, M. A.; Mateychenko, P. V.

    2008-12-15

    The growth conditions and structural quality of Sb-Bi gradient single crystals with Bi content from 2 to 18 at %, grown by the Czochralski method with solid phase feed, are investigated. Bi distribution in the crystals along their pulling direction are studied by electron probe microanalysis and the change in the interplanar spacing is analyzed by double-crystal X-ray diffraction. It is established that the pulling rate and feed mass affect the Bi distribution in Sb-Bi single crystals.

  18. Protein crystal growth and the International Space Station

    NASA Technical Reports Server (NTRS)

    DeLucas, L. J.; Moore, K. M.; Long, M. M.

    1999-01-01

    Protein structural information plays a key role in understanding biological structure-function relationships and in the development of new pharmaceuticals for both chronic and infectious diseases. The Center for Macromolecular Crystallography (CMC) has devoted considerable effort studying the fundamental processes involved in macromolecular crystal growth both in a 1-g and microgravity environment. Results from experiments performed on more than 35 U.S. space shuttle flights have clearly indicated that microgravity can provide a beneficial environment for macromolecular crystal growth. This research has led to the development of a new generation of pharmaceuticals that are currently in preclinical or clinical trials for diseases such as cutaneous T-cell lymphoma, psoriasis, rheumatoid arthritis, AIDS, influenza, stroke and other cardiovascular complications. The International Space Station (ISS) provides an opportunity to have complete crystallographic capability on orbit, which was previously not possible with the space shuttle orbiter. As envisioned, the x-ray Crystallography Facility (XCF) will be a complete facility for growing protein crystals; selecting, harvesting, and mounting sample crystals for x-ray diffraction; cryo-freezing mounted crystals if necessary; performing x-ray diffraction studies; and downlinking the data for use by crystallographers on the ground. Other advantages of such a facility include crystal characterization so that iterations in the crystal growth conditions can be made, thereby optimizing the final crystals produced in a three month interval on the ISS.

  19. Molecular tagging velocimetry characterization of rapid KDP crystal growth

    SciTech Connect

    Maynes, D.

    2000-03-01

    Measurements of the tangential and axial velocities near the prism faces of a rotating mock crystal mounted on a rotating platform are presented. These measurements were made using molecular tagging velocimetry and are significant to the rapid growth of KDP crystals because they provide a description of the flow field and the evolution of the relative tangential and axial velocities near the prism faces and in the bulk flow region. These data represent the first measurements of fluid velocities around rotating crystal geometries, and thus provide a benchmark for future computer simulations of the crystal growth process at higher Re than previously obtainable. The measurements provide a temporal and spatial description of the evolving velocity field in the vicinity of a rotating crystal. Rotational conditions and locations on the prism faces where low shear rates are likely to occur, based on the measurements presented, are discussed qualitatively.

  20. Nucleation and growth of inorganic crystals at the organic-inorganic interface

    NASA Astrophysics Data System (ADS)

    Dennis, Shelli R.

    1998-12-01

    Surface-directed nucleation and oriented crystal growth have been addressed using Langmuir monolayers in contact with supersaturated mineralizing solutions. This model system has been designed to control the chemical composition, orientation, and spacing of the functional groups exposed to the mineralizing solution and to control the ionic composition, supersaturation and pH of the solution. Light scattering microscopy (LSM) has been introduced as a novel technique to investigate early nucleation events in situ. Zwitterionic dipalmitoylphosphatidylcholine (DPPC) and negatively charged dimyristoylphosphatidylserine (DMPS) monolayers have been compared to study the role of surface chemistry on calcium oxalate crystal nucleation. A quantitative analysis of the number and apparent area of light scattering centers is presented for DPPC and DMPS monolayers. Although induction times could not be determined with LSM because of low nucleation densities, crystal growth could be directly monitored with LSM beneath DMPS monolayers. Phospholipid monolayers in the phase coexistence region have been used to investigate the role of lattice matching on calcium oxalate crystal nucleation and growth. LSM has been combined with fluorescence microscopy to determine the location of crystals relative to the liquid-condensed (LC) and liquid-expanded (LE) phases. Light scattering centers are found at the LC domain edges for DPPC and DMPS monolayers, and the LC domains aggregate during calcium oxalate crystal growth. Boehmite crystals injected beneath DMPS monolayers migrate from the LE phase to the LC domain edges where they become trapped. The phase, morphology, and orientation of mature calcium oxalate crystals grown beneath phospholipid monolayers have been investigated to obtain a better understanding of the molecular mechanisms controlling crystal nucleation and oriented growth. Mature calcium oxalate crystals grown beneath zwitterionic DPPC monolayers and negatively charged DMPS monolayers are oriented with respect to the monolayers but exhibit different crystal morphologies. Raman spectroscopy strongly suggests that crystals grown beneath either monolayer are calcium oxalate monohydrate (COM) crystals. Dimyristoyl-phosphatidylethanolamine, dimyristoylphosphatidic acid, eicosanoic acid, and eicosanol monolayers have also been studied to help elucidate the molecular mechanisms controlling the COM crystal orientation and morphology. The potential roles of lattice matching, hydrogen bonding, stereochemistry and electrostatics are discussed in detail.

  1. Statistical mechanics of aggregation and crystallization for semiflexible polymers

    E-print Network

    Janke, Wolfhard

    OFFPRINT Statistical mechanics of aggregation and crystallization for semiflexible polymers C.epljournal.org doi: 10.1209/0295-5075/87/40002 Statistical mechanics of aggregation and crystallization small bending rigidity. Rather stiff semiflexible polymers form a liquid-crystal­like phase, as expected

  2. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  3. Center for the development of commercial crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1989-01-01

    The second year of operation of the Center for Commercial Crystal Growth in Space is described. This center is a consortium of businesses, universities and national laboratories. The primary goal of the Center's research is the development of commercial crystal growth in space. A secondary goal is to develop scientific understanding and technology which will improve commercial crystal growth on earth. In order to achieve these goals the Center's research is organized into teams by growth technique; melt growth, solution growth, and vapor growth. The melt growth team is working on solidification and characterization of bulk crystals of gallium arsenide and cadmium telluride. They used high resolution X-ray topography performed at the National Synchrotron Light Source at Brookhaven National Laboratory. Streak-like features were found in the diffraction images of semi-insulating undoped LEC GaAs. These were shown to be (110) antiphase boundaries, which have not been reported before but appear to be pervasive and responsible for features seen via less-sensitive characterization methods. The results on CdTe were not as definitive, but indicate that antiphase boundaries may also be responsible for the double peaks often seen in X-ray rocking curves of this material. A liquid encapsulated melt zone system for GaAs has been assembled and techniques for casting feed rods developed. It was found that scratching the inside of the quartz ampoules with silicon carbide abrasive minimized sticking of the GaAs to the quartz. Twelve floating zone experiments were done.

  4. Czochralski growth of gallium indium antimonide alloy crystals

    SciTech Connect

    Tsaur, S.C.

    1998-02-01

    Attempts were made to grow alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb by the conventional Czochralski process. A transparent furnace was used, with hydrogen purging through the chamber during crystal growth. Single crystal seeds up to about 2 to 5 mole% InSb were grown from seeds of 1 to 2 mole% InSb, which were grown from essentially pure GaSb seeds of the [111] direction. Single crystals were grown with InSb rising from about 2 to 6 mole% at the seed ends to about 14 to 23 mole% InSb at the finish ends. A floating-crucible technique that had been effective in reducing segregation in doped crystals, was used to reduce segregation in Czochralski growth of alloy crystals of Ga{sub 1{minus}x}In{sub x}Sb. Crystals close to the targeted composition of 1 mole% InSb were grown. However, difficulties were encountered in reaching higher targeted InSb concentrations. Crystals about 2 mole% were grown when 4 mole% was targeted. It was observed that mixing occurred between the melts rendering the compositions of the melts; and, hence, the resultant crystal unpredictable. The higher density of the growth melt than that of the replenishing melt could have triggered thermosolutal convection to cause such mixing. It was also observed that the floating crucible stuck to the outer crucible when the liquidus temperature of the replenishing melt was significantly higher than that of the growth melt. The homogeneous Ga{sub 1{minus}x}In{sub x}Sb single crystals were grown successfully by a pressure-differential technique. By separating a quartz tube into an upper chamber for crystal growth and a lower chamber for replenishing. The melts were connected by a capillary tube to suppress mixing between them. A constant pressure differential was maintained between the chambers to keep the growth melt up in the growth chamber. The method was first tested with a low temperature alloy Bi{sub 1{minus}x}Sb{sub x}. Single crystals of Ga{sub 1{minus}x}In{sub x}Sb were grown with uniform compositions up to nearly 5 mole% InSb.

  5. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  6. Protein crystal growth in low gravity

    NASA Technical Reports Server (NTRS)

    Feigelson, Robert S.

    1992-01-01

    A study is presented of the crystallization of isocitrate lyase (ICL) and the influence of the lack of thermal solutal convection in microgravity on the morphology of ICL crystals is discussed. The latest results of studies with thermonucleation are presented. These include the nucleation of a protein with retrograde solubility and an unknown solubility curve. A new design for a more microgravity compatible thermonuclear is presented.

  7. Impact of surfactants on the crystal growth of amorphous celecoxib.

    PubMed

    Mosquera-Giraldo, Laura I; Trasi, Niraj S; Taylor, Lynne S

    2014-01-30

    The purpose of this study was to investigate the impact of surfactants on the rate of crystal growth of amorphous celecoxib, both in the presence and absence of a polymer. Celecoxib is a poorly water-soluble non-steroidal anti-inflammatory drug. Such compounds may be formulated as amorphous solid dispersions to improve bioavailability, and solid dispersions can contain both a surfactant and a polymer. While the impact of polymers on crystal growth rates has been studied, the effect of surfactants is largely unexplored. Herein, the effect of sodium lauryl sulfate (SLS), sucrose palmitate and d-? tocopherol polyethylenglycol 1000 succinate (TPGS) at a 10% (w/w) concentration on the crystal growth rate of celecoxib was investigated. Linear crystal growth rates as a function of temperature (70-120 °C) were measured using optical microscopy. The mixtures were characterized using differential scanning calorimetry (DSC), infrared spectroscopy, and X-ray diffraction. The results indicate that the surfactants increase the crystal growth rate of amorphous celecoxib. However, addition of polyvinyl pyrrolidone (PVP) helped to mitigate the increase in growth rates, although the ternary systems were highly complex. Thus it is clear that the impact of a surfactant on the physical stability of an amorphous solid dispersion should be considered during formulation. PMID:24333451

  8. DYNAMICS OF LAYER GROWTH IN PROTEIN CRYSTALLIZATION http://pubs.chee.uh.edu/faculty/vekilov/Dynamics.htm[8/2/12 12:23:42 PM

    E-print Network

    Vekilov, Peter

    DYNAMICS OF LAYER GROWTH IN PROTEIN CRYSTALLIZATION http://pubs.chee.uh.edu/faculty/vekilov/Dynamics.htm[8/2/12 12:23:42 PM] DYNAMICS OF LAYER GROWTH IN PROTEIN CRYSTALLIZATION Peter G. Vekilov* and J mechanisms of instability and step bunching * A. Linear stability predictions * #12;DYNAMICS OF LAYER GROWTH

  9. Protein crystal growth in microgravity: Status and commercial implications

    NASA Astrophysics Data System (ADS)

    Moore, Karen M.; Long, Marianna M.; Delucas, Lawrence J.

    1999-01-01

    Since 1985, The Center for Macromolecular Crystallography has conducted an extensive program of macromolecular crystal growth experiments in microgravity. This Center has designed and built crystal growth flight hardware that has an excellent productivity and reliability record. In addition, several other crystallography laboratories have conducted macromolecular crystal growth experiments in microgravity and developed hardware to house their experiments. These experiments have successfully demonstrated that the low gravity environment can be used to produce crystals of proteins and other macromolecules that are superior to crystals of the same compounds grown on earth. Improved, extended x-ray diffraction data collected from space-grown crystals has contributed to the solution of the three-dimensional structures of many proteins and has augmented structure-based drug design studies targeting several diseases and degenerative conditions. The production of produce high-quality crystals of medically relevant macromolecules is important because of the rapidly growing role of macromolecular crystallography in biology and medicine. Large, high-quality crystals are critical to solving the structures of biologically important macromolecules, but it is often difficult to obtain these crystals because of the physical and chemical properties of the compounds. Work by this and other crystallography laboratories has shown that conducting macromolecular crystallization experiments in the microgravity environment alleviates convection and sedimentation effects, and frequently results in crystals that yield x-ray diffraction data that is superior to their earth-grown counterparts. The improved diffraction data translates directly to faster, more accurate solutions to the three-dimensional structures of the target molecules.

  10. Transient natural convection heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1988-01-01

    A numerical analysis of transient combined heat and mass transfer across a rectangular cavity is performed by a numerical method based on the SIMPLE algorithm. The physical parameters are selected to represent a range of possible crystal growth in solutions. Numerical results are compared with available experimental data to confirm the accuracy of the results. Good qualitative agreements are obtained for the average mass transfer rate across the cavity. Also, qualitative agreements are observed for the global development of thermal and solute fields. It is found that the thermal and solute fields become highly oscillatory when the thermal and solute Grashof numbers are large. Oscillations are probably caused by a number of different instability mechanisms. By reducing the gravity some of these instabilities were made to disappear at the lower Grashof numbers. Transient temperature and solute distribution near the crystal growing surface are highly non-uniform at the higher Grashof numbers. These non-uniformities are less severe in the reduced gravity environments but still exist. The effects of convection on the rate of average mass transfer are more than one order of magnitude higher than those of conduction in the range of Grashof numbers studied. Dependency of mass transfer rate on the Grashof number indicates that the convection effects many not be negligible even in the microgravity environments for the range of parameters investigated.

  11. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching.

    PubMed

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-01-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth. PMID:25762066

  12. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  13. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  14. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    SciTech Connect

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  15. Growth and characterization of doped LiF crystals

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2014-12-01

    Transparent and crack-free crystals of LiF: x ( x = Ca, Pb, Na, Tl) were successfully grown by using the Czochralski method. Growth parameters such as the pulling and the rotation rates were optimized. The grown crystals were characterized and compared by using X-ray luminescence. Tl- and Na-doped crystals showed better luminescence intensity than crystals with other dopants. Thermoluminescence (TL) glow curves were obtained to study the crystal defects in the grown samples. Activation energies were calculated from the TL glow curves. The temperature dependence of the light yield in the temperature range from 10 to 300 K under alpha particle excitation was also investigated. The light yield was found to be larger at low temperatures. Na- and Tl-doped crystals showed 35% and 20% increases in the light yield, respectively, at low temperatures as compared to room temperature.

  16. High Thermal Conducting Boron Arsenide: Crystal Growth and Characterization

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Hu, Yongjie; Jacobson, Allan J.; Broido, David; Chen, Gang; Ren, Zhifeng; Chu, Ching-Wu

    2015-03-01

    Intrigued by recent calculations [Phys. Rev. Lett. 111, 025901(2013)] which predict a remarkably high thermal conductivity of ~ 2,000 Wm-1K-1 , comparable to that of diamond, in cubic boron arsenide (BAs) crystals, we have succeeded in synthesizing single crystals of BAs with a zinc blende structure and lattice parameters of a = 4.7830(7) Å characterized by X-ray single crystal diffraction and transmission electron microscopy (TEM). A relatively high thermal conductivity is obtained but still smaller than the predicted value. We attribute the difference of thermal conductivity value to the defect scattering associated with crystal twinning and As vacancies, verified both from experimental evidence and theoretical calculations. The predicted super-thermal-conductivity may be achieved in BAs single crystals with further improvement of crystal growth by removing the defects. Lawrence Berkeley National Laboratory, Berkeley California 94720.

  17. Experimental techniques for determination of the role of diffusion and convection in crystal growth from solution

    NASA Technical Reports Server (NTRS)

    Zefiro, L.

    1980-01-01

    Various studies of the concentration of the solution around a growing crystal using interferometric techniques are reviewed. A holographic interferometric technique used in laboratory experiments shows that a simple description of the solution based on the assumption of a purely diffusive mechanism appears inadequate since the convection, effective even in reduced columns, always affects the growth.

  18. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has considerable experience with the particular macromolecular system and has reached an apparent limit in diffraction resolution. Under such circumstances the cost of one or two successful flight experiments may more than offset the equivalent cost of several years effort to obtain the same improvement in data quality.

  19. Macromolecular crystal growth experiments on International Microgravity Laboratory--1.

    PubMed Central

    Day, J.; McPherson, A.

    1992-01-01

    Macromolecular crystal growth experiments, using satellite tobacco mosaic virus (STMV) and canavalin from jack beans as samples, were conducted on a US Space Shuttle mission designated International Microgravity Laboratory--1 (IML-1), flown January 22-29, 1992. Parallel experiments using identical samples were carried out in both a vapor diffusion-based device (PCG) and a liquid-liquid diffusion-based instrument (CRYOSTAT). The experiments in each device were run at 20-22 degrees C and at colder temperatures. Crystals were grown in virtually every trial, but the characteristics of the crystals were highly dependent on the crystallization technique employed and the temperature experience of the sample. In general, very good results, based on visual inspection of the crystals, were obtained in both PCG and CRYOSTAT. Unusually impressive results were, however, achieved for STMV in the CRYOSTAT instrument. STMV crystals grown in microgravity by liquid-liquid diffusion were more than 10-fold greater in total volume than any STMV crystals previously grown in the laboratory. X-ray diffraction data collected from eight STMV crystals grown in CRYOSTAT demonstrated a substantial improvement in diffraction quality over the entire resolution range when compared to data from crystals grown on Earth. In addition, the extent of the diffraction pattern for the STMV crystals grown in space extended to 1.8 A resolution, whereas the best crystals that were ever grown under conditions of Earth's gravity produced data limited to 2.3 A resolution. Other observations indicate that the growth of macromolecular crystals is indeed influenced by the presence or absence of gravity. These observations further suggest, consistent with earlier results, that the elimination of gravity provides a more favorable environment for such processes. PMID:1303744

  20. Characterizing ice crystal growth behavior under electric field using phase field method.

    PubMed

    He, Zhi Zhu; Liu, Jing

    2009-07-01

    In this article, the microscale ice crystal growth behavior under electrostatic field is investigated via a phase field method, which also incorporates the effects of anisotropy and thermal noise. The multiple ice nuclei's competitive growth as disclosed in existing experiments is thus successfully predicted. The present approach suggests a highly efficient theoretical tool for probing into the freeze injury mechanisms of biological material due to ice formation during cryosurgery or cryopreservation process when external electric field was involved. PMID:19640138

  1. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.

    PubMed

    Nudelman, Fabio

    2015-10-01

    The wide diversity of biogenic minerals that is found in nature, each with its own morphology, mechanical properties and composition, is remarkable. In order to produce minerals that are optimally adapted for their function, biomineralisation usually occurs under strict cellular control. This control is exerted by specialised proteins and polysaccharides that assemble into a 3-dimensional organic matrix framework, forming a microenvironment where mineral deposition takes place. Molluscs are unique in that they use a striking variety of structural motifs to build their shells, each made of crystals with different morphologies and different calcium carbonate polymorphs. Much of want is known about mollusc shell formation comes from studies on the nacreous layer, or mother-of-pearl. In this review, we discuss two existing models on the nucleation of aragonite crystals during nacre formation: heteroepitaxial nucleation and mineral bridges. The heteroepitaxial nucleation model is based on the identification of chemical functional groups and aragonite-nucleating proteins at the centre of crystal imprints. It proposes that during nacre formation, each aragonite tablet nucleates independently on a nucleation site that is formed by acidic proteins and/or glycoproteins adsorbed on the chitin scaffold. The mineral bridges model is based on the identification of physical connections between the crystals in a stack, which results in a large number of crystals across several layers sharing the same crystallographic orientation. These observations suggest that there is one nucleation event per stack of tablets. Once the first crystal nucleates and reaches the top interlamellar matrix, it continues growing through pores, giving rise to the next layer of nacre, subsequently propagating into a stack. We compare both models and propose that they work in concert to control crystal nucleation in nacre. De novo crystal nucleation has to occur at least once per stack of aligned crystals, and is induced by nucleation sites. We suggest that further growth is controlled both by mineral bridges and nucleation sites. Finally, we discuss the role of amorphous calcium carbonate precursor in nacre formation. PMID:26205040

  2. Novel protein crystal growth technology: Proof of concept

    NASA Technical Reports Server (NTRS)

    Nyce, Thomas A.; Rosenberger, Franz

    1989-01-01

    A technology for crystal growth, which overcomes certain shortcomings of other techniques, is developed and its applicability to proteins is examined. There were several unknowns to be determined: the design of the apparatus for suspension of crystals of varying (growing) diameter, control of the temperature and supersaturation, the methods for seeding and/or controlling nucleation, the effect on protein solutions of the temperature oscillations arising from the circulation, and the effect of the fluid shear on the suspended crystals. Extensive effort was put forth to grow lysozyme crystals. Under conditions favorable to the growth of tetragonal lysozyme, spontaneous nucleation could be produced but the number of nuclei could not be controlled. Seed transfer techniques were developed and implemented. When conditions for the orthorhombic form were tried, a single crystal 1.5 x 0.5 x 0.2 mm was grown (after in situ nucleation) and successfully extracted. A mathematical model was developed to predict the flow velocity as a function of the geometry and the operating temperatures. The model can also be used to scaleup the apparatus for growing larger crystals of other materials such as water soluble non-linear optical materials. This crystal suspension technology also shows promise for high quality solution growth of optical materials such as TGS and KDP.

  3. Journal of Crystal Growth 307 (2007) 302308 Equilibrium analysis of zirconium carbide CVD growth

    E-print Network

    Anderson, Timothy J.

    2007-01-01

    -like electrical conduc- tivity (2 Â 104 /O cm), high hardness (25,000 N/mm2 ), high melting temperature (3400 1CJournal of Crystal Growth 307 (2007) 302­308 Equilibrium analysis of zirconium carbide CVD growth equilibrium study was performed to investigate the effect of growth parameters on the constitution in Zr

  4. Journal of Crystal Growth 278 (2005) 596599 Growth of InP high electron mobility transistor

    E-print Network

    del Alamo, Jesús A.

    2005-01-01

    Journal of Crystal Growth 278 (2005) 596­599 Growth of InP high electron mobility transistor and InAlAs barriers on InP substrates. In recent years, advances in the growth of phosphide Massachusetts Institute of Technology, Cambridge, MA 02139, USA Available online 1 February 2005 Abstract InP

  5. Hydrothermal crystal growth of the potassium niobate and potassium tantalate family of crystals

    SciTech Connect

    Mann, Matthew; Jackson, Summer; Kolis, Joseph

    2010-11-15

    Single crystals of KNbO{sub 3} (KN), KTaO{sub 3} (KT), and KTa{sub 1-x}Nb{sub x}O{sub 3} (x=0.44, KTN) have been prepared by hydrothermal synthesis in highly concentrated KOH mineralizer solutions. The traditional problems of inhomogeneity, non-stoichiometry, crystal striations and crystal cracking resulting from phase transitions associated with this family compounds are minimized by the hydrothermal crystal growth technique. Crystals of good optical quality with only minor amounts of metal ion reduction can be grown this way. Reactions were also designed to provide homogeneous distribution of tantalum and niobium metal centers throughout the KTN crystal lattice to maximize its electro-optic properties. Synthesis was performed at relatively low (500-660 {sup o}C) temperatures in comparison to the flux and Czochralski techniques. This work represents the largest crystals of this family of compounds grown by hydrothermal methods to date. -- Graphical Abstract:

  6. Crystal Growth and Characterization of Bil3

    NASA Technical Reports Server (NTRS)

    Hayes, Julia; Chen, Kuo-Tong; Burger, Arnold

    1997-01-01

    Bismuth tri-iodide (BiI3) have been grown by physical vapor transport (PVT), and by the Bridgman (melt) method. These crystals along with pure and stoichiometric BiI3 powder have been investigated by differential scanning calorimetry (DSC). The DSC results show that pure BiI3 powder has no phase transition and melts around 408 C. While we found no evidence for the high temperature dissociation of BiI3, the DSC measurements show that crystals grown from melt method contain a significantly large amount of Bi-rich phases than crystals grown from PVT method, as indicated by phase transition detected at 270, 285, 298 and 336 C.

  7. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  8. Ground Based Program for the Physical Analysis of Macromolecular Crystal Growth

    NASA Technical Reports Server (NTRS)

    Malkin, Alexander J.

    1999-01-01

    In a reported period in situ atomic force microscopy was utilized in our laboratory to study mechanisms of growth and kinetics of crystallization of ten protein and virus crystals. These included canavalin, thaumatin, apoferritin, lipase, catalase, t-RNA, lysozyme, xylanase, turnip yellow mosaic virus (TYMV) and satellite tobacco mosaic virus (STMV). We have also designed and constructed in our laboratory both in situ conventional two-beam Michelson and phase shift Mach-Zenhder interferometers. Computer software for the processing of the interferometric images was developed as well. Interferometric techniques were applied for studies of growth kinetics and transport phenomena in crystallization of several macromolecular crystals. As a result of this work we have published 21 papers and have given many presentations at international and national meetings. A list of these publications and conference presentations is attached.

  9. Vapor crystal growth technology development: Application to cadmium telluride

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael; Duval, Walter M. B.

    1991-01-01

    Growth of bulk crystals by physical vapor transport was developed and applied to cadmium telluride. The technology makes use of effusive ampoules, in which part of the vapor contents escapes to a vacuum shroud through defined leaks during the growth process. This approach has the advantage over traditional sealed ampoule techniques that impurity vapors and excess vapor constituents are continuously removed from the vicinity of the growing crystal. Thus, growth rates are obtained routinely at magnitudes that are rather difficult to achieve in closed ampoules. Other advantages of this effusive ampoule physical vapor transport (EAPVT) technique include the predetermination of transport rates based on simple fluid dynamics and engineering considerations, and the growth of the crystal from close to congruent vapors, which largely alleviates the compositional nonuniformities resulting from buoyancy driven convective transport. After concisely reviewing earlier work on improving transport rates, nucleation control, and minimization of crystal wall interactions in vapor crystal growth, a detail account is given of the largely computer controlled EAPVT experimentation.

  10. Synthesis, crystal growth and spectroscopic investigation of novel metal organic crystal: ?-alanine cadmium bromide monohydrate (?-ACBM).

    PubMed

    Renugadevi, R; Kesavasamy, R

    2014-07-15

    ?-Alanine cadmium bromide monohydrate (?-ACBM), a new metal organic crystal has been grown from aqueous solution by slow evaporation technique. The grown crystals have been subjected to single crystal X-ray diffraction analysis to determine the crystal structure. The ?-ACBM crystallized in monoclinic system with space group P2(1)/c. The presence of protons and carbons in the ?-alanine cadmium bromide monohydrate was confirmed by (1)H and (13)C nuclear magnetic resonance spectral analysis. The mode of vibration of different molecular groups present in ?-ACBM was identified by FT-IR spectral analysis. Transparency of crystals in UV-Vis-NIR region has also been studied. The thermal characteristics of as-grown crystals were analyzed using thermo gravimetric and differential thermal analyses. The magnetic property of the grown crystal was investigated using Vibrating Sample Magnetometer (VSM) at ambient temperature. The mechanical stability of ?-ACBM was evaluated by Vickers microhardness measurement. PMID:24691377

  11. A microfluidic, high throughput protein crystal growth method for microgravity.

    PubMed

    Carruthers, Carl W; Gerdts, Cory; Johnson, Michael D; Webb, Paul

    2013-01-01

    The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-? LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3) cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-? LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480

  12. A Microfluidic, High Throughput Protein Crystal Growth Method for Microgravity

    PubMed Central

    Carruthers Jr, Carl W.; Gerdts, Cory; Johnson, Michael D.; Webb, Paul

    2013-01-01

    The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions’ microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-? LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 103 cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-? LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480

  13. Synthesis and growth of ZnGeP2 crystals: Prevention of non-stoichiometry

    NASA Astrophysics Data System (ADS)

    Cheng, Jiang; Zhu, Shifu; Zhao, Beijun; Chen, Baojun; He, Zhiyu; Fan, Qiang; Xu, Ting

    2013-01-01

    The causes of non-stoichiometry in both synthesis and growth process of ZnGeP2 (ZGP) have been studied. The effects of mechanical oscillation (MO) and gradient cooling (GC) techniques employed in the synthesis of ZnGeP2 polycrystals have been investigated. X-Ray Diffraction analysis (XRD) has identified that phosphorus was the main loss component. The growth of ZnGeP2 crystal was carried out in a three-section vertical Bridgman (VB) furnace. A certain amount of phosphorus was added to ZnGeP2 polycrystals before growth. The temperature gradients were controlled at 10-15 °C/cm within crystallization zone. A ZnGeP2 crystal with the size of ?25 mm×55 mm was obtained. The proportions of P, Ge and Zn in the grown crystal were measured with Energy Dispersive Spectrometer (EDS). The results showed that the grown crystal has good stoichiometry and homogeneity. Infrared transmittance and absorption spectra show that the crystal has low absorption in 2.0-10.0 ?m range. Absorption contour maps by automatic infrared microscope demonstrate that optical homogeneity of grown crystal is good.

  14. Fluid Physics and Macromolecular Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Helliwell, John R.; Snell, Edward H.; Chayen, Naomi E.; Judge, Russell A.; Boggon, Titus J.; Pusey, M. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The first protein crystallization experiment in microgravity was launched in April, 1981 and used Germany's Technologische Experimente unter Schwerelosigkeit (TEXUS 3) sounding rocket. The protein P-galactosidase (molecular weight 465Kda) was chosen as the sample with a liquid-liquid diffusion growth method. A sliding device brought the protein, buffer and salt solution into contact when microgravity was reached. The sounding rocket gave six minutes of microgravity time with a cine camera and schlieren optics used to monitor the experiment, a single growth cell. In microgravity a strictly laminar diffusion process was observed in contrast to the turbulent convection seen on the ground. Several single crystals, approx 100micron in length, were formed in the flight which were of inferior but of comparable visual quality to those grown on the ground over several days. A second experiment using the same protocol but with solutions cooled to -8C (kept liquid with glycerol antifreeze) again showed laminar diffusion. The science of macromolecular structural crystallography involves crystallization of the macromolecule followed by use of the crystal for X-ray diffraction experiments to determine the three dimensional structure of the macromolecule. Neutron protein crystallography is employed for elucidation of H/D exchange and for improved definition of the bound solvent (D20). The structural information enables an understanding of how the molecule functions with important potential for rational drug design, improved efficiency of industrial enzymes and agricultural chemical development. The removal of turbulent convection and sedimentation in microgravity, and the assumption that higher quality crystals will be produced, has given rise to the growing number of crystallization experiments now flown. Many experiments can be flown in a small volume with simple, largely automated, equipment - an ideal combination for a microgravity experiment. The term "protein crystal growth" is often historically used to describe these microgravity experiments. This is somewhat inaccurate as the field involves the study of many varied biological molecules including viruses, proteins, DNA, RNA and complexes of those structures. For this reason we use the term macromolecular crystal growth. In this chapter we review a series of diagnostic microgravity crystal growth experiments carried out principally using the European Space Agency (ESA) Advanced Protein Crystallization Facility (APCF). We also review related research, both experimental and theoretical, on the aspects of microgravity fluid physics that affect microgravity protein crystal growth. Our experiments have revealed some surprises that were not initially expected. We discuss them here in the context of practical lessons learnt and how to maximize the limited microgravity opportunities available.

  15. Polymer crystallization in a temperature gradient field with controlled crystal growth rate

    NASA Technical Reports Server (NTRS)

    Hansen, D.; Taskar, A. N.; Casale, O.

    1971-01-01

    A method is described for studying the influence of a temperature gradient on the crystallization of quiescent polymer melts. The apparatus used consists of two brass plates with embedded electrical resistance heaters and cooling coils. The crystallizations experiments were conducted by placing polymer specimens between the paltes, and manually adjusting heaters and cooling fluids for temperature control. Linear polyethylene, isotactic polyprophylene, and a high density polyethylene were used. It is concluded that the role of a temperature gradient in producing oriented crystallization is in producing conditions which lead the spherulitic growth pattern to proceed primarily in one direction. Steep gradients diminish the penetration of supercooling and favors oriented growth.

  16. A low temperature furnace for solution crystal growth on the International Space Station

    NASA Astrophysics Data System (ADS)

    Baç, Nurcan; Harpster, Joseph; Maston, Robert A.; Sacco, Albert

    2000-01-01

    The Zeolite Crystal Growth Furnace Unit (ZCG-FU) is the first module in an integrated payload designed for low temperature crystal growth in solutions on the International Space Station (ISS). This payload is scheduled to fly on the ISS flight 7A.1 in an EXPRESS rack. Its name originated from early shuttle flight experiments limited to the growth of zeolite crystals but has since grown to include other materials of significant commercial interest using the solution method of crystal growth. Zeolites, ferroelectrics, piezeoelectrics and silver halides are some of the materials considered. The ZCG-FU experiment consists of a furnace unit and its electronic control system, and mechanically complex, crystal growth autoclaves suitable for use with a particular furnace and solution. The ZCG facility is being designed to grow into four independent furnaces controlled by IZECS (Improved Zeolite Electronic Control System). IZECS provides monitoring of critical parameters, data logging, safety monitoring, air-to-ground control and operator interfacing. It is suitable for controlling the four furnaces either individually or all at one time. It also contains the power management solid-state drivers and switches for the ZCG-FU furnace. The furnace contains 19 tubes operating at three different temperature zones. .

  17. Growth mechanism of hydrogen clusters

    SciTech Connect

    Nickel, N.H.; Anderson, G.B.; Johnson, N.M.; Walker, J.

    1997-07-01

    It is demonstrated that the exposure of polycrystalline silicon (poly-Si) to monatomic hydrogen results in the formation of H clusters. These H stabilized platelets appear in the near-surface region (100 nm) and are predominantly oriented along {l_brace}111{r_brace} crystallographic planes. Platelet concentrations of {approx}5 x 10{sup 15}, 1.5 x 10{sup 16} -cm{sup {minus}3}, and 2.4 x 10{sup 17} cm{sup {minus}3} were observed in nominally undoped poly-Si, phosphorous doped poly-Si (P = 10{sup 17} cm{sup {minus}3}), and phosphorous doped single crystal silicon (P > 3 x 10{sup 18} cm{sup {minus}3}), respectively. Results obtained on doped c-Si demonstrate that platelet generation occurs only at Fermi-level positions of E{sub C} - E{sub F} < 0.4 eV.

  18. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  19. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  20. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1980-01-01

    The apparatus and techniques used in effort to determine the relationships between crystal growth and electronic properties are described with emphasis on electroepitaxy and melt-grown gallium aresenide crystal. Applications of deep level transient spectroscopy, derivative photocapitance spectroscopy, and SEM-cathodoluminescene in characterizing wide bandgap semiconductors; determining photoionization in MOS, Schottky barriers, and p-n junctions; and for identifying inhomogeneities are examined, as well as the compensation of indium phosphide.

  1. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1985-01-01

    The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.

  2. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C.; Lagowski, Jacek

    1989-01-01

    The program on Crystal Growth of Device Quality GaAs in Space was initiated in 1977. The initial stage covering 1977 to 1984 was devoted strictly to ground-based research. By 1985 the program had evolved into its next logical stage aimed at space growth experiments; however, since the Challenger disaster, the program has been maintained as a ground-based program awaiting activation of experimentation in space. The overall prgram has produced some 80 original scientific publications on GaAs crystal growth, crystal characterization, and new approaches to space processing. Publication completed in the last three years are listed. Their key results are outlined and discussed in the twelve publications included as part of the report.

  3. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  4. Minimal physical requirements for crystal growth self-poisoning

    E-print Network

    Stephen Whitelam; Yuba Raj Dahal; Jeremy D. Schmit

    2015-10-19

    Self-poisoning is a kinetic trap that can impair or prevent crystal growth in a wide variety of physical settings. Here we use dynamic mean-field theory and computer simulation to argue that poisoning is ubiquitous because its emergence requires only the notion that a molecule can bind in two (or more) ways to a crystal; that those ways are not energetically equivalent; and that the associated binding events occur with sufficiently unequal probability. If these conditions are met then the steady-state growth rate is in general a non-monotonic function of the thermodynamic driving force for crystal growth, which is the characteristic of poisoning. Our results also indicate that relatively small changes of system parameters could be used to induce recovery from poisoning.

  5. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  6. Growth Mechanism of Langmuir-Blodgett Films

    SciTech Connect

    Basu, J.K.; Hazra, S.; Sanyal, M.K.

    1999-06-01

    Langmuir-Blodgett (LB) deposition is an astonishingly simple technique to grow well-ordered correlated metal-organic multilayers. To understand this growth mechanism, we have performed x-ray scattering and atomic force microscopic (AFM) studies on cadmium arachidate LB films exhibiting self-affine and logarithmic in-plane correlation at the interfaces. Using linear stochastic theory for interface evolution, it is proposed that a 1D deposition followed by a 2D desorption process is the growth mechanism of LB films. X-ray and AFM measurements confirm the crossover between these two growth regimes. {copyright} {ital 1999} {ital The American Physical Society}

  7. Crystal growth of organics for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.

    1993-01-01

    The crystal growth and characterization of organic and inorganic nonlinear optical materials were extensively studied. For example, inorganic crystals such as thallium arsenic selenide were studied in our laboratory for several years and crystals in sizes over 2.5 cm in diameter are available. Organic crystals are suitable for the ultraviolet and near infrared region, but are relatively less developed than their inorganic counterparts. Very high values of the second harmonic conversion efficiency and the electro-optic coefficient were reported for organic compounds. Single crystals of a binary organic alloy based on m.NA and CNA were grown and higher second harmonic conversion efficiency than the values reported for m.NA were observed.

  8. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has been determined using Kurtz powder technique. Thermo gravimetric and differential thermal analyses were used to study its thermal properties. Dielectric constant, dielectric loss and AC conductivity of the grown p-TTS single crystal has been studied.

  9. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  10. Colloidal crystal growth at externally imposed nucleation clusters

    E-print Network

    Sven van Teeffelen; Christos N. Likos; Hartmut Löwen

    2008-02-15

    We study the conditions under which and how an imposed cluster of fixed colloidal particles at prescribed positions triggers crystal nucleation from a metastable colloidal fluid. Dynamical density functional theory of freezing and Brownian dynamics simulations are applied to a two-dimensional colloidal system with dipolar interactions. The externally imposed nucleation clusters involve colloidal particles either on a rhombic lattice or along two linear arrays separated by a gap. Crystal growth occurs after the peaks of the nucleation cluster have first relaxed to a cutout of the stable bulk crystal.

  11. Crystal growth furnace with trap doors

    DOEpatents

    Sachs, Emanual M. (Watertown, MA); Mackintosh, Brian H. (Lexington, MA)

    1982-06-15

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  12. Crystal growth furnace with trap doors

    NASA Technical Reports Server (NTRS)

    Sachs, Emanual M. (Inventor); Mackintosh, Brian H. (Inventor)

    1982-01-01

    An improved furnace is provided for growing crystalline bodies from a melt. The improved furnace is characterized by a door assembly which is remotely controlled and is arranged so as to selectively shut off or permit communication between an access port in the furnace enclosure and a hot zone within that enclosure. The invention is especially adapted to facilitate use of crystal growing cartridges of the type disclosed in U.S. Pat. No. 4,118,197.

  13. Mechanisms of growth cone repulsion

    PubMed Central

    Krull, Catherine E

    2010-01-01

    Research conducted in the last century suggested that chemoattractants guide cells or their processes to appropriate locations during development. Today, we know that many of the molecules involved in cellular guidance can act as chemorepellents that prevent migration into inappropriate territories. Here, we review some of the early seminal experiments and our current understanding of the underlying molecular mechanisms. PMID:20711492

  14. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  15. Interface stability and defect formation during crystal growth

    SciTech Connect

    Fabietti, L.M.R.

    1991-01-08

    Unidirectional solidification experiments have been carried out in organic crystals with the aim of improving our knowledge on the effects of constraints on the interface morphology and to increase our understanding of the growth of anisotropic materials. The experimental information shows that lateral constraints such as a sharp change in the cross-sectional area in the solid liquid interface path, can produce important changes in the microstructure if the interface morphology is planar, cellular or dendritic. The study of anisotropic materials cover several topics. It is first shown that slight anisotropy does not influence the dendrite tip selection criterion. This conclusion is obtained from the analysis of the relationship between tip radius and velocity for dendrites growing under the steady state condition for two different materials, CBr{sub 4} and C{sub 2}Cl{sub 6}, which have different surface energy anisotropy values. The values of the dendrite operating parameters {sigma}* are compared with the predictions of the solvability theory and the morphological stability theory. The experiments show better agreement with the latter theory. Critical experiments have been designed and carried out to find the response functions which determine the composition and temperature of the interface as a function of velocity in faceted materials. The experiments, carried out in Napthalene-Camphor system, indicate a strong temperature dependence of the planar interface growth which can be correlated with the step growth mechanism. Experiments on the interface instability show an important dependence on the crystallographic orientation. Unidirectional solidification experiments in zone refined Napthalene confined in very thin cells (gap size {le} 50 {mu}m) have proven to be a good method to study the defect production at the solid liquid interface. 118 refs., 90 figs., 5 tabs.

  16. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Lagowski, J.

    1981-01-01

    Experimental and theoretical efforts in the development of crystal growth approaches, effective techniques for electronic characterization on a macro and microscale, and in the discovery of phenomena and processes relevant to GaAs device applications are reported. The growth of electron trap-free bulk GaAS with extremely low density of dislocations is described. In electroepitaxy, growth configuration which eliminates the substrate back-contact was developed. This configuration can be extended to the simultaneous growth on many substrates with a thin solution layer sandwiched between any two of them. The significant reduction of Joule heating effects in the configuration made it possible to realize the in situ measurement of the layer thickness and the growth velocity. Utilizing the advantages of electroepitaxy in achieving abrupt acceleration (or deceleration) of the growth it was shown that recombination centers are formed as a result of growth acceleration.

  17. Study on crystal-melt interface shape of sapphire crystal growth by the KY method

    NASA Astrophysics Data System (ADS)

    Liu, Weina; Lu, Jijun; Chen, Hongjian; Yan, Wenbo; Min, Chunhua; Lian, Qingqing; Wang, Yunman; Cheng, Peng; Liu, Caichi; Xu, Yongliang

    2015-12-01

    In this article, the influence of the flow field structure and temperature gradient of forefront interface on the shape of crystal-melt interface which may reflect the interface stability were analyzed through the method of numerical simulation by using CGSim software. In order to get a suitable interface shape and grow high-quality sapphire crystal, the heater arrangement should be adjusted during the KY process. The results indicate that the effect of Marangoni convection cannot be neglected at the last stage, the crystal-melt interface is governed by the flow field structure and the temperature gradient in melt at the crystal-melt interface. The phenomenon of shoulder concave appears at the stage of shoulder turning and interface inversion appears at the last stage during the crystal growth is discussed. Adjusting heater arrangement may effectively optimize the shape of crystal-melt interface.

  18. Thermal Optimization of Growth and Quality in Protein Crystals

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    1996-01-01

    Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.

  19. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1986-01-01

    It was established that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail. It was further established that in compound semiconductors with a volatile constituent, control of stoichiometry is far more critical than any other crystal growth parameter. It was also shown that, due to suppression of nonstoichiometric fluctuations, the advantages of space for growth of semiconductor compounds extend far beyond those observed in elemental semiconductors. A novel configuration was discovered for partial confinement of GaAs melt in space which overcomes the two major problems associated with growth of semiconductors in total confinement. They are volume expansion during solidification and control of pressure of the volatile constituent. These problems are discussed in detail.

  20. Single crystal growth by gel technique and characterization of lithium hydrogen tartrate

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2015-02-01

    Single crystal growth of lithium hydrogen tartrate by gel encapsulation technique is reported. Dependence of crystal count on gel density, gel pH, reactant concentration and temperature are studied and the optimum conditions for these crystals are worked out. The stoichiometric composition of the grown crystals is determined using EDAX/AES and CH analysis. The grown crystals are characterized by X-ray diffraction, FTIR and Uv-Visible spectroscopy. It is established that crystal falls under orthorhombic system and space group P222 with the cell parameters as: a=10.971 Å, b=13.125 Å and c=5.101 Å; ?=90.5o, ?=?=90°. The morphology of the crystals as revealed by SEM is illustrated. Crystallite size, micro strain, dislocation density and distortion parameters are calculated from the powder XRD results of the crystal. UV-vis spectroscopy shows indirect allowed transition with an optical band gap of~4.83 eV. The crystals are also shown to have high transmittance in the entire visible region. Dependence of dielectric constant, dielectric loss and conductivity on frequency of the applied ac field is analyzed. The frequency-dependent real part of the complex ac conductivity is found to follow the universal dielectric response: ?ac (?)~?s. The trend in the variation of frequency exponent with frequency corroborates the fact that correlated barrier hopping is the dominant charge-transport mechanism in the present system.

  1. Rapid growth of large, defect-free colloidal crystals K. E. Jensen,*a

    E-print Network

    Rapid growth of large, defect-free colloidal crystals K. E. Jensen,*a D. Pennachio,b D. Recht,b D exists for growth onto (100). After growth, extended defects can nucleate and grow only if the crystal and in sedimentation, which can produce large crystals but only at slow growth rates to avoid defects and amorphization

  2. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-08-01

    This thesis summarizes the major technical achievements obtained as a part of a collaborative research and development project between Ecole Polytechnique and Pratt & Whitney Canada. These achievements include: (1) a thermal-mechanical fatigue (TMF) testing rig which is capable of studying the fatigue behaviors of gas turbine materials under simultaneous changes of temperatures and strains or stress; (2) an advanced alternative current potential drop (ACPD) measurement system which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions; (3) fatigue crack initiation and short crack growth data for the titanium specimens designed with notch features associated with bolt holes of compressor discs; (4) thermal-mechanical fatigue crack growth data for two titanium alloys being used in PWC engine components, which explained the material fatigue behavior encountered in full-scale component testing; (5) a complete fractographic analysis for the tested specimens which enhanced the understanding of the fatigue crack growth mechanisms and helped to establish an analytical crack growth model; and (6) application of the ACPD fatigue crack monitoring technique to single tooth firtree specimen (STFT) LCF testing of PWA 1480 single crystal alloy. Finally, a comprehensive discussion concerning the results pertaining to this research project is presented.

  3. Crystal-growth Underground Breeding Extra-sensitive Detectors

    NASA Astrophysics Data System (ADS)

    Mei, Dongming

    2012-02-01

    CUBED (Center for Ultra-Low Background Experiments at DUSEL) collaborators from USD, SDSMT, SDSU, Sanford Lab, and Lawrence Berkeley National Laboratory are working on the development of techniques to manufacture crystals with unprecedented purity levels in an underground environment that may be used by experiments proposed for DUSEL. The collaboration continues to make significant progress toward its goal of producing high purity germanium crystals. High quality crystals are being pulled on a weekly basis at the temporary surface growth facility located on the USD campus. The characterization of the grown crystals demonstrates that the impurity levels are nearly in the range of the needed impurity level for detector-grade crystals. Currently, the crystals are being grown in high-purity hydrogen atmosphere. With an increase in purity due to the zone refining, the group expects to grow high-purity crystals by the end of 2011. The one third of the grown crystals will be manufactured to be detectors; the remaining will be fabricated in to wafers that have large applications in electro and optical devices as well as solar panels. This would allow the research to be connected to market and create more than 30 jobs and multi millions revenues in a few years.

  4. Growth of large zeolite crystals in space

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

    1988-01-01

    Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

  5. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Chang, C. E.; Lefever, R. A.; Wilcox, W. R.

    1975-01-01

    The variation of radial impurity distribution induced by surface tension driven flow increases as the zone length decreases in silicon crystals grown by floating zone melting. In combined buoyancy driven and surface tension driven convection at the gravity of earth, the buoyancy contribution becomes relatively smaller as the zone diameter decreases and eventually convection is dominated by the surface tension driven flow (in the case of silicon, for zones of less than about 0.8 cm in diameter). Preliminary calculations for sapphire suggest the presence of an oscillatory surface tension driven convection as a result of an unstable melt surface temperature that results when the zone is heated by a radiation heater.

  6. Power requirements for space crystal growth

    NASA Technical Reports Server (NTRS)

    Kern, E. L.

    1981-01-01

    The need for power to grow silicon of a size suitable to make into devices is addressed. The expected results are tied to available power. The projection of the size of float zone crystals as a function of time is discussed. An accompanying graph shows that 4 in. will be the normally used diameter by 1985 and 5 in. by 1990. Material to be tested in device lines in this time frame should be 4 in. or more. The various power losses, 25 kW with a 50% power efficiency, which is much improved over present RF heating efficiencies.

  7. Crystal growth of bullet-shaped magnetite in magnetotactic bacteria of the Nitrospirae phylum.

    PubMed

    Li, Jinhua; Menguy, Nicolas; Gatel, Christophe; Boureau, Victor; Snoeck, Etienne; Patriarche, Gilles; Leroy, Eric; Pan, Yongxin

    2015-02-01

    Magnetotactic bacteria (MTB) are known to produce single-domain magnetite or greigite crystals within intracellular membrane organelles and to navigate along the Earth's magnetic field lines. MTB have been suggested as being one of the most ancient biomineralizing metabolisms on the Earth and they represent a fundamental model of intracellular biomineralization. Moreover, the determination of their specific crystallographic signature (e.g. structure and morphology) is essential for palaeoenvironmental and ancient-life studies. Yet, the mechanisms of MTB biomineralization remain poorly understood, although this process has been extensively studied in several cultured MTB strains in the Proteobacteria phylum. Here, we show a comprehensive transmission electron microscopy (TEM) study of magnetic and structural properties down to atomic scales on bullet-shaped magnetites produced by the uncultured strain MYR-1 belonging to the Nitrospirae phylum, a deeply branching phylogenetic MTB group. We observed a multiple-step crystal growth of MYR-1 magnetite: initial isotropic growth forming cubo-octahedral particles (less than approx. 40 nm), subsequent anisotropic growth and a systematic final elongation along [001] direction. During the crystal growth, one major {111} face is well developed and preserved at the larger basal end of the crystal. The basal {111} face appears to be terminated by a tetrahedral-octahedral-mixed iron surface, suggesting dimensional advantages for binding protein(s), which may template the crystallization of magnetite. This study offers new insights for understanding magnetite biomineralization within the Nitrospirae phylum. PMID:25566884

  8. Heavily doped silicon crystals: neckless growth and robust wafers

    NASA Astrophysics Data System (ADS)

    Hoshikawa, Keigo; Huang, Xinming; Taishi, Toshinori

    2005-02-01

    Some interesting phenomena relating to dislocation behavior occurring near the seed/grown-crystal interface during the growth of heavily B-doped Si crystals have been observed, which have not been reported in the literature. The generation and/or propagation of dislocations have been shown to be suppressed remarkably due to an impurity hardening effect in heavily B-doped or heavily B- and Ge-codoped Si crystals. As a result, in the heavily B-doped or B- and Ge-codoped Si crystals, dislocations did not multiply in spite of the fact that some dislocations could not always be fully eliminated even after use of a severe thin neck process. Consequently, neckless growth of a dislocation-free Si crystal has been successfully achieved, based on this discovery. Furthermore, a new kind of so-called "robust Si wafer" has been proposed, which exhibits a high resistance to thermal stress and is suitable for any kind of epitaxial growth without the generation of misfit dislocations.

  9. Chiral Symmetry Breaking in Crystal Growth: Is Hydrodynamic Convection Relevant?

    NASA Technical Reports Server (NTRS)

    Martin, B.; Tharrington, A.; Wu, Xiao-Lun

    1996-01-01

    The effects of mechanical stirring on nucleation and chiral symmetry breaking have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). In contrast to earlier findings, our experiment suggests that the symmetry breaking may have little to do with hydrodynamic convection. Rather the effect can be reasonably accounted for by mechanical damage to incipient crystals. The catastrophic events, creating numerous small 'secondary' crystals, produce statistical domination of one chiral species over the other. Our conclusion is supported by a number of observations using different mixing mechanisms.

  10. Characterization and In-Situ Monitoring of ZnSe Crystal Growth by Seeded PVT for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Feth, Shari T.

    2001-01-01

    Crystal growth from the vapor phase continues to play a significant role in the production of II-VI semiconductor compounds (ZnO, ZnTe, CdTe, etc.) and SiC. As compared to melt growth methods (where available) the advantages are: (1) lower growth temperature(s); (2) reduction in defect concentration; (3) additional purification; and (4) enhanced crystal perfection. A powerful tool in determining the mechanism of PVT is microgravity. Under normal gravity conditions the transport mechanism is a superposition of diffusive and convective fluxes. Microgravity offers the possibility of studying the transport properties without the influence of convective effects. Research on the crystal growth of ZnSe by PVT (P.I.: Su of NASA/MSFC) will help to clarify the effects of convection on crystal growth. A crystal growth furnace with in-situ and real time optical monitoring capabilities was constructed and used to monitor the vapor composition and growing crystal surface morphology during the PVT growth of ZnSe. Using photoluminescence and SIMS, ex-situ, the incorporation of point defects (Zn vacancy) and impurities was found to be correlated to the gravity vector due to the influence of the convective flow. A summary of the results to date will be presented.

  11. The Growth of Protein Crystals Using McDUCK

    NASA Technical Reports Server (NTRS)

    Ewing, Felicia; Wilson, Lori; Nadarajah, Arunan; Pusey, Marc

    1998-01-01

    Most of the current microgravity crystal growth hardware is optimized to produce crystals within the limited time available on orbit. This often results in the actual nucleation and growth process being rushed or the system not coming to equilibrium within the limited time available. Longer duration hardware exists, but one cannot readily pick out crystals grown early versus those which nucleated and grew more slowly. We have devised a long duration apparatus, the Multi-chamber Dialysis Unit for Crystallization Kinetics, or McDUCK. This apparatus-is a series of protein chambers, stacked upon a precipitant reservoir chamber. All chambers are separated by a dialysis membrane, which serves to pass small molecules while retaining the protein. The volume of the Precipitant chamber is equal to the sum of the volumes of the protein chamber. In operation, the appropriate chambers are filled with precipitant solution or protein solution, and the McDUCK is placed standing upright, with the precipitant chamber on the bottom. The precipitant diffuses upwards over time, with the time to reach equilibration a function of the diffusivity of the precipitant and the overall length of the diffusion pathway. Typical equilibration times are approximately 2-4 months, and one can readily separate rapid from slow nucleation and growth crystals. An advantage on Earth is that the vertical precipitant concentration gradient dominates that of the solute, thus dampening out solute density gradient driven convective flows. However, large Earth-grown crystals have so far tended to be more two dimensional. Preliminary X-ray diffraction analysis of lysozyme crystals grown in McDUCK have indicated that the best, and largest, come from the middle chambers, suggesting that there is an optimal growth rate. Further, the improvements in diffraction resolution have been better signal to noise ratios in the low resolution data, not an increase in resolution overall. Due to the persistently large crystals grown we are currently proposing McDUCK for the growth of macromolecule crystals for use in neutron diffraction studies.

  12. Growth and properties of benzil doped benzimidazole (BMZ) single crystals

    SciTech Connect

    Babu, R. Ramesh; Sukumar, M.; Vasudevan, V.; Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 ; Shakir, Mohd.; Ramamurthi, K.; Bhagavannarayana, G.

    2010-09-15

    In the present work, we have made an attempt to study the effect of benzil doping on the properties of benzimidazole single crystals. For this purpose we have grown pure and benzil doped benzimidazole single crystals by vertical Bridgman technique. The grown crystals were characterized by various characterization techniques. The presence of dopants confirmed by powder X-ray diffraction (XRD). Crystalline perfection of the grown crystals has been analysed by high-resolution X-ray diffraction (HRXRD). The transmittance, electrical property and mechanical strength have been analysed using UV-vis-NIR spectroscopic, dielectric and Vicker's hardness studies. The relative second harmonic generation efficiency of pure and doped benzimidazole crystals measured using Kurtz powder test.

  13. Astronaut Wendy Lawrence monitors the Protein Crystal Growth experiment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Astronaut Wendy B. Lawrence, flight engineer and mission specialist for STS-67, scribbles notes on the margin of a checklist while monitoring an experiment on the Space Shuttle Endeavour's middeck. The experiment is the Protein Crystal Growth (PCG), which takes up locker space near the Commercial Materials Dispersion Apparatus Instruments Technology Associates Experiment (CMIX, see decal upper left).

  14. Solidification and crystal growth of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.

  15. Morphological stability and fluid dynamics of vapor crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, F. E.

    1984-01-01

    Research on morphological stability and fluid dynamics of crystal growth is discussed. Interfacial heat and mass transfer research is discussed. The finding of surface roughening is a precursor to a solid-solid phase transition was further quantified. Progress was obtained with the mass spectroscopic characterization of GeSe-Ge I sub 4.

  16. Crewmember working on the mid deck Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

  17. Crewmember working on the spacelab Zeolite Crystal Growth experiment.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View showing Payload Specialists Bonnie Dunbar and Larry DeLucas in the aft section of the U. S. Microgravity Laboratory-1. Dunbar is preparing to load a sample in the Crystal Growth Furnace (CGF) Integrated Furnace Experiment Assembly (IFEA) in rack 9 of the Microgravity Laboratory. DeLucas is checking out the multi-purpose Glovebox Facility.

  18. Computing the crystal growth rate by the interface pinning method.

    PubMed

    Pedersen, Ulf R; Hummel, Felix; Dellago, Christoph

    2015-01-28

    An essential parameter for crystal growth is the kinetic coefficient given by the proportionality between supercooling and average growth velocity. Here, we show that this coefficient can be computed in a single equilibrium simulation using the interface pinning method where two-phase configurations are stabilized by adding a spring-like bias field coupling to an order-parameter that discriminates between the two phases. Crystal growth is a Smoluchowski process and the crystal growth rate can, therefore, be computed from the terminal exponential relaxation of the order parameter. The approach is investigated in detail for the Lennard-Jones model. We find that the kinetic coefficient scales as the inverse square-root of temperature along the high temperature part of the melting line. The practical usability of the method is demonstrated by computing the kinetic coefficient of the elements Na and Si from first principles. A generalized version of the method may be used for computing the rates of crystal nucleation or other rare events. PMID:25637966

  19. Modeling snow crystal growth III: three-dimensional snowfakes

    E-print Network

    Janko Gravner; David Griffeath

    2007-11-26

    We introduce a three-dimensional, computationally feasible, mesoscopic model for snow crystal growth, based on diffusion of vapor, anisotropic attachment, and a semi-liquid boundary layer. Several case studies are presented that faithfully emulate a wide variety of physical snowflakes.

  20. Transmission Problems Arising in Czochralski Process of Crystal Growth

    E-print Network

    Sakurai, Takafumi

    -called Czochralski crystal growth process. Originally the Czo* *chralski process is a three-phase system of solid-liquid-gas and involves the three inte* *rfaces of solid-liquid, liquid-gas and solid-gas which are to be determined that* * the solid- gas and liquid-gas interfaces are known, we propose a transmission problem

  1. Transient natural convection heat and mass transfer in crystal growth

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1990-01-01

    A numerical analysis of transient combined heat and mass transfer across a rectangular cavity is performed. The physical parameters are selected to represent a range of possible crystal growth in solutions. Good agreements with measurement data are observed. It is found that the thermal and solute fields become highly oscillatory when the thermal and solute Grashof numbers are large.

  2. An investigation into the role of polymeric carriers on crystal growth within amorphous solid dispersion systems.

    PubMed

    Tian, Yiwei; Jones, David S; Andrews, Gavin P

    2015-04-01

    Using phase diagrams derived from Flory-Huggins theory, we defined the thermodynamic state of amorphous felodipine within three different polymeric carriers. Variation in the solubility and miscibility of felodipine within different polymeric materials (using F-H theory) has been identified and used to select the most suitable polymeric carriers for the production of amorphous drug-polymer solid dispersions. With this information, amorphous felodipine solid dispersions were manufactured using three different polymeric materials (HPMCAS-HF, Soluplus, and PVPK15) at predefined drug loadings, and the crystal growth rates of felodipine from these solid dispersions were investigated. Crystallization of amorphous felodipine was studied using Raman spectral imaging and polarized light microscopy. Using this data, we examined the correlation among several characteristics of solid dispersions to the crystal growth rate of felodipine. An exponential relationship was found to exist between drug loading and crystal growth rate. Moreover, crystal growth within all selected amorphous drug-polymer solid dispersion systems were viscosity dependent (?(-?)). The exponent, ?, was estimated to be 1.36 at a temperature of 80 °C. Values of ? exceeding 1 may indicate strong viscosity dependent crystal growth in the amorphous drug-polymer solid dispersion systems. We argue that the elevated exponent value (? > 1) is a result of drug-polymer mixing which leads to a less fragile amorphous drug-polymer solid dispersion system. All systems investigated displayed an upper critical solution temperature, and the solid-liquid boundary was always higher than the spinodal decomposition curve. Furthermore, for PVP-FD amorphous dispersions at drug loadings exceeding 0.6 volume ratio, the mechanism of phase separation within the metastable zone was found to be driven by nucleation and growth rather than liquid-liquid separation. PMID:25692314

  3. Journal of Crystal Growth 271 (2004) 128133 Growth of strontium barium niobate

    E-print Network

    Osnabrück, Universität

    2004-01-01

    Journal of Crystal Growth 271 (2004) 128­133 Growth of strontium barium niobate: the liquidus. Roth Available online 11 September 2004 Abstract The liquidus­solidus phase diagram of strontium barium, and dielectric properties, strontium barium niobate, SrxBa1ÀxNb2O6--hen- ceforth denoted as SBN, is one

  4. The growth mechanism of grain boundary carbide in Alloy 690

    SciTech Connect

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-07-15

    The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{sub 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=?(3)×a{sub matrix} and a{sub transition}=?(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.

  5. Bacteria can promote calcium oxalate crystal growth and aggregation.

    PubMed

    Chutipongtanate, Somchai; Sutthimethakorn, Suchitra; Chiangjong, Wararat; Thongboonkerd, Visith

    2013-03-01

    Our previous report showed that uropathogenic bacteria, e.g., Escherichia coli, are commonly found inside the nidus of calcium oxalate (CaOx) kidney stones and may play pivotal roles in stone genesis. The present study aimed to prove this new hypothesis by direct examining CaOx lithogenic activities of both Gram-negative and Gram-positive bacteria. CaOx was crystallized in the absence (blank control) or presence of 10(5) CFU/ml E. coli, Klebsiella pneumoniae, Staphylococcus aureus, or Streptococcus pneumoniae. Fragmented red blood cell membranes and intact red blood cells were used as positive and negative controls, respectively. The crystal area and the number of aggregates were measured to initially screen for effects of bacteria on CaOx crystal growth and aggregation. The data revealed that all the bacteria tested dramatically increased the crystal area and number of crystal aggregates. Validation assays (spectrophotometric oxalate-depletion assay and an aggregation-sedimentation study) confirmed their promoting effects on both growth (20.17 ± 3.42, 17.55 ± 2.27, 16.37 ± 1.38, and 21.87 ± 0.85 % increase, respectively) and aggregation (57.45 ± 2.08, 51.06 ± 5.51, 55.32 ± 2.08, and 46.81 ± 3.61 % increase, respectively) of CaOx crystals. Also, these bacteria significantly enlarged CaOx aggregates, with the diameter greater than the luminal size of distal tubules, implying that tubular occlusion might occur. Moreover, these bacterial effects were dose-dependent and specific to intact viable bacteria, not intact dead or fragmented bacteria. In summary, intact viable E. coli, K. pneumoniae, S. aureus, and S. pneumoniae had significant promoting effects on CaOx crystal growth and aggregation. This functional evidence supported the hypothesis that various types of bacteria can induce or aggravate metabolic stone disease, particularly the CaOx type. PMID:23334195

  6. Delivered at the Crystal Engineering to Crystal Growth: Design and Function Symposium, ACS 223rd National Meeting, Orlando,

    E-print Network

    Delivered at the Crystal Engineering to Crystal Growth: Design and Function Symposium, ACS 223rd National Meeting, Orlando, Florida, April 7-11, 2002 Paracetamol Crystallization Using Laser Backscattering: A systematic approach is developed for the in situ control of the crystal size distribution, and is applied

  7. Aluminium segregation of TiAl during single crystal growth

    SciTech Connect

    Bi, Y.J.; Abell, J.S.

    1997-09-15

    {gamma}-TiAl single crystals have been successfully prepared by an induction-heated cold crucible Czochralski technique which offers more flexibility than vertical float zoning. Compositional analysis of the Czochralski grown single crystals indicates a homogeneous composition after initial transition; and the average composition is close to the peritectic composition. However, {gamma}-TiAl single crystals prepared by vertical float zoning show a small aluminium segregation profile along the growth direction; and the average composition of the as-grown crystals is close to that of the starting alloy. Compositional analysis further demonstrated the banded structure with alternative single {gamma}-phase and {alpha}{sub 2} + {gamma} lamellar regions in the vertical float zoned Ti-54 at.% Al.

  8. In Situ ?GISAXS: II. Thaumatin Crystal Growth Kinetic

    PubMed Central

    Gebhardt, Ronald; Pechkova, Eugenia; Riekel, Christian; Nicolini, Claudio

    2010-01-01

    The formation of thaumatin crystals by Langmuir-Blodgett (LB) film nanotemplates was studied by the hanging-drop technique in a flow-through cell by synchrotron radiation micrograzing-incidence small-angle x-ray scattering. The kinetics of crystallization was measured directly on the interface of the LB film crystallization nanotemplate. The evolution of the micrograzing-incidence small-angle x-ray scattering patterns suggests that the increase in intensity in the Yoneda region is due to protein incorporation into the LB film. The intensity variation suggests several steps, which were modeled by system dynamics based on first-order differential equations. The kinetic data can be described by two processes that take place on the LB film, a first, fast, process, attributed to the crystal growth and its detachment from the LB film, and a second, slower process, attributed to an unordered association and conversion of protein on the LB film. PMID:20713011

  9. Protein crystal growth in microgravity: Temperature induced large scale crystallization of insulin

    NASA Technical Reports Server (NTRS)

    Long, Marianna M.; Delucas, Larry J.; Smith, C.; Carson, M.; Moore, K.; Harrington, Michael D.; Pillion, D. J.; Bishop, S. P.; Rosenblum, W. M.; Naumann, R. J.

    1994-01-01

    One of the major stumbling blocks that prevents rapid structure determination using x-ray crystallography is macro-molecular crystal growth. There are many examples where crystallization takes longer than structure determination. In some cases, it is impossible to grow useful crystals on earth. Recent experiments conducted in conjuction with NASA on various Space Shuttle missions have demonstrated that protein crystals often grow larger and display better internal molecular order than their earth-grown counterparts. This paper reports results from three Shuttle flights using the Protein Crystallization Facility (PCF). The PCF hardware produced large, high-quality insulin crystals by using a temperature change as the sole means to affect protein solubility and thus, crystallization. The facility consists of cylinders/containers with volumes of 500, 200, 100, and 50 ml. Data from the three Shuttle flights demonstrated that larger, higher resolution crystals (as evidenced by x-ray diffraction data) were obtained from the microgravity experiments when compared to earth-grown crystals.

  10. Mechanical grain growth in nanocrystalline copper.

    PubMed

    Li, James C M

    2006-06-01

    Nanograined materials have some unusual properties. To maintain the small size of the grains, grain growth should be avoided. But recently grain growth has been observed under an indenter at liquid-nitrogen temperatures. Such grain growth has never been reported before. How can this happen and how can it be prevented? These questions are answered here using a simple tilt boundary. It is found that high purity and nonequilibrium structure are necessary conditions for mechanical grain growth. The material must be pure enough so that free dislocations are available to move out of the boundary. But the boundary should not be in the lowest-energy state so that extra dislocations are available to be emitted by stress. Based on these conditions, methods can be devised to avoid low temperature grain growth. PMID:16803250

  11. Transport phenomena of growth-in-gel zeolite crystallization in microgravity

    NASA Technical Reports Server (NTRS)

    Zhang, H.; Ostrach, S.; Kamotani, Y.

    1993-01-01

    Secondary nucleation (SN) due to crystal sedimentation has been believed to be one of the major effects that causes smaller sizes of final zeolite crystals. The present investigation indicates that, in a reactor, this gravity-induced SN occurs only within a white opaque column termed the gel portion. Under normal gravity this portion shrinks to the bottom of the hydrothermal reactor, leaving a clear portion of solution at the top, due to depletion of the flocculated gel particles. Solution phase nucleation and crystallization is assumed and a correlation for the shrinkage is therefore derived, which shows good agreement with experimental observations. A non-dimensional parameter is suggested as a criterion for the occurrence of SN. Based on the parameter whether or not microgravity is beneficial to zeolite growth is discussed. Also, the growth mechanism and the transport phenomena in the absence of gravity are discussed.

  12. Direct observation of crystal growth from solution using optical investigation of a growing crystal face

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra

    1994-01-01

    The first technical report for the period 1 Jan. 1993 till 31 Dec. 1993 for the research entitled, 'Direct observation of crystal growth from solution using Optical Investigation of a growing crystal Face' is presented. The work on the project did not start till 1 June 1993 due to the non-availability of the required personnel. The progress of the work during the period 1 June 1993 till the end of 1993 is described. Significant progress was made for testing various optical diagnostic techniques for monitoring crystal solution. Some of the techniques that are being tested are: heterodyne detection technique, in which changes in phase are measured as a interferometric function of time/crystal growth; a conventional technique, in which a fringe brightness is measured as a function of crystal growth/time; and a Mach-Zehnder interferometric technique in which a fringe brightness is measured as a function of time to obtain information on concentration changes. During the second year it will be decided to incorporate the best interferometric technique along with the ellipsometric technique, to obtain real time in-situ growth rate measurements. A laboratory mock-up of the first two techniques were made and tested.

  13. Multiscale Modeling of Crystal Growth and Microstructural Evolution of CdZnTe

    NASA Astrophysics Data System (ADS)

    Henager, Charles, Jr.

    2013-03-01

    Crystal growth models and modeling tools for CdTe and CZT along with experimental melt-growth data will be presented and discussed. The emphasis will be on creating a multiscale-modeling framework that can be applied to solve portions of the crystal quality and reproducibility problem of CZT crystals grown for high-resolution radiation detectors. The growth models and methods include ab initio models of CdTe, ab initio molecular dynamics (MD) models CdTe, MD of solidification of CdTe, equilibrium growth defects in CdTe, and development of coarser-scale microstructural evolution models using phase field methods. These model and theory results will be discussed in terms of designing a multiscale approach to two relevant problems in CZT crystal growth, namely solid-liquid interface (SLI) stability and concurrent defect generation in the hot but cooling CZT solid. This dovetails with recent experimental research focused on the growth of CdTe from Te-rich melts with an emphasis on SLI instability. Experimental data on SLI instabilities will be featured as well as results of transmitted IR data on Te-particle distributions in as-grown CZT. A new mechanism of Te-particle genesis and spatial arrangement in CdTe and CZT is discussed in terms of a Rayleigh instability mechanism coupled with crystallographic SLI instabilities during growth. However, there are gaps in our capabilities at every length and time scale, plus gaps in building coarse-grained models from fine-scale models, in statistical representations of complex equilibria, and in understanding the complexities of solidification in ternary alloy systems where coupled thermal, concentration, stress, liquid flow, and SLI morphological fields exist. The talk concludes with an assessment of methods and approaches to address desired models and simulations of CZT solidification from the melt. This research was supported by the U.S. Department of Energy under Contract No. DE-AC05-76RL01830.

  14. Electrochemical liquid-liquid-solid (ec-LLS) crystal growth: a low-temperature strategy for covalent semiconductor crystal growth.

    PubMed

    Fahrenkrug, Eli; Maldonado, Stephen

    2015-07-21

    This Account describes a new electrochemical synthetic strategy for direct growth of crystalline covalent group IV and III-V semiconductor materials at or near ambient temperature conditions. This strategy, which we call "electrochemical liquid-liquid-solid" (ec-LLS) crystal growth, marries the semiconductor solvation properties of liquid metal melts with the utility and simplicity of conventional electrodeposition. A low-temperature liquid metal (i.e., Hg, Ga, or alloy thereof) acts simultaneously as the source of electrons for the heterogeneous reduction of oxidized semiconductor precursors dissolved in an electrolyte as well as the solvent for dissolution of the zero-valent semiconductor. Supersaturation of the semiconductor in the liquid metal triggers eventual crystal nucleation and growth. In this way, the liquid electrolyte-liquid metal-solid crystal phase boundary strongly influences crystal growth. As a synthetic strategy, ec-LLS has several intrinsic features that are attractive for preparing covalent semiconductor crystals. First, ec-LLS does not require high temperatures, toxic precursors, or high-energy-density semiconductor reagents. This largely simplifies equipment complexity and expense. In practice, ec-LLS can be performed with only a beaker filled with electrolyte and an electrical circuit capable of supplying a defined current (e.g., a battery in series with a resistor). By this same token, ec-LLS is compatible with thermally and chemically sensitive substrates (e.g., plastics) that cannot be used as deposition substrates in conventional syntheses of covalent semiconductors. Second, ec-LLS affords control over a host of crystal shapes and sizes through simple changes in common experimental parameters. As described in detail herein, large and small semiconductor crystals can be grown both homogeneously within a liquid metal electrode and heterogeneously at the interface of a liquid metal electrode and a seed substrate, depending on the particular details chosen for ec-LLS. Third, the rate of introduction of zero-valent materials into the liquid metal is precisely gated with a high degree of resolution by the applied potential/current. The intent of this Account is to summarize the key elements of ec-LLS identified to date, first contextualizing this method with respect to other semiconductor crystal growth methods and then highlighting some unique capabilities of ec-LLS. Specifically, we detail ec-LLS as a platform to prepare Ge and Si crystals from bulk- (?1 cm(3)), micro- (?10(-10) cm(3)), and nano-sized (?10(-16) cm(3)) liquid metal electrodes in common solvents at low temperature. In addition, we describe our successes in the preparation of more compositionally complex binary covalent III-V semiconductors. PMID:26132141

  15. Kinetics of Nucleation and Crystal Growth in Glass Forming Melts in Microgravity

    NASA Technical Reports Server (NTRS)

    Day, Delbert E.; Ray, Chandra S.

    1999-01-01

    The following list summarizes the most important results that have been consistently reported for glass forming melts in microgravity: (1) Glass formation is enhanced for melts prepared in space; (2) Glasses prepared in microgravity are more chemically homogeneous and contain fewer and smaller chemically heterogeneous regions than identical glasses prepared on earth; (3) Heterogeneities that are deliberately introduced such as Pt particles are more uniformly distributed in a glass melted in space than in a glass melted on earth; (4) Glasses prepared in microgravity are more resistant to crystallization and have a higher mechanical strength and threshold energy for radiation damage; and (5) Glasses crystallized in space have a different microstructure, finer grains more uniformly distributed, than equivalent samples crystallized on earth. The preceding results are not only scientifically interesting, but they have considerable practical implications. These results suggest that the microgravity environment is advantageous for developing new and improved glasses and glass-ceramics that are difficult to prepare on earth. However, there is no suitable explanation at this time for why a glass melted in microgravity will be more chemically homogeneous and more resistant to crystallization than a glass melted on earth. A fundamental investigation of melt homogenization, nucleation, and crystal growth processes in glass forming melts in microgravity is important to understanding these consistently observed, but yet unexplained results. This is the objective of the present research. A lithium disilicate (Li2O.2SiO2) glass will be used for this investigation, since it is a well studied system, and the relevant thermodynamic and kinetic parameters for nucleation and crystal growth at 1-g are available. The results from this research are expected to improve our present understanding of the fundamental mechanism of nucleation and crystal growth in melts and liquids, and to lead improvements in glass processing technology on earth, with the potential for creating new high performance glasses and glass-ceramics.

  16. On the origin of surface imposed anisotropic growth of salicylic and acetylsalicylic acids crystals during droplet evaporation.

    PubMed

    Przyby?ek, Maciej; Cysewski, Piotr; Pawelec, Maciej; Zió?kowska, Dorota; Kobierski, Miros?aw

    2015-03-01

    In this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover, evaporative crystallization of a large volume of solution was performed. As we found, paraffin which is non-polar surface promotes formation of crystals morphologically similar to those obtained via bulk evaporative crystallization. On the other hand, when crystallization is carried out on the polar surfaces (glass and PVA), there is a significant orientation effect. This phenomenon is manifested by the reduction of the number of peaks in PXRD spectrum recorded for deposited on the surface crystals. Noteworthy, reduction of PXRD signals is not observed for powder samples obtained after scraping crystals off the glass. In order to explain the mechanism of carboxylic crystals growth on the polar surfaces, quantum-chemical computations were performed. It has been found that crystal faces of the strongest orientation effect can be characterized by the highest surface densities of intermolecular interactions energy (IIE). In case of SA and ASA crystals formed on the polar surfaces the most dominant faces are characterized by the highest adhesive and cohesive properties. This suggests that the selection rules of the orientation effect comes directly from surface IIE densities. PMID:25690367

  17. Vapour growth and characterization of beta indium sesquitelluride crystals

    NASA Astrophysics Data System (ADS)

    Reshmi, P. M.; Kunjomana, A. G.; Chandrasekharan, K. A.; Teena, M.

    2014-05-01

    Physical Vapour Deposition (PVD) provides stoichiometric crystals of different morphology, depending upon the materials, geometry of ampoules, temperature profiles, growth parameters and kinetics of crystallization. The crystal forms such as needles, platelets and spherulites of beta indium sesquitelluride (?-In2Te3) were produced by controlling the temperature of source and growth zones. The X-Ray Diffraction (XRD) and chemical analysis of the spherulitic crystals confirmed zinc blende structure with beta phase. Their resistivity (135.16 ? cm) at room temperature (300 K) was determined by van der Pauw method. The temperature dependence of DC conductivity was investigated using the conventional two-probe technique. The variation of dielectric constant (?1) and dielectric loss (tan ?) with temperature has been studied for different frequencies (1 kHz-1 MHz). The AC conductivity, ?ac(?) was found to vary with angular frequency as ?s, where s is the frequency exponent. The values of s lie very close to unity and show a slight decrease with increase in temperature, which indicate a Correlated Barrier Hopping (CBH) between centres forming Intimate Valence Alternation Pairs (IVAP). The activation energy for conduction ranges from 0.187 eV to 0.095 eV. The microhardness of ?-In2Te3 spherulites is found to be 353.5 kg/mm2, which is higher than that of other semiconducting chalcogenides. The results thus obtained on crystals grown from vapour phase open up ample possibilities for radiation detector applications.

  18. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it will be oriented to some degree in a flowing boundary layer, even at the low flow velocities measured about macromolecule crystals. Flow-driven effects resulting in misorientation upon addition to and incorporation into the crystal need only be a small fraction of a percentage to significantly affect the resulting crystal. One Earth, concentration gradient driven flow will maintain a high interfacial concentration, i.e., a high level (essentially that of the bulk solution) of solute association at the interface and higher growth rate. Higher growth rates mean an increased probability that misaligned growth units are trapped by subsequent growth layers before they can be desorbed and try again, or that the desorbing species will be smaller than the adsorbing species. In microgravity the extended diffusive boundary layer will lower the interfacial concentration. This results in a net dissociation of aggregated species that diffuse in from the bulk solution, i.e., smaller associated species, which are more likely able to make multiple attempts to correctly bind, yielding higher quality crystals.

  19. Detached and Floating-Zone Growth of Semiconductor Crystals on the ISS

    NASA Technical Reports Server (NTRS)

    Dold, P.; Kaiser, N.; Benz, K. W.; Croell, A.; Szofran, F. R.; Cobb, S.; Volz, M.; Schweizer, M.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Understanding the mechanism of detached Bridgman growth and establishing the growth of large scale germanium-silicon crystals by the float-zone technique are the key points of the project "RDGS - Reduction of Defects in Germanium-Silicon". The contact angle of the melt and the growth angle of the crystal are essential parameters which allow a controlled use of detached growth. The contact angle was determined for a variety of different substrates and melt compositions; pBN showed the highest value for pure germanium as well as for germanium-rich GeSi melts. The growth angle of Ge(sub 0.95) Si(sub 0.05) was measured to be 8.5-10.5 degrees which concurs with the values of pure germanium and silicon, respectively. The temperature dependence and the concentration dependence of the surface tension were determined for concentrations up to 10at% silicon (partial derivative (gamma)/partial derivative T=-0.08 (raised dot) 10(exp -3)N/m (raised dot) K, partial derivative (gamma)/partial derivative (C)=2.2 (raised dot) 10(exp -3)N/m (raised dot) at%). Using these values, the critical Marangoni number indicating the transition to time-dependent thermocapillary flow will be exceeded for the growth of large scale float-zone crystals onboard the ISS. Therefore, suitable tools for flow control are required.

  20. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  1. Liquid crystalline growth within a phase-field crystal model

    E-print Network

    Sai Tang; Simon Praetorius; Rainer Backofen; Axel Voigt; Yan-Mei Yu; Jincheng Wang

    2015-01-09

    By using a phase-field crystal (PFC) model, the liquid-crystal growth of the plastic triangular phase is simulated with emphasis on crystal shape and topological defect formation. The equilibrium shape of a plastic triangular crystal (PTC) grown from a isotropic phase is compared with that grown from a columnar/smectic A (CSA) phase. While the shape of a PTC nucleus in the isotropic phase is almost identical to that of a classical PFC model, the shape of a PTC nucleus in CSA is affected by the orientation of stripes in the CSA phase, and irregular hexagonal, elliptical, octagonal, and rectangular shapes are obtained. Concerning the dynamics of the growth process we analyse the topological structure of the nematic-order, which starts from nucleation of $+\\frac{1}{2}$ and $-\\frac{1}{2}$ disclination pairs at the PTC growth front and evolves into hexagonal cells consisting of $+1$ vortices surrounded by six satellite $-\\frac{1}{2}$ disclinations. It is found that the orientational and the positional order do not evolve simultaneously, the orientational order evolves behind the positional order, leading to a large transition zone, which can span over several lattice spacings.

  2. The growth of ZnO crystals from the melt

    E-print Network

    Klimm, D; Schulz, D; Fornari, R

    2008-01-01

    The peculiar properties of zinc oxide (ZnO) make this material interesting for very different applications like light emitting diodes, lasers, and piezoelectric transducers. Most of these applications are based on epitaxial ZnO layers grown on suitable substrates, preferably bulk ZnO. Unfortunately the thermochemical properties of ZnO make the growth of single crystals difficult: the triple point 1975 deg C., 1.06 bar and the high oxygen fugacity at the melting point p_O2 = 0.35 bar lead to the prevailing opinion that ZnO crystals for technical applications can only be grown either by a hydrothermal method or from "cold crucibles" of solid ZnO. Both methods are known to have significant drawbacks. Our thermodynamic calculations and crystal growth experiments show, that in contrast to widely accepted assumptions, ZnO can be molten in metallic crucibles, if an atmosphere with "self adjusting" p_O2 is used. This new result is believed to offer new perspectives for ZnO crystal growth by established standard techn...

  3. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  4. Experiment MA-028 crystal growth. [low gravity manufacturing of single crystals from Apollo/Soyuz Test Project

    NASA Technical Reports Server (NTRS)

    Lind, D. M.

    1976-01-01

    A crystal growth experiment is reported on orbital space flights. The experiment was performed during the Apollo-Soyuz Test Project. The Crystal Growth Experiment assessed a novel process for growing single crystals of insoluble substances by allowing two or more reactant solutions to diffuse toward each other through a region of pure solvent in zero gravity. The experiment was entirely successful and yielded crystals of about the expected size, quality, and number.

  5. Journal of Crystal Growth 122 (1992) 286--292 j o, CRYSTAL North-Holland GROWTH

    E-print Network

    Yonath, Ada E.

    1992-01-01

    . coli at base 47. It was found that the modified tRNA molecule binds to the ribosome and can. However, a systematic Of all organelles in the living cell, only the search for suitable sources for ribosomes and for ribosome has thus far been crystallized. Ribo- appropriate crystallization conditions led

  6. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  7. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  8. The mechanical properties of single crystal {alpha}-Si{sub 3}N{sub 4}

    SciTech Connect

    Reimanis, I.E.; Suematsu, H.; Petrovic, J.J.; Mitchell, T.E.

    1993-11-01

    The ambient and high temperature mechanical properties of single crystal {alpha}{minus}Si{sub 3}N{sub 4} synthesized by chemical vapor deposition are reported. Crack patterns in the as-grown crystals and around Vicker`s indentations reveal that significant residual stresses develop during growth. Indentation studies indicate that the cleavage is essentially isotropic in {alpha}{minus}Si{sub 3}N{sub 4} at 25 C as well as at 1400 C. Transmission electron microscopy on crystals deformed at high temperatures, confirmed previous observation that high-temperature slip occurs primarily on (1011)[1120] system.

  9. Time-dependent Protein-directed Growth of Gold Nanoparticles within a Single Crystal of Lysozyme

    SciTech Connect

    H Wei; Z Wang; J Zhang; S House; Y Gao; L Yang; H Robinson; L Tan; H Xing; C Hou

    2011-12-31

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  10. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme

    SciTech Connect

    Wei, H.; Robinson, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Tan, L. H.; Xing, H.; Hou, C.; Robertson, I. M.; Zuo, J.-M.; Lu, Y.

    2011-01-30

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  11. Large Single-Crystal Graphene Growth on Copper: The Role of Oxygen

    NASA Astrophysics Data System (ADS)

    Hao, Yufeng; Bharathi, M. S.; Wang, Lei; Liu, Yuanyue; Chen, Hua; Nie, Shu; Wang, Xiaohan; Chou, Harry; Tan, Cheng; Fallahazad, Babak; Ramanarayan, Hariharaputran; Tutuc, Emanuel; Yakobson, Boris I.; McCarty, Kevin F.; Zhang, Yong-Wei; Kim, Philip; Hone, James; Colombo, Luigi; Ruoff, Rodney S.

    2014-03-01

    Graphene grown by CVD on Cu is enabling fundamental studies and applications. However, growth of high quality single crystals with controlled domain size and morphology has not been achieved, implying unknown or uncontrolled growth parameters. We discovered that oxygen on the Cu surface not only decreases the graphene nucleation density but also accelerate graphene domain growth and affect the domain shapes. SEM, EBSD, Raman, and LEED were used to characterize and analyze the graphene domains under the effects of oxygen. First-principles calculations and phase-field simulations provide deeper insight into the proposed growth mechanisms. Finally, electric- and magneto-transport measurements show that the graphene quality is comparable to mechanically exfoliated graphene, in spite of being grown in the presence of oxygen.

  12. Simulation of triglycine sulfate crystal growth in space

    NASA Technical Reports Server (NTRS)

    Sun, Jianhua; Carlson, Frederick M.; Wilcox, William R.

    1992-01-01

    Consideration is given to the numerical simulation of the solution growth of triglycine sulfate in space, with heat transfer, mass transfer, buoyancy-driven convection, the dependence of solubility on temperature, and finite interface kinetics taken into account. In the bulk solution, weak thermal convection was established quickly. The thermal convection then becomes dominated by solutionally driven motion. The convection due to the steady background g is predicted to influence both the growth rate and the crystal morphology. The time required for buoyancy-driven convection to influence the growth rate depends on the magnitude of g, i.e., more time for smaller g. Under the same cooling condition, the average growth rate increases as the magnitude of g increases. A steady average growth rate of 1.0 mm/d can be obtained when a properly designed cooling rate is applied to the sting. The most uniform growth is obtained when the g vector is aligned such that the solution flows normal towards the center of the crystal surface.

  13. Susceptor for EFG crystal growth apparatus

    DOEpatents

    Menna, Andrew A. (Belmont, MA)

    1996-09-03

    An improved susceptor for a crucible/die assembly for growing tubular crystalline structures by the EFG process is provided. The crucible/die assembly comprises a die having a substantially polygonally-shaped top end surface for supporting a film of silicon feed material that is replenished from a melt in the crucible through capillary action. A hollow crystalline body is grown from the film of silicon material on the top end surface of the die. The heat susceptor is made of graphite or similar material, and has a peripheral configuration similar to that of the die. Further, the upper surface of the heat susceptor has a central land and a plurality of circumferentially-spaced upwardly extending projections. The central land thermally contacts a central portion of the lower surface of the crucible/die, and the projections thermally contact the lower surface of the crucible/die at its corners, whereby a temperature distribution is provided that permits growth of hollow bodies having more nearly constant thickness walls.

  14. [New molecular mechanisms of growth hormone insensitivity].

    PubMed

    Edouard, T; Raynal, P; Yart, A; Conte-Auriol, F; Salles, J-P; Tauber, M

    2008-02-01

    Growth hormone (GH), secreted by the anterior pituitary into the circulation, binds to membrane receptors in target tissues to stimulate body growth; most of its effects is mediated by the insulin-like growth factor 1 (IGF-1). In addition to promoting growth, GH has important metabolic actions. The syndrome of GH insensitivity (GHI) was first identified in 1966 by Laron et al. in three children with clinical phenotype characteristic of growth hormone deficiency but associated with elevated serum concentration of GH. Direct evidence of a GH receptor (GHR) abnormality was provided in 1989. More recently, molecular abnormalities in the postreceptor signalling mechanism were found. Mutations of signal transducer and activator of transcription 5b (Stat5b) were reported in patients with growth retardation and primary immunodeficiency. Mutations of the tyrosin phosphatase Shp2 were identified in patients affected by Noonan syndrome characterized by short stature, cardiopathy and increased risk of leukaemia. The unmasking of the molecular bases for these defects will contribute greatly to our future understanding of both normal and aberrant growth. Moreover, this knowledge should bring insight on cancerogenesis or immunodeficiency caused by cytokines resistance. PMID:18207712

  15. Control of crystal growth in water purification by directional freeze crystallization

    NASA Technical Reports Server (NTRS)

    Conlon, William M. (Inventor)

    1996-01-01

    A Directional Freeze Crystallization system employs an indirect contact heat exchanger to freeze a fraction of liquid to be purified. The unfrozen fraction is drained away and the purified frozen fraction is melted. The heat exchanger must be designed in accordance with a Growth Habit Index to achieve efficient separation of contaminants. If gases are dissolved in the liquid, the system must be pressurized.

  16. Crystal growth and anisotropy of high temperature thermoelectric properties of yttrium borosilicide single crystals

    NASA Astrophysics Data System (ADS)

    Hossain, M. Anwar; Tanaka, Isao; Tanaka, Takaho; Khan, A. Ullah; Mori, Takao

    2016-01-01

    We studied thermoelectric properties of YB41Si1.3 single crystals grown by the floating zone method. The composition of the grown crystal was confirmed by electron probe micro-analysis. We have determined the growth direction for the first time for these borosilicides, and discovered relatively large anisotropy in electrical properties. We measured the electrical resistivity and Seebeck coefficient along [510] (the growth direction) and [052] directions and we found that this crystal exhibits strong electrical anisotropy with a maximum of more than 8 times. An interesting layered structural feature is revealed along [510] with dense boron cluster layers and yttrium layers, with conductivity enhanced along this direction. We obtained 3.6 times higher power factor along [510] compared to that along [052]. Although the ZT of the present system is low, anisotropy in the thermoelectric properties of a boride was reported for the first time, and can be a clue in developing other boride systems also.

  17. Substrate-mediated diffusion-induced growth of single-crystal nanowires.

    PubMed

    Mohammad, S Noor

    2009-11-28

    Theoretical investigations of the growth and growth rates of single-crystal nanowires (NWs) by vapor phase mechanisms have been carried out. Substrate-induced processes are assumed to dominate this growth. The modeling for growth takes adsorption, desorption, surface scattering, and diffusion into account. It takes into consideration also the retarding electric field arising from the scattering of the NW vapor species by both the substrate and the NW sidewalls. Growth characteristics under the influence of the retarding electric field have been studied. Competitive roles of adatom diffusivity and the electric field in the NW growth are elucidated. Influence of the growing NW length and the adatom impingement rate on the NW growth rate has been described. The effect of adatom collection area around each NW has been examined. The NW tapering and kinking have been explained. The fundamentals of the substrate induction and details of the growth parameters have been analyzed. The influence of foreign element catalytic agents in the vapor-liquid-solid mechanism has been presented. All these have led to the understanding and resolution of problems, controversies, and contradictions involving substrate-induced NW growths. PMID:19947700

  18. Crystal growth from the vapor phase experiment MA-085

    NASA Technical Reports Server (NTRS)

    Wiedemeir, H.; Sadeek, H.; Klaessig, F. C.; Norek, M.

    1976-01-01

    Three vapor transport experiments on multicomponent systems were performed during the Apollo Soyuz mission to determine the effects of microgravity forces on crystal morphology and mass transport rates. The mixed systems used germanium selenide, tellurium, germanium tetraiodide (transport agent), germanium monosulfide, germanium tetrachloride (transport agent), and argon (inert atmosphere). The materials were enclosed in evacuated sealed ampoules of fused silica and were transported in a temperature gradient of the multipurpose electric furnace onboard the Apollo Soyuz spacecraft. Preliminary evaluation of 2 systems shows improved quality of space grown crystals in terms of growth morphology and bulk perfection. This conclusion is based on a direct comparison of space grown and ground based crystals by means of X-ray diffraction, microscopic, and chemical etching techniques. The observation of greater mass transport rates than predicted for a microgravity environment by existing vapor transport models indicates the existence of nongravity caused transport effects in a reactive solid/gas phase system.

  19. Crystal growth and characterization of calcium metaborate scintillators

    NASA Astrophysics Data System (ADS)

    Fujimoto, Y.; Yanagida, T.; Kawaguchi, N.; Fukuda, K.; Totsuka, D.; Watanabe, K.; Yamazaki, A.; Chani, V.; Nikl, M.; Yoshikawa, A.

    2013-03-01

    Calcium metaborate CaB2O4 single crystals were grown by the Czochralski (CZ) method with the radio-frequency (RF) heating system. In these crystals, a plane cleavage was observed along the growth direction. The crystals had an 80% transparency, and no absorption bands were detected in the 190-900 nm wavelength range. The 241Am 5.5 MeV ?-ray-excited radioluminescence spectrum of CaB2O4 demonstrated a broad intrinsic luminescence peak at 300-400 nm, which originated from the lattice defects or an exciton-based emission. According to the pulse height spectrum, when irradiated by neutrons from a 252Cf source, the scintillation light yielded approximately 3200 photons per neutron (ph/n).

  20. Metastable Solution Thermodynamic Properties and Crystal Growth Kinetics

    NASA Technical Reports Server (NTRS)

    Kim, Soojin; Myerson, Allan S.

    1996-01-01

    The crystal growth rates of NH4H2PO4, KH2PO4, (NH4)2SO4, KAl(SO4)2 central dot 12H2O, NaCl, and glycine and the nucleation rates of KBr, KCl, NaBr central dot 2H2O, (NH4)2Cl, and (NH4)2SO4 were expressed in terms of the fundamental driving force of crystallization calculated from the activity of supersaturated solutions. The kinetic parameters were compared with those from the commonly used kinetic expression based on the concentration difference. From the viewpoint of thermodynamics, rate expressions based on the chemical potential difference provide accurate kinetic representation over a broad range of supersaturation. The rates estimated using the expression based on the concentration difference coincide with the true rates of crystallization only in the concentration range of low supersaturation and deviate from the true kinetics as the supersaturation increases.

  1. Modelling the growth of triglycine sulphate crystals in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Yoo, Hak-Do; Wilcox, William R.; Lal, Ravindra; Trolinger, James D.

    1988-01-01

    Two triglycine sulphate crystals were grown from an aqueous solution in Spacelab 3 aboard a Space Shuttle. Using a diffusion coefficient of 0.00002 sq cm/s, a computerized simulation gave reasonable agreement between experimental and theoretical crystal sizes and interferometric lines in the solution near the growing crystal. This diffusion coefficient is larger than most measured values, possibly due to fluctuating accelerations on the order of .001 g (Earth's gravity). The average acceleration was estimated to be less than .000001 g. At this level, buoyancy driven convection is predicted to add approx. 20 percent to the steady state growth rate. Only very slight distortion of the interferometric lines was observed at the end of a 33 hr run. It is suggested that the time to reach steady state convective transport may be inversely proportional to g at low g, so that the full effect of convection was not realized in these experiments.

  2. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. PMID:26228157

  3. Crystal growth of alkali metal ion doped potassium niobate fiber single crystals

    NASA Astrophysics Data System (ADS)

    Kimura, H.; Tanahashi, R.; Zhao, H. Y.; Maiwa, K.; Cheng, Z. X.; Wang, X. L.

    2010-05-01

    Alkali metal (Na, Rb or Cs) ion doped KNbO 3 fiber single crystals are grown using an original pulling down method, to improve their composition change during a crystal growth, by means of co-doping of small ionic size Na and large ionic size Rb or Cs into KNbO 3. In spite of the co-doping, single crystals can be grown with orthorhombic single-phase at room temperature, as well as pure KNbO 3. Their electric properties, such as impedance, are changed depending on the doping ions. Na and Rb co-doped KNbO 3 is promising Pb free ferroelectric and piezoelectric crystals.

  4. Growth and characterization of L-arginine acetate single crystals: a new NLO material

    NASA Astrophysics Data System (ADS)

    Muralidharan, R.; Mohankumar, R.; Jayavel, R.; Ramasamy, P.

    2003-12-01

    Single crystal growth of nonlinear optical L-arginine acetate is reported. Low temperature solution growth was employed for the growth of bulk single crystals. The cell parameters were determined by powder X-ray diffraction analysis. FTIR analysis was used to confirm the presence of various functional groups in the grown crystals. Thermal analysis was performed to study the thermal stability of the grown crystals. The crystals possess lower UV-cut off wavelength at 240 nm as confirmed by the transmittance studies. Kurtz powder SHG measurement confirms the NLO property of the grown crystal. Laser damage threshold studies were also performed on the grown crystals.

  5. Investigation of Vibrational Control of the Bridgman Crystal Growth Technique

    NASA Technical Reports Server (NTRS)

    Fedoseyev, Alexandre I.; Alexander, J. I. D.; Feigelson, R. S.; Zharikov, E. V.; Ostrogorsky, A. G.; Marin, C.; Volz, M. P.; Kansa, E. J.; Friedman, M. J.

    2001-01-01

    The character of natural buoyant convection in rigidly contained inhomogeneous fluids can be drastically altered by vibrating the container. Vibrations are expected to play a crucial influence on heat and mass transfer onboard the International Space Station (ISS). It is becoming evident that substantial vibrations will exist on the ISS in the wide frequency spectrum. In general, vibrational flows are very complex and governed by many parameters. In many terrestrial crystal growth situations, convective transport of heat and constituent components is dominated by buoyancy driven convection arising from compositional and thermal gradients. Thus, it may be concluded that vibro-convective flow can potentially be used to influence and even control transport in some crystal growth situations.

  6. Temperature and melt solid interface control during crystal growth

    NASA Technical Reports Server (NTRS)

    Batur, Celal

    1990-01-01

    Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.

  7. Contactless heater floating zone refining and crystal growth

    NASA Technical Reports Server (NTRS)

    Kou, Sindo (Inventor); Lan, Chung-Wen (Inventor)

    1993-01-01

    Floating zone refining or crystal growth is carried out by providing rapid relative rotation of a feed rod and finish rod while providing heat to the junction between the two rods so that significant forced convection occurs in the melt zone between the two rods. The forced convection distributes heat in the melt zone to allow the rods to be melted through with a much shorter melt zone length than possible utilizing conventional floating zone processes. One of the rods can be rotated with respect to the other, or both rods can be counter-rotated, with typical relative rotational speeds of the rods ranging from 200 revolutions per minute (RPM) to 400 RPM or greater. Zone refining or crystal growth is carried out by traversing the melt zone through the feed rod.

  8. Solar furnace satellite for large diameter crystal growth in space

    NASA Technical Reports Server (NTRS)

    Overfelt, Tony; Wells, Mark; Blake, John

    1993-01-01

    Investigators worldwide are preparing experiments to test the influence of low gravity found in space on the growth of many crystalline materials. However, power limitations prevent existing space crystal growth furnaces from being able to process samples any larger than about 2 cm, and in addition, the background microgravity levels found on the Space Shuttle are not low enough to significantly benefit samples much larger than 2 cm. This paper describes a novel concept of a free-flying platform utilizing well-established solar furnace technology to enable materials processing in space experiments on large-diameter crystals. The conceptual design of this Solar Furnace Satellite is described along with its operational scenario and the anticipated g levels.

  9. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth.

    PubMed

    E, J C; Wang, L; Cai, Y; Wu, H A; Luo, S N

    2015-02-14

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling. PMID:25681932

  10. Crystallization in supercooled liquid Cu: Homogeneous nucleation and growth

    NASA Astrophysics Data System (ADS)

    E, J. C.; Wang, L.; Cai, Y.; Wu, H. A.; Luo, S. N.

    2015-02-01

    Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 1032 m-3s-1, respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.

  11. A new approach to the CZ crystal growth weighing control

    NASA Astrophysics Data System (ADS)

    Kasimkin, P. V.; Moskovskih, V. A.; Vasiliev, Y. V.; Shlegel, V. N.; Yuferev, V. S.; Vasiliev, M. G.; Zhdankov, V. N.

    2014-03-01

    The aim of a new approach was to improve the robustness of the weighing control of CZ growth especially for semiconductors, for which the “anomalous“ behavior of the apparent weight provokes instability of the servo-loop. In the described method, the periodic reciprocating measuring motion of small amplitude is superposed on the uniform pull-rod movement. The cross-sectional area is determined from the weight sensor responses that are modulated mainly by the forces of hydrostatic pressure. By the example of germanium crystal growth, it is shown that in the control system, based on such a way of the diameter measuring, a simple PI control law provides a good close loop system's stability and dynamics for the materials with the “anomalous” behavior of a weighing signal. The effect of a meniscus on the modulation measuring of a crystal diameter is also discussed.

  12. Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth of large silicon

    E-print Network

    Guo, Zhixiong "James"

    1998-01-01

    Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth the combined heat transfer in floating zone growth of large Si crystals with needle-eye technique factors associated with the components in the float zone furnace and both the diffuse and specular

  13. In situ observation of antisite defect formation during crystal growth

    SciTech Connect

    Kramer, M. J.; Mendelev, M. I.; Napolitano, R. E.

    2010-12-07

    In situ x-ray diffraction (XRD) coupled with molecular dynamics (MD) simulations have been used to quantify antisite defect trapping during crystallization. Rietveld refinement of the XRD data revealed a marked lattice distortion which involves an a axis expansion and a c axis contraction of the stable C11b phase. The observed lattice response is proportional in magnitude to the growth rate, suggesting that the behavior is associated with the kinetic trapping of lattice defects. MD simulations demonstrate that this lattice response is due to incorporation of 1% to 2% antisite defects during growth.

  14. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  15. Design of Ceramic Springs for Use in Semiconductor Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Kaforey, M. F.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    Segregation studies can be done in microgravity to reduce buoyancy driven convection and investigate diffusion-controlled growth during the growth of semiconductor crystals. During these experiments, it is necessary to prevent free surface formation in order to avoid surface tension driven convection (Marangoni convection). Semiconductor materials such as gallium arsenide and germanium shrink upon melting, so a spring is necessary to reduce the volume of the growth chamber and prevent the formation of a free surface when the sample melts. A spring used in this application must be able to withstand both the high temperature and the processing atmosphere. During the growth of gallium arsenide crystals during the GTE Labs/USAF/NASA GaAs GAS Program and during the CWRU GaAs programs aboard the First and Second United States microgravity Laboratories, springs made of pyrolytic boron nitride (PBN) leaves were used. The mechanical properties of these PBN springs have been investigated and springs having spring constants ranging from 0.25 N/mm to 25 N/mm were measured. With this improved understanding comes the ability to design springs for more general applications, and guidelines are given for optimizing the design of PBN springs for crystal growth applications.

  16. Electrochemical growth of linear conducting crystals in microgravity

    NASA Technical Reports Server (NTRS)

    Cronise, Raymond J., IV

    1988-01-01

    Much attention has been given to the synthesis of linear conducting materials. These inorganic, organic, and polymeric materials have some very interesting electrical and optical properties, including low temperature superconductivity. Because of the anisotropic nature of these compounds, impurities and defects strongly influences the unique physical properties of such crystals. Investigations have demonstrated that electrochemical growth has provided the most reproducible and purest crystals. Space, specifically microgravity, eliminates phenomena such as buoyancy driven convection, and could permit formation of crystals many times purer than the ones grown to date. Several different linear conductors were flown on Get Away Special G-007 on board the Space Shuttle Columbia, STS 61-C, the first of a series of Project Explorer payloads. These compounds were grown by electrochemical methods, and the growth was monitored by photographs taken throughout the mission. Due to some thermal problems, no crystals of appreciable size were grown. The experimental results will be incorporated into improvements for the next 2 missions of Project Explorer. The results and conclusions of the first mission are discussed.

  17. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  18. Asymptotic theory of steady axisymmetrical needlelike crystal growth

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1990-01-01

    The present paper is concerned with the stationary needle crystal growth with arbitrary undercooling. Two classes of asymptotic solutions are discussed: (1) the regular-tip solutions, and (2) the smooth-root solutions. When the surface tension is nonzero, the regular-tip solutions may not have smooth roots. Among the regular-tip solutions, however, one can identify a 'principal regular-tip solution', which has the best behavior in the far field and is physically acceptable.

  19. Bacterial growth and form under mechanical compression

    PubMed Central

    Si, Fangwei; Li, Bo; Margolin, William; Sun, Sean X.

    2015-01-01

    A combination of physical and chemical processes is involved in determining the bacterial cell shape. In standard medium, Escherichia coli cells are rod-shaped, and maintain a constant diameter during exponential growth. Here, we demonstrate that by applying compressive forces to growing E. coli, cells no longer retain their rod-like shapes but grow and divide with a flat pancake-like geometry. The deformation is reversible: deformed cells can recover back to rod-like shapes in several generations after compressive forces are removed. During compression, the cell elongation rate, proliferation rate, DNA replication rate, and protein synthesis are not significantly altered from those of the normal rod-shaped cells. Quantifying the rate of cell wall growth under compression reveals that the cell wall growth rate depends on the local cell curvature. MreB not only influences the rate of cell wall growth, but also influences how the growth rate scales with cell geometry. The result is consistent with predictions of a mechanochemical model, and suggests an active mechanical role for MreB during cell wall growth. The developed compressive device is also useful for studying a variety of cells in unique geometries. PMID:26086542

  20. Crystallization and arrest mechanisms of model colloids.

    PubMed

    Haxton, Thomas K; Hedges, Lester O; Whitelam, Stephen

    2015-12-01

    We performed dynamic simulations of spheres with short-range attractive interactions for many values of interaction strength and range. Fast crystallization occurs in a localized region of this parameter space, but the character of crystallization pathways is not uniform within this region. Pathways range from one-step, in which a crystal nucleates directly from a gas, to two-step, in which substantial liquid-like clusters form and only subsequently become crystalline. Crystallization can fail because of slow nucleation from either gas or liquid, or because of dynamic arrest caused by strong interactions. Arrested states are characterized by the formation of networks of face-sharing tetrahedra that can be detected by a local common neighbor analysis. PMID:26428696

  1. Crystallization and arrest mechanisms of model colloids

    E-print Network

    Haxton, Thomas K; Whitelam, Stephen

    2015-01-01

    We performed dynamic simulations of spheres with short-range attractive interactions for many values of interaction strength and range. Fast crystallization occurs in a localized region of this parameter space, but the character of crystallization pathways is not uniform within this region. Pathways range from one-step, in which a crystal nucleates directly from a gas, to two-step, in which substantial liquid-like clusters form and only subsequently become crystalline. Crystallization can fail because of slow nucleation from either gas or liquid, or because of dynamic arrest caused by strong interactions. Arrested states are characterized by the formation of networks of face-sharing tetrahedra that can be detected by a local common neighbor analysis.

  2. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.

    2003-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.

  3. Osmium disilicide: Preparation, crystal growth, and physical properties of a new semiconducting compound

    NASA Astrophysics Data System (ADS)

    Mason, K.; Müller-Vogt, G.

    1983-09-01

    Certain transition metal silicides display interesting thermoelectric properties at high temperatures. ?-FeSi 2 is one of those and has been investigated in depth. Similar properties at high temperatures can be expected in the case of OsSi 2 and this was confirmed by X-ray investigation, measurement of conductivity, thermopower, reflectivity and the mechanical properties of sintered specimens. This paper records the results of investigations of the Os-Si phase diagram and crystal growth from this system. Better results were achieved at significantly lower growth temperatures when PdSi was used as the solvent.

  4. Crystal grain growth during room temperature high pressure Martensitic alpha to omega transformation in zirconium

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Gary N; Stevens, Lewis L; Dattelbaum, Dana M

    2008-01-01

    Systematic increase in transition pressure with increase in interstitial impurities is observed for the martensitic {alpha} {yields} {omega} structural phase transition in Zr. Significant room temperature crystal grain growth is also observed for the two highest purity samples at this transition, while in the case of the lowest purity sample interstitial impurities obstruct grain growth even as the sample is heated to 1279 K. Our results show the importance of impurities in controlling structural phase stability and other mechanical properties associated with the {alpha} {yields} {omega} structural phase transition.

  5. Applications of Mechanical Vapor Recompression to Evaporation and Crystallization 

    E-print Network

    Outland, J. S.

    1995-01-01

    Over the past 10-15 years, mechanical vapor recompression (MVR) has become the preferred system in many industrial evaporation and crystallization applications, because of its economy and simplicity of operation. In most instances, the need...

  6. A Proposed Model for Protein Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme, based upon fluorescence, light, neutron, and X-ray scattering data, size exclusion chromatography experiments, dialysis kinetics, AFM, and modeling of growth rate data, from this and other laboratories. The first species formed is postulated to be a 'head to side' dimer. Through repeating associations involving the same intermolecular interactions this grows to a 4(sub 3) helix structure, that in turn serves as the basic unit for nucleation and subsequent crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates subsequent helix-helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub3)2(sub 1),2(sub 1) unit cell are filled. The process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the growth parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. In the general case for proteins the lack of a singularly defined association pathway may lead to formation of multiple species, i.e., amorphous precipitation. Weak interactions, such as hydrogen bonds, are promiscuous, serving to strengthen rather than define specific interactions. Participation in an interaction sequesters that surface from subsequent interactions, and we expect the strongest bonds to form first. This model, its basis, how it fits into the currently understood osmotic second virial coefficient approach to crystallization, and what it suggests will be discussed.

  7. High purity germanium crystal growth at the University of South Dakota

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Mei, Hao; Mei, Dongming; Guan, Yutong; Yang, Gang

    2015-05-01

    High-purity germanium crystal growth is challenging work, requiring the control of individual crystal properties such as the impurity distribution, the dislocation density, and the crystalline structure. Currently, we grow high-purity germanium crystals by the Czochralski method in our laboratory in order to understand the details of the growing process, especially for large diameter crystals. In this paper, we report the progress of detector-grade germanium crystal growth at the University of South Dakota.

  8. A simple apparatus for controlling nucleation and size in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Gernert, Kim M.; Smith, Robert; Carter, Daniel C.

    1988-01-01

    A simple device is described for controlling vapor equilibrium in macromolecular crystallization as applied to the protein crystal growth technique commonly referred to as the 'hanging drop' method. Crystal growth experiments with hen egg white lysozyme have demonstrated control of the nucleation rate. Nucleation rate and final crystal size have been found to be highly dependent upon the rate at which critical supersaturation is approached. Slower approaches show a marked decrease in the nucleation rate and an increase in crystal size.

  9. Mechanical testing of large thallium doped sodium iodide single crystals

    NASA Technical Reports Server (NTRS)

    Lee, H. M.

    1985-01-01

    The findings of mechanical tests performed on five thallium-doped sodium iodide NaI(Tl) crystals are presented. These crystals are all in the shape of circular flat plates, 20.0 in. in diameter an d0.5 in. thick. The test setup, testing procedure, and the test data are presented. Large crystals exhibit a high degree of material plasticity, as well as a much higher strength than previously anticipated, on the order of 500 psi. Also revealed from the testing is the fact that crystal with a large number of grain boundaries developed less plasticity, and therefore less permanent deformation, than those with fewer grain boundaries.

  10. Flux growth of (Pb,La)(Zr, Sn,Ti)O 3 single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Xue, Lihong; Li, Qiang; Zhang, Yiling; Zhen, Xihe; Liu, Rui; Wang, Lin

    2005-10-01

    Lead lanthanum zirconate titanate stannate (PLZST) single crystals have been successfully grown by a flux method using KF as flux. Well-developed single crystals with sizes of 2.0 mm×2.0 mm×1.5 mm were obtained for the first time. The crystal morphology was studied and related to a layer growth mechanism controlled by two-dimensional growth. Crystal structure measured by X-ray diffraction technique was single perovskite. The chemical composition of as-grown crystal was analyzed by an energy dispersive X-ray spectrometer and inductively coupled plasma atomic emission spectrometry. The maximum dielectric constant was determined to be 2400. The Curie temperature was found to be about 170 °C, similar to the polycrystalline data.

  11. The mechanism of grain growth in ceramics

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1972-01-01

    The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.

  12. In situ investigation of growth rates and growth rate dispersion of ?-lactose monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2009-02-01

    The growth rates and growth rate dispersion (GRD) of four different faces of ?-lactose monohydrate crystal were measured at 30, 40 and 50 °C in the relative supersaturation range 0.55-2.33 in aqueous solutions. The overall growth rate of the crystal is around 50-60% of the (0 1 0) face of the crystal. The power law was applied to the growth rates of the four faces and the activation energies were calculated to be between 9.5 and 13.7 kcal/mol. This indicates a diffusion-controlled growth, but the exponents calculated are between 2.5 and 3.1 which are higher than unity. Introduction of critical supersaturation decreased the exponents to between 1.8 and 2.4. The variance of GRD for the (0 1 0) face is twice the variance of the GRD of the (1 1 0) and (1 0 0) faces and 10 times higher than the (1 1¯ 1¯) face at the same supersaturations and temperatures. The GRD of the four faces were similar when expressed as a function of growth rate. However, the (0 1 1) face displayed lower GRD than the other faces at the same temperatures and supersaturations.

  13. Screening and Crystallization Plates for Manual and High-throughput Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Berejnov, Viatcheslav (Inventor); Kalinin, Yevgeniy (Inventor)

    2010-01-01

    In one embodiment, a crystallization and screening plate comprises a plurality of cells open at a top and a bottom, a frame that defines the cells in the plate, and at least two films. The first film seals a top of the plate and the second film seals a bottom of the plate. At least one of the films is patterned to strongly pin the contact lines of drops dispensed onto it, fixing their position and shape. The present invention also includes methods and other devices for manual and high-throughput protein crystal growth.

  14. Crystal-clear - The '2014 Most Superlative Crystal Growth Contest' for School Classes.

    PubMed

    Perret, Didier; Hagemann, Hans; ?erný, Radovan; Renner, Christoph; Giannini, Enrico; Guénée, Laure; Besnard, Céline; Gérard, David; Windels, Lionel

    2014-12-01

    To celebrate the International Year of Crystallography among the general public, a consortium of chemists, physicists and crystallographers of the University of Geneva organised in Spring 2014 an incentive crystal growth contest for Geneva scholars aged 4 to 19. Starting from a kit containing a salt and user instructions, classes had to prepare a crystal that met specific criteria according to their category of age. The composition of the salt - potassium dihydrogen phosphate (KDP) - was only disclosed to the participants during the final Awards Ceremony. This contest positively exceeded our expectations with almost 100 participating classes (ca. 1800 participants) and 54 specimens received over all categories. PMID:26508615

  15. The growth of benzophenone crystals by Sankaranarayanan-Ramasamy (SR) method and slow evaporation solution technique (SEST): A comparative investigation

    SciTech Connect

    Senthil Pandian, M.; Boopathi, K.; Ramasamy, P.; Bhagavannarayana, G.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Benzophenone single crystal was grown by Sankaranarayanan-Ramasamy method which has the sizes of 1060 mm length and 55 mm diameter for the first time. Black-Right-Pointing-Pointer The conventional and SR-grown benzophenone crystals were characterized and compared using HRXRD, etching, laser damage threshold, microhardness, UV-transmittance, birefringence and dielectric analysis. Black-Right-Pointing-Pointer The SR-grown benzophenone crystal has higher LDT, microhardness, transparency, dielectric permittivity, birefringence and lower FWHM, EPD, dielectric loss than the crystal grown by conventional method. Black-Right-Pointing-Pointer The probable reason for higher crystalline perfection in SR-grown crystal was discussed. -- Abstract: Longest unidirectional Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket benzophenone (BP) crystal having dimension of 1060 mm length and 55 mm diameter was grown by Sankaranarayanan-Ramasamy method. The growth rate was measured by monitoring the elevation of the crystal-solution interface at different temperatures. The high resolution X-ray diffraction and etching measurements indicate that the unidirectional grown benzophenone crystal has good crystalline perfection and less density of defects. The optical damage threshold of SEST and SR grown BP crystals has been investigated and found that the SR grown benzophenone crystal has higher laser damage threshold value than the conventional method grown crystal. Microhardness measurement shows that crystals grown by SR method have a higher mechanical stability than the crystals grown by SEST method. Dielectric permittivity and birefringence are high in SR grown crystal compared to SEST grown BP crystal. The UV-vis-NIR results show that SR method grown crystal exhibits 7% higher transmittance as against crystals grown by conventional method.

  16. Growth and properties of Lithium Salicylate single crystals

    SciTech Connect

    Zaitseva, N; Newby, J; Hull, G; Saw, C; Carman, L; Cherepy, N; Payne, S

    2009-02-13

    An attractive feature of {sup 6}Li containing fluorescence materials that determines their potential application in radiation detection is the capture reaction with slow ({approx}< 100 keV) neutrons: {sup 6}Li + n = {sup 4}He + {sup 3}H + 4.8MeV. The use of {sup 6}Li-salicylate (LiSal, LiC{sub 6}H{sub 5}O{sub 3}) for thermal neutron detection was previously studied in liquid and polycrystalline scintillators. The studies showed that both liquid and polycrystalline LiSal scintillators could be utilized in pulse shape discrimination (PSD) techniques that enable separation of neutrons from the background gamma radiation. However, it was found that the efficiency of neutron detection using LiSal in liquid solutions was severely limited by its low solubility in commonly used organic solvents like, for example, toluene or xylene. Better results were obtained with neutron detectors containing the compound in its crystalline form, such as pressed pellets, or microscopic-scale (7-14 micron) crystals dispersed in various media. The expectation drown from these studies was that further improvement of pulse height, PSD, and efficiency characteristics could be reached with larger and more transparent LiSal crystals, growth of which has not been reported so far. In this paper, we present the first results on growth and characterization of relatively large, a cm-scale size, single crystals of LiSal with good optical quality. The crystals were grown both from aqueous and anhydrous (methanol) media, mainly for neutron detection studies. However, the results on growth and structural characterization may be interesting for other fields where LiSal, together with other alkali metal salicylates, is used for biological, medical, and chemical (as catalyst) applications.

  17. Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Duval, W. M.

    1991-01-01

    Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments.

  18. Growth and defects of DAST crystal in high concentration solution

    NASA Astrophysics Data System (ADS)

    Cao, Lifeng; Teng, Bing; Feng, Ke; Zhong, Degao; Hao, Lun; Sun, Qing

    2015-02-01

    The 4-N,N-dimethylamino-4-N-methyl stilbazolium tosylate (DAST) crystal with large size and nearly square shape was grown in high concentration solution by slope nucleation method coupled slow cooling (SNM-SC). Striations considered as planar defects were found on the (0 0 1) face along a-axis in the crystal by optical microscope. Some of the striations were continuous while some of them were discontinuous. In addition, the striations were found on (2 3 1) diffracting face and such lines did not occur on the (3-21) and (-2 2 1) planes. The surface distribution and morphological structure of the crystal were characterized by XRD and atomic force microscope (AFM). The presence of striations in the sample was also confirmed by white-beam synchrotron radiation topography (WBSRT). The mechanism of striations formation was also discussed.

  19. Development of SiC Large Tapered Crystal Growth

    NASA Technical Reports Server (NTRS)

    Neudeck, Phil

    2011-01-01

    Research Focus Area: Power Electronics, Temperature Tolerant Devices. Demonstrate initial feasibility of totally new "Large Tapered Crystal" (LTC) process for growing vastly improved large-diameter wide-band gap wafers. Addresses Targets: The goal of this research is to experimentally investigate and demonstrate feasibility of the key unproven LTC growth processes in SiC. Laser-assisted growth of long SiC fiber seeds. Radial epitaxial growth enlargement of seeds into large SiC boules. Uniqueness and Impacts open a new technology path to large-diameter SiC and GaN wafers with 1000-fold defect density improvement at 2-4 fold lower cost. Leapfrog improvement in wide band gap power device capability and cost.

  20. Utilizing Controlled Vibrations in a Microgravity Environment to Understand and Promote Microstructural Homogeneity During Floating-Zone Crystal Growth

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    1999-01-01

    It has been demonstrated in floating-zone configurations utilizing silicone oil and nitrate salts that mechanically induced vibration effectively minimizes detrimental, gravity independent, thermocapillary flow. The processing parameters leading to crystal improvement and aspects of the on-going modeling effort are discussed. Plans for applying the crystal growth technique to commercially relevant materials, e.g., silicon, as well as the value of processing in a microgravity environment are presented.

  1. A Micro-Mechanically Based Continuum Model for Strain-Induced Crystallization in Natural Rubber

    NASA Astrophysics Data System (ADS)

    Mistry, Sunny Jigger

    Recent experimental results show that strain-induced crystallization can substantially improve the crack growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial applications where elastomers are used, a more thorough understanding of the underlying physics of strain-induced crystallization in natural rubber has to be developed before any design process can be started. The objective of this work is to develop a computationally-accessible micro-mechanically based continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber. While several researchers have developed micro-mechanical models of partially crystallized polymer chains, their results mainly give qualitative agreement with experimental data due to a lack of good micro-macro transition theories or the lack of computational power. However, recent developments in multiscale modeling in polymers provide new tools to continue this early work. In this thesis, a new model is proposed to model strain-induced crystallization in natural rubber. To this end, a micro-mechanical model of a constrained partially crystallized polymer chain with an extended-chain crystal is derived and connected to the macroscopic level using the non-affine micro-sphere model. On the macroscopic level, a thermodynamically consistent framework for strain-crystallizing materials is developed, and a description of the crystallization kinetics is introduced. For that matter, an evolution law for crystallization based on the gradient of the macroscopic Helmholtz free energy function (chemical potential) in combination with a simple threshold function is used. A numerical implementation of the model is proposed and its predictive performance assessed using published data.

  2. Growth and Raman spectra of single-crystal trilayer graphene with different stacking orientations.

    PubMed

    Zhao, Haiming; Lin, Yung-Chang; Yeh, Chao-Hui; Tian, He; Chen, Yu-Chen; Xie, Dan; Yang, Yi; Suenaga, Kazu; Ren, Tian-Ling; Chiu, Po-Wen

    2014-10-28

    Understanding the growth mechanism of graphene layers in chemical vapor deposition (CVD) and their corresponding Raman properties is technologically relevant and of importance for the application of graphene in electronic and optoelectronic devices. Here, we report CVD growth of single-crystal trilayer graphene (TLG) grains on Cu and show that lattice defects at the center of each grain persist throughout the growth, indicating that the adlayers share the same nucleation site with the upper layers and these central defects could also act as a carbon pathway for the growth of a new layer. Statistics shows that ABA, 30-30, 30-AB, and AB-30 make up the major stacking orientations in the CVD-grown TLG, with distinctive Raman 2D characteristics. Surprisingly, a high level of lattice defects results whenever a layer with a twist angle of ? = 30° is found in the multiple stacks of graphene layers. PMID:25295851

  3. Diagenetic Crystal Growth in the Murray Formation, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Kah, L. C.; Kronyak, R. E.; Ming, D. W.; Grotzinger, J. P.; Schieber, J.; Sumner, D. Y.; Edgett, K. S.

    2015-01-01

    The Pahrump region (Gale Crater, Mars) marks a critical transition between sedimentary environments dominated by alluvial-to-fluvial materials associated with the Gale crater rim, and depositional environments fundamentally linked to the crater's central mound, Mount Sharp. At Pahrump, the Murray formation consists of an approximately 14-meter thick succession dominated by massive to finely laminated mudstone with occasional interbeds of cross-bedded sandstone, and is best interpreted as a dominantly lacustrine environment containing tongues of prograding fluvial material. Murray formation mudstones contain abundant evidence for early diagenetic mineral precipitation and its subsequent removal by later diagenetic processes. Lenticular mineral growth is particularly common within lacustrine mudstone deposits at the Pahrump locality. High-resolution MAHLI images taken by the Curiosity rover permit detailed morphological and spatial analysis of these features. Millimeter-scale lenticular features occur in massive to well-laminated mudstone lithologies and are interpreted as pseudomorphs after calcium sulfate. The distribution and orientation of lenticular features suggests deposition at or near the sediment-water (or sediment-air) interface. Retention of chemical signals similar to host rock suggests that original precipitation was likely poikilotopic, incorporating substantial amounts of the primary matrix. Although poikilotopic crystal growth is common in burial environments, it also occurs during early diagenetic crystal growth within unlithified sediment where high rates of crystal growth are common. Loss of original calcium sulfate mineralogy suggests dissolution by mildly acidic, later-diagenetic fluids. As with lenticular voids observed at Meridiani by the Opportunity Rover, these features indicate that calcium sulfate deposition may have been widespread on early Mars; dissolution of depositional and early diagenetic minerals is a likely source for both calcium and sulfate ion-enrichment in burial fluids that precipitated in ubiquitous late-stage hydrofracture veins

  4. Czochralski growth of crystals - Simple models for growth rate and interface shape

    NASA Technical Reports Server (NTRS)

    Srivastava, R. K.; Ramachandran, P. A.; Dudukovic, M. P.

    1986-01-01

    A simple model for the crystal growth by the Czochralski (CZ) process has been proposed based on semiquantitative arguments. The model provides empirical relationships for the dependence of the pulling rate and the interface shape on the important process variables such as crystal radius, crucible temperature, height of the melt level, and the height of the exposed portion of the crucible wall. The parameters of the model can be evaluated by matching the results obtained from a detailed mathematical model of the CZ process or from extensive experimental data. The model has, therefore, the potential application for determining the best process conditions and for on-line control and optimization of the crystal puller to grow crystals with constant diameter and nearly planar interface.

  5. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  6. Dynamic light scattering study of inhibition of nucleation and growth of hydroxyapatite crystals by osteopontin.

    PubMed

    de Bruyn, John R; Goiko, Maria; Mozaffari, Maryam; Bator, Daniel; Dauphinee, Ron L; Liao, Yinyin; Flemming, Roberta L; Bramble, Michael S; Hunter, Graeme K; Goldberg, Harvey A

    2013-01-01

    We study the effect of isoforms of osteopontin (OPN) on the nucleation and growth of crystals from a supersaturated solution of calcium and phosphate ions. Dynamic light scattering is used to monitor the size of the precipitating particles and to provide information about their concentration. At the ion concentrations studied, immediate precipitation was observed in control experiments with no osteopontin in the solution, and the size of the precipitating particles increased steadily with time. The precipitate was identified as hydroxyapatite by X-ray diffraction. Addition of native osteopontin (nOPN) extracted from rat bone caused a delay in the onset of precipitation and reduced the number of particles that formed, but the few particles that did form grew to a larger size than in the absence of the protein. Recombinant osteopontin (rOPN), which lacks phosphorylation, caused no delay in initial calcium phosphate precipitation but severely slowed crystal growth, suggesting that rOPN inhibits growth but not nucleation. rOPN treated with protein kinase CK2 to phosphorylate the molecule (p-rOPN) produced an effect similar to that of nOPN, but at higher protein concentrations and to a lesser extent. These results suggest that phosphorylations are critical to OPN's ability to inhibit nucleation, whereas the growth of the hydroxyapatite crystals is effectively controlled by the highly acidic OPN polypeptide. This work also demonstrates that dynamic light scattering can be a powerful tool for delineating the mechanism of protein modulation of mineral formation. PMID:23457612

  7. Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.

  8. On the deformation mechanisms in single crystal Hadfield manganese steels

    SciTech Connect

    Karaman, I.; Sehitoglu, H.; Gall, K.; Chumlyakov, Y.I.

    1998-02-13

    Austenitic manganese steel, so called Hadfield manganese steel, is frequently used in mining and railroad frog applications requiring excessive deformation and wear resistance. Its work hardening ability is still not completely understood. Previous studies attributed the work-hardening characteristics of this material to dynamic strain aging or an imperfect deformation twin, a so-called pseudotwin. Unfortunately, these previous studies have all focused on polycrystalline Hadfield steels. To properly study the mechanisms of deformation in the absence of grain boundary or texture effects, single crystal specimens are required. The purpose of this work is the following: (1) observe the inelastic stress-strain behavior of Hadfield single crystals in orientations where twinning and slip are individually dominating or when they are competing deformation mechanisms; and (2) determine the microyield points of Hadfield single crystals and use micro-mechanical modeling to predict the stress-strain response of a single crystal undergoing micro-twinning.

  9. Ice crystal growth in a dynamic thermal diffusion chamber

    NASA Technical Reports Server (NTRS)

    Keller, V. W.

    1980-01-01

    Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

  10. Controlling Molecular Growth between Fractals and Crystals on Surfaces.

    PubMed

    Zhang, Xue; Li, Na; Gu, Gao-Chen; Wang, Hao; Nieckarz, Damian; Szabelski, Pawe?; He, Yang; Wang, Yu; Xie, Chao; Shen, Zi-Yong; Lü, Jing-Tao; Tang, Hao; Peng, Lian-Mao; Hou, Shi-Min; Wu, Kai; Wang, Yong-Feng

    2015-12-22

    Recent studies demonstrate that simple functional molecules, which usually form two-dimensional (2D) crystal structures when adsorbed on solid substrates, are also able to self-assemble into ordered openwork fractal aggregates. To direct and control the growth of such fractal supramolecules, it is necessary to explore the conditions under which both fractal and crystalline patterns develop and coexist. In this contribution, we study the coexistence of Sierpi?ski triangle (ST) fractals and 2D molecular crystals that were formed by 4,4?-dihydroxy-1,1':3',1?-terphenyl molecules on Au(111) in ultrahigh vacuum. Growth competition between the STs and 2D crystals was realized by tuning substrate and molecular surface coverage and changing the functional groups of the molecular building block. Density functional theory calculations and Monte Carlo simulations are used to characterize the process. Both experimental and theoretical results demonstrate the possibility of steering the surface self-assembly to generate fractal and nonfractal structures made up of the same molecular building block. PMID:26502984

  11. A simple method for systematically controlling ZnO crystal size and growth orientation

    SciTech Connect

    Zhang Rong; Kerr, Lei L.

    2007-03-15

    We present a simple, easy and reproducible method to systematically control the dimension and shape evolution of zinc oxide (ZnO) as thin film on glass substrate by chemical bath deposition (CBD). The only varying factor to control crystal transformation is the molar ratio of Cd{sup 2+}/Zn{sup 2+}, R{sub m}, in the initial chemical solution. With the increase of R{sub m}, ZnO crystals transformed from long-and-slim hexagonal rods to fat-and-short hexagonal pyramids, and then to twinning hexagonal dots as observed by scanning electron microscopy (SEM). Film crystallinity was characterized by X-ray diffraction (XRD). Chemical component analysis by energy dispersive spectroscopy (EDS) showed that most cadmium was present in the residual solution instead of the developed film and the precipitate at the bottom of beaker. The mechanism of the cadmium effect, with different initial concentrations, on ZnO crystal transformation was tentatively addressed. We believe that cadmium influences the chelate ligands adsorption onto (0001-bar) plane of ZnO crystals, alters the crystal growth orientation, and thus directs the transformation of the size and shape of ZnO crystals.

  12. A simple method for systematically controlling ZnO crystal size and growth orientation

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Kerr, Lei L.

    2007-03-01

    We present a simple, easy and reproducible method to systematically control the dimension and shape evolution of zinc oxide (ZnO) as thin film on glass substrate by chemical bath deposition (CBD). The only varying factor to control crystal transformation is the molar ratio of Cd 2+/Zn 2+, Rm, in the initial chemical solution. With the increase of Rm, ZnO crystals transformed from long-and-slim hexagonal rods to fat-and-short hexagonal pyramids, and then to twinning hexagonal dots as observed by scanning electron microscopy (SEM). Film crystallinity was characterized by X-ray diffraction (XRD). Chemical component analysis by energy dispersive spectroscopy (EDS) showed that most cadmium was present in the residual solution instead of the developed film and the precipitate at the bottom of beaker. The mechanism of the cadmium effect, with different initial concentrations, on ZnO crystal transformation was tentatively addressed. We believe that cadmium influences the chelate ligands adsorption onto (0001¯) plane of ZnO crystals, alters the crystal growth orientation, and thus directs the transformation of the size and shape of ZnO crystals.

  13. Influence of vacuum degree on growth of Bi2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Kun; Zhao, Wen-Juan; Zhu, Hua-Qiang; Huang, Yong-Chao; Cao, Wei-Wei; Yang, Qian; Yao, Xiao-Yan; Zhai, Ya; Dong, Shuai

    2015-07-01

    Bi2Te3 single crystals were prepared by the solid-state reaction method. The effect of the vacuum on the growth of Bi2Te3 single crystals was studied with varying the oxygen content by controlling the air pressure in the silica tube. High quality Bi2Te3 single crystals have been obtained and there is no influence on the growth by an extremely small amount of oxygen in a high vacuum at 1.0 × 10-3 Pa. As the air pressure is increased at 1.0 × 10-2 Pa, oxygen only mainly impacts on the growth of the surface for the prepared samples. Micron-sized rod-like structure and flower-like clusters are observed on the surface. For the samples prepared at 1.0 × 10-1 Pa, x-ray diffraction data show that the yellow part on the surface is Bi2TeO5, while the Bi2Te3 single crystal is still the major phase as the inside part. More interestingly, various crystal morphologies are observed by scanning electron microscope for Bi2Te3 near the boundary between Bi2Te3 and Bi2TeO5. Possible growth mechanisms for Bi2Te3 with different morphologies are discussed in detail. Project supported by the National Natural Science Foundation of China (Grant Nos. 10904013 and 11274060), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2009260 and BK20141329), and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China.

  14. Mechanisms for the Crystallization of ZBLAN

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Tucker, Dennis S.

    2000-01-01

    A number of research teams have observed that glass forming melts that are solidified in low-g exhibit enhanced glass formation. This project will examine one of these glasses, the heavy metal fluoride glass ZBLAN. A four year ground based research program has been approved to examine the crystallization of ZBLAN glasses with the purpose of testing a theory for the crystallization of ZBLAN glass. The theory could explain the general observations of enhanced glass formation of other glasses melted and solidified in low-g. Fluid flow in 1-g results from buoyancy forces and surface tension driven convection. This fluid flow can introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids in low-g are extremely low. It is believed that fluids may have some weak structure in the absence of flow. Even very small shear rates could cause this structure to collapse in response to the shear. A general result would be shear thinning of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids increases the rate of nucleation and crystallization of glass forming melts. Shear of the melt can be reduced in low-g enhancing undercooling and glass formation. Samples will be melted and quenched in 1-g under quiescent conditions at a number of controlled cooling rates to determine times and temperatures of crystallization and heated at controlled heating rates to determine kinetic crystallization parameters. Experiments will also be performed on the materials while under controlled vibration conditions and compared with the quiescent experiments in order to evaluate the effect of shear in the liquid on crystallization kinetics. After the experimental parameters are well known, experiments will be repeated under low-g (and 2-g) conditions on the KC-135 aircraft during low-g parabolic maneuvers. The results will determine the effects of shear on crystallization. Our experimental setups will be designed with low-g experiments in mind and will be tested as breadboard low-g experiments. It is very likely that the thermal analysis instrumentation can be adapted to be run in the microgravity glovebox facilities. Critical space experiments may result to test the theory at longer low-g time experiments in space.

  15. Protein crystal growth results from shuttle flight 51-F

    NASA Technical Reports Server (NTRS)

    Bugg, C. E.

    1985-01-01

    The protein crystal growth (PCG) experiments run on 51-F were analyzed. It was found that: (1) sample stability is increased over that observed during the experiments on flight 51-D; (2) the dialysis experiments produced lysozyme crystals that were significantly larger than those obtained in our identical ground-based studies; (3) temperature fluctuations apparently caused problems during the crystallization experiments on 51-F; (4) it is indicated that teflon tape stabilizes droplets on the syringe tips; (5) samples survived during the reentry and landing in glass tips that were not stoppered with plungers; (6) from the ground-based studies, it was expected that equilibration should be complete within 2 to 4 days for all of these vapor-diffusion experiments, thus it appears that the vapor diffusion rates are somewhat slower under microgravity conditions; (7) drop tethering was highly successful, all four of the tethered drops were stable, even though they contained MPD solutions; (8) the PCG experiments on 51-F were done to assess the hardware and experimental procedures that are developed for future flights, when temperature control will be available. Lysozyme crystals obtained by microdialysis are considerably larger than those obtained on the ground, using the identical apparatus and procedures.

  16. NASA's Biological Crystal Growth Program on the International Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.

    1999-01-01

    NASA's Biological Crystal Growth Program (BCG) on the International Space Station (ISS) will consist of two phases. The first phase is during assembly of the ISS and will accommodate generic payloads that currently fly in the orbiter middeck. The second phase is after assembly of the ISS is complete and BCG payloads will occupy part of the Biotechnology Facility aboard the ISS. During both phases of the program, there will be two types of BCG payloads. One type will emphasize the production of crystals for structure determination back on Earth and will have high capacity for screening crystallization conditions. The second type of payload will be designed to study the crystallization process with the primary aim of developing new methods to further optimize the use of the microgravity environment. Beginning immediately, access to the BCG program for Guest Investigators is simplified. Access to all BCG hardware for Guest Investigators will be coordinated through one office at NASA's Marshall Space Flight Center. Details of how to obtain access to microgravity, the hardware available, and the operational aspects of the program will be described.

  17. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    SciTech Connect

    Sankari, R. Siva; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  18. Investigation of crystal growth in zero gravity environment and investigation of metallic whiskers

    NASA Technical Reports Server (NTRS)

    Davis, J. H.; Lal, R. B.; Walter, H. U.; Castle, J. G., Jr.

    1972-01-01

    Theoretical and experimental work reported relates to the effects of near-zero gravity on growths of crystals and metallic whiskers during Skylab and Apollo flight experiments. Studies on growth and characterization of candidate materials for flight experiments cover indium-bismuth compounds, bismuth single crystals, gallium arsenide films and single crystals, and cadmium whiskers.

  19. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser

    E-print Network

    DuPont, John N.

    Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth model developed for single-crystalline solidification in laser surface melting (LSM) described in Part I

  20. Journal of Crystal Growth 225 (2001) 440444 Defect segregation in CdGeAs2

    E-print Network

    Myers, Tom

    2001-01-01

    Journal of Crystal Growth 225 (2001) 440­444 Defect segregation in CdGeAs2 Peter G. Schunemanna resulted in segregation of unwanted absorbing defects to the edges of CdGeAs2 single crystals produced. The contrast between these regions, as well as their morphology, was dependent on the crystal growth parameters