Science.gov

Sample records for crystal structure particle

  1. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  2. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure. PMID:12240191

  3. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals

    NASA Astrophysics Data System (ADS)

    Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.

    2016-06-01

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  4. Tuning the colloidal crystal structure of magnetic particles by external field.

    PubMed

    Pal, Antara; Malik, Vikash; He, Le; Erné, Ben H; Yin, Yadong; Kegel, Willem K; Petukhov, Andrei V

    2015-02-01

    Manipulation of the self-assembly of magnetic colloidal particles by an externally applied magnetic field paves a way toward developing novel stimuli responsive photonic structures. Using microradian X-ray scattering technique we have investigated the different crystal structures exhibited by self-assembly of core-shell magnetite/silica nanoparticles. An external magnetic field was employed to tune the colloidal crystallization. We find that the equilibrium structure in absence of the field is random hexagonal close-packed (RHCP) one. External field drives the self-assembly toward a body-centered tetragonal (BCT) structure. Our findings are in good agreement with simulation results on the assembly of these particles. PMID:25510837

  5. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals

    PubMed Central

    Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.

    2016-01-01

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals. PMID:27353002

  6. Crystal structures of enterovirus 71 (EV71) recombinant virus particles provide insights into vaccine design.

    PubMed

    Lyu, Ke; Wang, Guang-Chuan; He, Ya-Ling; Han, Jian-Feng; Ye, Qing; Qin, Cheng-Feng; Chen, Rong

    2015-02-01

    Hand-foot-and-mouth disease (HFMD) remains a major health concern in the Asia-Pacific regions, and its major causative agents include human enterovirus 71 (EV71) and coxsackievirus A16. A desirable vaccine against HFMD would be multivalent and able to elicit protective responses against multiple HFMD causative agents. Previously, we have demonstrated that a thermostable recombinant EV71 vaccine candidate can be produced by the insertion of a foreign peptide into the BC loop of VP1 without affecting viral replication. Here we present crystal structures of two different naturally occurring empty particles, one from a clinical C4 strain EV71 and the other from its recombinant virus containing an insertion in the VP1 BC loop. Crystal structure analysis demonstrated that the inserted foreign peptide is well exposed on the particle surface without significant structural changes in the capsid. Importantly, such insertions do not seem to affect the virus uncoating process as illustrated by the conformational similarity between an uncoating intermediate of another recombinant virus and that of EV71. Especially, at least 18 residues from the N terminus of VP1 are transiently externalized. Altogether, our study provides insights into vaccine development against HFMD. PMID:25492868

  7. Crystal Structure and Proteomics Analysis of Empty Virus-like Particles of Cowpea Mosaic Virus.

    PubMed

    Huynh, Nhung T; Hesketh, Emma L; Saxena, Pooja; Meshcheriakova, Yulia; Ku, You-Chan; Hoang, Linh T; Johnson, John E; Ranson, Neil A; Lomonossoff, George P; Reddy, Vijay S

    2016-04-01

    Empty virus-like particles (eVLPs) of Cowpea mosaic virus (CPMV) are currently being utilized as reagents in various biomedical and nanotechnology applications. Here, we report the crystal structure of CPMV eVLPs determined using X-ray crystallography at 2.3 Å resolution and compare it with previously reported cryo-electron microscopy (cryo-EM) of eVLPs and virion crystal structures. Although the X-ray and cryo-EM structures of eVLPs are mostly similar, there exist significant differences at the C terminus of the small (S) subunit. The intact C terminus of the S subunit plays a critical role in enabling the efficient assembly of CPMV virions and eVLPs, but undergoes proteolysis after particle formation. In addition, we report the results of mass spectrometry-based proteomics analysis of coat protein subunits from CPMV eVLPs and virions that identify the C termini of S subunits undergo proteolytic cleavages at multiple sites instead of a single cleavage site as previously observed. PMID:27021160

  8. Artificial silver sulfide Ag2S: Crystal structure and particle size in deposited powders

    NASA Astrophysics Data System (ADS)

    Sadovnikov, S. I.; Gusev, A. I.; Rempel, A. A.

    2015-07-01

    Chemical deposition from aqueous solutions of silver nitrate and sodium sulfide was used for synthesis of coarse-crystalline and nanocrystalline silver sulfide Ag2S powders. Sodium citrate was used as a complexing and stabilizing agent during synthesis. X-ray diffraction study shows that synthesized Ag2S powders have monoclinic (space group P21/c) α-Ag2S acanthite type crystal structure. The unit cell of artificial monoclinic silver sulfide Ag2S contains four Ag2S formula units and has the following parameters: a = 0.42264 nm, b = 0.69282 nm, c = 0.95317 nm and β = 125.554°. The size of silver sulfide particles in deposited powders was estimated by the X-ray diffraction and BET methods. By varying the ratio between the concentrations of reagents in the initial reaction mixture it is possible to deposit Ag2S nanoparticles with average size ranging in the interval from ∼1000 to ∼30 nm. Ag2S nanopowders have no deformation distortions of the crystal lattice practically because the microstrains ε in the synthesized powders do not exceed 0.15%. All the Ag2S powders with different particle size have an identical morphology.

  9. Low temperature synthesis, crystal structure and thermal stability studies of nanocrystalline VN particles

    SciTech Connect

    Gajbhiye, N.S. . E-mail: nsg@iitk.ac.in; Ningthoujam, R.S.

    2006-09-14

    The simultaneous thermal decomposition and nitridation of [VO(NH{sub 2}O){sub 2}Gly].H{sub 2}O complex in NH{sub 3} atmosphere at 723-973 K gives the nanocrystalline vanadium nitride (VN) having crystallite size of 8-32 nm. It shows cubic NaCl structure with lattice parameter of a = 4.137 nm. XRD pattern Rietveld analysis program for crystal structure of VN shows the space group-Fm3m. The particle sizes measured by BET and SEM techniques are in the range of 26-100 nm. The particles are spherical and distributed homogeneously and found larger than XRD crystallite size because of agglomeration of crystallites. The fundamental IR absorption of VN material is found at 995 cm{sup -1} which gives the force constant of 634.3 Nm{sup -1}. The electrical resistivity and magnetic studies show the superconducting to normal transition (T {sub c}) at 9.2 K. Thermal decomposition of VN is carried out in O{sub 2} atmosphere which goes through the formation of an oxynitride (V-N {sub p}-O {sub q}) intermediate phase up to 913 K. Finally, nanocrystalline V{sub 2}O{sub 5} is formed at 973 K. The V{sub 2}O{sub 5} has orthorhombic structure with lattice parameters of a = 11.537, b = 3.568 and c = 4.380 A and the XRD crystallite size of 10 nm.

  10. Single crystal structure analysis of a single Sm{sub 2}Fe{sub 17}N{sub 3} particle

    SciTech Connect

    Inami, Nobuhito Takeichi, Yasuo; Saito, Kotaro; Sagayama, Ryoko; Kumai, Reiji; Ono, Kanta; Ueno, Tetsuro

    2014-05-07

    We performed single crystal structure analysis of Sm{sub 2}Fe{sub 17}N{sub 3} using X-ray diffraction. A pick-up system combined with a micromanipulation tool driven by piezoelectric actuators and a microgripper was used. A single Sm{sub 2}Fe{sub 17}N{sub x} particle with the diameter of about 20 μm was picked up, and X-ray diffraction was measured using an X-ray diffractometer at the synchrotron radiation beamline at the Photon Factory, KEK. Single crystal structure analysis of a Sm{sub 2}Fe{sub 17}N{sub 3} particle was performed and the structure was successfully determined from X-ray diffraction patterns. The space group and the lattice constants were determined to be R-3m (number sign166) a = b = 8.7206 Å and c = 12.6345 Å, respectively. Atomic positions of Sm and Fe atoms were accurately determined by single crystal structure analysis of only one particle.

  11. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area

    PubMed Central

    Jeong, Hoon Y.; Lee, Jun H.; Hayes, Kim F.

    2010-01-01

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation. PMID:21085620

  12. Crystal-structure prediction via the Floppy-Box Monte Carlo algorithm: Method and application to hard (non)convex particles

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; Filion, Laura; Marechal, Matthieu; van Roij, René; Dijkstra, Marjolein

    2012-12-01

    In this paper, we describe the way to set up the floppy-box Monte Carlo (FBMC) method [L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, and M. Dijkstra, Phys. Rev. Lett. 103, 188302 (2009), 10.1103/PhysRevLett.103.188302] to predict crystal-structure candidates for colloidal particles. The algorithm is explained in detail to ensure that it can be straightforwardly implemented on the basis of this text. The handling of hard-particle interactions in the FBMC algorithm is given special attention, as (soft) short-range and semi-long-range interactions can be treated in an analogous way. We also discuss two types of algorithms for checking for overlaps between polyhedra, the method of separating axes and a triangular-tessellation based technique. These can be combined with the FBMC method to enable crystal-structure prediction for systems composed of highly shape-anisotropic particles. Moreover, we present the results for the dense crystal structures predicted using the FBMC method for 159 (non)convex faceted particles, on which the findings in [J. de Graaf, R. van Roij, and M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011), 10.1103/PhysRevLett.107.155501] were based. Finally, we comment on the process of crystal-structure prediction itself and the choices that can be made in these simulations.

  13. Crystal-structure prediction via the floppy-box Monte Carlo algorithm: method and application to hard (non)convex particles.

    PubMed

    de Graaf, Joost; Filion, Laura; Marechal, Matthieu; van Roij, René; Dijkstra, Marjolein

    2012-12-01

    In this paper, we describe the way to set up the floppy-box Monte Carlo (FBMC) method [L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, and M. Dijkstra, Phys. Rev. Lett. 103, 188302 (2009)] to predict crystal-structure candidates for colloidal particles. The algorithm is explained in detail to ensure that it can be straightforwardly implemented on the basis of this text. The handling of hard-particle interactions in the FBMC algorithm is given special attention, as (soft) short-range and semi-long-range interactions can be treated in an analogous way. We also discuss two types of algorithms for checking for overlaps between polyhedra, the method of separating axes and a triangular-tessellation based technique. These can be combined with the FBMC method to enable crystal-structure prediction for systems composed of highly shape-anisotropic particles. Moreover, we present the results for the dense crystal structures predicted using the FBMC method for 159 (non)convex faceted particles, on which the findings in [J. de Graaf, R. van Roij, and M. Dijkstra, Phys. Rev. Lett. 107, 155501 (2011)] were based. Finally, we comment on the process of crystal-structure prediction itself and the choices that can be made in these simulations. PMID:23231211

  14. Periodic dynamics, localization metastability, and elastic interaction of colloidal particles with confining surfaces and helicoidal structure of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.; Zhang, Qiaoxuan; Tasinkevych, Mykola; Silvestre, Nuno M.; Bertness, Kris A.; Smalyukh, Ivan I.

    2014-12-01

    Nematic and cholesteric liquid crystals are three-dimensional fluids that possess long-range orientational ordering and can support both topological defects and chiral superstructures. Implications of this ordering remain unexplored even for simple dynamic processes such as the ones found in so-called "fall experiments," or motion of a spherical inclusion under the effects of gravity. Here we show that elastic and surface anchoring interactions prompt periodic dynamics of colloidal microparticles in confined cholesterics when gravity acts along the helical axis. We explore elastic interactions between colloidal microparticles and confining surfaces as well as with an aligned ground-state helical structure of cholesterics for different sizes of spheres relative to the cholesteric pitch, demonstrating unexpected departures from Stokes-like behavior at very low Reynolds numbers. We characterize metastable localization of microspheres under the effects of elastic and surface anchoring periodic potential landscapes seen by moving spheres, demonstrating the important roles played by anchoring memory, confinement, and topological defect transformation. These experimental findings are consistent with the results of numerical modeling performed through minimizing the total free energy due to colloidal inclusions at different locations along the helical axis and with respect to the confining substrates. A potential application emerging from this work is colloidal sorting based on particle shapes and sizes.

  15. Teaching with Crystal Structures: Helping Students Recognize and Classify the Smallest Repeating Particle in a Given Substance

    ERIC Educational Resources Information Center

    Smithenry, Dennis W.

    2009-01-01

    Classifying a particle requires an understanding of the type of bonding that exists within and among the particles, which requires an understanding of atomic structure and electron configurations, which requires an understanding of the elements of periodic properties, and so on. Rather than getting tangled up in all of these concepts at the start…

  16. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2005-09-19

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  17. X-ray Crystal Structure of the Vault, Largest Ribonucleoprotein Particle, with a Molecular Weight of 10 MDa

    NASA Astrophysics Data System (ADS)

    Tanaka, Hideaki; Kato, Koji; Yamashita, Eiki

    Vaults are among the largest cytoplasmic ribonucleoprotein particles and are found in numerous eukaryotic species. Although roles in multidrug resistance and innate immunity have been suggested, the cellular function remains unclear. We have determined the X-ray structure of rat liver vault at 3.5 Å resolution. A vault particle shell was composed of 78 MVP (Major vault protein) chains with 39-fold dihedral symmetry. The shoulder domain of MVP is structurally similar to SPFH (stomatin/prohibitin/flotillin/HflK/C) domain involved in lipid raft association.

  18. Colloidal particles embedded in liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Melchert, Drew; Sadati, Monirosadat; Zhou, Ye; de Pablo, Juan J.

    In this work, we encapsulate polystyrene and silica particles in nematic liquid crystal (LC) droplets dispersed in water using microfluidic glass capillary devices. While polystyrene particles induce planar anchoring on the surface, silica particles, treated with DMOAP, create homeotropic anchoring of the LC molecules at their surface. Sodium dodecyl sulfate (SDS) is added to the aqueous phase to stabilize LC droplets and promote a radial configuration with point defect in the center of LC droplet. Our experimental and computational studies show that, when trapped inside the LC droplets, particles with both anchoring types become mostly localized at the defect point (at the center) and interact with the radial configuration. Interestingly, a twisting structure is observed for polystyrene particle with strong planar anchoring. Although localization of the particles at the droplet center is the most stable state and with the lowest free energy, off-center positions also emerge, displacing the defect point from the center to near the surface of a radial droplet. - Corresponding author - Second affiliation: Argonne National Laboratory, Argonne, IL 60439, USA.

  19. Determination of particle-induced structural disorder depth profile in crystals using the grazing-angle incidence hard x-ray backscattering diffraction technique

    NASA Astrophysics Data System (ADS)

    Bezirganyan, Hakob (Jacob P.; Bezirganyan, Siranush E.; Bezirganyan, Petros H., Jr.; Bezirganyan, Hayk H., Jr.

    2011-12-01

    In this theoretical paper, we propose an x-ray imaging method for determination of particle-induced structural disorder depth profile in the crystalline materials based on the extremely sensitive, high-resolution, and non-destructive grazing-angle incidence hard x-ray backscattering diffraction technique. A peculiar value of the Bragg angle is discovered within the specular beam suppression angular region for which the curve of x-ray reflectivity is very close to the profile of the corresponding structural disorder. The coincidence presents a unique opportunity for the direct registration of the structural disorder depth profile in particle-irradiated crystals. This paper is dedicated to Professor Dr Petros H Bezirganyan on the occasion of his 95th birthday on 15th December 2011.

  20. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  1. The crystallization of small particles and droplets

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1985-01-01

    A general expression is derived for the volume fraction of material crystallized as a function of time for the situation where boundary effects may be important, and it is applied to a sample consisting of a monodisperse array of small particles. It is assumed that crystallization occurs via homogeneous nucleation followed by crystal growth. The crystallization rate is shown to be controlled by a single dimensionless parameter, beta. Beta exp 1/4 is a dimensionless particle radius which tends to be small when the growth rate is large or when the nucleation rate is small. When beta is large, the general expression for the volume fraction transformed reduces to the standard expression valid for bulk samples. When beta is small, it reduces to the formula used to compute the volume fraction crystallized in droplet undercooling experiments. Hence, the present results are pertinent for the interpretation of some droplet undercooling experiments as well as isothermal DSC and DTA experiments.

  2. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    SciTech Connect

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico; Penn, R. Lee; Whitelam, Stephen B.; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D.; Navrotsky, Alexandra; Banfield, Jillian F.; Wallace, Adam F.; Michel, F. M.; Meldrum, Fiona C.; Colfen, Helmut; Dove, Patricia M.

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.

  3. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. PMID:26228157

  4. Ionizing particle detection based on phononic crystals

    NASA Astrophysics Data System (ADS)

    Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-01

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  5. Ionizing particle detection based on phononic crystals

    SciTech Connect

    Aly, Arafa H. E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F.

    2015-08-14

    Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.

  6. Structural Color Painting by Rubbing Particle Powder

    PubMed Central

    Park, ChooJin; Koh, Kunsuk; Jeong, Unyong

    2015-01-01

    Structural colors originate from purely physical structures. Scientists have been inspired to mimic the structures found in nature, the realization of these structures still presents a great challenge. We have recently introduced unidirectional rubbing of a dry particle powder on a rubbery surface as a quick, highly reproducible means to fabricate a single crystal monolayer assembly of particles over an unlimited area. This study extends the particle-rubbing process to a novel fine-art painting, structural color painting (SCP). SCP is based on structural coloring with varying iridescence according to the crystal orientation, as controlled by the rubbing direction. This painting technique can be applied on curved surfaces, which enriches the objects to be painted and helps the painter mimic the structures found in nature. It also allows for quick fabrication of complicated particle-assembly patterns, which enables replication of paintings. PMID:25661669

  7. Structural Color Painting by Rubbing Particle Powder

    NASA Astrophysics Data System (ADS)

    Park, Choojin; Koh, Kunsuk; Jeong, Unyong

    2015-02-01

    Structural colors originate from purely physical structures. Scientists have been inspired to mimic the structures found in nature, the realization of these structures still presents a great challenge. We have recently introduced unidirectional rubbing of a dry particle powder on a rubbery surface as a quick, highly reproducible means to fabricate a single crystal monolayer assembly of particles over an unlimited area. This study extends the particle-rubbing process to a novel fine-art painting, structural color painting (SCP). SCP is based on structural coloring with varying iridescence according to the crystal orientation, as controlled by the rubbing direction. This painting technique can be applied on curved surfaces, which enriches the objects to be painted and helps the painter mimic the structures found in nature. It also allows for quick fabrication of complicated particle-assembly patterns, which enables replication of paintings.

  8. Dressed active particles in spherical crystals.

    PubMed

    Yao, Zhenwei

    2016-08-17

    We investigate the dynamics of an active particle in two-dimensional spherical crystals, which provide an ideal environment to illustrate the interplay between active particles and crystallographic defects. A moving active particle is observed to be surrounded by localized topological defects, becoming a dressed active particle. Such a physical picture characterizes both the lattice distortion around the moving particle and the healing of the distorted lattice in its trajectory. We find that the dynamical behaviors of an active particle in both random and ballistic motions uniformly conform to this featured scenario, whether the particle is initially a defect or not. We further observe that the defect pattern around a dressed ballistic active particle randomly oscillates between two well-defined wing-like defect motifs regardless of its speed. The established physical picture of dressed active particles in this work partially deciphers the complexity of the intriguing nonequilibrium behaviors in active crystals, and opens the promising possibility of introducing the activity to engineer defects, which has strong connections with the design of materials. PMID:27491597

  9. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  10. Particles and curvatures in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  11. Photonic Crystal Laser Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M

    2003-05-21

    Photonic crystals have great potential for use as laser-driven accelerator structures. A photonic crystal is a dielectric structure arranged in a periodic geometry. Like a crystalline solid with its electronic band structure, the modes of a photonic crystal lie in a set of allowed photonic bands. Similarly, it is possible for a photonic crystal to exhibit one or more photonic band gaps, with frequencies in the gap unable to propagate in the crystal. Thus photonic crystals can confine an optical mode in an all-dielectric structure, eliminating the need for metals and their characteristic losses at optical frequencies. We discuss several geometries of photonic crystal accelerator structures. Photonic crystal fibers (PCFs) are optical fibers which can confine a speed-of-light optical mode in vacuum. Planar structures, both two- and three-dimensional, can also confine such a mode, and have the additional advantage that they can be manufactured using common microfabrication techniques such as those used for integrated circuits. This allows for a variety of possible materials, so that dielectrics with desirable optical and radiation-hardness properties can be chosen. We discuss examples of simulated photonic crystal structures to demonstrate the scaling laws and trade-offs involved, and touch on potential fabrication processes.

  12. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  13. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  14. Effect of particle size and particle size distribution on physical characteristics, morphology and crystal structure of explosively compacted high-T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Kotsis, I.; Enisz, M.; Oravetz, D.; Szalay, A.

    1995-01-01

    A superconductor, of composition Y(Ba,K,Na)2Cu3O(x)/F(y) and a composite of composition Y(Ba,K,Na)2Cu3O(x)/F(y) + Ag, with changing K, Na and F content but a constant silver content (Ag = 10 mass%) was prepared using a single heat treatment. the resulting material was ground in a corundum lined mill, separated to particle size fractions of 0-40 micron, 0-63 micron and 63-900 micron and explosively compacted, using an explosive pressure of 10(exp 4) MPa and a subsequent heat treatment. Best results were obtained with the 63-900 micron fraction of composition Y(Ba(1.95) K(0.01)Cu3O(x)F(0),(05)/Ag: porosity less than 0.01 cu cm/g and current density 2800 A/sq cm at 77K.

  15. Crystal structure determination of Efavirenz

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Tripon, Carmen; Borodi, Gheorghe; Pop, Mihaela Maria; Dumitru, Ristoiu

    2015-12-01

    Needle-shaped single crystals of the title compound, C14H9ClF3NO2, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  16. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  17. Symmetry considerations for the targeted assembly of entropically stabilized colloidal crystals via Voronoi particles.

    PubMed

    Schultz, Benjamin A; Damasceno, Pablo F; Engel, Michael; Glotzer, Sharon C

    2015-03-24

    The relationship between colloidal building blocks and their assemblies is an active field of research. As a strategy for targeting novel crystal structures, we examine the use of Voronoi particles, which are hard, space-filling particles in the shape of Voronoi cells of a target structure. Although Voronoi particles stabilize their target structure in the limit of high pressure by construction, the thermodynamic assembly of the same structure at moderate pressure, close to the onset of crystallization, is not guaranteed. Indeed, we find that a more symmetric crystal is often preferred due to additional entropic contributions arising from configurational or occupational degeneracy. We characterize the assembly behavior of the Voronoi particles in terms of the symmetries of the building blocks as well as the symmetries of crystal structures and demonstrate how controlling the degeneracies through a modification of particle shape and field-directed assembly can significantly improve the assembly propensity. PMID:25692863

  18. Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, B.; /SLAC

    2006-09-07

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

  19. Concerning inorganic crystal structure types.

    PubMed

    Bergerhoff; Berndt; Brandenburg; Degen

    1999-04-01

    All representatives of an inorganic crystal structure type can be found systematically in the new database SICS (Standardized Inorganic Crystal Structures). It is derived from the Inorganic Crystal Structure Database (ICSD) by selecting the best determination of each phase. In addition, each entry is given in a standardized description and complemented by searchable descriptors Delta, which give the difference between all structures of an isopointal set. Because of the large number of structures the full information on relationships present can only be found by means of the new database itself. Some examples are given here in printed form. The limitations and the possibilities of expansion of SICS in terms of the concept of 'structure types' are demonstrated. PMID:10927350

  20. Micropolar crystal plasticity simulation of particle strengthening

    NASA Astrophysics Data System (ADS)

    Mayeur, J. R.; McDowell, D. L.

    2015-09-01

    The yield and work hardening behavior of a small-scale initial-boundary value problem involving dislocation plasticity in an idealized particle strengthened system is investigated using micropolar single crystal plasticity and is compared with results for the same problem from dislocation dynamics simulations. A micropolar single crystal is a work-conjugate higher-order continuum that treats the lattice rotations as generalized displacements, and supports couple stresses that are work-conjugate to the lattice torsion-curvature, leading to a non-symmetric Cauchy stress. The resolved skew-symmetric component of the Cauchy stress tensor results in slip system level kinematic hardening during heterogeneous deformation that depends on gradients of lattice torsion-curvature. The scale-dependent mechanical response of the micropolar single crystal is dictated both by energetic (higher-order elastic constants) and dissipative (plastic torsion-curvature) intrinsic material length scales. We show that the micropolar model captures essential details of the average stress-strain behavior predicted by discrete dislocation dynamics and of the cumulative slip and dislocation density fields predicted by statistical dislocation dynamics.

  1. SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control.

    PubMed

    Kumar, Manjesh; Luo, Helen; Román-Leshkov, Yuriy; Rimer, Jeffrey D

    2015-10-14

    Many synthetic and natural crystalline materials are either known or postulated to grow via nonclassical pathways involving the initial self-assembly of precursors that serve as putative growth units for crystallization. Elucidating the pathway(s) by which precursors attach to crystal surfaces and structurally rearrange (postattachment) to incorporate into the underlying crystalline lattice is an active and expanding area of research comprising many unanswered fundamental questions. Here, we examine the crystallization of SSZ-13, which is an aluminosilicate zeolite that possesses exceptional physicochemical properties for applications in separations and catalysis (e.g., methanol upgrading to chemicals and the environmental remediation of NO(x)). We show that SSZ-13 grows by two concerted mechanisms: nonclassical growth involving the attachment of amorphous aluminosilicate particles to crystal surfaces and classical layer-by-layer growth via the incorporation of molecules to advancing steps on the crystal surface. A facile, commercially viable method of tailoring SSZ-13 crystal size and morphology is introduced wherein growth modifiers are used to mediate precursor aggregation and attachment to crystal surfaces. We demonstrate that small quantities of polymers can be used to tune crystal size over 3 orders of magnitude (0.1-20 μm), alter crystal shape, and introduce mesoporosity. Given the ubiquitous presence of amorphous precursors in a wide variety of microporous crystals, insight of the SSZ-13 growth mechanism may prove to be broadly applicable to other materials. Moreover, the ability to selectively tailor the physical properties of SSZ-13 crystals through molecular design offers new routes to optimize their performance in a wide range of commercial applications. PMID:26376337

  2. Crystal structure of triclopyr

    PubMed Central

    Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2014-01-01

    In the title compound {systematic name: 2-[(3,5,6-tri­chloro­pyridin-2-yl)­oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol­ecules in which the dihedral angles between the mean plane of the carb­oxy­lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter­molecular O—H⋯O hydrogen bonds form dimers through an R 2 2(8) ring motif and are extended into chains along [100] by weak π–π inter­actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter­molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4). PMID:25309266

  3. Crystal structure of triclopyr.

    PubMed

    Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

    2014-09-01

    In the title compound {systematic name: 2-[(3,5,6-tri-chloro-pyridin-2-yl)-oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol-ecules in which the dihedral angles between the mean plane of the carb-oxy-lic acid group and the pyridyl ring plane are 79.3 (6) and 83.8 (5)°. In the crystal, pairs of inter-molecular O-H⋯O hydrogen bonds form dimers through an R 2 (2)(8) ring motif and are extended into chains along [100] by weak π-π inter-actions [ring centroid separations = 3.799 (4) and 3.810 (4) Å]. In addition, short inter-molecular Cl⋯Cl contacts [3.458 (2) Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175 (4). PMID:25309266

  4. The flow structure in the near field of jets and its effect on cavitation inception, and, Implementation of ferroelectric liquid crystal and birefringent crystal for image shifting in particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Gopalan, Shridhar

    1999-10-01

    Cavitation experiments performed in the near field of a 50-mm diameter (D) jet at ReD = 5 × 105, showed inception in the form of inclined ``cylindrical'' bubbles at axial distances (x/D) less than 0.55, with indices of 2.5. On tripping the boundary layer, cavitation inception occurred at x/D ~ 2, as distorted ``spherical'' bubbles with inception indices of 1.7. To investigate these substantial differences, the near field of the jet was measured using Particle Image Velocimetry (PIV). Data on the primary flow, the strength distribution of the ``streamwise''vortices and the velocity profiles within the initial boundary layers were obtained. The untripped case showed a direct transition to three-dimensional flow in the near field (x/D < 0.7) even before rolling up to distinct vortex rings. Strong ``streamwise'' vortices with strengths up to 25% of the jet velocity times the characteristic wavelength were seen. Cavitation inception occurred in the core of these vortices. In contrast, in the tripped jet the vortex sheet rolled up to the familiar Kelvin- Helmholtz vortex rings with weak secondary vortices. Using the measured nuclei distribution, strengths and straining of the ``streamwise'' structures, the rates of cavitation events were estimated. The estimated results match very well with the measured cavitation rates. Also, the Reynolds stresses in the near field of the jet show similar trends and magnitudes to those of Browand & Latigo (1979) and Bell & Mehta (1990) for a plane shear layer. In the second part of this essay we discuss the implementation of electro-optical image shifting to resolve directional ambiguity in PIV measurements. The technique uses a ferroelectric liquid crystal (FLC) as an electro-optic half wave plate and a birefringent crystal (calcite) as the shifter. The system can be used with non-polarized light sources and fluorescent particles. The minimum shifting time is approximately 100μs. This compact electrooptical device usually is

  5. Crystal structure determination of Efavirenz

    SciTech Connect

    Popeneciu, Horea Dumitru, Ristoiu; Tripon, Carmen Borodi, Gheorghe Pop, Mihaela Maria

    2015-12-23

    Needle-shaped single crystals of the title compound, C{sub 14}H{sub 9}ClF{sub 3}NO{sub 2}, were obtained from a co-crystallization experiment of Efavirenz with maleic acid in a (1:1) ratio, using methanol as solvent. Crystal structure determination at room temperature revealed a significant anisotropy of the lattice expansion compared to the previously reported low-temperature structure. In both low- and room temperature structures the cyclopropylethynyl fragment in one of the asymmetric unit molecules is disordered. While at low-temperature only one C atom exhibits positional disorder, at room temperature the disorder is present for two C atoms of the cyclopropane ring.

  6. Crystal structure refinement with SHELXL

    PubMed Central

    Sheldrick, George M.

    2015-01-01

    The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors. PMID:25567568

  7. Crystal structure refinement with SHELXL

    SciTech Connect

    Sheldrick, George M.

    2015-01-01

    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  8. Crystal structure of pyrazoxyfen

    PubMed Central

    Kwon, Eunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-01-01

    The title compound, C20H16Cl2N2O3 (systematic name: 2-{[4-(2,4-di­chloro­benzo­yl)-1,3-di­methyl­pyrazol-5-yl}­oxy}-1-phenyl­ethan-1-one), is the benzoyl­pyrazole herbicide pyrazoxyfen. The asymmetric unit comprises two independent mol­ecules, A and B, in which the pyrazole ring makes dihedral angles of 80.29 (10) and 61.70 (10)° and 87.60 (10) and 63.92 (8)°, respectively, with the di­chloro­phenyl and phenyl rings. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds, and C—H⋯π and π–π [3.646 (2) Å] inter­actions link adjacent mol­ecules, forming a two-dimensional network parellel to (011). In addition, the networks are linked by weak inter­molecular C—Cl⋯π [3.356 (2), 3.950 (2), 3.250 (2) and 3.575 (2) Å] inter­actions, resulting in a three-dimensional architecture. PMID:26870483

  9. Crystal structure of pyrazoxyfen.

    PubMed

    Kwon, Eunjin; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2015-12-01

    The title compound, C20H16Cl2N2O3 (systematic name: 2-{[4-(2,4-di-chloro-benzo-yl)-1,3-di-methyl-pyrazol-5-yl}-oxy}-1-phenyl-ethan-1-one), is the benzoyl-pyrazole herbicide pyrazoxyfen. The asymmetric unit comprises two independent mol-ecules, A and B, in which the pyrazole ring makes dihedral angles of 80.29 (10) and 61.70 (10)° and 87.60 (10) and 63.92 (8)°, respectively, with the di-chloro-phenyl and phenyl rings. In the crystal, C-H⋯O and C-H⋯N hydrogen bonds, and C-H⋯π and π-π [3.646 (2) Å] inter-actions link adjacent mol-ecules, forming a two-dimensional network parellel to (011). In addition, the networks are linked by weak inter-molecular C-Cl⋯π [3.356 (2), 3.950 (2), 3.250 (2) and 3.575 (2) Å] inter-actions, resulting in a three-dimensional architecture. PMID:26870483

  10. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms.

    PubMed

    Bianchi, Emanuela; Doppelbauer, Günther; Filion, Laura; Dijkstra, Marjolein; Kahl, Gerhard

    2012-06-01

    We consider several patchy particle models that have been proposed in literature and we investigate their candidate crystal structures in a systematic way. We compare two different algorithms for predicting crystal structures: (i) an approach based on Monte Carlo simulations in the isobaric-isothermal ensemble and (ii) an optimization technique based on ideas of evolutionary algorithms. We show that the two methods are equally successful and provide consistent results on crystalline phases of patchy particle systems. PMID:22697525

  11. Reversible switching of liquid crystal micro-particles in a nematic liquid crystal.

    PubMed

    Imamura, Koki; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-01-21

    Liquid crystal micro-particles are functional materials possessing optical and dielectric anisotropies originating from the arrangement of rod-like molecules within the particles. Although they can be switched by an electric field, particles dispersed in isotropic hosts usually cannot return to their original state, because there is no restoration force acting on the particles. Here, we describe reversible switching of liquid crystal micro-particles by dispersing them in a nematic liquid crystal host. We fabricate square micro-particles with unidirectional molecular alignment and investigate their static and dynamic electro-optic properties by applying an in-plane electric field. The behavior of the micro-particles is well-described by the theoretical model we construct, making this study potentially useful for the development of liquid crystal-liquid crystal particle composites with engineered properties. PMID:26514389

  12. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  13. Crystal structure of guggulsterone Z

    SciTech Connect

    Gupta, V. K. Bandhoria, P.; Gupta, B. D.; Gupta, K. K.

    2006-03-15

    The crystal structure of the title compound (4,17(20)-trans-pregnadiene-3,16-dione, C{sub 21}H{sub 28}O{sub 2}) has been determined by direct methods using single-crystal X-ray diffraction data. The compound crystallizes into the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with the unit cell parameters a = 7.908(2) A, b = 13.611(3) A, c = 16.309(4) A, and Z = 4. The structure has been refined to R = 0.058 for 3667 observed reflections. The bond distances and angles are in good agreement with guggulsterone E and other related steroid molecules. Ring A exists in the distorted sofa conformation, while rings B and C adopt the distorted chair conformation. Five-membered ring D is intermediate between the half-chair and envelope conformations. The A/B ring junction is quasi-trans, while ring systems B/C and C/D are trans fused about the C(8)-C(9) and C(13)-C(14) bonds, respectively. The steroid nucleus has a small twist, as shown by the C(19)-C(10)...C(13)-C(18) pseudo-torsion angle of 7.2{sup o}. The crystal structure is stabilized by intra-and intermolecular C-H...O hydrogen bonds.

  14. Particle jumps in structural glasses.

    PubMed

    Ciamarra, Massimo Pica; Pastore, Raffaele; Coniglio, Antonio

    2016-01-14

    Particles in structural glasses rattle around temporary equilibrium positions, that seldom change through a process which is much faster than the relaxation time, known as particle jump. Since the relaxation of the system is due to the accumulation of many such jumps, it could be possible to connect the single particle short time motion to the macroscopic relaxation by understanding the features of the jump dynamics. Here we review recent results in this research direction, clarifying the features of particle jumps that have been understood and those that are still under investigation, and examining the role of particle jumps in different theories of the glass transition. PMID:26481331

  15. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  16. Crystal Structures of Yeast-Produced Enterovirus 71 and Enterovirus 71/Coxsackievirus A16 Chimeric Virus-Like Particles Provide the Structural Basis for Novel Vaccine Design against Hand-Foot-and-Mouth Disease

    PubMed Central

    Lyu, Ke; He, Ya-Ling; Li, Hao-Yang

    2015-01-01

    ABSTRACT Human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two major causative agents for hand-foot-and-mouth disease (HFMD). Previously, we demonstrated that a virus-like particle (VLP) for EV71 produced from Saccharomyces cerevisiae is a potential vaccine candidate against EV71 infection, and an EV71/CVA16 chimeric VLP can elicit protective immune responses against both virus infections. Here, we presented the crystal structures of both VLPs, showing that both the linear and conformational neutralization epitopes identified in EV71 are mostly preserved on both VLPs. The replacement of only 4 residues in the VP1 GH loop converted strongly negatively charged surface patches formed by portions of the SP70 epitope in EV71 VLP into a relatively neutral surface in the chimeric VLP, which likely accounted for the additional neutralization capability of the chimeric VLP against CVA16 infection. Such local variations in the amino acid sequences and the surface charge potential are also present in different types of polioviruses. In comparison to EV71 VLP, the chimeric VLP exhibits structural changes at the local site of amino acid replacement and the surface loops of all capsid proteins. This is consistent with the observation that the VP1 GH loop located near the pseudo-3-fold junction is involved in extensive interactions with other capsid regions. Furthermore, portions of VP0 and VP1 in EV71 VLP are at least transiently exposed, revealing the structural flexibility of the VLP. Together, our structural analysis provided insights into the structural basis of enterovirus neutralization and novel vaccine design against HFMD and other enterovirus-associated diseases. IMPORTANCE Our previous studies demonstrated that the enterovirus 71 (EV71) virus-like particle (VLP) produced from yeast is a vaccine candidate against EV71 infection and that a chimeric EV71/coxsackievirus A16 (CVA16) VLP with the replacement of 4 amino acids in the VP1 GH loop can confer

  17. Structural Dynamics of the Vault Ribonucleoprotein Particle

    NASA Astrophysics Data System (ADS)

    Casañas, Arnau; Querol, Jordi; Fita, Ignasi; Verdaguer, Núria

    Vaults are ubiquitous, highly conserved, 13 MDa ribonucleoprotein particles, involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. There are between 104 and 106 vault particles per mammalian cell and they do not trigger autoimmunity. The vault particle shows a hollow barrel-shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein (MVP). Other data indicated that vault halves can dissociate at acidic pH. The high resolution, crystal structure of the of the seven N-terminal domains (R1-R7) of MVP, forming the central vault barrel, together with that of the native vault particle (solved at 8 Å resolution), revealed the interactions governing vault association and suggested a pH-dependent mechanism for a reversible dissociation induced by low pH. Vault particles posses many features making them very promising vehicles for the delivery of therapeutic agents including self-assembly, 100 nm size range, emerging atomic-level structural information, natural presence in humans ensuring biocompability, recombinant production system, existing features for targeting species to the large lumen and a dynamic structure that may be controlled for manipulation of drug release kinetics. All these attributes provide vaults with enormous potential as a drug/gene delivery platform.

  18. Crystal structures and freezing of dipolar fluids.

    PubMed

    Groh, B; Dietrich, S

    2001-02-01

    We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole at T=0. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic. For the Stockmayer (i.e., Lennard-Jones plus dipolar) interaction three phases are found upon increasing the dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential approximately r(-n). A crossover between qualitatively different sequences of phases occurs near the exponent n=12. The results are applicable to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of the Stockmayer fluid by density-functional theory. PMID:11308482

  19. Large Silver Halide Single Crystals as Charged Particle Track Detectors

    NASA Technical Reports Server (NTRS)

    Kusmiss, J. H.

    1972-01-01

    The trajectory of the particle is made visible under a microscope by the accumulation of metallic silver at regions of the lattice damaged by the particle. This decoration of the particle track is accomplished by exposure of the crystal to light. The decoration of normally present lattice imperfections such as dislocations can be suppressed by the addition to the crystal of less than ten parts per million of a suitable polyvalent metal impurity. An account of some preliminary attempts to grow thin single crystals of AgCl is given also, and suggestions for a more refined technique are offered.

  20. Melting a crystal of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Olson, Christopher; Muller, Michael; Walsh, Lee; Menon, Narayanan

    We experimentally study the kinetics of melting a two-dimensional non-cohesive crystal of hard, square-shaped millimeter-scale particles. Interactions between the square particles have four-fold rotational symmetry, but particles are designed with features such that when vibrated their predominant motion is polar along one body axis. We prepare the initial crystalline state with varying orientations of the particle polarity relative to the symmetry axes of the crystal. We then study the melting of this crystal when vertical vibrations are turned on. Orientational and translational order are initially strongly coupled, and during melting translational order is lost before orientational order. The spatial distribution of order parameters and the time scale for melting kinetics is strongly affected by compatibility between the polarity and the crystal axes in the initial condition.

  1. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition

    PubMed Central

    Kondo, Yasushi; Oubridge, Chris; van Roon, Anne-Marie M; Nagai, Kiyoshi

    2015-01-01

    U1 snRNP binds to the 5′ exon-intron junction of pre-mRNA and thus plays a crucial role at an early stage of pre-mRNA splicing. We present two crystal structures of engineered U1 sub-structures, which together reveal at atomic resolution an almost complete network of protein–protein and RNA-protein interactions within U1 snRNP, and show how the 5′ splice site of pre-mRNA is recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between pre-mRNA and the 5′-end of U1 snRNA. The binding of the RNA duplex is stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA backbone around the splice junction but U1-C makes no base-specific contacts with pre-mRNA. The structure, together with RNA binding assays, shows that the selection of 5′-splice site nucleotides by U1 snRNP is achieved predominantly through basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched 5′-splice sites. DOI: http://dx.doi.org/10.7554/eLife.04986.001 PMID:25555158

  2. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5' splice site recognition.

    PubMed

    Kondo, Yasushi; Oubridge, Chris; van Roon, Anne-Marie M; Nagai, Kiyoshi

    2015-01-01

    U1 snRNP binds to the 5' exon-intron junction of pre-mRNA and thus plays a crucial role at an early stage of pre-mRNA splicing. We present two crystal structures of engineered U1 sub-structures, which together reveal at atomic resolution an almost complete network of protein-protein and RNA-protein interactions within U1 snRNP, and show how the 5' splice site of pre-mRNA is recognised by U1 snRNP. The zinc-finger of U1-C interacts with the duplex between pre-mRNA and the 5'-end of U1 snRNA. The binding of the RNA duplex is stabilized by hydrogen bonds and electrostatic interactions between U1-C and the RNA backbone around the splice junction but U1-C makes no base-specific contacts with pre-mRNA. The structure, together with RNA binding assays, shows that the selection of 5'-splice site nucleotides by U1 snRNP is achieved predominantly through basepairing with U1 snRNA whilst U1-C fine-tunes relative affinities of mismatched 5'-splice sites. PMID:25555158

  3. The structure of small penta-twinned gold particles

    NASA Astrophysics Data System (ADS)

    Gao, Pei-Yu; Kunath, W.; Gleiter, H.; Weiss, K.

    1989-03-01

    The structural feathers of penta-twinned gold particles (size between 2 and 6 nm) generated by gas evaporation have been investigated by high resolution TEM. The structural characteristic of penta-twinned particles is different from that of quasi-crystals that the five coherent or incoherent twin boundaries separating the twin oriented segments do not join up along a common edge. The lattice parameter is reduced by 4 5% in comparison to that of bulk gold. The formation of the penta-twinned particles is proposed to occur by particle collision. The particles were observed to be crystalline at ambient temperature.

  4. Crystal Structure Effect on Electrical Properties of Ysz Ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxia; Gong, Shengkai; Zhou, Chungen; Xu, Huibin

    YSZ samples were prepared by Plasma Spray (PS) and Electron Beam Physical Vapor Deposition (EB-PVD) respectively. Microstructure and morphology were observed by SEM and XRD. Grain size of PS-YSZ was non-uniform caused by the inclusion of nano particle by molten particle and column crystal structure was observed for EB-PVD-YSZ. The Arrhenius plots of two samples were graphed by analysis of the measurement results of AC impedance spectra. The conductive mechanisms for EB-PVD and PS YSZ were different due to the crystal structure.

  5. Quantum effects for particles channeling in a bent crystal

    NASA Astrophysics Data System (ADS)

    Feranchuk, Ilya; San, Nguyen Quang

    2016-09-01

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  6. Interaction of small spherical particles in confined cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Lev, B. I.; Fukuda, Jun-ichi; Tovkach, O. M.; Chernyshuk, S. B.

    2014-01-01

    The theory of the elastic interaction of spherical colloidal particles immersed into a confined cholesteric liquid crystal is proposed. The case of weak anchoring on the particle surfaces is considered. We derive a general expression for the energy of the interaction between small spherical particles (with diameter much smaller than the cholesteric pitch) suspended in a cholesteric confined by two parallel planes. The resulting form of the interaction energy has a more complex spatial pattern and energy versus distance dependence than that in nematic colloids. The absence of translational symmetry related to helical periodicity and local nematic ordering in cholesteric liquid crystals manifest themselves in the complex nature of the interaction maps.

  7. Formation of a columnar liquid crystal in a simple one-component system of particles

    NASA Astrophysics Data System (ADS)

    Metere, Alfredo; Sarman, Sten; Oppelstrup, Tomas; Dzugutov, Mikhail

    We report a molecular dynamics simulation demonstrating that a columnar liquid crystal, commonly formed by disc-shaped molecules, can be formed by identical particles interacting via a spherically symmetric potential. Upon isochoric cooling from a low-density isotropic liquid state the simulated system performed a weak first order phase transition which produced a liquid crystal phase composed of parallel particle columns arranged in a hexagonal pattern in the plane perpendicular to the column axis. The particles within columns formed a liquid structure and demonstrated a significant intracolumn diffusion. Further cooling resulted in another first-order transition whereby the column structure became periodically ordered in three dimensions transforming the liquid-crystal phase into a crystal. This result is the first observation of a liquid crystal formation in a simple one-component system of particles. Its conceptual significance is in that it demonstrated that liquid crystals that have so far only been produced in systems of anisometric molecules, can also be formed by mesoscopic soft-matter and colloidal systems of spherical particles with appropriately tuned interatomic potential.

  8. Photonic crystal devices formed by a charged-particle beam

    DOEpatents

    Lin, Shawn-Yu; Koops, Hans W. P.

    2000-01-01

    A photonic crystal device and method. The photonic crystal device comprises a substrate with at least one photonic crystal formed thereon by a charged-particle beam deposition method. Each photonic crystal comprises a plurality of spaced elements having a composition different from the substrate, and may further include one or more impurity elements substituted for spaced elements. Embodiments of the present invention may be provided as electromagnetic wave filters, polarizers, resonators, sources, mirrors, beam directors and antennas for use at wavelengths in the range from about 0.2 to 200 microns or longer. Additionally, photonic crystal devices may be provided with one or more electromagnetic waveguides adjacent to a photonic crystal for forming integrated electromagnetic circuits for use at optical, infrared, or millimeter-wave frequencies.

  9. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  10. Old and New Particle Structure

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2002-05-01

    This discussion will compare the old concept of the structure of matter with Nature. How did the ancient model affect scientific thinking leading science down blind pathways producing paradoxes? What instead is the simple logic and surprising consequences of Nature's choice, the Wave Structure of Matter? The old concept due to the Greek Democritus was a discrete particle like a grain of sand. It has survived almost unchanged. Even today, we prefer to regard mathematical entities, the 'photon' and quarks, as tiny grains. Only recently has the wave structure of particles been determined. Human emotions prefer explanations that agree with personal experience. We know that atomic sizes are much smaller than our senses can reveal, but most people, including scientists, prefer to imagine the electron like a baseball or a bullet. It is not. The quantum Wave Structure of Matter reveals the origin of the Natural laws, and opens a door to research in chemistry, biology, energy, and micro-electronics. Why had this not been found before? Because the Democritus particle agreed with emotions. Few people looked elsewhere. Modern structure is at www.QuantumMatter.com

  11. Dexterous acoustic trapping and patterning of particles assisted by phononic crystal plate

    SciTech Connect

    Wang, Tian; Ke, Manzhu Xu, Shengjun; Feng, Junheng; Qiu, Chunyin; Liu, Zhengyou

    2015-04-20

    In this letter, we present experimental demonstration of multi-particles trapping and patterning by the artificially engineered acoustic field of phononic crystal plate. Polystyrene particles are precisely trapped and patterned in two dimensional arrays, for example, the square, triangular, or quasi-periodic arrays, depending on the structures of the phononic crystal plates with varying sub-wavelength holes array. Analysis shows that the enhanced acoustic radiation force, induced by the resonant transmission field highly localized near the sub-wavelength apertures, accounts for the particles self-organizing. It can be envisaged that this kind of simple design of phononic crystal plates would pave an alternative route for self-assembly of particles and may be utilized in the lab-on-a-chip devices.

  12. Self-organized assemblies of colloidal particles obtained from an aligned chromonic liquid crystal dispersion.

    PubMed

    Zimmermann, Natalie; Jünnemann-Held, Gisela; Collings, Peter J; Kitzerow, Heinz-S

    2015-02-28

    The behavior of mono-disperse colloidal particles in a chromonic liquid crystal was investigated. Poly(methyl methacrylate) spherical particles with three different functionalizations, with and without surface charges, were utilized in the nematic and columnar phases of disodium cromoglycate solutions. The nematic phase was completely aligned parallel to the glass substrates by a simple rubbing technique, and the columnar phase showed regions of similar alignment. The behavior of the colloidal particles in the chromonic liquid crystal depended critically on the functionality, with bromine functionalized particles not dispersing at all, and cationic trimethylammonium and epoxy functionalized particles dispersing well in the isotropic phase of the liquid crystal. At the transition to the nematic and especially the columnar phase, the colloidal particles were expelled into the remaining isotropic phase. Since the columnar phase grew in parallel ribbons, the colloidal particles ended up in chain-like assemblies. Such behavior opens the possibility of producing patterned assemblies of colloidal particles by taking advantage of the self-organized structure of chromonic liquid crystals. PMID:25589441

  13. [Theory and practice of electrospray crystallization in particle size reduction].

    PubMed

    Szunyogh, Tímea; Ambrus, Rita; Szabóné Révész, Piroska

    2015-01-01

    Nowdays, one of the most challenges for the researchers is the formulation of poorly water soluble drugs. Reduction of particle size of active agents to submicron range could result in a faster dissolution rate and higher bioavailability. Integration as crystallization process is an often used particle size decreasing technique. The aim of this study was to show the theoretical background and practical application of the electros pray crystallization as an innovative particle size decreasing technique. Our model drug was the niflumic acid (NIF), which belongs to the BCS Class II. After the optimization of the process parameters, the physico-chemical properties of the samples were characterized. Particle size and shape were visualized by scanning electron microscopy (SEM). Crystalline state of NIF and the samples were investigated using differential scanning calorimetry (DSC) and X-ray powder diffraction. Physico-chemical properties were determined using dissolution test from simulated media. The electrospray crytallization resulted in particle size reduction but the aggregation of nanonized NIF crystals (NIF-nano) could not avoid without excipient. Aggregates with poor secondary forces are suitable for production of the interactive physical mixture. It was found that NIF-nano could be well distributed on the surface of the mannitol as carrier and the Poloxamer R protected the NIF-nano crystals (320 nm)from aggregation. Consequently, the physical mixture resulted in product with higher polarity, better wettability and faster dissolution rate of NIF as raw NIF or NIF-nano. PMID:26390735

  14. Crystal structure of prethrombin-1

    SciTech Connect

    Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico

    2010-11-15

    Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.

  15. Structure of self - assembled two-dimensional spherical crystals

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas R.

    2004-03-01

    Dense spherical particles on a flat surface usually pack into a simple triangular lattice, similar to billiard balls at the start of a game. The minimum energy configuration for interacting particles on the curved surface of a sphere, however, presents special difficulties, as recognized already by J.J. Thomson. We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries or "scars" not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. First experiments where the melting of the crystal structure was observable will be discussed. Dynamic triangulation methods allow the analysis of the dynamics of the defects. Possible modifications towards mechanically stabilized self assembly structures result in so called Colloidosomes, which are promising for many different encapsulation purposes.

  16. Structural stability of vault particles.

    PubMed

    Esfandiary, Reza; Kickhoefer, Valerie A; Rome, Leonard H; Joshi, Sangeeta B; Middaugh, C Russell

    2009-04-01

    Vaults, at 13 MDa, are the largest ribonucleoprotein particles known. In vitro, expression of the major vault protein (MVP) alone in Sf9 insect cells results in the production of recombinant particles with characteristic vault structure. With the ultimate goal of using recombinant vaults as nanocapsules for the delivery of biomolecules, we have employed a variety of spectroscopic techniques (i.e., circular dichroism, fluorescence spectroscopy, and light scattering) along with electron microscopy, to characterize the structural stability of vaults over a wide range of pH (3-8) and temperature (10-90 degrees C). Ten different conformational states of the vaults were identified over the pH and temperature range studied with the most stable region at pH 6-8 below 40 degrees C and least stable at pH 4-6 above 60 degrees C. A unique intermediate molten globulelike state was also identified at pH 6 and approximately 55 degrees C. EM imaging showed the opening of intact vaults into flowerlike structures when transitioning from neutral to acidic pH. This information has potential use in the development of recombinant vaults into nanocapsules for drug delivery since one mechanism by which therapeutic agents entrapped in vaults could be released is through an opening of the intact vault structure. PMID:18683860

  17. Crystal structure of benzimidazolium salicylate

    PubMed Central

    Amudha, M.; Kumar, P. Praveen; Chakkaravarthi, G.

    2015-01-01

    In the anion of the title mol­ecular salt, C7H7N2 +·C7H5O3 − (systematic name: 1H-benzimidazol-3-ium 2-hy­droxy­ben­zo­ate), there is an intra­molecular O—H⋯O hydrogen bond that generates an S(6) ring motif. The CO2 group makes a dihedral angle of 5.33 (15)° with its attached ring. In the crystal, the dihedral angle between the benzimidazolium ring and the anion benzene ring is 75.88 (5)°. Two cations bridge two anions via two pairs of N—H⋯O hydrogen bonds, enclosing an R 4 4(16) ring motif, forming a four-membered centrosymmetric arrangement. These units are linked via C—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by C—H⋯π and π–π inter­actions [inter-centroid distances = 3.4156 (7) and 3.8196 (8) Å], forming a three-dimensional structure. PMID:26594483

  18. Crystal structure of a perfect carbyne

    SciTech Connect

    Belenkov, E. A. Mavrinsky, V. V.

    2008-01-15

    The crystal structure of a perfect carbyne is calculated by the molecular mechanics methods. It is established that the carbyne crystals should consist of polycumulene chains arranged in hexagonal bundles. The unit cell of the perfect carbyne crystal is trigonal and contains one carbon atom. The unit cell parameters are as follows: a = b = c = 0.3580 nm, {alpha} = {beta} = {gamma} = 118.5{sup o}, and space group P3m1. The perfect carbyne single crystals have a stable structure at room temperature if the length of their constituent chains is larger than 500 nm.

  19. A novel approach to identifying the elemental composition of individual residue particles retained in single snow crystals.

    PubMed

    Ma, Chang-Jin; Hwang, Kyung-Chul; Kim, Ki-Hyun

    2013-01-01

    This study was carried out to describe the chemical characteristics of individual residual particles in hexagonal snow crystals, which can provide a clue to the aerosol removal mechanism during snowfall. In the present study, to collect snow crystal individually and to identify the elemental composition of individual residues retained in a hexagonal crystal, an orchestration of the replication technique and micro-particle induced X-ray emission (micro-PIXE) analysis was carried out. Information concerning the elemental compositions and their abundance in the snow crystals showed a severe crystal-to-crystal fluctuation. The residues retained in the hexagonal snow crystals were dominated primarily by mineral components, such as silica and calcium. Based on the elemental mask and the spectrum of micro-PIXE, it was possible to presume the chemical inner-structure as well as the elemental mixing state in and/or on the individual residues retained in single snow crystals. PMID:23934568

  20. Ordered and disordered colloidal particle monolayers at liquid crystal interfaces

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Lohr, Matthew; Gharbi, Mohamed Amine; Stebe, Kathleen; Yodh, A. G.

    2014-03-01

    In this work, we investigate ordered colloidal particle monolayers at the air/liquid-crystal (LC) interface. Specifically, silica microparticles are treated with DMOAP to create homeotropic anchoring of LC mesogens at their surfaces. These particles are then spread on an air-exposed interface of the LC 5CB. Macroscopic ordered patterns of these microparticles form due to long-range interactions between particles that are mediated by elastic deformations of the underlying LC. Different confinement conditions lead to various self-assembled patterns ranging from hexagonal lattices to chain-like dipole formations. Using dark-field video microscopy, we track and analyze the dynamics of the colloidal particles in the hexagonal crystal packing, deriving mean squared displacements, phonon modes and density of states, etc., under several conditions. Further, heating of the nematic LC into its isotropic phase enables us to observe melting dynamics of this unusual quasi-2D crystal. The investigations provide insight into crystalline packings controlled by liquid-crystal mediated colloidal interactions. This work is funded by NSF Grant DMR12-05463, PENN MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  1. Metal oxide superconducting powder comprised of flake-like single crystal particles

    DOEpatents

    Capone, D.W.; Dusek, J.

    1994-10-18

    Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice. 3 figs.

  2. Metal oxide superconducting powder comprised of flake-like single crystal particles

    DOEpatents

    Capone, Donald W.; Dusek, Joseph

    1994-01-01

    Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice.

  3. Exploiting MIC architectures for the simulation of channeling of charged particles in crystals

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Karpusenko, Vadim

    2016-08-01

    Coherent effects of ultra-relativistic particles in crystals is an area of science under development. DYNECHARM + + is a toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures. The particle trajectory in a crystal is computed through numerical integration of the equation of motion. The code was revised and improved in order to exploit parallelization on multi-cores and vectorization of single instructions on multiple data. An Intel Xeon Phi card was adopted for the performance measurements. The computation time was proved to scale linearly as a function of the number of physical and virtual cores. By enabling the auto-vectorization flag of the compiler a three time speedup was obtained. The performances of the card were compared to the Dual Xeon ones.

  4. Interaction between two spherical particles in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Fukuda, Jun-Ichi; Stark, Holger; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-04-01

    We numerically investigate the interaction between two spherical particles in a nematic liquid crystal mediated by elastic distortions in the orientational order. We pay attention to the cases where two particles with equal radii R0 impose rigid normal anchoring on their surfaces and carry a pointlike topological defect referred to as a hyperbolic hedgehog. To describe the geometry of our system, we use bispherical coordinates, which prove useful in the implementation of boundary conditions at the particle surfaces and at infinity. We adopt the Landau de Gennes continuum theory in terms of a second-rank tensor order parameter Qij for the description of the orientational order of a nematic liquid crystal. We also utilize an adaptive mesh refinement scheme that has proven to be an efficient way of dealing with topological defects whose core size is much smaller than the particle size. When the two “dipoles,” composed of a particle and a hyperbolic hedgehog, are in parallel directions, the two-particle interaction potential is attractive for large interparticle distances D and proportional to D-3 as expected from the form of the dipole-dipole interaction, until the well-defined potential minimum at D≃2.46 R0 is reached. For the antiparallel configuration with no hedgehogs between the two particles, the interaction potential is repulsive and behaves as D-2 for D≲10 R0 , which is stronger than the dipole-dipole repulsion ( ˜ D-3 ) expected theoretically as an asymptotic behavior for large D .

  5. Strategies for crystallizing a chromatin protein in complex with the nucleosome core particle

    PubMed Central

    Makde, Ravindra D.; Tan, Song

    2013-01-01

    The molecular details for how chromatin factors and enzymes interact with the nucleosome are critical to understand fundamental genetic processes including cell division and gene regulation. A structural understanding of such processes has been hindered by the difficulty producing diffraction quality crystals of chromatin proteins in complex with the nucleosome. We describe here the steps used to grow crystals of the 300 kDa RCC1 chromatin factor/nucleosome core particle complex which diffract to 2.9 Å resolution. These steps included both pre- and post-crystallization strategies potentially useful to other complexes. We screened multiple variant RCC1-nucleosome core particle complexes assembled using different RCC1 homologs and deletion variants, and nucleosomes containing nucleosomal DNA with different sequences and lengths as well as histone deletion variants. We found that using RCC1 from different species produced different crystal forms of the RCC1-nucleosome complex consistent with key crystal packing interactions mediated by RCC1. Optimization of post-crystallization soaks to dehydrate the crystals dramatically improved the diffraction quality of the RCC1/nucleosome crystal from 5.0 to 2.9 Å resolution. PMID:23928047

  6. Brownian Dynamics of Colloidal Particles in Lyotropic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Martinez, Angel; Collings, Peter J.; Yodh, Arjun G.

    We employ video microscopy to study the Brownian dynamics of colloidal particles in the nematic phase of lyotropic chromonic liquid crystals (LCLCs). These LCLCs (in this case, DSCG) are water soluble, and their nematic phases are characterized by an unusually large elastic anisotropy. Our preliminary measurements of particle mean-square displacement for polystyrene colloidal particles (~5 micron-diameter) show diffusive and sub-diffusive behaviors moving parallel and perpendicular to the nematic director, respectively. In order to understand these motions, we are developing models that incorporate the relaxation of elastic distortions of the surrounding nematic field. Further experiments to confirm these preliminary results and to determine the origin of these deviations compared to simple diffusion theory are ongoing; our results will also be compared to previous diffusion experiments in nematic liquid crystals. We gratefully acknowledge financial support through NSF DMR12-05463, MRSEC DMR11-20901, and NASA NNX08AO0G.

  7. Crystal structures of MBP fusion proteins.

    PubMed

    Waugh, David S

    2016-03-01

    Although chaperone-assisted protein crystallization remains a comparatively rare undertaking, the number of crystal structures of polypeptides fused to maltose-binding protein (MBP) that have been deposited in the Protein Data Bank (PDB) has grown dramatically during the past decade. Altogether, 102 fusion protein structures were detected by Basic Local Alignment Search Tool (BLAST) analysis. Collectively, these structures comprise a range of sizes, space groups, and resolutions that are typical of the PDB as a whole. While most of these MBP fusion proteins were equipped with short inter-domain linkers to increase their rigidity, fusion proteins with long linkers have also been crystallized. In some cases, surface entropy reduction mutations in MBP appear to have facilitated the formation of crystals. A comparison of the structures of fused and unfused proteins, where both are available, reveals that MBP-mediated structural distortions are very rare. PMID:26682969

  8. Particle trapping and transport achieved via an adjustable acoustic field above a phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Wang, T.; Ke, M.; Qiu, C.; Liu, Z.

    2016-06-01

    We present the design for an acoustic system that can achieve particle trapping and transport using the acoustic force field above a phononic crystal plate. The phononic crystal plate comprised a thin brass plate with periodic slits alternately embedded with two kinds of elastic inclusions. Enhanced acoustic transmission and localized acoustic fields were achieved when the structure was excited by external acoustic waves. Because of the different resonant frequencies of the two elastic inclusions, the acoustic field could be controlled via the working frequency. Particles were transported between adjacent traps under the influence of the adjustable acoustic field. This device provides a new and versatile avenue for particle manipulation that would complement other means of particle manipulation.

  9. Budded baculovirus particle structure revisited.

    PubMed

    Wang, Qiushi; Bosch, Berend-Jan; Vlak, Just M; van Oers, Monique M; Rottier, Peter J; van Lent, Jan W M

    2016-02-01

    Baculoviruses are a group of enveloped, double-stranded DNA insect viruses with budded (BV) and occlusion-derived (ODV) virions produced during their infection cycle. BVs are commonly described as rod shaped particles with a high apical density of protein extensions (spikes) on the lipid envelope surface. However, due to the fragility of BVs the conventional purification and electron microscopy (EM) staining methods considerably distort the native viral structure. Here, we use cryo-EM analysis to reveal the near-native morphology of two intensively studied baculoviruses, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Spodoptera exigua MNPV (SeMNPV), as models for BVs carrying GP64 and F as envelope fusion protein on the surface. The now well-preserved AcMNPV and SeMNPV BV particles have a remarkable elongated, ovoid shape leaving a large, lateral space between nucleocapsid (NC) and envelope. Consistent with previous findings the NC has a distinctive cap and base structure interacting tightly with the envelope. This tight interaction may explain the partial retaining of the envelope on both ends of the NC and the disappearance of the remainder of the BV envelope in the negative-staining EM images. Cryo-EM also reveals that the viral envelope contains two layers with a total thickness of ≈ 6-7 nm, which is significantly thicker than a usual biological membrane (<4 nm) as measured by X-ray scanning. Most spikes are densely clustered at the two apical ends of the virion although some envelope proteins are also found more sparsely on the lateral regions. The spikes on the surface of AcMNPV BVs appear distinctly different from those of SeMNPV. Based on our observations we propose a new near-native structural model of baculovirus BVs. PMID:26743500

  10. Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin; Lin, M.C.; Schwartz, Brian; Byer, Robert; McGuinness, Christopher; Colby, Eric; England, Robert; Noble, Robert; Spencer, James; /SLAC

    2012-07-02

    Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

  11. Dynamics of particles and defects on spherical crystals

    NASA Astrophysics Data System (ADS)

    Guerra, Rodrigo; Kelleher, Colm; Chaikin, Paul

    Repulsive particles confined to two dimensions can form nearly perfect crystals that melt via the well-know Kosterlitz-Thouless two-step process. By contrast, when identical particles are confined to the surface of a sphere, the curvature and topology of the surface distorts the crystal lattice and forces it to accommodate point-like disclinations and chains of dislocations. Extensive numerical and theoretical investigation has shown that these extended scars are intrinsic to the ground-state-energy configuration of these packings, as they relieve some of the stress induced by the curvature of the surface. Nevertheless, the effect of these defects on the kinetics and phase behavior of spherical crystals is not at all well understood. Here we present results of computer simulations and experiments that suggest that these scars facilitate the motion of particles close to them and fundamentally alter the nature of the mobility and liquid-to-solid transition of packings of particles confined to spherical surfaces.

  12. Pattern information extraction from crystal structures

    NASA Astrophysics Data System (ADS)

    Okuyan, Erhan; Güdükbay, Uğur; Gülseren, Oğuz

    2007-04-01

    Determining the crystal structure parameters of a material is an important issue in crystallography and material science. Knowing the crystal structure parameters helps in understanding the physical behavior of material. It can be difficult to obtain crystal parameters for complex structures, particularly those materials that show local symmetry as well as global symmetry. This work provides a tool that extracts crystal parameters such as primitive vectors, basis vectors and space groups from the atomic coordinates of crystal structures. A visualization tool for examining crystals is also provided. Accordingly, this work could help crystallographers, chemists and material scientists to analyze crystal structures efficiently. Program summaryTitle of program: BilKristal Catalogue identifier: ADYU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYU_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Programming language used: C, C++, Microsoft .NET Framework 1.1 and OpenGL Libraries Computer: Personal Computers with Windows operating system Operating system: Windows XP Professional RAM: 20-60 MB No. of lines in distributed program, including test data, etc.:899 779 No. of bytes in distributed program, including test date, etc.:9 271 521 Distribution format:tar.gz External routines/libraries: Microsoft .NET Framework 1.1. For visualization tool, graphics card driver should also support OpenGL Nature of problem: Determining crystal structure parameters of a material is a quite important issue in crystallography. Knowing the crystal structure parameters helps to understand physical behavior of material. For complex structures, particularly, for materials which also contain local symmetry as well as global symmetry, obtaining crystal parameters can be quite hard. Solution method: The tool extracts crystal parameters such as primitive vectors, basis vectors and identify the space group from

  13. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    PubMed Central

    2011-01-01

    Characterizing nanoparticle dispersions and understanding the effect of parameters that alter dispersion properties are important for both environmental applications and toxicity investigations. The role of particle surface area, primary particle size, and crystal phase on TiO2 nanoparticle dispersion properties is reported. Hydrodynamic size, zeta potential, and isoelectric point (IEP) of ten laboratory synthesized TiO2 samples, and one commercial Degussa TiO2 sample (P25) dispersed in different solutions were characterized. Solution ionic strength and pH affect titania dispersion properties. The effect of monovalent (NaCl) and divalent (MgCl2) inert electrolytes on dispersion properties was quantified through their contribution to ionic strength. Increasing titania particle surface area resulted in a decrease in solution pH. At fixed pH, increasing the particle surface area enhanced the collision frequency between particles and led to a higher degree of agglomeration. In addition to the synthesis method, TiO2 isoelectric point was found to be dependent on particle size. As anatase TiO2 primary particle size increased from 6 nm to 104 nm, its IEP decreased from 6.0 to 3.8 that also results in changes in dispersion zeta potential and hydrodynamic size. In contrast to particle size, TiO2 nanoparticle IEP was found to be insensitive to particle crystal structure. PMID:27502650

  14. Preliminary analysis of two and three dimensional crystals of vault ribonucleoprotein particles.

    PubMed

    Querol-Audí, Jordi; Perez-Luque, Rosa; Fita, Ignacio; Lopéz-Iglesias, Carmen; Castón, José R; Carrascosa, José L; Verdaguer, Nuria

    2005-07-01

    Vaults are large ribonucleoprotein particles found in a wide variety of eukaryotes. When imaged by electron-microscopy vaults present a strikingly conserved barrel-shaped structure with an invaginated waist and two protruding caps. In this work, we present two dimensional (2D) and three dimensional (3D) crystals of naturally produced vaults in murine and monkey cells, respectively. The 2D-crystals presented a hexagonal packing with the lattice parameter defined by the diameter of the vault barrel. Fourier transforms from images of the negatively stained 2D-crystals showed spots till about 45 A resolution. The 3D-crystals reached about 0.15 x 0.15 x 0.02 mm3 in size and presented a flat triangular morphology with well-developed faces. The preliminary characterization of these 3D-crystals, which diffract very weakly to approximately 10 A resolution, suggests a trigonal packing with the R32 space group symmetry. The 3D-crystals appear to be formed by adding layers of vaults, which retain the hexagonal organization seen in the 2D-crystals, with relative shifts that maximize the interdigitation of particles in adjacent layers. Accurate crystal symmetry in the 2D- and 3D-crystals requires neighbor particles interacting according to a 6-fold and a 3-fold dihedral symmetry, respectively. Compatibility with the reported 8-fold symmetry would imply multiples of 24-fold rotational symmetry, in agreement with the recently proposed 48-fold dihedral symmetry for reconstituted recombinant vaults. PMID:15964767

  15. Resonant optical propulsion of a particle inside a hollow-core photonic crystal fiber.

    PubMed

    Maslov, A V

    2016-07-01

    Resonant propulsion of small nonresonant particles inside metal waveguides due to the formation of resonant states by the guided modes below their cutoffs has been predicted in the past. Here it is shown that stable resonant propulsion exists in hollow-core photonic crystal fibers, which are all-dielectric structures and are a major platform for various photonic applications. Specific features of the resonant propulsion are discussed together with the fiber design issues. The results may enable power-efficient transport of particles over long distances, particle sorting, and sensitive detection. PMID:27367102

  16. Crystal structure prediction of rigid molecules.

    PubMed

    Elking, Dennis M; Fusti-Molnar, Laszlo; Nichols, Anthony

    2016-08-01

    A non-polarizable force field based on atomic multipoles fit to reproduce experimental crystal properties and ab initio gas-phase dimers is described. The Ewald method is used to calculate both long-range electrostatic and 1/r(6) dispersion energies of crystals. The dispersion energy of a crystal calculated by a cutoff method is shown to converge slowly to the exact Ewald result. A method for constraining space-group symmetry during unit-cell optimization is derived. Results for locally optimizing 4427 unit cells including volume, cell parameters, unit-cell r.m.s.d. and CPU timings are given for both flexible and rigid molecule optimization. An algorithm for randomly generating rigid molecule crystals is described. Using the correct experimentally determined space group, the average and maximum number of random crystals needed to find the correct experimental structure is given for 2440 rigid single component crystals. The force field energy rank of the correct experimental structure is presented for the same set of 2440 rigid single component crystals assuming the correct space group. A complete crystal prediction is performed for two rigid molecules by searching over the 32 most probable space groups. PMID:27484371

  17. Structures of cyano-biphenyl liquid crystals

    NASA Technical Reports Server (NTRS)

    Chu, Yuan-Chao; Tsang, Tung; Rahimzadeh, E.; Yin, L.

    1989-01-01

    The structures of p-alkyl- p'-cyano- bicyclohexanes, C(n)H(2n+1) (C6H10)(C6H10) CN (n-CCH), and p-alkyl- p'-cyano- biphenyls, C(n)H(2n+1) (C6H4)(C6H4) CN (n-CBP), were studied. It is convenient to use an x ray image intensification device to search for symmetric x ray diffraction patterns. Despite the similarities in molecular structures of these compounds, very different crystal structures were found. For the smectic phase of 2CCH, the structure is close to rhombohedral with threefold symmetry. In contrast, the structure is close to hexagonal close-packed with two molecules per unit cell for 4CCH. Since intermolecular forces may be quite weak for these liquid crystals systems, it appears that crystal structures change considerably when the alkyl chain length is slightly altered. Different structures were also found in the crystalline phase of n-CBP for n = 6 to 9. For n = 7 to 9, the structures are close to monclinic. The structures are reminiscent of the smectic-A liquid crystal structures with the linear molecules slightly tilted away from the c-axis. In contrast, the structure is quite different for n = 6 with the molecules nearly perpendicular to the c-axis.

  18. Liquid crystal light valve structures

    NASA Technical Reports Server (NTRS)

    Koda, N. J. (Inventor)

    1985-01-01

    An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

  19. Formation of the structure of gold nanoclusters during crystallization

    SciTech Connect

    Gafner, Yu. Ya. Goloven'ko, Zh. V.; Gafner, S. L.

    2013-02-15

    The structure formation in gold nanoparticles 1.6-5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.

  20. Phononic crystals of spherical particles: A tight binding approach

    SciTech Connect

    Mattarelli, M.; Secchi, M.; Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Trento ; Montagna, M.

    2013-11-07

    The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.

  1. Two-Dimensional Crystal Structure Formed by Two Components of DNA Nanoparticles on a Substrate

    NASA Astrophysics Data System (ADS)

    Katsuno, Hiroyasu; Maegawa, Yuya; Sato, Masahide

    2016-07-01

    We study the two-dimensional crystal structure of two components of DNA nanoparticles on a substrate by Brownian dynamics simulation. We use the Lennard-Jones potential as the interaction potential between particles and assume that the interaction length between different types of particles, σAB, is smaller than that between the same types of particles, σ. Two types of particles form an alloy structure. With decreasing σAB/σ, the crystal structure changes from a triangular lattice, to a square lattice, a honeycomb lattice, a rectangular lattice, and a triangular lattice.

  2. Pholcodine monohydrate: Crystal structure and polymorphism

    NASA Astrophysics Data System (ADS)

    Petruševski, Gjorgji; Zbačnik, Marija; Kajdžanoska, Marina; Ugarkovic, Sonja; Trimčeski, Vase; Kaitner, Branko; Jovanovski, Gligor; Makreski, Petre

    2013-07-01

    The first crystal structure elucidation of pholcodine monohydrate, an important antitussive active pharmaceutical ingredient is reported herein. The studied compound crystallizes in the orthorhombic system in the space group P212121. Each H2O molecule is shared by two pholcodine molecules via three strong hydrogen bonds. The detailed crystallization screening from several different organic solvents afforded single crystals with various quality, all exhibiting prism-to-needlelike micro morphology. The investigation of the obtained single crystals by means of several physico-chemical, solid-state instrumental techniques (FT-IR, DSC, TG/DTG and XRPD) proved that pholcodine monohydrate exists in a single crystalline modification, identical to the commercial form of the compound.

  3. Transfer-printing and host-guest properties of 3D supramolecular particle structures.

    PubMed

    Ling, Xing Yi; Phang, In Yee; Reinhoudt, David N; Vancso, G Julius; Huskens, Jurriaan

    2009-04-01

    Mechanically robust and crystalline supramolecular particle structures have been constructed by decoupling nanoparticle assembly and supramolecular glue infiltration into a sequential process. First, beta-cyclodextrin (CD)-functionalized polystyrene particles (d approximately 500 nm) were assembled on a CD-functionalized surface via convective assembly to form highly ordered, but mechanically unstable, particle crystals. Subsequently, the crystals were infiltrated by a solution of adamantyl-functionalized dendrimers, functioning as a supramolecular glue to bind neighboring particles together and to couple the entire particle crystal to the CD surface, both in a noncovalent manner. The supramolecular particle crystals are highly robust, as witnessed by their ability to withstand agitation by ultrasonication. When assembled on a poly(dimethylsiloxane) (PDMS) stamp, the dendrimer-infiltrated particle crystals could be transfer-printed onto a CD-functionalized target surface. By variation of the geometry and size of the PDMS stamps, single particle lines, interconnected particle rings, and V-shaped particle assemblies were obtained. The particle structures served as 3D receptors for the binding of (multiple) complementary guest molecules, indicating that the supramolecular host functionalities of the particle crystals were retained throughout the fabrication process. PMID:20356024

  4. Dispersions of ellipsoidal particles in a nematic liquid crystal.

    PubMed

    Tasinkevych, Mykola; Mondiot, Frédéric; Mondain-Monval, Olivier; Loudet, Jean-Christophe

    2014-03-28

    Colloidal particles dispersed in a partially ordered medium, such as a liquid crystal (LC) phase, disturb its alignment and are subject to elastic forces. These forces are long-ranged, anisotropic and tunable through temperature or external fields, making them a valuable asset to control colloidal assembly. The latter is very sensitive to the particle geometry since it alters the interactions between the colloids. We here present a detailed numerical analysis of the energetics of elongated objects, namely prolate ellipsoids, immersed in a nematic host. The results, complemented with qualitative experiments, reveal novel LC configurations with peculiar topological properties around the ellipsoids, depending on their aspect ratio and the boundary conditions imposed on the nematic order parameter. The latter also determine the preferred orientation of ellipsoids in the nematic field, because of elastic torques, as well as the morphology of particle aggregates. PMID:24651907

  5. Particle tracking from image sequences of complex plasma crystals

    SciTech Connect

    Hadziavdic, Vedad; Melandsoe, Frank; Hanssen, Alfred

    2006-05-15

    In order to gather information about the physics of the complex plasma crystals from the experimental data, particles have to be tracked through a sequence of images. An application of the Kalman filter for that purpose is presented, using a one-dimensional approximation of the particle dynamics as a model for the filter. It is shown that Kalman filter is capable of tracking dust particles even with high levels of measurement noise. An inherent part of the Kalman filter, the innovation process, can be used to estimate values of the physical system parameters from the experimental data. The method is shown to be able to estimate the characteristic oscillation frequency from noisy data.

  6. Structural complexity and configurational entropy of crystals.

    PubMed

    Krivovichev, Sergey V

    2016-04-01

    Using a statistical approach, it is demonstrated that the complexity of a crystal structure measured as the Shannon information per atom [Krivovichev (2012). Acta Cryst. A68, 393-398] represents a negative contribution to the configurational entropy of a crystalline solid. This conclusion is in full accordance with the general agreement that information and entropy are reciprocal variables. It also agrees well with the understanding that complex structures possess lower entropies relative to their simpler counterparts. The obtained equation is consistent with the Landauer principle and points out that the information encoded in a crystal structure has a physical nature. PMID:27048729

  7. Crystal structure of anagyrine perchlorate.

    PubMed

    Turgunov, Kambarali K; Rakhimov, Shukhrat B; Vinogradova, Valentina I; Tashkhodjaev, Bakhodir

    2015-05-01

    The title mol-ecular salt, C15H21N2O(+)·ClO4 (-), crystallizes with four cations (A, B, C and D) and four anions in the chiral unit cell (space group P21). The alkaloid was isolated from the aerial parts of Genista Hispanica collected in the Samarkand region of Uzbekistan. Each cation is protonated at the N atom that bridges the alkaloid rings C and D. In each cation, ring A is almost planar and ring B adops a sofa conformation with the methyl-ene group bridging to the C ring as the flap. Rings C and D adopt chair conformations with a cis ring junction in all four cations. In the crystal, A+B and C+D dimeric pairs linked by pairs of N-H⋯O hydrogen bonds are observed, which generate R 2 (2)(16) loops in each case. The dimers are consolidated by weak aromatic π-π stacking inter-actions between the A rings [centroid-centroid distances = 3.913 (3) and 3.915 (3) Å]. PMID:25995939

  8. Critical single domain grain sizes in chains of interacting greigite particles: Implications for magnetosome crystals

    NASA Astrophysics Data System (ADS)

    Muxworthy, Adrian R.; Williams, Wyn; Roberts, Andrew P.; Winklhofer, Michael; Chang, Liao; Pósfai, Mihály

    2013-12-01

    Magnetotactic bacteria contain chains of magnetically interacting crystals (magnetosomes), which aid navigation (magnetotaxis). To improve the efficiency of magnetotaxis, magnetosome crystals (which can consist of magnetite or greigite) should be magnetically stable single domain (SD) particles. Larger particles subdivide into nonuniform multidomain (MD) magnetic structures that produce weaker magnetic signals, while small SD particles become magnetically unstable due to thermal fluctuations and exhibit superparamagnetic (SP) behavior. In this study, we determined the stable SD range as a function of grain elongation and interparticle separation for chains of identical greigite grains using fundamental parameters recently determined for greigite. Interactions significantly increase the stable SD range. For example, for cube-shaped greigite grains the upper stable SD threshold size is increased from 107 nm for isolated grains to 204 nm for touching grains arranged in chains. The larger critical SD grain size for greigite means that, compared to magnetite magnetosomes, greigite magnetosomes can produce larger magnetic signals without the need for intergrain interactions.

  9. Crystal structure of levomepromazine maleate.

    PubMed

    Gál, Gyula Tamás; May, Nóra Veronika; Bombicz, Petra

    2016-05-01

    The asymmetric unit of the title salt, C19H25N2OS(+)·C4H3O4 (-) [systematic name: (S)-3-(2-meth-oxy-pheno-thia-zin-10-yl)-N,N,2-tri-methyl-propanaminium hydrogen maleate], comprises two (S)-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the meth-oxy substituent at the pheno-thia-zine ring system. The crystal components form a three-dimensional supra-molecular network via N-H⋯O, C-H⋯O and C-H⋯π inter-actions. A comparison of the conformations of the levomepromazine cations with those of the neutral mol-ecule and similar protonated mol-ecules reveals significant conformational flexibility of the pheno-thia-zine ring system and the substituent at the pheno-thia-zine N atom. PMID:27308001

  10. Single crystal niobium tubes for particle colliders accelerator cavities

    SciTech Connect

    Murphy, James E

    2013-02-28

    The objective of this research project is to produce single crystal niobium (Nb) tubes for use as particle accelerator cavities for the Fermi laboratory’s International Linear Collider project. Single crystal Nb tubes may have superior performance compared to a polycrystalline tubes because the absence of grain boundaries may permit the use of higher accelerating voltages. In addition, Nb tubes that are subjected to the high temperature, high vacuum crystallization process are very pure and well annealed. Any impurity with a significantly higher vapor pressure than Nb should be decreased by the relatively long exposure at high temperature to the high vacuum environment. After application of the single crystal process, the surfaces of the Nb tubes are bright and shiny, and the tube resembles an electro polished Nb tube. For these reasons, there is interest in single crystal Nb tubes and in a process that will produce single crystal tubes. To convert a polycrystalline niobium tube into a single crystal, the tube is heated to within a few hundred °C of the melting temperature of niobium, which is 2477 °C. RF heating is used to rapidly heat the tube in a narrow zone and after reaching the operating temperature, the hot zone is slowly passed along the length of the tube. For crystallization tests with Nb tubes, the traverse rate was in the range of 1-10 cm per hour. All the crystallization tests in this study were performed in a water-cooled, stainless steel chamber under a vacuum of 5 x10-6 torr or better. In earliest tests of the single crystal growth process, the Nb tubes had an OD of 1.9 cm and a wall thickness of 0.15 mm. With these relatively small Nb tubes, the single crystal process was always successful in producing single crystal tubes. In these early tests, the operating temperature was normally maintained at 2200 °C, and the traverse rate was 5 cm per hour. In the next test series, the Nb tube size was increased to 3.8 cm OD and the wall thickness was

  11. Soviet research on crystal channeling of charged particle beams

    NASA Astrophysics Data System (ADS)

    Kassel, S.

    1985-03-01

    This report presents an overview of Soviet research in charged particle beam channeling in crystals from 1972 to the present, and the resulting electromagnetic emission, including Soviet proposals for channeling emission lasers in the X-ray region of the spectrum. It analyzes Soviet attitudes toward crystal channeling of charged particles as a subject of research, describes performers of the research, and indicates the level of effort involved. It presents a brief history of crystal channeling research, the differences between channeling and other kinds of electromagnetic radiation, the definition of the main research issues, and estimates of the potential capabilities of channeling radiation, all based on the Soviet viewpoint. It then describes Soviet proposals for laser systems utilizing the channeling radiation mechanism, and analyzes Soviet experimental work involving the observation and measurement of channeling radiation. The author concludes that the outstanding feature of Soviet research in this area is the optimistic belief of Soviet specialists in the technological potential of this research, but finds that the role of the laser proposals in Soviet planning is ambiguous.

  12. Polypeptide-Coated Silica Particles Dispersed in Lyotropic Liquid Crystals of the Same Polypeptide.

    PubMed

    Rosu, Cornelia; Balamurugan, Sreelatha; Cueto, Rafael; Roy, Amitava; Russo, Paul S

    2016-07-28

    When a particle is introduced into a liquid crystal (LC), it distorts the LC director field, leading to new arrangements of the particles. This phenomenon is ordinarily studied using >100 nm particles and ∼2 nm mesogens. Usually the particle surface and mesogens are chemically distinct, which adds an enthalpic effect, even though the more interesting interactions are entropic. To raise the structures to the visible regime, while minimizing chemical differences between the particle surface and mesogen, silica particles coated with an α-helical polypeptide have been prepared and dispersed in lyotropic polypeptide LCs. The polypeptide is poly(γ-stearyl-α,l-glutamate) or PSLG. To make the particles easy to manipulate and easy to find, the silica core included superparamagnetic magnetite (Fe3O4) and covalently attached dye. Two methods were used to place polypeptides on these magnetic, fluorescent particles: a multistep grafting-to approach in which whole polypeptides were attached and a one-pot grafting-from approach in which the polymerization of the monomers was initiated from the particle surface. These approaches resulted in sparse and dense surface coverages, respectively. The influence of surface curvature and polypeptide molecular weight on the design of sparsely covered particles was investigated using the grafting-to approach. The aggregated grafting-from particles when freshly dispersed in a PSLG/solvent matrix disrupted the orientation of the characteristic cholesteric LC (ChLC) phase directors. In time, the hybrid particles were expelled from some domains, enabling the return of the familiar helical twist of the cholesteric mesophase. The sparsely coated grafting-to hybrid particles when inserted in the PSLG/solvent matrix assembled into stable islet-like formations that could not be disrupted even by an external magnetic field. The bulk particles aligned in chains that were easily manipulated by a magnetic field. These results indicate that

  13. Slip flow through colloidal crystals of varying particle diameter.

    PubMed

    Rogers, Benjamin J; Wirth, Mary J

    2013-01-22

    Slip flow of water through silica colloidal crystals was investigated experimentally for eight different particle diameters, which have hydraulic channel radii ranging from 15 to 800 nm. The particle surfaces were silylated to be low in energy, with a water contact angle of 83°, as determined for a silylated flat surface. Flow rates through centimeter lengths of colloidal crystal were measured using a commercial liquid chromatograph for accurate comparisons of water and toluene flow rates using pressure gradients as high as 10(10) Pa/m. Toluene exhibited no-slip Hagen-Poiseuille flow for all hydraulic channel radii. For water, the slip flow enhancement as a function of hydraulic channel radius was described well by the expected slip flow correction for Hagen-Poiseuille flow, and the data revealed a constant slip length of 63 ± 3 nm. A flow enhancement of 20 ± 2 was observed for the smallest hydraulic channel radius of 15 nm. The amount of slip flow was found to be independent of shear rate over a range of fluid velocities from 0.7 to 5.8 mm/s. The results support the applicability of the slip flow correction for channel radii as small as 15 nm. The work demonstrates that packed beds of submicrometer particles enable slip flow to be employed for high-volume flow rates. PMID:23237590

  14. Slip Flow through Colloidal Crystals of Varying Particle Diameter

    PubMed Central

    Rogers, Benjamin J.; Wirth, Mary J.

    2012-01-01

    Slip flow of water through silica colloidal crystals was investigated experimentally for 8 different particle diameters, which have hydraulic channel radii ranging from 15 nm to 800 nm. The particle surfaces were silylated to be low in energy, with a water contact angle of 83°, as determined for a silylated flat surface. Flow rates through centimeter lengths of colloidal crystal were measured using a commercial liquid chromatograph for accurate comparisons of water and toluene flow rates using pressure gradients as high as 1010 Pa/m. Toluene exhibited no-slip Hagen-Poiseuille flow for all hydraulic channel radii. For water, the slip flow enhancement as a function of hydraulic channel radius was described well by the expected slip flow correction for Hagen-Poiseuille flow, and the data revealed a constant slip length of 63±3 nm. A flow enhancement of 20±2 was observed for the smallest hydraulic channel radius of 15 nm. The amount of slip flow was found to be independent of shear rate over a range of fluid velocities from 0.7 to 5.8 mm/s. The results support the applicability of the slip flow correction for channel radii as small as 15 nm. The work demonstrates that packed beds of submicrometer particles enable slip flow to be employed for high volume flow rates. PMID:23237590

  15. The crystal structure and crystal chemistry of fernandinite and corvusite

    USGS Publications Warehouse

    Evans, H.T., Jr.; Post, J.E.; Ross, D.R.; Nelen, J.A.

    1994-01-01

    Using type material of fernandinite from Minasragra, Peru, and corvusite from the Jack Claim, La Sal Mountains, Utah, the properties and crystal chemistry of these minerals have been determined by Rietveld analysis of the powder X-ray-diffraction patterns. The crystal structure of both species is isotypic with the V2O5 -type layer first found for ??-Ag0.68V2O5; it consists of chains of VO6 octahedra linked by opposite corners (parallel to b) condensed by edge-sharing to form the layer. The vanadium has average valence 4.8, and the resulting layer-charge is balanced by varying amounts of Ca, Na, and K in the interlayer region accompanied by labile water. This study has confirmed the validity of fernandinite as a unique mineral species. It is closely related to corvusite, from which it is distinguished on the basis of the dominant interlayer cation: Ca for fernandinite, Na for curvusite. -Authors

  16. Flying particle sensors in hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Bykov, D. S.; Schmidt, O. A.; Euser, T. G.; Russell, P. St. J.

    2015-07-01

    Optical fibre sensors make use of diverse physical effects to measure parameters such as strain, temperature and electric field. Here we introduce a new class of reconfigurable fibre sensor, based on a ‘flying-particle’ optically trapped inside a hollow-core photonic crystal fibre and illustrate its use in electric field and temperature sensing with high spatial resolution. The electric field distribution near the surface of a multi-element electrode is measured with a resolution of ∼100 μm by monitoring changes in the transmitted light signal due to the transverse displacement of a charged silica microparticle trapped within the hollow core. Doppler-based velocity measurements are used to map the gas viscosity, and thus the temperature, along a hollow-core photonic crystal fibre. The flying-particle approach represents a new paradigm in fibre sensors, potentially allowing multiple physical quantities to be mapped with high positional accuracy over kilometre-scale distances.

  17. Crystal structure of potassium sodium tartrate trihydrate

    SciTech Connect

    Egorova, A. E. Ivanov, V. A.; Somov, N. V.; Portnov, V. N.; Chuprunov, E. V.

    2011-11-15

    Crystals of potassium sodium tartrate trihydrate (dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 3H{sub 2}O) were obtained from an aqueous solution. The crystal shape was described. The atomic structure of the compound was determined and compared with the known structures of dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O and l-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O.

  18. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults. PMID:16907485

  19. Crystal structure of canagliflozin hemihydrate.

    PubMed

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-05-01

    There are two canagliflozin mol-ecules (A and B) and one water mol-ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro-phen-yl)thio-phen-2-yl]meth-yl}-4-methylphen-yl)-6-(hy-droxy-meth-yl)-3,4,5,6-tetra-hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl-benzene and thio-phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro-benzene and thio-phene rings are 24.2 (6) and 20.5 (9)° in mol-ecules A and B, respectively. The hydro-pyran ring exhibits a chair conformation in both canagliflozin mol-ecules. In the crystal, the canagliflozin mol-ecules and lattice water mol-ecules are connected via O-H⋯O hydrogen bonds into a three-dimensional supra-molecular architecture. PMID:27308030

  20. Crystal structure of canagliflozin hemihydrate

    PubMed Central

    Liu, Kai-Hang; Gu, Jian-Ming; Hu, Xiu-Rong; Tang, Gu-Ping

    2016-01-01

    There are two canagliflozin mol­ecules (A and B) and one water mol­ecule in the asymmetric unit of the title compound, C24H25FO5S·0.5H2O [systematic name: (2S,3R,4R,5S,6R)-2-(3-{[5-(4-fluoro­phen­yl)thio­phen-2-yl]meth­yl}-4-methylphen­yl)-6-(hy­droxy­meth­yl)-3,4,5,6-tetra­hydro-2H-pyran-3,4,5-triol hemihydrate]. The dihedral angles between the methyl­benzene and thio­phene rings are 115.7 (4) and 111.7 (4)°, while the dihedral angles between the fluoro­benzene and thio­phene rings are 24.2 (6) and 20.5 (9)° in mol­ecules A and B, respectively. The hydro­pyran ring exhibits a chair conformation in both canagliflozin mol­ecules. In the crystal, the canagliflozin mol­ecules and lattice water mol­ecules are connected via O—H⋯O hydrogen bonds into a three-dimensional supra­molecular architecture. PMID:27308030

  1. Crystal structure of levomepromazine maleate

    PubMed Central

    Gál, Gyula Tamás; May, Nóra Veronika; Bombicz, Petra

    2016-01-01

    The asymmetric unit of the title salt, C19H25N2OS+·C4H3O4 − [systematic name: (S)-3-(2-meth­oxy­pheno­thia­zin-10-yl)-N,N,2-tri­methyl­propanaminium hydrogen maleate], comprises two (S)-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the meth­oxy substituent at the pheno­thia­zine ring system. The crystal components form a three-dimensional supra­molecular network via N—H⋯O, C—H⋯O and C—H⋯π inter­actions. A comparison of the conformations of the levomepromazine cations with those of the neutral mol­ecule and similar protonated mol­ecules reveals significant conformational flexibility of the pheno­thia­zine ring system and the substituent at the pheno­thia­zine N atom. PMID:27308001

  2. Computing stoichiometric molecular composition from crystal structures

    PubMed Central

    Gražulis, Saulius; Merkys, Andrius; Vaitkus, Antanas; Okulič-Kazarinas, Mykolas

    2015-01-01

    Crystallographic investigations deliver high-accuracy information about positions of atoms in crystal unit cells. For chemists, however, the structure of a molecule is most often of interest. The structure must thus be reconstructed from crystallographic files using symmetry information and chemical properties of atoms. Most existing algorithms faithfully reconstruct separate molecules but not the overall stoichiometry of the complex present in a crystal. Here, an algorithm that can reconstruct stoichiometrically correct multimolecular ensembles is described. This algorithm uses only the crystal symmetry information for determining molecule numbers and their stoichiometric ratios. The algorithm can be used by chemists and crystallographers as a standalone implementation for investigating above-molecular ensembles or as a function implemented in graphical crystal analysis software. The greatest envisaged benefit of the algorithm, however, is for the users of large crystallographic and chemical databases, since it will permit database maintainers to generate stoichiometrically correct chemical representations of crystal structures automatically and to match them against chemical databases, enabling multidisciplinary searches across multiple databases. PMID:26089747

  3. Structure-property evolution during polymer crystallization

    NASA Astrophysics Data System (ADS)

    Arora, Deepak

    The main theme of this research is to understand the structure-property evolution during crystallization of a semicrystalline thermoplastic polymer. A combination of techniques including rheology, small angle light scattering, differential scanning calorimetry and optical microscopy are applied to follow the mechanical and optical properties along with crystallinity and the morphology. Isothermal crystallization experiments on isotactic poly-1-butene at early stages of spherulite growth provide quantitative information about nucleation density, volume fraction of spherulites and their crystallinity, and the mechanism of connecting into a sample spanning structure. Optical microscopy near the fluid-to-solid transition suggests that the transition, as determined by time-resolved mechanical spectroscopy, is not caused by packing/jamming of spherulites but by the formation of a percolating network structure. The effect of strain, Weissenberg number (We ) and specific mechanical work (w) on rate of crystallization (nucleation followed by growth) and on growth of anisotropy was studied for shear-induced crystallization of isotactic poly-1-butene. The samples were sheared for a finite strain at the beginning of the experiment and then crystallized without further flow (Janeschitz-Kriegl protocol). Strain requirements to attain steady state/leveling off of the rate of crystallization were found to be much larger than the strain needed to achieve steady state of flow. The large strain and We>1 criteria were also observed for morphological transition from spherulitic growth to oriented growth. An apparatus for small angle light scattering (SALS) and light transmission measurements under shear was built and tested at the University of Massachusetts Amherst. As a new development, the polarization direction can be rotated by a liquid crystal polarization rotator (LCPR) with a short response time of 20 ms. The experiments were controlled and analyzed with a LabVIEW(TM) based

  4. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  5. Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase

    SciTech Connect

    Bae, Euiyoung; Bingman, Craig A.; Bitto, Eduard; Aceti, David J.; Phillips, Jr., George N.

    2008-08-13

    Since first discovered in Zea mays, cytokinin dehydrogenase (CKX) genes have been identified in many plants including rice and Arabidopsis thaliana, which possesses CKX homologues (AtCKX1-AtCKX7). So far, the three-dimensional structure of only Z. mays CKX (ZmCKX1) has been determined. The crystal structures of ZmCKX1 have been solved in the native state and in complex with reaction products and a slowly reacting substrate. The structures revealed four glycosylated asparagine residues and a histidine residue covalently linked to FAD. Combined with the structural information, recent biochemical analyses of ZmCKX1 concluded that the final products of the reaction, adenine and a side chain aldehyde, are formed by nonenzymatic hydrolytic cleavage of cytokinin imine products resulting directly from CKX catalysis. Here, we report the crystal structure of AtCKX7 (gene locus At5g21482.1, UniProt code Q9FUJ1).

  6. Shear induced structures in crystallizing cocoa butter

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  7. Crystal structure of methane oxidation enzyme determined

    SciTech Connect

    Baum, R.

    1994-01-10

    A team of chemists has determined to 2.2-[angstrom] resolution the crystal structure of the hydroxylase protein of methane monooxygenase, the enzyme system responsible for the biological oxidation of methane. The hydroxylase, at a molecular weight of 251,000 daltons, if by far the largest component of methane monooxygenase. Although the crystal structure of the hydroxylase did not reveal any startling surprises about the enzyme-many features of the hydroxylase had been inferred previously from modeling and spectroscopic studies -- obtaining it is a significant achievement. For one thing, the crystal structure unambiguously confirms aspects of the enzyme structure that been at least somewhat speculative. The three-dimensional structure of the enzyme, the chemist say, also provides important insight into biological methane oxidation, including how methane, a relatively inert gas, might diffuse to and bind near the active site of the enzyme. The structure points to particular amino acid residues that are likely to participate in catalysis, and clarifies the structure of the dinuclear iron core of the enzyme.

  8. Defect structure around two colloids in a liquid crystal.

    PubMed

    Guzmán, O; Kim, E B; Grollau, S; Abbott, N L; de Pablo, J J

    2003-12-01

    This Letter investigates the defect structures that arise between two colloidal spheres immersed in a nematic liquid crystal. Molecular simulations and a dynamic field theory are employed to arrive at molecular-level and mesoscopic descriptions of the systems of interest. At large separations, each sphere is surrounded by a Saturn ring defect. However, at short separations both theory and simulation predict that a third disclination ring appears in between the spheres, in a plane normal to the Saturn rings. This feature gives rise to an effective binding of the particles. The structures predicted by field theory and molecular simulations are consistent with each other. PMID:14683198

  9. Surface-induced structures in nematic liquid crystal colloids.

    PubMed

    Chernyshuk, S B; Tovkach, O M; Lev, B I

    2014-08-01

    We predict theoretically the existence of a class of colloidal structures in nematic liquid crystal (NLC) cells, which are induced by surface patterns on the plates of the cell (like cells with UV-irradiated polyamide surfaces using micron sized masks in front of the cell). These bulk structures arise from nonuniform boundary conditions for the director distortions at the confining surfaces. In particular, we demonstrate that quadrupole spherical particles (like spheres with boojums or Saturn-ring director configurations) form a square lattice inside a planar NLC cell, which has checkerboard patterns on both its plates. PMID:25215675

  10. Crystal structure of monobasic sodium tartrate monohydrate

    SciTech Connect

    Titaeva, E. K. Somov, N. V.; Portnov, V. N.; Titaev, D. N.

    2015-01-15

    Crystals of a new polymorphic modification of monobasic sodium tartrate monohydrate NaHC{sub 4}H{sub 4}O{sub 6} · H{sub 2}O have been grown in a metasilicate gel. Their atomic structure is solved by X-ray diffraction.

  11. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  12. Charged-particle spectroscopy in organic semiconducting single crystals

    NASA Astrophysics Data System (ADS)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  13. Crystal structure of a plectonemic RNA supercoil

    SciTech Connect

    Stagno, Jason R.; Ma, Buyong; Li, Jess; Altieri, Amanda S.; Byrd, R. Andrew; Ji, Xinhua

    2012-12-14

    Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.

  14. Crystal structure of zwitterionic bisimidazolium sulfonates

    NASA Astrophysics Data System (ADS)

    Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao

    2012-05-01

    Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.

  15. Crystal Structure of Human Enterovirus 71

    SciTech Connect

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G.

    2013-04-08

    Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

  16. Crystallization and preliminary X-ray diffraction analysis of recombinant hepatitis E virus-like particle

    SciTech Connect

    Wang, Che-Yen; Miyazaki, Naoyuki; Yamashita, Tetsuo; Higashiura, Akifumi; Nakagawa, Atsushi; Li, Tian-Cheng; Takeda, Naokazu; Xing, Li; Hjalmarsson, Erik; Friberg, Claes; Liou, Der-Ming; Sung, Yen-Jen; Tsukihara, Tomitake; Matsuura, Yoshiharu; Miyamura, Tatsuo; Cheng, R. Holland

    2008-04-01

    A recombinant virus-like particle that is a potential oral hepatitis E vaccine was crystallized. Diffraction data were collected to 8.3 Å resolution and the X-ray structure was phased with the aid of a low-resolution density map determined using cryo-electron microscopy data. Hepatitis E virus (HEV) accounts for the majority of enterically transmitted hepatitis infections worldwide. Currently, there is no specific treatment for or vaccine against HEV. The major structural protein is derived from open reading frame (ORF) 2 of the viral genome. A potential oral vaccine is provided by the virus-like particles formed by a protein construct of partial ORF3 protein (residue 70–123) fused to the N-terminus of the ORF2 protein (residues 112–608). Single crystals obtained by the hanging-drop vapour-diffusion method at 293 K diffract X-rays to 8.3 Å resolution. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 337, b = 343, c = 346 Å, α = β = γ = 90°, and contain one particle per asymmetric unit.

  17. Structure of Cometary Dust Particles

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, A. C.; Hadamcik, E.; Lasue, J.

    2004-11-01

    The recent encounter of Stardust with comet 81P/Wild 2 has provided highly spatially resolved data about dust particles in the coma. They show intense swarms and bursts of particles, suggest the existence of fragmenting low-density particles formed of higher density sub-micrometer components [1], and definitely confirm previous results (inferred from Giotto encounter with comet Grigg-Skjellerup [2] and remote light scattering observations [3]). The light scattering properties (mostly polarization, which does not depend upon disputable normalizations) of dust in cometary comae will be summarized, with emphasis on the spatial changes and on the wavelength and phase angle dependence. Experimental and numerical simulations are needed to translate these observed light scattering properties in terms of physical properties of the dust particles (e.g. size, morphology, albedo, porosity). New experimental simulations (with fluffy mixtures of sub-micron sized silica and carbon grains) and new numerical simulations (with fractal aggregates of homogeneous or core-mantled silicate and organic grains) will be presented. The results are in favor of highly porous particles built up (by ballistic-cluster-cluster agglomeration) from grains of interstellar origin. The perspectives offered by laboratory simulations with aggregates built under conditions representative of the early solar system on board the International Space Station will be presented, together with the perspectives offered by future experiments on board the Rosetta cometary probe. Supports from CNES and ESA are acknowledged [1] Tuzzolino et al., Science, 304, 1776, 2004, [2] N. McBride et al., Mon. Not. R. Astron. Soc., 289, p. 535-553, 1997, [3] Levasseur-Regourd and Hadamcik, J. Quant. Spectros. Radiat. Transfer, 79-80, 903-910, 2003.

  18. Crystal structure of riboflavin synthase

    SciTech Connect

    Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B.

    2010-03-05

    Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

  19. Absorption enhancement in graphene photonic crystal structures.

    PubMed

    Khaleque, Abdul; Hattori, Haroldo T

    2016-04-10

    Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is attracting significant interest because of its potential applications in electronic and optoelectronic devices. Although graphene exhibits almost uniform absorption within a large wavelength range, its interaction with light is weak. In this paper, the enhancement of the optical absorption in graphene photonic crystal structures is studied: the structure is modified by introducing scatterers and mirrors. It is shown that the absorption of the graphene photonic crystal structure can be enhanced about four times (nearly 40%) with respect to initial reference absorption of 9.8%. The study can be a useful tool for investigating graphene physics in different optical settings. PMID:27139857

  20. Crystal structure of low-symmetry rondorfite

    SciTech Connect

    Rastsvetaeva, R. K. Zadov, A. E.; Chukanov, N. V.

    2008-03-15

    The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca{sub 16}[Mg{sub 2}(Si{sub 7}Al)(O{sub 31}OH)]Cl{sub 4} from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) A, b = 15.110(2) A, c = 15.092(2) A, {alpha} = 90.06(1) deg., {beta} = 90.01(1) deg., {gamma} = 89.93(1) deg., Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3{sigma}(F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group (a = 15.105 A, sp. gr. Fd-bar 3, seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3{sigma}(F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.

  1. Crystal structure of low-symmetry rondorfite

    SciTech Connect

    Rastsvetaeva, R. K.; Zadov, A. E.; Chukanov, N. V.

    2008-03-15

    The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca{sub 16}[Mg{sub 2}(Si{sub 7}Al)(O{sub 31}OH)]Cl{sub 4} from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Angstrom-Sign , b = 15.110(2) Angstrom-Sign , c = 15.092(2) Angstrom-Sign , {alpha} = 90.06(1) Degree-Sign , {beta} = 90.01(1) Degree-Sign , {gamma} = 89.93(1) Degree-Sign , Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3{sigma}(F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group (a = 15.105 Angstrom-Sign , sp. gr. Fd 3 bar , seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3{sigma}(F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.

  2. Effect of Pigment Particle Dispersion on the Crystallization Behavior of Polypropylene

    NASA Astrophysics Data System (ADS)

    Bafna, Ayush; Agashe, Nikhil; Beaucage, Gregory; Mirabella, Francis

    2002-03-01

    Polypropylenes containing pigment particles dispersed uniformly in the polymer were studied for the affect of the pigment particle dispersion on the crystallization behavior of the polymer. Wide varieties of dispersible pigment particles with structure varying from nano to colloidal form were studied. Small angle x-ray scattering (SAXS) gave quantitative data regarding the lamellar thickness of polypropylenes both with and without pigment particles dispersed in it. SAXS showed a decrease in lamellar thickness of polypropylene with addition of pigment particles. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to get the degree of crystallinity in the polymer. DSC showed a decrease in melting temperature parallel to the decrease in lamellar thickness observed in SAXS. XRD was also used to identify the type of crystalline units present both in the bulk and on the surface of the polymer sample. Earlier studies had mentioned transition from alpha to gamma phase in the polymer on addition of pigment particles. No such transition was observed. Transmission electron microscopy (TEM) gave qualitative data on the effect of pigment particle dispersion on the lamellar growth and distribution. Dispersing pigment particles in the polymer matrix significantly affected the lamellar thickness. The reasons behind such behavior will be discussed

  3. Persistent hydrogen bonding in polymorphic crystal structures.

    PubMed

    Galek, Peter T A; Fábián, László; Allen, Frank H

    2009-02-01

    The significance of hydrogen bonding and its variability in polymorphic crystal structures is explored using new automated structural analysis methods. The concept of a chemically equivalent hydrogen bond is defined, which may be identified in pairs of structures, revealing those types of bonds that may persist, or not, in moving from one polymorphic form to another. Their frequency and nature are investigated in 882 polymorphic structures from the Cambridge Structural Database. A new method to compare conformations of equivalent molecules is introduced and applied to derive distinct subsets of conformational and packing polymorphs. The roles of chemical functionality and hydrogen-bond geometry in persistent interactions are systematically explored. Detailed structural comparisons reveal a large majority of persistent hydrogen bonds that are energetically crucial to structural stability. PMID:19155561

  4. Crystal structure control in Au-free self-seeded InSb wire growth.

    PubMed

    Mandl, Bernhard; Dick, Kimberly A; Kriegner, Dominik; Keplinger, Mario; Bauer, Günther; Stangl, Julian; Deppert, Knut

    2011-04-01

    In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well. PMID:21346304

  5. Self-assembled structures of Gaussian nematic particles.

    PubMed

    Nikoubashman, Arash; Likos, Christos N

    2010-03-17

    We investigate the stable crystalline configurations of a nematic liquid crystal made of soft parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid phase candidates into which this fluid can freeze. Subsequently we present and discuss the emerging novel structures and the resulting zero-temperature phase diagram of this system. The latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in general do not align with any one of the high-symmetry crystallographic directions, a compromise arising from the interplay and competition between anisotropic repulsions and crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian nematics to align with the longest axis of the elementary unit cell emerge. PMID:21389441

  6. Synthesis and Crystal Structure of Gold Nanobelts

    PubMed Central

    2015-01-01

    Gold nanobelts were synthesized by the reduction of tetrachloroauric acid with ascorbic acid in the presence of the surfactants cetyltrimethylammonium bromide and sodium dodecylsulfate. The resulting structures have rectangular cross sectional dimensions that are tens of nanometers and lengths that are tens to hundreds of micrometers. We find that the nanobelt yield and resulting structures are very sensitive to temperature which is likely due to the transition of the surfactant solution from wormlike micelles to spherical micelles. The nanobelt crystal structure contains a mixture of face centered cubic and hexagonally close packed lattice phases that can be isolated and examined individually due to the unique nanobelt size and shape. PMID:24803725

  7. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  8. Stability and dynamics of crystals and glasses of motorized particles

    PubMed Central

    Shen, Tongye; Wolynes, Peter G.

    2004-01-01

    Many of the large structures of the cell, such as the cytoskeleton, are assembled and maintained far from equilibrium. We study the stabilities of various structures for a simple model of such a far-from-equilibrium organized assembly in which spherical particles move under the influence of attached motors. From the variational solutions of the many-body master equation for Brownian motion with motorized kicking we obtain a closed equation for the order parameter of localization. Thus, we obtain the transition criterion for localization and stability limits for the crystalline phase and frozen amorphous structures of motorized particles. The theory also allows an estimate of nonequilibrium effective temperatures characterizing the response and fluctuations of motorized asemblies. PMID:15173584

  9. Phase behaviour of liquid-crystal monolayers of rod-like and plate-like particles.

    PubMed

    Martínez-Ratón, Yuri; Varga, Szabolcs; Velasco, Enrique

    2014-05-28

    Orientational and positional ordering properties of liquid crystal monolayers are examined by means of Fundamental-Measure Density Functional Theory. Particles forming the monolayer are modeled as hard parallelepipeds of square section of size σ and length L. Their shapes are controlled by the aspect ratio κ = L/σ (>1 for prolate and <1 for oblate shapes). The particle centers of mass are restricted to a flat surface and three possible and mutually perpendicular orientations (in-plane and along the layer normal) of their uniaxial axes are allowed. We find that the structure of the monolayer depends strongly on particle shape and density. In the case of rod-like shapes, particles align along the layer normal in order to achieve the lowest possible occupied area per particle. This phase is a uniaxial nematic even at very low densities. In contrast, for plate-like particles, the lowest occupied area can be achieved by random in-plane ordering in the monolayer, i.e., planar nematic ordering takes place even at vanishing densities. It is found that the random in-plane ordering is not favorable at higher densities and the system undergoes an in-plane ordering transition forming a biaxial nematic phase or crystallizes. For certain values of the aspect ratio, the uniaxial-biaxial nematic phase transition is observed for both rod-like and plate-like shapes. The stability region of the biaxial nematic phase enhances with decreasing aspect ratios for plate-like particles, while the rod-like particles exhibit a reentrant phenomenon, i.e., a sequence of uniaxial-biaxial-uniaxial nematic ordering with increasing density if the aspect ratio is larger than 21.34. In addition to this, packing fraction inversion is observed with increasing surface pressure due to the alignment along the layers normal. At very high densities the nematic phase destabilizes to a nonuniform phases (columnar, smectic, or crystalline phases) for both shapes. PMID:24880324

  10. Photonic crystal and photonic wire device structures

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard; Sorel, Marc; Johnson, Nigel; Rahman, Faiz; Ironside, Charles; Cronin, Lee; Watson, Ian; Martin, Robert; Jin, Chongjun; Pottier, Pierre; Chong, Harold; Gnan, Marco; Jugessur, Aju; Camargo, Edilson; Erwin, Grant; Md Zain, Ahmad; Ntakis, Iraklis; Hobbs, Lois; Zhang, Hua; Armenise, Mario; Ciminelli, Caterina; Coquillat, Dominique

    2005-09-01

    Photonic devices that exploit photonic crystal (PhC) principles in a planar environment continue to provide a fertile field of research. 2D PhC based channel waveguides can provide both strong confinement and controlled dispersion behaviour. In conjunction with, for instance, various electro-optic, thermo-optic and other effects, a range of device functionality is accessible in very compact PhC channel-guide devices that offer the potential for high-density integration. Low enough propagation losses are now being obtained with photonic crystal channel-guide structures that their use in real applications has become plausible. Photonic wires (PhWs) can also provide strong confinement and low propagation losses. Bragg-gratings imposed on photonic wires can provide dispersion and frequency selection in device structures that are intrinsically simpler than 2D PhC channel guides--and can compete with them under realistic conditions.

  11. Observations on the crystal structures of lueshite

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Burns, Peter C.; Knight, Kevin S.; Howard, Christopher J.; Chakhmouradian, Anton R.

    2014-06-01

    Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO3 demonstrate that lueshite does not adopt the same space group ( Pbma; #57) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11-1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P4 /mbm to above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO3, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm.

  12. Crystal Structures of New Ammonium 5-Aminotetrazolates

    PubMed Central

    Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert

    2015-01-01

    The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100

  13. Electron Cryomicroscopy of Membrane Proteins: Specimen Preparation for Two-Dimensional Crystals and Single Particles

    PubMed Central

    Schmidt-Krey, Ingeborg; Rubinstein, John L.

    2010-01-01

    Membrane protein structure and function can be studied by two powerful and highly complementary electron cryomicroscopy (cryo-EM) methods: electron crystallography of two-dimensional (2D) crystals and single particle analysis of detergent-solubilized protein complexes. To obtain the highest-possible resolution data from membrane proteins, whether prepared as 2D crystals or single particles, cryo-EM samples must be vitrified with great care. Grid preparation for cryo-EM of 2D crystals is possible by back-injection, the carbon sandwich technique, drying in sugars before cooling in the electron microscope, or plunge-freezing. Specimen grids for single particle cryo-EM studies of membrane proteins are usually produced by plunge-freezing protein solutions, supported either by perforated or a continuous carbon film substrate. This review outlines the different techniques available and the suitability of each method for particular samples and studies. Experimental considerations in sample preparation and preservation include the protein itself and the presence of lipid or detergent. The appearance of cryo-EM samples in different conditions is also discussed. PMID:20678942

  14. Predicting polymeric crystal structures by evolutionary algorithms

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

    2014-10-01

    The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

  15. Bio-Inspired Approaches to Crystals with Composite Structures

    NASA Astrophysics Data System (ADS)

    Meldrum, Fiona

    2013-03-01

    Advances in technology demand an ever-increasing degree of control over material structure, properties and function. As the properties of monolithic materials are necessary limited, one route to extending them is to create a composite by combining contrasting materials. The potential of this approach is beautifully illustrated by the formation of biominerals where organic macromolecules are combined with brittle minerals such as calcite to create crystals with considerable fracture toughness. This talk will discuss how bio-inspired approaches can be used to generate single crystals with composite crystals through a simple one-pot method. By precipitating calcite crystals in the presence of ``occlusion species'' ranging from latex particles, to organic and inorganic nanoparticles and finally small molecules we demonstrate that high amounts of foreign species can be incorporated through control over the additive surface chemistry, and that this can lead to an enhancement of the mechanical properties of the calcite. Occlusion of 20 nm anionic diblock copolymer micelles was achieved at levels of over 13 wt%, and the properties of the resuktant composite calcite crystals were measured using a range of techniques including IR spectroscopy, high resolution powder XRD and high resolution TEM. Incorporation of these macromolecules leads to crystals with structures and mechanical properties similar to those of biominerals. With sizes in the range of some intracrystalline proteins, the micelles act as ``pseudo-proteins'', thereby providing an excellent model system for investigation of the mechanism of macromolecule insertion within biominerals. Extension of these studies to the incorporation of small molecules (amino acids) again demonstrated high levels of incorporation without any change in the crystal morphology. Further, occlusion of these small molecules within the calcite lattice again resulted in a significant increase in the hardness of the calcite, a result which

  16. Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.

    ERIC Educational Resources Information Center

    Chesick, John P.

    1989-01-01

    Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

  17. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    PubMed

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm. PMID:23796831

  18. Crystal Structure of the Protealysin Precursor

    PubMed Central

    Demidyuk, Ilya V.; Gromova, Tania Yu.; Polyakov, Konstantin M.; Melik-Adamyan, William R.; Kuranova, Inna P.; Kostrov, Sergey V.

    2010-01-01

    Protealysin (PLN) belongs to the M4 family of peptidases that are commonly known as thermolysin-like proteases (TLPs). All TLPs are synthesized as precursors containing N-terminal propeptides. According to the primary structure of the N-terminal propeptides, the family is divided into two distinct groups. Representatives of the first group including thermolysin and all TLPs with known three-dimensional structures have long prosequences (∼200 amino acids). Enzymes of the second group, whose prototype is protealysin, have short (∼50 amino acids) propeptides. Here, we present the 1.8 Å crystal structure of PLN precursor (proPLN), which is the first three-dimensional structure of a TLP precursor. Whereas the structure of the catalytic domain of proPLN is similar overall to previously reported structures of mature TLPs, it has specific features, including the absence of calcium-binding sites, and different structures of the N-terminal region and substrate-binding site. PLN propeptide forms a separate domain in the precursor and likely acts as an inhibitor that blocks the substrate-binding site and fixes the “open” conformation of the active site, which is unfavorable for catalysis. Furthermore the conserved PPL motif identified in our previous studies directly interacts with the S′ subsites of the active center being a critical element of the propeptide-catalytic domain interface. Comparison of the primary structures of TLPs with short propeptides suggests that the specific features revealed in the proPLN crystal structure are typical for all protealysin-like enzymes. Thus, such proteins can be considered as a separate subfamily of TLPs. PMID:19915005

  19. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    NASA Astrophysics Data System (ADS)

    Suvorova, E. I.; Klechkovskaya, V. V.

    2010-12-01

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  20. Effect of polymer matrix on structure of Se particles formed in aqueous solutions during redox process

    SciTech Connect

    Suvorova, E. I. Klechkovskaya, V. V.

    2010-12-15

    Transmission electron microscopy and X-ray energy dispersive microanalysis study of the structure of particles formed during the reduction of Se(IV) to Se(0) in aqueous solutions in the presence of amphiphilic polymers showed the formation of Se/polymer composite particles. The content of carbon inside the particles can be as large as 80 at %. Polymers deeply influence the structure of particles. Depending on polymers, the composite particles may be unstable with time and they spontaneously evolve from Se/polymer composite particles to crystalline particles of monoclinic Se. For the stable ones, addition of bacterial cellulose Acetobacter xylinum gel-film can induce crystallization in the particles which expel the polymeric material. The Se/polymer composite particles and Se crystalline particles exhibit different sensitivity to electron irradiation and stiffness.

  1. Crystal structure of natural phaeosphaeride A.

    PubMed

    Abzianidze, Victoria V; Poluektova, Ekaterina V; Bolshakova, Ksenia P; Panikorovskii, Taras L; Bogachenkov, Alexander S; Berestetskiy, Alexander O

    2015-08-01

    The asymmetric unit of the title compound, C15H23NO5, contains two independent mol-ecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the mol-ecules form layered structures. Nearly planar sheets, parallel to the (001) plane, form bilayers of two-dimensional hydrogen-bonded networks with the hy-droxy groups located on the inter-ior of the bilayer sheets. The network is constructed primarily of four O-H⋯O hydrogen bonds, which form a zigzag pattern in the (001) plane. The butyl chains inter-digitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major-minor occupancy fractions of 0.718 (6):0.282 (6). PMID:26396831

  2. Lagrangian coherent structures and inertial particle dynamics

    NASA Astrophysics Data System (ADS)

    Sudharsan, M.; Brunton, Steven L.; Riley, James J.

    2016-03-01

    In this work we investigate the dynamics of inertial particles using finite-time Lyapunov exponents (FTLE). In particular, we characterize the attractor and repeller structures underlying preferential concentration of inertial particles in terms of FTLE fields of the underlying carrier fluid. Inertial particles that are heavier than the ambient fluid (aerosols) attract onto ridges of the negative-time fluid FTLE. This negative-time FTLE ridge becomes a repeller for particles that are lighter than the carrier fluid (bubbles). We also examine the inertial FTLE (iFTLE) determined by the trajectories of inertial particles evolved using the Maxey-Riley equations with nonzero Stokes number and density ratio. Finally, we explore the low-pass filtering effect of Stokes number. These ideas are demonstrated on two-dimensional numerical simulations of the unsteady double-gyre flow.

  3. The First Mammalian Aldehyde Oxidase Crystal Structure

    PubMed Central

    Coelho, Catarina; Mahro, Martin; Trincão, José; Carvalho, Alexandra T. P.; Ramos, Maria João; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke; Romão, Maria João

    2012-01-01

    Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity. PMID:23019336

  4. Crystal structure of MboIIA methyltransferase.

    SciTech Connect

    Osipiuk, J.; Walsh, M. A.; Joachimiak, A.; Biosciences Division; Univ. of Gdansk; Medical Research Council France

    2003-09-15

    DNA methyltransferases (MTases) are sequence-specific enzymes which transfer a methyl group from S-adenosyl-L-methionine (AdoMet) to the amino group of either cytosine or adenine within a recognized DNA sequence. Methylation of a base in a specific DNA sequence protects DNA from nucleolytic cleavage by restriction enzymes recognizing the same DNA sequence. We have determined at 1.74 {angstrom} resolution the crystal structure of a {beta}-class DNA MTase MboIIA (M {center_dot} MboIIA) from the bacterium Moraxella bovis, the smallest DNA MTase determined to date. M {center_dot} MboIIA methylates the 3' adenine of the pentanucleotide sequence 5'-GAAGA-3'. The protein crystallizes with two molecules in the asymmetric unit which we propose to resemble the dimer when M {center_dot} MboIIA is not bound to DNA. The overall structure of the enzyme closely resembles that of M {center_dot} RsrI. However, the cofactor-binding pocket in M {center_dot} MboIIA forms a closed structure which is in contrast to the open-form structures of other known MTases.

  5. Dynamic self-assembly and control of microfluidic particle crystals

    PubMed Central

    Lee, Wonhee; Amini, Hamed; Stone, Howard A.; Di Carlo, Dino

    2010-01-01

    Engineered two-phase microfluidic systems have recently shown promise for computation, encryption, and biological processing. For many of these systems, complex control of dispersed-phase frequency and switching is enabled by nonlinearities associated with interfacial stresses. Introducing nonlinearity associated with fluid inertia has recently been identified as an easy to implement strategy to control two-phase (solid-liquid) microscale flows. By taking advantage of inertial effects we demonstrate controllable self-assembling particle systems, uncover dynamics suggesting a unique mechanism of dynamic self-assembly, and establish a framework for engineering microfluidic structures with the possibility of spatial frequency filtering. Focusing on the dynamics of the particle–particle interactions reveals a mechanism for the dynamic self-assembly process; inertial lift forces and a parabolic flow field act together to stabilize interparticle spacings that otherwise would diverge to infinity due to viscous disturbance flows. The interplay of the repulsive viscous interaction and inertial lift also allow us to design and implement microfluidic structures that irreversibly change interparticle spacing, similar to a low-pass filter. Although often not considered at the microscale, nonlinearity due to inertia can provide a platform for high-throughput passive control of particle positions in all directions, which will be useful for applications in flow cytometry, tissue engineering, and metamaterial synthesis. PMID:21149674

  6. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination

    SciTech Connect

    Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2009-10-07

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  7. Flowing crystals: nonequilibrium structure of foam.

    PubMed

    Garstecki, Piotr; Whitesides, George M

    2006-07-14

    Bubbles pushed through a quasi-two-dimensional channel self-organize into a variety of periodic lattices. The structures of these lattices correspond to local minima of the interfacial energy. The "flowing crystals" are long-lived metastable states, a small subset of possible local minima of confined quasi-two-dimensional foams [P. Garstecki and G. M. Whitesides, Phys. Rev. E 73, 031603 (2006)10.1103/PhysRevE.73.031603]. Experimental results suggest that the choice of the structures that we observe is dictated by the dynamic stability of the cyclic processes of their formation. Thus, the dynamic system that we report provides a unique example of nonequilibrium self-organization that results in structures that correspond to local minima of the relevant energy functional. PMID:16907453

  8. Crystal structure of plant photosystem I

    NASA Astrophysics Data System (ADS)

    Ben-Shem, Adam; Frolow, Felix; Nelson, Nathan

    2003-12-01

    Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4Å resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.

  9. Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine

    PubMed Central

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-01-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the Genetic Algorithms search implemented in Modified Genetic Algorithm for Crystals coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable. PMID:25843964

  10. Crystal structure prediction from first principles: The crystal structures of glycine

    NASA Astrophysics Data System (ADS)

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-04-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

  11. Structural studies of large nucleoprotein particles, vaults.

    PubMed

    Tanaka, Hideaki; Tsukihara, Tomitake

    2012-01-01

    Vault is the largest nonicosahedral cytosolic nucleoprotein particle ever described. The widespread presence and evolutionary conservation of vaults suggest important biologic roles, although their functions have not been fully elucidated. X-ray structure of vault from rat liver was determined at 3.5 Å resolution. It exhibits an ovoid shape with a size of 40 × 40 × 67 nm(3). The cage structure of vault consists of a dimer of half-vaults, with each half-vault comprising 39 identical major vault protein (MVP) chains. Each MVP monomer folds into 12 domains: nine structural repeat domains, a shoulder domain, a cap-helix domain and a cap-ring domain. Interactions between the 42-turn-long cap-helix domains are key to stabilizing the particle. The other components of vaults, telomerase-associated proteins, poly(ADP-ribose) polymerases and small RNAs, are in location in the vault particle by electron microscopy. PMID:23060231

  12. Structural investigation of the potassium vanadomolybdate crystal

    SciTech Connect

    Mucha, D.; Olszewski, P.K.; Napruszewska, B.

    1999-08-01

    Potassium vanadomolybdate KVMoO{sub 6} crystallizes in the orthorhombic system (space group Pnma, a = 10.3478(1) {angstrom}, b = 3.6967(1) {angstrom}, c = 13.3769(2) {angstrom}, Z = 4). With an X-ray powder diffraction technique, its structure was solved and refined by direct and Rietveld methods, respectively (R{sub F} = 3.33, R{sub 1} = 4.70, R{sub wp} = 12.44). The crystals are isostructural with PbV{sub 2}O{sub 6}. Octahedra of two types build chains parallel to the b direction; there is disorder in the octahedra described by different occupation numbers of V and Mo atoms: 0.721(4) and 0.279(4), respectively. Potassium atoms occupy the space between the octahedra chains. They play a decisive role, due to the large ionic radius, in generating both KVMoO{sub 6} and pseudobrannerite, K{sub x}V{sub x}Mo{sub 2{minus}x}O{sub 6} (0.76 {le} x {le} 0.82) structures, contrary to other alkali-metal vanadomolybdates of the brannerite structure type. The melting point of KVMoO{sub 6} was detected at 480 C using the DTA method.

  13. Crystal structure of a DNA catalyst.

    PubMed

    Ponce-Salvatierra, Almudena; Wawrzyniak-Turek, Katarzyna; Steuerwald, Ulrich; Höbartner, Claudia; Pena, Vladimir

    2016-01-14

    Catalysis in biology is restricted to RNA (ribozymes) and protein enzymes, but synthetic biomolecular catalysts can also be made of DNA (deoxyribozymes) or synthetic genetic polymers. In vitro selection from synthetic random DNA libraries identified DNA catalysts for various chemical reactions beyond RNA backbone cleavage. DNA-catalysed reactions include RNA and DNA ligation in various topologies, hydrolytic cleavage and photorepair of DNA, as well as reactions of peptides and small molecules. In spite of comprehensive biochemical studies of DNA catalysts for two decades, fundamental mechanistic understanding of their function is lacking in the absence of three-dimensional models at atomic resolution. Early attempts to solve the crystal structure of an RNA-cleaving deoxyribozyme resulted in a catalytically irrelevant nucleic acid fold. Here we report the crystal structure of the RNA-ligating deoxyribozyme 9DB1 (ref. 14) at 2.8 Å resolution. The structure captures the ligation reaction in the post-catalytic state, revealing a compact folding unit stabilized by numerous tertiary interactions, and an unanticipated organization of the catalytic centre. Structure-guided mutagenesis provided insights into the basis for regioselectivity of the ligation reaction and allowed remarkable manipulation of substrate recognition and reaction rate. Moreover, the structure highlights how the specific properties of deoxyribose are reflected in the backbone conformation of the DNA catalyst, in support of its intricate three-dimensional organization. The structural principles underlying the catalytic ability of DNA elucidate differences and similarities in DNA versus RNA catalysts, which is relevant for comprehending the privileged position of folded RNA in the prebiotic world and in current organisms. PMID:26735012

  14. Method of using triaxial magnetic fields for making particle structures

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  15. Temperature dependent spin structures in Hexaferrite crystal

    NASA Astrophysics Data System (ADS)

    Chao, Y. C.; Lin, J. G.; Chun, S. H.; Kim, K. H.

    2016-01-01

    In this work, the Hexaferrite Ba0.5Sr1.5Zn2Fe12O22 (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state.

  16. Structural Diversity of DNA-Coated Particle Assemblies

    NASA Astrophysics Data System (ADS)

    Starr, Francis W.

    2012-02-01

    Custom designed nanoparticles (NP) or colloids with specific recognition offer the possibility to control the phase behavior and structure of particle assemblies for a range of applications. One approach to realize these new materials is by attaching DNA to a core particle; the hybridization of double-stranded DNA between particles results in the spontaneous assembly of higher-order structures. Control of the assembled state can be achieved by adjusting several parameters, including sequence selectivity, DNA link orientation, DNA length and flexibility, and the balance between the length of links and non-specific repulsive interactions. I will discuss the results of a coarse-grained molecular model for DNA-linked nanoparticles that helps to rationalize experimental findings and demonstrate new routes to control the assembled structure. We examine how the number and orientation of strands affects the structure, phase behavior, and dynamics. We show that it is possible to realize unusual phase diagrams with many thermodynamically distinct phases, both amorphous and crystal. We further examine the parameters that control the pathways of assembly, which are critical to avoid kinetic bottlenecks. Finally, we discuss strategies to create highly anisoptropic structures using both isotropic and anisotropic core units.

  17. Crystal structure of yeast Sco1

    SciTech Connect

    Abajian, Carnie; Rosenzweig, Amy C.

    2010-03-05

    The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

  18. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.

    1992-01-01

    The structure of premixed flames propagating in combustible systems containing uniformly distributed volatile fuel particles in an oxidizing gas mixture is analyzed. This analysis is motivated by experiments conducted at NASA Lewis Research Center on the structure of flames propagating in combustible mixtures of lycopodium particles and air. Several interesting modes of flame propagation were observed in these experiments depending on the number density and the initial size of the fuel particle. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi sub u, is substantially larger than unity. A model is developed to explain these experimental observations. In the model, it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. The activation energy of the chemical reaction is presumed to be large. The activation energy characterizing the kinetics of vaporization is also presumed to be large. The equations governing the structure of the flame were integrated numerically. It is shown that the interplay of vaporization kinetics and oxidation process can result in steady flame propagation in combustible mixtures where the value of phi sub u is substantially larger than unity. This prediction is in agreement with experimental observations.

  19. Structural ordering and glass forming of soft spherical particles with harmonic repulsions

    SciTech Connect

    Sun, Bin; Sun, Zhiwei; Ouyang, Wenze Xu, Shenghua

    2014-04-07

    We carry out dissipative particle dynamics simulations to investigate the dynamic process of phase transformation in the system with harmonic repulsion particles. Just below the melting point, the system undergoes liquid state, face-centered cubic crystallization, body-centered cubic crystallization, and reentrant melting phase transition upon compression, which is in good agreement with the phase diagram constructed previously via thermodynamic integration. However, when the temperature is decreased sufficiently, the system is trapped into an amorphous and frustrated glass state in the region of intermediate density, where the solid phase and crystal structure should be thermodynamically most stable.

  20. Crystallization and X-ray diffraction of virus-like particles from a piscine betanodavirus

    PubMed Central

    Luo, Yu-Chun; Wang, Chun-Hsiung; Wu, Yi-Min; Liu, Wangta; Lu, Ming-Wei; Lin, Chan-Shing

    2014-01-01

    Dragon grouper nervous necrosis virus (DGNNV), a member of the genus Betanodavirus, causes high mortality of larvae and juveniles of the grouper fish Epinephelus lanceolatus. Currently, there is no reported crystal structure of a fish nodavirus. The DGNNV virion capsid is derived from a single open reading frame that encodes a 338-amino-acid protein of approximately 37 kDa. The capsid protein of DGNNV was expressed to form virus-like particles (VLPs) in Escherichia coli. The VLP shape is T = 3 quasi-symmetric with a diameter of ∼38 nm in cryo-electron microscopy images and is highly similar to the native virion. In this report, crystals of DGNNV VLPs were grown to a size of 0.27 mm within two weeks by the hanging-drop vapour-diffusion method at 283 K and diffracted X-rays to ∼7.5 Å resolution. In-house X-ray diffraction data of the DGNNV VLP crystals showed that the crystals belonged to space group R32, with unit-cell parameters a = b = 353.00, c = 800.40 Å, α = β = 90, γ = 120°. 23 268 unique reflections were acquired with an overall R merge of 18.2% and a completeness of 93.2%. Self-rotation function maps confirmed the fivefold, threefold and twofold symmetries of the icosahedron of DGNNV VLPs. PMID:25084387

  1. Irregular snow crystals: structural features as revealed by low temperature scanning electron microscopy.

    PubMed

    Wergin, William P; Rango, Albert; Foster, James; Erbe, Eric F; Pooley, Christopher

    2002-01-01

    For nearly 50 years, investigators using light microscopy have vaguely alluded to a unique type of snow crystal that has become known as an irregular snow crystal. However, the limited resolution and depth-of-field of the light microscope has prevented investigators from characterizing these crystals. In this study, a field-emission scanning electron microscope, equipped with a cold stage, was used to document the structural features, physical associations, and atmospheric metamorphosis of irregular snow crystals. The crystals appear as irregular hexagons, measuring 60 to 90 mm across, when viewed from the a-axis. Their length (c-axis) rarely exceeds the diameter. The irregular crystals are occasionally found as secondary particles on other larger forms of snow crystals; however, they most frequently occur in aggregates consisting of more than 100 irregular crystals. In the aggregates, the irregular crystals have their axes oriented parallel to one another and, collectively, tend to form columnar structures. Occasionally, these columnar structures exhibit rounded faces along one side, suggesting atmospheric metamorphoses during formation and descent. In extreme cases of metamorphoses, the aggregates would be difficult to distinguish from graupel. Frost, consisting of irregular crystals, has also been encountered, suggesting that atmospheric conditions that favor their growth can also occur terrestrially. PMID:12392356

  2. The Effect of Crystal Structure on the Morphology of Marine Aerosol

    NASA Astrophysics Data System (ADS)

    Ucci, A.; Kanters, R. M.; Veghte, D. P.; Freedman, M. A.

    2013-12-01

    Particle morphology impacts atmospheric processes and climate through its consequences for aerosol radiative properties, ice nucleation, and heterogeneous chemistry. To investigate the morphology of laboratory proxies for marine aerosol particles, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) were used to study dry particles composed of mixtures of sodium chloride, sodium bromine, and sodium iodide. Our SAED patterns show that NaCl is a single crystal, while NaBr and NaI are polycrystalline. In particles composed of internal mixtures of sodium chloride and sodium bromide, we observe that particles form partially engulfed structures in which both components are single crystals. In contrast, particles composed of sodium chloride and sodium iodide form core-shell structures in which the sodium chloride component is a single crystal and the sodium iodide is polycrystalline. Our results suggest that the morphology and crystallinity of internally mixed particles are determined by the difference in lattice spacing of the two components. We have also extended our studies to investigate other species of marine and continental relevance. In addition, sodium dodecyl sulfate (SDS) was used as a proxy for natural surfactants found in the ocean and significantly disrupted the particle morphology. Through these investigations of particle morphology, better physical and chemical parameters for aerosols can be developed, which will allow us to more accurately predict future changes to the climate.

  3. The Crystal Structure of Human Argonaute2

    SciTech Connect

    Schirle, Nicole T.; MacRae, Ian J.

    2012-07-18

    Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.

  4. Crystal structure of human nicotinamide riboside kinase.

    PubMed

    Khan, Javed A; Xiang, Song; Tong, Liang

    2007-08-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD(+) as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 A resolution and in a ternary complex with ADP and tiazofurin at 2.7 A resolution. The active site is located in a groove between the central parallel beta sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations. PMID:17698003

  5. Crystal Structure of Human Nicotinamide Riboside Kinase

    SciTech Connect

    Khan,J.; Xiang, S.; Tong, L.

    2007-01-01

    Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

  6. The crystal structure of human Argonaute2.

    PubMed

    Schirle, Nicole T; MacRae, Ian J

    2012-05-25

    Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans. PMID:22539551

  7. Crystal structure of mammalian acid sphingomyelinase.

    PubMed

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann-Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann-Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  8. Crystal structure of mammalian acid sphingomyelinase

    PubMed Central

    Gorelik, Alexei; Illes, Katalin; Heinz, Leonhard X.; Superti-Furga, Giulio; Nagar, Bhushan

    2016-01-01

    Acid sphingomyelinase (ASMase, ASM, SMPD1) converts sphingomyelin into ceramide, modulating membrane properties and signal transduction. Inactivating mutations in ASMase cause Niemann–Pick disease, and its inhibition is also beneficial in models of depression and cancer. To gain a better understanding of this critical therapeutic target, we determined crystal structures of mammalian ASMase in various conformations. The catalytic domain adopts a calcineurin-like fold with two zinc ions and a hydrophobic track leading to the active site. Strikingly, the membrane interacting saposin domain assumes either a closed globular conformation independent from the catalytic domain, or an open conformation, which establishes an interface with the catalytic domain essential for activity. Structural mapping of Niemann–Pick mutations reveals that most of them likely destabilize the protein's fold. This study sheds light on the molecular mechanism of ASMase function, and provides a platform for the rational development of ASMase inhibitors and therapeutic use of recombinant ASMase. PMID:27435900

  9. Structure, thermodynamics, and crystallization of amorphous hafnia

    NASA Astrophysics Data System (ADS)

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-01

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO2. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  10. Structure, thermodynamics, and crystallization of amorphous hafnia

    SciTech Connect

    Luo, Xuhui; Demkov, Alexander A.

    2015-09-28

    We investigate theoretically amorphous hafnia using the first principles melt and quench method. We identify two types of amorphous structures of hafnia. Type I and type II are related to tetragonal and monoclinic hafnia, respectively. We find type II structure to show stronger disorder than type I. Using the phonon density of states, we calculate the specific heat capacity for type II amorphous hafnia. Using the nudged elastic band method, we show that the averaged transition barrier between the type II amorphous hafnia and monoclinic phase is approximately 0.09 eV/HfO{sub 2}. The crystallization temperature is estimated to be 421 K. The calculations suggest an explanation for the low thermal stability of amorphous hafnia.

  11. The measurement results of carbon ion beam structure extracted by bent crystal from U-70 accelerator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Barnov, E. V.; Britvich, G. I.; Chesnokov, Yu A.; Chirkov, P. N.; Durum, A. A.; Kostin, M. Yu; Maisheev, V. A.; Pitalev, V. I.; Reshetnikov, S. F.; Yanovich, A. A.; Nazhmudinov, R. M.; Kubankin, A. S.; Shchagin, A. V.

    2016-07-01

    The carbon ion +6C beam with energy 25 GeV/nucleon was extracted by bent crystal from the U-70 ring. The bent angle of silicon crystal was 85 mrad. About 2×105 particles for 109 circulated ions in the ring were observed in beam line 4a after bent crystal. Geometrical parameters, time structure and ion beam structure were measured. The ability of the bent monocrystal to extract and generate ion beam with necessary parameters for regular usage in physical experiments is shown in the first time.

  12. Structural studies of tubular discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mindyuk, Oksana Yaroslavovna

    1999-11-01

    Discotic liquid crystals based on the rigid ring-shaped phenylacetylene macrocycle molecule (PAM) are of great interest due to their potential organization into supramolecular channels. We have used high resolution X-ray diffraction to study the structure of pure and doped PAM and to demonstrate that PAM forms a tubular columnar liquid crystal with an unexpected distortion and doubling of the underlying hexagonal lattice. We have doped PAM with different percentages of silver ions and determined that doping did not change peak positions on the powder diffraction data but significantly altered the intensity of the peaks. This implies that the silver ions were most likely intercalated within the channels formed by the PAM molecules, thus leaving the lattice parameters unaffected. We have also used grazing incidence X-ray diffraction and X-ray reflectivity to study Langmuir films of PAM. PAM adopts an "edge-on" molecular arrangement at the air-water interface. We will discuss the direct observation of the structural reorganization within macromolecular Langmuir films of disc-shaped ionophoric molecules arising from interactions with potassium and cesium ions in the subphase. The columnar order is disrupted by CsCl in the subphase and strongly enhanced by KCl in the subphase, thus effectively tailoring the structural properties of the Langmuir films for potential applications. We have also used X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GID) to study Langmuir films of another macrocyclic ionophore: torand (tributyldodecahydrohexaazakekulene, "TBDK") molecules. TBDK is a rigid, triangular molecule; it has been investigated as a potential surface-active complexing agent. The system forms a stable monolayer at the air-water interface and exhibits two distinct structural phases at lower and higher pressures.

  13. Bragg scattering and Brownian motion dynamics in optically induced crystals of submicron particles.

    PubMed

    Sapiro, R E; Slama, B N; Raithel, G

    2013-05-01

    A set of four confocal laser beams of 1064-nm wavelength is used to prepare optically induced crystals of submicron particles in aqueous solution. Thousands of polystyrene spheres of about 200 nm in diameter are trapped in three dimensions. Bragg scattering patterns obtained with a probe beam of 532-nm wavelength are in agreement with the calculated lattice structure and its polarization dependence. The decay and rise of the Bragg scattering intensity upon switching the lattice off and on reveal the Brownian motion dynamics of the particles in the periodic optical trapping potential. Experimental results agree well with results from trajectory simulations based on the Langevin equation. The results exhibit the interplay between Brownian motion and deterministic forces in an inhomogeneous (near-)periodic optical trapping potential. PMID:23767544

  14. Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles

    DOE PAGESBeta

    Jiang, Xingmao; Liu, Nanguo; Assink, Roger A.; Jiang, Yingbing; Brinker, C. Jeffrey

    2011-01-01

    Azobenzene ligands were uniformly anchored to the pore surfaces of nanoporous silica particles with single crystal NaCl using 4-(3-triethoxysilylpropylureido)azobenzene (TSUA). The functionalization delayed the release of NaCl significantly. The modified particles demonstrated a photocontrolled release by trans/cis isomerization of azobenzene moieties. The addition of amphiphilic solvents, propylene glycol (PG), propylene glycol propyl ether (PGPE), and dipropylene glycol propyl ether (DPGPE) delayed the release in water, although the wetting behavior was improved and the delay is the most for the block molecules with the longest carbon chain. The speedup by UV irradiation suggests a strong dependence of diffusion on the switchablemore » pore size. TGA, XRD, FTIR, and NMR techniques were used to characterize the structures.« less

  15. Prediction of binary hard-sphere crystal structures.

    PubMed

    Filion, Laura; Dijkstra, Marjolein

    2009-04-01

    We present a method based on a combination of a genetic algorithm and Monte Carlo simulations to predict close-packed crystal structures in hard-core systems. We employ this method to predict the binary crystal structures in a mixture of large and small hard spheres with various stoichiometries and diameter ratios between 0.4 and 0.84. In addition to known binary hard-sphere crystal structures similar to NaCl and AlB2, we predict additional crystal structures with the symmetry of CrB, gammaCuTi, alphaIrV, HgBr2, AuTe2, Ag2Se, and various structures for which an atomic analog was not found. In order to determine the crystal structures at infinite pressures, we calculate the maximum packing density as a function of size ratio for the crystal structures predicted by our GA using a simulated annealing approach. PMID:19518387

  16. Crystal structure of bacterioferritin from Rhodobacter sphaeroides

    SciTech Connect

    Nam, Ki Hyun; Xu, Yongbin; Piao, Shunfu; Priyadarshi, Amit; Lee, Eun Hye; Kim, Hye-Yeon; Jeon, Young Ho; Ha, Nam-Chul; Hwang, Kwang Yeon

    2010-01-01

    Iron is essential for the survival of organisms, but either excess or deficient levels of iron induce oxidative stress, thereby causing cell damage. As a result, iron regulation is essential for proper cell growth and proliferation in most organisms. Bacterioferritin is a ferritin-like family protein that contains a heme molecule and a ferroxidase site at the di-iron center. This protein plays a primary role in intracellular iron storage for iron homeostasis, as well as in the maintenance of iron in a soluble and non-toxic form. Although several bacterioferritin structures have been determined, no structural studies have successfully elucidated the molecular function of the heme molecule and the ferroxidase center. Here, we report the crystal structure of bacterioferritin from Rhodobacter sphaeroides. This protein exists in a roughly spherical configuration via the assembly of 24 subunits. We describe the oligomeric arrangement, ferroxidase center and heme-binding site based on this structure. The protein contains a single iron-binding configuration in the ferroxidase center, which allows for the release of iron by His130 when the protein is in the intermediate state. The heme molecule in RsBfr is stabilized by shifting of the van der Waals interaction center between the porphyrin of the heme and Trp26. We anticipate that further structural analysis will provide a more complete understanding of the molecular mechanisms of members of the ferritin-like family.

  17. Structural Transitions in Cholesteric Liquid Crystal Droplets.

    PubMed

    Zhou, Ye; Bukusoglu, Emre; Martínez-González, José A; Rahimi, Mohammad; Roberts, Tyler F; Zhang, Rui; Wang, Xiaoguang; Abbott, Nicholas L; de Pablo, Juan J

    2016-07-26

    Confinement of cholesteric liquid crystals (ChLC) into droplets leads to a delicate interplay between elasticity, chirality, and surface energy. In this work, we rely on a combination of theory and experiments to understand the rich morphological behavior that arises from that balance. More specifically, a systematic study of micrometer-sized ChLC droplets is presented as a function of chirality and surface energy (or anchoring). With increasing chirality, a continuous transition is observed from a twisted bipolar structure to a radial spherical structure, all within a narrow range of chirality. During such a transition, a bent structure is predicted by simulations and confirmed by experimental observations. Simulations are also able to capture the dynamics of the quenching process observed in experiments. Consistent with published work, it is found that nanoparticles are attracted to defect regions on the surface of the droplets. For weak anchoring conditions at the nanoparticle surface, ChLC droplets adopt a morphology similar to that of the equilibrium helical phase observed for ChLCs in the bulk. As the anchoring strength increases, a planar bipolar structure arises, followed by a morphological transition to a bent structure. The influence of chirality and surface interactions are discussed in the context of the potential use of ChLC droplets as stimuli-responsive materials for reporting molecular adsorbates. PMID:27249186

  18. Crystal structure of strontium dinickel iron orthophosphate

    PubMed Central

    Ouaatta, Said; Assani, Abderrazzak; Saadi, Mohamed; El Ammari, Lahcen

    2015-01-01

    The title compound, SrNi2Fe(PO4)3, synthesized by solid-state reaction, crystallizes in an ordered variant of the α-CrPO4 structure. In the asymmetric unit, two O atoms are in general positions, whereas all others atoms are in special positions of the space group Imma: the Sr cation and one P atom occupy the Wyckoff position 4e (mm2), Fe is on 4b (2/m), Ni and the other P atom are on 8g (2), one O atom is on 8h (m) and the other on 8i (m). The three-dimensional framework of the crystal structure is built up by [PO4] tetra­hedra, [FeO6] octa­hedra and [Ni2O10] dimers of edge-sharing octa­hedra, linked through common corners or edges. This structure comprises two types of layers stacked alternately along the [100] direction. The first layer is formed by edge-sharing octa­hedra ([Ni2O10] dimer) linked to [PO4] tetra­hedra via common edges while the second layer is built up from a strontium row followed by infinite chains of alternating [PO4] tetra­hedra and FeO6 octa­hedra sharing apices. The layers are held together through vertices of [PO4] tetra­hedra and [FeO6] octa­hedra, leading to the appearance of two types of tunnels parallel to the a- and b-axis directions in which the Sr cations are located. Each Sr cation is surrounded by eight O atoms. PMID:26594419

  19. Crystal structures of five 6-mercaptopurine derivatives.

    PubMed

    Gomes, Lígia R; Low, John Nicolson; Magalhães E Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-03-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(3-meth-oxy-phen-yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-meth-oxy-phen-yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-chloro-phen-yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-bromo-phen-yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth-oxy-phen-yl)-2-[(9H-purin-6-yl)sulfan-yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol-ecular and supra-molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol-ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol-ecules are linked by weak C-H⋯O hydrogen bonds in their crystals. There is π-π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl-ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles. PMID:27006794

  20. Modeling Polymorphic Molecular Crystals with Electronic Structure Theory.

    PubMed

    Beran, Gregory J O

    2016-05-11

    Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed. PMID:27008426

  1. Scattering of millimeter waves by snow crystals and equivalent homogeneous symmetric particles.

    PubMed

    O'Brien, S G; Goedecke, G H

    1988-06-15

    The digitized Green's function code was used to compute differential and total cross sections of several model snow crystals and of several homogeneous highly symmetric equivalent particles of the same general shape and size as the snow crystals at a wavelength of 10 mm. Optical constants of equivalent particles were derived using the Biot-Arago, Lorentz-Lorenz, and Bruggemann mixing rules. Reasonable agreement was found for equivalent particles whose mass distributions were most similar to those of the snow crystals. Overall, the Bruggemann mixing rule produced the best match. PMID:20531775

  2. Crystal structures of the human adiponectin receptors.

    PubMed

    Tanabe, Hiroaki; Fujii, Yoshifumi; Okada-Iwabu, Miki; Iwabu, Masato; Nakamura, Yoshihiro; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

    2015-04-16

    Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

  3. Flash Nanoprecipitation: Particle Structure and Stability

    PubMed Central

    Pustulka, Kevin M.; Wohl, Adam R.; Lee, Han Seung; Michel, Andrew R.; Han, Jing; Hoye, Thomas R.; McCormick, Alon V.; Panyam, Jayanth; Macosko, Christopher W.

    2013-01-01

    Flash nanoprecipitation (FNP) is a process that, through rapid mixing, stabilizes an insoluble low molecular weight compound in a nano-sized, polymer-stabilized delivery vehicle. The polymeric components are typically amphiphilic diblock copolymers (BCPs). In order to fully exploit the potential of FNP, factors affecting particle structure, size, and stability must be understood. Here we show that polymer type, hydrophobicity and crystallinity of the small molecule, and small molecule loading levels all affect particle size and stability. Of the four block copolymers (BCP) that we have studied here, poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) was most suitable for potential drug delivery applications due to its ability to give rise to stable nanoparticles, its biocompatibility, and its degradability. We found little difference in particle size when using PLGA block sizes over the range of 5 to 15kDa. The choice of hydrophobic small molecule was important, as molecules with a calculated water-octanol partition coefficient (clogP) below 6 gave rise to particles that were unstable and underwent rapid Ostwald ripening. Studies probing the internal structure of nanoparticles were also performed. Analysis of differential scanning calorimetry (DSC), cryogenic transmission electron microscopy (cryo-TEM), and 1H-NMR experiments support a three-layer core-shell-corona nanoparticle structure. PMID:24053447

  4. Crystal structure of natural phaeosphaeride A

    PubMed Central

    Abzianidze, Victoria V.; Poluektova, Ekaterina V.; Bolshakova, Ksenia P.; Panikorovskii, Taras L.; Bogachenkov, Alexander S.; Berestetskiy, Alexander O.

    2015-01-01

    The asymmetric unit of the title compound, C15H23NO5, contains two independent mol­ecules. Phaeosphaeride A contains two primary sections, an alkyl chain consisting of five C atoms and a cyclic system consisting of fused five- and six-membered rings with attached substituents. In the crystal, the mol­ecules form layered structures. Nearly planar sheets, parallel to the (001) plane, form bilayers of two-dimensional hydrogen-bonded networks with the hy­droxy groups located on the inter­ior of the bilayer sheets. The network is constructed primarily of four O—H⋯O hydrogen bonds, which form a zigzag pattern in the (001) plane. The butyl chains inter­digitate with the butyl chains on adjacent sheets. The crystal was twinned by a twofold rotation about the c axis, with refined major–minor occupancy fractions of 0.718 (6):0.282 (6). PMID:26396831

  5. Crystal Structures of Respiratory Pathogen Neuraminidases

    SciTech Connect

    Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

    2009-01-01

    Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

  6. Chemical and structural studies of 'Brownlee' particles. [extraterrestrial dust in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Fraundorf, P.; Shirck, J.; Walker, R. M.

    1978-01-01

    Several techniques were applied to the study of small particles (around 10 microns) collected in the upper atmosphere by U-2 aircraft. The major element chemistry of roughly 1/3 of the particles is similar to that of chondritic meteorites, although considerable variation of element ratios is observed from particle to particle, and even within a given particle. All particles of 'chondritic' composition are polycrystalline aggregates. About half have fully re-entrant structures; the remaining ones have more compact structures ranging from platey to spherical morphologies. Micro-crystallites with various internal structures are observed in the size range from less than 100 A to several microns. Although tracks are clearly observed in transmission electron microscope examination of terrestrial analog crystals, no tracks of solar flare origin have yet been identified in the U-2 particles. Induced fission track analysis of one aggregate shows that the U concentration is less than 15 ppbm, lending support to the extraterrestrial origin hypothesis.

  7. Crystal Structure of the VS ribozyme

    PubMed Central

    Suslov, Nikolai B.; DasGupta, Saurja; Huang, Hao; Fuller, James R.; Lilley, David M.J.; Rice, Phoebe A.; Piccirilli, Joseph A.

    2015-01-01

    Varkud Satellite (VS) ribozyme mediates rolling circle replication of a plasmid found in the Neurospora mitochondria. We report crystal structures of this ribozyme at 3.1Å resolution, revealing an intertwined dimer formed by an exchange of substrate helices. Within each protomer, an arrangement of three-way helical junctions organizes seven helices into a global fold that creates a docking site for the substrate helix of the other protomer, resulting in the formation of two active sites in trans. This mode of RNA-RNA association resembles the process of domain swapping in proteins and has implications for RNA regulation and evolution. Within each active site, adenine and guanine nucleobases abut the scissile phosphate, poised to serve direct roles in catalysis. Similarities to the active sites of the hairpin and hammerhead ribozymes highlight the functional significance of active site features, underscore the ability of RNA to access functional architectures from distant regions of sequence space, and suggest convergent evolution. PMID:26414446

  8. Crystal structure of oligoacenes under high pressure

    SciTech Connect

    Oehzelt, M.; Aichholzer, A.; Resel, R.; Heimel, G.; Venuti, E.; Della Valle, R. G.

    2006-09-01

    We report crystal structures of anthracene, tetracene, and pentacene under pressure. Energy dispersive x-ray diffraction experiments up to 9 GPa were performed. Quasiharmonic lattice dynamics calculations are compared to the experimental results and show excellent agreement. The results are discussed with particular emphasis on the pressure dependence of the unit cell dimensions and the rearrangement of the molecules. The high pressure data also allow an analysis of the equation of state of these substances as a function of molecular length. We report the bulk modulus of tetracene and pentacene (B{sub 0}=9.0 and 9.6 GPa, respectively) and its pressure derivative (B{sub 0}{sup '}=7.9 and 6.4, respectively). We find that the unit-cell volume and bulk modulus at ambient pressure follow a linear relationship with the molecular length.

  9. Exploring structural phase transitions of ion crystals

    PubMed Central

    Yan, L. L.; Wan, W.; Chen, L.; Zhou, F.; Gong, S. J.; Tong, X.; Feng, M.

    2016-01-01

    Phase transitions have been a research focus in many-body physics over past decades. Cold ions, under strong Coulomb repulsion, provide a repealing paradigm of exploring phase transitions in stable confinement by electromagnetic field. We demonstrate various conformations of up to sixteen laser-cooled 40Ca+ ion crystals in a home-built surface-electrode trap, where besides the usually mentioned structural phase transition from the linear to the zigzag, two additional phase transitions to more complicated two-dimensional configurations are identified. The experimental observation agrees well with the numerical simulation. Heating due to micromotion of the ions is analysed by comparison of the numerical simulation with the experimental observation. Our investigation implies very rich and complicated many-body behaviour in the trapped-ion systems and provides effective mechanism for further exploring quantum phase transitions and quantum information processing with ultracold trapped ions. PMID:26865229

  10. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  11. Crystal structure of human GDF11.

    PubMed

    Padyana, Anil K; Vaidialingam, Bhamini; Hayes, David B; Gupta, Priyanka; Franti, Michael; Farrow, Neil A

    2016-03-01

    Members of the TGF-β family of proteins are believed to play critical roles in cellular signaling processes such as those involved in muscle differentiation. The extent to which individual family members have been characterized and linked to biological function varies greatly. The role of myostatin, also known as growth differentiation factor 8 (GDF8), as an inhibitor of muscle differentiation is well understood through genetic linkages. In contrast, the role of growth differentiation factor 11 (GDF11) is much less well understood. In humans, the mature forms of GDF11 and myostatin are over 94% identical. In order to understand the role that the small differences in sequence may play in the differential signaling of these molecules, the crystal structure of GDF11 was determined to a resolution of 1.50 Å. A comparison of the GDF11 structure with those of other family members reveals that the canonical TGF-β domain fold is conserved. A detailed structural comparison of GDF11 and myostatin shows that several of the differences between these proteins are likely to be localized at interfaces that are critical for the interaction with downstream receptors and inhibitors. PMID:26919518

  12. Crystal Structure of Amylomaltase from Corynebacterium glutamicum.

    PubMed

    Joo, Seongjoon; Kim, Sangwoo; Seo, Hogyun; Kim, Kyung-Jin

    2016-07-20

    Amylomaltase is an essential enzyme in maltose utilization and maltodextrin metabolism, and it has been industrially used for the production of cyclodextrin and modification of starch. We determined the crystal structure of amylomaltase from Corynebacterium glutamicum (CgAM) at a resolution of 1.7 Å. Although CgAM forms a dimer without NaCl, it exists as a monomer in physiological concentration of NaCl. CgAM is composed of N- and C-terminal domains, which can be further divided into two and four subdomains, respectively. It exhibits a unique structural feature at the functionally unknown N-domain and also shows two striking differences at the C-domain compared to other amylomaltases. These differences at extended edge of the substrate-binding site might affect substrate specificity for large cyclodextrin formation. The bis-tris methane and sulfate molecules bound at the substrate-binding site of our current structure mimic the binding of the hydroxyl groups of glucose bound at subsites -1 and -2, respectively. PMID:27366969

  13. The Crystal Structure of Triuranyl Diphosphate Tetrahydrate

    NASA Astrophysics Data System (ADS)

    Locock, Andrew J.; Burns, Peter C.

    2002-01-01

    The hydrated neutral uranyl phosphate, (UO2)3(PO4)2(H2O)4, was synthesized by hydrothermal methods. Intensity data were collected using MoKα radiation and a CCD-based area detector. The crystal structure was solved by direct methods and refined by full-matrix least-squares techniques to agreement indices wR2=0.116 for all data, and R1=0.040, calculated for the 2764 unique observed reflections (∣Fo∣≥4σF). The compound is orthorhombic, space group Pnma, Z=4, a=7.063(1) Å, b=17.022(3) Å, c=13.172(3) Å, V=1583.5(5) Å3. The structure consists of sheets of phosphate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO2)(PO4)]- and the uranophane sheet anion topology. The sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with a phosphate tetrahedron on each of two adjacent sheets, resulting in an open framework with isolated H2O groups in the larger cavities of the structure.

  14. Crystal structure of human nicotinic acid phosphoribosyltransferase.

    PubMed

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss-Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent. PMID:26042198

  15. Crystal structure of human nicotinic acid phosphoribosyltransferase

    PubMed Central

    Marletta, Ada Serena; Massarotti, Alberto; Orsomando, Giuseppe; Magni, Giulio; Rizzi, Menico; Garavaglia, Silvia

    2015-01-01

    Nicotinic acid phosphoribosyltransferase (EC 2.4.2.11) (NaPRTase) is the rate-limiting enzyme in the three-step Preiss–Handler pathway for the biosynthesis of NAD. The enzyme catalyzes the conversion of nicotinic acid (Na) and 5-phosphoribosyl-1-pyrophosphate (PRPP) to nicotinic acid mononucleotide (NaMN) and pyrophosphate (PPi). Several studies have underlined the importance of NaPRTase for NAD homeostasis in mammals, but no crystallographic data are available for this enzyme from higher eukaryotes. Here, we report the crystal structure of human NaPRTase that was solved by molecular replacement at a resolution of 2.9 Å in its ligand-free form. Our structural data allow the assignment of human NaPRTase to the type II phosphoribosyltransferase subfamily and reveal that the enzyme consists of two domains and functions as a dimer with the active site located at the interface of the monomers. The substrate-binding mode was analyzed by molecular docking simulation and provides hints into the catalytic mechanism. Moreover, structural comparison of human NaPRTase with the other two human type II phosphoribosyltransferases involved in NAD biosynthesis, quinolinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase, reveals that while the three enzymes share a conserved overall structure, a few distinctive structural traits can be identified. In particular, we show that NaPRTase lacks a tunnel that, in nicotinamide phosphoribosiltransferase, represents the binding site of its potent and selective inhibitor FK866, currently used in clinical trials as an antitumoral agent. PMID:26042198

  16. Crystal Structure of Homo Sapiens Kynureninase†

    PubMed Central

    Lima, Santiago; Kristoforov, Roman; Momany, Cory; Phillips, Robert S.

    2008-01-01

    Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal-5′-phosphate dependent enzymes known as the aspartate aminotransferase superfamily or α-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-L-kynurenine to produce 3-hydroxyanthranilate and L-alanine, while L-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni-metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km= 28.3 ± 1.9 μM, and a specific activity of 1.75 μmol min-1 mg-1 for 3-hydroxy-DL-kynurenine. Crystals of recombinant kynureninase were obtained that diffracted to 2.0 Å, and the atomic structure of the PLP-bound holoenzyme was solved by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB accession 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the “open” and “closed” conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins’ small domains and reveals a role for Arg-434 similar to that in other AAT α-family members. Docking of 3-hydroxy-L-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates. PMID:17300176

  17. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals.

    PubMed

    Asmadi, Aldi; Neumann, Marcus A; Kendrick, John; Girard, Pascale; Perrin, Marc-Antoine; Leusen, Frank J J

    2009-12-24

    In the 2007 blind test of crystal structure prediction hosted by the Cambridge Crystallographic Data Centre (CCDC), a hybrid DFT/MM method correctly ranked each of the four experimental structures as having the lowest lattice energy of all the crystal structures predicted for each molecule. The work presented here further validates this hybrid method by optimizing the crystal structures (experimental and submitted) of the first three CCDC blind tests held in 1999, 2001, and 2004. Except for the crystal structures of compound IX, all structures were reminimized and ranked according to their lattice energies. The hybrid method computes the lattice energy of a crystal structure as the sum of the DFT total energy and a van der Waals (dispersion) energy correction. Considering all four blind tests, the crystal structure with the lowest lattice energy corresponds to the experimentally observed structure for 12 out of 14 molecules. Moreover, good geometrical agreement is observed between the structures determined by the hybrid method and those measured experimentally. In comparison with the correct submissions made by the blind test participants, all hybrid optimized crystal structures (apart from compound II) have the smallest calculated root mean squared deviations from the experimentally observed structures. It is predicted that a new polymorph of compound V exists under pressure. PMID:19950907

  18. Multiscale models of colloidal dispersion of particles in nematic liquid crystals.

    PubMed

    Bennett, T P; D'Alessandro, G; Daly, K R

    2014-12-01

    We use homogenization theory to develop a multiscale model of colloidal dispersion of particles in nematic liquid crystals under weak-anchoring conditions. We validate the model by comparing it with simulations by using the Landau-de Gennes free energy and show that the agreement is excellent. We then use the multiscale model to study the effect that particle anisotropy has on the liquid crystal: spherically symmetric particles always reduce the effective elastic constant. Asymmetric particles introduce an effective alignment field that can increase the Fredericks threshold and decrease the switch-off time. PMID:25615117

  19. Efficient method for predicting crystal structures at finite temperature: variable box shape simulations.

    PubMed

    Filion, Laura; Marechal, Matthieu; van Oorschot, Bas; Pelt, Daniël; Smallenburg, Frank; Dijkstra, Marjolein

    2009-10-30

    We present an efficient and robust method based on Monte Carlo simulations for predicting crystal structures at finite temperature. We apply this method, which is surprisingly easy to implement, to a variety of systems, demonstrating its effectiveness for hard, attractive, and anisotropic interactions, binary mixtures, semi-long-range soft interactions, and truly long-range interactions where the truly long-range interactions are treated using Ewald sums. In the case of binary hard-sphere mixtures, star polymers, and binary Lennard-Jones mixtures, the crystal structures predicted by this algorithm are consistent with literature, providing confidence in the method. Finally, we predict new crystal structures for hard asymmetric dumbbell particles, bowl-like particles and hard oblate cylinders and present the phase diagram for the oblate cylinders based on full free energy calculations. PMID:19905838

  20. Diffraction phenomena in spontaneous and stimulated radiation by relativistic particles in crystals (Review)

    SciTech Connect

    Baryshevsky, V.G.; Dubovskaya, I.Ya.

    1991-12-01

    This report discusses: the dispersion characteristics of parametric x-ray radiation (PXR) and diffraction radiation of oscillator; cooperative effects in x-radiation by charged particles in crystals; and diffraction x-radiation by relativistic oscillator.

  1. Liquid-crystal patterns of rectangular particles in a square nanocavity.

    PubMed

    González-Pinto, Miguel; Martínez-Ratón, Yuri; Velasco, Enrique

    2013-09-01

    Using density-functional theory in the restricted-orientation approximation, we analyze the liquid-crystal patterns and phase behavior of a fluid of hard rectangular particles confined in a two-dimensional square nanocavity of side length H composed of hard inner walls. Patterning in the cavity is governed by surface-induced order as well as capillary and frustration effects and depends on the relative values of the particle aspect ratio κ≡L/σ, with L the length and σ the width of the rectangles (L≥σ), and cavity size H. Ordering may be very different from bulk (H→∞) behavior when H is a few times the particle length L (nanocavity). Bulk and confinement properties are obtained for the cases κ=1, 3, and 6. In bulk the isotropic phase is always stable at low packing fractions η=Lσρ_{0} (with ρ_{0} the average density) and nematic, smectic, columnar, and crystal phases can be stabilized at higher η depending on κ: For increasing η the sequence of isotropic to columnar is obtained for κ=1 and 3, whereas for κ=6 we obtain isotropic to nematic to smectic (the crystal being unstable in all three cases for the density range explored). In the confined fluid surface-induced frustration leads to fourfold symmetry breaking in all phases (which become twofold symmetric). Since no director distortion can arise in our model by construction, frustration in the director orientation is relaxed by the creation of domain walls (where the director changes by 90^{∘}); this configuration is necessary to stabilize periodic phases. For κ=1 the crystal becomes stable with commensurate transitions taking place as H is varied. These transitions involve structures with different number of peaks in the local density. In the case κ=3 the commensurate transitions involve columnar phases with different number of columns. In the case κ=6 the high-density region of the phase diagram is dominated by commensurate transitions between smectic structures; at lower densities

  2. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  3. Structure and properties of detonation soot particles

    SciTech Connect

    MalKOV, I.Y.; Titiov, V.M.

    1996-05-01

    The influence of TNT/RDX (50/50) detonation parameters and conservation conditions of detonation products during their expansion in hermetic detonation chamber on structure and phase composition of the detonation carbon has been considered. Systematic studies made it possible to establish the real structure of detonation carbon depending on experimental conditions. It has been shown that both during explosion in a chamber and thermal annealing in vacuum the nanoparticles of diamond have the tendency to transform not into graphite particles, as was assumed earlier, but into onionlike structures of fullerene series, composed of closed concentric carbon shells, the so-called carbon onions. The nanometer carbon particles have been obtained which comprise a diamond nucleus surrounded by a graphite-like mantle composed of quasi-spherical carbon shells which are the intermediate products of annealing of nanodiamond. The influence of initial sizes of the diamond particles and temperature on the annealing of diamond has been studied. {copyright} {ital 1996 American Institute of Physics.}

  4. Enabling tablet product development of 5-fluorocytosine through integrated crystal and particle engineering.

    PubMed

    Perumalla, Sathyanarayana Reddy; Sun, Changquan Calvin

    2014-04-01

    The antifungal drug, 5-fluorocytosine (FC), is marketed as a capsule (250 or 500 mg strength) instead of the preferred tablet dosage form. Through systematic characterization of solid-state properties, including mechanical properties, we identify tabletability and poor physical stability of FC as the problems that likely have prevented the successful development of a FC tablet product. We then design an FC oxalate 2:1 salt (FCOXA21), based on established relationship between crystal structure and properties, to address these deficient properties. FCOXA21 is subsequently used to develop a direct compression tablet product using predictive and material-sparing powder characterization tools, that is, ring shear cell for powder flowability and compaction simulator for powder tabletability. The initial tablet formulation, which contains 84.5% (wt %) FCOXA21, exhibits excellent tabletability but inadequate flowability. We solve the powder flowability problem through controlling the particle size of FCOXA21. A batch of FCOXA21 tablets (500 mg FC equivalent dose) is then prepared. Finally, systematic evaluation on tablet weight variation, content uniformity, friability, and dissolution using standard methods confirms the commercial manufacturability of FC tablets. Through this work, we have demonstrated the potential of integrated crystal and particle engineering in expediting the development of tablet products of challenging drugs using the economical direct compression process. PMID:24515970

  5. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  6. Crystal structures of five 6-mercaptopurine derivatives

    PubMed Central

    Gomes, Lígia R.; Low, John Nicolson; Magalhães e Silva, Diogo; Cagide, Fernando; Borges, Fernanda

    2016-01-01

    The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(3-meth­oxy­phen­yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-meth­oxy­phen­yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-chloro­phen­yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan­yl]-1-(4-bromo­phen­yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth­oxy­phen­yl)-2-[(9H-purin-6-yl)sulfan­yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol­ecular and supra­molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol­ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol­ecules are linked by weak C—H⋯O hydrogen bonds in their crystals. There is π–π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl­ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles. PMID:27006794

  7. Synthesis and textural evolution of alumina particles with mesoporous structures

    SciTech Connect

    Liu Xun; Peng Tianyou; Yao Jinchun; Lv Hongjin; Huang Cheng

    2010-06-15

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous {gamma}-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl{sup -} in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into {gamma}-Al{sub 2}O{sub 3} particles with mesostructures after further calcination at 1173 K, whereas coexisting SO{sub 4}{sup 2-} can promote above morphology evolution and then transformed into {gamma}-Al{sub 2}O{sub 3} nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m{sup 2} g{sup -1} even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl{sup -} is beneficial for the formation of {gamma}-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

  8. Crystal Structure of Human Kynurenine Aminotransferase ll*

    SciTech Connect

    Han,Q.; Robinson, H.; Li, J.

    2008-01-01

    Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-d-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 Angstroms crystal structure of hKAT-II and a 1.95 Angstroms structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II.

  9. Crystal structure of a Trypanosoma brucei metacaspase

    PubMed Central

    McLuskey, Karen; Rudolf, Jana; Proto, William R.; Isaacs, Neil W.; Coombs, Graham H.; Moss, Catherine X.; Mottram, Jeremy C.

    2012-01-01

    Metacaspases are distantly related caspase-family cysteine peptidases implicated in programmed cell death in plants and lower eukaryotes. They differ significantly from caspases because they are calcium-activated, arginine-specific peptidases that do not require processing or dimerization for activity. To elucidate the basis of these differences and to determine the impact they might have on the control of cell death pathways in lower eukaryotes, the previously undescribed crystal structure of a metacaspase, an inactive mutant of metacaspase 2 (MCA2) from Trypanosoma brucei, has been determined to a resolution of 1.4 Å. The structure comprises a core caspase fold, but with an unusual eight-stranded β-sheet that stabilizes the protein as a monomer. Essential aspartic acid residues, in the predicted S1 binding pocket, delineate the arginine-specific substrate specificity. In addition, MCA2 possesses an unusual N terminus, which encircles the protein and traverses the catalytic dyad, with Y31 acting as a gatekeeper residue. The calcium-binding site is defined by samarium coordinated by four aspartic acid residues, whereas calcium binding itself induces an allosteric conformational change that could stabilize the active site in a fashion analogous to subunit processing in caspases. Collectively, these data give insights into the mechanistic basis of substrate specificity and mode of activation of MCA2 and provide a detailed framework for understanding the role of metacaspases in cell death pathways of lower eukaryotes. PMID:22529389

  10. Dry-growth of silver single-crystal nanowires from porous Ag structure

    NASA Astrophysics Data System (ADS)

    Chen, Chuantong; Nagao, Shijo; Jiu, Jinting; Zhang, Hao; Sugahara, Tohru; Suganuma, Katsuaki

    2016-06-01

    A fabrication method of single crystal Ag nanowires in large scale is introduced without any chemical synthesis in wet processes, which usually generates fivefold twinned nanowires of fcc metals. Dense single-crystal nanowires grow on a mechanically polished surface of micro-porous Ag structure, which is created from Ag micro-particles. The diameter and the length of the nanowires can be controlled simply by changing the temperature and the time of the heating during the nanowire growth in air. Unique growth mechanism is described in detail, based on stress-induced migration accelerated by the micro-porous structure where the origin of Ag nanowires growth is incubated. Transmission electron microscopy analysis on the single crystal nanowires is also presented. This simple method offered an alternative preparation for metallic nanowires, especially with the single crystal structure in numerous applications.

  11. Electric field generation of Skyrmion-like structures in a nematic liquid crystal.

    PubMed

    Cattaneo, Laura; Kos, Žiga; Savoini, Matteo; Kouwer, Paul; Rowan, Alan; Ravnik, Miha; Muševič, Igor; Rasing, Theo

    2016-01-21

    Skyrmions are particle-like topological objects that are increasingly drawing attention in condensed matter physics, where they are connected to inversion symmetry breaking and chirality. Here we report the generation of stable Skyrmion-like structures in a thin nematic liquid crystal film on chemically patterned patchy surfaces. Using the interplay of material elasticity and surface boundary conditions, we use a strong electric field to quench the nematic liquid crystal from a fully aligned phase to vortex-like nematic liquid crystal structures, centered on patterned patches, which carry two different sorts of topological defects. Numerical calculations reveal that these are Skyrmion-like structures, seeded from the surface boojum topological defects and swirling towards the second confining surface. These observations, supported by numerical methods, demonstrate the possibility to generate, manipulate and study Skyrmion-like objects in nematic liquid crystals on patterned surfaces. PMID:26549212

  12. Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes.

    PubMed

    Rödström, Karin E J; Lindkvist-Petersson, Karin

    2016-01-01

    Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination. PMID:26676036

  13. Dynamics of ordered colloidal particle monolayers at nematic liquid crystal interfaces.

    PubMed

    Wei, Wei-Shao; Gharbi, Mohamed Amine; Lohr, Matthew A; Still, Tim; Gratale, Matthew D; Lubensky, T C; Stebe, Kathleen J; Yodh, A G

    2016-05-25

    We prepare two-dimensional crystalline packings of colloidal particles on surfaces of the nematic liquid crystal (NLC) 5CB, and we investigate the diffusion and vibrational phonon modes of these particles using video microscopy. Short-time particle diffusion at the air-NLC interface is well described by a Stokes-Einstein model with viscosity similar to that of 5CB. Crystal phonon modes, measured by particle displacement covariance techniques, are demonstrated to depend on the elastic constants of 5CB through interparticle forces produced by LC defects that extend from the interface into the underlying bulk material. The displacement correlations permit characterization of transverse and longitudinal sound velocities of the crystal packings, as well as the particle interactions produced by the LC defects. All behaviors are studied in the nematic phase as a function of increasing temperature up to the nematic-isotropic transition. PMID:27109759

  14. Monodispersepoly[BMA-co-(COPS-I)] Particles by Soap-Free Emulsion Copolymerization and Its Optical Properties as Photonic Crystals.

    PubMed

    Lee, Ki Chang; Choo, Hun Seung

    2015-10-01

    In order to study the surfactant-free emulsion copolymerization of benzyl methacrylate (BMA) with sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I) and the resulting optical properties, a series of experiments was carried out at various reaction conditions such as the changes of BMA concentration, COPS-I concentration, BMA concentration under a fixed COPS-I amount, initiator and divinyl benzene (DVB) concentration. All the latices showed highly monodispersed spherical particles in the size range of 144~435 nm and the respective shiny structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. The increase of number of particles led to the increased rate of polymerization and zeta-potential of the latices, on the other hand, to the decreased molecular weight. Refractive indices and the reflectivity increased with COPS-I concentration, on the other hand, and decreased with DVB concentration. Especially, refractive indices of the resulting poly[BMA-co-(COPS-I)] colloidal photonic crystals showed much higher values of 1.65~2.21 than that of polystyrene, due to the formation of core-shell shaped morphology. Monodisperse and high refractive index of poly[BMA-co-(COPS-I)] particles prepared in this work could be used for the study in photonic crystals and electrophoretic display. PMID:26726393

  15. Undergraduates Improve upon Published Crystal Structure in Class Assignment

    ERIC Educational Resources Information Center

    Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

    2014-01-01

    Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

  16. A facile method for the structure control of TiO2 particles at low temperature

    NASA Astrophysics Data System (ADS)

    Li, Zhaoqing; Zhu, Yun; Wang, Lianwen; Wang, Jiatai; Guo, Qian; Li, Jiangong

    2015-11-01

    Crystalline and amorphous TiO2 particles have important potential applications in photocatalysis, structural ceramics, solar batteries and nanoglasses. Hence controlling the structure of TiO2 particles is of practical importance. Crystalline TiO2 particles are usually prepared by calcination of their amorphous precursor. Here a facile method was developed to control the structure of TiO2 particles at a low temperature. TiO2 particles were prepared by sol-gel method; and it was found that during the washing process, the TiO2 particles washed with water are crystalline whereas the TiO2 particles washed with ethanol are amorphous. Further analyses indicate that ethanol washing may introduce an organic cover layer on the TiO2 particles which hinders the crystallization of amorphous TiO2 particles. Therefore, the structure of TiO2 particles, amorphous or crystalline (anatase), can be controlled just by changing the washing medium, water or ethanol. This method seems a common method for controlling the (amorphous or crystalline) structure of metal oxides and hydroxides and was verified in the preparation of ZrO2, FeO(OH), and Al(OH)3 particles.

  17. Use of Pom Pons to Illustrate Cubic Crystal Structures.

    ERIC Educational Resources Information Center

    Cady, Susan G.

    1997-01-01

    Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

  18. Orientational defects near colloidal particles in a nematic liquid crystal.

    PubMed

    Feng, James J; Zhou, Chixing

    2004-01-01

    We study the interaction between a surface-anchoring colloidal particle and a liquid-crystalline host, and in particular the formation of orientational defects near the particle. A mean-field theory based on the nonlocal Marrucci-Greco nematic potential is used to represent molecular interactions in an inhomogeneous orientational field. An evolution equation for the molecular configuration tensor is solved numerically whose steady state minimizes the total free energy of the system. With strong homeotropic anchoring on the particle surface, three types of solutions may appear depending on initial conditions and particle size: Saturn rings, satellite point defects, and polar rings. The Saturn ring remains stable on micrometer-sized particles, contrary to previous calculations but consistent with experiments. A phase diagram is constructed for the three regimes. Based on the free energy, the most stable state is the Saturn ring for smaller particles and the satellite defect for larger ones. PMID:14651897

  19. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Kocak, F.

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal-photodiode assemblies.

  20. Fabricating large two-dimensional single colloidal crystals by doping with active particles.

    PubMed

    van der Meer, B; Filion, L; Dijkstra, M

    2016-04-14

    Using simulations we explore the behaviour of two-dimensional colloidal (poly)crystals doped with active particles. We show that these active dopants can provide an elegant new route to removing grain boundaries in polycrystals. Specifically, we show that active dopants both generate and are attracted to defects, such as vacancies and interstitials, which leads to clustering of dopants at grain boundaries. The active particles both broaden and enhance the mobility of the grain boundaries, causing rapid coarsening of the crystal domains. The remaining defects recrystallize upon turning off the activity of the dopants, resulting in a large-scale single-domain crystal. PMID:26936131

  1. Circular permutation as a tool to reduce surface entropy triggers crystallization of the signal recognition particle receptor beta subunit.

    PubMed

    Schwartz, Thomas U; Walczak, Rudolf; Blobel, Günter

    2004-10-01

    The production of diffraction-quality crystals remains a difficult obstacle on the road to high-resolution structural characterization of proteins. This is primarily a result of the empirical nature of the process. Although crystallization is not predictable, factors inhibiting it are well established. First, crystal formation is always entropically unfavorable. Reducing the entropic cost of crystallizing a given protein is thus desirable. It is common practice to map boundaries and remove unstructured regions surrounding the folded protein domain. However, a problem arises when flexible regions are not at the boundaries but within a domain. Such regions cannot be deleted without adding new restraints to the domain. We encountered this problem during an attempt to crystallize the beta subunit of the eukaryotic signal recognition particle (SRbeta), bearing a long and flexible internal loop. Native SRbeta did not crystallize. However, after circularly permuting the protein by connecting the spatially close N and C termini with a short heptapeptide linker GGGSGGG and removing 26 highly flexible loop residues within the domain, we obtained diffraction-quality crystals. This protein-engineering method is simple and should be applicable to other proteins, especially because N and C termini of protein domains are often close in space. The success of this method profits from prior knowledge of the domain fold, which is becoming increasingly common in today's postgenomic era. PMID:15340174

  2. Phase transitions of aqueous atmospheric particles: Crystallization of ammonium salts promoted by oxide mineral constituents

    NASA Astrophysics Data System (ADS)

    Han, Jeong-Ho

    2001-09-01

    Knowledge of the hygroscopic response of aerosols is a fundamental factor necessary for the accurate quantitative modeling of visibility degradation, global warming, PM-10 health issues, cloud microphysics, and the oxidizing capacity of the troposphere. At the present time, however, our current understanding of phase transitions is insufficient to develop accurate quantitative models. The discrepancy between current atmospheric models and field measurements originates mainly from a lack of understanding of the efflorescence of real atmospheric particles. While there have been many studies on the homogeneous nucleation of the soluble organic, inorganic, or multi-component materials, many recent in situ field measurements with single-particle mass spectrometry reveal that the individual particles in the troposphere are primarily composed of more than one component. One of the common mixed component particle types contains both water- soluble and insoluble components. Through atmospheric processes, the soluble component can be expected to form a coating around the insoluble constituents. This type of atmospheric particles is very important because the insoluble constituent can play a role as a template for the crystallization of the soluble components by heterogeneous nucleation. In the atmosphere, the most prevalent insoluble constituents are mineral dusts, which have their origin from Saharan and Gobbi deserts. The existence of these coated particles has been supported by several field measurements as well as model studies. Therefore, it becomes imperative to simulate more realistic atmospheric particles for more exact (or realistic) understanding the phase transition of the ambient aerosol particles in the real world. In this context, a series of studies has been completed to solve the aforementioned problems in the phase transition study and to better understand the heterogeneous nucleation of these internally mixed particles. An in-line tube furnace has been

  3. Crystallographic structure of the T=1 particle of brome mosaic virus.

    PubMed

    Larson, Steven B; Lucas, Robert W; McPherson, Alexander

    2005-02-25

    T=1 icosahedral particles of amino terminally truncated brome mosaic virus (BMV) protein were created by treatment of the wild-type T=3 virus with 1M CaCl2 and crystallized from sodium malonate. Diffraction data were collected from frozen crystals to beyond 2.9 A resolution and the structure determined by molecular replacement and phase extension. The particles are composed of pentameric capsomeres from the wild-type virions which have reoriented with respect to the original particle pentameric axes by rotations of 37 degrees , and formed tenuous interactions with one another, principally through conformationally altered C-terminal polypeptides. Otherwise, the pentamers are virtually superimposable upon those of the original T=3 BMV particles. The T=1 particles, in the crystals, are not perfect icosahedra, but deviate slightly from exact symmetry, possibly due to packing interactions. This suggests that the T=1 particles are deformable, which is consistent with the loose arrangement of pentamers and latticework of holes that penetrate the surface. Atomic force microscopy showed that the T=3 to T=1 transition could occur by shedding of hexameric capsomeres and restructuring of remaining pentamers accompanied by direct condensation. Knowledge of the structures of the BMV wild-type and T=1 particles now permit us to propose a tentative model for that process. A comparison of the BMV T=1 particles was made with the reassembled T=1 particles produced from the coat protein of trypsin treated alfalfa mosaic virus (AlMV), another bromovirus. There is little resemblance between the two particles. The BMV particle, with a maximum diameter of 195 A, is made from distinctive pentameric capsomeres with large holes along the 3-fold axis, while the AlMV particle, of approximate maximum diameter 220 A, has subunits closely packed around the 3-fold axis, large holes along the 5-fold axis, and few contacts within pentamers. In both particles crucial linkages are made about

  4. Crystal structure of tolyl­fluanid

    PubMed Central

    Cho, Seonghwa; Kim, Jineun; Kang, Gihaeng; Kim, Tae Ho

    2014-01-01

    The title compound, C10H13Cl2FN2O2S2 {systematic name: N-[(di­chloro­fluoro­methyl)­sulfanyl]-N′,N′-dimethyl-N-p-tolyl­sulfamide}, is a well known fungicide. The dihedral angle between the mean plane of the di­methyl­amino group and that of the benzene ring is 32.3 (3)°. One Cl atom and one F atom of the di­chloro­fluoro­methyl­thio group are disordered over two sets of sites with an occupancy ratio of 0.605 (9):0.395 (9). In the crystal structure, two C—H⋯Cl hydrogen bonds link adjacent mol­ecules, forming dimers with R 2 2(14) loops. C—H⋯O hydrogen bonds link pairs of dimers into chains along the b-axis direction. These chains are joined by an additional C—H⋯O contact, generating a sheet in the ab plane. PMID:25484703

  5. Crystal structure of Clostridium difficile toxin A.

    PubMed

    Chumbler, Nicole M; Rutherford, Stacey A; Zhang, Zhifen; Farrow, Melissa A; Lisher, John P; Farquhar, Erik; Giedroc, David P; Spiller, Benjamin W; Melnyk, Roman A; Lacy, D Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon(1,2). The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host(3,4). The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  6. Microstructure and Crystal Structure in TAGS Compositions

    SciTech Connect

    Thompson, A. J.; Sharp, J; Rawn, Claudia J

    2009-01-01

    GeTe, a small bandgap semiconductor that has native p-type defects due to Ge vacancies, is an important constituent in the thermoelectric material known as TAGS. TAGS is an acronym for alloys of GeTe with AgSbTe{sub 2}, and compositions are normally designated as TAGS-x, where x is the fraction of GeTe. TAGS-85 is the most important with regard to applications, and there is also commercial interest in TAGS-80. The crystal structure of GeTe{sub 1+{delta}} has a composition-dependent phase transformation at a temperature ranging from 430 C ({delta} = 0) to {approx}400 C ({delta} = 0.02). The high-temperature form is cubic. The low-temperature form is rhombohedral for {delta} < 0.01, as is the case for good thermoelectric performance. Addition of AgSbTe{sub 2} shifts the phase transformation to lower temperatures, and one of the goals of this work is a systematic study of the dependence of transformation temperature on the parameter x. We present results on phase transformations and associated instabilities in TAGS compositions in the range of 70 at.% to 85 at.% GeTe.

  7. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27512603

  8. Two-Dimensional Crystallization of P22 Virus-Like Particles.

    PubMed

    Yoshimura, Hideyuki; Edwards, Ethan; Uchida, Masaki; McCoy, Kimberly; Roychoudhury, Raj; Schwarz, Benjamin; Patterson, Dustin; Douglas, Trevor

    2016-07-01

    Virus-like particles (VLPs) are well established platforms for constructing functional biomimetic materials. The VLP from the bacteriophage P22 can be used as a nanocontainer to sequester active enzymes, at high concentration, within its cavity through a process of directed self-assembly. Construction of ordered 2D assemblies of these catalytic VLPs can be envisioned as a functional membrane. To achieve this, it is important to establish methods to fabricate densely packed monolayers of VLPs. Highly ordered assemblies of P22 can also be utilized as a two-dimensional (2D) crystal for electron crystallography to get precise structural information on the VLP. Here we report 2D crystallization of different P22 morphologies: P22 procapsid (PC), enzyme encapsulated PC (β-glycosidase and enhanced green fluorescent protein), empty shell (PC without scaffold proteins, ES), the expanded form of P22 (EX), and enzyme encapsulated EX (NADH oxidase). The 2D crystals of P22 VLPs were formed on a positively charged lipid monolayer at the water-air interface with a subphase containing 1% trehalose. A P22 solution, injected underneath the lipid monolayer, floated to the surface because of the density difference between the subphase and protein solution. The lipid monolayer, with adsorbed P22, was transferred to a holey carbon grid and was examined by electron microscopy. 2D crystals were obtained from a subphase containing 100 mM NaCl, 10 mM MES (pH 5.0), and 1% trehalose. The diffraction spots from the transferred film extended to the sixth order in negatively stained samples and the 10th order in cryo-electron microscopy samples. PMID:27125277

  9. Fabrication of large binary colloidal crystals with a NaCl structure

    PubMed Central

    Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.

    2009-01-01

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259

  10. Spectroscopic, thermal and structural studies on manganous malate crystals

    SciTech Connect

    Thomas, J. Lincy, A. Mahalakshmi, V.; Saban, K. V.

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.