Science.gov

Sample records for crystal violet dye

  1. Spectral characteristics and nonlinear studies of crystal violet dye

    NASA Astrophysics Data System (ADS)

    Sukumaran, V. Sindhu; Ramalingam, A.

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  2. Characterization of a PDLC mixed with crystal violet dye

    NASA Astrophysics Data System (ADS)

    Villa-Manríquez, José Fabián; Ortiz-Gutiérrez, Mauricio; Pérez-Cortés, Mario; Ibarra-Torres, Juan Carlos; Olivares-Pérez, Arturo; Ordoñez-Padilla, Manuel Jorge

    2012-03-01

    We show the optical characterization of a Polymer Dispersed Liquid Crystal which was made mixing Norland Optical Adhesive No. 65®, nematic liquid crystal and crystal violet dye, deposited between two glass substrates with indium tin oxide (ITO) as electrodes. In this device, we recorded low frequency (104 lines/mm) holographic gratings made with the interference of two beams from an Ar laser at 515 nm in emission line. We measured the diffraction efficiency of the gratings obtaining 2% when the grating was read with a beam from a He-Ne laser at 612 nm.

  3. Interliposomal transfer of crystal violet dye from DPPC liposomes to magnetoliposomes

    NASA Astrophysics Data System (ADS)

    Konerack, Martina; Kop?ansk, Peter; Sosa, Pavol; Bage?ov, Jaroslava; Timko, Milan

    2005-05-01

    Magnetoliposomes offer new challenges in the field of modern biotechnology and biomedicine. To investigate the important mechanism of interliposomal transfer of encapsulated substances, we investigated in the present work magnetoliposomes and liposomes containing the dye crystal violet. Our study of transmembrane transport showed that the dye transfer from DPPC liposomes to magnetoliposomes was temperature dependent.

  4. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    PubMed

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. PMID:20381962

  5. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.

  6. Photocatalytic studies of crystal violet dye using mn doped and PVP capped ZnO nanoparticles.

    PubMed

    Mittal, Manish; Sharma, Manoj; Pandey, O P

    2014-04-01

    Mn (0.5%, 1%, 1.5% and 2%) doped and undoped ZnO nanoparticles (NPs) capped with PVP (1.0%) were successfully synthesized via co-precipitation approach using zinc acetate, sodium hydroxide and manganese acetate as precursors. Structural analysis was performed by XRD confirming phase purity and crystalline wurtzite structure. TEM results show average particle size 15-20 nm and 22-25 nm for Mn (1%) and Mn (2%) doped ZnO NPs respectively. Manganese (Mn) doping has led to reduction in band gap which facilitate the absorption of radiation in visible region. The Photocatalytic activity of undoped and Mn (0.5%,1%,1.5% and 2%) doped NPs was analyzed via degradation of crystal violet (CV) dye. The crystal violet decomposition rate of undoped and Mn doped NPs were studied under UV-visible region. It is observed from degradation studies that the doping has a pronounced effect on the photocatalytic activity of ZnO NPs. Kinetic studies shows that photo degradation of CV follow a pseudo first-order kinetic law. Experiments for reusability of Mn (1%) doped with PVP (1%) capped ZnO were also performed to determine the stability of as prepared sample. It shows an increase in catalytic activity of NPs by small amount when exposed to UV irradiation for 3 h. Photoluminescence and UV-Visible absorption spectroscopy studies were also performed for studying the effect of UV irradiation on the surface of ZnO NPs. PMID:24734685

  7. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program.

  8. Radiochromic leuco dye micelle hydrogels: II. Low diffusion rate leuco crystal violet gel

    NASA Astrophysics Data System (ADS)

    Babic, Steven; Battista, Jerry; Jordan, Kevin

    2009-11-01

    Radiation-sensitive hydrogels offer the capability of verifying intricate dose distributions in three-dimensional (3D) space conveniently in a single measurement with sub-millimetre spatial resolution. In this study, a new radiochromic hydrogel called leuco crystal violet (LCV) micelle gel is introduced. Upon irradiation, LCV converts to crystal violet (CV+). Triton X-100 micelles are used to provide the required hybrid-interfacing environment to dissolve LCV. The diffusion coefficient of the LCV gel has been measured to be 0.036 ± 0.001 mm2 h-1, which is a factor of 25 times less than the standard radiochromic ferrous xylenol-orange (FX) gel; LCV gels without Triton X-100 micelles have a diffusion coefficient of 0.33 ± 0.02 mm2 h-1. The LCV gel formulation contains: 1 mM LCV, 25 mM trichloroacetic acid, 4 mM Triton X-100 and 4% w/w gelatin. The primary innovative feature of this 3D hydrogel is that the radiation-induced CV+ dye is more soluble in the Triton X-100 micelles than in the surrounding water which consequently leads to more stable post-irradiation dose distributions. A dosimetric characterization revealed that the dose response is reproducible to within 1% over three separate batches, independent of energy, dose rate and dose fractionation but is affected by the temperature (~4% per °C) during irradiation. LCV micelle gels scanned optically with a yellow light source are a promising system for 3D dose verification. They may prove to be, especially, useful for scanning large volume dosimeters (i.e. 20 cm) since they are easily manufactured, transparent and near colourless prior to irradiation.

  9. Study of Surface Enhanced Raman Scattering of Alizarin and Crystal Violet Dyes

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Swarnkar, Raj Kumar

    2010-06-01

    Surface enhanced Raman scattering (SERS) plays a vital role in analytical chemistry to characterize ultra trace quantity of organic compounds and biological samples. Two mechanisms have been considered to explain the SERS effect. The main contribution arises from a huge enhancement of the local electromagnetic field close to surface roughness of the metal structures, due to the excitation of a localized surface plasmon, while a further enhancement can be observed for molecules adsorbed onto specific sites when resonant charge transfer occurs. SERS signals have been observed from adsorbates on many metallic surfaces like Ag, Au, Ni, Cu etc. Additionally, metal oxide nanoparticles also show SERS signals It has now been established that SERS of analyte material is highly dependent on the type of substrate involved. Many types of nanostructures like nanofilms, nanorods, nanospheres etc. show highly efficient SERS signals. In particular, there are two routes available for the synthesis of these nanomaterials: the chemical route and the physical route. Chemical route involves many types of reducing agents and capping agents which can interfere in origin and measurement of these signals. The physical route avoids these anomalies and therefore it is suitable for the study of SERS phenomenon. Pulsed laser ablation in liquid medium is an excellent top down technique to produce colloidal solution of nanoparticles with desired shape and size having surface free from chemical contamination, which is essential requirement for surface application of nanoparticles. The present work deals with the study of SERS of Crystal violet dye and Alizarin group dye on Cu@ Cu_2O and Ag colloidal nanoparticles synthesized by pulsed laser ablation. M. Fleishchmann, P. J. Hendra, and A. J. McQuillian Chem. Phys. Lett., 26, 163, 1974. U. Wenning, B. Pettinger, and H. Wetzel Chem. Phys. Lett., 70, 49, 1980. S. C. Singh, R. K. Swarnkar, P. Ankit, M. C. Chattopadhyaya, and R. Gopal AIP Conf. Proc., 1075, 67, 2008. S. C. Singh, R. K. Swarnkar, and R. Gopal J. Nanosci.. Nanotech., 9, 5367, 2009. R. K. Swarnkar, S. C. Singh, and R. Gopal AIP Conf. Proc., 1147, 205, 2009.

  10. Multiresidue method for the triphenylmethane dyes in fish: Malachite green, crystal (gentian) violet, and brilliant green.

    PubMed

    Andersen, Wendy C; Turnipseed, Sherri B; Karbiwnyk, Christine M; Lee, Rebecca H; Clark, Susan B; Rowe, W Douglas; Madson, Mark R; Miller, Keith E

    2009-04-01

    Liquid chromatographic methods are presented for the quantitative and confirmatory determination of crystal violet (CV; also known as gentian violet), leucocrystal violet (LCV), brilliant green (BG), and leucobrilliant green (LBG) in catfish. LCV and LBG were oxidized to the chromic CV and BG by reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, and residues were measured as the combined CV+/-LCV and BG+/-LBG. These methods are extensions of published methods for malachite green (MG) analysis to allow simultaneous determination of MG, CV, and BG. Residues were extracted from muscle with ammonium acetate buffer and acetonitrile, and extracts cleaned up using dichloromethane partitioning and solid-phase extraction. Extracts were analyzed by liquid chromatography with visible detection (LC-VIS). The method was validated for catfish fortified with LCV over the range 0.25-10 ngg(-1) and CV at 2 ngg(-1). Average recoveries were 90.6% (+/-8.1% R.S.D., n=45) for LCV and 84.4% (+/-4.2% R.S.D., n=6) for CV. The average recovery for samples fortified with BG or LBG over the range 0.5-10 ngg(-1) was 67.2% (+/-14.8% R.S.D., n=31). CV and BG were confirmed in fish extracts by ion trap LC-mass spectrometry (LC-MS(n)) with no discharge-atmospheric pressure chemical ionization. Average LC-MS(n) recoveries were 96.5, 96.6, and 70.2% for samples fortified with CV, LCV, and BG or LBG. The limits of detection for CV, BG, and MG were in the range of 0.07-0.24 ngg(-1) (ppb) for the two different instrumental methods. This methodology was applied to the analysis of catfish treated with CV and BG. PMID:19286041

  11. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.

    PubMed

    Porkodi, K; Vasanth Kumar, K

    2007-05-01

    Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression: PMID:17069970

  12. Energy transfer in solid-state dye lasers based on methyl methacrylate co-doped with sulforhodamine B and crystal violet

    NASA Astrophysics Data System (ADS)

    Geethu Mani, R. G.; Basheer, Ahamed M.

    2013-11-01

    Laser action in methyl methacrylate (MMA) co-doped with sulforhodamine B and crystal violet dyes was investigated. The dye mixture was incorporated into a solid polymeric matrix and was pumped by a 532-nm Nd:YAG laser. Distributed feedback dye laser (DFDL) action was induced in the dye mixture using a prism arrangement both in the donor and acceptor regions by an energy transfer mechanism. Theoretically, the characteristics of acceptor and donor DFDLs, and the dependence of their pulse widths and output powers on acceptordonor concentrations and pump power, were studied. Experimentally, the output energy of DFDL was measured at the emission peaks of donor and acceptor dyes for different pump powers and different acceptordonor concentrations. Tuning of the output wavelength was achieved by varying the period of the gain modulation of the laser medium. The laser wavelength showed continuous tunability from 563 nm to 648 nm.

  13. Determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS: first action 2012.25.

    PubMed

    Hurtaud-Pessel, Dominique; Coudor, Pierrick; Verdon, Eric; Dowell, Dawn

    2013-01-01

    During the AOAC Annual Meeting held from September 30 to October 3, 2012 in Las Vegas, NV, the Expert Review Panel (ERP) on Veterinary Drug Residues reviewed data for the method for determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS, previously published in the Journal of Chromatography A 1218, 1632-1645 (2006). The method data were reviewed and compared to the standard method performance requirements (SMPRs) found in SMPR 2009.001, published in AOAC's Official Methods of Analysis, 19th Ed. (2012). The ERP determined that the data were acceptable, and the method was approved AOAC Official First Action. The method uses acetonitrile to isolate the analyte from the matrix. Then determination is conducted by LCIMS/MS with positive electrospray ionization. Accuracy ranged from 100.1 to 109.8% for samples fortified at levels of 0.5, 0.75, 1.0, and 2.0 microg/kg. Precision ranged from 2.0 to 10.3% RSD for the intraday samples and 1.9 to 10.6% for the interday samples analyzed over 3 days. The described method is designed to accurately operate in the analytical range from 0.5 to 2 microg/kg, where the minimum required performance limit for laboratories has been fixed in the European Union at 2.0 microg/kg for these banned substances and their metabolites. Upper levels of concentrations (1-100 microg/kg) can be analyzed depending on the different optional calibrations used. PMID:24282960

  14. Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-?-alumina

    NASA Astrophysics Data System (ADS)

    Zolgharnein, Javad; Bagtash, Maryam; Shariatmanesh, Tahere

    2015-02-01

    The present study deals with the simultaneous removal of Brilliant Green (BG) and Crystal Violet (CV) by surfactant-modified alumina. The utilization of alumina nanoparticles with an anionic surfactant (sodium dodecyl sulfate (SDS)) as a novel and efficient adsorbent is successfully carried out to remove two cationic dyes from aqueous solutions in binary batch systems. A first-order derivative spectrophotometric method is developed for the simultaneous determination of BG and CV in binary solutions. The linear concentration range and limits of detection for the simultaneous determination of BG and CV were found to be: 1-20, 1-15 mg/L, 0.3 and 0.5 mg/L, respectively. The influence of various parameters, such as contact time, initial concentration of dyes and sorbent mass on the dye adsorption is investigated. A response surface methodology achieved through performing the Box-Behnken design is utilized to optimize the removal of dyes by surfactant-modified nanoparticle alumina through a batch adsorption process. The proposed quadratic model resulting from the Box-Behnken design approach fitted very well with the experimental data. The optimal conditions for dye removal were contact time t = 50 min, sorbent dose = 0.036 g, CBG (Initial BG concentration) = 215 mg/L and CCV (Initial CV concentration) = 170 mg/L. Furthermore, FT-IR analysis, the isotherms and kinetics of adsorption were also explored.

  15. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    NASA Astrophysics Data System (ADS)

    Confortin, Daria; Neevel, Han; Brustolon, Marina; Franco, Lorenzo; Kettelarij, Albert J.; Williams, Renè M.; van Bommel, Maarten R.

    2010-06-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.

  16. IncP-1? plasmids of Comamonas sp. and Delftia sp. strains isolated from a wastewater treatment plant mediate resistance to and decolorization of the triphenylmethane dye crystal violet.

    PubMed

    Stolze, Yvonne; Eikmeyer, Felix; Wibberg, Daniel; Brandis, Gerrit; Karsten, Christina; Krahn, Irene; Schneiker-Bekel, Susanne; Viehver, Prisca; Barsch, Aiko; Keck, Matthias; Top, Eva M; Niehaus, Karsten; Schlter, Andreas

    2012-08-01

    The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1? plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1? backbone modules that are highly similar to those of previously sequenced IncP-1? plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes. PMID:22653947

  17. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium.

    PubMed Central

    Bumpus, J A; Brock, B J

    1988-01-01

    Biodegradation of crystal violet (N,N,N',N',N'',N''-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N''-pentamethylpararosaniline, N,N,N',N''-tetramethylpararosaniline, and N,N',N''-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet. PMID:3389809

  18. Rosin resin with crystal violet tint

    NASA Astrophysics Data System (ADS)

    Luna-Moreno, D.; Olivares-Prez, A.; Berriel-Valdos, L. R.; Osorio-Alarcn, F.

    1998-11-01

    In the present work, the behaviour of rosin resin with crystal violet tint is shown. This mixture shows good photosensitivity to red light (He-Ne line), and has a high enough resolution for holographic applications. This resin is an excellent basis for this tint, and presents good handling and seems to be a worthy material to make holographic elements

  19. Analysis of incurred crystal violet in Atlantic salmon (Salmo salar L.): comparison between the analysis of crystal violet as an individual parent and leucocrystal violet and as total crystal violet after oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone.

    PubMed

    Chan, D; Tarbin, J A; Stubbings, G; Kay, J; Sharman, M

    2012-01-01

    Due to on-going concern about the occurrence of triphenylmethane dye residues in fish destined for human consumption, a depletion study of crystal violet in salmon was carried out. Atlantic salmon less than 12 months old were exposed to crystal violet in fresh water at 15C and subsequently sampled at 1, 7, 14, 28, 63 and 91 days after exposure. The salmon were then analysed by two analytical methods. In the first method, 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) was used to oxidise leucocrystal violet to its parent form. Total parent crystal violet was then analysed by LC-MS/MS. In the second method, crystal violet and leucocrystal violet were analysed individually by LC-MS/MS without oxidation. Both methods gave comparable results for total crystal violet concentrations, with a correlation of r(2)=0.69. Statistical treatment for 88 incurred salmon samples showed no significant difference between the two sets of results with t=1.68 and t(crit)=1.99. Up to 98% of crystal violet was metabolised to its leuco form in the salmon after 1 day of exposure and could be detected at significant concentrations (approximately 20 g kg(-1)) 91 days after exposure. The depletion data also suggest that crystal violet has a half-life of approximately 15-16 days in salmon. PMID:22043964

  20. Biodegradation of crystal violet by the white rot fungus phanerochaete chrysosporium

    SciTech Connect

    Bumpus, J.A.; Brock, B.J.

    1988-01-01

    Biodegradation of crystal violet (N,N,N',N',N',N''- hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N'' -pentamethylpararosaniline, N,N,N',N'' -tetramethylpararosaniline, and N,N',N'' -trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus.

  1. SERS and DFT study of crystal violet

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Hu, Fang; Zhang, Ling-Yan; Jiang, Xiao-Hong; Lu, Lu-De; Wang, Xin

    2013-03-01

    Six silver colloids were prepared by the reduction of silver nitrate with different amounts of sodium citrate. The obtained silver colloids were characterised by UV-vis spectroscopy, transmission electron microscopy and zeta potential measurements. The surface-enhanced Raman scattering (SERS) activities of these silver colloids were investigated using crystal violet (CV) as a SERS probe. Based on density functional theory (DFT) calculations at the level of B3LYP, the Raman spectra and the optimised geometry of CV were analysed. The results show that the sodium citrate content strongly influences the sizes, zeta potentials and SERS activities of the silver colloids. As the sodium citrate content increases in the preparation of silver colloids, the mean diameters of the silver nanoparticles decrease. The most intense SERS of CV on the silver colloids is obtained when 3 mL of 1% sodium citrate is used. CV has D3 point group symmetry, and the Raman vibrational modes belong to A1 or E irreducible representations. The non-totally symmetric vibrational modes E are selectively enhanced in the SERS of CV through a Herzberg-Teller vibronic coupling mechanism, indicating a considerable charge transfer between CV and the silver nanoparticles.

  2. Detection of low concentrations of malachite green and crystal violet in water.

    PubMed

    Safarík, I; Safariková, M

    2002-01-01

    A simple procedure for the detection of low concentrations of malachite green and crystal violet in water is presented. The dyes were preconcentrated from 1,000 ml of water samples with magnetic solid phase extraction using magnetic affinity adsorbent (magnetite with immobilized copper phthalocyanine dye). Due to the magnetic properties of the adsorbent the preconcentration process can also be performed in water samples containing suspended solids. After elution of the captured dyes, their presence in eluates was detected spectrophotometrically. Concentrations of both dyes in the range 0.5-1.0 microgl(-1) of water could be reproducibly detected. The dyes can be detected not only in potable water, but also in river ones. PMID:11766795

  3. TOXICITY OF AN ANTHRAQUINONE VIOLET DYE MIXTURE FOLLOWING INHALATION EXPOSURE, INTRACHEAL INSTILLATION, OR GAVAGE

    EPA Science Inventory

    Anthraquinone dyes in a variety of functions from drug formulations fabric colorative to area markings as might be used of the military. he effects of a prototype violet dye mixture (VDM) consisting of: Disperse Red 11 (DR11) 1,4-diamino-2-methoxy-anthraquinone and Disperse Blue ...

  4. Dichroism and birefringence of natural violet diamond crystals

    SciTech Connect

    Konstantinova, A. F. Titkov, S. V.; Imangazieva, K. B.; Evdishchenko, E. A.; Sergeev, A. M.; Zudin, N. G.; Orekhova, V. P.

    2006-05-15

    Investigation of the optical properties of natural violet diamonds from the Yakutian kimberlites is performed. A red shift of the absorption edge is revealed in the absorption spectra of these crystals. This shift is indicative of the presence of a high concentration of nitrogen in the diamonds studied. Along with the strong band at 0.550 {mu}m, weaker bands at 0.390, 0.456 and 0.496 {mu}m are revealed. It is shown that violet diamond crystals have birefringence and dichroism of about 10{sup -5} and 10{sup -6}, respectively. When a light beam propagates perpendicularly to colored lamellas, the dichroism is much larger and the birefringence is smaller than in the case where the beam direction is parallel to lamellas.

  5. Staining of keratin and keratohyalin with the reactive dye levafix red violet E-2BL.

    PubMed

    Waldrop, F S; Puchtler, H; Akamatsu, Y

    1976-07-01

    Demonstration of keratin in Zenker-fixed skin and in tissues stored in formalin can be difficult because such material is unsuitable for histochemical studies. A reactive dye, Levafix red violet E-2BL, proved useful for demonstration of keratohyalin and some types of keratin. Formalin-, Zenker- and methacarn-fixed sections were pretreated with alkaline alcohol, stained one hour at 60 C in an aqueous solution containing 0.25% Levafix red violet E-2BL plus 0.25% NaCl, rinsed in buffer solution pH 9, dehydrated and mounted. Keratohyalin granules and stratum corneum were colored red violet; hair and tonofibrils remained unstained. In sections prestained with Mayer's acid hemalum, keratohyalin was dark blue. Sulfonated monoazo dyes without reactive groups colored no tissue structures under the conditions of this technic; apparently, Levafix red violet E-2BL is bound via its reactive group. Polarization microscopic studies suggest binding of Levafix red violet E-2BL by an amorphous matrix of keratin. Correlations with chemical data indicate that the staining patterns parallel the distribution of proteins formed in the stratum granulosum. PMID:60802

  6. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    PubMed

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution. PMID:26866669

  7. Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sagnik; Chowdhury, Shamik; Saha, Papita Das

    2012-06-01

    Biosorption performance of pineapple leaf powder (PLP) for removal of crystal violet (CV) from its aqueous solutions was investigated. To this end, the influence of operational parameters such as pH, biosorbent dose, initial dye concentration and temperature were studied employing a batch experimental setup. The biosorption process followed the Langmuir isotherm model with high correlation coefficients ( R 2 > 0.99) at different temperatures. The maximum monolayer biosorption capacity was found to be 78.22 mg g-1 at 293 K. The kinetic data conformed to the pseudo-second-order kinetic model. The activation energy of the system was calculated as 58.96 kJ mol- 1 , indicating chemisorption nature of the ongoing biosorption process. A thermodynamic study showed spontaneous and exothermic nature of the biosorption process. Owing to its low cost and high dye uptake capacity, PLP has potential for application as biosorbent for removal of CV from aqueous solutions.

  8. Isolation and Applications of Prostate Side Population Cells Based on Dye Cycle Violet Efflux

    PubMed Central

    Gangavarapu, Kalyan J.; Huss, Wendy J.

    2011-01-01

    This unit describes methods for the digestion of human prostate clinical specimens, dye cycle violet (DCV) staining procedure for the identification, isolation, and quantitation of radiolabeled dihydrotestosterone (DHT) retention of side population cells. The principle of the side population assay is based on differential efflux of DCV, a cell membrane permeable fluorescent dye, by cells with high ATP binding cassette (ABC) transporter activity. Cells with high ABC transporter activity efflux DCV and fall in the lower left quadrant of a flow cytograph are designated as side population cells. This unit emphasizes tissue digestion, DCV staining, flow settings for sorting side population cells and quantitation of radiolabeled DHT retention. PMID:21400686

  9. Fast analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in fish tissue based on a modified QuEChERS procedure.

    PubMed

    Zhu, Chengyun; Wei, Jie; Dong, Xuefang; Guo, Zhimou; Liu, Mingyang; Liang, Xinmiao

    2014-04-01

    Triphenylmethane dyes malachite green (MG) and crystal violet (CV) have been used as antimicrobial, antiparasitic and antiseptic agents in aquaculture. However, MG and CV, as well as their metabolites leucomalachite green (LMG) and leucocrystal violet (LCV) are potential mutagens and carcinogens. Thus, the efficient determination of dye residues is of great concern. Considering the complexity of the aquatic products, the sample pretreatment is significant for decreasing matrix interference and improving detection sensitivity. In this study, a simple and rapid QuEChERS procedure was developed and combined with HPLC analysis for the simultaneous determination of the four dyes in fish tissue. An XCharge C18 column was applied in HPLC analysis to achieve good peak shape and selectivity. The pretreatment method involved the extraction of dyes from fish tissue and further clean-up with dispersive solid phase extraction (d-SPE) material. The extraction volume, extraction time as well as d-SPE materials were systematically optimized. The results indicated that reversed-phase/strong anion exchange (C18SAX) adsorbent in the d-SPE procedure could effectively improve the recovery compared with conventional C18 or C18 incorporated with primary secondary amine (PSA) material. Under optimized conditions, good linearity was achieved in the concentration range of 0.5-100 mg/L with R2 greater than 0. 998. The recoveries were 73%-91% and the precisions were 0.66%-5.41%. The results demonstrated the feasibility and efficiency of QuEChERS procedure incorporated with HPLC for dye monitoring. PMID:25069333

  10. Post-column reaction for simultaneous analysis of chromatic and leuco forms of malachite green and crystal violet by high-performance liquid chromatography with photometric detection

    USGS Publications Warehouse

    Allen, J.L.; Meinertz, J.R.

    1991-01-01

    The chromatic and leuco forms of malachite green and crystal violet were readily separated and detected by a sensitive and selective high-performance liquid chromatographic procedure. The chromatic and leuco forms of the dyes were separated within 11 min on a C18 column with a mobile phase of 0.05 M sodium acetate and 0.05 M acetic acid in water (19%) and methanol (81%). A reaction chamber, containing 10% PbO2 in Celite 545, was placed between the column and the spectrophotometric detector to oxidize the leuco forms of the dyes to their chromatic forms. Chromatic and leuco malachite green were quantified by their absorbance at 618 nm; and chromatic and leuco Crystal Violet by their absorbance at 588 nm. Detection limits for chromatic and leuco forms of both dyes ranged from 0.12 to 0.28 ng. A linear range of 1 to 100 ng was established for both forms of the dyes.

  11. BIODEGRADATION OF CRYSTAL VIOLET BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM

    EPA Science Inventory

    Biodegradation of crystal violet (N,N,N',N',N",N"-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,...

  12. Bordetella bronchiseptica phase variation induced by crystal violet.

    PubMed Central

    Ishikawa, H; Isayama, Y

    1986-01-01

    A method for effective induction of phase variation in Bordetella bronchiseptica by treatment with crystal violet (CV) is presented. When grown in CV-broth, phase I cells dissociated into three serial phases. Appearance of variant cells was observed simultaneously with the beginning of cell multiplication. The maximum effect of CV was obtained at a concentration of 8 micrograms/ml, when the proportion of variants in the population reached 100%. The main factors which affected phase variation were concentration of CV, culture age, and temperature of treatment. The phase variants obtained were phenotypically stable upon serial passages on Bordet-Gengou agar plates. By this treatment, no reversion of phase descendants to former phases was observed. Images PMID:3700613

  13. Adsorption of crystal violet with diatomite earth&carbon by a modification of hydrothermal carbonization process.

    PubMed

    Yanzhuo, Zhang; Jun, Li; Guanghui, Chen; Wei, Bian; Yun, Lu; Wenjing, Li; Zhaoming, Zheng; Xiaojie, Cheng

    2016-01-01

    The high colority and difficulty of decolorization are the most important tasks on printing and dyeing wastewater. This study investigates the ability of diatomite earth&carbon (DE&C) as an adsorbent to removal crystal violet (CV) from aqueous solutions. Fourier transform infrared spectroscopy results indicate the importance of functional groups during the adsorption of CV. The obtained N2 adsorption-desorption isotherm values accord with well IUPAC type II. Our calculations determined a surface area of 73.15 m(2) g(-1) for DE&C and an average pore diameter of 10.56 nm. Equilibrium data of the adsorption process fitted very well to the Langmuir model (R(2) > 0.99). The results of kinetics study showed that the pseudo-second-order model fitted to the experimental data well. The thermodynamic parameters were also evaluated. ΔH° <0, ΔS° > 0 and ΔG° < 0 demonstrated that the adsorption process was spontaneous and exothermic for dye. Furthermore the positive value of ΔS° reflected good affinity of the CV dye. PMID:27003089

  14. Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety.

    PubMed

    Mani, Sujata; Bharagava, Ram Naresh

    2016-01-01

    Crystal Violet (CV), a triphenylmethane dye, has been extensively used in human and veterinary medicine as a biological stain, as a textile dye in textile processing industries and also used to provide a deep violet color to paints and printing ink. CV is also used as a mutagenic and bacteriostatic agent in medical solutions and antimicrobial agent to prevent the fungal growth in poultry feed. Inspite of its many uses, CV has been reported as a recalcitrant dye molecule that persists in environment for a long period of time and pose toxic effects. It acts as a mitotic poison, potent carcinogen and a potent clastogene promoting tumor growth in some species of fish. Thus, CV is regarded as a biohazard substance. Although, there are several physico-chemical methods such as adsorption, coagulation and ion-pair extraction reported for the removal of CV, but these methods are insufficient for the complete removal of CV from industrial wastewaters and also produce large quantity of sludge containing secondary pollutants. However, biological methods are regarded as cost-effective and eco-friendly for the treatment of industrial wastewaters, but these methods also have certain limitations. Therefore, there is an urgent need to develop such eco-friendly and cost-effective biological treatment methods, which can effectively remove the dye from industrial wastewaters for the safety of environment, as well as human and animal health. PMID:26613989

  15. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

    NASA Astrophysics Data System (ADS)

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-09-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning.

  16. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

    PubMed Central

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-01-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101

  17. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix.

    PubMed

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-01-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101

  18. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet.

    PubMed

    Mahdavinia, Gholam Reza; Aghaie, Huriyeh; Sheykhloie, Hossein; Vardini, Mohammad Taghi; Etemadi, Hossein

    2013-10-15

    CarAlg/MMt nanocomposite hydrogels composed of kappa-carrageenan (Car) and sodium alginate (Alg) biopolymers were synthesized by incorporation of sodium montmorillonite (Na-MMt) nanoclay. Acrylamide (AAm), methylenebisacrylamide (MBA), and ammonium persulfate (APS) were used as monomer, crosslinker, and initiator, respectively. The structure and morphology of nanocomposites were characterized by XRD, SEM, and TEM techniques. The XRD results showed exfoliated MMt nanoclay and exfoliation of MMt was confirmed by TEM graph. The resulting nanocomposites were evaluated to remove cationic crystal violet (CV) dye from water. According to data, the adsorption capacity of nanocomposites was enhanced as the clay content was increased. The experimental data were analyzed according to both Langmuir and Freundlich models and experimental maximum adsorption capacity was obtained 88.8 mg g(-1). By studying the effect of pH on the dye adsorption capacity of nanocomposites, it was revealed that the adsorption capacity of nanocomposites was enhanced at acidic pHs as the Na-MMt nanoclay and kappa-carrageenan components were increased. PMID:23987355

  19. Catalytic Activity of Biomorphic ?-MoO3 in the Degradation of Methyl Violet Dye

    PubMed Central

    Diao, Zhenyu; Kwong, Fung-Luen; Li, Jia; Lian, Jiabiao; Lai, Kwing-To; Ng, Dickon H.L.

    2012-01-01

    Abstract A network of fibers comprising orthorhombic molybdenum trioxide (?-MoO3) crystals were synthesized using paper as template via a biomorphic approach. The template was completely removed by annealing the sample at 600C for 5?min. Monoclinic MoO3 was formed and consequently converted into orthorhombic ?-MoO3 after prolonged annealing. Three milligrams of the biomorphic ?-MoO3 could degrade up to 90% of a methyl violet aqueous solution with a concentration of 20?mg/L under normal visible light. The size of the ?-MoO3 grains and the porosity of the biomorphic sample affected catalytic performance. PMID:22969268

  20. Molecular Spectra and Optical Relaxation of Oxazine Dyes Nile Blue and Cresyl Violet.

    NASA Astrophysics Data System (ADS)

    Zhang, Yiping

    1995-01-01

    Using fluorescence-line-narrowing and hole-burning techniques I obtain molecular spectra of the oxazine dye nile blue at 5 K under a wide range of experimental conditions. These data are analyzed by constructing a single site molecular lineshape function and the corresponding 0-0 transition frequency distribution which, taken together, enable me to explain the various results. I also perform time-delayed-four-wave-mixing experiments (TDFWM) on nile blue and cresyl violet at 5 K using incoherent laser radiation. The response depends dramatically on the bandwidth and frequency of the radiation source. Fast (femtosecond) and slow (picosecond) processes, variable peak shifts, and type I and II quantum beats are observed in varying degrees according to the character of the laser excitation. I calculate the TDFWM response of nile blue on the basis of the single site lineshape function and the inhomogeneous distribution function with information from fluorescence-line-narrowing and hole-burning experiments and find that I can explain the wide range of behavior observed here. TDFWM experiments are also carried out on nile blue and cresyl violet at room temperature, using an intense incoherent laser. The response contains a modulated component which bears no relation to the dyes' energy level structures. I explain the observed modulation as a result of a destructive interference between induced high order polarizations. This modulation is a consequence of irradiating the sample at high intensities and, in contrast to modulation arising from quantum beats, disappears when the intensity of the laser excitation is reduced.

  1. Fixed-bed column studies on biosorption of crystal violet from aqueous solution by Citrullus lanatus rind and Cyperus rotundus

    NASA Astrophysics Data System (ADS)

    Bharathi, Kandaswamy Suyamboo; Ramesh, SriKrishna Perumal Thanga

    2013-12-01

    In this study, fixed-bed column experiments were performed to investigate the biosorption potential of two agricultural wastes, Citrullus lanatus rind and Cyperus rotundus to remove Crystal violet (CV) from aqueous solution. The experiments were conducted to study the effects of important parameters such as bed depth (10-30 cm), flow rate (10-20 mL min-1) and initial dye concentration (10-25 mg L-1). Different models like Bed Depth Service Time (BDST) model, Thomas model and Yoon-Nelson model were applied to the experimental sorption data. In the biosorption of Crystal violet by both the sorbents, the BDST model fitted well with the experimental data in the initial region of the breakthrough curve. Also, Yoon-Nelson model was found to show good agreement with the experimental kinetic results as compared to the Thomas model. The sorbents were found to be very potential, as it showed good sorption capacities of 46.68 and 54.24 mg g-1 for CV biosorption by Citrullus lanatus rind and Cyperus rotundus. Recovery of dye was made by eluting 1 N CH3COOH through the exhausted column in downward direction.

  2. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    PubMed Central

    Bheemaraddi, Mallikarjun C.; Shivannavar, Channappa T.; Gaddad, Subhashchandra M.

    2014-01-01

    A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100?mg/L) within 16?h, while maximally it could decolorize 800?mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.09.0 and 2540C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2. PMID:24883397

  3. Removal kinetics and mechanism for crystal violet uptake by surfactant-modified alumina.

    PubMed

    Adak, Asok; Pal, Anjali

    2006-01-01

    Sodium dodecyl sulfate (SDS), an anionic surfactant (AS) was used for the surface modification of neutral alumina. Micelle-like structures are formed on the surface of alumina, which was used for the removal of crystal violet (CV), a well-known cationic dye from aquatic environment. This process is called adsolubilization. The surfactant-modified alumina (SMA) was found to be very efficient showing >99% CV removal from a 200 ppm CV bearing solution with only 6 g/L of adsorbent dose. The kinetic studies showed that 60 minutes' shaking time was sufficient to achieve the equilibrium. The reaction kinetics data were analysed using four reaction kinetic models, viz., first-order reaction model, pseudo-first-order reaction model, second-order reaction model and pseudo-second-order reaction model, and it was found that the removal of CV followed the pseudo-second order reaction model. It was found that neither film diffusion nor pore diffusion was rate limiting for this process. Isotherm studies showed that Langmuir isotherm fitted more accurately compared to Freundlich isotherm. To test whether the removal of CV was possible from real water using SMA, the experiments were conducted using CV spiked distilled water and synthetic wastewater. It was interesting to note that the removal efficiency was better for wastewater as compared to that of distilled water. PMID:17018413

  4. Bacillus amyloliquefaciens biofilm as a novel biosorbent for the removal of crystal violet from solution.

    PubMed

    Sun, Pengfei; Hui, Cai; Wang, Sheng; Wan, Li; Zhang, Xin; Zhao, Yuhua

    2016-03-01

    Bacillus amyloliquefaciens biofilm shows promise for use in the control of soil-borne pathogens; however, it has never been used to treat dye-polluted wastewaters. Here, we propose the novel idea of using B. amyloliquefaciens biofilm for the adsorption of crystal violet (CV) from liquids. The relative contents of three main elements (C1s, O1s, and N1s) in the biofilm were 65.55%, 21.21%, and 13.24%, respectively. The results of Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy revealed that the biofilm contained β-type heteropolysaccharide and proteins. The ruggedness of the biofilm surface due to embedded bacterial cells suggested potential adsorption sites for CV molecules. The maximum capacity for CV adsorption was 582.41mg/g, which is the largest value reported to date for any CV adsorbent. Blueshift occurred in the FTIR spectrum of CV-loaded biofilm as compared to that of virgin biofilm, confirming a physical adsorption process. We found that CV adsorption by biofilm was complex and resulted from intraparticle diffusion as well as surface adsorption. Our data also suggested that the process is exothermal and spontaneous, with micropore diffusion as the rate-limiting step. These findings provide a basis for using B. amyloliquefaciens biofilm as an efficient adsorbent for treating CV-polluted wastewaters. PMID:26707697

  5. [Active carbon from Thalia dealbata residues: its preparation and adsorption performance to crystal violet].

    PubMed

    Chu, Shu-Yi; Yang, Min; Xiao, Ji-Bo; Zhang, Jun; Zhu, Yan-Ping; Yan, Xiang-Jun; Tian, Guang-Ming

    2013-06-01

    By using phosphoric acid as activation agent, active carbon was prepared from Thalia dealbata residues. The BET specific surface area of the active carbon was 1174.13 m2 x g(-1), micropore area was 426.99 m2 x g(-1), and average pore diameter was 3.23 nm. An investigation was made on the adsorption performances of the active carbon for crystal violet from aqueous solution under various conditions of pH, initial concentration of crystal violet, contact time, and contact temperature. It was shown that the adsorbed amount of crystal violet was less affected by solution pH, and the adsorption process could be divided into two stages, i. e., fast adsorption and slow adsorption, which followed the pseudo-second-order kinetics model. At the temperature 293, 303, and 313 K, the adsorption process was more accordance with Langmuir isotherm model, and the maximum adsorption capacity was 409.83, 425.53, and 438.59 mg x g(-1), respectively. In addition, the adsorption process was spontaneous and endothermic, and the randomness of crystal violet molecules increased. PMID:24066559

  6. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water.

    PubMed

    Masoumi, Arameh; Hemmati, Khadijeh; Ghaemy, Mousa

    2016-03-01

    In this work, preparation of adsorbent nanoparticles based on treated low-value agricultural by-product rice husk (TARH), and poly(methylmethacrylate-co-maleic anhydride), poly(MMA-co-MA), is reported for the removal of Pb(II) ion and Crystal violet dye from water. The prepared adsorbent was characterized by FT-IR, SEM, AFM, DLS, BET and Zeta potential. The metal ion adsorption capability was determined for rice husk (RH), TARH, crosslinked poly(MMA-co-MA) (CNR), and CNR@TARH nanoparticles. Different factors affecting the adsorption of Pb(II) such as pH, contact time, initial metal ion concentration and also temperature were studied to investigate adsorption isotherms, kinetics and thermodynamics. For the four tested adsorption isotherm models, the equilibrium sorption data for CNR@TARH nanoparticles obeyed the Langmuir isotherm equation with maximum sorption capacity of 93.45mgg(-1). The kinetic adsorption data fitted best the Lagergren pseudo-second order model. Regeneration of adsorbent was easily performed by adsorption/desorption experiments followed for 4 cycles. Finally, the ability of the nanoparticles to remove Crystal violet dye from aqueous solution was also investigated by varying the initial dye concentration, pH and immersion time and the adsorption mechanism followed the second-order kinetic model. PMID:26735725

  7. Modification of the photocatalytic activity of TiO2 by ?-Cyclodextrin in decoloration of ethyl violet dye

    PubMed Central

    Velusamy, Ponnusamy; Pitchaimuthu, Sakthivel; Rajalakshmi, Subramanian; Kannan, Nagarathinam

    2012-01-01

    The photocatalytic decoloration of an organic dye, ethyl violet (EV), has been studied in the presence of TiO2 and the addition of ?-Cyclodextrin (?-CD) with TiO2 (TiO2-?-CD) under UV-A light irradiation. The different operating parameters like initial concentration of dye, illumination time, pH and amount of catalyst used have also been investigated. The photocatalytic decoloration efficiency is more in the TiO2-?-CD/UV-A light system than TiO2/UV-A light system. The mineralization of EV has been confirmed by Chemical Oxygen Demand (COD) measurements. The complexation patterns have been confirmed with UVVisible and FT-IR spectral data and the interaction between TiO2 and ?-CD have been characterized by powder XRD analysis and UVVisible diffuse reflectance spectroscopy. PMID:25685468

  8. Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products.

    PubMed

    Palma-Goyes, Ricardo E; Guzmn-Duque, Fernando L; Peuela, Gustavo; Gonzlez, Ignacio; Nava, Jose L; Torres-Palma, Ricardo A

    2010-09-01

    This paper explores the applicability of electrochemical oxidation on a triphenylmethane dye compound model, hexamethylpararosaniline chloride (or crystal violet, CV), using BDD anodes. The effect of the important electrochemical parameters: current density (2.5-15 m A cm(-2)), dye concentration (33-600 mg L(-1)), sodium sulphate concentration (7.1-50.0 g L(-1)) and initial pH (3-11) on the efficiency of the electrochemical process was evaluated. The results indicated that while the current density was lower than the limiting current density, no side products (hydrogen peroxide, peroxodisulphate, ozone and chlorinated oxidizing compounds) were generated and the degradation, through OH radical attack, occurred with high efficiency. Analysis of intermediates using GC-MS investigation identified several products: N-methylaniline, N,N-dimethylaniline, 4-methyl-N,N-dimethylaniline, 4-methyl-N-methylaniline, 4-dimethylaminophenol, 4-dimethylaminobenzoic acid, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) diphenylmethane, 4-(4-dimethylaminophenyl)-N,N-dimethylaniline, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino) benzophenone. The presence of these aromatic structures showed that the main CV degradation pathway is related to the reaction of CV with the OH radical. Under optimal conditions, practically 100% of the initial substrate and COD were eliminated in approximately 35 min of electrolysis; indicating that the early CV by-products were completely degraded by the electrochemical system. PMID:20709357

  9. Investigating the interaction of crystal violet probe molecules on sodium dodecyl sulfate micelles with hyper-Rayleigh scattering.

    PubMed

    Revillod, Guillaume; Russier-Antoine, Isabelle; Benichou, Emmanuel; Jonin, Christian; Brevet, Pierre-Franois

    2005-03-24

    We report the use of the nonlinear optical technique of hyper-Rayleigh scattering to investigate the interaction of the cationic probe molecule crystal violet with micelles of sodium dodecyl sulfate. An absolute value of (847 +/- 80) x 10(-30) esu is measured at the fundamental wavelength of 870 nm for the molecular hyperpolarizability of crystal violet free in pure aqueous solutions. In aqueous solutions of sodium dodecyl sulfate, above and below the critical micelle concentration, the measured hyperpolarizability of crystal violet is weaker than in the solution free of sodium dodecyl sulfate. From the comparison with linear optical photoabsorption spectroscopy data, this difference is attributed to electrostatic interactions between the cationic crystal violet molecules and the negatively charged sodium dodecyl sulfate surfactant molecules present in excess. Polarization resolved hyper-Rayleigh scattering measurements are then performed to show that, below and above the critical micelle concentration, crystal violet molecules also undergo symmetry changes upon interaction with sodium dodecyl sulfate. Above the critical micelle concentration, the minimum fraction of micelles interacting with at least one CV molecule is estimated. For instance, for a crystal violet aqueous concentration of 150 microM, this fraction is larger than 7%. PMID:16863205

  10. Burkholderia vietnamiensis C09V as the functional biomaterial used to remove crystal violet and Cu(II).

    PubMed

    Zhou, Fengfei; Cheng, Ying; Gan, Li; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2014-07-01

    Burkholderia vietnamiensis C09V (B.V. C09V) was used to remove both crystal violet (CV) and Cu(II) because dye effluents often contain dyes and metal ions. Inhibiting the strain?s growth through the biosorption of Cu(II) on B.V. C09V and promoting its growth by using CV as a carbon source led to the degradation of CV (30mg/L). It fell to 36.9 percent and the amount of Cu(II) (50mg/L) removed rose to 34.9 percent in the presence of both CV and Cu(II). This outcome is comparable to the single presence of CV and Cu(II). EDS analysis showed that Cu(II) was adsorbed onto the strain (the atomic percentage of Cu(II) was 1.9 percent), while kinetic studies indicated that firstly, the decolorization of CV fitted well to the pseudo first-order degradation kinetic model and secondly, the biosorption of Cu(II) fitted well to the pseudo second-order kinetic model. The degradation rate constants of CV were stable in the 0.101-0.0068/h range and R(2) was both higher than 0.981 when Cu(II) concentrations were present. Furthermore, the biosorption capacity of Cu(II) ranged from 38.8 to 20.3mg/g at the CV concentration of 30mg/L (both R(2)>0.96). This suggests that the strain has the potential to degrade CV and facilitate the biosorption of Cu(II) in dye effluent. PMID:24780226

  11. Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions

    PubMed Central

    2012-01-01

    In this study, degradation of Basic Violet 16 (BV16) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz) plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%), US (<6%) and US/H2O2(<15%) processes were negligible for this kind of dye. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. PMID:23369268

  12. Microwave treated Salvadora oleoides as an eco-friendly biosorbent for the removal of toxic methyl violet dye from aqueous solution-A green approach.

    PubMed

    Din, Muhammad Imran; Hussain, Zaib; Munir, Hifza; Naz, Amber; Intisar, Azeem; Makshoof, M Nouman; Mirza, M Latif

    2016-05-01

    In the present study, microwave treated Salvadora oleoides (MW-SO) has been investigated as a potential biosorbent for the removal of toxic methyl violet dye. A batch adsorption method was experimented for biosorptive removal of toxic methyl violet dye from the aqueous solution. The effect of various operating variables, viz., adsorbent dosage, pH, contact time and temperature on the removal of the dye was studied and it was found that nearly 99% removal of the dye was possible under optimum conditions. Kinetic study revealed that a pseudo-second-order mechanism was predominant and the overall process of the dye adsorption involved more than one step. Hence, in order to investigate the rate determining step, intra-particle diffusion model was applied. Adsorption equilibrium study was made by analyzing Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) adsorption isotherm models and the biosorption data was found to be best represented by the Langmuir model. The biosorption efficiency of MW-SO was also compared with unmodified material, Salvadora oleoides (SO). It was found that the sorption capacity (qmax) increased from 58.5 mg/g to 219.7 mg/g on MW treatment. Determination of thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) confirmed the spontaneous, endothermic and feasible nature of the adsorption process. The preparation of MW-SO did not require any additional chemical treatment and a high percentage removal of methyl violet dye was obtained in much lesser time. Thus, it is in agreement with the principles of green chemistry. The results of the present research work suggest that MW-SO can be used as an environmentally friendly and economical alternative biosorbent for the removal of methyl violet dye from aqueous solutions. PMID:26588059

  13. Decolorization and degradation of azo dye--Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil.

    PubMed

    Jain, Kunal; Shah, Varun; Chapla, Digantkumar; Madamwar, Datta

    2012-04-30

    Azo dyes an important group of synthetic compounds are recalcitrant xenobiotics. Conventional technologies are unsuccessful to efficiently remove these compounds from contaminated environment. However, consorted metabolic functioning of innate microbial communities is a promising approach for bioremediation of polluted environment. Bacterial mixed cultures SB4 proficient in complete decolorization of azo dye - Reactive Violet 5R was developed through culture enrichment technique. Bacterial community composition based on 16S rRNA gene analysis revealed that mixed cultures SB4 composed of six bacterial strains namely Bacillus sp. V1DMK, Lysinibacillus sp. V3DMK, Bacillus sp. V5DMK, Bacillus sp. V7DMK, Ochrobacterium sp. V10DMK, Bacillus sp. V12DMK. SB4 grew well in minimal medium containing low amount of glucose and yeast extract (YE) (1 g/L) and decolorized 200mg/L of RV5 within 18 h under static condition. Mixed cultures SB4 decolorized wide range of azo dyes and maximum rate of decolorization was observed at 37 C and pH 7.0. Decolorization efficiency was found to be unaltered under high RV5 and salt concentration where 1500 mg/L of RV5 was decolorized in presence of 20 g/L NaCl. We propose the asymmetric cleavage of RV5 and Fourier transformed infrared (FTIR), NMR and gas chromatography-mass spectrometry (GC-MS) confirmed the formation of four intermediatory compounds 1-diazo-2-naphthol, 4-hydroxybenzenesulphonic acid, 2-naphthol and benzenesulphonic acid. PMID:22370200

  14. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways.

    PubMed

    Li, Yong; Yang, Shaogui; Sun, Cheng; Wang, Lianhong; Wang, Qingeng

    2016-01-01

    In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions. PMID:26497275

  15. Nanoimprinted polymer photonic crystal dye lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, Mads B.; Smith, Cameron L. C.; Buss, Thomas; Xiao, Sanshui; Mortensen, Niels A.; Kristensen, Anders

    2010-05-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular lattice is described by two orthogonal unit vectors of length a and b, defining the ?P and ?X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle (?) depending on the lattice constant b (355 nm). The lasers are fabricated in parallel on a 10 cm diameter wafer by combined nanoimprint and photolithography (CNP). CNP relies on a UV transparent quartz nanoimprint stamp with an integrated metal shadow mask. In the CNP process the photonic crystal is formed by mechanical deformation (imprinting) while the larger features are defined by UV exposure through the combined mask/mold.

  16. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    PubMed

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black DyeTiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dyeTiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dyeTiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes. PMID:26599130

  17. Microbial Manganese Oxidation in Saltmarsh Surface Sediments Using a Leuco Crystal Violet Manganese Oxide Detection Technique

    NASA Astrophysics Data System (ADS)

    Spratt, Henry G.; Siekmann, Ellen C.; Hodson, Robert E.

    1994-01-01

    Microbial manganese (Mn) oxide production in surface sediments of a Georgia saltmarsh was directly measured using an assay involving the oxidation of 4,4',4?-methylidynetris (N,N-dimethylaniline), leuco crystal violet (LCV), by Mn oxides to produce crystal violet. The assay exhibits high specificity for Mn oxides without interference by Mn(II) and is sufficiently sensitive to determine rates of Mn oxidation in surface sediment or saltmarsh creek water suspensions. Sample salinity affects crystal violet absorbance in the 0-25 salinity range and must be corrected for in Mn oxide determinations for estuarine samples of variable salinity. Other oxidants found to oxidize LCV slowly included Cl(I), Cr(III), I(V), Fe(III), and Mn(III), although the sensitivity of the assay for Mn(IV) oxides was found to be seven times greater than for Mn(III), and at least 100 times greater than for any of the other oxidants. Rates of abiotic Mn oxide production in sediment suspensions treated with either sodium azide or formalin, or autoclaved, were much slower than rates determined for untreated sediments. Sodium azide (77 mM) inhibited Mn oxide production in these sediment suspensions to rates between 5 and 10% of the rates of Mn oxidation determined for unamended suspensions. Manganese oxidation was highly temperature dependent, with maximal rates on a dry weight basis (89 nmol mg dwt -1 h -1), occurring at 60C, and negligible activity at 100 and 0C. Rates were also dependent on sample pH, with maximal rates at pH 67, decreasing to near 0 as the pH was lowered to approximately 30. For Mn(II) concentrations ranging from 9 to 91 ?M, rates of Mn oxide production were independent of Mn(II) concentration, while Mn oxide production was inhibited at concentrations greater than 91 ?M (e.g. by 25-40% at 450 ?M). Rates of microbial Mn oxide production in surface sediment/saltmarsh creek water suspensions incubated under natural conditions of temperature, pH, and Mn(II) concentration ranged from 049 to 27 nmol mg dwt -1 h -1 and were nearly four times higher in surface sediments from creek banks than in sediments from the high marsh. The microorganisms associated with saltmarsh creek water particulate matter oxidized Mn(II) at rates intermediate to the values obtained for the two types of surface sediments, averaging 098 nmol mg dwt -1 h -1.

  18. Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions.

    PubMed

    Chen, C-H; Chang, C-F; Liu, S-M

    2010-05-15

    This work demonstrated that Shewanella decolorationis NTOU1 decolorized 200 mg l(-1) of crystal violet, malachite green, or methyl violet B within 2-11h under anaerobic conditions at 35 degrees C. The initial color removal rate of malachite green was highest, while that of methyl violet was lowest. GC/MS analyses of the intermediate compounds produced during and after decolorization of malachite green and methyl violet B suggested that biodegradation of these dyes involved reduction to leuco form, N-demethylation, and reductive splitting of the triphenyl rings. The number of N-methylated groups of these dyes might have influenced decolorization rates and the reductive splitting of the triphenyl rings of these dyes. Cytotoxicity and antimicrobial test data showed that malachite green and methyl violet B solution (100 mg l(-1)) were toxic. Toxicity of the dyes decreased after their decolorization, but further incubation resulted in increased toxicity. PMID:20060225

  19. Optical properties of organic dyes in nanoporous zeolite crystals

    NASA Astrophysics Data System (ADS)

    Li, Irene L.; Tang, Z. K.; Xiao, X. D.; Yang, C. L.; Ge, W. K.

    2003-09-01

    Organic dye molecules of styryl 7 were introduced into the channels of AlPO4-5 single crystals. Polarized absorption and photoluminescence spectra of the dye molecules were investigated. The polarization angle dependence of the absorption and photoluminescence intensity indicates that the dye molecules are highly oriented in the channels. The hexagonal-shaped AlPO4-5 single crystal serves as a natural microcavity for lasing action of the dye molecules. The microcavity modes of the lasing action were also demonstrated.

  20. SERS active Ag encapsulated Fe@SiO2 nanorods in electromagnetic wave absorption and crystal violet detection.

    PubMed

    Senapati, Samarpita; Srivastava, Suneel Kumar; Singh, Shiv Brat; Kulkarni, Ajit R

    2014-11-01

    The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous. FESEM images established the growth of iron nanorods from the annealed product and also formation of silica and silver coating on its surface. The appearance of the characteristics bands in FTIR confirmed the presence of SiO2 on the Fe surface. Magnetic measurements at room temperature indicated the ferromagnetic behavior of as prepared iron nanorods, Fe@SiO2 and silver encapsulated Fe@SiO2 nanostructures. All the samples exhibited strong microwave absorption property in the high frequency range (10GHz), though it is superior for Ag encapsulated Fe@SiO2 (-14.7dB) compared with Fe@SiO2 (-9.7dB) nanostructures of the same thickness. The synthesized Ag encapsulated Fe@SiO2 nanostructure also exhibited the SERS phenomena, which is useful in the detection of the carcinogenic dye crystal violet (CV) upto the concentration of 10(-10)M. All these findings clearly demonstrate that the Ag encapsulated Fe@SiO2 nanostructure could efficiently be used in the environmental remediation. PMID:25262081

  1. Confirmatory analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography-tandem mass spectrometry.

    PubMed

    Dowling, Geraldine; Mulder, Patrick P J; Duffy, Conor; Regan, Liam; Smyth, Malcolm R

    2007-03-14

    A method has been developed to analyse for malachite green (MG), leucomalachite green (LMG), crystal violet (CV) and leucocrystal violet (LCV) residues in salmon. Salmon samples were extracted with acetonitrile:McIIIvain pH 3 buffer (90:10 v/v), sample extracts were purified on a Bakerbond strong cation exchange solid phase extraction cartridge. Aliquots of the extracts were analysed by LC-MS/MS. The method was validated in salmon, according to the criteria defined in Commission Decision 2002/657/EC. The decision limit (CCalpha) was 0.17, 0.15, 0.35 and 0.17 microg kg(-1), respectively, for MG, LMG, CV and LCV and for the detection capability (CCbeta) values of 0.30, 0.35, 0.80 and 0.32 microg kg(-1), respectively, were obtained. Fortifying salmon samples (n=6) in three separate assays, show the accuracy to be between 77 and 113% for MG, LMG, LCV and CV. The precision of the method, expressed as RSD values for the within-laboratory reproducibility, for MG, LMG and LCV at the three levels of fortification (1, 1.5 and 2.0 microg kg(-1)), was less than 13%. For CV a more variable precision was obtained, with RSD values ranging between 20 and 25%. PMID:17386742

  2. Use of hydrogen peroxide treatment and crystal violet agar plates for selective recovery of bacteriophages from natural environments

    SciTech Connect

    Asghari, A.; Farrah, S.R.; Bitton, G. )

    1992-04-01

    Hydrogen peroxide inactivated bacteriophages and bacteria at different rates. A concentration of 0.1% hydrogen peroxide reduced the numbers of several bacteria by an average of 94% but caused an average of 25% inactivation in the numbers of bacteriophages tested. Treating natural samples with hydrogen peroxide selectively reduced the indigenous bacterial flora and permitted better visualization of plaques of lawns of Escherichia coli C-3000. In some cases indigenous gram-positive bacteria were relatively resistant to hydrogen peroxide, but their growth could be limited by incorporation of crystal violet into the bottom agar used for plaque assays. The use of hydrogen peroxide treatment and crystal violet-containing plates permitted recovery of more phages from natural samples than did other procedures, such as chloroform pretreatment or the use of selective plating agar such as EC medium.

  3. Leuco-crystal-violet micelle gel dosimeters: II. Recipe optimization and testing

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Alexander, K. M.; Olding, T.; Schreiner, L. J.; McAuley, K. B.

    2015-06-01

    In this study, recipe optimization of Leuco Crystal Violet (LCV) micelle gels made with the surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) and the chemical sensitizer 2,2,2-trichloroethanol (TCE) was aided by a two-level three-factor designed experiment. The optimized recipe contains 0.75 mM LCV, 17.0 mM CTAB, 120 mM TCE, 25.0 mM tri-chloro acetic acid (TCAA), 4 wt% gelatin and ~96 wt% water. Dose sensitivity of the optimized gel is 1.5 times higher than that of Jordan’s standard LCV micelle gel. Spatial integrity of the 3D dose distribution information in 1L phantoms filled with this recipe is maintained for  >120 d. Unfortunately, phantoms made using the optimized recipe showed dose-rate dependence (14% difference in optical attenuation at the peak dose using electron beam irradiations at 100 and 400 MU min-1). Further testing suggests that the surfactant CTAB is the cause of this dose rate behaviour.

  4. Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers

    NASA Astrophysics Data System (ADS)

    Nasr, A. T.; Alexander, K.; Schreiner, L. J.; McAuley, K. B.

    2015-06-01

    Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation.

  5. Determination of malachite green and crystal violet in processed fish products.

    PubMed

    Lee, Jun Bae; Kim, Hee Yun; Jang, Young Mi; Song, Ji Young; Woo, Sung Min; Park, Mi Sun; Lee, Hyun Sook; Lee, Soon Kyu; Kim, Meehye

    2010-07-01

    This paper presents analysis of malachite green (MG) and crystal violet (CV) residues in processed fish products. Samples were homogenized and extracted with ammonium acetate buffer and acetonitrile. The extracted residues were partitioned into dichloromethane, in situ oxidized to chromic forms with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, and cleaned up on neutral alumina and propylsulfonic acid cation-exchange solid-phase extraction (SPE) cartridges. MG and CV were determined at 618 and 588 nm using HPLC with a visible detector (LC-VIS) and confirmed by LC-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The recoveries were as follows: MG (74.8-83.8%), LMG (80.0-88.4%), CV (68.6-73.9%), and LCV (85.5-90.0%). The method modified in this study has been evaluated by application in-house to a survey of 253 processed fish products. As a result of monitoring, MG and CV were positive in one shrimp and one eel sample, respectively. Our results showed that regular monitoring of these antibiotic residues is recommended for protection of public health. PMID:20544455

  6. Leuco-crystal-violet micelle gel dosimeters: II. Recipe optimization and testing.

    PubMed

    Nasr, A T; Alexander, K M; Olding, T; Schreiner, L J; McAuley, K B

    2015-06-21

    In this study, recipe optimization of Leuco Crystal Violet (LCV) micelle gels made with the surfactant Cetyl Trimethyl Ammonium Bromide (CTAB) and the chemical sensitizer 2,2,2-trichloroethanol (TCE) was aided by a two-level three-factor designed experiment. The optimized recipe contains 0.75 mM LCV, 17.0 mM CTAB, 120 mM TCE, 25.0 mM tri-chloro acetic acid (TCAA), 4 wt% gelatin and ~96 wt% water. Dose sensitivity of the optimized gel is 1.5 times higher than that of Jordan's standard LCV micelle gel. Spatial integrity of the 3D dose distribution information in 1L phantoms filled with this recipe is maintained for >120 d. Unfortunately, phantoms made using the optimized recipe showed dose-rate dependence (14% difference in optical attenuation at the peak dose using electron beam irradiations at 100 and 400 MU min(-1)). Further testing suggests that the surfactant CTAB is the cause of this dose rate behaviour. PMID:26020119

  7. Leuco-crystal-violet micelle gel dosimeters: I. Influence of recipe components and potential sensitizers.

    PubMed

    Nasr, A T; Alexander, K; Schreiner, L J; McAuley, K B

    2015-06-21

    Radiochromic leuco crystal violet (LCV) micelle gel dosimeters are promising three-dimensional radiation dosimeters because of their spatial stability and suitability for optical readout. The effects of surfactant type and surfactant concentration on dose sensitivity of LCV micelle gels are tested, demonstrating that dose sensitivity and initial colour of the gel increases with increasing Triton x-100 (Tx100) concentration. Using Cetyl Trimethyl Ammonium Bromide (CTAB) in place of Tx100 produces gels that are nearly colourless prior to irradiation, but reduces the dose sensitivity. The separate effects of Tri-chloro acetic acid concentration and pH are investigated, revealing that controlling the pH near 3.6 is crucial for achieving high dose sensitivity. The sensitizing effect of chlorinated species on dose sensitivity is tested using 2,2,2-trichloroethanol (TCE), chloroform, and 1,1,1-trichloro-2-methyl-2-propanol hemihydrate. TCE gives the largest improvement in dose sensitivity and is recommended for use in micelle gel dosimeters because it is less volatile and safer to use than chloroform. Preliminary experiments on a new gel containing CTAB as the surfactant and TCE show that this new gel gives a dose sensitivity that is 24% higher than that of previous LCV micelle gels and is nearly colourless prior to irradiation. PMID:26020840

  8. Synthesis and Characterisation of Silica-Modified Titania for Photocatalytic Decolouration of Crystal Violet.

    PubMed

    Shahid, Mohammad; El Saliby, Ibrahim; Tijing, Leonard D; McDonagh, Andrew; Park, Se Min; Lee, Kwang Young; Shon, Ho Kyong; Kim, Jong-Ho

    2015-07-01

    In the past few years, silica-modified titania has drawn increasing attention due to their special properties making them ideal candidates for a wide range of applications. In this study, we report a novel method for the synthesis of silica-modified titania by a sol-gel method using sodium silicate solution (1 M). The hydrolysis and condensation reactions of titanium dioxide (TiO2, Degussa Aeroxide P25) in sodium silicate solution proceeded with citric acid (3 M) as a catalyst. The orbital shaking method was followed for the removal of sodium salt formed during the sol-gel process. Solvent exchange was carried out using methanol and hexane. Finally, chemical modification of the gel was conducted using trimethylchlorosilane followed by ambient pressure drying. The obtained silica-modified titania was characterised for nanostructural analysis using scanning electron microscopy and transmission electron microscopy. The nitrogen adsorption-desorption measurements were employed to investigate the BET surface area, pore structure and pore volume of specimens. Thermal gravimetric analysis showed exothermic peaks at temperature range of 90-190 C representing the oxidation of organic groups from--Si-R network. The silica-modified titania showed high photocatalytic activity and an easy recovery using crystal violet as model water pollutant. PMID:26373134

  9. Validation of an LC-MS/MS method for malachite green (MG), leucomalachite green (LMG), crystal violet (CV) and leucocrystal violet (LCV) residues in fish and shrimp.

    PubMed

    Ascari, Jociani; Dracz, Sérgio; Santos, Flávio A; Lima, J A; Diniz, Maria Helena G; Vargas, Eugênia A

    2012-01-01

    A quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous analyses of malachite green (MG), crystal violet (CV) and its major metabolites, leucomalachite green (LMG) and leucocrystal violet (LCV) residues in fish and shrimp samples has been validated. Fish and shrimp samples were extracted with citrate buffer/acetonitrile, and the extracts were purified on strong cation-exchange (SCX) solid-phase extraction (SPE) cartridge. After conversion of LMG into MG using a post column oxidation reactor containing lead (IV) oxide (PbO(2)), the effluents were analysed. Residues were analysed using positive-ion electrospray ionisation (ESI). Identification and quantification of analytes were based on the ion transitions monitored by multiple reaction monitoring (MRM). Validation of the method was carried out in accordance with the Decision 2002/657/EC, which establishes criteria and procedures for the validation of methods. The following parameters were determined: decision limit (CCα), detection capability (CCβ), linearity, accuracy, precision, selectivity, specificity and matrix effect. The decision limits (CCα) for MG, LMG, CV and LCV were 0.164, 0.161, 0.248 and 0.860 µg kg(-1). The respective detection capabilities (CCβ) were 0.222, 0.218, 0.355 and 1.162 µg kg(-1). Typical recoveries (intermediate precision) in shrimp, for MG, CV, LMG and LCV for 2.0 µg kg(-1) level fortified samples using the optimised procedure were in the range 69%, 97%, 80.3% and 71.8%, respectively. The findings demonstrate the suitability of the method to detect simultaneously MG, CV and its metabolite (LMG and LCV) in fish and shrimp. PMID:22325002

  10. Quenching of fluorescence by crystal violet and its use to differentiate between surface-bound and internalized bacteria

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Lim, Y. C.; Kishen, A.

    2008-06-01

    Phagocytosis is a complex process involving attachment, ingestion and intracellular processing of bacteria by phagocytes. A great difficulty in the evaluation of this process is to differentiate between attachment of the particles to the cell surface and internalization of the particles by the cells. Various techniques have been used to differentiate internalized and surface-attached bacteria in cultured cells, but only a few permit differentiations between surface-bound and internalized bacteria. In this study the quenching of fluorescence by crystal violet on acridine orange stained bacterial biofilm and planktonic bacterial cells is used to differentiate between surface-bound and internalized bacteria within macrophages. Method: One week old Enterococcus faecalis biofilm was grown on perspex and glass substrates in All-Culture medium (nutrient-rich condition) and phosphate buffered saline (nutrient-deprived condition). As model systems, human monocytic (THP-1) and histiocytic (U937) cell lines were used. These cell lines were incubated with the biofilm bacteria for 4 hrs in CO II incubator at 37 °C. The cells and bacteria were stained with acridine orange and quenched with crystal violet to distinguish between surface-bound and internalized bacteria. Results: The presence of green-fluorescing internalized bacteria was detected within the macrophages under the planktonic, nutrient-rich and nutrient-deprived biofilm conditions. All infecting bacteria take up acridine orange and fluoresced green, crystal violet quenched the fluorescence of extra-cellular adhering bacteria so that only fluorescent intracellular bacteria would be visible under fluorescent light microscopy.

  11. Investigation of the effect of magnetic particles on the Crystal Violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid).

    PubMed

    Gholami, Mostafa; Vardini, Mohammad Taghi; Mahdavinia, Gholam Reza

    2016-01-20

    A novel nanocomposite hydrogel prepared by incorporating Fe3O4 magnetic nanoparticles into the κ-carrageenan-g-poly (methacrylic acid) with in situ polymerization and was characterized by FT-IR, XRD, SEM, TEM and VSM. Synthesized nanocomposite was used to adsorb Crystal Violet (CV) (cationic dye) in aqueous solution in a batch system. The research studies showed that the adsorption of CV can be impressed as a function of contact time, initial concentration of CV, pH and molar ratio of κ-carrageenan to poly(methacrylic acid). CV adsorption tests disclosed that it only takes 15 min to reach the equilibrium and adsorption capacity for this dye was 28.24 mg g(-1). Langmuir isotherm for equilibrium adsorption data was fitted well and the pseudo-second-order model can describe the adsorption kinetics. Thermodynamic parameters of ΔG°, ΔH° and ΔS° showed the endothermic nature of adsorption and a spontaneous process. PMID:26572412

  12. Effects of sonochemical parameters and inorganic ions during the sonochemical degradation of crystal violet in water.

    PubMed

    Guzman-Duque, Fernando; Pétrier, Christian; Pulgarin, Cesar; Peñuela, Gustavo; Torres-Palma, Ricardo A

    2011-01-01

    This work deals with the ultrasonic degradation (800 kHz) of crystal violet (CV) under different experimental conditions. The effects of saturating gas (argon, carbon dioxide and air), CV concentration (2.45-1225 μmol L(-1)), pH (3-9) and power (20-80 W) were evaluated. The best performances were obtained at 80 W with argon as a saturating gas. The pH had no significant effect. The influence of several water matrices containing anions (chloride, sulphate and bicarbonate) and cations (Fe(2+)) on the sonolytic degradation of CV was also investigated. Significant differences were not observed with the presence of chloride and sulphate. However, at relatively low pollutant concentration (2.45 μmol L(-1)) bicarbonate showed a particular effect: a high bicarbonate concentration (350 mmol L(-1)) produced a detrimental effect, while a low bicarbonate concentration (3 mmol L(-1)) increased the efficiency of the process. The presence of Fe(2+) (1 mmol L(-1)) also increased the CV (49 μmol L(-1)) degradation by 32% after 180 min. Analyses of intermediates by GC-MS led to the identification of several sonochemical by-products: N,N-dimethylaminobenzene, 4-(N,N-dimethylamino)-4'-(N',N'-dimethylamino)benzophenone, and N,N,N',N'-tetramethyl-4,4'-diaminodiphenylmethane. The presence of these aromatic structures showed that the main ultrasonic CV degradation pathway is linked to the reaction with *OH radicals. At the end of the treatment, these early products were converted into biodegradable organic by-products which could be easily treated in a subsequent biological treatment. PMID:20797896

  13. The Method of Ion Mobility TOF Mass Spectrometry for Rapid Identification of Triphenylmethane Ball Point Pen Dyes

    NASA Astrophysics Data System (ADS)

    Poteshin, S. S.; Chernyshev, D. M.; Sysoev, Alexey A.; Sysoev, Alexander A.

    In this work ion mobility time-of-flight mass spectrometry is preliminarily studied as a method for identification of the composition for triphenylmethane ball point pen dyes by their traces on paper. Components were identified as Basic violet 2, Methyl violet 6B, Methyl violet 2B, Crystal violet. All the compounds were shown to form excellent individual mass selective mobility peaks. Short time of analysis allow one to consider IMS/TOFMS as a perspective alternative for traditional methods of identification.

  14. Simultaneous determination of malachite green, brilliant green and crystal violet in grass carp tissues by a broad-specificity indirect competitive enzyme-linked immunosorbent assay.

    PubMed

    Shen, Yu-Dong; Deng, Xing-Fei; Xu, Zhen-Lin; Wang, Yu; Lei, Hong-Tao; Wang, Hong; Yang, Jin-Yi; Xiao, Zhi-Li; Sun, Yuan-Ming

    2011-11-30

    An immunizing hapten (4-(carboxymethoxy)phenyl)bis(4-(diethylamino)phenyl)methylium for brilliant green (BG), a triphenylmethane dye with a potential illegal use in fish feeding, was synthesized and used to produce polyclonal antibody (PcAb) against BG. Unexpectedly, the obtained PcAb showed high cross-reactivity (CR) to malachite green (MG) and crystal violet (CV) in an indirect competitive enzyme-linked immunosorbent assay (icELISA). After screening against three heterologous coating antigens, the icELISA exhibited good sensitivity and uniform response to BG (IC(50) of 1.98 ng mL(-1) and CR of 100%), MG (IC(50) of 1.61 ng mL(-1) and CR of 105%) and CV (IC(50) of 1.34 ng mL(-1) and CR of 142%) when using (4-(carboxymethoxy)phenyl)bis(4-(dimethylamino)phenyl)methylium as the coating hapten. Therefore, a broad-specificity icELISA for simultaneous determination of BG, MG and CV was developed. The recoveries of single analyte and mixture of three analytes from spiked grass carp tissues were estimated ranging from 74.94% to 110.39%. A statistically significant correlation of results was obtained between the developed icELISA and previously established HPLC approaches with the food-relevant three triphenylmethane dyes concentration range 1.83-200 ng mL(-1) (R(2)=0.9224), indicating good accuracy of the icELISA and suitability for the broad-specific detection of the three triphenylmethane dyes in grass carp tissues. PMID:22027132

  15. Synthesis, characterisation of polyaniline-Fe3O4 magnetic nanocomposite and its application for removal of an acid violet 19 dye

    NASA Astrophysics Data System (ADS)

    Patil, Manohar R.; Khairnar, Subhash D.; Shrivastava, V. S.

    2015-06-01

    The present work deals with the development of a new method for the removal of dyes from an aqueous solution using polyaniline (PANI)-Fe3O4 magnetic nanocomposite. It is synthesised in situ through self-polymerisation of monomer aniline. Photocatalytic degradation studies were carried out for cationic acid violet 19 (acid fuchsine) dye using PANI-Fe3O4 nanocomposite in aqueous solution. Different parameters like catalyst dose, contact time and pH have been studied to optimise reaction condition. The optimum conditions for the removal of the dye are initial concentration 20 mg/l, adsorbent dose 6 gm/l, pH 7. The EDS technique gives elemental composition of synthesised PANI-Fe3O4. The SEM and XRD studies were carried for morphological feature characteristics of PANI-Fe3O4 nanocomposite. The VSM (vibrating sample magnetometer) gives magnetic property of PANI-Fe3O4 nanocomposite; also FT-IR analysis gives characteristics frequency of synthesised PANI-Fe3O4. Besides the above studies kinetic study has also been carried out.

  16. Dye-Doped Polymer Dispersed Liquid Crystal Films for Flexible Displays

    NASA Astrophysics Data System (ADS)

    Yang, Kee-Jeong; Lee, Seung-Chul; Choi, Byeong-Dae

    2010-05-01

    Red, green, and blue dyes were doped to polymer dispersed liquid crystal (PDLC) films for flexible display applications. Dichroic dye-doped liquid crystal droplets had a bipolar configuration. The E7-DG6071-dye composition showed better chromaticity data than other compositions. The small-particle-size red-dye-doped PDLC film showed good color differences. To improve the color difference, the dye particle size has to be small, and the bead milling process can make dye particles small. In this system, the bigger the liquid crystal droplet size, the higher the PDLC film driving voltage (Von), except in the LC-DG6071-red dye composition. This is the reason that the splay deformation increase is greater than the droplet size increase. In the electro-optic characteristics of dye-doped PDLC film, the TL205-DG6071-red dye composition had the lowest Von and the TL205-DG7052-red dye had the highest contrast ratio.

  17. Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet

    NASA Astrophysics Data System (ADS)

    Harraz, Farid A.; Ismail, Adel A.; Bouzid, Houcine; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2015-03-01

    Silver nanoparticles (AgNPs) have been reduced onto porous silicon (PSi) surface in a simple immersion plating bath. Here, PSi with average pore size of ?30 nm was used as both a mechanical support and a mild reducing agent. AgNPs-meso-PSi hybrid structures exhibit a highly sensitive and reproducible surface-enhanced Raman scattering (SERS) response. A detectable concentration as low as 100 pM of crystal violet has been achieved with an enhancement factor (EF) of 1.3 106. No aging effect was observed for the current substrates after storing in air for three weeks. The large EF is essentially attributed to a combination of electromagnetic enhancement and charge transfer mechanism.

  18. Crystal violet as an i-motif structure probe for reversible and label-free pH-driven electrochemical switch.

    PubMed

    Zhang, Xi Yuan; Luo, Hong Qun; Li, Nian Bing

    2014-06-15

    A simple pH-induced electrochemical switch based on an i-motif structure is developed by using crystal violet as a selective electrochemical probe for the i-motif structure. Thiol-modified cytosine-rich single-strand oligonucleotide (C-rich ssDNA) can be self-assembled on the gold electrode surface via gold-sulfur interaction. Crystal violet is employed as an electrochemical probe for the i-motif structure because of its capability of binding with the i-motif structure through an end-stacking mode. In acidic aqueous solution, crystal violet may approach the electrode surface owing to the formation of the i-motif structure, resulting in an obvious signal, so-called "ON" state. Whereas in neutral or basic aqueous solution, the i-motif structure unfolds to dissociative single strand, which causes crystal violet to leave from the electrode surface, and a weak signal is obtained, so-called "OFF" state. In addition, in the range of pH 4.6-7.3, the increase in current has a good linear relationship (R=0.989) with pH value in the testing solutions. This pH-driven electrochemical switch has the advantages of simplicity, sensitivity, high selectivity, and good reversibility. Furthermore, it provides a possible platform for pH measurement. PMID:24699211

  19. Deterministically Polarized Fluorescence from Single Dye Molecules Aligned in Liquid Crystal Host

    SciTech Connect

    Lukishova, S.G.; Schmid, A.W.; Knox, R.; Freivald, P.; Boyd, R. W.; Stroud, Jr., C. R.; Marshall, K.L.

    2005-09-30

    We demonstrated for the first time to our konwledge deterministically polarized fluorescence from single dye molecules. Planar aligned nematic liquid crystal hosts provide deterministic alignment of single dye molecules in a preferred direction.

  20. Hexagonal microlasers based on organic dyes in nonoporous crystals

    NASA Astrophysics Data System (ADS)

    Nöckel, Jens U.; Laeri, Franco

    2000-03-01

    Zeolites such as nanoporous AlPO_4-5 are molecular sieves which can host a wide variety of laser active dyes that fit into the channel pores. The low losses and regular matrix arrangement of the host material make optical applications feasible in which a microscopic order is imposed on the active guest molecules. The morphology of the resulting zeolite crystals is that of a hexagonal microcylinder, provided the size and concentration of the organic dyes (pyridine 2, and a new rhodamine-B derivative) can be accomodated. Lasing at optical wavelengths has been achieved in such crystals of diameters down to 4.5 μm, with the crystal facets forming a self-assembled resonator for whispering-gallery modes. In terms of pump needed to reach lasing threshold, molecular sieve microlasers are comparable to VCSELs. Wave simulations agree with the experimental characterization of the lasing properties. Whereas the spectral structure furthermore agrees with a ray picture, strong diffractive corrections to ray expectations are revealed for the emission directionality. The corners between adjacent facets of the crystal are sharp on the scale of the wavelength, and the resulting deviations from ray optics are discussed.

  1. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    SciTech Connect

    Kumar, Rishi Sood, Srishti Raina, K. K.

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  2. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.

    PubMed

    Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min

    2016-04-01

    In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. PMID:26894843

  3. Synthesis, linear optical, non-linear optical, thermal and mechanical characterizations of dye-doped semi-organic NLO crystals

    NASA Astrophysics Data System (ADS)

    Sesha Bamini, N.; Vidyalakshmy, Y.; Choedak, Tenzin; Kejalakshmy, N.; Muthukrishnan, P.; Ancy, C. J.

    2015-06-01

    Organic laser dyes Coumarin 485, Coumarin 540 and Rhodamine 590 Chloride were used to dope potassium acid phthalate crystals (KAP). Dye-doped KAP crystals with different dye concentrations such as 0.01 mM, 0.03 mM, 0.05 mM, 0.07 mM and 0.09 mM (in the KAP growth solution) were grown. The linear optical, non-linear optical, mechanical and thermal characterizations of dye-doped KAP crystals were studied and compared to understand the effect of dye and dye concentration on the KAP crystal. Absorption and emission studies of KAP and dye-doped KAP single crystals indicated the inclusion of the dye into the KAP crystal lattice. The effect of dye and its concentration on the SHG efficiency of the KAP crystal was studied using the Kurtz and Perry powder technique. It was observed that the absorption maximum wavelength and concentration of the dye used for doping the KAP single crystal decided the SHG efficiency of the dye-doped KAP single crystals. The mechanical hardness of the dye-doped and undoped (pure) KAP single crystals were studied using the Vickners microhardness test. It was observed that doping the KAP crystals with the laser dyes changed them from softer material to harder material. Etching studies showed an improvement in the optical quality of the KAP crystal after doping with laser dyes.

  4. Removal of Triphenylmethane Dyes by Bacterial Consortium

    PubMed Central

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50?mg/L) and malachite green (50?mg/L) dyes within 24?h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2?h. The rate of chemical oxygen demand (COD) removal increases after 24?h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes. PMID:22623907

  5. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows.

    PubMed

    Kim, Mingyun; Park, Kyun Joo; Seok, Seunghwan; Ok, Jong Min; Jung, Hee-Tae; Choe, Jaehoon; Kim, Do Hyun

    2015-08-19

    A dye-doped polymer-dispersed liquid crystal (PDLC) is an attractive material for application in smart windows. Smart windows using a PDLC can be operated simply and have a high contrast ratio compared to those of other devices that employed photochromic or thermochromic material. However, in conventional dye-doped PDLC methods, dye contamination can cause problems and has a limited degree of commercialization of electric smart windows. Here, we report on an approach to resolve dye-related problems by encapsulating the dye in monodispersed capsules. By encapsulation, a fabricated dye-doped PDLC had a contrast ratio of >120 at 600 nm. This fabrication method of encapsulating the dye in a core-shell structured microcapsule in a dye-doped PDLC device provides a practical platform for dye-doped PDLC-based smart windows. PMID:26192469

  6. Biodegradation of p-nitrophenol sorbed onto crystal violet-modified organoclay by Arthrobacter sp. 4H?.

    PubMed

    Masaphy, Segula; Zohar, Shay; Jander-Shagug, Gurinaz

    2014-02-01

    Organoclays are effective sorbents for removal of organic contaminants from water, but their regeneration capacity limits their practical use as a biotechnological process for bioremediation. Here, the sorption of p-nitrophenol (PNP) to crystal violet (CV)-modified montmorillonite and its biodegradation by the bacterium Arthrobacter sp. 4H? were studied in a batch aqueous system. The degree of PNP sorption was dependent on the degree of CV modification (loaded at 80 % or 100 % of the clay's cation-exchange capacity-CVM80 and CVM100, respectively). CV sorption to the clay reduced its toxicity to bacteria. PNP at an initial concentration of 0.72 mM was degraded at rates of 65 % and 42 % in CVM80 and CVM100 suspensions, respectively. Both free and CV-clay-adsorbed PNP concentrations were reduced by the bacteria at rates proportional to the degree of CV modification. Three successive cycles of PNP reloading-degradation in the organoclay suspension demonstrated the potential of this matrix's regeneration and reuse toward maximal removal efficiency of organic pollutants. PMID:23715856

  7. Use of dye to distinguish salt and protein crystals under microcrystallization conditions

    NASA Technical Reports Server (NTRS)

    Cosenza, Larry (Inventor); Bray, Terry L. (Inventor); DeLucas, Lawrence J. (Inventor); Gester, Thomas E. (Inventor); Hamrick, David T. (Inventor)

    2007-01-01

    An improved method of screening crystal growth conditions is provided wherein molecules are crystallized from solutions containing dyes. These dyes are selectively incorporated or associated with crystals of particular character thereby rendering crystals of particular character colored and improving detection of the dyed crystals. A preferred method involves use of dyes in protein solutions overlayed by oil. Use of oil allows the use of small volumes of solution and facilitates the screening of large numbers of crystallization conditions in arrays using automated devices that dispense appropriate solutions to generate crystallization trials, overlay crystallization trials with an oil, provide appropriate conditions conducive to crystallization and enhance detection of dyed (colored) or undyed (uncolored) crystals that result.

  8. Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p.

    PubMed

    Pan, Tao; Ren, Suizhou; Xu, Meiying; Sun, Guoping; Guo, Jun

    2013-07-01

    The biological treatment of triphenylmethane dyes is an important issue. Most microbes have limited practical application because they cannot completely detoxicate these dyes. In this study, the extractive biodecolorization of triphenylmethane dyes by Aeromonas hydrophila DN322p was carried out by introducing the cloud point system. The cloud point system is composed of a mixture of nonionic surfactants (20 g/L) Brij 30 and Tergitol TMN-3 in equal proportions. After the decolorization of crystal violet, a higher wet cell weight was obtained in the cloud point system than that of the control system. Based on the results of thin-layer chromatography, the residual crystal violet and its decolorized product, leuco crystal violet, preferred to partition into the coacervate phase. Therefore, the detoxification of the dilute phase was achieved, which indicated that the dilute phase could be discharged without causing dye pollution. The extractive biodecolorization of three other triphenylmethane dyes was also examined in this system. The decolorization of malachite green and brilliant green was similar to that of crystal violet. Only ethyl violet achieved a poor decolorization rate because DN322p decolorized it via adsorption but did not convert it into its leuco form. This study provides potential application of biological treatment in triphenylmethane dye wastewater. PMID:23008002

  9. Adsorption of anionic surfactant on alumina and reuse of the surfactant-modified alumina for the removal of crystal violet from aquatic environment.

    PubMed

    Adak, Asok; Bandyopadhyay, Manas; Pal, Anjali

    2005-01-01

    The adsorption characteristics of sodium dodecyl sulfate (SDS), an anionic surfactant on neutral alumina were studied in detail. Alumina was found to be an efficient adsorbent for SDS and could be used for the removal of SDS from its highly concentrated (several thousand ppm) solution. The equilibrium time found was 2 h. Though the removal efficiency was low (approximately 65%) at neutral pH, but in slightly acidic condition and in the presence of NaCl the efficiency could be increased dramatically (up to >98%). The adsorption isotherm study showed distinct four regions. The effects of various other parameters such as adsorbent dose, time, and the presence of different ions (Cl-, NO3-, SO4(2-), and Fe3+), and nonionic surfactant on the SDS adsorption were also studied. It was observed that the adsorption capacity was increased due to the presence of these ions in general. After the adsorption of SDS on alumina, the surfactant-modified alumina (SMA) was used for the removal of crystal violet (CV), a well-known cationic dye from aquatic environment. The kinetic studies showed that 1 h shaking time was sufficient to achieve the equilibrium. The removal of CV followed the second order kinetics. Studies were conducted to see the effects of adsorbent dose and initial CV concentration on the removal of CV using SMA. The pH was maintained at 6.7+/-0.1. SMA was found to be very efficient, and approximately 99% efficiency could be achieved under optimised conditions for the removal of CV when present even at a high concentration (200 ppm). To test whether the removal of CV was possible from real water using SMA, the adsorption study was conducted using CV spiked samples using distilled water, tap water, and synthetically prepared wastewater. It was interesting to note that the removal efficiency was even better for tap water and much better for wastewater when compared to that using distilled water. Desorption of both SDS and CV from the SMA surface was possible using 1 M sodium hydroxide solutions. PMID:15663308

  10. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime.

    PubMed

    Wen, Xin; Han, Yashuai; Bai, Jiandong; He, Jun; Wang, Yanhua; Yang, Baodong; Wang, Junmin

    2014-12-29

    We demonstrate a simple, compact and cost-efficient diode laser pumped frequency doubling system at 795 nm in the low power regime. In two configurations, a bow-tie four-mirror ring enhancement cavity with a PPKTP crystal inside and a semi-monolithic PPKTP enhancement cavity, we obtain 397.5nm ultra-violet coherent radiation of 35mW and 47mW respectively with a mode-matched fundamental power of about 110mW, corresponding to a conversion efficiency of 32% and 41%. The low loss semi-monolithic cavity leads to the better results. The constructed ultra-violet coherent radiation has good power stability and beam quality, and the system has huge potential in quantum optics and cold atom physics. PMID:25607194

  11. Simultaneous determination of malachite green, crystal violet, methylene blue and the metabolite residues in aquatic products by ultra-performance liquid chromatography with electrospray ionization tandem mass spectrometry.

    PubMed

    Xu, Ying-Jiang; Tian, Xiu-Hui; Zhang, Xiu-Zhen; Gong, Xiang-Hong; Liu, Hui-Hui; Zhang, Huan-Jun; Huang, Hui; Zhang, Li-Min

    2012-08-01

    This work describes solid-phase extraction-ultra-performance liquid chromatography with electrospray ionization tandem spectrometry for determination of malachite green and metabolite leucomalachite green, crystal violet and metabolite leucocrystal violet, methylene blue and metabolites including azure A, azure B and azure C in aquatic products. Samples were extracted with acetonitrile and ammonium acetate buffer and purified by liquid extraction with dichloromethane, and then on MCAX solid-phase extraction cartridges. Then the extract was evaporated at 45°C by nitrogen blow. The residue was dissolved and separated by an Acquity BEH C18 column. The mobile phase was acetonitrile (A) and 5 mmol/L of ammonium acetate containing 0.1% formic acid (B). Analytes were confirmed and quantified using a tandem mass spectrometry system in multiple reaction mode with triple quadrupole analyzer using positive polarity mode. The limits of detection of malachite green, leucomalachite green, crystal violet and leucocrystal violet were 0.15 µg/kg, the limits of quantification were 0.50 µg/kg, and the average recoveries were more than 75% with spiked residues from 0.5 to 10 µg/kg. The relative standard deviations were less than 13%. The limits of detection of methylene blue, azure A, azure B and azure C were 0.3 µg/kg, the limits of quantification were 1.0 µg/kg, the average recoveries were more than 70% with spiked residues from 1.0 to 10 µg/kg and the relative standard deviations were less than 15%. The method has the merits of simplicity, sensitivity and rapidity, and can be used for simultaneous determination of the analytes in aquatic products. PMID:22542891

  12. Crystallization of fused silica surfaces by ultra-violet laser irradiation

    SciTech Connect

    Hirata, Kazuya; Haraguchi, Koshi

    2012-07-15

    In recent years, the increased use of high power lasers has created problems in optical elements due to laser damage. The International Organization for Standardization (ISO) describes in a publication ISO 11254 a laser-power resilience (LPR) test which we used to verify that by flattening the glass substrate of an optical element, we could improve the resistance to laser damage. We report on an evaluation of two types of samples of fused silica substrate whose surface roughness differed (R{sub a} = 0.20 nm and R{sub a} = 0.13 nm) using customized on-line laser damage testing. To induce laser damage to samples, we used the fifth harmonic generation from a Nd:YAG pulse laser (wavelength: 213 nm, pulse width: 4 ns, repetition frequency: 20 Hz). Results show that flattening reduced the progression of laser damage in the meta-phase laser damage phase by 1/3 of that without flattening. However, pro-phase laser damage which started at fluence 2.39 J/cm{sup 2} was unrelated to surface roughness. To analyze the pro-phase laser damage, we used x-ray diffraction (XRD), Raman spectroscopy, and variable pressure-type scanning electron microscopy (VP-SEM). From XRD data, we observed XRD patterns of cristobalite (111), cristobalite (102), {alpha}-quartz (111), and {beta}-quartz (102). Raman spectrum data showed an increase in the three-membered ring vibration (600 cm{sup -1}), four-membered ring vibration (490 cm{sup -1}), and many-membered ring vibration (450 cm{sup -1}, 390 cm{sup -1}, and 300 cm{sup -1}). We observed patchy crystallized areas on the sample surfaces in the VP-SEM images. Based on these experimental results, we believe that the dominant factors in pro-phase laser damage are their physical properties. Substrate and thin film material must be appropriately selected in producing an optical element with a high level of resilience to laser exposure.

  13. Expansion of the scope of AOAC first action method 2012.25 - single-laboratory validation of triphenylmethane dye and leuco metabolite analysis in shrimp, tilapia, catfish, and salmon by LC-MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a...

  14. Linear and nonlinear optical properties of dye-doped KDP crystals: Effect of thermal treatment

    NASA Astrophysics Data System (ADS)

    Pritula, I.; Gayvoronsky, V.; Gromov, Yu.; Kopylovsky, M.; Kolybaeva, M.; Puzikov, V.; Kosinova, A.; Savvin, Yu.; Velikhov, Yu.; Levchenko, A.

    2009-03-01

    Potassium dihydrogen phosphate crystals (KDP, KH 2PO 4) doped with the organic xylenol orange (XO) dye are grown, the XO concentration in the crystal matrix is about 10 ppm. The spectral and luminescent properties of nominally pure, dye-doped and dye-doped/annealed at 150 °C crystals (KDP, KDP:XO and KDP:XO an) were measured. The annealing temperature effect on the degree of dye protonation in the crystal matrix is established. Analysis of the IR-absorption spectra reveals a strong interaction between the incorporated dye molecules and the hydrogen subsystem of the matrix. The nonlinear optical (NLO) properties of KDP, KDP:XO and KDP:XO an crystals are studied within the self-action effect of picosecond laser pulses at 532 nm. The mechanism of photoinduced bleaching and the effects of laser beam self-focusing (in KDP) and self-defocusing (in KDP:XO and KDP:XO an) are supposed to be due to resonance excitation of the subsystems of intrinsic defects and dye molecules, correspondingly. For KDP:XO an it is shown that thermal annealing of intrinsic crystal defects leads to domination of more effective NLO response of the subsystem of dye molecules that is correlated with photoluminescence data.

  15. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  16. Surface Binding and Organization of Sensitizing Dyes on Metal Oxide Single Crystal Surfaces

    SciTech Connect

    Parkinson, Bruce

    2010-06-04

    Even though investigations of dye-sensitized nanocrystalline semiconductors in solar cells has dominated research on dye-sensitized semiconductors over the past two decades. Single crystal electrodes represent far simpler model systems for studying the sensitization process with a continuing train of studies dating back more than forty years. Even today single crystal surfaces prove to be more controlled experimental models for the study of dye-sensitized semiconductors than the nanocrystalline substrates. We analyzed the scientific advances in the model sensitized single crystal systems that preceded the introduction of nanocrystalline semiconductor electrodes. It then follows the single crystal research to the present, illustrating both their striking simplicity of use and clarity of interpretation relative to nanocrystalline electrodes. Researchers have employed many electrochemical, photochemical and scanning probe techniques for studying monolayer quantities of sensitizing dyes at specific crystallographic faces of different semiconductors. These methods include photochronocoulometry, electronic spectroscopy and flash photolysis of dyes at potential-controlled semiconductor electrodes and the use of total internal reflection methods. In addition, we describe the preparation of surfaces of single crystal SnS2 and TiO2 electrodes to serve as reproducible model systems for charge separation at dye sensitized solar cells. This process involves cleaving the SnS2 electrodes and a photoelectrochemical surface treatment for TiO2 that produces clean surfaces for sensitization (as verified by AFM) resulting in near unity yields for electron transfer from the molecular excited dyes into the conduction band.

  17. On the circular polarization of fluorescence from dyes dissolved in chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Voigt, Monika; Chambers, Martin; Grell, Martin

    2001-10-01

    The sense of circular polarization of the fluorescence from dyes dissolved in chiral nematic liquid crystals (CNLCs) with a photonic stopband overlapping the dye emission (`resonance regime') displays a peculiar reversal as a function of wavelength, which so far is not satisfactorily explained. We systematically study this phenomenon and show that theories based on the guest/host alignment of the fluorescent dye in the CNLC matrix are not adequate in the resonance regime. We instead propose a consistent explanation of sign reversal based on the description of CNLCs as one-dimensional (1D) photonic crystals.

  18. Random lasers in dye-doped polymer-dispersed liquid crystals containing silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, LongWu; Deng, LuoGen

    2012-12-01

    We report on the observation of random lasers for the first time in dye-doped polymer-dispersed liquid crystals (PDLCs) containing nano-sized liquid crystal droplets and silver nanoparticles. The dye-doped polymer-dispersed liquid crystal containing silver nanoparticles film is exposed by a collimated 532 nm Nd: YAG (yttrium aluminum garnet) laser beam, so that it is quickly cured. Under the excitation of a frequency-doubled Nd: YAG (yttrium aluminum garnet) laser operating at a wavelength of 532 nm, random lasing from dye-doped PDLCs containing Ag nanoparticles is observed as a result of cooperative effect due to light scattering of nano-sized liquid crystal droplets and the local field enhancement capabilities around silver nanoparticles. We show that the threshold of the random lasing is about 0.95 ?J/pulse which is lower than the lasing threshold of dye-doped polymer-dispersed liquid crystals containing nano-sized liquid crystal droplets. The linewidth of the lasing peaks is shown to be 0.2 nm. We also propose a possible mechanism to explain the random lasing from dye-doped polymer-dispersed liquid crystals containing silver nanoparticles.

  19. Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes.

    PubMed

    Sharma, Deepak Kumar; Saini, Harvinder Singh; Singh, Manjinder; Chimni, Swapandeep Singh; Chadha, Bhupinder Singh

    2004-01-01

    Various soil and sludge samples collected from the vicinity of textile dyeing industries and waste disposal sites were used for enrichment of microbial population in the presence of triphenylmethane (TPM) dye Acid Violet-17 (AV-17). Twenty-five (25) isolates were screened for their ability to decolorize AV-17 dye added at a rate of 10 mgl(-1) in mineral salts medium (MSM) agar plates. Five bacterial isolates belonging to Bacillus sp., Alcaligenes sp. and Aeromonas sp. were selected on the basis of their higher decolorization ability and were used to develop a bacterial consortium. The consortium was able to efficiently decolorize various TPM dyes viz. Acid Violet-17 (86%), Acid Blue-15 (85%), Crystal Violet (82%), Malachite Green (82%) and Brilliant Green (85%). The consortium will be further used for designing efficient and cost effective treatment system for effluents of textile processing industries (TPI). PMID:14768029

  20. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-12-01

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites.

  1. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Malik, Praveen; Raina, K. K.

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that ∼1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  2. Expression, purification and crystallization of a dye-decolourizing peroxidase from Dictyostelium discoideum

    PubMed Central

    Rai, Amrita; Fedorov, Roman; Manstein, Dietmar J.

    2014-01-01

    Dye-decolourizing peroxidases are haem-containing peroxidases with broad substrate specificity. Using H2O2 as an electron acceptor, they efficiently decolourize various dyes that are of industrial and environmental relevance, such as anthraquninone- and azo-based dyes. In this study, the dye-decolourizing peroxidase DdDyP from Dictyostelium discoideum was overexpressed in Escherichia coli strain Rosetta(DE3)pLysS, purified and crystallized using the vapour-diffusion method. A native crystal diffracted to 1.65? resolution and belonged to space group P41212, with unit-cell parameters a = b = 141.03, c=95.56?, ? = ? = ? = 90. The asymmetric unit contains two molecules. PMID:24637768

  3. Expression, purification and crystallization of a dye-decolourizing peroxidase from Dictyostelium discoideum.

    PubMed

    Rai, Amrita; Fedorov, Roman; Manstein, Dietmar J

    2014-02-01

    Dye-decolourizing peroxidases are haem-containing peroxidases with broad substrate specificity. Using H2O2 as an electron acceptor, they efficiently decolourize various dyes that are of industrial and environmental relevance, such as anthraquninone- and azo-based dyes. In this study, the dye-decolourizing peroxidase DdDyP from Dictyostelium discoideum was overexpressed in Escherichia coli strain Rosetta(DE3)pLysS, purified and crystallized using the vapour-diffusion method. A native crystal diffracted to 1.65 resolution and belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 141.03, c = 95.56 , ? = ? = ? = 90. The asymmetric unit contains two molecules. PMID:24637768

  4. Determination of malachite green, crystal violet and their leuco-metabolites in fish by HPLC-VIS detection after immunoaffinity column clean-up.

    PubMed

    Xie, Jie; Peng, Tao; Chen, Dong-Dong; Zhang, Qing-Jie; Wang, Guo-Min; Wang, Xiong; Guo, Qi; Jiang, Fan; Chen, Dan; Deng, Jian

    2013-01-15

    A high performance liquid chromatography method with visible detection (HPLC-VIS) for the determination of malachite green (MG), crystal violet (CV), leucomalachite green (LMG), and leucocrystal violet (LCV) in fish has been developed after clean-up through an immunoaffinity column (IAC). Residues were simultaneously extracted from fish muscle with acetonitrile and ammonium acetate buffer. The leuco-forms, LMG and LCV, were oxidized quantitatively to the chromic CV and MG by reaction with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Extracts were then purified on an IAC which prepared by immobilizing the anti-MG-CV antibodies by the sol-gel method. Finally, the eluents were analyzed by HPLC-VIS. The limits of detection were 0.15, 0.1, 0.18 and 0.14ng/g for MG, CV, LMG and LCV, respectively. The average recoveries in samples fortified with MG, CV, LMG and LCV over the range 0.5-10ng/g were from 71.6% to 96.8% with RSDs of 5.1-12.3% (n=6). This novel method was confirmed by liquid chromatography-tandem mass spectrometry with electrospray interface in positive mode using multiple reaction monitoring. PMID:23286983

  5. Surface plasmon-enhanced lasing in dye-doped cholesteric liquid crystals.

    PubMed

    Shih, Cheng-Yu; Yeh, Hui-Chen

    2012-08-27

    This study shows the results of a photonic band-edge laser using dye-doped cholesteric liquid crystals (CLCs) combined with silver (Ag) nanoparticles. When the Ag nanoparticle surface plasmon resonance wavelength matched the excitation source wavelength, the large optical fields provided by surface plasmons increased the fluorescence of dye molecules by enhancing the molecular excitation rate, achieving a low lasing threshold and high pumping efficiency. PMID:23037118

  6. Surface-assisted photoalignment in dye-doped liquid-crystal films.

    PubMed

    Lee, C-R; Fu, T-L; Cheng, K-T; Mo, T-S; Fuh, A Y-G

    2004-03-01

    This study examines the surface-assisted photoalignment effect of dye-doped liquid-crystal films having a homogeneous alignment. Observations made using a polarizing optical microscope, a scanning electronic microscope, and an atomic force microscope confirm that the morphology of laser-induced surface-adsorbed dyes at the command surface strongly affects the orientation of liquid crystals (LC's) in a manner that depends significantly on the intensity and duration of the pumping. In weak-intensity regime, a homogeneous and fine layer of adsorbed dyes competes with a layer of ripple structure in reorienting LC's. These two effects dominantly cause LC's to reorient perpendicular and parallel to the polarization direction of the pump beam in the early and late stages, respectively. In the high-intensity regime, rough and inhomogeneous ribbonlike adsorbents produced by rapid and random aggregation and adsorption form on the top of the preformed microgrooves, reorienting LC's irregularly. This surface morphology does not enable photoalignment. PMID:15089307

  7. Effect of irradiation of swift heavy ions on dyes-doped KDP crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-04-01

    The organic dyes (amaranth, rhodamine and methyl orange) are doped in potassium dihydrogen phosphate (KDP) crystals. Influences of super saturation and dye concentration in the solution, on the color and crystal habit of KDP, were observed. Amaranth in the solution at low super saturation and high dye concentration colored the pyramidal section (1 0 1) of the crystals. The highly super saturated solutions produce entirely colored crystals. The concentration of dopants in the mother solution was varied from 0.1 to 10 mol%. The studies on pure and doped KDP crystals clearly indicate the effect of dopants on the crystal structure, in the absorption of IR frequencies and the non-linear optical property. Dye doping improves the NLO properties of the grown crystals. The frequencies with their relative intensities are obtained in FT-IR of pure and doped KDP. The very weak bands for dopants indicate its presence in low concentration. In view of the ever-growing importance of ion beams in optical material processing, this letter reports room temperature MeV Li + ion irradiation-induced depletion of hydrogen from single crystalline KDP which has wide applications as a non-linear optical material in optoelectronics technology. Irradiations have been performed using 50 MeV Li + ions up to a maximum dose of 2.410 15 ions cm -2. Simultaneously, detecting the elastically recoiled Li atoms has done hydrogen profiling. Bare KDP crystals show hydrogen loss of 72% at the maximum dose whereas Au-coated samples show that 60 Au layer acts as a barrier to considerably reduce hydrogen depletion from KDP. A possible explanation of these phenomena is suggested.

  8. Monitoring the crystallization from solution of a reactive dye by ultrasound

    NASA Astrophysics Data System (ADS)

    Marshall, Thomas; Tebbutt, John S.; Challis, Richard E.

    2000-05-01

    Ultrasound has potential to be used as a process monitoring tool alongside other techniques, such as pH, conductivity and dielectric measurements, tomography and optical turbidity. This paper outlines the development of a small volume test cell designed to monitor crystallization from solution in real time using low power ultrasound. The associated software is described and a series of experiments that have been carried out on a crystallizing orange reactive dye (BASF plc) are presented. Ultrasound has been used to monitor the crystallization process and the measurements yield data that separate into two distinct groups. These correspond to whether the dye is stirred or unstirred whilst crystallizing. Optical microscopy shows that well-dispersed crystals or extended networks of closely associated crystals are formed respectively. It was not possible to determine the principal physical constants of the crystallizing material due to its nature, so detailed theoretical modelling of the crystallization could not be achieved. Nevertheless, the phenomenological results indicate that the technique has potential to be incorporated into rugged instrumentation for monitoring crystallization in an industrial process environment.

  9. Dye-concentration-dependent lasing behaviors and spectral characteristics of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhongyang; Yang, Can; Li, Wensong; Chen, Lujian; Wang, Xiaozhong; Cai, Zhiping

    2014-06-01

    The laser behavior and spectral changes occurring in cholesteric liquid crystals with varying dye-doped concentrations were investigated when pumped at 532 nm. It was found that the long-wavelength band edge and the laser line exhibit a blue shift over 21 nm with increasing dye concentration. The circularly polarized fluorescence spectra were examined, and the location of the sense reversion of circular polarization was determined to coincide well with the discrete lasing lines. The blue shift can be ascribed to the decrease in average refractive index and pitch of the dye-doped cholesteric liquid crystals. The dependence of the slope efficiency and threshold energy on the dye concentration can be attributed to the shift in photonic stopband and the change in penetration depth of excitation. The temperature and incident angle of pumping beam also have a significant impact on the lasing properties. The optimal dye concentration is found to be 0.5 wt% at 30.5 C with an incident angle of 10. The laser emission located at 601.4 nm with slope efficiency of 4 % was achieved above the threshold energy of 14.3 ?J.

  10. Gene-Controlled Resistance to Acriflavine and Other Basic Dyes in Escherichia coli

    PubMed Central

    Nakamura, Hakobu

    1965-01-01

    Nakamura, Hakobu (Konan University, Kobe, Japan). Gene-controlled resistance to acriflavine and other basic dyes in Escherichia coli. J. Bacteriol. 90:814. 1965.The genetic determinant controlling the sensitivity of Escherichia coli K-12 W1895 to the basic dyes acriflavine, methylene blue, toluidine blue, crystal violet, methyl green, and pyronine B appears, from results of mating experiments, to be located between the marker governing the utilization of lactose and the origin of genetic transfer. The determinant controlling this resistance to basic dyes does not control resistance to acid dyes. After the introduction of the resistance gene into merozygotes, acriflavine resistance is not established immediately but develops slowly. PMID:16562046

  11. Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase

    NASA Astrophysics Data System (ADS)

    Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei

    2015-07-01

    Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4C variation.

  12. Photoswitchable and dye-doped bubble domain texture of cholesteric liquid crystals.

    PubMed

    Varanytsia, Andrii; Chien, Liang-Chy

    2015-10-01

    We demonstrate control of the transmittance of the naturally formed bubble domain (BD) texture of cholesteric liquid crystals (CLC) with negative dielectric anisotropy confined into a cell with homeotropic surface anchoring. By using a photosensitive chiral dopant with variable helical twisting power under light irradiation, control of packing density of bubbles, spatial patterning, and all optical switching between bistable states with different optical densities is achieved. By introducing dichroic dye into the CLC mixture, a bistable and switchable by applied electric field guest-host system is obtained. The light dimming properties of dye-doped BD CLC systems may lead to development of a wide range of applications. PMID:26421539

  13. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals

    PubMed Central

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites. PMID:26675363

  14. Heterogeneous distribution of dye-labelled biomineralizaiton proteins in calcite crystals.

    PubMed

    Liu, Chuang; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Biominerals are highly ordered crystals mediated by organic matters especially proteins in organisms. However, how specific proteins are distributed inside biominerals are not well understood. In the present study, we use fluorescein isothiocyanate (FITC) to label extracted proteins from the shells of bivalve Pinctada fucata. By confocal laser scanning microscopy (CLSM), we observe a heterogeneous distribution of dye-labelled proteins inside synthetic calcite at the microscale. Proteins from the prismatic calcite layers accumulate at the edge of crystals while proteins from the nacreous aragonite layers accumulate at the center of crystals. Raman and X-ray powder diffraction show that both the proteins cannot alter the crystal phase. Scanning electron microscope demonstrates both proteins are able to affect the crystal morphology. This study may provide a direct approach for the visualization of protein distributions in crystals by small-molecule dye-labelled proteins as the additives in the crystallization process and improve our understanding of intracrystalline proteins distribution in biogenic calcites. PMID:26675363

  15. Light-induced anchoring and reorientation effects in dye-doped liquid crystals

    NASA Astrophysics Data System (ADS)

    Francescangeli, Oriano; Lucchetti, Liana; Simoni, Francesco F.; Slussarenko, Sergei; Ouskova, E.; Reznikov, Yuri A.; Shiyanovskii, S.; West, John L.

    2002-12-01

    A review of the recent results of our group in the field of light-induced anchoring and reorientation effects in dye-doped liquid crystals (LCs) is presented. In particular, the phenomena of photoinduced anchoring and permanent reorientation over a polymeric boundary surface of a dye-doped LC cell is reported, both in the isotropic phase and in the orientationally ordered nematic phase. The results have been interpreted microscopically in terms of adsorption and desorption of the dichroic azo-dye (methyl-red) molecules onto the illuminated surface during light irradiation. The model proposed is in agreement with recent results on the dynamic and stable grating formation in methyl-red doped LCs .

  16. Transition Metal Dithiolene Near-IR Dyes and Thier Applications in Liquid Crystal Devices

    SciTech Connect

    Marshall, K.L.; Painter, G.; Lotito, K.; Noto, A.G.; Chang, P.

    2006-08-18

    Numerous commercial and military applications exist for guesthost liquid crystal (LC) devices operating in the near- to mid-IR region. Progress in this area has been hindered by the severe lack of near-IR dyes with good solubility in the LC host, low impact on the inherent order of the LC phase, good thermal and chemical stability, and a large absorbance maximum tunable by structural modification over a broad range of the near-IR region. Transition metal complexes based on nickel, palladium, or platinum dithiolene cores show substantial promise in meeting these requirements. In this paper, we overview our past and present activities in the design and synthesis of transition metal dithiolene dyes, show some specific applications examples for these materials as near-IR dyes in LC electro-optical devices, and present our most recent results in the computational modeling of physical and optical properties of this interesting class of organometallic optical materials.

  17. Effect of pump efficiency on lasing in dye-doped chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Gillespie, Carrie; Morris, Stephen M.; Coles, Harry J.

    2005-04-01

    The purpose of this study was to investigate the effect of varying the pump efficiency of dye-doped chiral nematic liquid crystal lasers, through the dependence on absorption efficiency. Two dyes from the rhodamine subset of the xanthene family (rhodamine B and rhodamine 6G) with similar chemical properties but different absorption and emission spectra have been compared for a fixed pumping wavelength (532nm). Each dye was dissolved in E49 (a commercial nematic mixture from Merck NB-C) and the resulting mixtures characterised in terms of their absorption and laser induced fluorescence spectra. A high twisting power chiral dopant (BDH1281, also from Merck NB-C) was used to induce 1-D photonic band gaps with the high and low energy edges corresponding to the fluorescence maximum for each dye. Laser action was induced in the resulting four mixtures and typical laser parameters such as slope efficiency and threshold energy were examined for each one. The results indicate that the mixtures doped with rhodamine 6G had an absolute absorption ~ 57% greater than those doped with rhodamine B. Rhodamine 6G-doped mixtures therefore had the highest pump efficiency and lased more than 6 times more efficiently then those doped with rhodamine B. We believe that the performance of rhodamine 6G is also influenced by its greater degree of alignment with the liquid crystal host and a possible input energy dependence of the quantum efficiency of the dyes (indicated by the fluorescence characteristics of the achiral dye-doped mixtures). Further experimentation is needed to determine exactly which parameters are responsible for the superior performance of rhodamine 6G in chiral nematic lasers.

  18. A method for the general identification of protein crystals in crystallization experiments using a noncovalent fluorescent dye.

    PubMed

    Groves, Matthew R; Mller, Ingrid B; Kreplin, Xandra; Mller-Dieckmann, Jochen

    2007-04-01

    A technique is described whereby the addition of low concentrations (millimolar to micromolar) of the fluorescent dye 1,8-ANS to the protein solution prior to crystallization results in crystallization experiments in which protein crystals are strongly contrasted above background artifacts when exposed to low-intensity UV radiation. As 1,8-ANS does not covalently modify the protein sample, no further handling or purification steps are necessary. The system has been tested on a wide variety of protein samples and it has been shown that the addition of 1,8-ANS has no discernible effect on the crystallization frequencies or crystallization conditions of these proteins. As 1,8-ANS interacts with a wide variety of proteins, this is proposed to be a general solution for the automated classification of protein crystallization images and the detection of protein crystals. The results also demonstrate the expected discrimination between salt and protein crystals, as well as allowing the straightforward identification of small crystals that grow in precipitate or under a protein skin. PMID:17372358

  19. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior

    PubMed Central

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-01-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions. PMID:26220603

  20. Synthesis of core-shell SiO?@MgO with flower like morphology for removal of crystal violet in water.

    PubMed

    Pei, Yanyan; Wang, Man; Tian, Di; Xu, Xuefeng; Yuan, Liangjie

    2015-09-01

    In this study, we report a facile and effective route to synthesize core-shell SiO2@MgO with flower like morphology, which the shell is assembled by magnesium oxide nanosheets. The SiO2@MgO composite (SMC) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), X-ray fluorescence (XRF) and N2 adsorption-desorption techniques. The sample showed excellent performance for the removal of crystal violet due to its high specific surface area and porous structures. Adsorption data fitted better with Langmuir isotherm and the maximum adsorption capacity was 2244.85 mg g(-1). The kinetic data was better described by pseudo-second order model and thermodynamic studies showed that adsorption process was spontaneous and endothermic. The adsorbent also showed very good reproducibility and reusability for the successive five cycles, indicating a promising potential material for environmental remediation. PMID:25985423

  1. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior

    NASA Astrophysics Data System (ADS)

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-07-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions.

  2. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior.

    PubMed

    Sun, Pengfei; Hui, Cai; Azim Khan, Rashid; Du, Jingting; Zhang, Qichun; Zhao, Yu-Hua

    2015-01-01

    Biochar shows great promise for use in adsorbing pollutants. However, a process for enhancing its adsorption capacity and re-collection efficiency is yet to be further developed. Hence, in this study, we developed a type of biochar coated with magnetic Fe3O4 nanoparticles (i.e., magnetic biochar (MBC)) and assessed its use for crystal violet (CV) adsorption as well as its recycling potential. The coating of Fe3O4 nanoparticles, which was not only on the surface, but also in the interior of biochar, performed two functions. Firstly, it produced a saturation magnetization of 61.48 emu/g, which enabled the biochar being efficiently re-collected using a magnet. Secondly, it significantly enhanced the adsorption capacity of the biochar (from 80.36 to 99.19 mg/g). The adsorption capacity of the MBC was determined to be the largest by so far (349.40 mg/g) for an initial CV concentration of 400 mg/L, pH of 6.0, and temperature of 40 °C, and the adsorption capacity of re-collected MBC was 73.31 mg/g. The adsorption of CV by the MBC was found to be a spontaneous and endothermic physical process in which the intraparticle diffusion was the limiting step. These findings inspire us to use other similar materials to tackle the menace of pollutions. PMID:26220603

  3. Controlled hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light photocatalytic degradation of crystal violet.

    PubMed

    Jiang, Yu-Rou; Lin, Ho-Pan; Chung, Wen-Hsin; Dai, Yong-Ming; Lin, Wan-Yu; Chen, Chiing-Chang

    2015-01-01

    A series of BiOxCly/BiOmIn composites were prepared using autoclave hydrothermal methods. The composition and morphologies of the BiOxCly/BiOmIn composites were controlled by adjusting the experimental conditions: the reaction pH value, temperature, and KCl/KI molar ratio. The products were characterized using X-ray diffraction, scanning electron microscopy-electron dispersive X-ray spectroscopy, UV-vis diffuse reflectance spectroscopy, Brunauer-Emmett-Teller specific surface areas, cathodoluminescence, high-resolution transmission electron microscopy, and high-resolution X-ray photoelectron spectroscopy. The photocatalytic efficiencies of composite powder suspensions were evaluated by monitoring the crystal violet (CV) concentrations. In addition, the quenching effects of various scavengers indicated that the reactive O2(-) played a major role, and OH or h(+) played a minor role in CV degradation. The intermediates formed during the decomposition process were isolated, identified, and characterized using high performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry to elucidate the CV decomposition mechanism. PMID:25464322

  4. Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye

    SciTech Connect

    Horowitz, Viva R.; Janowitz, Lauren A.; Modic, Aaron L.; Heiney, Paul A.; Collings, Peter J.

    2005-10-01

    X-ray scattering and various optical techniques are utilized to study the aggregation process and chromonic liquid crystal phase of the anionic monoazo dye Sunset Yellow FCF. The x-ray results demonstrate that aggregation involves {pi}-{pi} stacking of the molecules into columns, with the columns undergoing a phase transition to an orientationally ordered chromonic liquid crystal phase at high dye concentration. Optical absorption measurements on dilute solutions reveal that the aggregation takes place at all concentrations, with the average aggregation number increasing with concentration. A simple theory based on the law of mass action and an isodesmic aggregation process is in excellent agreement with the experimental data and yields a value for the 'bond' energy between molecules in an aggregate. Measurements of the birefringence and order parameter are also performed as a function of temperature in the chromonic liquid crystal phase. The agreement between these results and a more complicated theory of aggregation is quite reasonable. Overall, these results both confirm that the aggregation process for some dyes is isodesmic and provide a second example of a well-characterized chromonic system.

  5. Enhancement of the fluorescence of triphenylmethane dyes caused by their interaction with nanoparticles from β-diketonate complexes

    NASA Astrophysics Data System (ADS)

    Sveshnikova, E. B.; Ermolaev, V. L.

    2014-08-01

    We have studied the absorption and fluorescence spectra of Malachite Green and Crystal Violet in aqueous and alcoholic-aqueous solutions in which nanoparticles from Ln(III) and Sc(III) diketonates are formed at concentrations of complexes in a solution of 5-30 μM. We have shown that, if the concentrations of the dyes in the solution are lower than 0.5 μM, dye molecules are incorporated completely into nanoparticles or are precipitated onto their surface. The fluorescence intensity of these incorporated and adsorbed Malachite Green and Crystal Violet molecules increases by several orders of magnitude compared to the solution, which takes place because of a sharp increase in the fluorescence quantum yields of these dyes and at the expense of the sensitization of their fluorescence upon energy transfer from β-diketonate complexes entering into the composition of nanoparticles. We have shown that, if there is no concentration quenching, the values of the fluorescence quantum yield of the Crystal Violet dye incorporated into nanoparticles and adsorbed on their surface vary from 0.06 to 0.13, i.e., are close to the fluorescence quantum yield of this dye in solid solutions of sucrose acetate at room temperature. The independence of the fluorescence quantum yield of Crystal Violet on the morphology of nanoparticles testifies to a high binding constant of complexes and the dye. The considerable fluorescence quantum yields of triphenylmethane dyes in nanoparticles and sensitization of their fluorescence by nanoparticle-forming complexes make it possible to determine the concentration of these dyes in aqueous solutions by the luminescent method in the range of up to 1 nM.

  6. Pigment violet 19 - a test case to define a simple method to simulate the vibronic structure of absorption spectra of organic pigments and dyes in solution.

    PubMed

    Champagne, Benot; Ligeois, Vincent; Zutterman, Freddy

    2015-02-01

    A typical quinacridone pigment, PV19, has been used to analyze the impact of several computational parameters on the UV/vis absorption band shape in solution, simulated using density functional theory and time-dependent density functional theory levels of approximation. These encompass, (i) the choice of exchange-correlation functional, (ii) the basis set, (iii) the method for non-equilibrium optimization of the excited state geometry, (iv) the approach for evaluating the vibronic band structure, (v) the peak broadening, and (vi) the scaling of the harmonic vibrational frequencies. Among these, the choice of exchange-correlation functional is certainly of the most importance because it can drastically modify the spectral shape. In the case of PV19, the M05-2X and to a lesser extent CAM-B3LYP XC functionals are the most efficient to reproduce the vibronic structure, confirming the important role of exact Hartree-Fock exchange. Still, these functionals are not the most reliable to predict the excitation energies and oscillator strengths, for which M05, a functional with less HF exchange, performs better. For evaluating the vibronic structure, the simple gradient method, where only one step of geometry optimization of the excited state is carried out and the gradients are used to evaluate the Huang-Rhys factors as well as to determine the excited state geometries produces a spectrum that is very similar to the ones obtained with the more involved Duschinsky and geometry methods, opening the way to a fast simulation of the UV/vis absorption spectra of pigments and dyes. Then, the effect of scaling the calculated vibrational frequencies to account for anharmonicity effects as well as for limitation of the method also impacts the shape of the vibronic spectrum and this effect depends on the method used to determine the Huang-Rhys factors. Indeed, scaling the vibrational frequencies by a factor which is typically smaller than 1.0 results in a relative decrease of the 0-1 peak intensity with respect to the 0-0 band when optimizing the geometry of the excited state whereas the effect is opposite and magnified if using the gradient method. PMID:25501947

  7. Nanoparticles assembled by aptamers and crystal violet for arsenic(iii) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay

    NASA Astrophysics Data System (ADS)

    Wu, Yuangen; Zhan, Shenshan; Xing, Haibo; He, Lan; Xu, Lurong; Zhou, Pei

    2012-10-01

    Aptamer-assembled nanomaterials have captured much attention from the field of analytical chemistry in recent years. Although they have been regarded as a promising tool for heavy metal monitoring, report involving aptamer-based biosensors for arsenic detection are rare. Herein we developed a highly sensitive and selective aptamer biosensor for As(iii) detection based on a Resonance Rayleigh Scattering (RRS) spectral assay. Prior to As(iii) detection, we firstly assembled a variety of nanoparticles with different sizes via controlling the concentration of arsenic-binding aptamers in crystal violet (CV) solutions. The results of photon correlation spectroscopy (PCS) and scanning probe microscope (SPM) testified that the introduction of As(iii) had indeed changed the size of nanoparticles, which caused a great variation in the RRS intensity at 310 nm. In the presence of 100 ppb As(iii), a maximum decline in the ratio of RRS intensity was achieved for large nanoparticles assembled from 200 nM of aptamers and CV molecules, where the average size of nanoparticles had decreased from 273 nm to 168 nm. In the case of small nanoparticles, the maximum increase ratio of the RRS intensity was obtained when the concentration of aptamer was over 600 nM. Combined with an RRS spectral assay, an effective biosensor has been developed for As(iii) detection, using the above large and small nanoparticles as the target recognition element. The present biosensor has a detection limit as low as 0.2 ppb, a dynamic range from 0.1 ppb to 200 ppb, and high selectivity over other metal ions. Such an efficient biosensor will play an important role in environmental detection.

  8. Polarization tunable circular Dammann grating generated from azo-dye doped nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Luo, D.; Dai, H. T.; Sun, X. W.

    2011-03-01

    A polarization tunable circular Dammann grating (CDG) was generated from an azo-dye (Methyl Red from Aldrich) doped liquid crystal (LC, E7 from Merck) cell. A simple multi-exposure photo-aligned process, based on cell assembled with non-rubbing glass substrates, was used to fabricate the binary phase liquid crystal CDG zone plane consisted of even zone with homogenous LC structure and odd zone with TN LC structure. Different twist angle of fabricated TN structure for odd zone can be obtained by adjusting photo exposure intensity or time. CDG with equal-intensity rings was produced through a Fourier-transform and then captured by a charge-coupled-device in our experiment. The maximum 0th and 1st diffraction orders of obtained CDG can be separated achieved by rotating the analyzer's polarization direction. If the chosen analyzer's direction leads to a zero phase difference of output light from even and odd zones, the maximum 0th diffraction order will be achieved, in contrast, if the chosen analyzer's direction leads to a ? phase difference of output light from even and odd zones, the maximum 1st diffraction order will be produced. The TN structure of azo-dye doped liquid crystal cell fabricated by photo alignment technique provides a new method to generate CDG with polarization-dependent property. A broad wavelength band of lasers used to generate CDG, if far away from MR azo-dye absorption peak, expands the device's application range and shows a great advantage comparing to previously reported CDG fabricated by fixed materials, where only one fixed working wavelength is allowed.

  9. Epitaxial growth of two-dimensional cyanine dye single crystals by adsorption at a pre-conditioned fatty acid monolayer

    NASA Astrophysics Data System (ADS)

    Schmitt, Franz-Josef; Knoll, Wolfgang

    1990-01-01

    We have studied the adsorption of water-soluble cyanine dyes (pseudoisocyanine, PIC and "stains all", SA) to monomolecular layers of arachidic acid (AA) at the water-air interface in a Langmuir trough. Upon adsorption the dye molecules organize themselves and form two-dimensional J-aggregates that can easily be observed and characterized in the fluorescence microscope. We show that AA can be "conditioned" by the adsorption of PIC in a lateral order that can be read-out after desorption of this first dye, by the adsorption of another dye, SA in our case. We interpret this memory effect as being caused by a structural and/or orientational modification of the AA monolayer that controls in addition to an electrostatic contribution, details of the crystal morphology and in this sense is a first example of epitaxial growth of two-dimensional organic crystals.

  10. Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films

    SciTech Connect

    Lin, T.-H.; Fuh, Andy Y.-G.

    2005-07-04

    This work demonstrates the feasibility of exploiting the photoisomerization effect in azo-dye-doped cholesteric liquid crystal (DDCLC) films with a concomitant decline of the phase transition temperature from the cholesteric to an isotropic phase (T{sub Ch-I}) as a spatial filter. The fabrication depends on the fact that the various intensities of the diffracted orders are responsible for the various degrees of transparency associated with the photoisomerized DDCLC film. High- and low-pass images in the Fourier optical signal process can be simultaneously observed via reflected and transmitted signals, respectively. A simulation is also performed, and the results are consistent closely with experimental data.

  11. Effect of dichroic dye on phase separation kinetics and electro-optical characteristics of polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Deshmukh, R. R.; Malik, M. K.

    2013-02-01

    Dichroic polymer dispersed liquid crystal (PDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic azo dye by polymerization induced phase separation (PIPS) method. Dynamics of PIPS and morphology development in the mixtures containing dye have been investigated by means of UV-VIS spectroscopy and optical microscopy. The phase separation and segregation of LC droplets was found to be dependent on the amount of dye used. LC droplets predominantly exhibited bipolar configuration that changed to maltese type crosses under the influence of an applied electric field. The extent of interaction and anchoring energy between the LC and polymer were examined by measuring contact angle in consequence of dye addition. Due to less interfacial interaction, PDLC with low dye content (≤0.06 wt%) gave a good contrast ratio, relatively low threshold voltage and a value of high transmittance in the ON-state. UV-VIS spectroscopy results show that the molecular orientation of dye in LC droplets can be controlled with an applied field to induce nonlinearity in these materials. In particular, the dye concentration can be optimized to obtain promising electronic materials with minimum threshold and high contrast for display applications.

  12. Aggregation Properties and Liquid Crystal Phase of a Dye Based on Naphthalenetetracarboxylic Acid

    NASA Astrophysics Data System (ADS)

    Tomasik, Michelle; Collings, Peter

    2007-03-01

    R003 is a dye produced for thin film optical components by Optiva, Inc.^1 made from the sulfonation of the dibenzimidazole derivative of naphthalenetetracarboxylic acid. Its molecular structure is very different from the aggregating food dye previously investigated in our laboratory^2 and R003 forms a liquid crystal phase at significantly lower concentrations. We have performed polarizing microscopy, absorption spectroscopy, and x-ray diffraction experiments in order to determine the phase diagram and aggregate structure. In addition, we have included both translational and orientational entropy in the theoretical analysis of the aggregation process, and have used a more realistic lineshape in analyzing the absorption data. Our results indicate that the ``bond energy'' for molecules in an aggregate is even larger than for the previously studied dye and that the aggregate structure has a cross-sectional area equal to two or three molecular areas rather than one.^1Lazarev, P., N. Ovchinnikova, M. Paukshto, SID Int. Symp. Digest of Tech. Papers, San Jose, California, June XXXII, 571 (2001).^2V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. A. Heiney, and P. J. Collings, Phys. Rev. E 72, 041710 (2005).

  13. Influence of the layer thickness and concentration of dye molecules on the emission amplification in cholesteric liquid crystals

    SciTech Connect

    Alaverdyan, R B; Gevorgyan, A A; Chilingaryan, A D; Chilingaryan, Yu S

    2008-05-31

    The propagation of light through a planar layer of a cholesteric liquid crystal doped with dye molecules is considered. The features of the emission spectra of the crystal are studied both in the absence and presence of dielectric boundaries. The increase in the emission intensity is investigated for different layer thicknesses and different concentrations of dye molecules. It is shown that an anomalously strong increase in the emission intensity with the diffraction intrinsic polarisation takes place in the case of a comparatively small crystal thickness and a relatively low concentration of dye molecules. The obtained results can be used for the development of miniature lasers with the circular polarisation of the fundamental radiation mode. (laser applications and other topics in quantum electronics)

  14. Optical phase conjugation in azo-dye doped chiral liquid crystal

    SciTech Connect

    Karpinski, Pawel; Miniewicz, Andrzej

    2012-10-15

    We report on optical phase conjugation phenomenon observed in chiral nematic liquid crystal showing band gap type Bragg reflection. The phase conjugate to the signal beam is observable only in the small temperature interval when the Bragg condition is fulfilled and only for circularly polarized light. The optical phase conjugation signals were observed at low cw laser light intensities (<100 mW/cm{sup 2}, {lambda} = 532 nm). Estimated value of third order optical susceptibility {chi}{sup (3)} = 2.8 Multiplication-Sign 10{sup -17} m{sup 2}/V{sup 2} is attributed to enhancement due to photoisomerisation of azo-dye (disperse red 1) inducing molecular reorientation process of liquid crystal molecules.

  15. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost.

    PubMed

    Chen, Si Hui; Yien Ting, Adeline Su

    2015-03-01

    Triphenylmethane dyes (TPM) are recalcitrant colorants brought into the environment. In this study, a lesser-known white rot fungus Coriolopsis sp. (1c3), isolated from compost of Empty Fruit Bunch (EFB) of oil palm, was explored for its decolorization potential of TPM dyes. The isolate 1c3 demonstrated good decolorization efficiencies in the treatment of Crystal Violet (CV; 100 mg l(-1)), Methyl Violet (MV; 100 mg l(-1)) and Cotton Blue (CB; 50 mg(-1)), with 94%, 97% and 91%, within 7, 7 and 1 day(s), respectively. Malachite Green (MG; 100 mg l(-1)) was the most recalcitrant dye, with 52% decolorization after 9 days. Dye removal by 1c3 was presumably via biosorption, whereby the process was determined to be influenced by fungal biomass, initial dye concentrations and oxygen requirements. Biodegradation was also a likely mechanism responsible for dye removal by 1c3, occurred as indicated by the reduction of dye spectra peaks. Detection of laccase, lignin peroxidase and NADH-DCIP reductase activities further substantiate the possible occurrence of biodegradation of TPM dyes by 1c3. PMID:25527986

  16. Modeling and characterization of dye-doped guest-host liquid crystal eyewear

    NASA Astrophysics Data System (ADS)

    Coutino, Pedro Coutino

    This thesis explores the use of dye-doped guest-host liquid crystals in variable transmission eyewear devices that protect against rapid and abrupt changes in lighting conditions. Some of their unique characteristics such as millisecond time response, low power consumption, fail-safe operation, and wide color palette make them the only available technology that meets the basic requirements for fast, adaptative eyewear applications. Despite these unique features, there are limitations in the technology which have hindered its use for more advanced eyewear applications. It is the aim of this dissertation to explore these limitations and provide experimental and numerical characterization tools necessary to surpass them. First, several techniques are described to evaluate materials and devices performance in terms of their photopic transmission, haze, birefringence, and distortion. The results are used to demonstrate that by choosing and combining the right materials, it is possible to improve the optical quality of the eyewear. Then, a simulation instrument which combines and integrates all the necessary elements to model the electro-optical response of dye-doped guest-host liquid crystal eyewear was constructed. This program is capable of reproducing with high accuracy experimental results, to predict the performance of devices, and to mimic the spectral curve of a target color. Numerical experiments were performed to study some of the most common limitations of the e-Tint mode or single cell technology including photopic transmission window, and polarization dependence and demonstrate that optimizing parameters such as birefringence, d/p, and concentration of dyes helps to overcome these limitations and enhance system performance. A guest-host double cell system is proposed as a new alternative mode for most advanced eyewear applications. Particular attention was placed on a switchable crossed polarizers configuration which offered superior optical characteristics such as extremely low polarization dependence and increased transmission window. Simulations showed that the same effect can be obtained for other non-zero d/p values, by proper choice of chirality and configuration. Furthermore, a unique four-color eyewear was designed by combining the absorption properties of individual cells. Finally, several state-of-the-art military and commercial dye-doped guest-host eyewear applications which make use of all the results obtained during this dissertation are presented.

  17. Photodegradation of crystal violet in TiO(2) suspensions using UV-vis irradiation from two microwave-powered electrodeless discharge lamps (EDL(-2)): products, mechanism and feasibility.

    PubMed

    Ju, Yongming; Fang, Jiande; Liu, Xiaowen; Xu, Zhencheng; Ren, Xiuwen; Sun, Cheng; Yang, Shaogui; Ren, Qian; Ding, Youchao; Yu, Kai; Wang, Lianhong; Wei, Zhongbo

    2011-01-30

    Aqueous crystal violet (CV) solutions containing P25-TiO(2) photocatalyst were irradiated with ultraviolet-visible (UV-vis) light from two microwave-powered electrodeless discharge lamps (EDL(-2)). The results demonstrated that approximately 94.4% of CV was effectively removed after 3 min of irradiation, with a pseudo-first order kinetic constant of 0.838 min(-1). According to 32 kinds of products, a five-step degradation pathway of CV was proposed. Further investigations showed that (1) three kinds of N-demethylated products and 4-dimethylaminobenzophenone (DLBP) were the main intermediates; (2) malachite green (MG) and leuco-crystal violet could not be generated by N-demethylation and phototransformation reactions, respectively; (3) bis(4-(dimethylamino)phenyl)methanone preferentially generated via decomposition of the conjugated structure of CV could be further N-demethylated into DLBP. Moreover, the unique degradation pathways of CV and MG were ascribed to the different substituents on the conjugated structures. Additionally, the cost and kinetic constant of different processes was also evaluated, and the results indicated the feasibility of this method for treatment of CV in field situations. PMID:21095059

  18. Measurement of helical twisting power based on axially symmetrical photo-aligned dye-doped liquid crystal film.

    PubMed

    Ko, Shih-Wei; Huang, Shu-Hao; Fuh, Andy Y-G; Lin, Tsung-Hsien

    2009-08-31

    This investigation demonstrates a simple but accurate method for measuring the helical twisting power of chiral doped liquid crystals using axially symmetrical photo-alignment in azo dye-doped liquid crystal films. As reported in our previous paper, a reversed twist effect produces a disclination line in photo-aligned axially symmetrical liquid crystal films. The pitch and helical twisting power can be obtained by measuring the rotation angle of the disclination line in chrial doped liquid crystal. This method is independent of cell gap and provide an error below 0.5%. PMID:19724591

  19. A comparative study on growth, structural, optical, thermal and mechanical properties of undoped and dye doped bis glycine cadmium chloride single crystals

    NASA Astrophysics Data System (ADS)

    Raju, B.; Saritha, A.; Bhagavannarayana, G.; Hussain, K. A.

    2011-06-01

    Dye inclusion crystals have attracted researchers in the context of crystal growth for applications in solid state lasers. Attempt to grow tris glycine cadmium chloride (TGCC) crystals yielded bis glycine cadmium chloride crystals. Single crystals of bis glycine cadmium chloride (BGCC) and organic dye, namely xylenol orange tetra sodium salt (XO) doped BGCC crystals, were grown from aqueous solutions by slow evaporation technique from the mixture of an aqueous solution of glycine and cadmium chloride in 3:1 molar ratio at a constant temperature of 35 °C. The grown crystals are up to the dimension of 20×20×5 mm 3. Characterization of the crystals was made using a single crystal X-ray diffractometer for obtaining the structure. The crystal is monoclinic with P2 1/ n space group. High-resolution X-ray diffraction (HRXRD) was used to evaluate crystalline perfection. Perfection of the undoped crystals is higher than those of the dye doped crystals. Thermal stability of the crystals is tested from differential scanning calorimetry. There is only one endothermic peak, indicating melting point. The optical transparency range of the crystals was identified from the UV-vis spectrum. Functional groups present in the crystals were studied by FT-IR spectral analysis. The mechanical strength of the crystals, measured by Vickers microhardness, and it has increased due to the presence of dye in the crystals.

  20. Feedback-Free, Single-Beam Pattern Formation by Nanosecond Pulses in Dye-Doped Liquid Crystals

    SciTech Connect

    Lapeshkin, N.N.; Lukishova, S.G.; Boyd, R.W.; Marshall, K.L.

    2006-12-13

    Generally, optical feedback and/or two counter-propagating beams are necessary to form high-definition patterns in the cross section of a laser beam after passing through a nonlinear medium. In this paper we present an observation of pattern formation in liquid crystal media in a single laser beam without any external feedback. We found that after irradiation of a dye-doped liquid crystal cell with repetitive nanosecond pulses, the beam coming out of the liquid crystal cell exhibits a spectacular kaleidoscopic change of beam patterns in the far field. The patterns vary from pulse to pulse in an ordered manner cycling through a variety of complicated forms. We speculate that localized phase separation of the dye from the liquid crystal host occurs in the focal region of the beam in our experiments, and that the observed far-field patterns result from the laser-beam diffraction on these absorptive and refractive in homogeneities.

  1. SORPTION AND TOXICITY OF AZO AND TRIPHENYLMETHANE DYES TO AQUATIC MICROBIAL POPULATIONS

    EPA Science Inventory

    Toxicity and sorption of five azo and triphenylmethane dyes to freshwater microbiota were determined to assessment, in part, the risks that these dyes may pose to the aquatic environment. The toxicities of Basic Violet 1, Basic Violet 2, Basic Violet 3, Basic Green 4 and Tropaeol...

  2. Violet root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus causing violet root rot, Helicobasidium brebissonii (anamorph Rhizoctonia crocorum), is widely distributed in Europe and North America but is rarely of much economic importance on alfalfa. The disease has also been reported in Australia, Argentina, and Iran. The disease is characterized b...

  3. Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; Macfarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon

    2013-12-01

    We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2-4 mScm-1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices.

  4. Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells

    PubMed Central

    Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon

    2013-01-01

    We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (24?mScm?1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425

  5. Behaviors of random laser in dye-doped nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yao, Fengfeng; Bian, Huanting; Pei, Yanbo; Hou, Chunfeng; Sun, Xiudong

    2016-01-01

    Random lasing in the nematic liquid crystals (NLCs) with a high doping concentration of the laser dye was observed and characterized. With increasing the pump energy after the occurrence of the random laser (RL), the RL intensity first increases gradually to a maximum, then drops sharply to zero, accompanied by the gradual enhancement of scattering manifested by the growth of far-field diffraction rings of the transmitted pump beam in number. The threshold energy per unit pump area, slope efficiency, and maximal output intensity of the NLC RL depend heavily and nonmonotonically on the pump angle. A model involving the pump pulse induced molecular reorientation in NLCs leading to the pump angle dependent enhancement of scattering is proposed to explain the pump angle dependent properties of RLs.

  6. Effect of metal ions and redox mediators on decolorization of synthetic dyes by crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131).

    PubMed

    Shankar, Shiv; Shikha; Nill, Shikha

    2015-01-01

    The effect of different metal ions and two redox mediators on laccase activity and laccase-catalyzed decolorization of five synthetic dyes was investigated in vitro using crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131). The fungus effectively decolorized crystal violet and brilliant green on malt extract agar medium. Laccase activity was enhanced by metal ions such as Cd(2+), Mn(2+), Ni(2+), Co(2+), Na(+) Ca(2+), and Cu(2+). Among the different dyes tested, highest decolorization of crystal violet (96.30 %) was obtained in the presence of 1 mM ABTS followed by 86.01 % by HBT. The results conspicuously indicated that laccase from Peniophora sp. has the potential for color removal from textile dye effluent even in the presence of toxic metal ions. PMID:25293639

  7. Manipulation and assembly of small objects in liquid crystals by dynamical disorganizing effect of push-pull-azobenzene-dye

    PubMed Central

    Kurihara, Seiji; Ohta, Kazuhiro; Oda, Takahiro; Izumi, Ryo; Kuwahara, Yutaka; Ogata, Tomonari; Kim, Sun-Nam

    2013-01-01

    The phase transition of a nematic liquid crystal containing a push-pull azobenzene dye could be induced efficiently during irradiation with visible light. The dynamical disorganizing effect of the push-pull azobenzene dye on the liquid crystalline order through its trans-cis-trans photoisomerizaion cycle under visible light was contributed to the efficient phase transition. Then, the effects of light irradiation on the motion of small objects dispersed in the liquid crystals containing the push-pull azobenzene were explored, and the manipulation and assembly of those objects were successfully achieved in the nematic phase but also in the smectic phase. The combination of the photo-controlled dynamical change in the liquid crystalline order and the intrinsic self-assembly property of a liquid crystal is promising for use in technologies that require not only the organization of small objects but also the photo-driving of nano- and micro-sized mechanical materials. PMID:23835605

  8. Toxic textile dyes accumulate in wild European eel Anguilla anguilla.

    PubMed

    Belpaire, Claude; Reyns, Tim; Geeraerts, Caroline; Van Loco, Joris

    2015-11-01

    Dyes are used to stain inks, paints, textile, paper, leather and household products. They are omnipresent, some are toxic and may threaten our environment, especially aquatic ecosystems. The presence of residues of sixteen dyes (triarylmethanes, xanthenes, phenothiazines and phenoxazines) and their metabolites was analyzed in muscle tissue samples of individual yellow-phased European eels (Anguilla anguilla) from 91 locations in Belgian rivers, canals and lakes sampled between 2000 and 2009 using ultra performance liquid chromatography-tandem mass spectrometry. Eel was contaminated by dyes in 77% of the sites. Malachite Green, Crystal Violet and Brilliant Green were present in 25-58% of the samples. Dye occurrence was related to the distribution of textile and dye production industries. This field study is the first large-scale survey to document the occurrence of artificial dyes in wildlife. Considering the annual amounts of dyes produced worldwide and the unintentional spillage during their use, our observations warrant additional research in other parts of the world. The presence of these highly toxic dyes in the European eel may form an additional threat to this critically endangered species. The contaminated eels should be considered as not suitable for consumption. PMID:26291760

  9. First Crystal Structure of a Fungal High-redox Potential Dye-decolorizing Peroxidase

    PubMed Central

    Strittmatter, Eric; Liers, Christiane; Ullrich, Ren; Wachter, Sabrina; Hofrichter, Martin; Plattner, Dietmar A.; Piontek, Klaus

    2013-01-01

    Dye-decolorizing peroxidases (DyPs) belong to the large group of heme peroxidases. They utilize hydrogen peroxide to catalyze oxidations of various organic compounds. AauDyPI from Auricularia auricula-judae (fungi) was crystallized, and its crystal structure was determined at 2.1 ? resolution. The mostly helical structure also shows a ?-sheet motif typical for DyPs and Cld (chlorite dismutase)-related structures and includes the complete polypeptide chain. At the distal side of the heme molecule, a flexible aspartate residue (Asp-168) plays a key role in catalysis. It guides incoming hydrogen peroxide toward the heme iron and mediates proton rearrangement in the process of Compound I formation. Afterward, its side chain changes its conformation, now pointing toward the protein backbone. We propose an extended functionality of Asp-168, which acts like a gatekeeper by altering the width of the heme cavity access channel. Chemical modifications of potentially redox-active amino acids show that a tyrosine is involved in substrate interaction. Using spin-trapping experiments, a transient radical on the surface-exposed Tyr-337 was identified as the oxidation site for bulky substrates. A possible long-range electron transfer pathway from the surface of the enzyme to the redox cofactor (heme) is discussed. PMID:23235158

  10. Hierarchical Organization of Organic Dyes and Protein Cages into Photoactive Crystals.

    PubMed

    Mikkilä, Joona; Anaya-Plaza, Eduardo; Liljeström, Ville; Caston, Jose R; Torres, Tomas; Escosura, Andrés de la; Kostiainen, Mauri A

    2016-01-26

    Phthalocyanines (Pc) are non-natural organic dyes with wide and deep impact in materials science, based on their intense absorption at the near-infrared (NIR), long-lived fluorescence and high singlet oxygen ((1)O2) quantum yields. However, Pcs tend to stack in buffer solutions, losing their ability to generate singlet oxygen, which limits their scope of application. Furthermore, Pcs are challenging to organize in crystalline structures. Protein cages, on the other hand, are very promising biological building blocks that can be used to organize different materials into crystalline nanostructures. Here, we combine both kinds of components into photoactive biohybrid crystals. Toward this end, a hierarchical organization process has been designed in which (a) a supramolecular complex is formed between octacationic zinc Pc (1) and a tetraanionic pyrene (2) derivatives, driven by electrostatic and π-π interactions, and (b) the resulting tetracationic complex acts as a molecular glue that binds to the outer surface anionic patches of the apoferritin (aFt) protein cage, inducing cocrystallization. The obtained ternary face-centered cubic (fcc) packed cocrystals, with diameters up to 100 μm, retain the optical properties of the pristine dye molecules, such as fluorescence at 695 nm and efficient light-induced (1)O2 production. Considering that (1)O2 is utilized in important technologies such as photodynamic therapy (PDT), water treatments, diagnostic arrays and as an oxidant in organic synthesis, our results demonstrate a powerful methodology to create functional biohybrid systems with unprecedented long-range order. This approach should greatly aid the development of nanotechnology and biomedicine. PMID:26691783

  11. Inactivation of Foot-and-Mouth Disease Virus by Interaction of Dye and Visible Light

    PubMed Central

    Fellowes, O. N.

    1966-01-01

    The inactivation of foot-and-mouth disease virus was studied by means of the interaction of neutral red, Toluidine Blue, and methylene blue with visible light. The virus, Type A, strain 1, CANEFA of Argentine origin, was grown in tissue culture and tested in the crude and clarified state. Virus and dye were mixed and incubated together at 4 C for 45 min in the dark, or were mixed and immediately exposed to the visible light source without prior incubation together. Mixtures of crude virus and dye, under any of the experimental conditions used, did not inactivate more than 1 to 2 logs of viral infectivity when held in the dark or when exposed to light during a period of 45 min. Complete inactivation of virus was achieved when clarified virus and dye were mixed and immediately exposed to the visible light source for 15 min. Prior incubation of clarified virus and dye permitted inactivation by methylene blue only, whereas no incubation prior to exposure resulted in three of the dyes contributing to inactivation. A concentration of 6 μg of neutral red, Toluidine Blue, methylene blue, and crystal violet was used per milliliter of virus suspension. Crystal violet was not a good viral inactivator under the conditions of the experimentation. Inactive virus induced the formation of neutralizing antibodies in adult chickens and mice. The antibody titer stimulated by the antigen treated with methylene blue and visible light was probably significant. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:4288063

  12. Spectral plasmonic effect in the nano-cavity of dye-doped nanosphere-based photonic crystals.

    PubMed

    Yadav, Ashish; Danesh, Mohammad; Zhong, Liubiao; Cheng, Gary J; Jiang, Lin; Chi, Lifeng

    2016-04-22

    We demonstrated three-dimensional PMMA-based photonic crystal (3D-PC) nanostructures attached to Au nanoparticles (AuNPs), which undergo self-organization into super lattice planes and enhance the fluorescence properties. This new structure exhibited interesting tunable spectral, peak broadening plasmonic behavior because of strong plasmonic interaction at high laser powers. The presented work provides an important tool to improve the efficiency of dye laser applications. PMID:26954366

  13. In defence of 'dye therapy'.

    PubMed

    Wainwright, Mark

    2014-07-01

    Worldwide, healthcare is facing enormous problems with the continuing rise of drug-resistant infectious diseases. In view of the scarcity of new antimicrobial agents and the withdrawal of many pharmaceutical houses from the fray, alternative approaches are required. One of these is photoantimicrobial chemotherapy, which is highly effective across the range of microbial pathogens and does not suffer from resistance. However, there is a lack of uptake of this approach by healthcare providers and the pharmaceutical industry alike. It is seldom recalled that, unlike anticancer photodynamic therapy, the development of photoantimicrobial agents has evolved from the antiseptic 'dye therapy' in common use until the widespread introduction of the penicillin class in the mid-1940s. Cationic biological dyes such as methylene blue, crystal violet and acriflavine were effective in local wound therapy and today provide a sound basis for light-activated antimicrobial therapeutics. It is proposed that such 'safe' dyes are introduced as locally administered photoantimicrobials, especially in order to conserve valuable conventional antibacterial drugs. PMID:24795083

  14. Cumulative Birefringence Effects of Nanosecond Laser Pulses in Dye-Doped Planar Nematic Liquid Crystal Layers

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.; Boyd, Robert W.; Lepeshkin, Nick; Marshall, Kenneth L.

    New cumulative effects in laser-induced birefringence have been observed under 10-Hz-pulse-repetition-rate, nanosecond-duration laser irradiation of azo-dye-doped planar-nematic liquid crystal layers at incident intensities I ~ 1-10 MW/cm2. An irradiation geometry with the incident polarization parallel to the nematic director was used. his geometry does not permit a first-order electric field induced reorientation of the nematic molecules, allowing us to exclude its contribution to the nonlinear response. New laser-induced birefringence effects with a buildup time of several seconds to minutes manifest themselves in: the appearance of a polarization component perpendicular to the nematic director; two different modes of spatial pattern formation with different patterns for parallel and perpendicular polarization: (1) At I ~ 1-5 MW/cm2, the perpendicular polarization component forms a four-leaf-clover (a Maltese-like cross) spatial pattern in the far-field from the initial Gaussian spatial intensity distribution. The incident, parallel polarization component forms a round spot with a single ring spatial pattern. (2) At higher incident intensities (I ~ 5-10 MW/cm2), a second regime of pattern formation is observed in the form of high definition patterns and only for the polarization component parallel to the nematic director.

  15. Fast Optical Switching Using Oriented Cyanine Dye-Doped Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Jin, Zhao-Hui; Li, Zhong-Yu; Kazuo, Kasatani; Hiroaki, Okamoto

    2006-10-01

    A cyanine dye, 2-[7-(1,3-dihydro-1,3,3-trimethyl-2H-indol-2-ylidene)-1,3,5-heptatrienyl]-1,3,3-trimethyl-3H-indolium iodide (NK-125), is doped in 4-cyano-4'-pentylbiphenyl (5 CB), and the mixture is sandwiched between two pieces of rubbed glass plates. The third-order nonlinear optical properties of the oriented NK-125-5CB layers are measured by the resonant femtosecond degenerate four-wave mixing (DFWM) technique at 760 nm. The third-order nonlinear optical susceptibility of one of the present samples is 5.510-8 esu. The slow DFWM response of the NK-125-5CB layers due to a population grating is accelerated by the increasing laser power because of amplified spontaneous emission (ASE). On the other hand, we do not observe a similar phenomenon for NK-125-polyethylene glycol (PEG-400). Oriented NK-125 molecules in nematic liquid crystals must have very high ASE efficiency. Hence the population grating in a DFWM signal disappears within about 4 ps. It is expected that NK-125-5CB can be used as a material for very fast all-optical switching.

  16. Combinatorial effects of charge characteristics and hydrophobicity of silk fibroin on the sorption and release of charged dyes.

    PubMed

    Wongpanit, Panya; Rujiravanit, Ratana

    2012-01-01

    The present study was designed to examine the influence of the charge characteristics of silk fibroin on the sorption and release of charged dyes by varying the pH values of the sorption and release media as well as types of charged dyes. Negatively charged dyes (phenol red and chromotrope 2R) and positively charged dyes (crystal violet and indoine blue) were used as the model compounds. Silk fibroin films were prepared by using a solution casting technique. The prepared films were then treated with an aqueous methanol solution or annealed with water to control their conformation. The sorption behavior of the model compounds made by the methanol-treated and water-annealed silk fibroin films was investigated. Compared to the water- annealed silk fibroin films, a higher hydrophobicity of the methanol-treated silk fibroin films caused a higher sorption of the hydrophobic dyes. The dye molecules had a fairly high affinity to the silk fibroin film, even though the dye and the matrix possessed the same charge. However, in the presence of two charged groups in a single dye molecule, the electrostatic repulsion become more dominant. Stronger interaction was observed when the charges of the film and the dye were opposite. The results of dye sorption and release experiments showed that the degree of synergism or competition between electrostatic and hydrophobic interactions directly depended on the charges and chemical structure of the dye molecules and the environmental pH conditions of the existing silk fibroin film. PMID:21639994

  17. A New Organic Dye-Based Staining for The Detection of Plant DNA in Agarose Gels.

    PubMed

    Sönmezoğlu, Özlem Ateş; Özkay, Kerime

    2015-01-01

    Ethidium bromide (EtBr) is used to stain DNA in agarose gel electrophoresis, but this dye is mutagenic and carcinogenic. We investigated N-719, which is a visible, reliable and organic Ruthenium-based dye, and five fluorescent alternatives for staining plant DNA. For prestaining and poststaining, N-719, GelRed, and SYBR Safe stained both DNA and PCR product bands as clearly as EtBr. SYBR Green I, methylene blue, and crystal violet were effective for poststaining only. The organic dye N-719 stained DNA bands as sensitively and as clearly as EtBr. Consequently, organic dyes can be used as alternatives to EtBr in plant biotechnology studies. PMID:26158569

  18. 27 CFR 21.111 - Gentian violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....111 Gentian violet. (a) Gentian violet (methyl violet, methylrosaniline chloride) occurs as a dark.... (d) Insoluble matter. Not to exceed 0.25 percent when tested by the following method: Transfer...

  19. 27 CFR 21.111 - Gentian violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....111 Gentian violet. (a) Gentian violet (methyl violet, methylrosaniline chloride) occurs as a dark.... (d) Insoluble matter. Not to exceed 0.25 percent when tested by the following method: Transfer...

  20. 27 CFR 21.111 - Gentian violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....111 Gentian violet. (a) Gentian violet (methyl violet, methylrosaniline chloride) occurs as a dark.... (d) Insoluble matter. Not to exceed 0.25 percent when tested by the following method: Transfer...

  1. 27 CFR 21.111 - Gentian violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....111 Gentian violet. (a) Gentian violet (methyl violet, methylrosaniline chloride) occurs as a dark.... (d) Insoluble matter. Not to exceed 0.25 percent when tested by the following method: Transfer...

  2. Dye-sensitized nanoarrays with discotic liquid crystals as interlayer for high-efficiency inverted polymer solar cells.

    PubMed

    Shi, Yueqin; Tan, Licheng; Chen, Yiwang

    2014-10-22

    The well-aligned and highly uniform one-dimensional ZnO with organic dyes core/shell (ZNs) and ZnO with dyes and liquid crystals core/double-shells nanoarrays (ZNLs) with controllable lengths were fabricated as electron transport layers (ETLs) in inverted polymer solar cells (PSCs). Ditetrabutylammonium cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II) dye (N719) was presented to reduce the surface defects of ZnO nanoarrays (NAs). In addition, the shell modification could decrease the electron injection barrier between ZnO and active layer, thereby facilitating electron injection effectively and forming a direct electron transport channel into the cathode. Due to the orientation of nanoarrays and the self-organization of 3,6,7,10,11-pentakis(hexyloxy)-2-hydroxytriphenylene liquid crystals (LCs) in liquid crystalline mesophase and isotropic phase transition, the components of active layer would be driven rearrange and infiltrate among the interspaces of nanoarrays more orderly. The increased interfacial contact between cathode and active layer would benefit charge generation, transportation and collection. On the basis of these advantages, it was found the N719 shell and N719/LCs double-shells modifications of ZnO NAs could boost the photovoltaic performance of PSCs with the best power conversion efficiency (PCE) of 7.3% and 8.0%, respectively. PMID:25269148

  3. Self-Assembly and Formation of Chromonic Liquid Crystals from the Dyes Quinaldine Red Acetate and Pyronin Y.

    PubMed

    Magana, J R; Homs, M; Solans, C; Obiols-Rabasa, M; Salonen, L M; Rodríguez-Abreu, C

    2016-01-14

    The aqueous self-assembly behavior of the dyes Quinaldine red acetate and Pyronin Y in a wide range of concentrations is reported here for the first time. (1)H NMR spectroscopy, polarized-light optical microscopy, and small and wide X-ray scattering were used to get insight into molecular interactions, phase boundaries and aggregate structure. Quinaldine red acetate and Pyronin Y self-organize into unimolecular stacks driven by attractive aromatic interactions. At high concentrations, spatial correlation among the molecular stacks gives rise to nematic liquid crystals in both systems. Quinaldine red acetate additionally produces a rare chromonic O phase built of columnar aggregates with anisotropic cross-section ordered in a rectangular lattice. The O phase changes into a columnar lamellar structure as a result of a temperature-induced phase transition. Results open the possibility of finding chromonic liquid crystals in other commercially available dyes with a similar molecular structure. This would eventually expand the availability of these unique soft materials and thus introduce new applications for marketed dyes. PMID:26700729

  4. Synthesis and analysis of nickel dithiolene dyes in a nematic liquid crystal host. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    SciTech Connect

    Lippa, I.

    1999-03-01

    The Liquid Crystal Point Diffraction Interferometer (LCPDI) can be employed to evaluate the Omega Laser system for optimum firing capabilities. This device utilizes a nickel dithiolene infrared absorbing liquid crystal dye dissolved in a liquid crystal host medium (Merck E7). Three nickel dithiolene dyes were characterized for both their solubility in the E7 host and their infrared spectral absorption.

  5. Back focal plane imaging of directional emission from dye molecules coupled to one-dimensional photonic crystals

    PubMed Central

    Zhang, Douguo; Badugu, Ramachandram; Chen, Yikai; Yu, Sisheng; Yao, Peijun; Wang, Pei; Ming, Hai; Lakowicz, Joseph R.

    2014-01-01

    Bloch surface waves (BSWs) on one-dimensional photonic crystals (1DPC) have been used to beam the fluorescence emission from the dye molecules. All dielectric 1DPC displays its low propagating loss, narrow resonance and the absence of absorption or quenching. In this letter, back focal plane imaging reveals that in addition to the BSW mode, a guided mode and cavity mode also exist in the 1DPC which all couple with the excited dye molecules. The appearance of these modes is sensitive to the wavelength of the fluorescence and alters the beaming effect by the 1DPC. Numerical simulations verify the existence of these modes which are consistent with the experimental results. Comparisons between the Bloch surface wave-coupled emission (BWCE) and surface plasmon-coupled emission (SPCE) are also presented for a more clear understanding of the multilayered film-enabled directional emission. PMID:24621990

  6. Far-Field Patterns from Dye-Doped Planar-Aligned Nematic Liquid Crystals Under nanosecond Laser Irradiation

    SciTech Connect

    Lukishova, S.G.; Lepeshkin, N.; Boyd, R.W.; Marshall, K.L.

    2006-08-18

    High-definition patterns were observed under 10-Hz-pulse-repetition-rate, nanosecond laser irradiation of azodye-doped planar-nematic liquid crystal layers at incident intensities I ~ 5-10 MW/cm^2 in a single beam configuration and without any feedback involved. An incident polarization parallel to the nematic director was used. Under periodic pulsed laser irradiation, far-field beam patterns at the output of a dye-doped liquid crystal layer changed kaleidoscopically from rings and stripes to multiple hexagons. This pattern-formation regime had a buildup time of several seconds to minutes. We explain the observed effect by diffraction of the laser beam on light-induced micrometer-size inhomogeneities inside the liquid crystal layer with absorption and refraction properties different from the surrounding area. Possible mechanisms of the formation of the inhomogeneities are discussed.

  7. Structural insight into the interactions between a cationic dye and an anionic surfactant in crystals of 9-aminoacridinium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Sikorski, Artur; Trzybi?ski, Damian

    2014-11-01

    9-Aminoacridinium dodecyl sulfate, a salt consisting of a cationic dye and an anionic surfactant, was synthesized and structurally characterized. In the crystal packing, dodecyl sulfate anions interact via weak C-H⋯O hydrogen bonds and van der Waals interactions to form monolayers. These monolayers have a corrugated surface in which shallow and deep grooves are distinguishable. 9-Aminoacridinium cations form ?-stacking columns, which are located in these grooves, and interact with dodecyl sulfate monolayers via N-H⋯O and C-H⋯O hydrogen bonds. The monolayers of dodecyl sulfate ions observed in the crystal structure of the title compound represent a new type of self-assembled monolayers of this surfactant in the crystals.

  8. Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae.

    PubMed

    Shen, Bing; Liu, Hong-Cui; Ou, Wen-Bin; Eilers, Grant; Zhou, Sheng-Mei; Meng, Fan-Guo; Li, Chun-Qi; Li, Yong-Quan

    2015-12-01

    Basic Violet 14, Direct Red 28 and Acid Red 26 are classified as carcinogenic dyes in the European textile ecology standard, despite insufficient toxicity data. In this study, the toxicity of these dyes was assessed in a zebrafish model, and the underlying toxic mechanisms were investigated. Basic Violet 14 and Direct Red 28 showed acute toxicity with a LC50 value at 60.63 and 476.84 g ml(-1) , respectively, whereas the LC50 of Acid Red 26 was between 2500 and 2800 g ml(-1) . Treatment with Basic Violet 14, Direct Red 28 and Acid Red 26 resulted in common developmental abnormalities including delayed yolk sac absorption and swimming bladder deflation. Hepatotoxicity was observed in zebrafish treated with Basic Violet 14, and cardiovascular toxicity was found in zebrafish treated with Acid Red 26 at concentrations higher than 2500 g ml(-1) . Basic Violet 14 also caused significant up-regulation of GCLC gene expression in a dose-dependent manner whereas Acid Red 26 induced significant up-regulation of NKX2.5 and down-regulation of GATA4 at a high concentration in a dose-dependent manner. These results suggest that Basic Violet 14, Direct Red 28 and Acid Red 26 induce developmental and organ-specific toxicity, and oxidative stress may play a role in the hepatotoxicity of Basic Violet 14, the suppressed GATA4 expression may have a relation to the cardiovascular toxicity of Acid Red 26. PMID:25727789

  9. Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent

    NASA Astrophysics Data System (ADS)

    Satapathy, Mantosh Kumar; Banerjee, Priya; Das, Papita

    2015-01-01

    Toxicity of textile effluent is a globally alarming issue nowadays. In order to address this problem, a cost-effective and environment-friendly technique for adsorption of toxic dyes has been introduced in this research. Firstly in this study, green synthesis of silver nanoparticles (AgNPs) having antibacterial efficacy, had been carried out using leaf extracts of Azadirachta indica as reducing as well as capping agent. This research idea was further extended for the development and application of a novel method of preparation of silver-nanocomposite using synthesized microwave-assisted AgNPs with soil as a novel nanocomposite to adsorb hazardous dyes. However, this nanocomposite was found to possess higher efficiency and adsorption capacity in comparison to soil as adsorbent for the removal of crystal violet dye under same experimental conditions. Additionally, it was also observed that use of this Ag-nanocomposite as adsorbent helped in achieving about 97.2 % removal of crystal violet dye from the effluent solution.

  10. A chemometric-assisted method for the simultaneous determination of malachite green and crystal violet in water based on absorbance-pH data generated by a homemade pH gradient apparatus.

    PubMed

    Yu, Shuling; Yuan, Xuejie; Yang, Jing; Yuan, Jintao; Shi, Jiahua; Wang, Yali; Chen, Yuewen; Gao, Shufang

    2015-11-01

    An attractive method of generating second-order data was developed by a dropping technique to generate pH gradient simultaneously coupled with diode-array spectrophotometer scanning. A homemade apparatus designed for the pH gradient. The method and the homemade apparatus were used to simultaneously determine malachite green (MG) and crystal violet (CV) in water samples. The absorbance-pH second-order data of MG or CV were obtained from the spectra of MG or CV in a series of pH values of HCl-KCl solution. The second-order data of mixtures containing MG and CV that coexisted with interferents were analyzed using multidimensional partial least-squares with residual bilinearization. The method and homemade apparatus were used to simultaneously determine MG and CV in fish farming water samples and in river ones with satisfactory results. The presented method and the homemade apparatus could serve as an alternative tool to handle some analysis problems. PMID:26057094

  11. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices 73.3107 Carbazole violet. (a) Identity. The color additive is carbazole violet (Pigment Violet 23) (CAS Reg. No. 6358-30-1, Colour Index No. 51319). (b)...

  12. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices 73.3107 Carbazole violet. (a) Identity. The color additive is carbazole violet (Pigment Violet 23) (CAS Reg. No. 6358-30-1, Colour Index No. 51319). (b)...

  13. 21 CFR 73.3107 - Carbazole violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Carbazole violet. 73.3107 Section 73.3107 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices 73.3107 Carbazole violet. (a) Identity. The color additive is carbazole violet (Pigment Violet 23) (CAS Reg. No. 6358-30-1, Colour Index No. 51319). (b)...

  14. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Manganese violet. 73.2775 Section 73.2775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2775 Manganese violet. (a) Identity. The color additive manganese violet is a violet...

  15. Photoalignment control: self-focusing effect in hybrid- and homeotropic-aligned dye-doped polymer-stabilized liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shishido, A.

    2015-09-01

    Nonlinear optics has drawn much attention for its great potential in applications, such as frequency conversion, multiple-photon absorption, self-focusing, and so on. However, such optical nonlinearities are generally observed at very high light intensities. In this study, we designed hybrid-aligned dye-doped polymer-stabilized liquid crystals (PSLC), in which the molecular director orientation gradually changes from homeotropic at one surface to homogeneous at the other. In such film, the threshold intensity required to form self-focusing effect was markedly reduced by a factor of 8.5 compared to that in a conventional homeotropic cell, which enabled the generation of the self-focusing effect using a handheld 1-mW laser pointer. In addition, we investigated the structural effect of dye molecules: azo-dye methyl red (MR, photoisomerizable)-doped PSLC was prepared and its NLO response was evaluated. It turned out that such MR-based LC system was not effective for self-focusing effect compared to oligothiophene-doped systems.

  16. Effect of carbon and nitrogen source amendment on synthetic dyes decolourizing efficiency of white-rot fungus, Phanerochaete chrysosporium.

    PubMed

    Pant, Deepak; Singh, Anoop; Satyawali, Yamini; Gupta, R K

    2008-01-01

    Decolourization activity of Phanerochaete chrysosporium for three synthetic dyes viz., congo red, malachite green and crystal violet and impact of additional carbon and nitrogen supply on decolourization capacity of fungus were investigated. Maximum decolourizing capacity was observed up to 15 ppm. Addition of urea as nitrogen source and glucose as carbon source significantly enhanced decolourizing capacity (up to 87%) of fungus. In all the cases, both colour and COD were reduced more in non-sterilized treatments as compared to sterilized ones. Significant reductions in COD content of dye solutions (79-84%) were recorded by fungus supplied with additional carbon and nitrogen. A highly significant correlation (r = 0.78, p < 0.001) between colour and COD of dye solutions was recorded. Thus, a readily available carbon and nitrogen source is imperative to enhance the bioremediation activity of this fungus which has been the most suitable for synthetic dyes and textile industry wastewater treatment. PMID:18831336

  17. Specific features of the crystal packing that enable styryl dyes of the pyridine series to undergo the solid-phase [2 + 2] photocycloaddition including the process with single crystal retention

    SciTech Connect

    Kuz'mina, L. G.; Vedernikov, A. I.; Sazonov, S. K.; Lobova, N. A.; Loginov, P. S.; Howard, J. A. K.; Alfimov, M. V.; Gromov, S. P.

    2008-05-15

    The crystal packing of a number of styryl dyes of the pyridine series is analyzed. The structures of three dyes and three [2 + 2] photocycloaddition (PCA) products, 1,2,3,4-tetrasubstituted cyclobutanes, obtained in single crystals are determined by X-ray diffraction. Stacks of planar organic cations are characteristic of styryl dye packings. The proceeding of the PCA reaction as a single crystal-to-single crystal transformation in the syn head-to-head stacks is in principle impossible. The syn head-to-tail stacking packings are favorable for the PCA reactions resulting in the centrosymmetric rctt isomers of cyclobutane. The stacking packings, in which molecules are related by the twofold axes (the anti arrangement of molecules), are also favorable for PCA in single crystals. In this case, the products are the rtct isomers of cyclobutane. The presence of the I{sup -} counterions in a packing is a factor impeding the PCA reaction, because the secondary I-H-C bonds increase the rigidity of the crystal lattice. The conditions necessary for proceeding the PCA reactions in styryl dyes as single crystal-to-single crystal processes are as follows: (1) the stacks split into pairs of organic cations (dimers) with the d distances within 4.2 A in a dimer and d exceeding 4.2 A between the dimers; and (2) the dimers are surrounded by flexible shells consisting of anions, solvate molecules, or flexible moieties of the organic cations themselves.

  18. [Study on decolorization of triphenylmethane dyes by DTT].

    PubMed

    Pan, Tao; Liu, Da-Wei; Ren, Sui-Zhou; Guo, Jun; Sun, Guo-Ping

    2012-03-01

    Decolorization of triphenylmethane dyes by DTT was researched. For malachite green, content of DTT in reaction system was optimized to investigate the quantitative relation between DTT and malachite green and the decolorization capacity of DTT was confirmed. Effect of pH of reaction system on reducibility of DTT was explored. The results indicated 4 mol malachite green could be decolorized by 1 mol DTT averagely within 1 min, when pH of the reaction system was above 5. The decolorization rate was up to 97%. Decolorization product of malachite mreen was corroborated to be its leuco form by HPLC analysis. Some insoluble compounds, which could be the complex products of leuco malachite green with DTT, were formed during the decolorization reaction. Decolorization of crystal violet, brilliant green and basic fuchsin by DTT was tested further, and the decolorization rates were all above 85%, which suggested DTT was a broad-spectrum decolorization agent for triphenylmethane dyes. PMID:22624380

  19. Polyamide as an efficient sorbent for simultaneous interface-free determination of three Sudan dyes in saffron and urine using high-performance liquid chromatography-ultra violet detection.

    PubMed

    Saeidi, Iman; Barfi, Behruz; Payrovi, Moazameh; Feizy, Javid; Sheibani, Hojat A; Miri, Mina; Ghollasi Moud, Farahnaz

    2015-01-01

    With polyamide (PA) as an efficient sorbent for solid phase extraction (SPE) of Sudan dyes II, III and Red 7B from saffron and urine, their determination by HPLC was performed. The optimum conditions for SPE were achieved using 7 mL methanol/water (1:9, v/v, pH 7) as the washing solvent and 3 mL tetrahydrofuran for elution. Good clean-up and high (above 90%) recoveries were observed for all the analytes. The optimized mobile phase composition for HPLC analysis of these compounds was methanol-water (70:30, v/v). The SPE parameters, such as the maximum loading capacity and breakthrough volume, were also determined for each analyte. The limits of detection (LODs), limits of quantification (LOQs), linear ranges and recoveries for the analytes were 4.6-6.6 microg/L, 13.0-19.8 microg/L, 13.0-5000 microg/L (r2>0.99) and 92.5%-113.4%, respectively. The precisions (RSDs) of the overall analytical procedure, estimated by five replicate measurements for Sudan II, III and Red 7B in saffron and urine samples were 2.3%, 1.8% and 3.6%, respectively. The developed method is simple and successful in the application to the determination of Sudan dyes in saffron and urine samples with HPLC coupled with UV detection. PMID:25958664

  20. Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study

    NASA Astrophysics Data System (ADS)

    Li, Wu-Hu; Li, Xiao-Yuan; Yu, Nai-Teng

    1999-10-01

    Surface-enhanced resonance hyper-Raman scattering (SERHRS) and surface-enhanced resonance Raman scattering (SERRS) of three dyes, rhodamine 6G, crystal violet and basic fuchsin, are studied comparatively on electrochemically roughened silver electrode and silver colloid, respectively. All three dyes show a better SERHRS efficiency on the silver colloid than on the silver electrode, a phenomenon just opposite to what we have recently observed for pyridine and pyrazine [Chem. Phys. Lett. 305 (1999) 303]. These results suggest that the efficiency of SEHRS depends not only on the active surfaces employed (colloidal metals versus roughened electrodes) but also on the types of the adsorbed molecules.

  1. Plasma-Assisted Synthesis of High-Mobility Atomically Layered Violet Phosphorus.

    PubMed

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Hsiao, Ching-Hung; Medina, Henry; Su, Teng-Yu; Ouyang, Hao; Chen, Tai-Hsiang; Liang, Jenq-Horng; Chueh, Yu-Lun

    2015-07-01

    Two-dimensional layered materials such as graphene, transition metal dichalcogenides, and black phosphorus have demonstrated outstanding properties due to electron confinement as the thickness is reduced to atomic scale. Among the phosphorus allotropes, black phosphorus, and violet phosphorus possess layer structure with the potential to be scaled down to atomically thin film. For the first time, the plasma-assisted synthesis of atomically layered violet phosphorus has been achieved. Material characterization supports the formation of violet phosphorus/InN over InP substrate where the layer structure of violet phosphorus is clearly observed. The identification of the crystal structure and lattice constant ratifies the formation of violet phosphorus indeed. The critical concept of this synthesis method is the selective reaction induced by different variations of Gibbs free energy (?G) of reactions. Besides, the Hall mobility of the violet phosphorus on the InP substrate greatly increases over the theoretical values of InP bulk material without much reduction in the carrier concentration, suggesting that the mobility enhancement results from the violet phosphorus layers. Furthermore, this study demonstrates a low-cost technique with high compatibility to synthesize the high-mobility atomically layered violet phosphorus and open the space for the study of the fundamental properties of this intriguing material as a new member of the fast growing family of 2D crystals. PMID:26070035

  2. Rapid Charge Transport in Dye-Sensitized Solar Cells Made from Vertically Aligned Single-Crystal Rutile TiO2 Nanowires

    SciTech Connect

    Feng, X.; Zhu, K.; Frank, A. J.; Grimes, C. A.; Mallouk, T. E.

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO2 nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport (see picture) and a factor four lower defect state density than conventional rutile nanoparticle films.

  3. Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals.

    PubMed

    Qiao, Han; Zhou, Yanmei; Yu, Fang; Wang, Enze; Min, Yinghao; Huang, Qi; Pang, Lanfang; Ma, Tongsen

    2015-12-01

    A novel carboxylate-functionalized adsorbent (CNM) based on cellulose nanocrystals (CNCs) was prepared and adsorptive removal of multiple cationic dyes (crystal violet, methylene blue, malachite green and basic fuchsin) were investigated. The maximum cationic dyes uptakes ranged from 30.0 to 348.9mgg(-1) following the order of: CNM>CNCs>raw cellulose. Furthermore, the removal of crystal violet by CNM was investigated representatively where kinetics, thermodynamics and isotherm analysis were employed to explain in-depth information associated with the adsorption process. The adsorption kinetics fitted well to the pseudo-second-order model and thermodynamic analysis revealed that the adsorption process was spontaneous and exothermic. Meanwhile, isothermal study demonstrated a monolayer adsorption behavior following the Langmuir model with a calculated maximum absorption capacity of 243.9mgg(-1), which is higher than those of many other reported adsorbents. These findings prefigure the promising potentials of CNM as a versatile adsorbent for the efficient removal of cationic dyes from wastewater. PMID:26298027

  4. Production and delivery of violet solar cells

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The expansion of conventional violet cells from laboratory numbers to pilot line numbers is described. The basic properties of a violet cell are discussed. The close interaction of all the process steps is emphasized.

  5. Flight qualification test results for violet cells

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1974-01-01

    The violet solar cell has been submitted to a flight qualification program. The tasks included in this program were: to define the violet cell's electrical output from -100 C to +100 C; to determine the violet cell's degradation under 2 MeV, 1 MeV and .3 MeV proton irradiation, under a high humidity environment and under ultraviolet light; to thermal cycle two similar modules of violet cells; to flight qualify a full size violet cell panel for the IMP-J flight; and to obtain a primary balloon-flown standard of the violet cell type. The results of these tests demonstrate that the violet cell is fully qualified for space flight use with no further development work. The tests show that the violet cell offers a power increase of at least twenty-one per cent over presently available commercial cells.

  6. Fluorescence screening of leucomalachite green and leucogentian violet residues in catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The tripheylmethane dyes malachite green (MG) and gentian violet (GV) are effective fungicides, ectoparasiticides and disinfectants in aquaculture. This practice may leave toxic residues in seafood which is not allowed by FDA and many regulatory agencies worldwide. In this work, residues of their me...

  7. Threshold optimization of polymeric opal photonic crystal cavity as organic solid-state dye-doped laser

    NASA Astrophysics Data System (ADS)

    Shi, Lan-Ting; Jin, Feng; Zheng, Mei-Ling; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2011-02-01

    The authors have demonstrated the optimization of the active layer thickness on the threshold of organic solid-state dye-doped laser (SSDL), which was fabricated by three-dimensional polymeric opal photonic crystal and tert-butyl Rhodamine B (t-Bu-RhB) doped polymer film. Gain media were produced by incorporating t-Bu-RhB into polymer film at 3.0 wt %. The sandwiched laser resonator cavities with different active layer thickness displayed single-mode lasing oscillations in the reflection band gap of the resonator structure. The lasing threshold as low as 1.13 μJ/pulse was achieved. The optimization of active layer would provide an opportunity to accelerate the development of low threshold polymeric SSDLs.

  8. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%. PMID:25399759

  9. Low-voltage and wide-band tuning of lasing in a dye-doped liquid-crystal sandwich structure.

    PubMed

    Lo, Y-S; Liu, Y-M; Yeh, H-C

    2015-11-16

    This paper reports the electrical tuning of a lasing in a liquid crystal (LC) sandwich structure. A dye-doped nematic LC (NLC) layer is sandwiched between two CLC layers to act as a phase retarder with the CLC layers acting as cavity mirrors, for the selective reflection of light in the photonic band with the same sense of helix handedness as that of the CLC layers. The transmittance spectrum of the sandwich cell provides a large range of modulation due to the wavelength dependent nature of phase retardation between the optical eigenmodes in the NLC layer. Lasing occurs at wavelengths corresponding to the maximum transmittance within the reflection band of the CLC layers. The application of voltage to the NLC layer makes it possible to shift the wavelengths of maximum transmittance, thereby tuning the wavelength of lasing. In these experiments, an applied voltage of 1.25 V was sufficient to shift the lasing peak wavelength by approximately 47 nm. PMID:26698521

  10. Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinylcarbazole) films-coated liquid crystal cell.

    PubMed

    Chen, Yuan-Di; Fuh, Andy Ying-Guey; Cheng, Ko-Ting

    2012-11-19

    This paper presents the optically controllable light scattering based on dye-doped liquid crystals (DDLCs) in a cell, whose substrates are coated with poly(N-vinylcarbazole) (PVK) films. The optical control mechanism is the light-induced dissolution of PVK in DDLCs, which reforms the disordered LC distribution into multiple and micron-sized LC domains. The induced thermal effect on the process is investigated in detail. Scanning electron microscopy images are obtained to show the surface structures of the produced PVK films. The generated scattering can be switched back to the original one by particular thermally induced phase separation. Results indicate that the light-induced thermal effect and photoisomerization lead to the dissolution of PVK in DDLCs. Finally, scattering mode light shutter with different transmission is successfully achieved by illuminating the cell under various light intensities. PMID:23187479

  11. Anaerobic biodegradation of triphenylmethane dyes in a hybrid UASFB reactor for wastewater remediation.

    PubMed

    Mondal, Pijush Kanti; Ahmad, Rais; Usmani, Shams Qamar

    2010-11-01

    Anaerobic digestions have been proved more successful than aerobic systems for the degradation and destruction of dye-containing wastewaters. The performance of a hybrid up flow anaerobic sludge-filter bed (UASFB) reactor was tested with a synthetic wastewater containing Crystal violet (CV) as a carbon source and sodium acetate as a co-substrate. Continuous feeding of the reactor started with an initial OLR of 0.9g COD/l-d and then it was increased step wise to 4g CODl(-1)d(-1), while maintaining constant HRT (24h). The optimum pH value and temperature for decolorization of crystal violet by this mixed culture species under anaerobic conditions were found to be 8-9 and 30-35C respectively. N,N-dimethylaminophenol and N,N-bis (dimethylamino) benzophenone (Michler's Ketone) were detected as the degradative metabolites of Crystal Violet. Subsequently, N,N-dimethylaminophenol was further degraded to aniline in the reactor whereas Michler's ketone was not degraded under anaerobic conditions. The UASFB bioreactor was able to remove the CV completely up to a loading rate of 100mg CVl(-1)d(-1). PMID:20449763

  12. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples.

    PubMed

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions. PMID:23058993

  13. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples

    NASA Astrophysics Data System (ADS)

    Madrakian, Tayyebeh; Afkhami, Abbas; Ahmadi, Mazaher

    2012-12-01

    Adsorption of seven different organic dyes from aqueous solutions onto magnetite nanoparticles loaded tea waste (MNLTW) was studied. MNLTW was prepared via a simple method and was fully characterized. The properties of this magnetic adsorbent were characterized by scanning electron microscopy and X-ray diffraction. Adsorption characteristics of the MNLTW adsorbent was examined using Janus green, methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue 19 as adsorbates. Dyes adsorption process was thoroughly studied from both kinetic and equilibrium points of view for all adsorbents. The experimental isotherm data were analyzed using Langmuir, Freundlich, Sips, Redlich-Peterson, Brouers-Sotolongo and Temkin isotherms. The results from Langmuir isotherm indicated that the capacity of MNLTW for the adsorption of cationic dyes was higher than that for anionic dyes. The adsorption kinetics was tested for the pseudo-first order and pseudo-second order kinetic models at different experimental conditions.

  14. 21 CFR 589.1000 - Gentian violet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentian violet. 589.1000 Section 589.1000 Food and... Substances Prohibited From Use in Animal Food or Feed 589.1000 Gentian violet. The Food and Drug Administration has determined that gentian violet has not been shown by adequate scientific data to be safe...

  15. 21 CFR 589.1000 - Gentian violet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentian violet. 589.1000 Section 589.1000 Food and... Substances Prohibited From Use in Animal Food or Feed 589.1000 Gentian violet. The Food and Drug Administration has determined that gentian violet has not been shown by adequate scientific data to be safe...

  16. 21 CFR 589.1000 - Gentian violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentian violet. 589.1000 Section 589.1000 Food and... Substances Prohibited From Use in Animal Food or Feed 589.1000 Gentian violet. The Food and Drug Administration has determined that gentian violet has not been shown by adequate scientific data to be safe...

  17. 21 CFR 589.1000 - Gentian violet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentian violet. 589.1000 Section 589.1000 Food and... Substances Prohibited From Use in Animal Food or Feed 589.1000 Gentian violet. The Food and Drug Administration has determined that gentian violet has not been shown by adequate scientific data to be safe...

  18. 27 CFR 21.111 - Gentian violet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Gentian violet. 21.111 Section 21.111 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants 21.111 Gentian violet. (a) Gentian violet...

  19. 21 CFR 73.2775 - Manganese violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... manganese violet is a violet pigment obtained by reacting phosphoric acid, ammonium dihydrogen orthophosphate, and manganese dioxide at temperatures above 450 °F. The pigment is a manganese ammonium... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Manganese violet. 73.2775 Section 73.2775 Food...

  20. Dyes in Liquid Crystals: Experimental and Computational Studies of a Guest–Host System Based on a Combined DFT and MD Approach

    PubMed Central

    Sims, Mark T; Abbott, Laurence C; Cowling, Stephen J; Goodby, John W; Moore, John N

    2015-01-01

    Practical applications of guest–host liquid crystal systems are critically dependent on the alignment of the guest species within the liquid crystal host. UV/Vis absorption spectroscopy shows that the 1,5-dihydroxy-2,6-bis-(4-propylphenyl)-9,10-anthraquinone dye aligns within the E7 nematic host, giving an experimental dichroic ratio of 9.40 and dye order parameter of 0.74. This alignment was modelled by using a combination of density functional theory (DFT) and molecular dynamics (MD) computational approaches that do not require the input of experimental data. Time-dependent DFT calculations show that the electronic transition dipole moment is highly aligned with the long molecular axis of the dye. Fully atomistic MD simulations show that the long axis of the dye is less highly aligned within the E7 host, indicating that this contribution limits the overall dye alignment and, thereby, the potential practical applications of this particular system. Importantly, this study demonstrates an experimental and combined DFT and MD computational approach that may be applied generally to guest–host systems, providing a potential route to their rational design. PMID:26031244

  1. Highly sensitive wavelength-dependent nonaqueous capillary electrophoresis for simultaneous screening of various synthetic organic dyes.

    PubMed

    Park, Moonhee; Bahng, Seung-Hoon; Woo, Nain; Kang, Seong Ho

    2016-05-15

    A novel multi-wavelength nonaqueous capillary electrophoresis (MW-NACE) technique based on wavelength-dependent laser-induced fluorescence (LIF) detection was investigated for the simultaneous screening of various synthetic organic dyes. Multi-wavelength excitation light sources were utilized to excite different organic dyes [e.g., 543nm for crystal violet (CV), methyl violet B (MVB), methyl violet B base (MBB), rhodamine 6G (R6G), and rhodamine B base (RBB); 635nm for nile blue A (NBA) and methylene blue (MB)] simultaneously. Using a nonaqueous buffer system composed of 15mM sodium borate and 835mM acetic acid in 100% ethanol (pH=5.4), all dyes were analyzed within 15min with excellent resolution (R≥4.0) under an electric field of 500V/cm. Calibration curves showed excellent linearity with square of correlation coefficients (r(2)) greater than 0.9908 over wide dynamic ranges of 0.4-50μM for CV, 0.8-50μM for MVB, 1.5-50μM for MBB, 0.08-5nM for R6G, 0.06-10μM for MB, 0.02-10μM for NBA, and 0.13-10 pM for RBB. The detection limits (S/N=3) of 40fM to 0.5μM were 10-200,000 times lower than those of previous detection methods. While adjacent peaks were not well distinguished with baseline separation in a single capillary, the devised technique was faster and more sensitive than conventional aqueous and nonaqueous CE approaches, thereby enabling the quantitative analysis of various dyes based on wavelength-dependent fluorescence detection with different excitation wavelengths. PMID:26992516

  2. Light-controlled electric Freedericksz threshold in dye doped liquid crystals

    SciTech Connect

    Lucchetti, L.; Catani, L.; Simoni, F.

    2014-05-28

    We report the results of measurements of the threshold of Freedericksz transition in a nematic liquid crystal doped by Methyl-red. We show that in case of dc field the threshold voltage can decrease or increase depending on the light dose, due to the light-induced desorption and adsorption of charge complexes from and on the irradiated surface, that has been recently demonstrated. This effect has the potential to be exploited in optical devices such as liquid crystal microlenses and spatial light modulators.

  3. Effect of single walled carbon nanotubes on the threshold voltage of dye based photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Manik, N. B.

    2016-01-01

    Carbon nanotubes are being widely used in organic photovoltaic (OPV) devices as their usage has been reported to enhance the device efficiency along with other related parameters. In this work we have studied the energy (Ec) effect of single walled carbon nanotubes (SWCNT) on the threshold voltage (Vth) and also on the trap states of dye based photovoltaic devices. SWCNT is added in a series of dyes such as Rose Bengal (RB), Methyl Red (MR), Malachite Green (MG) and Crystal Violet (CV). By analysing the steady state dark current-voltage (I-V) characteristics Vth and Ec is estimated for the different devices with and without addition of SWCNT. It is observed that on an average for all the dyes Vth is reduced by about 30% in presence of SWCNT. The trap energy Ec also reduces in case of all the dyes. The relation between Vth, Ec and total trap density is discussed. From the photovoltaic measurements it is seen that the different photovoltaic parameters change with addition of SWCNT to the dye based devices. Both the short circuit current density and fill factor are found to increase for all the dye based devices in presence of SWCNT.

  4. STM studies on dye molecules embedded in ordered liquid crystal structures and an approach for laser-assisted scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Grafstroem, Stefan; Probst, Oliver; Dey, S.; Freund, J.; Kowalski, J.; Neumann, R.; Woertge, M.; zu Putlitz, Gisbert

    1993-06-01

    Scanning tunneling microscopy, although capable of yielding very high resolution on periodic structures, very often provides only moderate resolution on singular features. Our work aims at the use of laser light to improve the identification of individual molecules. We report on scanning tunneling microscopy measurements performed on dye molecules dissolved in a liquid crystal and adsorbed onto highly oriented pyrolytic graphite. Either localized perturbations of the liquid crystal structure with the size of single molecules or more or less extended ordered domains of well resolved dye molecules were reproducibly imaged for several dyes. To study light-induced resonant effects the influence of non-resonant absorption leading to thermal expansion of tip and sample has to be suppressed. Therefore, an electro- optical system was realized using an ArPLU- and a dye laser of different wavelengths power-modulated with a relative phase shift of 180 degree(s). Preliminary results obtained with this setup are presented documenting the efficiency of the compensation.

  5. Use of dye tracing to determine ground-water movement to Mammoth Crystal Springs, Sylvan Pass area, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Spangler, Lawrence E.; Susong, David D.

    2006-01-01

    At the request of and in cooperation with the Geology Program at Yellowstone National Park, the U.S. Geological Survey conducted a hydrologic investigation of the Sylvan Pass area in June 2005 to determine the relation between surface water and ground-water flow to Mammoth Crystal Springs. Results of a dye-tracing investigation indicate that streamflow lost into talus deposits on Sylvan Pass enters the ground-water system and moves to the southeast to discharge at Mammoth Crystal Springs. Ground-water travel times to the springs from a distance of 1.45 miles and a vertical relief of 500 feet were less than 1 day, indicating apparent rates of movement of at least 8,000 feet per day, values that are similar to those in karst aquifers. Peak dye concentrations were reached about 2 days after dye injection, and transit time of most of the dye mass through the system was about 3 weeks. High permeability and rapid travel times within this aquifer also are indicated by the large variation in springflow in response to snowmelt runoff and precipitation, and by the high concentration of suspended sediment (turbidity) in the water discharging into the spring-fed lake.

  6. Persistence of gentian violet and leucogentian violet in channel catfish (ictalurus punctatus) muscle after water-borne exposure.

    PubMed

    Thompson, H C; Rushing, L G; Gehring, T; Lochmann, R

    1999-02-19

    Gentian violet is a triphenylmethane dye that is an antifungal/antiparastic agent. GV is similar to malachite green that has been used in the aquaculture industry for treatment or prevention of external fungal and parasitic infections in fish and fish eggs although it (MG) is not approved for this use. For these reasons, GV's potential for misuse by the aquaculture industry is high. The uptake and depletion of gentian violet (GV) were determined in channel catfish (Ictalurus punctatus) after water-borne exposure (100 ng ml(-1), 1 h) under simulated aquaculture farming conditions. Leucogentian violet (LGV) was rapidly formed, concentrated in the muscle tissue, and very slowly eliminated from muscle tissue. An isocratic (60% acetonitrile-40% water; 0.05 M ammonium acetate buffer, pH 4.5) HPLC system consisting of a 5 microm LC-CN 250x4.6 mm I.D. column, a 20x2.0 mm I.D. PbO2 oxidative post-column, and a UV-VIS detector set at 588 nm were used to determine uptake and depletion of tissue residues of GV and LGV with time. GV was rapidly depleted and converted to its major metabolite, LGV, which was detected out to 79 days. Therefore, LGV is the appropriate target analyte for monitoring exposure of channel catfish to GV. PMID:10080657

  7. Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes.

    PubMed

    Miyamoto, Shigehiko; Sano, Sotaro; Takahashi, Koji; Jikihara, Takaaki

    2015-03-15

    Because loop-mediated isothermal amplification (LAMP) can amplify substantial amounts of DNA under isothermal conditions, its applications for simple genetic testing have attracted considerable attention. A positive LAMP reaction is indicated by the turbidity caused by by-products or by the color change after adding a metallochromic indicator to the reaction solution, but these methods have certain limitations. Leuco crystal violet (LCV), a colorless dye obtained after sodium sulfite treatment of crystal violet (CV), was used as a new colorimetric method for detecting LAMP. LCV is reconverted into CV through contact with double-stranded DNA (dsDNA). Therefore, the positive reaction of LAMP is indicated by color change from colorless to violet. The assay is sensitive enough to detect LAMP products, with a detection limit of 7.1 ng/?l for dsDNA. It is also highly selective to dsDNA, and interference with single-stranded DNA and deoxynucleotide triphosphates (dNTPs) is not observed. LCV facilitates direct colorimetric detection of the main product rather than a by-product of the LAMP reaction; therefore, this method can be used under various reaction conditions such as those with added pyrophosphatase in solution. This colorimetric LAMP detection method using LCV is useful for point-of-care genetic testing given its simplicity. PMID:25575759

  8. Laser-pointer-induced self-focusing effect in hybrid-aligned dye-doped liquid crystals.

    PubMed

    Wang, Jing; Aihara, Yosuke; Kinoshita, Motoi; Mamiya, Jun-Ichi; Priimagi, Arri; Shishido, Atsushi

    2015-01-01

    Nonlinear optics deals with phenomena where "light controls light"; e.g., there is mediation by an intensity-dependent medium through which light propagates. This field has attracted much attention for its immense potential in applications dependent on nonlinear processes, such as frequency conversion, multiple-photon absorption, self-phase modulation, and so on. However, such nonlinearities are typically only observed at very high light intensities and thus they require costly lasers. Here, we report on a self-focusing effect induced with a 1 mW handheld laser pointer. We prepared polymer-stabilized dye-doped liquid crystals, in which the molecular director orientation gradually changes from homeotropic at one surface to homogeneous at the other. This is referred to as hybrid alignment. In such films, the threshold intensity needed to form diffraction rings was reduced by a factor of 8.5 compared to that in conventional homeotropic cells, which enabled the induction of the self-focusing effect with a laser pointer. PMID:25944052

  9. Laser-pointer-induced self-focusing effect in hybrid-aligned dye-doped liquid crystals

    PubMed Central

    Wang, Jing; Aihara, Yosuke; Kinoshita, Motoi; Mamiya, Jun-ichi; Priimagi, Arri; Shishido, Atsushi

    2015-01-01

    Nonlinear optics deals with phenomena where “light controls light”; e.g., there is mediation by an intensity-dependent medium through which light propagates. This field has attracted much attention for its immense potential in applications dependent on nonlinear processes, such as frequency conversion, multiple-photon absorption, self-phase modulation, and so on. However, such nonlinearities are typically only observed at very high light intensities and thus they require costly lasers. Here, we report on a self-focusing effect induced with a 1 mW handheld laser pointer. We prepared polymer-stabilized dye-doped liquid crystals, in which the molecular director orientation gradually changes from homeotropic at one surface to homogeneous at the other. This is referred to as hybrid alignment. In such films, the threshold intensity needed to form diffraction rings was reduced by a factor of 8.5 compared to that in conventional homeotropic cells, which enabled the induction of the self-focusing effect with a laser pointer. PMID:25944052

  10. Simultaneous exhibition of positive and negative nonlinear refractive index in dye-doped liquid crystal in a Z-scan experiment

    NASA Astrophysics Data System (ADS)

    Iturbe-Castillo, M. D.; Ramos-García, R.; Rodriguez-Rosales, A. A.

    2006-08-01

    Dye-doped nematic liquid crystal samples where the vector director is not pre-aligned exhibits simultaneously positive and negative nonlinear refractive index under cw illumination at room temperature, regardless the polarization state of the illuminating beam. However, its relative contributions are polarization dependent. Experimental Z-scan curves for 100 μm thick methyl red doped 5CB nematic liquid crystals, demonstrate that negative nonlinearity is an order of magnitude larger than the positive. The polarization state of the transmitted beam is change to elliptical carrying information about the positive and negative nonlinearities.

  11. Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer.

    PubMed

    Shi, Lan-Ting; Jin, Feng; Zheng, Mei-Ling; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-02-21

    We demonstrate low threshold lasing oscillation in a photonic crystal (PhC) laser by using tert-butyl Rhodamine B (t-Bu-RhB) doped gain media. Lactonic t-Bu-RhB is synthesized to improve doping concentration in polymethylmethacrylate (PMMA) films, and then isomerized to the zwitterion form to achieve highly fluorescent gain medium. The t-Bu-RhB doped PMMA film is sandwiched by a pair of polystyrene colloidal crystals to construct a PhC resonating cavity. Single-mode laser oscillation at 592 nm is observed when the PhC resonating cavity is pumped by a Nd:YAG laser. The lasing threshold is 0.12 MW cm(-2) utilizing 6.9 wt% t-Bu-RhB doped PMMA films, which is only 1/60 of that with 3 wt% t-Bu-RhB doped PMMA films. The concentration-dependent lasing action is attributed to different gain factors of the t-Bu-RhB doped PMMA films. Furthermore, a spatially and spectrally coherent laser beam from the PhC resonating cavity is verified by exploring the far-field image and angular dependence of the lasing emission. The approach provides a facile and efficient strategy to reduce the lasing threshold for fabricating low threshold PhC lasers. PMID:26817423

  12. Microgap ultra-violet detector

    DOEpatents

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA)

    1994-01-01

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse.

  13. Microgap ultra-violet detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.

    1994-09-20

    A microgap ultra-violet detector of photons with wavelengths less than 400 run (4,000 Angstroms) which comprises an anode and a cathode separated by a gas-filled gap and having an electric field placed across the gap is disclosed. Either the anode or the cathode is semi-transparent to UV light. Upon a UV photon striking the cathode an electron is expelled and accelerated across the gap by the electric field causing interactions with other electrons to create an electron avalanche which contacts the anode. The electron avalanche is detected and converted to an output pulse. 2 figs.

  14. Crystal-face dependence and photoetching-induced increases of dye-sensitized photocurrents at single-crystal rutile TiO2 surfaces.

    PubMed

    Imanishi, Akihito; Suzuki, Hidenori; Murakoshi, Kei; Nakato, Yoshihiro

    2006-10-26

    Dye-sensitized photocurrents at (100)-, (001)-, and (110)-cut TiO(2) rutile surfaces were increased by photoetching of TiO(2), but the increasing ratio strongly depended on the cut crystal faces and the illumination intensity for the photoetching. For the (110)-cut surface, the photocurrent increase was moderately large and in proportion to the increase in the surface area of TiO(2) induced by the photoetching, irrespective of the illumination intensity for the photoetching. On the other hand, the photocurrent increases for the (001)- and (100)-cut surfaces, especially that for the (001)-cut surface, were prominent and largely exceeded the increases in the surface area. The results were explained by taking into account the following factors: (1) The (001)- and (100)-cut surfaces were thermodynamically unstable in contrast to the (110)-cut surface and had thicker inactive surface layers (or higher densities of surface defects), produced by surface reconstruction during heat treatment of TiO(2) at 550 degrees C in a hydrogen atmosphere for getting n-type semiconductivity. (2) Photoetching not only increased the surface area through formation of nanoholes and grooves at the surface but also effectively removed the thin inactive surface layers (or surface defects). PMID:17048924

  15. Photodynamic properties and photoinactivation of Candida albicans mediated by brominated derivatives of triarylmethane and phenothiazinium dyes.

    PubMed

    Alvarez, M Gabriela; Montes de Oca, M Noel; Milanesio, M Elisa; Ortiz, Cristina S; Durantini, Edgardo N

    2014-06-01

    The photodynamic activity of brominated derivatives of New Fuchsin and Azure B was studied in solution and in cell suspensions of Candida albicans. The spectroscopic and photodynamic properties of these photosensitizers were compared with those of Crystal Violet and Azure B, which represent active photosensitizer related to each family of compounds. Triarylmethane derivatives absorb intensely with a band centered at ? 570 nm, while the phenothiazinium dyes at ? 650 nm. Photooxidation of 9,10-dimethylanthracene was observed using phenothiazinium compounds indicating the formation of singlet molecular oxygen, while it was not detected using triarylmethane agents. However, triarylmethane dyes were able to photooxidize l-tryptophan. In yeast cell suspensions, the photosensitized inactivation of C. albicans increases with photosensitizer concentration, causing a ? 5 log decrease of cell survival, when the cultures are treated with 20 ?M of Crystal Violet and irradiated for 60 min. Under these conditions, the photodynamic activity of 50 ?M Azure B induced a ? 3 log decrease of cell survival. Studies of photodynamic action mechanism indicated that photoinactivation of C. albicans cells induced by triarylmethane compounds involves mainly type I photoprocess. Although, phenothiazinium derivatives produce singlet molecular oxygen, a contribution of other reactive oxygen species cannot be discarded in the photoinactivation of C. albicans. PMID:24642192

  16. Decolorization of Alizarin Red and other synthetic dyes by a recombinant laccase from Pichia pastoris.

    PubMed

    Zheng, Miaomiao; Chi, Yujie; Yi, Hongwei; Shao, Shuli

    2014-01-01

    A cDNA encoding for a laccase was isolated from the white-rot fungus Lenzites gibbosa by RT-PCR and expressed in the Pichia pastoris. The laccase native signal peptide efficiently directed the secretion of the recombinant laccase in an active form. Factors influencing laccase expression, such as pH, cultivation temperature, copper concentration and methanol concentration, were optimized. The recombinant enzyme was purified to electrophoretic homogeneity, and was estimated to have a MW of ~61.5 kDa. The purified enzyme behaved similarly to the native laccase produced by L. gibbosa and efficiently decolorized Alizarin Red, Neutral Red, Congo Red and Crystal Violet, without the addition of redox mediators. The decolorization capacity of this recombinant enzyme suggests that it could be a useful biocatalyst for the treatment of dye-containing effluents. This study is the first report on the synthetic dye decolorization by a recombinant L. gibbosa laccase. PMID:24078122

  17. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The IMP-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  18. Results from the IMP-J violet solar cell experiment and violet cell balloon flights

    NASA Technical Reports Server (NTRS)

    Gaddy, E. M.

    1976-01-01

    The Interplanetary Monitoring Platform-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard-particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.

  19. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.

    PubMed

    Arunarani, A; Chandran, Preethy; Ranganathan, B V; Vasanthi, N S; Sudheer Khan, S

    2013-02-01

    Basic Violet 3 and Acid Blue 93 are the most important group of synthetic colourants extensively used in textile industries for dyeing cotton, wool, silk and nylon. Release of these dye pollutants in to the environment adversely affects the human health and aquatic organisms. The present study we used Pseudomonas putida MTCC 4910 for the adsorptive removal of Basic Violet 3 and Acid Blue 93 from the aqueous solutions. The pH (4-9) and NaCl concentrations (1mM-1M) did not influence the adsorption process. The equilibrium adsorption process fitted well to Freundlich model than Langmuir model. The kinetics of adsorption fitted well by pseudo-second-order. Thus in the present study an attempt has been made to exploit the dye removal capability of P. putida MTCC 4910, and it was found to be an efficient microbe that could be used for bio removal of dyes from textile effluents. PMID:23010121

  20. [Studies on "brilliant blue FCF standard", dye standards of National Institute of Hygienic Sciences].

    PubMed

    Tsuji, S; Kakiuchi, M; Kawamoto, R; Kimura, M; Shibata, T; Ito, Y

    1991-01-01

    "Brilliant Blue FCF Standard (C.I. 42090)", Dye Standards of National Institute of Hygienic Sciences, was prepared. The content of this Dye Standards was determined by titanium trichloride method. This content averaged 96.3%. Ultra violet-visible absorption and infrared spectra of the Dye Standard were also determined. PMID:1364397

  1. Reduction in the mutagenicity of synthetic dyes by successive treatment with activated sludge and the ligninolytic fungus, Irpex lacteus.

    PubMed

    Malachov, Katerina; Pavlckov, Zuzana; Novotn, Cenek; Svobodov, Katerina; Lednick, Denisa; Muslkov, Eva

    2006-08-01

    Synthetic dyes are released in wastewater from textile manufacturing plants, and many of these dyes are genotoxic. In the present study, the mutagenicity of azo, anthraquinone, and triphenyl methane dyes was investigated before and after successive biodegradation with activated sludge and the ligninolytic fungus, Irpex lacteus. Two biodegradation systems were used to reduce the genotoxicity of dyes that were not efficiently inactivated by activated sludge alone. Mutagenicity was monitored with the Salmonella reversion assay conducted with the base-pair substitution detector strains, TA100 and YG1042, and the frame-shift detector strains, TA98 and YG1041, with and without rat liver S9. All dyes except for Congo Red (CR) were mutagenic with S9 activation. Assays conducted with the dyes indicated that only the azo dye Reactive Orange 16 (RO16) was mutagenic in both TA98 and TA100. Methyl Red and Disperse Blue 3 (DB3) were mutagenic in TA98, YG1041 and YG1042, while Reactive Black 5 was mutagenic in YG1041 and YG1042. Remazol Brilliant Blue R (RBBR), Crystal violet (CV) and Bromophenol Blue (BPB) were mutagenic only in TA98, but the toxicity of the latter two dyes complicated the evaluation of their mutagenicity. CR was not mutagenic in any of the tester strains. Biodegradation studies conducted with RO16 and DB3 indicated that the two-step biodegradation process reduced the mutagenic potential of RO16 and DB3 to a greater extent than activated sludge alone; the mutagenicity of the two dyes was reduced by 95.2% and 77.8%, respectively, by the two-step process. These data indicate that the combined biodegradation process may be useful for reducing the mutagenicity associated with wastewater from textile factories that contain recalcitrant dyes. PMID:16758470

  2. Copper-ligand complex for the decolorization of synthetic dyes.

    PubMed

    Verma, Pradeep; Baldrian, Petr; Gabriel, Jir; Trnka, Toms; Nerud, Frantisek

    2004-12-01

    The reaction system containing Cu(II), hydrogen peroxide and D-arabinono-1,4-lactone was found to be effective in the decolorization and reduction of toxicity of azo, thiazine-, triphenylmethane- and anthraquinone-based synthetic dyes. More than 85% decolorization was obtained with 100ppm Acridine Orange, Azure B, Chicago Sky Blue 6B, Crystal Violet, Evans Blue, Poly B-411, Reactive Blue 2, Reactive Blue 5, and Remazol Brilliant Blue R incubated for 24h in the presence of 10mM CuSO(4), 20mM D-arabinono-1,4-lactone and 80 mM H(2)O(2). The rate of decolorization was not affected by pH in the range of 3-9. The rapid decolorization was accompanied by a fast decomposition of H(2)O(2) in the reaction mixture and by a fast production of hydroxyl radicals. PMID:15504481

  3. Luxol Fast Blue MBSN-Levafix Red Violet E-2BL. A combined stain for myelin sheaths and glia fibers.

    PubMed

    Waldrop, F S; Puchtler, H

    1975-10-01

    During investigations of reactive dyes, Levafix Red Violet E-2BL was found suitable for staining of glia fibers. Experiments were carried out on 37% formaldehyde-fixed human autopsy material. Paraffin sections were treated with Luxol Fast Blue MBSN as usual, differentiated until glia fibers were decolorized, and counter-stained in a 0.25% solution of Levafix Red Violet E-2BL in 0.25% acetic acid. Myelin sheaths were colored blue. Gila fibers, smooth muscle cells, and nuclei were stained red violet. Axons and connective tissue remained unstained; occasionally, coarse bundles of collagen showed patchy coloration. Polarization microscopic studies proved that Levafix Red Violet E-2BL is bound to well-oriented fibrous proteins in glia fibers. The similar staining and polarization microscopic properties of glia fibers and smooth muscle support previous findings that glia fibers contain a myosin-like protein. PMID:53047

  4. Pulsed electric linear dichroism of triphenylmethane dyes adsorbed on montmorillonite K10 in aqueous media

    SciTech Connect

    Yamaoka, Kiwamu; Sasai, Ryo

    2000-05-01

    Electric linear dichroism (ELD) spectra of two cationic triphenylmethane dyes, crystal violet (CV) and malachite green (MG), bound to sodium montmorillonite K10 (MK-10) were studied at 20 C in aqueous media at two mixing ratios, D/S, of 0.10 and 0.24 in the 700- to 400 nm wavelength region and in the applied electric field strength range between 0 and 3 kV/cm. The specific parallel and perpendicular dichroism ({Delta}A{sub {parallel}}/A and {Delta}A{sub {perpendicular}}/A) spectra of dye-adsorbed MK-10 suspension were measured at a fixed field strength with an apparatus equipped with a 512-channel photodiode array detector. By changing the field strength over a wide range, a series of the reduced dichroism values of the bound dyes were measured at a fixed wavelength. By fitting these dichroism values to theoretical orientation functions, the intrinsic reduced dichroism ({Delta}A/A){sub int} spectra at the limiting high fields (ELD spectrum) were determined for CV and MG bound to MK-10. No appreciable difference was observed at the two D/S values. The ELD spectra of these bound dyes are undulatory but never constant, throughout their absorption region; thus, the dye plane does not lie flatly either on the surface or between layers of MK-10 particle.

  5. The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels.

    PubMed

    Oplatowska, Michalina; Donnelly, Ryan F; Majithiya, Rita J; Glenn Kennedy, D; Elliott, Christopher T

    2011-08-01

    Triphenylmethanes - Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BG) are dyes with known genotoxic and carcinogenic properties. Apart from being illegally used in aquaculture for treatment of fish diseases they are also applied in industry such as paper production to colour paper towels widely used in hospitals, factories and other locations for hand drying after washing. The present study provides evidence that the triphenylmethane dye (BG) present in green paper towels can migrate through the skin even when the exposure time is short (30-300 s). The transfer of the dye from the towel to food (fish) was also studied and a high amount of colour was found to migrate during overnight exposure. The risk to humans associated with these two dye transfer studies was assessed using a 'margin of exposure approach' on the basis of the toxicological data available for the closely related dye MG and its metabolite Leucomalachite Green. The data indicated that the risk associated with the use of triphenylmethane containing paper towels is of a similar proportion to the risk associated with consumption of fish contaminated with these dyes due to the illegal application in aquaculture. PMID:21596089

  6. Femtosecond excited state relaxation of dye molecules in solution

    NASA Astrophysics Data System (ADS)

    Weiner, A. M.; Ippen, E. P.

    1985-03-01

    The bleaching dynamics of organic dye molecules in solution have been investigated using 70 fs pulses from a colliding pulse mode-locked ring dye laser. In addition to ground state relaxation on a nanosecond time scale, a fast partial recovery is observed. For the dyes Nile blue, oxazine 720, cresyl violet and rhodamine 640, this recovery is exponential, with relaxation times in the range 190-480 fs.

  7. Strong ultraviolet and violet emissions from ZnO/TiO2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Xu, Linhua; Zheng, Gaige; Wu, Hongyan; Wang, Junfeng; Gu, Fang; Su, Jing; Xian, Fenglin; Liu, Zhanhui

    2013-06-01

    ZnO/TiO2 multilayer thin films were prepared by electron beam evaporation and the influence of annealing temperature on their structural and optical properties was investigated. The analyses of X-ray diffraction (XRD) show that TiO2 in the as-deposited ZnO/TiO2 multilayer thin film as well as in that one annealed at 300 °C is amorphous. When the annealing temperature is increased up to 400 °C, the TiO2 is transformed into a brookite phase. Eventually, the TiO2 is transformed into an anatase phase with the annealing temperature rising up to 500 °C. However, ZnO in these composite films all crystallizes in a wurtzite structure and has a preferred orientation along the (0 0 2) direction whether the ZnO/TiO2 multilayer thin film is annealed or not. The photoluminescence spectra show that all the samples have two strong emission peaks including an ultraviolet (UV) peak and a violet peak. The strong UV and violet co-emissions in ZnO materials is seldom reported previously. With the increase of annealing temperature, both the UV and violet emissions are enhanced. However, the intensity of UV emission is increased faster than that of the violet emission under the same annealing temperature. The mechanism of the violet emission and the reason for the variations of the UV and violet emissions with the different annealing temperatures are analyzed.

  8. Low-cost and effective phenol and basic dyes trapper derived from the porous silica coated with hydrotalcite gel.

    PubMed

    Tao, Yu Fei; Lin, Wei Gang; Gao, Ling; Yang, Jin; Zhou, Yu; Yang, Jia Yuan; Wei, Feng; Wang, Ying; Zhu, Jian Hua

    2011-06-15

    Novel low-cost and effective adsorbents of phenol and basic dyes were made by coating amorphous silica with hydrotalcite (HT) gel followed by soaking in alkaline solution, and the surface basic-acidic properties of resulting composites were evaluated by CO(2)-TPD, Hammett indicator method and NH(3)-TPD, respectively. Both BET surface area and microporous surface area of the composites were increased after they were soaked with alkaline solution; meanwhile the center of pore size distribution was changed from 9 to 3-4 nm. These composites efficiently captured phenol in gaseous and liquid phases, superior to mesoporous silica such as MCM-48 or SBA-15 and zeolite NaY, and the equilibrium data of gaseous adsorption could be well fitted to Freundlich model. These modified silicas also exhibited high adsorption capacity forward basic dyes such as crystal violet (CV) and leuco-crystal violet (LCV), reaching the adsorption equilibrium within 1 h and offering a new material for environment protection. PMID:21458822

  9. Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects.

    PubMed

    Kovacic, Peter; Somanathan, Ratnasamy

    2014-08-01

    Although conjugation is well known as an important contributor to color, there is scant recognition concerning involvement of imine and iminium functions in the physiological effects of this class of dyes and pigments. The group includes the dyes methylene blue, rhodamine, malachite green, fuchsin, crystal violet, auramine and cyanins, in addition to the pigments consisting of pyocyanine, phthalocyanine and pheophytin. The physiological effects consist of both toxicity and beneficial aspects. The unifying theme of electron transfer-reactive oxygen species-oxidative stress is used as the rationale in both cases. Toxicity is frequently prevented or alleviated by antioxidants. The apparent dichotomy of methylene blue action as both oxidant and antioxidant is rationalized based on similar previous cases. This mechanistic approach may have practical benefit. This review is important in conveying, for the first time, a unifying mechanism for toxicity based on electron transfer-reactive oxygen species-oxidative stress arising from imine-iminium. PMID:24852913

  10. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal.

    PubMed

    Guo, Min; Xie, Keyu; Liu, Xiaolin; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-11-01

    Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive. PMID:25247717

  11. Dame Sheila Patricia Violet Sherlock.

    PubMed

    Pepys, Mark

    2003-01-01

    Dame Sheila Patricia Violet Beckett Sherlock was the world's leading female physician-scientist of the twentieth century. Her brilliant, wide-ranging, original contributions to the investigation, diagnosis, classification, epidemiology, pathogenesis and management of liver disease played a leading role in the establishment of hematology as a medical specialty. Her rigorous, highly focused, studies combined experimental and laboratory investigations with meticulous clinical observation, encompassed most aspects of liver function, disease and treatment, and led directly to enormous benefit for millions of patients. Her remarkable individual personality also had a profound influence not only on her medical and scientific specialty but also on several generations of physicians throughout the world. She was the first female professor of medicine and head of a department of medicine in the UK, and the pioneer of women in modern medicine. The importance of her contributions to knowledge and her massive influence on training in and the practice of medicine related to liver disease were recognized by a glittering array of honours and awards from professional societies and academic institutions throughout the world, including 19 honorary degrees, and, very belatedly, election to Fellowship of The Royal Society in the last year of her life. PMID:14989286

  12. Ultra violet disinfection: A 3-year history

    SciTech Connect

    Tubesing, R.R.; Lindeke, D.R.

    1998-07-01

    The Stillwater Wastewater Treatment Facility is one of nine wastewater treatment facilities operated by the Metropolitan Council Environmental Services in the Minneapolis-St. Paul Metropolitan Area. The facility services the cities of Stillwater, Oak Park Heights, and Bayport. In 1993, an ultra violet disinfection facility began operation to provide the disinfection for the Facility. This presentation discusses the reasons for using ultra violet disinfection in lieu of chlorination/dechlorination facilities, the operating performance, and operating cost factors.

  13. Particle beam liquid chromatography-mass spectrometry of triphenylmethane dyes: application to confirmation of malachite green in incurred catfish tissue.

    PubMed

    Turnipseed, S B; Roybal, J E; Rupp, H S; Hurlbut, J A; Long, A R

    1995-08-01

    Eight triphenylmethane dyes (malachite green, leucomalachite green, gentian violet, leucogentian violet, brilliant green, pentamethyl gentian violet, N',N'-tetramethyl gentian violet and N',N"-tetramethyl gentian violet) have been characterized by particle beam liquid chromatography-mass spectrometry. The electron ionization spectra obtained of these dyes by this technique exhibit similar fragmentation, with the formation of phenyl and substituted phenyl radicals, and loss of alkyl groups from the amines. It was observed that the six cationic dyes are reduced in the mass spectrometer source to form the corresponding leuco compounds. This technique was evaluated for the confirmation of malachite green and leucomalachite green in incurred catfish (Ictalurus punctatus) muscle tissue. PMID:7493085

  14. Dye lasers

    SciTech Connect

    Schafer, F.P. )

    1990-01-01

    This book includes chapters on continuous-wave dye lasers and properties of dye lasers and a chapter on continuous-wave dye lasers. There is also a chapter on wavemeters. This book provides an introduction to dye lasers and contains information for scientists and engineers who deal with their applications.

  15. Precipitation diagram and optimization of crystallization conditions at low ionic strength for deglycosylated dye-decolorizing peroxidase from a basidiomycete.

    PubMed

    Saijo, Shinya; Sato, Takao; Tanaka, Nobuo; Ichiyanagi, Atsushi; Sugano, Yasushi; Shoda, Makoto

    2005-08-01

    The growth of suitably sized protein crystals is essential for protein structure determination by X-ray crystallography. In general, crystals are grown using a trial-and-error method. However, these methods have been modified with the advent of microlitre dispensing-robot technology and of protocols that rapidly screen for crystal nucleation conditions. The use of one such automatic dispenser for mixing protein drops (1.3-2.0 microl in volume) of known concentration and pH with precipitating solutions (ejecting 2.0 microl droplets) containing salt is described here. The results of the experiments are relevant to a crystallization approach based on a two-step procedure: screening for the crystal nucleation step employing robotics followed by optimization of the crystallization conditions using incomplete factorial experimental design. Large crystals have successfully been obtained using quantities as small as 3.52 mg protein. PMID:16511141

  16. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal

    NASA Astrophysics Data System (ADS)

    Guo, Min; Xie, Keyu; Liu, Xiaolin; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-10-01

    Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive.Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03712j

  17. Surface microstructural features of scales in relation to toxic stress of Basic Violet-1.

    PubMed

    Kaur, Kirandeep; Kaur, Ramandeep; Kaur, Arvinder

    2016-01-01

    The present work deals with scanning electron microscopic (SEM) studies of the scales of Labeo rohita on exposure to lethal and sublethal doses of Basic Violet-1 (an important textile and hair colorant). The dye induced loosening of the scales and caused breakage and disorganization of lepidonts. Erosion of lepidonts occurred mostly in the fish exposed to 0.20 and 0.40 mg/L dye, during acute exposure and to 0.0225 and 0.045 mg/L dye, during the subchronic exposure. However, lepidonts were sloughed off from their sockets in 0.60 and 0.80 mg/L dye during acute exposure and in 0.09 mg/L dye during the subchronic exposure. Circuli, the base that provides anchorage to the lepidonts, got damaged, and tubercles responsible for coloration of a fish became atrophied with an increase in the duration of exposure. The results of the present investigation clearly indicated that exposure to Basic Violet-1 (BV-1) even at a concentration as low as 0.0225 mg was responsible for deleterious changes in the scale morphology of the test fish after 150 days of exposure. Similar changes were observed in the scales of the dead fish also. It can thus be suggested that this noninvasive technique is very helpful for evaluating the health status of an aquatic body. At the same time, the changes in ultramorphology of scales can act as an early indicator of the stress of very minute doses of dyes and even the scales of a dead fish can act as indicators of the untoward changes that would have occurred in the environment of the fish before death. PMID:26432273

  18. Heterologous expression and characterization of laccase 2 from Coprinopsis cinerea capable of decolourizing different recalcitrant dyes

    PubMed Central

    Tian, Yong-Sheng; Xu, Hu; Peng, Ri-He; Yao, Quan-Hong; Wang, Rong-Tan

    2014-01-01

    The gene (CcLcc2) encoding laccase from the basidiomycete Coprinopsis cinerea Okayama-7 #130 was synthesized by polymerase chain reaction-based two-step DNA synthesis, and heterologously expressed in Pichia pastoris. The recombinant protein was purified by ammonium sulphate precipitation and nickel nitrilotriacetic acid chromatography. The molecular mass of CcLcc2 was estimated to be 54 kDa by denaturing polyacrylamide gel electrophoresis. The optimum pH and temperature for laccase catalysis for the oxidation of 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) were 2.6 and 45 °C, respectively. The Km values of the enzyme towards the substrates ABTS, 2,6-dimethoxyphenol (2,6-DMP) and guaiacol were 0.93, 1.02 and 28.07 mmol·L−1, respectively. The decolourization of methyl orange, crystal violet and malachite green, commonly used in the textile industry, was assessed. The decolourization percentage of crystal violet and malachite green was 80% after 4 h of reaction, and that of methyl orange was 50% at 4 h. These results show that the CcLcc2 has enormous potential for the decolourization of highly stable triphenylmethane dyes. PMID:26019510

  19. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution.

    PubMed

    Li, Lin; Wang, Shaobin; Zhu, Zhonghua

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. PMID:16626729

  20. Geopolymeric adsorbents from fly ash for dye removal from aqueous solution

    SciTech Connect

    Li, L.; Wang, S.B.; Zhu, Z.H.

    2006-08-01

    Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 1.2:1 weight ratio of Na:fly-ash at 250-350{sup o}C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model produced the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics.

  1. Dye-Sensitized Approaches to Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grtzel, Michael

    2008-03-01

    Sensitization of wide band-gap semiconductors to photons of energy less than the band-gap is a key step in two technically important processes - panchromatic photography and photoelectrochemical solar cells. In both cases the photosensitive species is not the semiconductor - silver halide or metal oxide - but rather an electrochemically active dye. The gap between the highest occupied molecular level (HOMO) and the lowest unoccupied molecular level (LUMO) is less than the band-gap of the semiconductor with which it is associated. It can therefore absorb light of a wavelength longer than that to which the semiconductor itself is sensitive. The electrochemical process is initiated when the dye molecule relaxes from its photoexcited level by electron injection into the semiconductor, which therefore acts as a photoanode. If the dye is in contact with a redox electrolyte, the negative charge represented by the lost electron can be recovered from the reduced state of the redox system, which in return is regenerated by charge transfer from a cathode. An external load completes the electrical circuit. The system therefore represents a conversion of the energy of absorbed photons into an electrical current by a regenerative device in every functional respect analogous to a solid-state photovoltaic cell. As in any engineering system, choice of materials, their optimization and their synergy are essential to efficient operation. While a semiconductor-electrolyte contact is analogous to a Schottky contact, in that a barrier is established between two materials of different conduction mechanism, with the possibility of optical absorption, charge carrier pair generation and separation, it should be remembered that the photogenerated valence band hole in the semiconductor represents a powerful oxidizing agent. Given that the band-gap is related to the strength and therefore the stability of chemical bonding within the semiconductor, for narrow-gap materials the most likely reaction of such a hole is the photocorrosion of the semiconductor itself. However, only relatively narrow band-gap materials have an effective optical absorption through the visible spectrum, towards and into the infra-red. Materials with an optimal band-gap match to the solar spectrum, of the order of 1.5eV, are therefore electrochemically unstable. A stable photoelectrochemical cell, without some process of optical sensitization, and necessarily using a wide-gap semiconductor is sensitive only to the ultra-violet limit of the visible spectrum. Over recent years a suitable combination of semiconductor and sensitizer has been identified and optimized, so that now a solar spectrum conversion efficiency of over 11% has been verified in a sensitized photoelectrochemical device. One key to such an efficient system is the suppression of recombination losses. When the excited dye relaxes by electron loss, the separated charge carriers find themselves on opposite sides of a phase barrier -- the electron within the solid-state semiconductor, the positive charge externally, in association with the dye molecule. There is no valence---band involvement in the process, so the system represents a majority-carrier device, avoiding one of the major loss mechanisms in conventional photovoltaics. In consequence also a highly-disordered, even porous, semiconductor structure is acceptable, enabling surface adsorption of a sufficient concentration of the dye to permit total optical absorption of incident light of photon energy greater than the HOMO-LUMO gap of the dye molecule. The accepted wide-band semiconductor for photoelectrochemical applications is titanium dioxide in the anatase crystal structure. The size of the nanocrystals making up the semiconductor photoanode can be determined by hydrothermal processing of a precursor sol, and the film can be deposited on a transparent conducting oxide (TCO) substrate by any convenient thin-film process such as screen printing or tape casting. The preferred dye system is inspired by the natural processes involving chlorophyll, the coloring

  2. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  3. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. PMID:25875031

  4. Potential use of low-cost lignocellulosic waste for the removal of direct violet 51 from aqueous solution: equilibrium and breakthrough studies.

    PubMed

    Sadaf, Sana; Bhatti, Haq Nawaz; Nausheen, Sana; Noreen, Saima

    2014-05-01

    An efficient biosorbent, sugarcane bagasse was used in native, HCl-treated, and Na-alginate immobilized form for the removal of Direct Violet 51 dye from aqueous solutions. Batch study was performed to optimize important process parameters, such as pH, contact time, biosorbent dose, initial dye concentration, and temperature. Removal of Direct Violet 51 was found to be favorable at pH 2 with the biosorbent dose of 0.05 g. Biosorption process was found to be exothermic in nature. Maximum dye biosorption (39.6 mg/g) was achieved by using HCl-treated biomass. The pseudo-second-order kinetic and Langmuir adsorption isotherm models showed best fitness to the experimental data. Thermodynamic study was also performed to determine the feasibility of biosorption process. Continuous mode study was performed to optimize the important process parameters, such as bed height, flow rate, and initial dye concentration for maximum removal of Direct Violet 51 dye. The higher bed height, low flow rate, and high initial dye concentration were found to be the better conditions for maximum dye biosorption (17.28 mg/g). The linearized form of the Thomas model equation fitted well to the experimental data. The bed depth service time model was used to express the effect of bed height on breakthrough curves. Characterization of biosorbent was performed by scanning electron microscopy and Fourier transform infrared (FT-IR) analysis. The FT-IR spectral analyses showed the involvement of hydroxyl, carbonyl, and carboxyl groups in biosorption process. These results indicated that sugarcane bagasse biomass could be used as a novel biosorbent for the removal of Direct Violet 51 dye from real textile and related industries. PMID:24468968

  5. Resonant Rayleigh scattering for the determination of trace amounts of mercury (II) with thiocyanate and basic triphenylmethane dyes

    SciTech Connect

    Liu, S.; Liu, Z.; Zhou, G.

    1998-05-01

    Intense resonance Rayleigh scattering (RRS) appears when mercury (II) reacts with thiocyanate and a basic triphenylmethane dye (BTPMD), such as crystal violet (CV), ethyl violet (EV), brilliant green (BG), malachite green (MG) or indine green (IG), to form an ion-association complex of the type (BTPMD){sub 2}[Hg(SCN){sub 4}]. The characteristics of RRS spectra of the ion-association complexes and suitable conditions for the reactions were investigated. The intensity of RRS is directly proportional to the concentration of mercury (II) in the range of 0--2.0 {micro}g/25 ml. The RRS methods have very high sensitivities for determination of mercury (II); their detection limits are between 1.68 ng/ml and 6.00 ng/ml on different dye systems. The effects of foreign ions and ways to improve the selectivity were studied. The new highly sensitive methods for the determination of trace amounts of mercury based on the RRS of the ion-association complexes have been developed.

  6. Precipitation diagram and optimization of crystallization conditions at low ionic strength for deglycosylated dye-decolorizing peroxidase from a basidiomycete

    SciTech Connect

    Saijo, Shinya; Sato, Takao; Tanaka, Nobuo; Ichiyanagi, Atsushi; Sugano, Yasushi; Shoda, Makoto

    2005-08-01

    Precipitation phase diagrams can be rapidly constructed using dispensing-robot technology. These diagrams provide information that assists in optimization of crystal growth. The growth of suitably sized protein crystals is essential for protein structure determination by X-ray crystallography. In general, crystals are grown using a trial-and-error method. However, these methods have been modified with the advent of microlitre dispensing-robot technology and of protocols that rapidly screen for crystal nucleation conditions. The use of one such automatic dispenser for mixing protein drops (1.32.0 l in volume) of known concentration and pH with precipitating solutions (ejecting 2.0 l droplets) containing salt is described here. The results of the experiments are relevant to a crystallization approach based on a two-step procedure: screening for the crystal nucleation step employing robotics followed by optimization of the crystallization conditions using incomplete factorial experimental design. Large crystals have successfully been obtained using quantities as small as 3.52 mg protein.

  7. 21 CFR 589.1000 - Gentian violet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED Listing of Specific Substances Prohibited From Use in Animal Food or Feed 589.1000 Gentian violet. The Food and...

  8. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    PubMed Central

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M. Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds. PMID:22566767

  9. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization.

    PubMed

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds. PMID:22566767

  10. Dye Painting!

    ERIC Educational Resources Information Center

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This

  11. Spontaneous crystalization and aggregation of DCNP pyrazoline-based organic dye as a way to tailor random lasers

    NASA Astrophysics Data System (ADS)

    Cyprych, K.; Sznitko, L.; Morawski, O.; Miniewicz, A.; Rau, I.; Mysliwiec, J.

    2015-03-01

    The 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP) compound is showing versatile optical features including nonlinear optical effects, photoluminescence and stimulated emission resulting from its molecular design as well as polar alignment in crystal lattice. We present detailed studies carried out for the DCNP compound on a photoluminescence phenomenon, showing that its emission properties are strongly different for molecular and aggregated forms. Experiments have proved that stimulated emission can occur only from the crystaline form of DCNP and the precipitation of it from a solution leads to the constitution of gain and different, random feedback mechanisms depending on aggregate size. The immobilization of DCNP crystals and the controlled crystalization in a viscous biopolymeric matrix have been utilized to generate random micro-cavities, that support weak light localization and coherent random laser emission.

  12. New method for quantification of dye sorption using SBA mesoporous silica as a target sorbent.

    PubMed

    Nesic, Aleksandra R; Kokunesoski, Maja J; Volkov-Husovic, Tatjana D; Velickovic, Sava J

    2016-03-01

    In this work, a new method for the quantification of methyl violet cationic dye sorption onto SBA-15 mesoporous silica was developed. This method related the intensity of coloration of SBA-15 samples (after reached equilibrium sorption) within dye concentration in aqueous solution using Image-Pro Plus software. The sorption process of methyl violet dye onto SBA-15 was analyzed varying different initial parameters (dye concentration, mass of sorbent, pH of dye solution, and contact sorption time). SBA-15 proved as efficient sorbent for removal of methyl violet dye in contact time of 5 min, with maximum percentage of dye removal 99 % at pH 8. The results obtained from Image-Pro Plus showed to be in good agreement with the sorption parameters obtained by UV/Vis spectroscopy, which has been the most commonly used instrument for quantification of dye sorption. The image analysis method proved well prediction of dye concentrations with maximum relative error of 1.83 %. The advantages of this method are low cost and reliable quantitative evaluation with minimum of time. PMID:26875074

  13. Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells.

    PubMed

    Shiu, Jia-Wei; Lan, Chi-Ming; Chang, Yu-Cheng; Wu, Hui-Ping; Huang, Wei-Kai; Diau, Eric Wei-Guang

    2012-12-21

    A simple hydrothermal method with titanium tetraisopropoxide (TTIP) as a precursor and triethanolamine (TEOA) as a chelating agent enabled growth in the presence of a base (diethylamine, DEA) of anatase titania nanocrystals (HD1-HD5) of controlled size. DEA played a key role to expedite this growth, for which a biphasic crystal growth mechanism is proposed. The produced single crystals of titania show octahedron-like morphology with sizes in a broad range of 30-400 nm; a typical, extra large, octahedral single crystal (HD5) of length 410 nm and width 260 nm was obtained after repeating a sequential hydrothermal treatment using HD3 and then HD4 as a seed crystal. The nanocrystals of size ~30 nm (HD1) and ~300 nm (HD5) served as active layer and scattering layer, respectively, to fabricate N719-sensitized solar cells. These HD devices showed greater V(OC) than devices of conventional nanoparticle (NP) type; the overall device performance of HD attained an efficiency of 10.2% power conversion at a total film thickness of 28 ?m, which is superior to that of a NP-based reference device (? = 9.6%) optimized at a total film thickness of 18-20 ?m. According to results obtained from transient photoelectric and charge extraction measurements, this superior performance of HD devices relative to their NP counterparts is due to the more rapid electron transport and greater TiO(2) potential. PMID:23116194

  14. Continuously tunable energy transfer laser operation in four-dye mixture systems

    NASA Astrophysics Data System (ADS)

    Muto, S.; Ito, C.; Inaba, H.

    1983-11-01

    Theoretical as well as experimental investigation of the energy transfer dye laser (ETDL) operation has been performed, aimed at development of a dye laser which covers a wide wavelength range without exchanging a dye mixture. The following two dye mixtures are shown to be very effective: Rhodamine 6(R6G)-Safrain T(ST)-Cresyl Violet (CV)-Nile Blue(NB) and Coumarin 1 (C1)-Acriflavine(A)-Uranine(U)-R6G. Their desirable dye concentrations are derived and the tuning characteristics are measured. Continuous tuning was achieved over 130 nm in either case, and hence almost the entire visible range is covered with these two ETDL's.

  15. Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: development and validation.

    PubMed

    Hurtaud-Pessel, D; Couëdor, P; Verdon, E

    2011-03-25

    A method is described for the identification and the quantitative determination of the triphenylmethane dyes, malachite green (MG), crystal violet (CV), brilliant green (BG) and leuco malachite green (LMG) and leuco crystal violet (LCV). The analytes were isolated from the matrix by liquid-liquid extraction with acetonitrile. Determination was performed using LC-MS/MS with positive electrospray ionisation. 4 different deuterated internal standards were introduced to improve the quantitative performance of the method. The method has been validated in line with the EU criteria of Commission Decision 2002/657/EC in accordance with the minimum required performance limit (MRPL) set at 2 μgkg(-1) for the sum of MG and LMG. For all the monitored compounds, accuracy, intra-day and inter-day precision were determined at each level of fortification (0.5, 0.75, 1.0 and 2.0 μgkg(-1)). Decision limits CCα and detection capabilities CCβ were calculated according to the standard ISO 11843-2. A study on the applicability of the method was conducted on various aquacultured species with the aim to assess the matrix effects. The presence of residues of leuco brilliant green in fish has also been confirmed from experimental study performed on trout treated with brilliant green, using LTQ-Orbitrap mass spectrometer. PMID:21310421

  16. Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization

    PubMed Central

    2013-01-01

    Peroxidases are oxidoreductase enzymes produced by most organisms. In this study, a peroxidase was purified from Hevea brasiliensis cell suspension by using anion exchange chromatography (DEAE-Sepharose), affinity chromatography (Con A-agarose) and preparative SDS-PAGE. The obtained enzyme appeared as a single band on SDS-PAGE with molecular mass of 70 kDa. Surprisingly, this purified peroxidase also had polyphenol oxidase activity. However, the biochemical characteristics were only studied in term of peroxidase because similar experiments in term of polyphenol oxidase have been reported in our pervious publication. The optimal pH of the purified peroxidase was 5.0 and its activity was retained at pH values between 5.0–10.0. The enzyme was heat stable over a wide range of temperatures (0–60°C), and less than 50% of its activity was lost at 70°C after incubation for 30 min. The enzyme was completely inhibited by β-mercaptoethanol and strongly inhibited by NaN3; in addition, its properties indicated that it was a heme containing glycoprotein. This peroxidase could decolorize many dyes; aniline blue, bromocresol purple, brilliant green, crystal violet, fuchsin, malachite green, methyl green, methyl violet and water blue. The stability against high temperature and extreme pH supported that the enzyme could be a potential peroxidase source for special industrial applications. PMID:23402438

  17. Room-temperature operation of GaN-based blue-violet laser diodes fabricated on sapphire substrates using high-temperature-grown single-crystal AlN buffer layers

    NASA Astrophysics Data System (ADS)

    Ohba, Yasuo; Iida, Susumu

    2003-11-01

    The laser operation has been demonstrated for the first time for the test devices fabricated on GaN layers grown on sapphire substrates by metalorganic chemical vapor deposition using high-temperature-grown single-crystal AlN buffer layers (HT-AlN buffer layers). The device structure was the simple electrode-stripe type with a 1-mm-long and 10-m-wide laser cavity. The wavelength was 413 nm. The threshold current and current density were 760 mA and 7.6 kA/cm2, respectively. The operation voltage at the threshold current was 8 V. These characteristics were comparable to one of the best values reported using conventional low-temperature grown buffer layers, considering the used simple device structure. This fact was thought to support the promising potential of the HT-AlN buffer to realize high performance practical devices on sapphire substrates. (

  18. Improvement of Crystal Quality of AlGaN Multi Quantum Well Structure by Combination of Flow-Rate Modulation Epitaxy and AlN/GaN Multi-Buffer Layer and Resultant Lasing at Deep Ultra-Violet Region

    NASA Astrophysics Data System (ADS)

    Takano, Takayoshi; Ohtaki, Yasuyuki; Narita, Yoshinobu; Kawanishi, Hideo

    2004-10-01

    The crystal quality of AlN and AlGaN MQW layers was improved greatly by a combination of flow-rate modulation epitaxy (FME) and the optimized AlN/GaN multi-buffer layer in low-pressure metal organic vapor phase epitaxy (LP-MOVPE). The cross-sectional TEM image indicated that the threading-dislocation density of the AlN template decreased from 109-1010 cm-2 to 107-108 cm-2 by this combination. Resultantly, the lasing wavelength with the same optical pumping power decreased by about 80 nm, and lasing at 241 nm, the shortest reported so far at room temperature, has been achieved.

  19. Adsorption of methyl violet onto mesoporous MCM-48 from aqueous solution.

    PubMed

    Gu, Xingxing; Xu, Hong; Luo, Lingling; Wu, Jun; Lin, Hongjun; Chen, Jianrong

    2014-06-01

    In this study, hexadecyltrimethyl ammonium bromide and triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) were used as co-templates and tetraethoxysilane was used as silica source to synthesize mesoporous MCM-48, which was employed to adsorb methyl violet dye from water. The prepared MCM-48, after calcination at 550 degrees C, was found to have a high surface area of 1072 m2/g and a pore volume of 1.08 cm3/g. The MCM-48 adsorption of methyl violet in aqueous solution was studied using UV-visible spectrophotometry. Experimental conditions, including initial pH of sample solution, initial concentration, MCM-48 amount, adsorption time and temperature, were also investigated. Results showed that the adsorption behavior could well be depicted by Langmuir equations and pseudo-second-order kinetic model. The maximum adsorption capacity of 193.82 mg/g was obtained at 20 degrees C. The values for thermodynamic parameters deltaG0, deltaS0 and deltaH0 were all negative, showing that the MCM-48 adsorption of methyl violet was spontaneous and exothermic. PMID:24738444

  20. Cataphoretic assembly of cationic dyes and deposition of carbon nanotube and graphene films.

    PubMed

    Su, Y; Zhitomirsky, I

    2013-06-01

    Cathodic electrophoretic deposition (EPD) method has been developed for the fabrication of thin films from aqueous solutions of crystal violet (CV) dyes. The films contained rod-like particles with a long axis oriented perpendicular to the substrate surface. The proposed deposition mechanism involved cataphoresis of cationic CV(+) species, base generation in the cathodic reactions, and charge neutralization at the electrode surface. The assembly of rod-like particles was governed by ?-? interactions of polyaromatic CV molecules. The deposition kinetics was studied by quartz crystal microbalance. CV dyes allowed efficient dispersion of multiwalled carbon nanotubes (MWCNTs) and graphene in water at relatively low CV concentrations. The feasibility of cathodic EPD of MWCNT and graphene from aqueous suspensions, containing CV, has been demonstrated. The deposition yield was investigated at different CV concentrations and deposition voltages. The relatively high deposition yield of MWCNT and graphene indicated that CV is an efficient dispersing, charging, and film forming agent for EPD. Electron microscopy data showed that at low CV concentrations in MWCNT or graphene suspensions and low deposition voltages, the films contained mainly MWCNT or graphene. The increase in the CV concentration and/or deposition voltage resulted in enhanced co-deposition of CV. The EPD method developed in this investigation paves the way for the fabrication of advanced nanocomposites by cathodic electrodeposition. PMID:23540434

  1. Dye lasers

    SciTech Connect

    Stone, J.

    1984-04-03

    A dye laser (FIG. 1, 5 or 6) includes a pumping laser source (e.g. 11), an optical resonator (e.g. 13-15), and a dye solution or dye cell (e.g. 12) disposed in the path of the pumping laser light in the resonator. The dye cell disclosed herein comprises a pair of closely spaced transparent discs (21). A motor (26) serves to spin the discs at a high rate of speed. The pumping laser light in the resonator is focused on the discs at a predetermined angle (i.e. the Brewster angle). New, unbleached dye is injected axially with respect to the discs so that the spin force causes a radial flow of the dye solution between the spinning discs and, of course, past the pumping laser light spot.

  2. Crystal Structures of Two Novel Dye-Decolorizing Peroxidases Reveal a Beta-Bar Fold With a Conserved Heme-Binding Motif

    SciTech Connect

    Zubieta, C.; Krishna, S.S.; Kapoor, M.; Kozbial, P.; McMullan, D.; Axelrod, H.L.; Miller, M.D.; Abdubek, P.; Ambing, E.; Astakhova, T.; Carlton, D.; Chiu, H.J.; Clayton, T.; Deller, M.C.; Duan, L.; Elsliger, M.A.; Feuerhelm, J.; Grzechnik, S.K.; Hale, J.; Hampton, E.; Han, G.W.; /JCSG /SLAC, SSRL /Burnham Inst. Med. Res. /UC, San Diego /Scripps Res. Inst. /Novartis Res. Found.

    2007-10-31

    BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 Angstroms, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, {alpha}+{beta} ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein).

  3. Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique.

    PubMed

    Lin, Jia-De; Chen, Che-Pei; Chen, Lin-Jer; Chuang, Yu-Chou; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-02-01

    This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs. PMID:26906876

  4. Dye lasers

    SciTech Connect

    Kuder, J.E.; McGinnis, J.L.; Goldberg, H.A.; Hart, T.R.; Che, T.M.

    1989-10-31

    This patent describes a dye laser. It consists of a composite composition of an inorganic oxide glass monolith with a microporous structure containing an incorporated solution comprising a solvent component and a lasable dye component. Wherein the glass monolith has sealed outer surfaces.

  5. Adsorption and subsequent partial photodegradation of methyl violet 2B on Cu/Al layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Guzmán-Vargas, Ariel; Lima, Enrique; Uriostegui-Ortega, Gisselle A.; Oliver-Tolentino, Miguel A.; Rodríguez, Esaú E.

    2016-02-01

    Uncalcined Cu/Al LDH was studied as adsorbent and photocatalyst in the adsorption and subsequent photodegradation of methyl violet 2B dye (MV2B). Physicochemical characterization was carried out by XRD, FTIR, UV-vis, including photoactive properties, DSC/TGA and SEM. Kinetic and thermodynamic models showed great affinity and sorption capacity, the maximum adsorption capacity was 361.0 mg g-1 obtained by Langmuir model, in addition, the results showed that the dye was adsorbed on the LDH surface. Photocatalytic activity was evaluated in the MV2B dye photodegradation process, and it was confirmed by the presence rad OH radicals monitored by EPR spin trapping technique, additionally, COD and TOC parameters were measured, 13C NMR showed differences for the adsorbed and photodegraded samples.

  6. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2015-09-01

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions.

  7. Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study

    SciTech Connect

    Fischer, D.; Caseri, W.R.; Haehner, G.

    1998-02-15

    Dye molecules are frequently used to determine the specific surface area and the ion exchange capacity of high-surface-area materials such as mica. The organic molecules are often considered to be planar and to adsorb in a flat orientation. In the present study the authors have investigated the orientation and electronic structure of crystal violet (CV) and malachite green (MG) on muscovite mica, prepared by immersing the substrates for extended periods into aqueous solutions of the dyes of various concentrations. The K{sup +} ions of the mica surface are replaced by the organic cations via ion exchange. X-ray photoelectron spectroscopy reveals that only one amino group is involved in the interaction of CV and MG with the muscovite surface, i.e., certain resonance structures are abolished upon adsorption. With near edge X-ray absorption fine structure spectroscopy a significant tilt angle with respect to the surface was found for all investigated species. A flat orientation, as has often been proposed before, can effectively be ruled out. Hence, results are in marked contrast to the often quoted orientation and suggest that the specific surface areas determined with dyes may, in general, be overestimated.

  8. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    PubMed

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater. PMID:21387170

  9. Fluorescence enhancement of dyes embedded in nanoparticles of Lu, Eu, Al, and Sc diketonates of different composition and concentration

    NASA Astrophysics Data System (ADS)

    Mironov, L. Yu.; Sveshnikova, E. B.; Ermolaev, V. L.

    2014-12-01

    We have studied the effect of central ions (Lu(III), Eu(III), Sc(III), and Al(III)), organic ligands (2-naphthoyltrifluoroacetone (NTA) and p-phenylbenzoyltrifluoroacetone (PhBTA)), and their concentration in a water-alcohol solution on the fluorescence of ?-diketonate complexes formed and nanoparticles (NPs) generated by the self-assembly of these complexes. The fluorescence quenching of ligands of the complexes of nanoparticles because of the introduction of molecules of dyes, such as Nile Blue (NB), Lissamine Rhodamine RB-200 (RB), and Crystal Violet (CV), in these nanoparticles is investigated, and the NP-sensitization of the fluorescence of these dyes is explored. The dependence of the intensity of the NP-sensitized fluorescence of NB on its concentration in nanoparticles consisting of complexes that differ in composition and concentration is studied. By analyzing this dependence for the nanoparticles consisting of Sc(NTA)3, the size of the studied nanoparticles is evaluated. It is shown that the nature of this dependence is determined by a competition of two processes: the migration of the excitation energy over complexes to dyes and the migration of the excitation energy of dyes to impurities or dimer of dyes. The size of nanoparticles is compared to the estimated values of the exciton diffusion length and the critical radius of energy transfer from complexes to NB. An energy transfer of close to 100% from the nanoparticles formed of 10 ?M of Sc(NTA)3 to 50 nM of NB molecules embedded therein is observed. The introduction of NB molecules into nanoparticles leads to a 200-fold increase in fluorescence intensity compared to their direct excitation in solution.

  10. An Optical Sensing System Using Liquid Crystal Cells and a Corner Cube Prism Coated with Dye Films for Simultaneous Detection of an Electric Field and Decomposition Products of SF6

    NASA Astrophysics Data System (ADS)

    Kawamura, Marenori; Sato, Susumu

    1998-10-01

    We have developed a multisensing system for simultaneously detecting an electric field and a small quantity of decomposition products generated from an electric discharge in SF6.The sensor head consists of a twisted nematic (TN) liquid crystal (LC) cell, sandwiched between two cholesteric LC cells and a corner cube prism coated with thin dye films.The electric field can be detected as changes in retardations induced in the TN LC cells by an electric field at a wavelength of a selective reflection band of the cholesteric LC.Simulated and experimental results for the relationship between the sensitivity to the electric field and the thickness of the TN LC cell are discussed. The decomposition products can also be detected as spectral changes of methyl orange dye films deposited on the surfaces of the corner cube prism at different wavelength regions outside the selective reflection band.

  11. Dye Painting with Fiber Reactive Dyes

    ERIC Educational Resources Information Center

    Benjamin-Murray, Betsy

    1977-01-01

    In her description of how to use dyes directly onto fabrics the author lists materials to be used, directions for mixing dyes, techniques for applying dyes, references for additional reading and sources for dye materials. Preceding the activity with several lessons in design and other textile techniques with the dye process will ensure a

  12. Adsorption and removal of triphenylmethane dyes from water by magnetic reduced graphene oxide.

    PubMed

    Sun, Jian-Zhong; Liao, Zhi-Hong; Si, Rong-Wei; Kingori, Gakai Peter; Chang, Fu-Xiang; Gao, Lu; Shen, Yu; Xiao, Xiang; Wu, Xiang-Yang; Yong, Yang-Chun

    2014-01-01

    Triphenylmethane (TPM) dye is one of the most prevalent and recalcitrant water contaminants. Magnetic reduced graphene oxide (rGO) is an efficient adsorbent for organic pollutants removal. However, the performance and adsorption kinetics of magnetic rGO towards TPM have not yet been studied. In this study, a magnetic Fe3O4@rGO nano-composite, which could be easily removed from water with a simple magnetic separation step was synthesized and characterized. The magnetic rGO showed fast adsorption rate and high adsorption capacity towards different TPM dyes (the Langmuir monolayer adsorption capacity is 64.93 mg/g for adsorption of crystal violet). The adsorption processes are well-fitted to the pseudo-second-order kinetic model (R(2) > 0.99) and the Langmuir isotherm model (R(2) = 0.9996). Moreover, the magnetic rGO also showed excellent recycling and regeneration capabilities. The results indicated that adsorption with magnetic rGO would be a promising strategy to clean up the TPM contamination. PMID:25429455

  13. Heterologous expression and characterisation of a laccase from Colletotrichum lagenarium and decolourisation of different synthetic dyes.

    PubMed

    Wang, Bo; Yan, Ying; Tian, Yongsheng; Zhao, Wei; Li, Zhengjun; Gao, Jianjie; Peng, Rihe; Yao, Quanhong

    2016-03-01

    Laccases have received considerable attention in recent decades because of their ability to oxidise a large spectrum of phenolic and non-phenolic organic substrates and highly recalcitrant environmental pollutants. In this research, a laccase gene from Colletotrichum lagenarium was chemically synthesised using yeast bias codons and expressed in Pichia pastoris. The molecular mass of the recombinant laccase was estimated to be 64.6 kDa by SDS-PAGE, and the enzyme exhibited maximum activity at pH 3.6-4.0 but more stability in buffer with higher pH (>pH 3.6). The optimal reaction temperature of the enzyme was 40 °C, beyond which stability significantly decreased. By using 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulphonate (ABTS) as a substrate, K m and V max values of 0.34 mM and 7.11 mM min(-1) mg(-1), respectively, were obtained. Using ABTS as a mediator, the laccase could oxidise hydroquinone to p-benzoquinone and decolourise the synthetic dyes malachite green, crystal violet and orange G. These results indicated that the laccase could be used to treat industrial effluents containing artificial dyes. PMID:26867601

  14. Brief history of the Martian 'violet haze' problem.

    NASA Technical Reports Server (NTRS)

    Thompson, D. T.

    1972-01-01

    A brief but thorough survey of the literature on the Martian 'violet haze' problem is presented. It is evident that both the normal lack of contrast of the surface features in violet light and their occasional appearance are phenomena intrinsic to Mars. Models involving simple uniform layers of scattering or absorbing materials are inadequate to account for the observations. We suggest that the role of haze has historically been misinterpreted. The blank disk of Mars in violet light occurs when the atmosphere is relatively free of haze. The formation of optically thin white hazes over the bright areas increases the contrast and produces 'blue clearing.'

  15. ``Fast'' amplifying optical Kerr gate using stimulated emission of organic non-linear dyes

    NASA Astrophysics Data System (ADS)

    Jonusauskas, G.; Oberl, J.; Abraham, E.; Rullire, C.

    1997-02-01

    We describe a "fast" optical Kerr gate (OKG) which can act at the same time as light amplifier. As a Kerr medium we used different laser dyes (Cresyl violet, Nile blue, Rhodamine 640). The most efficient at available wavelengths (595 nm and 297 nm) was Cresyl violet dissolved in methanol. With a classical OKG arrangement we obtained a maximum transmission of 4000% at 650 nm (strong amplification of the tramsmitted signal), this wavelength corresponding to a gain maximum of Cresyl violet. The opening time of the OKG was 15 ps limited by the reorientation time of the dye molecule in methanol solvent. With a special OKG arrangement based on the use of two delayed opening pulses, we obtained 240% transmission at the same wavelength with an opening time of 2.5 ps. Possible improvements of the method are described.

  16. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    PubMed

    Hernndez-Montoya, V; Prez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401m(2)g(-1)) in contrast with the zeolite CL (21m(2)g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+)>Ni(2+)>Zn(2+)>Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. PMID:23321372

  17. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta.

    PubMed

    Baratto, Maria Camilla; Juarez-Moreno, Karla; Pogni, Rebecca; Basosi, Riccardo; Vazquez-Duhalt, Rafael

    2015-06-01

    The mechanisms of industrial dye transformation by versatile peroxidase were elucidated. Purified versatile peroxidase from Bjerkandera adusta was able to decolorize different classes of dyes including azo and phthalocyanines, but unable to transform any of the anthraquinones tested. Kinetic constants for selected dyes were determined and the transformation products were analyzed by EPR spectroscopy and mass spectrometry. The EPR and MS analyses of the enzymatic decolorization products showed the cleavage of the azo bond in azo dyes and the total disruption of the phthalocyaninic ring in phthalocyanine dyes. The EPR analysis on two copper-containing dyes, reactive violet 5 (azo) and reactive blue 72 (phthalocyanine), showed that the transformation can or not break the metal-ion coordination bond according the dye nature. The role of the catalytic Trp172 in the dye transformation by a long-range electron transfer pathway was confirmed and the oxidation mechanisms are proposed and discussed. PMID:25567062

  18. Metallo-hydrazone complexes immobilized in zeolite Y: Synthesis, identification and acid violet-1 degradation

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman H.; Thabet, M. S.

    2011-12-01

    Copper(II), cobalt(II) and nickel(II) complexes of hydrazone ligand (SAPH) derived from salicylaldehyde and phenylhydrazine have been encapsulated in zeolite-Y super cages via ship-in-a-bottle synthesis. Detailed characterization of the intrazeolitic complexes were performed by elemental analysis, spectral (FT-IR, UV-Vis.) studies, magnetic measurements and X-ray diffraction. Furthers, surface texture and thermal analysis (TG, DTG, DTA) have provided further evidence for successful immobilization of the metal complexes inside zeolite Y. Investigation of the stereochemistry of these incorporated chelates pointed out that, SAPH ligand is capable to coordinate with the central metal through the (C dbnd N), phenolic (OH) and (NH) groups forming polynuclear structures. The involvement of zeolite oxygen in coordination was postulated in the hybrid materials. The intrazeolitic copper, cobalt and nickel-SAPH complexes have distorted tetrahedral, octahedral and square-pyramidal configurations, respectively. The zeolite encapsulated complexes are thermally stable up to 800 C except Cu(II) sample which is thermally stable up to midpoint 428 C. The assessment of the catalytic activity was performed by the use of the photo-degradation of acid violet-1 dye as a probe reaction in presence of H 2O 2 as an oxidant. Decolorization of acid violet-1 dye was examined under the same conditions whereas the unpromoted zeolite and Cu II, Co II, Ni II-hydrazone complexes supported on zeolite showed 13% and 76%, 53%, 43% color removal, respectively. The results revealed that, the zeolite encapsulated Cu(II) complex generally exhibited better catalytic efficiency (76%) compared with other investigated zeolite encapsulated metal-hydrazone samples.

  19. Venus in Violet and Near Infrared Light

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13,1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.

  20. Picosecond dynamics of cresyl violet H-aggregates adsorbed on SiO2 and SnO2 nanocrystallites

    NASA Astrophysics Data System (ADS)

    Liu, Di; Kamat, Prashant V.

    1996-07-01

    The H-aggregates of cresyl violet dye which are formed on the negatively charged SiO2 and SnO2 nanocrystallites, exhibit relatively short-lived excitonic singlet state with a lifetime of about 35 ps. The difference absorption maximum (?max=470 nm) is blue shifted compared to the corresponding singlet excited state of monomer (?max=515 nm). Time-resolved transient absorption measurements show that these dye aggregates are capable of injecting electrons from the triplet excited state into SnO2 nanocrystallites. The rate constant for heterogeneous electron transfer as measured from the formation of cation radical and electron trapping in SnO2 nanocrystallites was 2.0108 s-1.

  1. Sensitization to reactive textile dyes in patients with contact dermatitis.

    PubMed

    Manzini, B M; Motolese, A; Conti, A; Ferdani, G; Seidenari, S

    1996-03-01

    Reactive dyes are used especially for colouring natural fibres (cotton, silk and wool) that are widely used in Western countries, particularly Italy, in the production of clothes. The aim of our study was to investigate sensitization to the most commonly used reactive textile dyes in patients undergoing patch tests, and to assess the clinical relevance of contact sensitization to these dyes. 1813 consecutive patients underwent patch tests with the GIRDCA standard series and an additional textile series of 12 reactive dyes. 18 of these patients were sensitized to reactive dyes (0.99%) (4 only to reactive dyes). The dyes most frequently responsible for positive patch tests were Red Cibacron CR and Violet Remazol 5R (respectively, 8 and 5 positivities). In 5 cases only was a history of intolerance to particular garments given; of 4 patch tests performed with pieces of garment, 2 were positive. In 1 occupationally-exposed patient, airborne contact dermatitis was suspected. Owing to the lack of up-to-date patch test series, some cases of allergic contact dermatitis from textile dyes are probably misdiagnosed: new colouring agents are continuously introduced to the market, so that a close relationship with textile industry is necessary to improve our diagnostic tools. PMID:8833459

  2. Metallophyte status of violets of the section Melanium.

    PubMed

    Hermann, Bothe; Katarina, Vogel-Mikuš; Paula, Pongrac; Matevž, Likar; Neva, Stepic; Primož, Pelicon; Primož, Vavpetič; Luka, Jeromel; Marjana, Regvar

    2013-11-01

    Violets from metal-enriched soils have controversially been described as both heavy-metal accumulators and excluders in the literature. The present study solves the issue for violets of the section Melanium (zinc violets, Viola lutea ssp. calaminaria and V. lutea ssp. westfalica; hartsease or wild pansy, Viola tricolor; and mountain pansy, V. lutea). The aims were to determine the concentrations of heavy metals in the soil and in the roots and shoots of field-collected plants, to evaluate the potential impact of colonisation by arbuscular mycorrhizal fungi on heavy-metal concentrations in the plant tissues, and to quantitatively define the localisation of the elements in root cross-sections. When these violets grow in low-metal soils, higher concentrations of the heavy metals were found in the roots and shoots than in the soil, whereas the opposite was seen in samples from high-metal soils. Under all field conditions examined, the roots of all of these species were colonised by arbuscular mycorrhizal fungi. However, V. tricolor was marginally colonised when the concentrations of Zn and P were higher in the soil. Determination of the spatial distribution of the elements in root cross-sections of these violets indicates tissue-specific deposition of elements within the vascular tissue, the cortex, and the rhizodermis. These data indicate that violets of the section Melanium are heavy-metal excluders. PMID:23859423

  3. Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS

    PubMed Central

    2012-01-01

    Background The discharge of wastewater that contains high concentrations of reactive dyes is a well-known problem associated with dyestuff activities. In recent years, semiconductor photocatalysis has become more and more attractive and important since it has a great potential to contribute to such environmental problems. One of the most important aspects of environmental photocatalysis is in the selection of semiconductor materials like ZnO and TiO2, which are close to being two of the ideal photocatalysts in several respects. For example, they are relatively inexpensive, and they provide photo-generated holes with high oxidizing power due to their wide band gap energy. In this work, nanostructural ZnO film on the Zn foil of the Alkaline-Manganese Dioxide-Zinc Cell was fabricated to degrade EV dye. The major innovation of this paper is to obtain the degradation mechanism of ethyl violet dyes resulting from the HPLC-PDA-ESI-MS analyses. Results The fabrication of ZnO nanostructures on zinc foils with a simple solution-based corrosion strategy and the synthesis, characterization, application, and implication of Zn would be reported in this study. Other objectives of this research are to identify the reaction intermediates and to understand the detailed degradation mechanism of EV dye, as model compound of triphenylmethane dye, with active Zn metal, by HPLC-ESI-MS and GC-MS. Conclusions ZnO nanostructure/Zn-foils had an excellent potential for future applications on the photocatalytic degradation of the organic dye in the environmental remediation. The intermediates of the degradation process were separated and characterized by the HPLC-PDA-ESI-MS and GC-MS, and twenty-six intermediates were characterized in this study. Based on the variation of the amount of intermediates, possible degradation pathways for the decolorization of dyes are also proposed and discussed. PMID:22748361

  4. Facile preparation of stable palygorskite/methyl violet@SiO2 "Maya Violet" pigment.

    PubMed

    Zhang, Yujie; Zhang, Junping; Wang, Aiqin

    2015-11-01

    Maya Blue pigment has attracted considerable attention owing to their extraordinary stability. The growing interest in this field has largely expanded the study of Maya Blue-like pigments. Inspired by Maya Blue, a stable palygorskite/methyl violet@SiO2 (PAL/MV@SiO2) "Maya Violet" pigment was fabricated via adsorption of MV by PAL, and then deposition of a layer of SiO2 on the surface by polycondensation of tetraethoxysilane (TEOS) in the presence of cetyltrimethylammonium bromide (CTAB). The weight ratio of MV to PAL is as high as 10%. The pigments were characterized by scanning electron microscopy and a variety of analytical techniques, e.g., Fourier Transform infrared spectroscopy and zeta potential. The results indicate that MV molecules are fixed onto the exterior surface, the grooves and at the entrances of the channels of PAL. The PAL/MV@SiO2 pigment shows excellent stability against chemical attacks, e.g., 0.1 M HCl, 0.1 M NaOH and various organic solvents. Different from Maya Blue, grinding and heating treatment are virtually ineffective in improving stability of the PAL/MV pigment. CTAB and the SiO2 layer formed on the surface of PAL/MV contribute greatly to the improved stability of the pigment due to shielding effect. The optimal CTAB/TEOS/ammonia/H2O molar ratio for the surface modification of PAL/MV is 0.24/1/2.89/495. PMID:26196708

  5. Determination of Triphenylmethane Dyes and Their Metabolites in Salmon, Catfish, and Shrimp by LC-MS/MS Using AOAC First Action Method 2012.25: Collaborative Study.

    PubMed

    Schneider, Marilyn J; Andersen, Wendy C

    2015-01-01

    A collaborative study was conducted to evaluate the AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood. Fourteen laboratories from the United States, Canada, and the European Union member states participated in the study including national and state regulatory laboratories, university and national research laboratories, and private analytical testing laboratories. A variety of LC-MS/MS instruments were used for the analysis. Each participating laboratory received blinded test samples in duplicate of salmon, catfish, and shrimp consisting of negative control matrix; matrix fortified with residues at 0.42, 0.90, and 1.75 μg/kg; and samples of incurred matrix. The analytical results from each participating laboratory were evaluated for both quantitative residue determination and qualitative identification of targeted analytes. Results from statistical analysis showed that this method provided excellent trueness (generally ≥90% recovery) and precision (RSDr generally ≤10%, HorRat<1). The Study Directors recommend Method 2012.25 for Final Action status. PMID:26025133

  6. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  7. Biosorption potential of synthetic dyes by heat-inactivated and live Lentinus edodes CCB-42 immobilized in loofa sponges.

    PubMed

    Gimenez, Gabriela Gregolin; Ruiz, Suelen Pereira; Caetano, Wilker; Peralta, Rosane Marina; Matioli, Graciette

    2014-12-01

    Lentinus edodes CCB-42 was immobilized in loofa sponges and applied to the biosorption of the synthetic dyes congo red, bordeaux red and methyl violet. Live immobilized microorganisms achieved average decolorations of congo red, bordeaux red and methyl violet of 97.8, 99.7 and 90.6 %, respectively. The loofa sponge was the support and the coadjuvant promoting dye adsorption. The biosorption conditions were optimized for each dye, yielding 30 C, pH 5.0 and a 12 h reaction time for congo red; 25 C, pH 3.0 and 36 h for bordeaux red; and 25 C, pH 8.0 and 24 h for methyl violet. Operational stability was evaluated over five consecutive cycles, with both bordeaux red and congo red exhibiting decolorations above 90 %, while the decoloration of methyl violet decreased after the third cycle. In the sixth month of storage, congo red, bordeaux red and methyl violet had decolorations of 93.1, 79.4 and 73.8 %, respectively. Biosorption process best fit the pseudo-second-order kinetic and Freundlich isotherm models. Maximum biosorption capacity of heat-treated L. edodes immobilized in loofa sponge was determined as 143.678, 500.00 and 381.679 mg/g for congo red, bordeaux red and methyl violet, respectively. Treatment with immobilized L. edodes reduced the phytotoxicity of the medium containing dyes. FT-Raman experiments suggested the occurrence of interactions between loofa sponge fibers, L. edodes and dye. L. edodes CCB-42 immobilized in loofa sponges represents a promising new mode of treatment of industrial effluents. PMID:25267474

  8. Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyes in aqueous solutions.

    PubMed

    Anirudhan, T S; Suchithra, P S

    2009-01-01

    Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Na-bentonite in the presence of N,N'-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0-8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG > MB > CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation. PMID:19862952

  9. Mathematical modelling and optimization of synthetic textile dye removal using soil composites as highly competent liner material.

    PubMed

    Das, Papita; Banerjee, Priya; Mondal, Sandip

    2015-01-01

    Soil is widely used as adsorbent for removing toxic pollutants from their aqueous solutions due to its wide availability and cost efficiency. This study investigates the potential of soil and soil composites for removal of crystal violet (CV) dye from solution on a comparative scale. Optimisation of different process parameters was carried out using a novel approach of response surface methodology (RSM) and a central composite design (CCD) was used for determining the optimum experimental conditions, as well as the result of their interactions. Around 99.85 % removal of CV was obtained at initial pH 6.4, which further increased to 99.98 % on using soil and cement composite proving it to be the best admixture of those selected. The phenomenon was found to be represented best by the Langmuir isotherm at different temperatures. The process followed the pseudo-second-order kinetic model and was determined to be spontaneous chemisorption in nature. This adsorbent can hence be suggested as an appropriate liner material for the removal of CV dye. PMID:25138552

  10. Continuous-wave violet generation at 373.5 nm by frequency-doubled power-scaled near-infrared emitting Pr:YAlO3 laser

    NASA Astrophysics Data System (ADS)

    Fibrich, Martin; Jelnkov, Helena

    2013-10-01

    We report on a continuous-wave Pr:YAlO3 laser operating at a wavelength of 373.5 nm in a power-scaled resonator arrangement. Violet light generation has been achieved by intracavity frequency doubling of the near-infrared emitting Pr:YAP laser at a fundamental wavelength of 747 nm. For active medium pumping, two GaN laser diodes providing up to 1 W of output power each at 448 nm were used. By employing BBO crystal as a nonlinear medium, more than 46 mW of violet radiation has been obtained.

  11. The different effects of oxygen and air DBD plasma byproducts on the degradation of methyl violet 5BN.

    PubMed

    Chen, Guangliang; Zhou, Mingyan; Chen, Shihua; Chen, Wenxing

    2009-12-30

    Through a novel design of the dielectric barrier discharge (DBD) plasma plume used in fabric-fiber surface modification, its discharge byproducts mainly including downstream gases and ultraviolet light were used to treat the dye solution. The different influence of oxygen and air DBD plasmas on the degradation of methyl violet 5BN (MV-5BN), which is widely used in textile industry, was investigated in this paper. The results showed that the cooperation between ultraviolet light and active species generated by the DBD plasma can decolorize MV-5BN effectively, and the chromophore peaks attributed to the -NN- bonds in MV-5BN molecule disappeared entirely when the azo dye solutions were treated for 25 min by the air and oxygen DBD plasmas. The degradation reaction followed an exponential kinetics over time, and the peak of aromatic derivatives at 209 nm in UV-vis spectra increased nearly 2.7 times when the dye solution was treated for 30 min by air DBD plasma. However, the oxygen DBD plasma could deplete the aromatic derivatives entirely. It is found that the formation of O(3) and NO(x) in the downstream gases of air and oxygen plasmas may be responsible for the different effects on the azo dye degradation. PMID:19665839

  12. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  13. Tunable blue-violet Cr3+:LiCAF + BiBO compact laser

    NASA Astrophysics Data System (ADS)

    Maestre, H.; Torregrosa, A. J.; Capmany, J.

    2015-03-01

    We present a compact continuous wave (CW) external-cavity tunable Cr3+:LiCaAlF6 (Cr:LiCAF) laser which is intracavity frequency doubled using a BiB3O6 (BiBO) nonlinear crystal to obtain tunable blue-violet radiation. The generated second harmonic (SH) can be tuned by means of either angular or temperature variation of the nonlinear crystal. We have obtained SH radiation between 390-415 nm and a maximum output power of 34 mW at 400 nm. Future improvements on the SH tuning range and output power are addressed in the text. Our results may be applied in the design of compact tunable composite external-cavity solid-state lasers.

  14. Violet-red discolouration of canned Palmyra palm during processing.

    PubMed

    Chamchong, Montip; Tatidin, Yuporn; Misayan, Apinya

    2016-01-01

    The objectives of the research were to investigate the causes of the violet-red discolouration during processing of canned Palmyra palm and to identify preventive methods without the use of chemical additives. Palmyra palm flesh with (13-21 %) /without some peel left on was tested for the source of violet-red discolouration during blanching. It was found that blanching in distilled water had no effect on discolouration when blanching conditions were at 75, 85, and 95 °C for 7 min but the violet-red discolouration occurred only when tap water was used for blanching at 95 °C for 7 min. Moreover, the addition of bicarbonate (NaHCO3) in distilled water to imitate higher alkalinity of tap water during blanching could contribute to the violet-red discolouration. Thus the observed cut off alkalinity of the blanching water wherein not to expect any discolouration was found to be about 100 ppm. After sterilization, there was no violet-red discolouration from Palmyra palm flesh without any peel left on even though it had a preceding treatment of blanching in highly alkaline tap water. PMID:26787982

  15. Dye laser principles, with applications

    SciTech Connect

    Duarte, F.J. . Dept. of Physics); Hillman, L.W. . Dept. of Physics)

    1990-01-01

    This book contains papers which explain dye laser principles. Topics covered include: laser dynamics, femtosecond dye lasers, CW dye lasers, technology of pulsed dye lases, photochemistry of laser dyes, and laser applications.

  16. Just Dyeing to Find Out.

    ERIC Educational Resources Information Center

    Monhardt, Becky Meyer

    1996-01-01

    Presents a multidisciplinary unit on natural dyes designed to take advantage of the natural curiosity of middle school students. Discusses history of dyes, natural dyes, preparation of dyes, and the dyeing process. (JRH)

  17. crystal

    NASA Astrophysics Data System (ADS)

    Bai, Fen; Wang, Qingpu; Tao, Xutang; Li, Ping; Zhang, Xingyu; Liu, Zhaojun; Shen, Hongbin; Lan, Weixia; Gao, Liang; Gao, Zeliang; Zhang, Junjie; Fang, Jiaxiong

    2014-08-01

    An eye-safe Raman laser is realized with BaTeMo2O9 (BTM) nonlinear crystal for the first time. By using a diode-end-pumped acousto-optically Q-switched Nd:YVO4 laser as the pumping source, the BTM crystal converts the fundamental laser at 1,342 nm to first-Stokes laser at 1,531 nm successfully. With an incident power of 10.8 W and a pulse repetition rate of 25 kHz, the average output power at 1,531 nm is obtained to be 0.83 W, corresponding to a diode-to-Stokes conversion efficiency of 7.7 %. The pulse width is 11 ns, and the peak power is 3.0 kW.

  18. Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent.

    PubMed

    Janaki, V; Vijayaraghavan, K; Oh, Byung-Taek; Lee, Kui-Jae; Muthuchelian, K; Ramasamy, A K; Kamala-Kannan, Seralathan

    2012-11-01

    Starch/polyaniline nanocomposite was synthesized by chemical oxidative polymerization of aniline and was subsequently analyzed for dye removal from aqueous solution. Batch experiment results showed that nanocomposite removed 99% of Reactive Black 5, 98% of Reactive Violet 4, and decolorized 87% of dye bath effluent. The Toth isotherm model better described single component equilibrium adsorption, whereas the modified Freundlich model showed satisfactory fit for dye bath. In kinetic modeling, single system followed pseudo-second-order and dye bath followed the modified pseudo-first-order model. Fourier transform infrared spectroscopy pattern of the nanocomposite showed the participation of aromatic, amino, hydroxyl, and carboxyl groups. The results indicate that starch/polyaniline nanocomposite can be used as an effective adsorbent for removal of dyes from textile effluents. PMID:22944400

  19. Combination of photoreactor and packed bed bioreactor for the removal of ethyl violet from wastewater.

    PubMed

    Chen, Chih-Yu; Yen, Shao-Hsiung; Chung, Ying-Chien

    2014-12-01

    An efficient treatment system that combines a photoreactor and packed bed bioreactor (PBR) was developed and evaluated for treating ethyl violet (EV)-containing wastewater. Initial experiments demonstrated that the optimal operating parameters for the photoreactor in treating EV-containing wastewater were 2h reaction time, pH of 7, and 2 min liquid retention time. Under these conditions, the photocatalytic reaction achieved a 61% EV removal efficiency and resulted in a significant BOD/COD increase in the solution. The results displayed by the coupled photobiological system achieved a removal efficiency of 85% and EC50 of the solution increased by 19 times in a semi-continuous mode when the EV concentration was <150 mg +L(-)(1). The effect of shock loading on the EV removal was temporary but coexisting substrate (glucose and crystal violet) at specific levels would affect the EV removal efficiency of the PBR. Phylogenetic analysis in the PBR indicated that the major bacteria species were Bdellovibrio bacteriovorus, Ralstonia pickettii, Stenotrophomonas maltophilia, and Comamonas sp. Furthermore, the possible degrading mechanisms of this coupled system were demethylation, deethylation, aromatic ring opening, nitrification, and carbon oxidation. The intermediates were characterized using gas chromatography-mass spectrometry analysis. These results indicated that the coupled photobiological system provides an effective method of EV removal. PMID:25259784

  20. Ultrasonically assisted hydrothermal synthesis of activated carbon-HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization.

    PubMed

    Azad, F Nasiri; Ghaedi, M; Dashtian, K; Hajati, S; Pezeshkpour, V

    2016-07-01

    Activated carbon (AC) composite with HKUST-1 metal organic framework (AC-HKUST-1 MOF) was prepared by ultrasonically assisted hydrothermal method and characterized by FTIR, SEM and XRD analysis and laterally was applied for the simultaneous ultrasound-assisted removal of crystal violet (CV), disulfine blue (DSB) and quinoline yellow (QY) dyes in their ternary solution. In addition, this material, was screened in vitro for their antibacterial actively against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAO1) bacteria. In dyes removal process, the effects of important variables such as initial concentration of dyes, adsorbent mass, pH and sonication time on adsorption process optimized by Taguchi approach. Optimum values of 4, 0.02g, 4min, 10mgL(-1) were obtained for pH, AC-HKUST-1 MOF mass, sonication time and the concentration of each dye, respectively. At the optimized condition, the removal percentages of CV, DSB and QY were found to be 99.76%, 91.10%, and 90.75%, respectively, with desirability of 0.989. Kinetics of adsorption processes follow pseudo-second-order model. The Langmuir model as best method with high applicability for representation of experimental data, while maximum mono layer adsorption capacity for CV, DSB and QY on AC-HKUST-1 estimated to be 133.33, 129.87 and 65.37mgg(-1) which significantly were higher than HKUST-1 as sole material with Qm to equate 59.45, 57.14 and 38.80mgg(-1), respectively. PMID:26964963

  1. MODIFICATION AND CHARACTERIZATION OF DRY MATERIAL FEEDER FOR DELIVERY OF RED AND VIOLET DYE MIXTURES

    EPA Science Inventory

    Uniform delivery of dry material for stable concentrations of aerosols in inhalation exposure chambers is essential in inhalation experiments. his paper characterizes an AccuRate dry material feeder with modifications, for different helix sizes, actuation rates, nozzle types and ...

  2. 21 CFR 500.29 - Gentian violet for use in animal feed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentian violet for use in animal feed. 500.29... 500.29 Gentian violet for use in animal feed. The Food and Drug Administration has determined that gentian violet is not generally recognized as safe for use in animal feed and is a food additive...

  3. 21 CFR 500.29 - Gentian violet for use in animal feed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentian violet for use in animal feed. 500.29... 500.29 Gentian violet for use in animal feed. The Food and Drug Administration has determined that gentian violet is not generally recognized as safe for use in animal feed and is a food additive...

  4. 21 CFR 500.29 - Gentian violet for use in animal feed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentian violet for use in animal feed. 500.29... 500.29 Gentian violet for use in animal feed. The Food and Drug Administration has determined that gentian violet is not generally recognized as safe for use in animal feed and is a food additive...

  5. 21 CFR 500.30 - Gentian violet for animal drug use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gentian violet for animal drug use. 500.30 Section... Gentian violet for animal drug use. The Food and Drug Administration (FDA) has determined that gentian violet is not generally recognized as safe and effective for any veterinary drug use in food animals...

  6. 21 CFR 500.30 - Gentian violet for animal drug use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentian violet for animal drug use. 500.30 Section... Gentian violet for animal drug use. The Food and Drug Administration (FDA) has determined that gentian violet is not generally recognized as safe and effective for any veterinary drug use in food animals...

  7. 21 CFR 500.30 - Gentian violet for animal drug use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Gentian violet for animal drug use. 500.30 Section... Gentian violet for animal drug use. The Food and Drug Administration (FDA) has determined that gentian violet is not generally recognized as safe and effective for any veterinary drug use in food animals...

  8. 21 CFR 500.30 - Gentian violet for animal drug use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gentian violet for animal drug use. 500.30 Section... Gentian violet for animal drug use. The Food and Drug Administration (FDA) has determined that gentian violet is not generally recognized as safe and effective for any veterinary drug use in food animals...

  9. 21 CFR 500.29 - Gentian violet for use in animal feed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gentian violet for use in animal feed. 500.29... 500.29 Gentian violet for use in animal feed. The Food and Drug Administration has determined that gentian violet is not generally recognized as safe for use in animal feed and is a food additive...

  10. OBSERVATIONS ON THE GROWTH OF BACTERIA ON MEDIA CONTAINING VARIOUS ANILIN DYES.

    PubMed

    Krumwiede, C; Pratt, J S

    1914-01-01

    Gentian violet and allied anilin dyes have a similar influence on bacterial growth, dividing bacteria into two groups corresponding in general to their reaction to the Gram stain. Among Gram-negative bacteria a strain is occasionally encountered which will not grow on violet agar, differentiating it from other members of the same species or variety. The reaction is quantitative, although the quantitative character is more marked with some species than with others. The streptococcus-pneumococcus group differ from other Gram-positive bacteria in their ability to grow in the presence of amounts of dye sufficient to inhibit the other species. The dysentery bacillus group shows marked variation in the presence of dyes. In the case of fuchsin the variation approaches closely a specific difference between the dysentery and paradysentery groups. The variations of the latter groups with other dyes show no correlation with the common differential characteristics. A closer study might reveal variations in other characteristics which would parallel the different reactions to dyes. Decolorization with sodium sulphite robs the dyes of some of their inhibitive powers. PMID:19867746

  11. [Genotoxicity of synthetic dyes in umu test using Salmonella typhimurium TA1535/pSK1002 (1). Results of examination for acid dyes, direct dyes, disperse dyes and reactive dyes].

    PubMed

    Kosaka, H; Nakamura, S

    1990-03-01

    The umu test system is a newly developed method to evaluate genotoxicities of a wide variety of environmental carcinogens and mutagens (Oda et al., 1985; Nakamura et al., 1987). In the present study, SOS-inducing activity of 142 synthetic dyes was investigated by the umu test using Salmonella typhimurium (TA1535/pSK1002) under the condition of absence and presence of rat liver microsomal fraction. The samples showing a beta-galactosidase activity of more than 1.5 fold over the background level were reexamined and the dose-response curves were prepared at various doses. Then, the samples showing beta-galactosidase activity of more than 1.5-fold of the background level were defined as genotoxic. Among the synthetic dyes examined, 11 compounds induced umu gene expression. The potent genotoxic compounds without metabolic activation were Acid Black 26, Acid Black 50, Acid Brown 2, Disperse Red 73, Disperse Red 145, Disperse Red 157, Disperse Violet 52, Reactive Red 110, Reactive Yellow 13 and Reactive Yellow 75, and in the presence of S9, Reactive Blue 147 was judged to be genotoxic. An evident dose-response relationship was observed between the doses of the dye and umu-gene expression in these 11 dyes. PMID:2117088

  12. Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow-Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Yang, Gege; Pan, Yuanpei; Lu, Quanfang; Yang, Wu; Gao, Jinzhang

    2014-08-01

    In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was prepared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copolymerization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the experimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.

  13. Decolorization of synthetic dyes by solid state cultures of Lentinula (Lentinus) edodes producing manganese peroxidase as the main ligninolytic enzyme.

    PubMed

    Boer, Cinthia Gandolfi; Obici, Larissa; de Souza, Cristina Giatti Marques; Peralta, Rosane M

    2004-09-01

    The ability of the white-rot fungus Lentinula (Lentinus) edodes to decolorize several synthetic dyes was investigated using solid state cultures with corn cob as substrate. Cultures, containing amido black, congo red, trypan blue, methyl green, remazol brilliant blue R, methyl violet, ethyl violet and Poly R478 at 200 ppm, were completely decolorized after 18 days of incubation. Partial decolorization was observed in the cultures containing 200 ppm of brilliant cresyl blue and methylene blue. High manganese peroxidase activity (2600 U/g substrate), but very low lignin peroxidase (<10 U/g substrate) and laccase (<16 U/g substrate) activities were detected in the cultures. In vitro, the dye decolorization was markedly decreased by the absence of manganic ions and H2O2. These data suggest that manganese peroxidase appear to be the main responsible for the capability of L. edodes to decolorize synthetic dyes. PMID:15158501

  14. Fluorescence dye tagging scheme for mercury quantification and speciation

    SciTech Connect

    Jiao, Hong; Catterall, Hannah

    2015-09-22

    A fluorescent dye or fluorophore capable of forming complexes with mercury comprises 6,8-difluoro-7-hydroxy-2-oxo-2H-chromene-3-carboxylate amide, wherein the amide is formed by reacting the succinimidyl ester (Pacific Blue.TM.) with an amino acid containing a thiol group, such as cysteine or glutathione. Mercury complexes of the fluorophore fluoresce when excited by a UV or violet laser diode, and the detected intensity can be calibrated to quantify the concentration of mercury in a sample reacted with the fluorophore.

  15. Biodegradation of Basic Violet 3 by Candida krusei isolated from textile wastewater.

    PubMed

    Deivasigamani, Charumathi; Das, Nilanjana

    2011-11-01

    Basic Violet 3 (BV) belongs to the most important group of synthetic colorants and is used extensively in textile industries. It is considered as xenobiotic compound which is recalcitrant to biodegradation. As Candida krusei could not use BV as sole carbon source, experiments were conducted to study the effect of cosubstrates on decolorization of BV in semi synthetic medium using glucose, sucrose, lactose, maltose, yeast extract, peptone, urea and ammonium sulphate. Maximum decolorization (74%) was observed in media supplemented with sucrose. Use of sugarcane bagasse extract as sole nutrient source showed 100% decolorization of BV within 24 h under optimized condition. UV-visible, FTIR spectral analysis and HPLC analysis confirmed the biodegradation of BV. Six degradation products were isolated and identified. We propose the biodegradation pathway for BV which occurs via stepwise reduction and demethylation process to yield mono-, di-, tri-, tetra-, penta- and hexa-demethylated BV species which was degraded completely. The study of the enzymes responsible for decolorization showed the activities of lignin peroxidase, lacasse, tyrosinase, NADH-DCIP reductase, MG reductase and azoreductase in cells before and after decolorization. A significant increase in activities of NADH-DCIP reductase and laccase was observed in the cells after decolorization. The yeast C. krusei could show the ability to decolorize the textile dye BV using inexpensive source like sugarcane bagasse extract for decolorization. PMID:21479732

  16. Suppression of NF-?B activation by gentian violet promotes osteoblastogenesis and suppresses osteoclastogenesis.

    PubMed

    Yamaguchi, M; Vikulina, T; Arbiser, J L; Weitzmann, M N

    2014-01-01

    Skeletal mass is regulated by the coordinated action of bone forming osteoblasts and bone resorbing osteoclasts. Accelerated rates of bone resorption relative to bone formation lead to net bone loss and the development of osteoporosis, a devastating disease that predisposes the skeleton to fractures. Bone fractures are associated with significant morbidity and in the case of hip fractures, high mortality. Gentian violet (GV), a cationic triphenylmethane dye, has long been used as an antifungal and antibacterial agent and is presently under investigation as a potential chemotherapeutic and antiangiogenic agent. However, effects on bone cells have not been previously reported and the mechanisms of action of GV, are poorly understood. In this study we show that GV suppresses receptor activator of NF-?B ligand (RANKL)-induced differentiation of RAW264.7 osteoclast precursors into mature osteoclasts, but paradoxically stimulates the differentiation of MC3T3 cells into mineralizing osteoblasts. These actions stem from the capacity of GV to suppress activation of the nuclear factor kappa B (NF-?B) signal transduction pathway that is required for osteoclastogenesis, but inhibitory to osteoblast differentiation and activity. Our data reveal that GV is an inhibitor of NF-?B activation and may hold promise for modulation of bone turnover to promote a balance between bone formation and bone resorption, favorable to gain of bone mass. PMID:25056540

  17. Suppression of NF-κB Activation By Gentian Violet Promotes Osteoblastogenesis and Suppresses Osteoclastogenesis

    PubMed Central

    Yamaguchi, M.; Vikulina, T.; Arbiser, J.L.; Weitzmann, M.N.

    2015-01-01

    Skeletal mass is regulated by the coordinated action of bone forming osteoblasts and bone resorbing osteoclasts. Accelerated rates of bone resorption relative to bone formation lead to net bone loss and the development of osteoporosis, a devastating disease that predisposes the skeleton to fractures. Bone fractures are associated with significant morbidity and in the case of hip fractures, high mortality. Gentian violet (GV), a cationic triphenylmethane dye, has long been used as an antifungal and antibacterial agent and is presently under investigation as a potential chemotherapeutic and antiangiogenic agent. However, effects on bone cells have not been previously reported and the mechanisms of action of GV, are poorly understood. In this study we show that GV suppresses receptor activator of NF-κB ligand (RANKL)-induced differentiation of RAW264.7 osteoclast precursors into mature osteoclasts, but paradoxically stimulates the differentiation of MC3T3 cells into mineralizing osteoblasts. These actions stem from the capacity of GV to suppress activation of the nuclear factor kappa B (NF-κB) signal transduction pathway that is required for osteoclastogenesis, but inhibitory to osteoblast differentiation and activity. Our data reveal that GV is an inhibitor of NF-κB activation and may hold promise for modulation of bone turnover to promote a balance between bone formation and bone resorption, favorable to gain of bone mass. PMID:25056540

  18. Acriflavine violet red bile agar for the isolation of Klebsiella.

    PubMed

    Fung, D Y; Niemiec, M

    1977-10-01

    A medium for the isolation and detection of Klebsiella is described. It contains 0.06% Acriflavine in Violet Red Bile agar (Difco). Klebsiella appeared as 5 to 7 mm mucoid (24 h at 37 degrees C) golden-yellow colonies. Pseudomonas aeruginosa and Enterobacter spp. appeared as small, brown to dark brown colonies. Escherichia coli as well as many other gram negative organisms and gram positive organisms did not grow on this medium. PMID:334697

  19. Why do mice have ultra-violet vision?

    PubMed

    Gouras, Peter; Ekesten, Bjorn

    2004-12-01

    Murine vision has become a fascinating entity due to discoveries about the histology and physiology of its retina over the past decade. It has two varieties of cones, one serving the traditional green-yellow region of the vision spectrum and another serving the ultra-violet region, essentially invisible to man and many other mammal. This puts unusual constraints on the optical transmission of the murine eye, in particular its relatively large lens. Its ultra-violet vision appears to involve its upper much more than its lower visual field, providing a heuristic clue to its purpose. In addition behavioural evidence exists for colour vision in mice. On the other hand there is unequivocal evidence that many murine cones contain both cone photopigments, an unrealistic but not impossible arrangement for colour vision. A better understanding of how ultra-violet vision is interwoven into cone and rod vision and possible colour vision can be clarified by analysing the responses of single retinal neurons. This paper reviews the current information on this topic and provides new insights from single retinal ganglion cell recordings. PMID:15642326

  20. Confirmation of gentian violet and its metabolite leucogentian violet in catfish muscle using liquid chromatography combined with atmospheric pressure ionization mass spectrometry.

    PubMed

    Doerge, D R; Churchwell, M I; Rushing, L G; Bajic, S

    1996-01-01

    Gentian violet (GV) is a triphenylmethane dye antiseptic with potential for illegal use in livestock production, especially aquaculture where the related malachite green has been widely used. This potential misuse has regulatory importance because of the observed rodent carcinogenicity of GV. This report describes the use of online LC-APCI/MS for confirmation of incurred GV residues, and those of its principal metabolite, LGV, in catfish muscle following treatment of live catfish with GV under putative use conditions. LC with APCI/MS detection provided sensitive analysis of GV and LGV with estimated detection limits of < 1 pg observed for both compounds. Fragmentation of GV and LGV via in-source CID was effected by varying the sampling cone-skimmer voltage. Ion intensity data were collected using a rapid cone voltage switching procedure that permits selected ion acquisition under optimal conditions for the parent molecule and several selected fragment ions. For GV, four ions including the ionized molecule were used and for LGV, six ions including the protonated molecule were used. The levels of GV and LGV in muscle from fish dosed with 10 micrograms/l in aquarium water were determined by LC/VIS to be 0.5 and 44 ppb, respectively. Analysis of these samples yielded ion intensity ratios that agreed precisely between injections (< 5%) and accurately with those generated by a comparable amount of authentic GV and LGV (< 10% deviation). These results show the utility of on-line LC-APCI/MS to do both sensitive confirmatory analyses of incurred drug residues for use in monitoring the food supply. PMID:8885419

  1. Expansion of the Scope of AOAC First Action Method 2012.25--Single-Laboratory Validation of Triphenylmethane Dye and Leuco Metabolite Analysis in Shrimp, Tilapia, Catfish, and Salmon by LC-MS/MS.

    PubMed

    Andersen, Wendy C; Casey, Christine R; Schneider, Marilyn J; Turnipseed, Sherri B

    2015-01-01

    Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a single-laboratory validation of method 2012.25 was performed to expand the scope of the method to other seafood matrixes including salmon, catfish, tilapia, and shrimp. The validation included the analysis of fortified and incurred residues over multiple weeks to assess analyte stability in matrix at -80°C, a comparison of calibration methods over the range 0.25 to 4 μg/kg, study of matrix effects for analyte quantification, and qualitative identification of targeted analytes. Method accuracy ranged from 88 to 112% with 13% RSD or less for samples fortified at 0.5, 1.0, and 2.0 μg/kg. Analyte identification and determination limits were determined by procedures recommended both by the U. S. Food and Drug Administration and the European Commission. Method detection limits and decision limits ranged from 0.05 to 0.24 μg/kg and 0.08 to 0.54 μg/kg, respectively. AOAC First Action Method 2012.25 with an extracted matrix calibration curve and internal standard correction is suitable for the determination of triphenylmethane dyes and leuco metabolites in salmon, catfish, tilapia, and shrimp by LC-MS/MS at a residue determination level of 0.5 μg/kg or below. PMID:26024871

  2. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.

    PubMed

    Corso, C R; Almeida, E J R; Santos, G C; Moro, L G; Fabris, G S L; Mitter, E K

    2012-01-01

    Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that bioremediation occurs with A. oryzae in its paramorphogenic form, and it can be used as a biosorptive substrate for treatment of industrial waste water containing azo dyes. PMID:22466598

  3. Spectral transmittance of organic dye-doped glass films obtained by the solgel method

    NASA Astrophysics Data System (ADS)

    Nemoto, Shojiro; Hirokawa, Naoyuki

    1996-06-01

    The spectral transmittance of colored glass films synthesized by the solgel method is presented. The film was formed on a glass slide by dipping it into an organic dye-doped solution and, thereafter, by putting it into a furnace for solidification. Three dyes, Methylene Blue, Eosin, and Uranine, were used that exhibit transparent blue, pink, and yellow colors, respectively, when they are dissolved in the starting solution. We clarify how the spectral transmittance of the films varies with the solidification temperature. The films doped with two of the three dyes that exhibit violet, orange, and green colors are also synthesized, and their transmittance is measured. Moreover, the chemical durability of the films and the transmittance change caused by aging and illumination are examined. organic dye, solgel method.

  4. Vacuum ultra-violet and ultra-violet scintillation light detection by means of silicon photomultipliers at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Falcone, A.; Bertoni, R.; Boffelli, F.; Bonesini, M.; Cervi, T.; Menegolli, A.; Montanari, C.; Prata, M. C.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Simonetta, M.; Spanu, M.; Torti, M.; Zani, A.

    2015-07-01

    We tested the performance of two types of silicon photomultipliers, AdvanSiD ASD-NUV-SiPM3S-P and Hamamatsu 33 MM-50 UM VUV2, both at room (300 K) and at liquid nitrogen (77 K) temperature: breakdown voltage, quenching resistance, signal shape, gain and dark counts rate have been studied as function of temperature. The response of the devices to ultra-violet light is also studied.

  5. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit

    SciTech Connect

    T Wang; R Sha; J Birktoft; J Zheng; C Mao; N Seeman

    2011-12-31

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.

  6. Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: optimization and kinetic study.

    PubMed

    Šekuljica, Nataša Ž; Prlainović, Nevena Ž; Stefanović, Andrea B; Žuža, Milena G; Čičkarić, Dragana Z; Mijin, Dušan Ž; Knežević-Jugović, Zorica D

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  7. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    PubMed Central

    Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  8. Ultrasonic dyeing of cellulose nanofibers.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  9. Using protein nanofibrils to remove azo dyes from aqueous solution by the coagulation process.

    PubMed

    Morshedi, Dina; Mohammadi, Zeinab; Akbar Boojar, Masoud Mashhadi; Aliakbari, Farhang

    2013-12-01

    The ever-increasing applications of hazardous azo dyes as industrialized coloring agents have led to serious remediation challenges. In this study, proteinaceous nanofibrils were examined as coagulants for decolorization of azo dyes in aqueous solutions. The results provided some insight regarding the mechanism of dye removal. The strength of nanofibrils to remove dyes from solution was evaluated by remediation of acid red 88, Bismarck brown R, direct violet 51, reactive black 5, and Congo red. However, the efficiency of nanofibrils to coagulate with different dyes was variable (60-98%) and dependent on the structures of dyes and the physicochemical conditions of the solutions. Increasing the temperature or ionic strength declined the coagulation time and induced the rate of dye removal. Changing pH had contradictory effects on the dye removal efficiency which was more affected by the chemical structure of the dye rather than the change in stability of the coagulant. The efficiency of nanofibrils to remove dyes was more than that of charcoal, which is considered as one of the most common substances used for azo dye remediation which may be due to its well dispersion in the aqueous solutions, and slower rates of the coagulation than that of the adsorption process. Furthermore, cytotoxicity was not detected after treating cell cultures with the decolorized solutions. Accordingly, by integrating biological and biophysicochemical processes, proteinaceous nanofibrils can be promising candidates for treatment of colored wastewaters. Ease of production, proper and quick dispersion in water, without the production of dangerous dye by-products and derivatives, are some of the main advantages of nanofibrils. PMID:23999142

  10. Isolation and characterization of Bacillus thuringiensis for acid red 119 dye decolourisation.

    PubMed

    Dave, Shailesh R; Dave, Riddhi H

    2009-01-01

    Studies were carried out to isolate Acid red 119 (AR-119) resistant and decolourising bacteria from dye contaminated soil and water samples. Six morphologically distinct bacterial isolates resistant to 100 ppm AR-119 dye were isolated directly from the soil and waste contaminated with azo dyes. The most efficient isolate, which showed decolourisation zone of 44 mm on 100 ppm AR-119 containing plate was identified as Bacillus thuringiensis SRDD. Gradual adaptation increased the efficiency of the isolate and within 7h of incubation it showed decolourisation up to 1000 ppm of AR-119 dye in liquid medium. Addition of 300 ppm of AR-119 in each step in ongoing dye decolourisation flask gave more than 90% decolourisation of 300 ppm AR-119 in time as short as 1.25 h. The developed B. thuringiensis showed 50-60% decolourisation of 5000 ppm AR-119 in 7d of incubation. This organism was also able to remove more than 98%, 92%, 95% and 95% colour of C.I. Acid brown 14, C.I. Acid black 210, C.I. Acid violet 90 and C.I. Acid yellow 42 azo dyes at 100 ppm concentration in 24h, respectively. When the developed isolate was studied for bioremediation of actual azo dye contaminated waste it removed 70% colour from the waste in 24h. The developed B. thuringiensis exhibited excellent resistance and decolourisation ability to AR-119 and other acid azo dyes. PMID:18590958

  11. Degradation of reactive, acid and basic textile dyes in the presence of ultrasound and rare earths [Lanthanum and Praseodymium].

    PubMed

    Srivastava, Pankaj; Goyal, Shikha; Patnala, Prem Kishore

    2014-11-01

    Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La(3+) and Pr(3+)). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (?) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16-40mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20kHz and 250W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products. PMID:24491599

  12. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    PubMed Central

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  13. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    PubMed

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  14. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-06-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate.

  15. The investigation of inclusion behavior of Solvent Violet 9 with 4-sulfonatocalix[n]arenes and its recognition to DNA

    NASA Astrophysics Data System (ADS)

    Chao, Jianbin; Wang, Hong fang; Zhang, Yongbin; Huo, Fangjun; Yin, Caixia

    2013-02-01

    The inclusion behavior of Solvent Violet 9 (SV9) with 4-sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) was investigated at various pH values by ultraviolet-visible spectroscopy. SV9 is able to form an inclusion complex with calixarenes. Different absorption behaviors were observed for the dye with the various host calixarenes. The molecular binding abilities were affected by the configuration of the calixarene cavities and the solution pH. Various experimental conditions, including calixarenes concentrations, were investigated and the results suggested that the three calixarene were most suitable for inclusion of the dye at pH = 3.05. The formation constant could be calculated. The inclusion behavior of the complexes was studied in detail using nuclear magnetic resonance spectroscopy. Finally, the interactions of SV9 with Salmon testes DNA in SCXn supramolecular system were studied by UV-Vis absorption spectroscopy. The UV-Vis absorption show that the interaction of SV9 with DNA depends on the concentration ratio of SV9 to DNA and the pH values. The binding constants of inclusion complexes with DNA are calculated. It was observed that SCXn can affect the interactive mode of SV9 with DNA.

  16. 21 CFR 82.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false D&C Violet No. 2. 82.1602 Section 82.1602 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics 82.1602 D&C Violet No. 2. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of ...

  17. 21 CFR 74.2602a - Ext. D&C Violet No. 2.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Ext. D&C Violet No. 2. 74.2602a Section 74.2602a... COLOR ADDITIVES SUBJECT TO CERTIFICATION Cosmetics 74.2602a Ext. D&C Violet No. 2. (a) Identity. The color additive Ext. D&C Violet No. 2 is principally the monosodium salt of 2-...

  18. 21 CFR 74.2602a - Ext. D&C Violet No. 2.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ext. D&C Violet No. 2. 74.2602a Section 74.2602a... COLOR ADDITIVES SUBJECT TO CERTIFICATION Cosmetics 74.2602a Ext. D&C Violet No. 2. (a) Identity. The color additive Ext. D&C Violet No. 2 is principally the monosodium salt of 2-...

  19. 21 CFR 82.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false D&C Violet No. 2. 82.1602 Section 82.1602 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics 82.1602 D&C Violet No. 2. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of ...

  20. 21 CFR 82.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Violet No. 2. 82.1602 Section 82.1602 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics 82.1602 D&C Violet No. 2. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of ...

  1. 21 CFR 82.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false D&C Violet No. 2. 82.1602 Section 82.1602 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics 82.1602 D&C Violet No. 2. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of ...

  2. 21 CFR 82.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false D&C Violet No. 2. 82.1602 Section 82.1602 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics 82.1602 D&C Violet No. 2. The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of ...

  3. 21 CFR 74.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Violet No. 2. 74.1602 Section 74.1602 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1602 D&C Violet No. 2. (a) Identity. (1) The color additive D&C Violet No. 2 is principally...

  4. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Violet No. 2. 74.2602 Section 74.2602 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2602 D&C Violet No. 2. (a) Identity and specifications. The color additive D&C Violet No. 2...

  5. Visible photoluminescence in coloured Lithium Fluoride under ultra-violet continuous wave excitation

    NASA Astrophysics Data System (ADS)

    Kalinowski, H. J.; Monterali, R. M.; Vincenti, M. A.; Nogueira, R. N.

    2010-11-01

    The ?-coloured Lithium Fluoride crystals visible fluorescence at room temperature was measured under excitation with ultra-violet continuous wave light at ? = 244 nm from a frequency-doubled Ar+-ion laser. The excitation wavelength lies close to the peak of the F-centre absorption band for LiF, and the visible luminescence spectrum consists of two broad emission bands, assigned to F+3 and F2 centres in LiF. The luminescence spectrum changes in a short time after start of illumination. The main effect of 244 nm laser illumination is the observed change in the F2 emission band intensity, which is strongly and permanently bleached by the CW UV light at 244 nm as soon as it illuminates the crystal. The time evolution of the fluorescence signals can be measured, and the corresponding curves were fitted by a single exponential decay, resulting in characteristic time constants of approx 9 s and approx 30 s for the F2 and F+3 bands, respectively. The reported effects support previous work about UV laser illumination in the F-band absorption peak as an effective method to control the ratio of F2 to F+3 centres in LiF, due to permanent bleaching of the former ones.

  6. Biosynthesis of betalains: yellow and violet plant pigments.

    PubMed

    Ganda-Herrero, Fernando; Garca-Carmona, Francisco

    2013-06-01

    Betalains are the yellow and violet pigments that substitute anthocyanins in plants belonging to the order Caryophyllales. These pigments have attracted much attention because of their bioactivities, which range from an antioxidant capacity to the chemoprevention of cancer. However, the biosynthetic pathway of betalains remains under discussion; the main steps have been characterized in recent years, but multiple side reactions are possible. The key enzymes involved have only recently been described, providing clues about the regulation of betalain biosynthesis. In this review, we provide a comprehensive view of the biosynthetic scheme of betalains and discuss the different reactions that have been demonstrated experimentally or proposed in the literature. PMID:23395307

  7. Photonic band-gap modulation of blue phase liquid crystal (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hsien

    2015-10-01

    Blue phase liquid crystals (BPLCs) are self-assembled 3D photonic crystals exhibiting high susceptibility to external stimuli. Two methods for the photonic bandgap tuning of BPs were demonstrated in this work. Introducing a chiral azobenzene into a cholesteric liquid crystal could formulate a photoresponsive BPLC. Under violet irradiation, the azo dye experiences trans-cis isomerization, which leads to lattice swelling as well as phase transition in different stages of the process. Ultrawide reversible tuning of the BP photonic bandgap from ultraviolet to near infrared has been achieved. The tuning is reversible and nonvolatile. We will then demonstract the electric field-induced bandgap tuning in polymer-stabilized BPLCs. Under different BPLCs material preparation conditions, both red-shift and broadening of the photonic bandgaps have been achieved respectively. The stop band can be shifted over 100 nm. The bandwidth can be expanded from ~ 30 nm to ~ 250 nm covering nearly the full visible range. It is believed that the developed approaches could strongly promote the use of BPLC in photonic applications.

  8. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode.

    PubMed

    Sirs, Ignasi; Guivarch, Elodie; Oturan, Nihal; Oturan, Mehmet A

    2008-06-01

    Fenton's reagent (Fe2+ +H2O2) has been electrogenerated in situ in an undivided electrolytic cell from the effective reduction of Fe3+ and O2 at carbon-felt cathode for the treatment of aqueous solutions of four triphenylmethane dyes (TPMs), namely malachite green (MG), crystal violet (CV), methyl green (MeG) and fast green FCF (FCF), at pH 3.0 and room temperature. MG has been used as a model among them to study the influence of some experimental parameters on the decay kinetics, COD removal and current efficiency. The results in such electro-Fenton system are explained in terms of the many parasitic reactions involving .OH. Higher efficiency values are obtained with rising organic content and decreasing applied current. The first stage of the mineralization process, involving aromatic by-products, leads to fast decoloration as well as quick initial COD removal that fit well to a pseudo-first-order kinetics. At prolonged electrolysis time, the mineralization rate and efficiency decrease due to the formation of hardly oxidizable compounds and the enhancement of wasting reactions. Solutions of all four TPMs are quickly degraded following a pseudo-first-order decay kinetics. The absolute rate constant (kTPM) for their reaction with .OH increases in the order MeGdyes with initial COD ca. 1000 mg l(-1) is totally depolluted with efficiency near 100% at the beginning of the treatment. A general scheme for the mineralization of TPMs is proposed. PMID:18486964

  9. Optical study and ruthenizer (II) N3 dye-sensitized solar cell application of ZnO nanorod-arrays synthesized by combine two-step process

    NASA Astrophysics Data System (ADS)

    Parra, Mohammad Ramzan; Haque, Fozia Z.

    2015-10-01

    Highly dense ZnO nanorod-arrays were successfully synthesized with uniform c-axis growth by using combine two-step process: sol-gel spin coating followed by the aqueous solution growth method. Structural and optical properties of ZnO nanorod-arrays were investigated. The X-ray diffraction results revealed that ZnO nanorod arrays exhibit wurtzite hexagonal crystal structure with a dominant (002) peak with high crystallinity. Nanorods of 3-4 μm length and 500 nm diameter, with surface roughness ˜20 nm were observed. Furthermore, Raman spectroscopic results revealed the presence of E 2 peak ˜438 cm-1 which again corroborated the existence of wurtzite crystal structures assigned to ZnO. The optical transmittance spectrum indicated that the transmittance of more than 80% was observed in the visible and infrared (IR) regions with the optical band-gap energy ˜3.35 eV. Photoluminescence spectrum showed peaks in ultra-violet (382.0 nm) and green region (524.9 nm), which specified good-quality crystallite formation containing high density of surface defects, zinc interstitials and oxygen-vacancies. Ruthenizer (II) N3-dye loaded sensitized solar cell test illustrated that the uniform ZnO nanorod-arrays as working electrode with a short circuit current density of 3.99 mA/cm2, fill factor ˜50% and overall power conversion efficiency (η) ˜1.36% might be a promising electrode material of dye sensitized solar cell application.

  10. The Role of Order in the Amplification of Light-Energy Conversion in a Dye-Sensitized Solar Cell Coupled to a Photonic Crystal.

    PubMed

    Fayad, Remi; Halaoui, Lara

    2016-01-01

    We investigate the cause of amplification of light-energy conversion when coupling a nc-TiO2 film to a TiO2 inverse opal by comparing it to an inverse TiO2 glass (i-TiO2 -g) fabricated with the exact monodisperse air-hole size as an inverse opal with a stop band at 600 nm (600-i-TiO2 -o). A significant twofold average gain in the photon-to-current conversion efficiency is measured to the red of the stop band at the 600-i-TiO2 -o/nc-TiO2 bilayer under front-wall and back-wall illumination, greater than the gain within the stop band. A smaller amplification is measured under front-wall illumination-and no gain is measured under back-wall illumination-for i-TiO2 -g/nc-TiO2 at these energies. The photonic crystal therefore causes trapping of light through the bilayer, not only within the gap but also to the red, at frequencies within its dielectric band. This light-trapping effect is found to be dependent on structural order, as a highly disordered inverse glass film with the same air-hole size and thickness does not yield the same gain. A drop in the transmission of light is measured within the same frequencies to the red of the stop band upon adding nc-TiO2 to 600-i-TiO2 -o, consistent with light trapping in the bilayer. PMID:26643111

  11. Blue phases of cholesteric liquid crystals as thermotropic photonic crystals

    NASA Astrophysics Data System (ADS)

    Etchegoin, P.

    2000-07-01

    The study of dye-doped low pitch cholesteric liquid crystals in their blue phases as an example of tunable ``weak'' photonic crystals is proposed and demonstrated. The presence of the blue phases in cholesterics can be tuned with temperature, and this allows for an easy in situ comparison of the emission and/or absorption of the dyes with or without an enwrapping lattice of disclination lines. The fluorescence emission of the dyes is shown to be affected by the presence of the blue phases. Although unlikely to be suitable for real applications (due to the natural low refractive index contrast), these systems may represent unique examples of tunable photonic crystals. It is proposed that single crystals of dye-doped blue phases should provide a very interesting testing ground for the study of optical emission anisotropies which can, on the other hand, be controlled by an external parameter.

  12. Optimized Stem Cell Detection Using the DyeCycle-Triggered Side Population Phenotype.

    PubMed

    Boesch, Maximilian; Wolf, Dominik; Sopper, Sieghart

    2016-01-01

    Tissue and cancer stem cells are highly attractive target populations for regenerative medicine and novel potentially curative anticancer therapeutics. In order to get a better understanding of stem cell biology and function, it is essential to reproducibly identify these stem cells from biological samples for subsequent characterization or isolation. ABC drug transporter expression is a hallmark of stem cells. This is utilized to identify (cancer) stem cells by exploiting their dye extrusion properties, which is referred to as the "side population assay." Initially described for high-end flow cytometers equipped with ultraviolet lasers, this technique is now also amenable for a broader scientific community, owing to the increasing availability of violet laser-furnished cytometers and the advent of DyeCycle Violet (DCV). Here, we describe important technical aspects of the DCV-based side population assay and discuss potential pitfalls and caveats helping scientists to establish a valid and reproducible DCV-based side population assay. In addition, we investigate the suitability of blue laser-excitable DyeCycle dyes for side population detection. This knowledge will help to improve and standardize detection and isolation of stem cells based on their expression of ABC drug transporters. PMID:26798352

  13. Optimized Stem Cell Detection Using the DyeCycle-Triggered Side Population Phenotype

    PubMed Central

    Boesch, Maximilian; Wolf, Dominik; Sopper, Sieghart

    2016-01-01

    Tissue and cancer stem cells are highly attractive target populations for regenerative medicine and novel potentially curative anticancer therapeutics. In order to get a better understanding of stem cell biology and function, it is essential to reproducibly identify these stem cells from biological samples for subsequent characterization or isolation. ABC drug transporter expression is a hallmark of stem cells. This is utilized to identify (cancer) stem cells by exploiting their dye extrusion properties, which is referred to as the “side population assay.” Initially described for high-end flow cytometers equipped with ultraviolet lasers, this technique is now also amenable for a broader scientific community, owing to the increasing availability of violet laser-furnished cytometers and the advent of DyeCycle Violet (DCV). Here, we describe important technical aspects of the DCV-based side population assay and discuss potential pitfalls and caveats helping scientists to establish a valid and reproducible DCV-based side population assay. In addition, we investigate the suitability of blue laser-excitable DyeCycle dyes for side population detection. This knowledge will help to improve and standardize detection and isolation of stem cells based on their expression of ABC drug transporters. PMID:26798352

  14. Irrigation Effects on the Spread of Corynespora Leaf Spot on African Violets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    African violet cultivars have had severe leaf spot epidemics caused by Corynespora cassiicola in recent years. Unfortunately, little information has been published on the relationship between African violets and C. cassiicola. Mist, drip, and ebb and flow irrigation systems were studied to determi...

  15. 21 CFR 74.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1602 D&C Violet No. 2. (a) Identity. (1) The color additive D&C Violet No. 2 is principally 1-hydroxy -4- -9,10-anthracenedione. (2) Color additive mixtures for... suitable and that are listed in part 73 of this chapter as safe for use in color additive mixtures...

  16. 21 CFR 74.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1602 D&C Violet No. 2. (a) Identity. (1) The color additive D&C Violet No. 2 is principally 1-hydroxy -4- -9,10-anthracenedione. (2) Color additive mixtures for... suitable and that are listed in part 73 of this chapter as safe for use in color additive mixtures...

  17. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be safely used for coloring externally applied cosmetics in amounts consistent with good...

  18. 21 CFR 74.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1602 D&C Violet No. 2. (a) Identity. (1) The color additive D&C Violet No. 2 is principally 1-hydroxy -4- -9,10-anthracenedione. (2) Color additive mixtures for... suitable and that are listed in part 73 of this chapter as safe for use in color additive mixtures...

  19. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be safely used for coloring externally applied cosmetics in amounts consistent with good...

  20. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be safely used for coloring externally applied cosmetics in amounts consistent with good...

  1. 21 CFR 74.2602 - D&C Violet No. 2.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... The color additive D&C Violet No. 2 shall conform in identity and specifications to the requirements of § 74.1602(a)(1) and (b). (b) Uses and restrictions. The color additive D&C Violet No. 2 may be safely used for coloring externally applied cosmetics in amounts consistent with good...

  2. 21 CFR 74.1602 - D&C Violet No. 2.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1602 D&C Violet No. 2. (a) Identity. (1) The color additive D&C Violet No. 2 is principally 1-hydroxy -4- -9,10-anthracenedione. (2) Color additive mixtures for... suitable and that are listed in part 73 of this chapter as safe for use in color additive mixtures...

  3. 76 FR 24855 - Carbazole Violet Pigment 23 From India: Rescission of Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... Antidumping Duty Order: Carbazole Violet Pigment 23 From India, 69 FR 77988 (December 29, 2004). On January 28... order. See Initiation of Antidumping and Countervailing Duty Administrative Reviews, 76 FR 5137 (January... International Trade Administration Carbazole Violet Pigment 23 From India: Rescission of Administrative...

  4. 21 CFR 500.29 - Gentian violet for use in animal feed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentian violet for use in animal feed. 500.29... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Specific Administrative Rulings and Decisions 500.29 Gentian violet for use in animal feed. The Food and Drug Administration has determined...

  5. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Field, George F. (Danville, CA)

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  6. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  7. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C. (Ripon, CA)

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  8. Multicolor photonic crystal laser array

    SciTech Connect

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  9. A rapid and simple method for simultaneous determination of triphenylmethane dye residues in rainbow trouts by liquid chromatography-tandem mass spectrometry.

    PubMed

    Kaplan, Muammer; Olgun, Elmas O; Karaoglu, Oznur

    2014-07-01

    A rapid and simple LC-MS/MS method was developed and optimized for screening and confirmation of triphenylmethane dyes including malachite green (MG), leucomalachite green (LMG), crystal violet (CV), leucocrystal violet (LCV) and brilliant green (BG) in fish muscle with skin. Leucocrystal violet D6 (LCV-D6) and leucomalachite green-D5 (LMG D5) was used as internal standards. Sample preparation is a simple procedure based on solid-liquid extraction with acetonitrile containing 1% acetic acid, followed by centrifugation and evaporation of the supernatant. The residue was dissolved in acetonitrile with 0.1% acetic acid and centrifuged prior to LC-MS/MS analysis. Chromatographic separation of analytes was performed on an Inertsil ODS-4 C18 column with ammonium acetate buffer in acetonitrile gradient. The mass detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI+). The developed method was validated according to the criteria set in Commission Decision 2002/657/EC. The decision limit (CCα) was 0.43, 0.24, 0.33, 0.28 and 0.17μgkg(-1) for MG, LMG, CV, LCV and BG respectively. The detection capability (CCβ) values obtained were 0.56, 0.31, 0.43, 0.37 and 0.22μgkg(-1), respectively. The precision of the method, expressed as relative standard deviation (RSD) values for the within-day and inter-day laboratory reproducibility, for MG, LMG, CV, LCV and BG at the four levels of fortification (0.3, 0.5, 1, and 2μgkg(-1)), was less than 16 and 19% respectively. Accuracy of the method was confirmed by successful participation of a proficiency test organized by FAPAS. The method has been used for the analysis of 208 fish samples of which seven samples were found to be non-compliant containing low residues of LMG and LCV. PMID:24866565

  10. BRIEF COMMUNICATIONS: Investigation of the lasing characteristics of new laser dyes for the green and red parts of the spectrum

    NASA Astrophysics Data System (ADS)

    Krymova, A. I.; Petukhov, V. A.; Popov, M. B.

    1985-10-01

    An investigation was made of the lasing characteristics of solutions of various new dyes in the coumarin, naphthalimide, and benzanthrone classes pumped transversely by the second harmonic of ruby laser radiation. Lasing in the blue, green, and red parts of the spectrum was obtained for most of the compounds studied. A comparison was made between these materials and laser dyes widely used in these spectral ranges. The compounds studied included some with a lasing efficiency substantially higher than uranin in the green and cresyl violet in the red, and with a photostability not inferior to these two.

  11. Venus as Viewed Through Violet and Near Infrared Filters

    NASA Technical Reports Server (NTRS)

    1991-01-01

    These two Galileo images of Venus show the global structure of cloud patterns at two different depths in the upper cloud layers. The large bluish image, taken through the violet filter, shows patterns at the very top of Venus' main sulfuric acid haze layer. The subsolar point is to the right, not far from the limb; the atmospheric flow runs to the left from there. The small red image, taken through a near infrared filter, shows the cloud patterns several miles below the visible cloud tops. The colors shown are artificial; the images were enhanced at the National Optical Astronomy Observatories, Tucson, Arizona. The Galileo Project is managed for NASA by the Jet Propulsion Laboratory.

  12. The violet and ultraviolet opacity problem for carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis R.; Luttermoser, Donald G.; Faulkner, Danny R.

    1988-01-01

    The paper considers the longstanding problem of the 'violet opacity' in cool carbon stars by testing, through synthetic spectra, many new and previously suggested opacity sources, based on currently available model atmospheres for carbon stars and M giant stars. While several bound-free edges of neutral metals are important opacity sources, those of Na I at at 2413 A, Mg I at 2514 A, and particularly Ca I at 2940 A are especially significant. Collectively, thousands of atomic lines are important, and the enormous line of Mg I at 2852 A influences the spectrum well into the visible. The pseudocontinuum of C3 and the photoionization continuum of CH both play noticeable but secondary roles. Synthetic spectra form the carbon star models with and without polyatomic molecules fit nicely the collected observations of the well-observed carbon star TX Psc.

  13. Transient transfection of mammalian cells using a violet diode laser

    NASA Astrophysics Data System (ADS)

    Torres-Mapa, Maria Leilani; Angus, Liselotte; Ploschner, Martin; Dholakia, Kishan; Gunn-Moore, Frank J.

    2010-07-01

    We demonstrate the first use of the violet diode laser for transient mammalian cell transfection. In contrast to previous studies, which showed the generation of stable cell lines over a few weeks, we develop a methodology to transiently transfect cells with an efficiency of up to ~40%. Chinese hamster ovary (CHO-K1) and human embryonic kidney (HEK293) cells are exposed to a tightly focused 405-nm laser in the presence of plasmid DNA encoding for a mitochondrial targeted red fluorescent protein. We report transfection efficiencies as a function of laser power and exposure time for our system. We also show, for the first time, that a continuous wave laser source can be successfully applied to selective gene silencing experiments using small interfering RNA. This work is a major step towards an inexpensive and portable phototransfection system.

  14. Pulsed ultra-violet inactivation spectrum of Escherichia coli.

    PubMed

    Wang, T; Macgregor, S J; Anderson, J G; Woolsey, G A

    2005-08-01

    Inactivation of Escherichia coli is examined using ultra-violet (UV) radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV content. The flashlamp provides high-energy UV output using a small number of short-duration pulses (30 micros). The flashlamp is used with a monochromator to investigate the wavelength sensitivity of E. coli to inactivation by the pulsed UV light. Using 8 nm wide pulses of UV radiation, the most efficient inactivation is found to occur at around 270 nm and no inactivation is observed above 300 nm. A pyroelectric detector allows the energy dose to be determined at each wavelength, and a peak value for E. coli population reduction of 0.43 log per mJ/cm(2) is measured at 270 nm. The results are compared with the published data available for continuous UV light sources. PMID:15993922

  15. Ultra-violet indoor tanning addiction: a reinforcer pathology interpretation.

    PubMed

    Reed, Derek D

    2015-02-01

    Ultra-violet indoor tanning (UVIT) is a pervasive issue that is increasing at record rates, despite obvious and well-publicized links to skin cancer. Recent studies on UVIT have found that frequent users face difficulty quitting and report symptomatology similar to substance-related disorders, causing the medical field to begin classifying excessive UVIT use as an addicting behavior. Despite calls for research, relatively little behavioral research has been aimed at determining the psychology of UVIT. This mini-review reinterprets the existing dermatology literature in light of the reinforcer pathology model of addiction. The relevancy of this model, in conjunction with the similarities between UVIT addiction and other substance-related addiction, suggests that behavioral economic research on UVIT is overdue. This mini-review concludes with directions for future research in this area. PMID:25452072

  16. TEXTILE DYES AND DYEING EQUIPMENT: CLASSIFICATION, PROPERTIES, AND ENVIRONMENTAL ASPECTS

    EPA Science Inventory

    The report gives results of a study of available information on textile dyeing equipment, dyeing procedures, and dye chemistry, to serve as background data for estimating the properties and evaluating the associated risks of new commercial dyestuffs. It reports properties of dyes...

  17. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    PubMed

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter. PMID:26964229

  18. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R. (Livermore, CA)

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  19. Harmonic violet light generation in periodically poled bulk near-stoichiometric MgO-doped LiNbO 3

    NASA Astrophysics Data System (ADS)

    Chen, Ya-Hui; Yao, Jiang-Hong; Yan, Bo-Xia; Deng, Hao-Liang; Kong, Yong-Fa; Chen, Shao-Lin; Xu, Jing-Jun; Zhang, Guang-Yin

    2003-08-01

    By the method of vapor transport equilibration, high optical quality 1.8 mol% MgO-doped near-stoichiometric LiNbO 3 (Mg:SLN) crystals were grown. A uniformly periodic domain structure in a 1.0 mm thick slab of Mg:SLN was fabricated by applying external pulsed field. Using a Ti:sapphire laser with a pulse width of 60 fs and a repetition rate of 82 MHz, third-order quasi-phase-matched second harmonic violet light generation was demonstrated by free propagation of 800 nm fundamental beam in a 12 mm long Mg:SLN slab at room temperature, with an energy conversion efficiency of 20.5%.

  20. Development and validation of a fast monoclonal based disequilibrium enzyme-linked immunosorbent assay for the detection of triphenylmethane dyes and their metabolites in fish.

    PubMed

    Oplatowska, Michalina; Connolly, Lisa; Stevenson, Paul; Stead, Sara; Elliott, Christopher T

    2011-07-18

    Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BG) are antibacterial, antifungal and antiparasitic agents that have been used for treatment and prevention of diseases in fish. These dyes are metabolized into reduced leuco forms (LMG, LCV, LBG) that can be present in fish muscles for a long period. Due to the carcinogenic properties they are banned for use in fish for human consumption in many countries including the European Union and the United States. HPLC and LC-MS techniques are generally used for the detection of these compounds and their metabolites in fish. This study presents the development of a fast enzyme-linked immunosorbent assay (ELISA) method as an alternative for screening purposes. A first monoclonal cell line producing antibodies to MG was generated using a hybridoma technique. The antibody had good cross-reactivates with related chromatic forms of triphenylmethane dyes such as CV, BG, Methyl Green, Methyl Violet and Victoria Blue R. The monoclonal antibody (mAb) was used to develop a fast (20 min) disequilibrium ELISA screening method for the detection of triphenylmethanes in fish. By introducing an oxidation step with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) during sample extraction the assay was also used to detect the presence of the reduced metabolites of triphenylmethanes. The detection capability of the assay was 1 ng g(-1) for MG, LMG, CV, LCV and BG which was below the minimum required performance limit (MRPL) for the detection method of total MG (sum of MG and LMG) set by the Commission Decision 2004/25/EC (2 ng g(-1)). The mean recoveries for fish samples spiked at 0.5 MRPL and MRPL levels with MG and LMG were between 74.9 and 117.0% and inter- and intra-assay coefficients of variation between 4.7 and 25.7%. The validated method allows the analysis of a batch of 20 samples in two to three hours. Additionally, this procedure is substantially faster than other ELISA methods developed for MG/LMG thus far. The stable and efficient monoclonal cell line obtained is an unlimited source of sensitive and specific antibody to MG and other triphenylmethanes. PMID:21645659

  1. Synthesis and X-ray crystal structure of isomeric pyridine-based leuco-TAM dyes, 2,2-(2-(pyridinyl)propane-1,3-diylidene)bis(5-chloro-1,3,3-trimethyl indoline) derivatives and unusual stability of 4-pyridinyl compound

    NASA Astrophysics Data System (ADS)

    Ma, So-Young; Keum, Sam-Rok

    2013-09-01

    The solid-state structures and unequivocal stereochemistries of isomeric pyridine-based leuco-triarylmethane (LTAM) dyes 2,2?-(2-(pyridin-4 or 3-yl)propane-1,3-diylidene)bis(5-chloro-1,3,3-trimethylindoline) derivatives were established by X-ray crystallography. Surprisingly, the EE isomer was formed for the 4-pyridinyl compound, whereas the 3-pyridinyl compound formed ZE isomers. In addition, the latter have a so-called three-bladed propeller conformation, whereas the former possess a Y-shaped conformation. These pyridine-based LTAM compounds stack to form a dimer, adopting either an orthorhombic, with Pcmn space group, or monoclinic crystal system with P21/n space group in the crystal unit cell.

  2. Synthesis and X-ray crystal structure of isomeric pyridine-based leuco-TAM dyes, 2,2-(2-(pyridinyl)propane-1,3-diylidene)bis(5-chloro-1,3,3-trimethyl indoline) derivatives and unusual stability of 4-pyridinyl compound.

    PubMed

    Ma, So-Young; Keum, Sam-Rok

    2013-09-01

    The solid-state structures and unequivocal stereochemistries of isomeric pyridine-based leuco-triarylmethane (LTAM) dyes 2,2'-(2-(pyridin-4 or 3-yl)propane-1,3-diylidene)bis(5-chloro-1,3,3-trimethylindoline) derivatives were established by X-ray crystallography. Surprisingly, the EE isomer was formed for the 4-pyridinyl compound, whereas the 3-pyridinyl compound formed ZE isomers. In addition, the latter have a so-called three-bladed propeller conformation, whereas the former possess a Y-shaped conformation. These pyridine-based LTAM compounds stack to form a dimer, adopting either an orthorhombic, with Pcmn space group, or monoclinic crystal system with P21/n space group in the crystal unit cell. PMID:23735204

  3. Azo Dye Biodecolorization Enhanced by Echinodontium taxodii Cultured with Lignin

    PubMed Central

    Meng, Jing; Yu, Hongbo; Zhang, Xiaoyu

    2014-01-01

    Lignocellulose facilitates the fungal oxidization of recalcitrant organic pollutants through the extracellular ligninolytic enzymes induced by lignin in wood or other plant tissues. However, available information on this phenomenon is insufficient. Free radical chain reactions during lignin metabolism are important in xenobiotic removal. Thus, the effect of lignin on azo dye decolorization in vivo by Echinodontium taxodii was evaluated. In the presence of lignin, optimum decolorization percentages for Remazol Brilliant Violet 5R, Direct Red 5B, Direct Black 38, and Direct Black 22 were 91.75% (control, 65.96%), 76.89% (control, 43.78%), 43.44% (control, 17.02%), and 44.75% (control, 12.16%), respectively, in the submerged cultures. Laccase was the most important enzyme during biodecolorization. Aside from the stimulating of laccase activity, lignin might be degraded by E. taxodii, and then these degraded low-molecular-weight metabolites could act as redox mediators promoting decolorization of azo dyes. The relationship between laccase and lignin degradation was investigated through decolorization tests in vitro with purified enzyme and dozens of aromatics, which can be derivatives of lignin and can function as laccase mediators or inducers. Dyes were decolorized at triple or even higher rates in certain laccase–aromatic systems at chemical concentrations as low as 10 µM. PMID:25285777

  4. Adsorption of dyes using peat: equilibrium and kinetic studies.

    PubMed

    Seplveda, L; Fernndez, K; Contreras, E; Palma, C

    2004-09-01

    In recent years, adsorption has been accepted as one of the most appropriate processes for decolorization of wastewaters. This paper presents experimental results on application of peat for removal of structurally diverse dyes (azo, oxazine, triphenylmethane, thiazine and others) with emphasis on relevant factors such as the adsorbate-adsorbent chemical properties and chemical interaction as well as adsorption conditions. The equilibrium experimental results were fitted to Langmuir and Freundlich isotherms to obtain the characteristic parameters of each model. According to the evaluation using the Langmuir equation, the maximum sorption capacity of basic dyes at 22 degrees C was 667 (mg g(-1)) for Basic Blue 24, 526 (mg g(-1)) for Basic Green 4 and 714 (mg g(-1)) for Basic Violet 4. On the other hand for Acid Black 1 it was only 25 (mg g(-1)). Batch kinetics studies were undertaken and the data evaluated in compliance with chemical sorption mechanisms. For all of the systems studied the pseudo-second order model provided the best correlation of the kinetic experimental data. A film-pore double resistance diffusion model for mass transfer has also been used in this study to determine the effective diffusivity, Deff, for the adsorption of basic dyes in to peat. PMID:15515265

  5. A new technology for harnessing the dye polluted water and dye collection in a chemical factory.

    PubMed

    Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K

    2001-04-01

    A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits. PMID:11590742

  6. Mosaic of Jupiter's Great Red Spot (Violet Filter)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Great Red Spot of Jupiter as seen through the violet (404 nm) filter of the Galileo imaging system. The image is a mosaic of six images that have been map-projected to a uniform grid of latitude and longitude. North is at the top. The mosaic was taken over a 75 second interval beginning at universal time 4 hours, 18 minutes, 8 seconds on June 26, 1996. The Red Spot is 20,000 km long and has been followed by observers on Earth since the telescope was invented 300 years ago. It is a huge storm made visible by variations in the composition of the cloud particles. The Red Spot is not unique, but is simply the largest of a class of long-lived vortices, some of which are visible in the lower part of the image. The range is 1.76 million kilometers.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. Poly(acrylamide) functionalized chitosan: an efficient adsorbent for azo dyes from aqueous solutions.

    PubMed

    Singh, Vandana; Sharma, Ajit Kumar; Sanghi, Rashmi

    2009-07-15

    In the present communication we report on the optimization of persulfate/ascorbic acid initiated synthesis of chitosan-graft-poly(acrylamide) (Ch-g-PAM) and its application in the removal of azo dyes. The optimum yield of the copolymer was obtained using 16 x 10(-2)M acrylamide, 3.0 x 10(-2)M ascorbic acid, 2.4 x 10(-3)M K(2)S(2)O(8) and 0.1g chitosan in 25 mL of 5% aqueous formic acid at 45+/-0.2 degrees C. Ch-g-PAM remained water insoluble even under highly acidic conditions and could efficiently remove Remazol violet and Procion yellow dyes from the aqueous solutions over a pH range of 3-8 in contrast to chitosan (Ch) which showed pH dependent adsorption. The adsorption data of the Ch-g-PAM and Ch for both the dyes were modeled by Langmuir and Freundlich isotherms where the data fitted better to Langmuir isotherms. To understand the adsorption behavior of Ch-g-PAM, adsorption of Remazol violet on to the copolymer was optimized and the kinetic and thermodynamic studies were carried out taking Ch as reference. Both Ch-g-PAM and Ch followed pseudo-second-order adsorption kinetics. The thermodynamic study revealed a positive heat of adsorption (Delta H degrees), a positive DeltaS degrees and a negative Delta G degrees, indicating spontaneous and endothermic nature of the adsorption of RV dye on to the Ch-g-PAM. The Ch-g-PAM was found to be very efficient in removing color from real industrial wastewater as well, though the interfering ions present in the wastewater slightly hindered its adsorption capacity. The data from regeneration efficiencies for ten cycles evidenced the high reusability of the copolymer in the treatment of waste water laden with even high concentrations of dye. PMID:19097701

  8. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  9. Hair cosmetics: dyes.

    PubMed

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. PMID:24656996

  10. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA); Field, George F. (Santa Ana, CA)

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  11. Hair Dye and Hair Relaxers

    MedlinePLUS

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  12. Investigation of ultra violet (UV) resistance for high strength fibers

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Dingwall, Brenda; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T.

    Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.

  13. NSCAT high-resolution surface wind measurements in Typhoon Violet

    NASA Astrophysics Data System (ADS)

    Jones, W. Linwood; Cardone, Vincent J.; Pierson, Willard J.; Zec, Josko; Rice, Larry P.; Cox, Andrew; Sylvester, Winfield B.

    1999-05-01

    NASA scatterometer (NSCAT) measurements of the western Pacific Supertyphoon Violet are presented for revolutions 478 and 485 that occurred in September 1996. A tropical cyclone planetary boundary layer numerical model, which uses conventional meteorological and geostationary cloud data, is used to estimate the winds at 10-m elevation in the cyclone. These model winds are then compared with the winds inferred from the NSCAT backscatter data by means of a novel approach that allows a wind speed to be recovered from each individual backscatter cell. This spatial adaptive (wind vector) retrieval algorithm employs several unique steps. The backscatter values are first regrouped in terms of closest neighbors in sets of four. The maximum likelihood estimates of speed and direction are then used to obtain speeds and directions for each group. Since the cyclonic flow around the tropical cyclone is known, NSCAT wind direction alias selection is easily accomplished. The selected wind directions are then used to convert each individual backscatter value to a wind speed. The results are compared to the winds obtained from the tropical cyclone boundary layer model. The NSCAT project baseline geophysical model function, NSCAT 1, was found to yield wind speeds that were systematically too low, even after editing for suspected rain areas of the cyclone. A new geophysical model function was developed using conventional NSCAT data and airborne Ku band scatterometer measurements in an Atlantic hurricane. This new model uses the neural network method and yields substantially better agreement with the winds obtained from the boundary layer model according to the statistical tests that were used.

  14. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  15. Hair care and dyeing.

    PubMed

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient. PMID:26370650

  16. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes.

    PubMed

    Ramesha, G K; Kumara, A Vijaya; Muralidhara, H B; Sampath, S

    2011-09-01

    In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. PMID:21679961

  17. The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes.

    PubMed

    Chung, K T

    1983-04-01

    Azo dyes are widely used in textile, printing, cosmetic, drug and food-processing industries. They are also used extensively in laboratories as either biological stains or pH indicators. The extent of such use is related to the degree of industrialization. Since intestinal cancer is more common in highly industrialized countries, a possible connection may exist between the increase in the number of cancer cases and the use of azo dyes. Azo dyes can be reduced to aromatic amines by the intestinal microflora. The mutagenicity of a number of azo dyes is reviewed in this paper. They include Trypan Blue, Ponceau 3R, Pinceau 2R, Methyl Red, Methyl Yellow, Methyl Orange, Lithol Red, Orange I, Orange II, 4-Phenylazo-Naphthylamine, Sudan I, Sudan IV, Acid Alizarin Violet N, Fast Garnet GBC, Allura Red, Ponceau SX, Sunset Yellow, Tartrazine, Citrus Red No. 2, Orange B, Yellow AB, Carmoisine, Mercury Orange, Ponceau S, Versatint Blue, Phenylazophenol, Evan's Blue and their degraded aromatic amines. The significance of azo reduction in the mutagenesis and carcinogenesis of azo dyes is discussed. PMID:6339890

  18. Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.

    PubMed

    Annadurai, Gurusamy; Juang, Ruey-Shin; Lee, Duu-Jong

    2002-06-10

    Low-cost banana and orange peels were prepared as adsorbents for the adsorption of dyes from aqueous solutions. Dye concentration and pH were varied. The adsorption capacities for both peels decreased in the order methyl orange (MO) > methylene blue (MB) > Rhodamine B (RB) > Congo red (CR) > methyl violet (MV) > amido black 10B (AB). The isotherm data could be well described by the Freundlich and Langmuir equations in the concentration range of 10-120 mg/l. An alkaline pH was favorable for the adsorption of dyes. Based on the adsorption capacity, it was shown that banana peel was more effective than orange peel. Kinetic parameters of adsorption such as the Langergren rate constant and the intraparticle diffusion rate constant were determined. For the present adsorption process intraparticle diffusion of dyes within the particle was identified to be rate limiting. Both peel wastes were shown to be promising materials for adsorption removal of dyes from aqueous solutions. PMID:12031611

  19. Advanced Cd(II) complexes as high efficiency co-sensitizers for enhanced dye-sensitized solar cell performance.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Qiang, Liang Sheng; Wei, Li Guo; Wang, Ping; Yang, Yu Lin; Wang, Yu Lei

    2015-11-01

    This work reports on two new complexes with the general formula [Cd3(IBA)3(Cl)2(HCOO)(H2O)]n (1) and {[Cd1.5(IBA)3(H2O)6]·3.5H2O}n (2), which can be synthesized by the reaction of Cd(II) with rigid linear ligand 4-HIBA containing imidazolyl and carboxylate functional groups [4-HIBA = 4-(1H-imidazol-1-yl)benzoic acid]. Single-crystal X-ray diffraction analyses indicate that complex 1 is a 2D "wave-like" layer structure constructed from trinuclear units and complex 2 is just a mononuclear structure. Surprisingly, both complexes 1 and 2 appear as a 3D supramolecular network via intermolecular hydrogen bonding interactions. What's more, due to their strong UV-visible absorption, 1 and 2 can be employed as co-sensitizers in combination with N719 to enhance dye-sensitized solar cell (DSSC) performance. Both of them could overcome the deficiency of the ruthenium complex N719 absorption in the region of ultraviolet and blue-violet, and the charge collection efficiency is also improved when 1 and 2 are used as co-sensitizers, which are all in favor of enhancing the performance. The DSSC devices using co-sensitizers of 1/N719 and 2/N719 show an overall conversion efficiency of 8.27% and 7.73% with a short circuit current density of 17.48 mA cm(-2) and 17.39 mA cm(-2), and an open circuit voltage of 0.75 V and 0.74 V, respectively. The overall conversion efficiency is 27.23% and 18.92% higher than that of a device solely sensitized by N719 (6.50%). Consequently, the prepared complexes are high efficiency co-sensitizers for enhancing the performance of N719 sensitized solar cells. PMID:26419745

  20. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only

  1. Alzheimer's Dye Test?

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  2. Visible light assisted degradation of organic dye using Ag3PO4

    NASA Astrophysics Data System (ADS)

    Dhanabal, R.; Velmathi, S.; Bose, A. Chandra

    2015-06-01

    The study of visible light photodegradation of organic dye Methylene Blue (MB) have been investigated using silver phosphate (Ag3PO4) as a photocatalyst which is good efficient material for photocatalytic reaction. The simple ion-exchange method is used to prepare Ag3PO4. The structure of the material have been confirmed using X-ray diffraction which shows cubic structure of Ag3PO4. The functional group of the Ag3PO4 has been verified by Fourier transform infrared spectroscopy. The bandgap of Ag3PO4 is calculated using kubelka-munk function from the ultra violet-visible diffuse reflectance spectroscopy, the absorption of Ag3PO4 starts from 470 nm. Under simulated visible light irradiation, Ag3PO4 catalyst exhibits good catalytic ability for degrading MB dye.

  3. Biodegradation of leuco derivatives of triphenylmethane dyes by Sphingomonas sp. CM9.

    PubMed

    Wu, Jun; Li, Liguan; Du, Hongwei; Jiang, Lijuan; Zhang, Qiong; Wei, Zhongbo; Wang, Xiaolin; Xiao, Lin; Yang, Liuyan

    2011-09-01

    A leuco derivatives of triphenylmethane dyes degrading bacterium, strain CM9, was isolated from an aquafarm field. Based on morphology, physiologic tests, 16S rDNA sequence, and phylogenetic characteristics, it was identified as Sphingomonas sp. This strain was capable of degrading leucomalachite green (LMG), leucocrystal violet and leucobasic fuchsin completely. The relationship between bacterium growth and LMG degradation suggested that strain CM9 could use LMG as the sole source of carbon. The most LMG degradation activity of CM9 crude extract was observed at pH 7.0 and at 30C. Many metal ions had little inhibition effect on the degradation activity of the crude extract. CM9 also showed strong decolorization of triphenylmethane dyes to their leuco derivatives. GC/MS analysis detected two novel metabolic products, methylbenzene and 4-aminophenol, during the LMG degradation by CM9. PMID:21188476

  4. Stark effect and spectral hole-burning: solvation of organic dyes in polymers

    NASA Astrophysics Data System (ADS)

    Vauthey, Eric; Holliday, Keith; Wei, Changjiang; Renn, Alois; Wild, Urs P.

    1993-04-01

    Spectral hole-burning studies of nile red and cresyl violet in polyvinylbutyral and polyvinylformal films have been performed. From the shape of spectral holes under the influence of an electric field, the dipole moment difference between the ground and excited state of both dyes has been determined. The Stark effect was investigated at different positions in the inhomogeneously broadened absorption band of the guest molecules. The observed dipole moment difference decreases with increasing wavelength. This variation is caused by the matrix induced dipole moment. For nile red, which is a neutral and polar molecule, the distribution of induced dipole moments is strongly correlated with the orientation of its ground state dipole moment. In the case of cresyl violet perchlorate, which is a salt, this distribution is anisotropic for guests absorbing in the blue part of the inhomogeneous band but becomes more isotropic as the absorption wavelength increases. The wavelength dependence of the observed dipole moment is much stronger and is ascribed to the existence of the cresyl violet perchlorate salt in different states of solvation.

  5. Photoluminescence properties of MgxZn1-xSe single crystals

    NASA Astrophysics Data System (ADS)

    Park, Sang-An; Song, Ho-Jun; Kim, Wha-Tek; Kim, Hyung-Gon; Jin, Moon-Seog; Kim, Chang-Dae; Yoon, Chang-Sun

    1998-03-01

    MgxZn1-xSe single crystals were grown by the closed tube sublimation method. The MgxZn1-xSe single crystals crystallized into zincblende and wurtzite structures in the composition ranges of x=0.0-0.1 and x=0.2-0.6, respectively. Blue and violet emissions with LO phonon replica and self-activated emissions in the MgxZn1-xSe single crystals were observed at 10 K.

  6. Compact rigid dye laser construction

    SciTech Connect

    Sheng, S.C.; Wolgast, S.C.

    1989-01-03

    This patent describes a dye laser of rigid and simplified construction is described having dye pumping means and excitation means, and having a folded resonator cavity with three cavity mirrors, comprising: a solid laser resonator block of integral, rigid material having three non-collinear cavity mirror mount locations in a folded-cavity configuration, defined by a folding mirror mount location and two end mirror locations, openings in the block for passage of a lasing beam in a folded resonating path among the three mirror mount locations, three resonator mirrors at the three mirror mount locations, at least one being fixed rigidly, directly and nonadjustably to the block at the respective mirror mount location, dye nozzle means supported by the block for producing a dye jet positioned to extend across the laser resonator cavity between two of the three mirrors, the dye nozzle means having means for connection to a dye circulation system, pumping beam directing means for receiving and directing a pumping beam to intersect the dye jet where the dye jet crosses the beam resonating path, and dye jet adjustment means for adjusting the position and orientation of the dye nozzle means and the dye jet with respect to the resonator cavity and the pumping beam.

  7. [Allergy to dyes in stockings].

    PubMed

    Hausen, B M; Schulz, K H

    1984-09-28

    Skin allergies caused by the wearing of stockings and hose have received little attention. Findings in patients of an allergy department, enquiries at stocking counters of stores and recent publications indicate, however, that probably many more persons have an allergy to stocking dyes than is generally thought. Skin tests with isolated stocking dyes indicate that azo dye dispersion yellow 3, dispersion orange 3 and dispersion red 1 are the most important contact allergens. They were demonstrated in 18-21 of the 23 hose examined. In textile materials, azo dye dispersion blue 124 is predominant among allergens. Cross-reactions may occur to other dispersion azo dyes, used in cosmetics, textiles, toiletries and hygenic articles, permitted food additives and hair dyes. It is suggested that in persons who have dye allergy or intolerance, decolouration followed by colouring with natural colours be undertaken. PMID:6479046

  8. A Fresh Look at the Crystal Violet Lab with Handheld Camera Colorimetry

    ERIC Educational Resources Information Center

    Knutson, Theodore R.; Knutson, Cassandra M.; Mozzetti, Abbie R.; Campos, Antonio R.; Haynes, Christy L.; Penn, R. Lee

    2015-01-01

    Chemical kinetic experiments to determine rate laws are common in high school and college chemistry courses. For reactions involving a color change, rate laws can be determined experimentally using spectrophotometric or colorimetric equipment though this equipment can be cost prohibitive. Previous work demonstrated that inexpensive handheld camera…

  9. A Fresh Look at the Crystal Violet Lab with Handheld Camera Colorimetry

    ERIC Educational Resources Information Center

    Knutson, Theodore R.; Knutson, Cassandra M.; Mozzetti, Abbie R.; Campos, Antonio R.; Haynes, Christy L.; Penn, R. Lee

    2015-01-01

    Chemical kinetic experiments to determine rate laws are common in high school and college chemistry courses. For reactions involving a color change, rate laws can be determined experimentally using spectrophotometric or colorimetric equipment though this equipment can be cost prohibitive. Previous work demonstrated that inexpensive handheld camera

  10. Reuse of reactive dyes for dyeing of jute fabric.

    PubMed

    Chattopadhyay, S N; Pan, N C; Day, A

    2006-01-01

    The aim of the work was to find out suitable method of dyeing so that costly reactive dye can be reused without draining them. The bleached jute fabric was dyed with four different class of reactive dyes namely, cold brand, hot brand, vinyl sulphone and high exhaustion (HE) brand. It is found that the two-step two-bath method of reactive dyeing, where exhaustion and fixation step is separated, is most ideal for reuse of dye bath. Separate original samples produced K/S value same as that of original sample and the K/S value of separate reuse sample varied from 50% to 80% of the original sample depending on the class of dye. In case of same bath method, colour yield of original reuse samples varies from only 10% to maximum 30% of the original samples depending on the class of dyes. Reuse of reactive dyes following separate bath method is particularly suitable for higher depth of shade (4% and above). This process not only utilises costly reactive dyes to the maximum extent but it also produces low water pollution as the effluent contain minimum amount of dye. So the process is economic and eco-friendly as well. PMID:16154505

  11. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp.

    PubMed

    Vieira, Adriana P; Santana, Sirlane A A; Bezerra, Cícero W B; Silva, Hildo A S; Chaves, José A P; de Melo, Júlio C P; da Silva Filho, Edson C; Airoldi, Claudio

    2009-07-30

    Extracted babassu coconut (Orbignya speciosa) mesocarp (BCM) was applied as a biosorbent for aqueous Blue Remazol R160 (BR 160), Rubi S2G (R S2G), Red Remazol 5R (RR 5), Violet Remazol 5R (VR 5) and Indanthrene Olive Green (IOG) dye solutions. The natural sorbent was processed batchwise while varying several system parameters such as stirring time, pH and temperature. The interactions were assayed with respect to both pseudo-first-order and second-order reaction kinetics, with the latter the more suitable kinetic model. The maximum adsorption was obtained at pH 1.0 for all dyes due to available anionic groups attached to the structures, which can be justified by pH(pzc) 6.7 for the biosorbent BCM. The ability of babassu coconut mesocarp to adsorb dyes gave the order R S2G>VR 5>BR 160>IOG>RR 5, which data were best fit to Freundlich model, but did not well-adjusted for all dyes. The dye/biopolymer interactions at the solid/liquid interface are all spontaneous as given by free Gibbs energy, with exothermic enthalpic values of -26.1, -15.8, -17.8, -15.8 and -23.7 kJ mol(-1) for BR 160, R S2G, RR 5, IOG and VR 5, respectively. In spite of the negative entropic values contribution, the set of thermodynamic data is favorable for all dyes removal. However, the results pointed to the effectiveness of the mesocarp of babassu coconut as a biosorbent for removing textile dyes from aqueous solutions. PMID:19150173

  12. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    NASA Astrophysics Data System (ADS)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2016-01-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as ΔH 0, ΔS 0 and ΔG 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  13. Infrared multiple photon dissociation (IRMPD) spectroscopy of oxazine dyes.

    PubMed

    Nieckarz, Robert J; Oomens, Jos; Berden, Giel; Sagulenko, Pavel; Zenobi, Renato

    2013-04-14

    The structure and energetic properties of four common oxazine dyes, Nile red, Nile blue A, Cresyl violet, and Brilliant cresyl blue, have been probed using a combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and quantum chemical calculations. IRMPD spectra of the protonated dyes, as generated from an electrospray ionization (ESI) source, were collected in the range of 900-1800 cm(-1). Vibrational band assignments related to carbonyl and substituted-amine stretches were established from a comparison of the experimental spectra of these related systems as well as from a comparison with spectra generated by density functional theory (DFT) calculations. For Nile red, the thermochemical landscape for protonation at different basic sites was probed using DFT; comparison of IRMPD and calculated IR spectra reveals the site of protonation to be at the carbonyl oxygen. The structural information obtained here in the gas phase pertaining to these important fluorophores is anticipated to provide further insight into their associated intrinsic fluorescent properties in solution. PMID:23450155

  14. A novel porous anionic metal-organic framework with pillared double-layer structure for selective adsorption of dyes

    NASA Astrophysics Data System (ADS)

    Sheng, Shu-Nan; Han, Yi; Wang, Bin; Zhao, Cui; Yang, Fan; Zhao, Min-Jian; Xie, Ya-Bo; Li, Jian-Rong

    2016-01-01

    A novel porous anionic metal-organic framework, (Me2NH2)2[Zn2L1.5bpy]·2DMF (BUT-201; H4L=4,8-disulfonaphthalene-2,6-dicarboxylic acid; bpy=4,4-bipyridine; DMF=N,N-dimethylformamide), with pillared double-layer structure has been synthesized through the reaction of a sulfonated carboxylic acid ligand and Zn(NO3)2·6H2O with 4,4-bipyridine as a co-ligand. It is found that BUT-201 can rapidly adsorb cationic dyes with a smaller size such as Methylene Blue (MB) and Acriflavine Hydrochloride (AH) by substitution of guest (CH3)2NH2+, but has no adsorption towards the cationic dyes with a lager size such as Methylene Violet (MV), the anionic dyes like C. I. Acid Yellow 1 (AY1) and neutral dyes like C. I. Solvent Yellow 7 (SY7), respectively. The results show that the adsorption behavior of BUT-201 relates not only to the charge but also to the size/shape of dyes. Furthermore, the adsorbed dyes can be gradually released in the methanol solution of LiNO3.

  15. A photoproduct with 13-cis retinal generated by irradiation with violet light in the octopus retina.

    PubMed

    Ohtsu, K; Kito, Y

    1985-01-01

    The photoconversion between rhodopsin (R) and metarhodopsin (MR) was investigated in the retina of Octopus ocellatus by measurements of the fast photovoltage (FPV) in conjunction with high pressure liquid chromatography (HPLC). Following conversion of most of R to MR by short-term exposure to an intense violet light, a large vitreous negative FPV due to photon absorption by MR was observed with an orange test flash. By continuing the exposure to the same violet light, however, the negative FPV became very small, though long-term irradiation with blue-green light produced a recovery. With the violet light exposure a substance other than R and MR is produced, which hardly contributes to FPV generation. Analysis of retinal isomers with HPLC show that such an exposure produces a substance with 13-cis retinal as its chromophore and that it was significantly reduced after exposure to blue-green light. PMID:4024475

  16. Post-Katrina Fecal Contamination in Violet Marsh near New Orleans

    PubMed Central

    Furey, John S.; Fredrickson, Herbert; Foote, Chris; Richmond, Margaret

    2007-01-01

    Fecal material entrained in New Orleans flood waters was pumped into the local environment. Violet Marsh received water pumped from St. Bernard Parish and the Lower Ninth Ward. Sediment core samples were collected from canals conducting water from these areas to pump stations and from locations within Violet Marsh. Viable indicator bacteria and fecal sterols were used to assess the levels of fecal material in sediment deposited after the levee failures and deeper sediments deposited before. Most of the cores had fecal coliform levels that exceed the biosolids criterion. All of the cores had fecal sterols that exceeded the suggested environmental quality criterion. Our data show both a long history of fecal contamination in Violet Marsh and an increase in fecal loading corresponding to the failure of the levee system. The work was performed as part of the Interagency Performance Evaluation Task Force investigation into the consequences of the failures of the New Orleans levee system. PMID:17617670

  17. Post-Katrina fecal contamination in Violet Marsh near New Orleans.

    PubMed

    Furey, John S; Fredrickson, Herbert; Foote, Chris; Richmond, Margaret

    2007-06-01

    Fecal material entrained in New Orleans flood waters was pumped into the local environment. Violet Marsh received water pumped from St. Bernard Parish and the Lower Ninth Ward. Sediment core samples were collected from canals conducting water from these areas to pump stations and from locations within Violet Marsh. Viable indicator bacteria and fecal sterols were used to assess the levels of fecal material in sediment deposited after the levee failures and deeper sediments deposited before. Most of the cores had fecal coliform levels that exceed the biosolids criterion. All of the cores had fecal sterols that exceeded the suggested environmental quality criterion. Our data show both a long history of fecal contamination in Violet Marsh and an increase in fecal loading corresponding to the failure of the levee system. The work was performed as part of the Interagency Performance Evaluation Task Force investigation into the consequences of the failures of the New Orleans levee system. PMID:17617670

  18. Dye removal from textile dye wastewater using recycled alum sludge.

    PubMed

    Chu, W

    2001-09-01

    The removal of dyes from textile dying wastewater by recycled alum sludge (RAS) generated by the coagulation process itself was studied and optimized. One hydrophobic and one hydrophilic dye were used as probes to examine the performance of this process. It was found that RAS is a good way of removing hydrophobic dye in wastewater, while simultaneously reducing the fresh alum dosage, of which one third of the fresh alum can be saved. The back-diffusion of residued dye from the recycling sludge is detected but is easily controlled as long as a small amount of fresh alum is added to the system. The use of RAS is not recommended for the removal of hydrophilic dyes, since the high solubility characteristics of such dyes can cause deterioration in the water quality during recycling. PMID:11487111

  19. Zeolite-Dye Microlasers

    NASA Astrophysics Data System (ADS)

    Vietze, U.; Krauß, O.; Laeri, F.; Ihlein, G.; Schüth, F.; Limburg, B.; Abraham, M.

    1998-11-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-ethyl-4-[4-( p-dimethylaminophenyl)-1,3-butadienyl]-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO 4-5 host. The zeolitic microcrystal compounds were hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-μm-diameter monolithic microresonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  20. Fiberized fluorescent dye microtubes

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko

    2013-03-01

    In the present work we study the effect of the length of fluorescent dye-filled micro-capillaries on the fluorescence spectra. Two types of micro-capillaries have been studied: a 100 ?m inner diameter fused silica capillary with a transparent coating and one of the holes of a fiber optic glass ferrule with 125 ?m inner diameter. The tubes were filled with solutions of Rhodamine 6G dissolved in ethanol and then in glycerin. Experimental data show that the maximum fluorescence and the largest spectral widths are observed for a sample length of about 0.25 mm for the used concentration. This results show that miniature tunable fiberized dye lasers can be developed using available standard micro-and fibre-optic components.

  1. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  2. Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp.

    PubMed

    Kim, Jae Ihn; Park, Chang Yong; Yeom, Jin Yong; Kim, Eok Bong; Yoon, Tai Hyun

    2003-02-15

    We have demonstrated in an ytterbium laser cooling and trapping experiment a high-power violet extendedcavity diode laser (ECDL) stabilized to the Yb resonant transition at 398.9 nm in an Yb hollow-cathode lamp. A frequency-dispersion signal, which we obtained by applying a modulation-free dichroic-atomic-vapor laser lock technique, allowed us to stabilize the violet ECDL at a frequency stability below 1 MHz at 1-s average time and a useful output power of 15 mW. PMID:12653360

  3. 75 FR 23239 - Carbazole Violet Pigment 23 From India: Extension of Time Limit for Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... administrative review of the antidumping duty order on CVP 23 from India. See Carbazole Violet Pigment 23 from India: Preliminary Results of Antidumping Duty Administrative Review, 74 FR 68038 (December 22, 2009... International Trade Administration Carbazole Violet Pigment 23 From India: Extension of Time Limit for...

  4. 75 FR 26716 - Carbazole Violet Pigment 23 from India: Extension of Time Limit for Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... FR 977 (January 7, 2010). This administrative review covers the period January 1, 2007 through... International Trade Administration Carbazole Violet Pigment 23 from India: Extension of Time Limit for Final... administrative review of the countervailing duty order on carbazole violet pigment 23 (CVP-23) from India....

  5. Cold Pad-Batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy.

    PubMed

    Khatri, Zeeshan; Memon, Muhammad Hanif; Khatri, Awais; Tanwari, Anwaruddin

    2011-11-01

    Reactive dyes are vastly used in dyeing and printing of cotton fibre. These dyes have a distinctive reactive nature due to active groups which form covalent bonds with -OH groups of cotton through substitution and/or addition mechanism. Among many methods used for dyeing cotton with reactive dyes, the Cold Pad Batch (CPB) method is relatively more environment friendly due to high dye fixation and non requirement of thermal energy. The dyed fabric production rate is low due to requirement of at least twelve hours batching time for dye fixation. The proposed CPB method for dyeing cotton involves ultrasonic energy resulting into a one third decrease in batching time. The dyeing of cotton fibre was carried out with CI reactive red 195 and CI reactive black 5 by conventional and ultrasonic (US) method. The study showed that the use of ultrasonic energy not only shortens the batching time but the alkalis concentrations can considerably be reduced. In this case, the colour strength (K/S) and dye fixation (%F) also enhances without any adverse effect on colour fastness of the dyed fabric. The appearance of dyed fibre surface using scanning electron microscope (SEM) showed relative straightening of fibre convolutions and significant swelling of the fibre upon ultrasonic application. The total colour difference values ΔE (CMC) for the proposed method, were found within close proximity to the conventionally dyed sample. PMID:21550289

  6. Dye-coated europium monosulfide

    SciTech Connect

    Kar, Srotoswini; Dollahon, Norman R.; Stoll, Sarah L.

    2011-05-15

    Nanoparticles of EuS were synthesized using europium dithiocarbamate complexes. The resulting nanoparticles were coated with the dye, 1-pyrene carboxylic acid and the resulting material was characterized using X-ray powder diffraction, TEM, and UV-visible spectroscopy. Fluorescence spectroscopy was used to determine the relative energy of the conduction band edge to the excited state energy of the dye. -- Graphical abstract: Dye sensitized magnetic semiconductor materials were prepared by synthesizing EuS nanoparticles using single source precursors and coating with the dye, 1-pyrene carboxylic acid. Display Omitted highlights: > Synthesized EuS nanoparticles, 11{+-}2.4 nm characterized using XRD, TEM, and UV-vis. spect. > Grafted a dye to the surface and characterized the product using XRD, FTIR, UV-vis., and TEM. > Studied the photophysical properties using fluorescence spectroscopy. > Determined the relative dye excited state to the conduction band of the semiconductor.

  7. LiEuMo2O8 - crystal growth, structure, and optical properties

    NASA Astrophysics Data System (ADS)

    Schwung, Sebastian; Rytz, Daniel; Gross, Andreas; Rodewald, Ute Ch.; Hoffmann, Rolf-Dieter; Gerke, Birgit; Heying, Birgit; Schwickert, Christian; Pttgen, Rainer; Jstel, Thomas

    2014-01-01

    Centimeter size LiEu(MoO4)2 bulk single crystals have been grown by top-seeded solution growth using Li2MoO4 as a flux. The resulting crystals exhibited different coloration shades from dark to bright violet. Small single crystal fragments were studied by X-ray diffraction: CaWO4 type, space group I41/a, a = 519.74(4), c = 1132.56(11) pm, wR2 = 0.0143, 270 F2 values at 300 K and a = 518.70(4), c = 1130.25(11) pm, wR2 = 0.0197, 268 F2 values at 90 K. The Li+ and Eu3+ cations statistically occupy the 4b site. Down to 90 K, the single crystal X-ray data give no hint for cation ordering. Some of the grown crystals show dark violet color. This is due to defects in the oxygen substructure accompanied by partial reduction of Mo6+ (d0) to Mo5+ (d1) which was detected by electron spin resonance. 151Eu Mssbauer spectra of the bright and also of the dark violet LiEuMo2O8 samples show the presence of trivalent europium solely. Temperature dependent magnetic susceptibility data exhibit weak van Vleck type paramagnetism as a consequence of trivalent europium ([Xe]4f6). The dark violet samples show slightly higher susceptibility due to the contribution of Mo5+. These data point to a formula LiEuMo2O8-x for the violet samples. 7Li solid state NMR spectra underline the single lithium sites in both samples. Both colored crystals show identical emission spectra, which indicate the same chemical surrounding of the trivalent europium ions. However, excitation spectra and thermal quenching and decay curves points to a higher defect density in the violet sample.

  8. A comparative study on the properties, mechanisms and process designs for the adsorption of non-ionic or anionic dyes onto cationic-polymer/bentonite.

    PubMed

    Li, Qian; Yue, Qin-Yan; Sun, Hong-Jian; Su, Yuan; Gao, Bao-Yu

    2010-07-01

    The adsorption properties and mechanisms of a cationic-polymer/bentonite complex (EPI-DMA/bentonite), prepared from polyepicholorohydrin-dimethylamine and bentonite, for non-ionic dyes (Disperse Blue SBL and Vat Scarlet R) and anionic dyes (Reactive Violet K-3R and Acid Dark Blue 2G) were investigated in this study. The solution pH, presence of salt and surfactant can significantly affect the dye removal efficiency. The equilibrium data were analyzed using the Langmuir and Freundlich models. The Langmuir model is the most suitable to describe non-ionic dye adsorption, but for anionic dyes the Freundlich model is best. The kinetic data for the adsorption of different dyes were analyzed using pseudo first- and second-order equations, and the experimental data conformed to the pseudo second-order kinetic model better. The possibility of intraparticle diffusion was also examined by using the intraparticle diffusion equation. The single-stage batch adsorber design for the adsorption of both types of dyes onto EPI-DMA/bentonite was studied based on the Langmuir isotherm model for non-ionic dyes and the Freundlich isotherm model for anionic dyes. The results showed that the required amount of EPI-DMA/bentonite for 95% dye removal in 5 L dye solution with a concentration of 50 mg/L is 378.0 g for DB SBL, 126.5 g for VS R, 9.7 g for RV K-3R and 15.5 g for ADB 2G. PMID:20359811

  9. Determination of leucomalachite green, leucocrystal violet and their chromic forms using excitation-emission matrix fluorescence coupled with second-order calibration after dispersive liquid-liquid microextraction.

    PubMed

    Ju, Saiqin; Deng, Jian; Cheng, Jianlin; Xiao, Ni; Huang, Kaihui; Hu, Canhui; Zhao, Haiqing; Xie, Jin; Zhan, Xiaozhu

    2015-10-15

    A novel spectrofluorimetric method has been developed for the simultaneous determination of leucomalachite green (LMG), leucocrystal violet (LCV), malachite green (MG) and crystal violet (CV) by combining the sensitivity of molecular fluorescence and the selectivity of the second-order calibration. Residues of LMG, LCV, MG and CV were simultaneously extracted from fish and shrimp muscle with acetonitrile. The non-fluorescent CV and MG were then reduced to the corresponding fluorescent LMG and LCV by reacting with sodium borohydride. After preconcentration with dispersive liquid-liquid microextraction technique, the extracts were analyzed by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on parallel factor analysis (PARAFAC) and alternating trilinear decomposition (ATLD) algorithms. The limits of detection obtained were 2.21-2.65 ng g(-1) by PARAFAC and 2.30-2.86 ng g(-1) by ATLD, respectively. The developed method was successfully applied to simultaneous determination of the four analytes in grass carp and shrimp samples with recoveries of 90.53-103.03% for PARAFAC and 90.40-102.75% for ATLD. The accuracy of this novel method was also verified by high performance liquid chromatography. PMID:25952896

  10. Radiation chemistry of anionic disazo dyes in Cellophane films applications for high-dose dosimetry

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    2003-06-01

    Thin transparent Cellophane films containing anionic disazo "Direct" dyes, e.g. blue Cellophanes, have long been used as monitors of large absorbed doses of ionizing radiation (10-300 kGy) and especially for mapping electron-beam dose profiles. Examples of dyes for such purposes are variations on forms of the disazo dyes, Direct Orange, Direct Violet or Direct Blue. The films have a thickness of 25.6 ?m (+0.1 ?m) and are available in rolls of either 30 m0.51 m or 60 m0.76 m. Such dyed Cellophanes are typically lightfast but can readily be bleached irreversibly by ionizing radiation, as a means of dosimetry using spectrophotometry as the analytical tool. The radiation response is markedly dependent on temperature and relative humidity during irradiation. The reaction is initiated mainly by dehydrogenation and nitrosation upon electrophilic reductive attack on the dye molecule by the thermal electrons, at initial reaction rate constants in the range 10 5-10 6 s -1.

  11. Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres.

    PubMed

    Yao, Tong; Guo, Song; Zeng, Changfeng; Wang, Chongqing; Zhang, Lixiong

    2015-07-15

    We report here the preparation of porous magnetic polyacrylamide microspheres for efficient removal of cationic dyes by a simple polymerization-induced phase separation method. Characterizations by various techniques indicate that the microspheres show porous structures and magnetic properties. They can adsorb methylene blue with high efficiency, with adsorption capacity increasing from 263 to 1977 mg/g as the initial concentration increases from 5 to 300 mg/L. Complete removal of methylene blue can be obtained even at very low concentrations. The equilibrium data is well described by the Langmuir isotherm models, exhibiting a maximum adsorption capacity of 1990 mg/g. The adsorption capacity increases with increasing initial pH and reaches a maximum at pH 8, revealing an electrostatic interaction between the microspheres and the methylene blue molecules. The microspheres also show high adsorption capacities for neutral red and gentian violet of 1937 and 1850 mg/g, respectively, as well as high efficiency in adsorption of mixed-dye solutions. The dye-adsorbed magnetic polyacrylamide microspheres can be easily desorbed, and can be repeatedly used for at least 6 cycles without losing the adsorption capacity. The adsorption capacity and efficiency of the microspheres are much higher than those of reported adsorbents, which exhibits potential practical application in removing cationic dyes. PMID:25797927

  12. Microwave synthesis of cyanine dyes.

    PubMed

    Winstead, Angela J; Williams, Richard; Zhang, Yongchao; McLean, Charlee; Oyaghire, Stanley

    2010-01-01

    Heptamethine cyanine dyes are a class of near infrared (NIR) dyes that have captured the interest of the scientific community. Although applications that utilize NIR fluorescence technology are rapidly expanding, progress is limited by the lack of availability and cost of suitable compounds that can be utilized as labels and/or probes. Herein, we report the use of microwave assisted organic synthesis of five NIR cyanine dyes in yields ranging from 64-83% with a significant reduction in solvent use. Spectra characteristics including absorbance and emission spectra, molar absorptivity, quantum yield, fluorescence lifetime, and redox potentials were determined for each synthesized NIR cyanine dye. PMID:21721469

  13. The Chemistry of Plant and Animal Dyes.

    ERIC Educational Resources Information Center

    Sequin-Frey, Margareta

    1981-01-01

    Provides a brief history of natural dyes. Chemical formulas are provided for flavonoids, luteolin, genistein, brazilin, tannins, terpenes, naphthoquinone, anthraquinone, and dyes with an alkaloid structure. Also discusses chemical background of different dye processes. (CS)

  14. Integumental reddish-violet coloration owing to novel dichromatic chromatophores in the teleost fish, Pseudochromis diadema.

    PubMed

    Goda, Makoto; Ohata, Mihoko; Ikoma, Hayato; Fujiyoshi, Yoshinori; Sugimoto, Masazumi; Fujii, Ryozo

    2011-08-01

    In the reddish-violet parts of the skin of the diadema pseudochromis Pseudochromis diadema, we found novel dichromatic chromatophores with a reddish pigment and reflecting platelets. We named these novel cells 'erythro-iridophores'. In standard physiological solution, erythro-iridophores displayed two hues, red and dark violet when viewed with an optical microscope under ordinary transmission light and epi-illumination optics, respectively. Under transmission electron microscopy, however, we observed no typical red chromatosomes, i.e., erythrosomes, in the cytoplasm. High-performance thin-layer chromatography (HPTLC) analysis of the pigment eluted from the erythro-iridophores indicated that carotenoid is the main pigment generating the reddish color. Furthermore, when the irrigating medium was a K(+)-rich saline solution, the color reflected from the erythro-iridophores changed from dark violet to sky blue, but the red coloration remained. The motile activities of the erythro-iridophores may participate in the changes in the reddish-violet shades of the pseudochromis fish. PMID:21501419

  15. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions.

    PubMed

    Yokoyama, Shozo; Altun, Ahmet; Jia, Huiyong; Yang, Hui; Koyama, Takashi; Faggionato, Davide; Liu, Yang; Starmer, William T

    2015-09-01

    Ultraviolet (UV) reception is useful for such basic behaviors as mate choice, foraging, predator avoidance, communication, and navigation, whereas violet reception improves visual resolution and subtle contrast detection. UV and violet reception are mediated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (?max) at ~360 nm and ~395 to 440 nm, respectively. Because of strong nonadditive (epistatic) interactions among amino acid changes in the pigments, the adaptive evolutionary mechanisms of these phenotypes are not well understood. Evolution of the violet pigment of the African clawed frog (Xenopus laevis, ?max = 423 nm) from the UV pigment in the amphibian ancestor (?max = 359 nm) can be fully explained by eight mutations in transmembrane (TM) I-III segments. We show that epistatic interactions involving the remaining TM IV-VII segments provided evolutionary potential for the frog pigment to gradually achieve its violet-light reception by tuning its color sensitivity in small steps. Mutants in these segments also impair pigments that would cause drastic spectral shifts and thus eliminate them from viable evolutionary pathways. The overall effects of epistatic interactions involving TM IV-VII segments have disappeared at the last evolutionary step and thus are not detectable by studying present-day pigments. Therefore, characterizing the genotype-phenotype relationship during each evolutionary step is the key to uncover the true nature of epistasis. PMID:26601250

  16. 21 CFR 74.2602a - Ext. D&C Violet No. 2.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... with good manufacturing practice. (d) Labeling. The label of the color additive shall conform to the... color additive Ext. D&C Violet No. 2 is principally the monosodium salt of 2- -5-methyl-benzenesulfonic... avoided by good manufacturing practice: Sum of volatile matter (at 135 °C) and chlorides and...

  17. 21 CFR 74.2602a - Ext. D&C Violet No. 2.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... with good manufacturing practice. (d) Labeling. The label of the color additive shall conform to the... color additive Ext. D&C Violet No. 2 is principally the monosodium salt of 2- -5-methyl-benzenesulfonic... avoided by good manufacturing practice: Sum of volatile matter (at 135 °C) and chlorides and...

  18. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions

    PubMed Central

    Yokoyama, Shozo; Altun, Ahmet; Jia, Huiyong; Yang, Hui; Koyama, Takashi; Faggionato, Davide; Liu, Yang; Starmer, William T.

    2015-01-01

    Ultraviolet (UV) reception is useful for such basic behaviors as mate choice, foraging, predator avoidance, communication, and navigation, whereas violet reception improves visual resolution and subtle contrast detection. UV and violet reception are mediated by the short wavelength–sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 nm and ~395 to 440 nm, respectively. Because of strong nonadditive (epistatic) interactions among amino acid changes in the pigments, the adaptive evolutionary mechanisms of these phenotypes are not well understood. Evolution of the violet pigment of the African clawed frog (Xenopus laevis, λmax = 423 nm) from the UV pigment in the amphibian ancestor (λmax = 359 nm) can be fully explained by eight mutations in transmembrane (TM) I–III segments. We show that epistatic interactions involving the remaining TM IV–VII segments provided evolutionary potential for the frog pigment to gradually achieve its violet-light reception by tuning its color sensitivity in small steps. Mutants in these segments also impair pigments that would cause drastic spectral shifts and thus eliminate them from viable evolutionary pathways. The overall effects of epistatic interactions involving TM IV–VII segments have disappeared at the last evolutionary step and thus are not detectable by studying present-day pigments. Therefore, characterizing the genotype-phenotype relationship during each evolutionary step is the key to uncover the true nature of epistasis. PMID:26601250

  19. 21 CFR 74.3602 - D&C Violet No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Violet No. 2. 74.3602 Section 74.3602 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR..., may be safely used for coloring contact lenses in amounts not to exceed the minimum...

  20. 21 CFR 74.2602a - Ext. D&C Violet No. 2.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... with good manufacturing practice. (d) Labeling. The label of the color additive shall conform to the... color additive Ext. D&C Violet No. 2 is principally the monosodium salt of 2- -5-methyl-benzenesulfonic... avoided by good manufacturing practice: Sum of volatile matter (at 135 C) and chlorides and...

  1. 75 FR 27815 - Carbazole Violet Pigment 23 From China and India; Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... (74 FR 56663) and determined on February 5, 2010 that it would conduct expedited reviews (75 FR 14468... China and India; Determinations On the basis of the record \\1\\ developed in the subject five-year... on carbazole violet pigment 23 from India would be likely to lead to continuation or recurrence...

  2. 75 FR 38076 - Carbazole Violet Pigment 23 from India: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Pigment 23 from India: Preliminary Results of Antidumping Duty Administrative Review, 74 FR 68038... Value and Antidumping Duty Order: Carbazole Violet Pigment 23 From India, 69 FR 77988 (December 29, 2004... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  3. 75 FR 29719 - Carbazole Violet Pigment 23 From India: Continuation of Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    .... See Notice of Countervailing Duty Order: Carbazole Violet Pigment 23 From India, 69 FR 77995 (December... India: Final Results of the Expedited Five-year (Sunset) Review of the Countervailing Duty Order, 75 FR... Pigment 23 from China and India; Determinations, 75 FR 27815 (May 18, 2010). Scope of the Order...

  4. 21 CFR 500.30 - Gentian violet for animal drug use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is a new animal drug subject to section 512 of the Federal Food, Drug, and Cosmetic Act. FDA has... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gentian violet for animal drug use. 500.30 Section...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS GENERAL Specific Administrative Rulings and Decisions ...

  5. Selection of an Analysis Wavelength: An Interesting Example Involving Solvatochromism and the Zwitterionic Dimroth-Reichardt's Betaine ET-30 Dye

    NASA Astrophysics Data System (ADS)

    Deng, Taihe; Acree, William E., Jr.

    1999-11-01

    A laboratory experiment is designed for studying the solvatochromic behavior of the zwitterionic Dimroth-Reichardt's betaine ET-30 dye. By spectrophotometric measurements, students determine the analysis wavelength for ET-30 dissolved in solvents of varying polarity. The five solvents selected for study give solutions that appear wine-red, violet, blue, green, and yellowish-green. Student observations afford an excellent opportunity for detailed discussions of how solvent polarity affects spectral transitions, which expands the presentation given in most analytical textbooks. Textbook presentations generally represent absorption and emission transitions in the form of a Jablonski diagram, with no discussion of solvatochromism and solvent-dependent wavelength shifts.

  6. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  7. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  8. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    SciTech Connect

    Mamat, M. H.; Malek, M. F.; Musa, M. Z.; Khusaimi, Z.; Rusop, M.

    2011-05-25

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been successfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/{mu}m and 5.6 V/{mu}m, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  9. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    NASA Astrophysics Data System (ADS)

    Mamat, M. H.; Khusaimi, Z.; Malek, M. F.; Musa, M. Z.; Rusop, M.

    2011-05-01

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been succesfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/?m and 5.6 V/?m, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  10. Identification of methyl violet 2B as a novel blocker of focal adhesion kinase signaling pathway in cancer cells

    SciTech Connect

    Kim, Hwan; Translational Research Center for Protein Function Control , Department of Biotechnology and Department of Biomedical Sciences , Yonsei University, Seodaemun-gu, Seoul 120-752 ; Kim, Nam Doo; Lee, Jiyeon; Han, Gyoonhee; Sim, Taebo; KU-KIST Graduate School of Converging Science and Technology, 145, Anam-ro, Seongbuk-gu, Seoul 136-713

    2013-07-26

    Highlights: •FAK signaling cascade in cancer cells is profoundly inhibited by methyl violet 2B. •Methyl violet 2B identified by virtual screening is a novel allosteric FAK inhibitor. •Methyl violet 2B possesses extremely high kinase selectivity. •Methyl violet 2B suppresses strongly the proliferation of cancer cells. •Methyl violet 2B inhibits focal adhesion, invasion and migration of cancer cells. -- Abstract: The focal adhesion kinase (FAK) signaling cascade in cancer cells was profoundly inhibited by methyl violet 2B identified with the structure-based virtual screening. Methyl violet 2B was shown to be a non-competitive inhibitor of full-length FAK enzyme vs. ATP. It turned out that methyl violet 2B possesses extremely high kinase selectivity in biochemical kinase profiling using a large panel of kinases. Anti-proliferative activity measurement against several different cancer cells and Western blot analysis showed that this substance is capable of suppressing significantly the proliferation of cancer cells and is able to strongly block FAK/AKT/MAPK signaling pathways in a dose dependent manner at low nanomolar concentration. Especially, phosphorylation of Tyr925-FAK that is required for full activation of FAK was nearly completely suppressed even with 1 nM of methyl violet 2B in A375P cancer cells. To the best of our knowledge, it has never been reported that methyl violet possesses anti-cancer effects. Moreover, methyl violet 2B significantly inhibited FER kinase phosphorylation that activates FAK in cell. In addition, methyl violet 2B was found to induce cell apoptosis and to exhibit strong inhibitory effects on the focal adhesion, invasion, and migration of A375P cancer cells at low nanomolar concentrations. Taken together, these results show that methyl violet 2B is a novel, potent and selective blocker of FAK signaling cascade, which displays strong anti-proliferative activities against a variety of human cancer cells and suppresses adhesion/migration/invasion of tumor cells.

  11. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk

    PubMed Central

    Lai, Wee Loong; Goh, Kheng Lim

    2015-01-01

    The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material’s toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration. PMID:26378587

  12. Fluorescence switch of dye-infiltrated SiO2 inverse opal based on acid-base vapors or light

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Wang, J. X.; Shang, Y. L.; Song, Y. L.; Jiang, L.

    2011-03-01

    The acid-base vapors/light double responsive dye-infiltrated SiO2 inverse opal photonic crystals (PCs) were fabricated by sacrificial template method and a subsequent infiltration of spiropyran derivative dye molecules. The fluorescence of ring-open dye molecules infiltrated in PCs can be switched on/off based on different fluorescence properties of spiropyran dye under stimuli of acid-base vapors or light, when PCs with suitable stopband were selected. The fluorescence switch behavior based on PCs has potential applications in data storage, color displays, chemical and biological sensors.

  13. Optical orientation of azo dye molecules in a thin solid film upon nonlinear excitation by femtosecond laser pulses

    SciTech Connect

    Yongseok, Jung; Kozenkov, V M; Magnitskiy, Sergey A; Nagorskiy, Nikolay M

    2006-11-30

    The orientation of molecules in an amorphous pure azo dye film upon nonlinear excitation is detected for the first time. The simultaneous increase and decrease in the film transmission by a factor of 2.5 for orthogonal polarisations of probe radiation indicated the appearance of orientation order in the film caused by the reorientation of azo dye molecules. Due to a high photostability of the AD-1 azo dye demonstrated in single-photon experiments and a high efficiency of nonlinear orientation obtained in experiments with femtosecond pulses, this dye can be widely used in three-dimensional nanophotonic devices such as photonic crystals, optical computers, and optical memory. (letters)

  14. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads.

    TOXLINE Toxicology Bibliographic Information

    Enayatzamir K; Alikhani HA; Yakhchali B; Tabandeh F; Rodríguez-Couto S

    2010-01-01

    BACKGROUND, AIM AND SCOPE: Because of high discharged volumes and effluent composition, wastewater from the textile industry can be considered as the most polluting amongst all industrial sectors, thus greatly requiring appropriate treatment technologies. Although some abiotic methods for the reduction of several dyes exist, these require highly expensive catalysts and reagents. Biotechnological approaches were proven to be potentially effective in the treatment of this pollution source in an eco-efficient manner. The white-rot fungi are, so far, the most efficient microorganisms in degrading synthetic dyes. This white-rot fungi's property is due to the production of extracellular lignin-modifying enzymes, which are able to degrade a wide range of xenobiotic compounds because of their low substrate specificity. In this paper, we studied the ability of the white-rot fungus Phanerochaete chrysosporium immobilised into Ca-alginate beads to decolourise different recalcitrant azo dyes such as Direct Violet 51 (DV), Reactive Black 5 (RB), Ponceau Xylidine (PX) and Bismark Brown R (BB) in successive batch cultures. To the best of our knowledge, this is the first study on the immobilisation of P. chrysosporium into Ca-alginate beads for its application in dye decolouration.MATERIALS AND METHODS: P. chrysosporium was immobilised into Ca-alginate beads using a method of gel recoating to minimise cellular leaking. The immobilised fungus was transferred to 250-ml Erlenmeyer flasks containing 50 ml of growth medium and incubated on an orbital shaker at 150 rpm and 30 degrees C for 7 days. The ratio of beads/medium used was 10% (w/v). The dyes were added into the culture flasks when MnP production started (50 U l(-1)), which corresponded with the seventh cultivation day. MnP activity and dye decolouration were measured spectrophotometrically.RESULTS: The dyes DV, RB and PX were almost totally decolourised at the end of each batch during the course of three successive batches. However, the dye BB was more resistant to decolouration and it was not completely decolourised (86.7% in 144 h). Further, the beads were kept in sterilised calcium chloride (2 g l(-1)) for 3 weeks at 4 degrees C. After these three storage weeks, the immobilised P. chrysosporium was again efficiently reused for azo dye decolouration during two successive batches, decolouration being more effective even for BB. Also, the in vitro decolouration of the aforementioned azo dyes by crude MnP from P. chrysosporium was performed. The decolouration levels obtained were lower than those attained with the whole cultures especially for RB and BB dyes, in spite of the fact that dye concentrations used were considerable lower.DISCUSSION: The good performance of the immobilisation system was likely due to the gel re-coating method utilised to prepare the alginate beads which not only maintained the beads integrity but also avoided cellular leaking. The lower decolouration percentages obtained by the enzyme indicates that the mycelial biomass may supply other intracellular or mycelial-bound enzymes, or other compounds that favour dye decolouration.CONCLUSIONS: Immobilised P. chrysosporium efficiently decolourised different types of azo dyes. In this decolouration process, the MnP secreted by the fungus played the main role whilst adsorption was found to be negligible except for the dye BB.RECOMMENDATIONS AND PERSPECTIVES: Efforts should be made to scale up and apply fungal decolouration techniques to real industrial dye-containing wastewater. Further, detailed characterisation of the intermediates and metabolites produced during biodegradation must be done to ensure the safety of the decolourised wastewater.

  15. Effects of Dye Structure in Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hoskins, Anna R.

    Dye sensitized solar cells (DSSCs) are photovoltaic devices that may compete with standard silicon solar cells due to their ease of construction and lower cost [32]. Ruthenium dye structures, such as N3 (Ru -- (4,4' -- dicarboxylic acid -- 2,2' -- bipyridine)2(NCS)2), have shown promise for collection efficiencies near silicon photovoltaic levels [20, 33]. DSSCs have not achieved the reproducibility and maximum efficiency of silicon solar cells [33, 34]. Altering ligands on the dye molecules may affect the energies of light that are absorbed by the DSSC. Photovoltaic testing, including current versus voltage tests, of DSSCs with both narrow band monochromated light sources and broadband (AM1.5 solar simulator) allows comparison between maximum efficiency, short-circuit current, open circuit voltage, and spectral response (SR) for the dye molecules. By studying how the efficiency and power output change with different dye structures, the nature of how to increase efficiency of the DSSC can be addressed. Conjugation length of the ligands in ruthenium dye molecules can be shown, through square-well and Huckel theory calculations, to have a role in changing the HOMO-LUMO gap of the molecules and the absorption of specific wavelengths of light by the DSSC. The efficiency, max power, short circuit current, open circuit voltage, and SR were all measured for the DSSCs at wavelengths from 350 nm to 690 nm using a monochromated light source. Measurements taken at 20 nm steps reveal trends in the photon acceptance for dye molecules that can be linked to the conjugation length of the ligands in the dye through the SR. The change in the SR centroid and UV-VIS measurements indicate a trend toward increasing optimal wavelength with increasing conjugation length in the dye molecules; however these trends are not as pronounced as theoretical calculations for the dyes. This difference in wavelength shift occurs due to the theoretical calculations accounting for only the ligands rather than for the entire dye structure and DSSC construct. While the wavelength shift is small for the dyes in this study, the measured values indicate that increasing dye conjugation lengths may be a method for extension of photon acceptance into the IR region of the solar spectrum.

  16. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.

    1968-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  17. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James E., Jr.; Cobb, E.D.; Kilpatrick, F.A.

    1984-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The outstanding characteristics of dye tracing are: (1) the low detection and measurement limits, and (2) the simplicity and accuracy of measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a general guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section is included on aerial photography because of its possible use to supplement ground-level fluorometry. (USGS)

  18. Fluorometric procedures for dye tracing

    USGS Publications Warehouse

    Wilson, James F.; Cobb, Ernest D.; Kilpatrick, F.A.

    1986-01-01

    This manual describes the current fluorometric procedures used by the U.S. Geological Survey in dye tracer studies such as time of travel, dispersion, reaeration, and dilution-type discharge measurements. The advantages of dye tracing are (1) low detection and measurement limits and (2) simplicity and accuracy in measuring dye tracer concentrations using fluorometric techniques. The manual contains necessary background information about fluorescence, dyes, and fluorometers and a description of fluorometric operation and calibration procedures as a guide for laboratory and field use. The background information should be useful to anyone wishing to experiment with dyes, fluorometer components, or procedures different from those described. In addition, a brief section on aerial photography is included because of its possible use to supplement ground-level fluorometry.

  19. Albanian violets of the section Melanium, their morphological variability, genetic similarity and their adaptations to serpentine or chalk soils.

    PubMed

    Słomka, Aneta; Godzik, Barbara; Szarek-Łukaszewska, Grażyna; Shuka, Lulëzim; Hoef-Emden, Kerstin; Bothe, Hermann

    2015-02-01

    Violets of the section Melanium from Albanian serpentine and chalk soils were examined for their taxonomic affiliations, their ability to accumulate heavy metals and their colonization by arbuscular mycorrhizal fungi (AMF). The sequence analysis of the ITS1-5.8S rDNA-ITS2 region showed that all the sampled six Albanian violets grouped between Viola lutea and Viola arvensis, but not with Viola tricolor. The fine resolution of the ITS sequences was not sufficient for a further delimitation of the Albanian violets within the V. lutea-V. arvensis clade. Therefore, the Albanian violets were classified by a set of morphological characters. Viola albanica, Viola dukadjinica and Viola raunsiensis from serpentine soils as well as Viola aetolica from a chalk meadow were unambiguously identified, whereas the samples of Viola macedonica showed high morphological variability. All the violets, in both roots and shoots contained less than or similar levels of heavy metals as their harboring soils, indicating that they were heavy metal excluders. All the violets were strongly colonized by AMF with the remarkable exception of V. albanica. This violet lived as a scree creeper in shallow serpentine soil where the concentration of heavy metals was high but those of P, K and N were scarce. PMID:25462973

  20. Violets of the section Melanium, their colonization by arbuscular mycorrhizal fungi and their occurrence on heavy metal heaps.

    PubMed

    Słomka, A; Kuta, E; Szarek-Łukaszewska, G; Godzik, B; Kapusta, P; Tylko, G; Bothe, H

    2011-07-15

    Violets of the sections Melanium were examined for their colonization by arbuscular mycorrhizal fungi (AMF). Heartsease (Viola tricolor) from several heavy metal soils was AMF-positive at many sites but not at extreme biomes. The zinc violets Viola lutea ssp. westfalica (blue zinc violet) and ssp. calaminaria (yellow zinc violet) were always AMF-positive on heavy metal soils as their natural habitats. As shown for the blue form, zinc violets germinate independently of AMF and can be grown in non-polluted garden soils. Thus the zinc violets are obligatorily neither mycotrophs nor metalophytes. The alpine V. lutea, likely ancestor of the zinc violets, was at best poorly colonized by AMF. As determined by atomic absorption spectrometry, the contents of Zn and Pb were lower in AMF colonized plants than in the heavy metal soils from where the samples had been taken. AMF might prevent the uptake of toxic levels of heavy metals into the plant organs. Dithizone staining indicated a differential deposition of heavy metals in tissues of heartsease. Leaf hairs were particularly rich in heavy metals, indicating that part of the excess of heavy metals is sequestered into these cells. PMID:21492955

  1. Contact urticaria to cosmetic and industrial dyes.

    PubMed

    Davari, P; Maibach, H I

    2011-01-01

    Contact urticaria (CU) defines the weal-and-flare reaction that occurs after external cutaneous contact with a causative agent. These reactions often cause discomfort for patients, affect their quality of life, and in severe cases may be life-threatening. Some dyes are known to be urticariogens. Many people have daily exposure to these urticariogens, because of the widespread use of dyes, for example in textiles, cosmetics and foods. We reviewed industrial and cosmetic dyes such as hair dyes, basic blue 99 dye, patent blue dyes, henna, red dyes, curcumin and reactive dyes, which can potentially cause CU. Overall, the reported cases of CU lacked appropriate controls. Hair-dye constituents such as preservatives and intensifiers may play an important role as causative agents of CU. We recommend appropriate protection guidelines to reduce the incidence of CU in high-risk groups such as hairdressers, dye-factory workers or workers in dye-related industries. PMID:20456377

  2. Non-Carbon Dyes For Platic Scintillators- Report

    SciTech Connect

    Teprovich, J.; Colon-Mercado, H.; Gaillard, J.; Sexton, L.; Washington, A.; Ward, P.; Velten, J.

    2015-10-19

    Scintillation based detectors are desirable for many radiation detection applications (portal and border monitoring, safeguards verification, contamination detection and monitoring). The development of next generation scintillators will require improved detection sensitivity for weak gamma ray sources, and fast and thermal neutron quantification. Radiation detection of gamma and neutron sources can be accomplished with organic scintillators, however, the single crystals are difficult to grow for large area detectors and subject to cracking. Alternatives to single crystal organic scintillators are plastic scintillators (PS) which offer the ability to be shaped and scaled up to produce large sized detectors. PS is also more robust than the typical organic scintillator and are ideally suited for deployment in harsh real-world environments. PS contain a mixture of dyes to down-convert incident radiation into visible light that can be detected by a PMT. This project will evaluate the potential use of nano-carbon dyes in plastic scintillators.

  3. Arylamine organic dyes for dye-sensitized solar cells.

    PubMed

    Liang, Mao; Chen, Jun

    2013-04-21

    Arylamine organic dyes with donor (D), ?-bridge (?) and acceptor (A) moieties for dye-sensitized solar cells (DSCs) have received great attention in the last decade because of their high molar absorption coefficient, low cost and structural variety. In the early stages, the efficiency of DSCs with arylamine organic dyes with D-?-A character was far behind that of DSCs with ruthenium(II) complexes partly due to the lack of information about the relationship between the chemical structures and the photovoltaic performance. However, exciting progress has been recently made, and power conversion efficiencies over 10% were obtained for DSCs with arylamine organic dyes. It is thus that the recent research and development in the field of arylamine organic dyes employing an iodide/triiodide redox couple or polypyridyl cobalt redox shuttles as the electrolytes for either DSCs or solid-state DSCs has been summarized. The cell performance of the arylamine organic dyes are compared, providing a comprehensive overview of arylamine organic dyes, demonstrating the advantages/disadvantages of each class, and pointing out the field that needs to reinforce the research direction in the further application of DSCs. PMID:23396530

  4. Holographic reflection gratings in dye-doped polymer materials

    NASA Astrophysics Data System (ADS)

    Birabassov, Rouslan; Galstian, Tigran V.

    2000-12-01

    The interaction of two coherent counterpropagating circu!ar po!arized beams (helicoida! standing wave) with cellu!ose acetate polymer fi!m doped with Disperse Red 1 (DR1) azo-dye is studied. Polarization properties of the recorded grating are simi!ar to cholecteric liquid crystals where the response ofthe system is different to left and right circularly polarized light.

  5. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  6. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  7. H-aggregation and correlated absorption and emission of a merocyanine dye in solution, at the surface and in the solid state. A link between crystal structure and photophysical properties

    NASA Astrophysics Data System (ADS)

    Nueesch, Frank; Graetzel, Michael

    1995-04-01

    The formation of H-aggregates as a function of solution, substrate and ambient variables is considered for the merocyanine dye 3-acetyl-5-12-(3-ethyl-2-benzothiazolydene) rhodanine. Colloidal semiconductor particles are shown to be a powerful tool to control the size of the aggregates. In water the blue shifted absorption band has been assigned to a dimer. Its spectrum has been isolated and the thermodynamical variables derived for the dissociation reaction are: Delta(sub r) G (sup 0) = 21.16 kJ/mol, Delta (sub r) H (sup 0) = 32.26 kJ/mol and Delta (sub r) S (sup 0) = 37.24 J/mol K. Exciton band absorption maxima for aggregates in solution and at the water-TiO2 and water-Al2O3 interface, respectively, have been correlated to the aggregation geometry using the extended dipole model in conjunction with crystallographic data. Microcrystals showing a hypsochromical shift in the absorption band have been produced within the pores of nanocrystalline semiconductor films. The calculation shows that these aggregates are needle shaped and are composed of about 2250 monomer units. A broad emission band appears when the organic molecules assemble in a head to tail stacking geometry which could be attributed to excimer fluorescence. It is not quenched by charge injection into TiO2 and indicates the existence of dislocations within the merocyanine stacks.

  8. H-aggregation and correlated absorption and emission of a merocyanine dye in solution, at the surface and in the solid state. A link between crystal structure and photophysical properties

    NASA Astrophysics Data System (ADS)

    Nesch, Frank; Grtzel, Michael

    1995-04-01

    The formation of H-aggregates as a function of solution, substrate and ambient variables is considered for the merocyanine dye 3-acetyl-5-12-(3-ethyl-2-benzothiazolydene) rhodanine. Colloidal semiconductor particles are shown to be a powerful tool to control the size of the aggregates. In water the blue shifted absorption band has been assigned to a dimer. Its spectrum has been isolated and the thermodynamical variables derived for the dissociation reaction are: ?rG0=21.16 kJ/mol, ?rH0=32.36 kJ/mol and ?rS0=37.24 J/mol K. Exciton band absorption maxima for aggregates in solution and at the water-TiO 2 and water-Al 2O 3 interface, respectively, have been correlated to the aggregation geometry using the extended dipole model in conjunction with crystallographic data. Microcrystals showing a hypsochromical shift in the absorption band have been produced within the pores of nanocrystalline semiconductor films. The calculation shows that these aggregates are needle shaped and are composed of about 2250 monomer units. A broad emission band appears when the organic molecules assemble in a head to tail stacking geometry which could be attributed to excimer fluorescence. It is not quenched by charge injection into TiO 2 and indicates the existence of dislocations within the merocyanine stacks.

  9. Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin.

    PubMed

    Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-10-01

    The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations. PMID:21905678

  10. A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1.

    PubMed

    Zhang, Zhiqiang; Xia, Siqing; Wang, Xuejiang; Yang, Aming; Xu, Bin; Chen, Ling; Zhu, Zhiliang; Zhao, Jianfu; Jaffrezic-Renault, Nicole; Leonard, Didier

    2009-04-15

    This paper deals with the extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1 used as a novel biosorbent to remove dye from aqueous solution in batch systems. As a widely used and hazardous dye, basic blue 54 (BB54) was chosen as the model dye to examine the adsorption performance of the EPS. The effects of pH, initial dye concentration, contact time and temperature on the sorption of BB54 to the EPS were examined. At various initial dye concentrations (50-400 mg/L), the batch sorption equilibrium can be obtained in only 5 min. Kinetic studies suggested that the sorption followed the internal transport mechanism. According to the Langmuir model, the maximum BB54 uptake of 2.005 g/g was obtained. Chemical analysis of the EPS indicated the presence of protein (30.9%, w/w) and acid polysaccharide (63.1%, w/w). Scanning electron microscopy (SEM) images showed that the EPS with a crystal-linear structure was whole enwrapped by adsorbed dye molecules. FTIR spectrum result revealed the presence of adsorbing groups such as carboxyl, hydroxyl and amino groups in the EPS. High-molecular weight of the EPS with more binding-sites and stronger van der Waals forces together with its specific construct leads to the excellent performance of dye adsorption. The EPS shows potential board application as a biosorbent for both environmental protection and dye recovery. PMID:18718709

  11. Hair dye poisoning and rhabdomyolysis.

    PubMed

    Bokutz, Munira; Nasir, Nosheen; Mahmood, Faisal; Sajid, Sara

    2015-04-01

    Hair dye ingestion is a rare cause of toxicity in Pakistan. We are presenting the case report of a 55 year old male who presented with accidental hair dye ingestion and developed laryngeal oedema requiring emergent tracheostomy. He had also developed aspiration pneumonitis and chemical oesophagitis. However, the most alarming manifestation was rhabdomyolysis. Hair dye toxicity can be fatal if not recognized early. There is no antidote available. Rhabdomyolysis is a complication and needs to be managed aggressively in order to prevent long term morbidity. PMID:25976581

  12. nanostructures for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Shalan, A. E.

    2014-08-01

    Hierarchical architectures consisting of one-dimensional (1D) nanostructures are of great interest for potential use in energy and environmental applications in recent years. In this work, hierarchical tungsten oxide (WO3) has been synthesized via a facile hydrothermal route from ammonium metatungstate hydrate and implemented as photoelectrode for dye-sensitized solar cells. The urchin-like WO3 micro-patterns are constructed by self-organized nanoscale length 1D building blocks, which are single crystalline in nature, grown along (001) direction and confirm an orthorhombic crystal phase. The obtained powders were investigated by XRD, SEM, TEM and UV-Vis Spectroscopy. The photovoltaic performance of dye-sensitized solar cells based on WO3 photoanodes was investigated. With increasing the calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency ( ?) was increased. The results were attributed to increase the crystallinity of the particles and ease of electron movement. The DSSC based on hierarchical WO3 showed a short-circuit current, an open-circuit voltage, a fill factor, and a conversion efficiency of 4.241 mA/cm2, 0.656 V, 66.74, and 1.85 %, respectively.

  13. A violet emission in ZnS:Mn,Eu: Luminescence and applications for radiation detection

    SciTech Connect

    Ma, Lun; Chen, Wei; Jiang, Ke; Liu, Xiao-tang

    2014-03-14

    We prepared manganese and europium co-doped zinc sulfide (ZnS:Mn,Eu) phosphors and used them for radiation detection. In addition to the red fluorescence at 583 nm due to the d-d transition of Mn ions, an intense violet emission at 420 nm is newly observed in ZnS:Mn,Eu phosphors. The emission is related to Eu{sup 2+} doping but only appears at certain Eu{sup 2+} concentrations. It is found that the intensity of the 420 nm violet fluorescence is X-ray does-dependent, while the red fluorescence of 583 nm is not. The ratio of fluorescence intensities at 420 nm and 583 nm has been monitored as a function of X-ray doses that exposed upon the ZnS:Mn,Eu phosphors. Empirical formulas are provided to estimate the doses of applied X-ray irradiation. Finally, possible mechanisms of X-ray irradiation induced fluorescence quenching are discussed. The intense 420 nm emission not only provides a violet light for solid state lighting but also offers a very sensitive method for radiation detection.

  14. Ultrasound for low temperature dyeing of wool with acid dye.

    PubMed

    Ferrero, F; Periolatto, M

    2012-05-01

    The possibility of reducing the temperature of conventional wool dyeing with an acid levelling dye using ultrasound was studied in order to reach exhaustion values comparable to those obtained with the standard procedure at 98 °C, obtaining dyed samples of good quality. The aim was to develop a laboratory method that could be transferred at industrial level, reducing both the energy consumption and fiber damage caused by the prolonged exposure to high temperature without the use of polluting auxiliary agents. Dyeings of wool fabrics were carried out in the temperature range between 60 °C and 80 °C using either mechanical or ultrasound agitation of the bath and coupling the two methods to compare the results. For each dyeing, the exhaustion curves of the dye bath were determined and the better results of dyeing kinetics were obtained with ultrasound coupled with mechanical stirring. Hence the corresponding half dyeing times, absorption rate constants according to Cegarra-Puente modified equation and ultrasonic efficiency were calculated in comparison with mechanical stirring alone. In the presence of ultrasound the absorption rate constants increased by at least 50%, at each temperature, confirming the synergic effect of sonication on the dyeing kinetics. Moreover the apparent activation energies were also evaluated and the positive effect of ultrasound was ascribed to the pre-exponential factor of the Arrhenius equation. It was also shown that the effect of ultrasound at 60 °C was just on the dye bath, practically unaffecting the wool fiber surface, as confirmed by the results of SEM analysis. Finally, fastness tests to rubbing and domestic laundering yielded good values for samples dyed in ultrasound assisted process even at the lower temperature. These results suggest the possibility, thanks to the use of ultrasound, to obtain a well equalized dyeing on wool working yet at 60°C, a temperature process strongly lower than 98°C, currently used in industry, which damages the mechanical properties of the fibers. PMID:22055328

  15. 1-Naphthol basic dye (1-NBD). An alternative to diaminobenzidine (DAB) in immunoperoxidase techniques.

    PubMed

    Mauro, A; Germano, I; Giaccone, G; Giordana, M T; Schiffer, D

    1985-01-01

    The usefulness of 1-naphthol as substrate for horseradish peroxidase (HRP) in immunohistochemistry was studied using the peroxidase-antiperoxidase (PAP) and avidin-biotin-complex (ABC) methods in the demonstration of glial fibrillary acidic protein (GFAP), vimentin, carbonic anhydrase C (CA.C), and factor VIII-related antigen (FVIII/RAg) in central nervous tissue and cerebral tumors. In the presence of ammonium carbonate, 1-naphthol is oxidized by HRP and hydrogen peroxide, producing a fine gray-violet precipitate. The oxidation product of 1-naphthol proved capable of binding a great number of basic dyes. For each stain the final reaction product had a characteristic color that was different from the spontaneous color of the dye and from the color displayed by nuclei. The final color obtained with this procedure was alcohol resistant and could be mounted in solvent-based mounting media. The results obtained with the 1-naphthol basic dye (1-NBD) method were compared with those obtained using the diaminobenzidine (DAB) reaction in the demonstration of GFAP-positive astrocytes. The DAB reaction produced a more intense staining but also a coarser precipitate than the 1-NBD reaction. The 1-NBD procedure showed more morphological detail of fine structures and did not obscure nuclei and mitosis. The very low toxicity of 1-naphthol compared with DAB (a suspected carcinogen) is an important advantage of the 1-NBD method, as is its high specificity and sensitivity. PMID:2412992

  16. Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Gayathri, Shunmugiah; Kottaisamy, Muniasamy; Ramakrishnan, Veerabahu

    2015-12-01

    An efficient and facile method was adopted to prepare TiO2-graphene (TG) nanocomposites with TiO2 nanoparticles uniformly distributed on graphene. By adjusting the amount of TiO2 precursor, both high and low dense TiO2 nanoparticles on graphene were effectively attained via electrostatic attraction between graphene oxide sheets and TiO2 nanoparticles. The prepared nanocomposites were characterized by various characterization techniques. The TG nanocomposite showed an excellent activity for the photodegradation of the organic dyes such as methylene blue (MB) and rose bengal (RB) under ultra violet (UV) light irradiation. The TG nanocomposite of TG 2.5 showed better photocatalytic performance than bare TiO2 nanoparticles and other composites. The enhanced activity of the composite material is attributed to the reduction in charge recombination and interaction of organic dyes with graphene. The decrease in charge recombination was evidenced from the photoluminescence (PL) spectra. The observed results suggest that the synthesized TG composites have a potential application to treat the industrial effluents, which contain organic dyes.

  17. Identification and measurement of food and cosmetic dyes in a municipal wastewater treatment plant

    SciTech Connect

    Borgerding, A.J.; Hites, R.A. )

    1994-07-01

    Acid Blue 9, Acid Violet 17, Quinoline Yellow, Acid Red 51, Acid Red 87, and Acid Red 92 along with N-benzyl-N-ethylaniline sulfonic acid (BEASA), a synthetic precursor, were identified and measured in colored wastewater samples from a municipal treatment plant. Continuous-flow fast-atom bombardment mass spectrometry was used to analyze BEASA. Liquid chromatography with ultraviolet detection was used to analyze the other dyes, but its lack of selectivity required prior isolation of the analytes from interfering compounds by solid-phase extraction onto C[sub 18] extraction disks and onto cartridges packed with strong anion-exchange resins. The xanthene dyes (Acid Red 51, 87, and 92) were found in low parts per billion (ppb) concentrations in the plant influent and were rapidly removed by adsorption to sludge. Acid Red 92 was found to be over 35 times more concentrated on secondary sludge than in the corresponding liquid samples, indicating high levels of accumulation. The other dyes and BEASA were found in hundred ppb concentrations in both the influent and the effluent of the plant, indicating a resistance to both degradation and removal by sorption. 32 refs., 4 figs., 3 tabs.

  18. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water.

    PubMed

    Karim, Zoheb; Mathew, Aji P; Grahn, Mattias; Mouzon, Johanne; Oksman, Kristiina

    2014-11-01

    Fully biobased composite membranes for water purification were fabricated with cellulose nanocrystals (CNCs) as functional entities in chitosan matrix via freeze-drying process followed by compacting. The chitosan (10 wt%) bound the CNCs in a stable and nanoporous membrane structure with thickness of 250-270 ?m, which was further stabilized by cross-linking with gluteraldehyde vapors. Scanning electron microscopy (SEM) studies revealed well-individualized CNCs embedded in a matrix of chitosan. Brunauer, Emmett and Teller (BET) measurements showed that the membranes were nanoporous with pores in the range of 13-10nm. In spite of the low water flux (64 Lm(-2) h(-1)), the membranes successfully removed 98%, 84% and 70% respectively of positively charged dyes like Victoria Blue 2B, Methyl Violet 2B and Rhodamine 6G, after a contact time of 24h. The removal of dyes was expected to be driven by the electrostatic attraction between negatively charged CNCs and the positively charged dyes. PMID:25129796

  19. Valorization of agricultural wastes as dye adsorbents: characterization and adsorption isotherms.

    PubMed

    Sepúlveda, Luisa A; Cuevas, Fernando A; Contreras, Elsa G

    2015-01-01

    The purpose of this work is to evaluate the valorization of agricultural waste, wheat straw (WS) and corn cob leaves (CCLs) as textile dye adsorbents. Physico-chemical and superficial characteristics of the agricultural wastes, together with the interactions with the CI Basic Violet 4 (BV4) dye, were investigated by means of the determination of the isotherm adsorption at different temperatures. The morphological characterization showed that the solid surface is coarse with a low pore level. However, through Fourier transformed infrared analysis, the presence of carboxylic and hydroxylic acid groups and hydrophobic methyl groups was detected. The concentration of acid groups is determined by the Boehm method and was found to be 1.00 and 0.89 meq/g for WS and CCLs, respectively. The point zero charge for each adsorbent was 5.76 and 4.08. Adsorption experimental data presented a better-fit Langmuir model, indicating that adsorption occurred in a monolayer with preferential interaction. The maximum adsorption capacity was determined to be 70.0-89.0 and 47.0-68.0 mg/g for CCLs and WS, respectively. The thermodynamic analysis of the Langmuir parameter b showed that the adsorption of the BV4 dye is spontaneous and exothermic with adsorption energies of 14.43 and 5.58 KJ/mol for CCLs and WS, respectively. PMID:25655393

  20. Enzymatic biotransformation of synthetic dyes.

    PubMed

    Rodrguez-Couto, S

    2009-11-01

    Environmental pollution by discharge of dye-containing effluents represents a serious ecological concern in many countries. Public demands for colour-free discharges to receiving waters have made decolouration of a variety of industrial wastewater a top priority. The current existing techniques for dye removal have several drawbacks such as high cost, low efficiency, use of large amounts of chemicals and formation of toxic sub-products. This has impelled the search for alternative methods such as those based on oxidative enzymes. This approach is believed to be a promising technology since it is cost-effective, environmentally friendly and does not produce sludge. Enzymatic transformation of synthetic dyes can be described as the conversion of dye molecules by enzymes into simpler and generally colourless molecules. Detailed characterisation of the metabolites produced during enzymatic transformation of synthetic dyes as well as ecotoxicity studies is of great importance to assess the effectiveness of the biodegradation process. However, most reports on the biotreatment of dyes mainly deal with decolouration and there are few reports on the reduction in toxicity or on the identification of the biodegradation products. This implies a limitation to assess their true technical potential. PMID:20214593

  1. Dye removal by immobilised fungi.

    PubMed

    Rodríguez Couto, Susana

    2009-01-01

    Dyes are widely used within the food, pharmaceutical, cosmetic, printing, textile and leather industries. This has resulted in the discharge of highly coloured effluents that affect water transparency and gas solubility in water bodies. Furthermore, they pose a problem because of their carcinogenicity and toxicity. Therefore, removal of such dyes before discharging them into natural water streams is essential. For this, appropriate treatment technologies are required. The treatment of recalcitrant and toxic dyes with traditional technologies is not always effective or may not be environmentally friendly. This has impelled the search for alternative technologies such as biodegradation with fungi. In particular, ligninolytic fungi and their non-specific oxidative enzymes have been reported to be responsible for the decolouration of different synthetic dyes. Thus, the use of such fungi is becoming a promising alternative to replace or complement the current technologies for dye removal. Processes using immobilised growing cells seem to be more promising than those with free cells, since the immobilisation allows using the microbial cells repeatedly and continuously. This paper reviews the application of fungal immobilisation to dye removal. PMID:19211032

  2. Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

    PubMed Central

    Heo, Nansra; Jun, Yongseok; Park, Jong Hyeok

    2013-01-01

    The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.

  3. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 ?m and lengths of 100-200 ?m. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment. PMID:25607090

  4. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell. 6 figs.

  5. Morphology Dependent Photocatalytic Activity of ?-MoO3 Nanostructures Towards Mutagenic Acridine Orange Dye.

    PubMed

    2015-06-01

    The morphological evolutions of orthorhombic molybdenum oxide nanostructures with high crystalline nature have been successfully synthesized by combining low-temperature sol-gel and annealing processes. Strong influence of gelation temperature is a factor facilitated to control the material morphology. Morphological transformations like nanospheres, nanoplatelets, mixtures of hexagonal platelets, and one-dimensional nanobars were obtained. The possible morphological formation mechanism has been proposed as a self-assemble process of nucleation and a mechanism for particle growth by Ostwald ripening. The as-prepared nanostructures were recognized as photocatalysts for the degradation of Acridine Orange under Ultra Violet light. The obtained mixed morphology (hexagonal nanoplatelets and nanobars) showed a high photocatalytic property to degrade mutagenic Acridine Orange dye. Moreover, they could be easily recycled without changing the photocatalytic activity due to their 1-Dimensional and 2-Dimensional nanostructure property. PMID:26369043

  6. Optical characterization of azo dye-based electro-optic polymer films

    NASA Astrophysics Data System (ADS)

    Ferm, Paul M.; Horn, Keith A.; Beeson, Karl W.; McFarland, Michael J.; Schwind, David R.; Yardley, James T.

    1994-01-01

    We have investigated the photochemistry and optical properties of an azo dye-based electro- optic (EO) copolymer, methacrylate-bound Disperse Red 1/methylmethacrylate (MA1). We present a complete picture of the optical properties of the copolymer at wavelengths ranging from 200 nm to 1800 nm with detection sensitivity over 6 orders of magnitude. We describe intrinsic measurements of absorption loss and also describe how temperature and radiation affect absorption loss. Photochemical investigations reveal details concerning photodelineation of waveguides in MA1. Irreversible photodegradation of the azo chromophore proceeds with both visible and ultra-violet radiation and a quantum yield of 2 X 10-5 is found for 475 nm radiation in MA1.

  7. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic structure enables the systematic design of new dyes using less expensive materials.

  8. Dye-sensitized polyoxometalate for visible-light-driven photoelectrochemical cells.

    PubMed

    Gao, Junkuo; Miao, Jianwei; Li, Yongxin; Ganguly, Rakesh; Zhao, Yang; Lev, Ovadia; Liu, Bin; Zhang, Qichun

    2015-08-28

    A simple and facile one-step method for the synthesis of an organic dye-functionalized polyoxometalate (POM) hybrid with visible-light photo-response was reported. The POM hybrid was fully characterized via single crystal XRD, powder XRD, FTIR and elemental analysis. The reaction of the organic dye with inorganic salts gave the dye-functionalized POM (MoBB3), in which the POM cluster was formed in situ. The electronic absorption peak of this hybrid was successfully extended beyond 680 nm. Photoelectrochemical measurement indicated that MoBB3 was photoresponsive under visible-light illumination, suggesting that it is an n-type (electron conductive) semiconducting material. This result might offer a method for the design of novel organic dye-functionalized POMs for photoelectric applications. PMID:26200796

  9. Sea dye marker provides visibility for 20 hours

    NASA Technical Reports Server (NTRS)

    De Laat, F.

    1966-01-01

    Sea dye marker block releases a visible slick which lasts at least twelve hours. The dye marker uses a fluorescent dye in a heat cured binder which, when immersed in seawater, releases the dye at a controlled rate.

  10. Rotational reorientation dynamics of polar dye molecular probes by picosecond laser spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Dutt, G. B.; Doraiswamy, S.; Periasamy, N.; Venkataraman, B.

    1990-12-01

    Fluorescence lifetimes and rotational reorientation times for four structurally similar dye moleculesthree monocations: cresyl violet, nile blue, and oxazine 720 and one neutral but polar: nile redhave been measured by picosecond time-resolved fluorescence depolarization spectroscopy using the single-photon counting technique, in a number of solvents, which included a wide range of alcohols, other hydrogen-bonding liquids, and a few aprotic liquids. The rotational reorientation of the dye probes (assumed to be oblate ellipsoids) are sought to be explained in terms of the Stokes-Einstein-Debye theory and dielectric friction. The individual contributions to the rotational friction due to the above two factors were calculated using reasonable values for the molecular volume and dipole moment of the solute. The rotational behavior of all the four dyes in amides and aprotic solvents is reasonably well explained in terms of the simple stick hydrodynamic model with the ``molecular volume'' obtained by using the measured rotational reorientation time in water. On the other hand, in order to describe the rotational reorientation dynamics of all the dye molecules in n-alcohols, it is necessary to include the friction contribution due to the dielectric properties of the solvent. It appears that a change in boundary condition, something intermediate between stick and slip or close to slip, is required to satisfactorily explain the rotational reorientation times of the dye molecules in polyalcohols like ethylene glycol and glycerol. Investigation of the rotational behavior of all the four dyes as a function of viscosity by varying the temperature has been carried out in three solvents: 1-heptanol, 1-undecanol, and ethylene glycol. While the rotational reorientation times had a good linear ?/T dependence, it was found that at a particular macroscopic viscosity value the rotational reorientation times obtained by the solvent variation and temperature variation are different. From the temperature variation study it was found that there is a satisfactory agreement between the solvent viscosity activation energy and the activation energy obtained for the reorientation rate of the dye probe molecules.

  11. Scanning tunneling microscopy studies of diazo dye monolayers on HOPG

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Probst, O.; Dey, S.; Grafstrm, S.; Kowalski, J.; Neumann, R.

    1995-05-01

    We report on scanning tunneling microscopy (STM) studies of monolayers of the diazo dye 4-[4-(N,N-dimethylamino)phenylazo]azobenzene (D2, summation formula C 20H 19N 5) on the basal plane of highly oriented pyrolytic graphite (HOPG). Monolayers of the dye were prepared by vapour deposition or by dissolving the molecules in the liquid crystal octylcyanobiphenyl (8CB). The STM images show a double-row structure exhibiting different types of lattice defects and various domains. High-resolution images allow the identification of individual molecules and the observation of intramolecular contrast. The different orientations of the rows can be explained by a commensurate registry of the molecules with the substrate. A model for the unit cell is proposed.

  12. Jupiter's Belt-Zone Boundary in Near-Infrared and Violet Light

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Mosaics of a belt-zone boundary near Jupiter's equator in violet (top panel) and near-infrared (bottom panel) light. The four images that make up each of these mosaics were taken within a few minutes of each other. Sunlight at 757 nanometers (near-infrared) penetrates deep into Jupiter's troposphere before being absorbed or scattered by clouds to the Galileo spacecraft. This wavelength reveals the features of the lower visible cloud deck. Sunlight at 415 nanometers (violet) is a scattered or absorbed to varying degrees in different parts of Jupiter's atmosphere depending on the types and concentrations of cloud particles and chemicals that color Jupiter's atmosphere. The near-infrared mosaic primarily shows cloud features. The violet mosaic has three distinct regions: it is brightest at the latitude of the jet (horizontally across the center of the mosaic), moderately bright north of the jet, and dark and patchy south of the jet.

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  13. Production of antibodies for selective detection of malachite green and the related triphenylmethane dyes in fish and fishpond water.

    PubMed

    Yang, Mei-Chun; Fang, Jim-Min; Kuo, Tzong-Fu; Wang, Da-Ming; Huang, Yi-Lin; Liu, Liang-Yirn; Chen, Pen-Heng; Chang, Tong-Hsuan

    2007-10-31

    This study provides a practical method for production of the antibodies against malachite green (MG) and its primary metabolite leucomalachite green (LMG). Two ELISA kits are constructed with the MG and LMG antibodies for detection of the residual MG and LMG in fish muscle and fishpond water. The detection limit is established at the level of 0.05 microg/L for both MG and LMG. Our ELISA kits show the advantages of good specificity, high sensitivity, and convenience in rapid screening of MG and LMG residues. The sample of fishpond water, without extraction or prior preparation, is directly assayed by the ELISA kit. More then 80 fish samples can be simultaneously tested in a kit. The toxic crystal violet and its metabolite leucocrystal violet of illegal use in aquaculture are detected by our prepared MG and LMG antibodies, whereas the antibodies do not cross-react with common antibiotics, sulfonamides, and benzene derivatives. PMID:17924699

  14. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  15. Dye sensitization of photoconductivity of polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Goryaev, M. A.

    2015-12-01

    The DC photoconductivity of powder silicon samples with organic dyes applied to the surface of microcrystals was studied. Effective sensitization of photoconductivity in the absorption band of the dyes in the visible part of the spectrum was found.

  16. TEXTILE DYEING WASTEWATERS: CHARACTERIZATION AND TREATMENT

    EPA Science Inventory

    The report gives results of an examination of the biological, chemical, and physical treatability of wastewaters from selected typical dye baths. Twenty systems providing a broad cross section of dye classes, fibers, and application techniques, were examined. Wastes, produced usi...

  17. Extreme ultra-violet movie camera for imaging microsecond time scale magnetic reconnection

    SciTech Connect

    Chai, Kil-Byoung; Bellan, Paul M.

    2013-12-15

    An ultra-fast extreme ultra-violet (EUV) movie camera has been developed for imaging magnetic reconnection in the Caltech spheromak/astrophysical jet experiment. The camera consists of a broadband Mo:Si multilayer mirror, a fast decaying YAG:Ce scintillator, a visible light block, and a high-speed visible light CCD camera. The camera can capture EUV images as fast as 3.3 × 10{sup 6} frames per second with 0.5 cm spatial resolution. The spectral range is from 20 eV to 60 eV. EUV images reveal strong, transient, highly localized bursts of EUV radiation when magnetic reconnection occurs.

  18. Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter makes the mosaic photo, showing the Great Red Spot as a swirling vortex type motion. This motion is also seen in several nearby white clouds. These bright white clouds and the Red Spot are rotating in a counter clockwise direction, except the peculiar filimentary cloud to the right of the Red Spot is going clockwise. The top of the picture shows the turbulence from the equatorial jet and more northerly atmospheric currents. The smallest clouds shown are only 70 miles (120 km) across.

  19. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  20. Defect-engineered GaN:Mg nanowire arrays for overall water splitting under violet light

    SciTech Connect

    Kibria, M. G.; Chowdhury, F. A.; Zhao, S.; Mi, Z.; Trudeau, M. L.; Guo, H.

    2015-03-16

    We report that by engineering the intra-gap defect related energy states in GaN nanowire arrays using Mg dopants, efficient and stable overall neutral water splitting can be achieved under violet light. Overall neutral water splitting on Rh/Cr{sub 2}O{sub 3} co-catalyst decorated Mg doped GaN nanowires is demonstrated with intra-gap excitation up to 450 nm. Through optimized Mg doping, the absorbed photon conversion efficiency of GaN nanowires reaches ∼43% at 375–450 nm, providing a viable approach to extend the solar absorption of oxide and non-oxide photocatalysts.