These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity  

Microsoft Academic Search

Zeolites are a family of crystalline aluminosilicate materials widely used as shape-selective catalysts, ion exchange materials, and adsorbents for organic compounds. In the present work, zeolites were synthesized by adding a rationally designed amphiphilic organosilane surfactant to conventional alkaline zeolite synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy

Minkee Choi; Hae Sung Cho; Rajendra Srivastava; Chithravel Venkatesan; Dae-Heung Choi; Ryong Ryoo

2006-01-01

2

Catalytic pyrolysis using UZM-44 aluminosilicate zeolite  

DOEpatents

A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christopher P; Boldingh, Edwin P

2014-04-29

3

Catalytic pyrolysis using UZM-39 aluminosilicate zeolite  

DOEpatents

A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christopher P; Boldingh, Edwin P

2014-10-07

4

MFI lamellae are unique among the availa-ble aluminosilicate zeolite lamellae because they  

E-print Network

MFI lamellae are unique among the availa- ble aluminosilicate zeolite lamellae because they have the potential of single­unit cell layers in applications beyond petrochemical processing. Branching of zeolite- plicable to all zeolite structures that can (i) be grown anisotropically as thin layers and (ii) can

Zare, Richard N.

5

Investigation of the Physicochemical Changes Preceding Zeolite Nucleation in a Sodium-Rich Aluminosilicate Gel  

E-print Network

the changes in composition and structure of sodium hydroxide rich aluminosilicate gel yielding zeolite A, and crystallization stages have been revealed. The high concentration of sodium hydroxide in the studied system has the initial polymerization of aluminosilicate species a significant part of the sodium hydroxide is expelled

Bao, Xinhe

6

Zeolites  

NASA Technical Reports Server (NTRS)

Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

1992-01-01

7

Crystallinity and crystallization mechanism of lithium aluminosilicate glass by X-ray diffractometry  

Microsoft Academic Search

The crystallinity of lithium aluminosilicate(LAS) glass after crystallization were studied at different temperatures by X-ray diffractometry and the crystallinity of the standard glass ceramic with known crystal and glass phases was examined. The crystallization mechanism of LAS glass was analyzed by the crystallinity, with a formula relating the crystallinity (X) and temperature (T). The results show that the calculated crystallinity

Xing-zhong GUO; hui YANG; Ming CAO; Chen HAN; Fang-fang SONG

2006-01-01

8

Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates.  

PubMed Central

Environmental and/or occupational exposure to minerals, metals, and fibers can cause lung diseases that may develop years after exposure to the agents. The presence of toxic fibers such as asbestos in the environment plus the continuing development of new mineral or vitreous fibers requires a better understanding of the specific physical and chemical features of fibers/particles responsible for bioactivity. Toward that goal, we have tested aluminosilicate zeolites to establish biological and chemical structure-function correlations. Zeolites have known crystal structure, are subject to experimental manipulation, and can be synthesized and controlled to produce particles of selected size and shape. Naturally occurring zeolites include forms whose biological activity is reported to range from highly pathogenic (erionite) to essentially benign (mordenite). Thus, we used naturally occurring erionite and mordenite as well as an extensively studied synthetic zeolite based on faujasite (zeolite Y). Bioactivity was evaluated using lung macrophages of rat origin (cell line NR8383). Our objective was to quantitatively determine the biological response upon interaction of the test particulates/fibers with lung macrophages and to evaluate the efficacy of surface iron on the zeolites to promote the Fenton reaction. The biological assessment included measurement of the reactive oxygen species by flow cytometry and chemiluminescence techniques upon phagocytosis of the minerals. The chemical assessment included measuring the hydroxyl radicals generated from hydrogen peroxide by iron bound to the zeolite particles and fibers (Fenton reaction). Chromatography as well as absorption spectroscopy were used to quantitate the hydroxyl radicals. We found that upon exposure to the same mass of a specific type of particulate, the oxidative burst increased with decreasing particle size, but remained relatively independent of zeolite composition. On the other hand, the Fenton reaction depended on the type of zeolite, suggesting that the surface structure of the zeolite plays an important role. PMID:12417479

Fach, Estelle; Waldman, W James; Williams, Marshall; Long, John; Meister, Richard K; Dutta, Prabir K

2002-01-01

9

The mechanism of isobutane cracking over amorphous and crystalline aluminosilicates  

Microsoft Academic Search

The acid catalyzed cracking of isobutane over a silica-alumina catalyst and several zeolites was studied. The activity of these catalysts, for whatever reason, increased in the order silica-alumina < H-ZSM-5 < H-Y < H-M, i.e., the same order found in a closely related study of neopentane. The higher the activity the lower was the temperature required to achieve a given

E. A. Lombardo; W. K. Hall

1988-01-01

10

The mechanism of isobutane cracking over amorphous and crystalline aluminosilicates  

SciTech Connect

The acid catalyzed cracking of isobutane over a silica-alumina catalyst and several zeolites was studied. The activity of these catalysts, for whatever reason, increased in the order silica-alumina < H-ZSM-5 < H-Y < H-M, i.e., the same order found in a closely related study of neopentane. The higher the activity the lower was the temperature required to achieve a given conversion, the higher was the paraffin-to-olefin ratios, and the greater was the isomerization of iso- to normal hydrocarbons. It was demonstrated that with all these catalysts two primary reactions occurred resulting in the formation of CH{sub 4} and H{sub 2} and concomitantly the t-butyl and isopropyl cations. The latter either desorbed as the corresponding olefins or underwent secondary reactions. So long as the latter were relatively unimportant the C{sub 3} + C{sub 4} hydrocarbons formed nearly equaled the isobutane reacted. However, the sum of the CH{sub 4} and H{sub 2} produced was generally less than this values. Evidently hydrogen transfer is more important in the conversion of isobutane than of neopentane. This chemistry is discussed.

Lombardo, E.A.; Hall, W.K. (Univ. of Pittsburgh, PA (USA))

1988-08-01

11

Diameter and Chirality Distribution of SWNTs Grown from Zeolite Surfaces  

E-print Network

Diameter and Chirality Distribution of SWNTs Grown from Zeolite Surfaces Yoichi Murakami1-8656 Zeolites are microporous, crystalline aluminosilicates constructed from tetrahedral base units. We have been using the b-surfaces of silicalite-1 zeolite (framework: MFI) as catalyst support for catalytic

Maruyama, Shigeo

12

Methyl rotational tunneling dynamics of p-xylene confined in a crystalline zeolite host  

E-print Network

Methyl rotational tunneling dynamics of p-xylene confined in a crystalline zeolite host Sankar-xylene confined in nanoporous zeolite crystals has been measured by inelastic neutron scattering INS and proton to the methyl-zeolite interactions. The INS tunneling spectra from the crystals space group P212121 with four

Nair, Sankar

13

Poorly Crystalline, Iron-Bearing Aluminosilicates and Their Importance on Mars  

NASA Technical Reports Server (NTRS)

Martian rocks and sediments contain weathering products including evaporite salts and clay minerals that only form as a result of interaction between rocks and water [1-6]. These weathering products are key to studying the history of water on Mars because their type, abundance and location provide clues to past conditions on the surface of the planet, as well as to the possible location of present-day reservoirs of water. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals [7-10] including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which affects their spectral and physical properties. Detection and quantification of such minerals in natural environments on earth is difficult due to their variable chemical composition and lack of long-range crystalline order [9, 11, 12]. Despite the difficulty in characterizing these materials, they are common on Earth, and data from orbital remote sensing and rover-based instruments suggest that they are also present on Mars [9, 10, 13-17]. Their accurate detection and quantification require a better understanding of how composition affects their spectral properties. We present here the results of XAFS spectroscopy; these results will be corroborated with planned Mossbauer and reflectance spectroscopy.

Baker, L. L.; Strawn, D. G.; McDaniel, P. A.; Nickerosn, R. N.; Bishop, J. L.; Ming, D. W.; Morris, Richard V.

2011-01-01

14

Growth of zeolite crystals in the microgravity environment of space  

NASA Technical Reports Server (NTRS)

Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

1986-01-01

15

One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3  

PubMed Central

Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3. PMID:25791958

Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

2015-01-01

16

One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3.  

PubMed

Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3. PMID:25791958

Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

2015-01-01

17

Iridium Complexes and Clusters in Dealuminated Zeolite HY: Distribution between Crystalline and Impurity Amorphous Regions  

SciTech Connect

Dealuminated zeolite HY was used to support Ir(CO)2 complexes formed from Ir(CO)2(C5H7O2). Infrared and X-ray absorption spectra and atomic-resolution electron microscopy images identify these complexes, and the images and 27Al NMR spectra identify impurity amorphous regions in the zeolite where the iridium is more susceptible to aggregation than in the crystalline regions. The results indicate a significant stability limitation of metal in amorphous impurity regions of zeolites.

Martinez-Macias, Claudia; Xu, Pinghong; Hwang, Son-Jong; Lu, Jing; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

2014-07-08

18

Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr  

NASA Astrophysics Data System (ADS)

Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).

Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.

2013-06-01

19

ZEOLITE COATING SYSTEM FOR CORROSION CONTROL TO ELIMINATE HEXAVALENT CHROMIUM FROM DOD APPLICATIONS  

Microsoft Academic Search

Zeolites are microporous crystalline aluminosilicates with uniform and molecular sized pores. They are non-toxic and have been explored for medical applications. We have been investigating the application of zeolite films as chromium-free protective coatings on aluminum alloys. We have shown that as-synthesized organic template containing high-silica-zeolite (HSZ) MFI coatings on AA-2024-T3 are non-porous and have excellent corrosion resistance in strong

Derek E. Beving; Cory R. O'Neill; Yushan Yan; Nicole Anderson

20

Co-development of crystalline and mesoscopic order in mesostructured zeolite nanosheets.  

PubMed

Mesoporous zeolites are a new and technologically important class of materials that exhibit improved diffusion and catalytic reaction properties compared to conventional zeolites with sub-nanometer pore dimensions. During their syntheses, the transient developments of crystalline and mesoscopic order are closely coupled and challenging to control. Correlated solid-state NMR, X-ray, and electron microscopy analyses yield new molecular-level insights on the interactions and distributions of complicated organic structure-directing agents with respect to crystallizing zeolite frameworks. The analyses reveal the formation of an intermediate layered silicate phase, which subsequently transforms into zeolite nanosheets with uniform nano- and mesoscale porosities. Such materials result from coupled surfactant self-assembly and inorganic crystallization processes, the interplay between which governs the onset and development of framework structural order on different length and time scales. PMID:25412768

Messinger, Robert J; Na, Kyungsu; Seo, Yongbeom; Ryoo, Ryong; Chmelka, Bradley F

2015-01-12

21

Conversion of rice husk ash to zeolite beta.  

PubMed

White rice husk ash (RHA), an agriculture waste containing crystalline tridymite and alpha-cristobalite, was used as a silica source for zeolite Beta synthesis. The crystallization of zeolite Beta from RHA at 150 degrees C in the presence of tetraethylammonium hydroxide was monitored by XRD, FTIR and (29)Si MAS NMR techniques. It was found that zeolite Beta started to form after 12h and the complete crystallization of zeolite Beta phase was achieved after 2d. XRD, (29)Si MAS NMR and solid yield studies indicate that the transformation mechanism of silica present in RHA to zeolite Beta involves dissolution of the ash, formation of an amorphous aluminosilicate after 6h of crystallization, followed by dissolution in the mother liquor and final transformation to pure zeolite Beta crystals. PMID:16274981

Prasetyoko, Didik; Ramli, Zainab; Endud, Salasiah; Hamdan, Halimaton; Sulikowski, Bogdan

2006-01-01

22

Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method  

ERIC Educational Resources Information Center

Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

Saini, Vipin K.; Pires, Joao

2012-01-01

23

Nanoscale Encapsulation : The Structure of Cations in Hydrophobic Microporous Aluminosilicates  

Microsoft Academic Search

Hydrophobic microporous aluminosilicates created by the modification of zeolites and clays are currently being investigated as storage media for hazardous cations. Addition of an organic monolayer to the surface of an aluminosilicate after introduction of an ion into the zeolite or clay reduces the interaction of water with the material. The resuItant systems are approximately 20 times more resistant to

S. R. Wassew; S. E. Yuchs; D. Giaquinta; L. Soderholm; K. Song

1997-01-01

24

Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates  

Microsoft Academic Search

Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite\\/clay reduces the interaction of water with the material. Resulting systems are about 20 times more

S. R. Wasserman; S. E. Yuchs; D. Giaquinta; L. Soderholm; Kang Song

1996-01-01

25

Direct Probe Fourier Transform Far-Infrared Spectroscopy of Metal Atoms, Metal Ions, and Metal Clusters in Zeolites  

Microsoft Academic Search

A class of crystalline aluminosilicates, known as the zeolites, are widely used as effective heterogeneous catalysts in the chemical industry. They possess excellent stability, activity and selectivity patterns for a wide range of hydrocarbon transformations [1–10]. X-ray diffraction studies have shown that zeolites are giant macromolecules formed by AlO4 and SiO4 tetrahedra joined by shared oxygens, and the structures of

Mark D. Baker; Geoffrey A. Ozin; John Godber

1985-01-01

26

Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment  

Microsoft Academic Search

Coal fly ash was dissolved into NaOH aqueous solution and the mixture of rice husk ash as a silica source with the solution separated from the insoluble fly ash was treated hydrothermally at 373 K with microwave heating and conventional heating. Through this experiment, we investigated effects of microwave irradiation on the crystalline phase of zeolites synthesized from fly ash

Kunihiro Fukui; Keiji Kanayama; Tetsuya Yamamoto; Hideto Yoshida

2007-01-01

27

Microporous Zeolite MembranesMicroporous Zeolite Membranes and Their Potential for Hand Their Potential for H22 ProductionProduction  

E-print Network

Microporous Zeolite MembranesMicroporous Zeolite Membranes and Their Potential for Hand interest." 22 Zeolites andZeolites and ZeotypesZeotypes ZeoliteZeolite ­­ A crystallineA crystalline zeolites.same structure as known zeolites. MFI Zeolite #12;"...exceptional service in the national interest

28

FRIEDEL-CRAFTS ACYLATION OF ANISOLE CATALYSED BY H-ZEOLITE BETA OF CRYSTALLINE RICE HUSK ASH  

Microsoft Academic Search

The reactivity of H-Beta zeolite, synthesised directly from crystalline rice husk ash in various SiO2\\/Al2O3 gel ratios, was studied in the Friedel-Crafts acylation of anisole with propionic anhydride. Reactions were carried out in a batch reactor at various times and reaction temperatures in order to obtain the optimum acylation condition. Products identified by gas chromatography showed that p-methoxypropiophenone is the

ZAINAB RAMLI; DIDIK PRASETYOKO; SALASIAH ENDUD

29

Role of composition and oxygen partial pressure on microstructural and crystalline phase evolution in aluminosilicate derived aggregates  

NASA Astrophysics Data System (ADS)

Spherical aggregates, approximately 1mm in diameter, derived from either kaolinite or bauxite are used in tonnage quantities to aid the extraction of oil and natural gas. Aggregates intended for this application are referred to as proppants and key characteristics include low density and high strength, which are influenced by processing temperature and variation in raw ore chemistry. Kaolinite and bauxite ores doped with varying concentrations of K2O and Fe2O3 were sintered at different temperatures to elucidate composition-processing-property relationships. The dopants are known to form low temperature ternary eutectics with Al2O3 and SiO2 and are anticipated to facilitate low temperature densification and enhance mullite formation. In addition, proppants doped with Fe2 O3 were studied under varying oxygen partial pressures to further enhance low temperature densification by manipulating the valence state of iron. Microstructure and crystalline phase assemblage were evaluated by scanning electron microscopy and X-ray diffraction, respectively, and correlated with results of density and strength measurements obtained by gas pycnometry and diametral compression, respectively. Results indicate that dopant enhanced densification can simultaneously improve strength and processing economy of proppants by lowering sintering temperatures up to 100°C. Controlled atmosphere studies revealed that manipulating the valence of iron produces unique microstructures that may be useful in a number of different applications. These microstructures include aggregates with metallic coatings and aggregates with core-shell microstructures, which exhibit a porous core enclosed by a relatively dense outer shell.

Luscher, Walter G.

30

Zeolites US market to reach $1 billion by 2000  

SciTech Connect

This article describes the growth of the U.S. market for zeolites, specifically sodium aluminosilicate. The largest application for zeolites is for petrochemical and petroleum catalysts; however, detergents are also a specific application addressed in the article.

Morris, G.D.L.

1997-02-05

31

Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents.  

PubMed

Single phase chamfered-edge zeolite 4A samples in pure form with a high crystallinity were synthesized by applying step-change of synthesis temperature during hydrothermal treatment of coal fly ash. The calcium binding capacity of these zeolite 4A samples (prepared from coal fly ash) and the commercial detergent grade zeolite 4A were tested for usage as a detergent builder. The results show that these zeolite 4A samples behaved similarly as the commercial one in removing calcium ions during the washing cycle. Moreover, from the leaching tests (evaluation of toxicological safety), the results show that these zeolite 4A samples leached the same elements (Sb, As, Se and Tl) as the commercial one with the concentrations in the same order of magnitude. This shows that the toxicological effect of the coal fly ash converted zeolite 4A was not worse than that of the commercial sample. Finally, economic and environmental aspects of converting coal fly ash to useful products were discussed. PMID:16621273

Hui, K S; Chao, C Y H

2006-09-01

32

Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane  

E-print Network

Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane Jarai Mon of silicate minerals and precipitation of new aluminosilicate minerals. Cancrinite, sodalite, LTA zeolite in sodalite and cancrinite was far more difficult to replace than that in LTA zeolite or allophane. Most

Flury, Markus

33

Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates  

SciTech Connect

Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer.

Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang

1996-10-01

34

Calibration analysis of zeolites by laser induced breakdown spectroscopy  

NASA Astrophysics Data System (ADS)

Laser induced breakdown spectroscopy was used for calibration analysis of different types of microporous crystalline aluminosilicates with exactly ordered structure — zeolites. The LIBS plasma was generated using a Q-switched Nd:YAG laser operating at the wavelength of 532 nm and providing laser pulses of 4 ns duration. Plasma emission was analysed by echelle type emission spectrometer, providing wide spectral range 200-950 nm. The spectrometer was equipped with intensified CCD camera providing rapid spectral acquisition (gating time from 5 ns). The optimum experimental conditions (time delay, gate width and laser pulse energy) have been determined for reliable use of LIBS for quantitative analysis. Samples of different molar ratios of Si/Al were used to create the calibration curves. Calibration curves for different types of zeolites (mordenite, type Y and ZSM-5) were constructed. Molar ratios of Si/Al for samples used for calibration were determined by classical wet chemical analysis and were in the range 5.3-51.8 for mordenite, 2.3-12.8 for type Y and 14-600 for ZSM-5. Zeolites with these molar ratios of Si/Al are usually used as catalysts in alkylation reactions. Laser induced breakdown spectroscopy is a suitable method for analysis of molar ratio Si/Al in zeolites, because it is simple, fast, and does not require sample preparation compared with classical wet chemical analysis which are time consuming, require difficult sample preparation and manipulation with strong acids and bases.

Hor?á?ková, M.; Grolmusová, Z.; Hor?á?ek, M.; Rakovský, J.; Hudec, P.; Veis, P.

2012-08-01

35

Hot isostatically-pressed aluminosilicate glass-ceramic with natural crystalline analogues for immobilizing the calcined high-level nuclear waste at the Idaho Chemical Processing Plant  

SciTech Connect

The additives Si, Al, MgO, P{sub 2}O{sub 5} were mechanically blended with fluorinelsodium calcine in varying proportions. The batches were vacuum sealed in stainless steel canisters and hot isostatically pressed at 20,000 PSI and 1000 C for 4 hours. The resulting suite of glass-ceramic waste forms parallels the natural rocks in microstructural and compositional heterogeneity. Several crystalline phases ar analogous in composition and structure to naturally occurring minerals. Additional crystalline phases are zirconia and Ca-Mg borate. The glasses are enriched in silica and alumina. Approximately 7% calcine elements occur dissolved in this glass and the total glass content in the waste forms averages 20 wt%. The remainder of the calcine elements are partitioned into crystalline phases at 75 wt% calcine waste loading. The waste forms were tested for chemical durability in accordance with the MCC1-test procedure. The leach rates are a function of the relative proportions of additives and calcine, which in turn influence the composition and abundances of the glass and crystalline phases. The DOE leach rate criterion of less than 1 g/m{sup 2}-day is met by all the elements B, Cs and Na are increased by lowering the melt viscosity. This is related to increased crystallization or devitrification with increases in MgO addition. This exploratory work has shown that the increases in waste loading occur by preferred partitioning of the calcine components among crystalline and glass phases. The determination of optimum processing parameters in the form of additive concentration levels, homogeneous blending among the components, and pressure-temperature stabilities of phases must be continued to eliminate undesirable effects of chemical composition, microstructure and glass devitrification.

Raman, S.

1993-12-01

36

Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)  

SciTech Connect

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to {approx}700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''.

Grutzeck, Michael W.

2005-06-27

37

Zeolite A imidazolate frameworks.  

PubMed

Faujasite (FAU) and zeolite A (LTA) are technologically important porous zeolites (aluminosilicates) because of their extensive use in petroleum cracking and water softening. Introducing organic units and transition metals into the backbone of these types of zeolite allows us to expand their pore structures, enhance their functionality and access new applications. The invention of metal-organic frameworks and zeolitic imidazolate frameworks (ZIFs) has provided materials based on simple zeolite structures where only one type of cage is present. However, so far, no metal-organic analogues based on FAU or LTA topologies exist owing to the difficulty imposed by the presence of two types of large cage (super- and beta-cages for FAU, alpha- and beta-cages for LTA). Here, we have identified a strategy to produce an LTA imidazolate framework in which both the link geometry and link-link interactions play a decisive structure-directing role. We describe the synthesis and crystal structures of three porous ZIFs that are expanded analogues of zeolite A; their cage walls are functionalized, and their metal ions can be changed without changing the underlying LTA topology. Hydrogen, methane, carbon dioxide and argon gas adsorption isotherms are reported and the selectivity of this material for carbon dioxide over methane is demonstrated. PMID:17529969

Hayashi, Hideki; Côté, Adrien P; Furukawa, Hiroyasu; O'Keeffe, Michael; Yaghi, Omar M

2007-07-01

38

Core-shell strain structure of zeolite microcrystals.  

PubMed

Zeolites are crystalline aluminosilicate minerals featuring a network of 0.3-1.5-nm-wide pores, used in industry as catalysts for hydrocarbon interconversion, ion exchangers, molecular sieves and adsorbents. For improved applications, it is highly useful to study the distribution of internal local strains because they sensitively affect the rates of adsorption and diffusion of guest molecules within zeolites. Here, we report the observation of an unusual triangular deformation field distribution in ZSM-5 zeolites by coherent X-ray diffraction imaging, showing the presence of a strain within the crystal arising from the heterogeneous core-shell structure, which is supported by finite element model calculation and confirmed by fluorescence measurement. The shell is composed of H-ZSM-5 with intrinsic negative thermal expansion whereas the core exhibits a different thermal expansion behaviour due to the presence of organic template residues, which usually remain when the starting materials are insufficiently calcined. Engineering such strain effects could have a major impact on the design of future catalysts. PMID:23832126

Cha, Wonsuk; Jeong, Nak Cheon; Song, Sanghoon; Park, Hyun-jun; Thanh Pham, Tung Cao; Harder, Ross; Lim, Bobae; Xiong, Gang; Ahn, Docheon; McNulty, Ian; Kim, Jungho; Yoon, Kyung Byung; Robinson, Ian K; Kim, Hyunjung

2013-08-01

39

Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report  

SciTech Connect

Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

Dutta, Prabir K.

2001-09-30

40

SODIUM ZEOLITE A SUPPLEMENTATION TO DAIRY CALVES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Sodium zeolite A (SZA), an aluminosilicate, has been used in a number of animal studies, but alterations in mineral metabolism and tissue composition have not been fully investigated. The objective of this study was to determine the effects of SZA on mineral metabolism and tissue mineral composition...

41

Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite  

NASA Astrophysics Data System (ADS)

C-dots obtained in the homogeneous phase may exhibit a broad particle size distribution. The formation of C-dots within nanometric reaction cavities could be a methodology to gain control on their size distribution. Among the various possibilities, in the present work, the cavities of small pore size zeolites have been used to confine C-dots generated by the pyrolysis of the organic structure directing agent present in the synthesis of these crystalline aluminosilicates. To explore this methodology, ITQ-29 zeolite having a Linde type A (LTA) structure was prepared as pure silica with 4-methyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3.2.1-ij]quinolinium as the organic structure directing agent. Pyrolysis under an inert atmosphere at 550 °C of a pure-silica ITQ-29 sample (cubic particles of 4 ?m edge) renders a highly fluorescent zeolite containing about 15 wt% of the carbonised residue. While another small pore zeolite, ITQ-12 (ITW), also renders photoluminescent C-dots under similar conditions, medium or large pore zeolites, such as silicalite (MFI) or pure silica Beta (BEA), failed to produce fluorescent powders under analogous thermal treatment and only decomposition and complete removal of the corresponding quaternary ammonium ion templates was observed for these zeolites. The dissolution of the pyrolysed ITQ-29 zeolite framework and the extraction of the carbon residue with ethyl acetate have allowed the characterisation of C-dots with particle sizes between 5 and 12 nm and a photoluminescence quantum yield of 0.4 upon excitation at 350 nm that is among the highest reported for non-surface functionalized C-dots. Photoluminescence varies with the excitation wavelength and is quenched by oxygen. Pyrolysed ITQ-29 powders can act as fluorescent oxygen sensors.

Baldovi, Herme G.; Valencia, Susana; Alvaro, Mercedes; Asiri, Abdullah M.; Garcia, Hermenegildo

2015-01-01

42

Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite.  

PubMed

C-dots obtained in the homogeneous phase may exhibit a broad particle size distribution. The formation of C-dots within nanometric reaction cavities could be a methodology to gain control on their size distribution. Among the various possibilities, in the present work, the cavities of small pore size zeolites have been used to confine C-dots generated by the pyrolysis of the organic structure directing agent present in the synthesis of these crystalline aluminosilicates. To explore this methodology, ITQ-29 zeolite having a Linde type A (LTA) structure was prepared as pure silica with 4-methyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3.2.1-ij]quinolinium as the organic structure directing agent. Pyrolysis under an inert atmosphere at 550 °C of a pure-silica ITQ-29 sample (cubic particles of 4 ?m edge) renders a highly fluorescent zeolite containing about 15 wt% of the carbonised residue. While another small pore zeolite, ITQ-12 (ITW), also renders photoluminescent C-dots under similar conditions, medium or large pore zeolites, such as silicalite (MFI) or pure silica Beta (BEA), failed to produce fluorescent powders under analogous thermal treatment and only decomposition and complete removal of the corresponding quaternary ammonium ion templates was observed for these zeolites. The dissolution of the pyrolysed ITQ-29 zeolite framework and the extraction of the carbon residue with ethyl acetate have allowed the characterisation of C-dots with particle sizes between 5 and 12 nm and a photoluminescence quantum yield of 0.4 upon excitation at 350 nm that is among the highest reported for non-surface functionalized C-dots. Photoluminescence varies with the excitation wavelength and is quenched by oxygen. Pyrolysed ITQ-29 powders can act as fluorescent oxygen sensors. PMID:25516465

Baldovi, Herme G; Valencia, Susana; Alvaro, Mercedes; Asiri, Abdullah M; Garcia, Hermenegildo

2015-02-01

43

Understanding the dissolution of zeolites.  

PubMed

Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum reservoir stimulation treatments should be designed. PMID:17429989

Hartman, Ryan L; Fogler, H Scott

2007-05-01

44

Existence of Colloidal Primitive Building Units Exhibiting Memory Effects in Zeolite Growth Compositions  

E-print Network

Existence of Colloidal Primitive Building Units Exhibiting Memory Effects in Zeolite Growth of crystallization of nanocrystalline sodalite, zeolite A, and zeolite Y. Characterization of the freeze-dried mother zeolites A and Y, and 5 nm regions of crystallinity could be identified in zeolite Y. Upon adding

Dutta, Prabir K.

45

Uranium and Aluminosilicate Surface Precipitation Tests  

SciTech Connect

The 2H evaporator at the Savannah River Site has been used to treat an aluminum-rich waste stream from canyon operations and a silicon-rich waste stream from the Defense Waste Processing Facility. The formation of aluminosilicate scale in the evaporator has caused significant operational problems. Because uranium has been found to accumulate in the aluminosilicate solids, the scale deposition has introduced criticality concerns as well. The objective of the tests described in this report is to determine possible causes of the uranium incorporation in the evaporator scale materials. The scope of this task is to perform laboratory experiments with simulant solutions to determine if (1) uranium can be deposited on the surfaces of various sodium aluminosilicate (NAS) forms and (2) aluminosilicates can form on the surfaces of uranium-containing solids. Batch experiments with simulant solutions of three types were conducted: (1) contact of uranium solutions/sols with NAS coatings on stainless steel surfaces, (2) contact of uranium solutions with NAS particles, and (3) contact of precipitated uranium-containing particles with solutions containing aluminum and silicon. The results show that uranium can be incorporated in NAS solids through encapsulation in bulk agglomerated NAS particles of different phases (amorphous, zeolite A, sodalite, and cancrinite) as well as through heterogeneous deposition on the surfaces of NAS coatings (amorphous and cancrinite) grown on stainless steel. The results also indicate that NAS particles can grow on the surfaces of precipitated uranium solids. Particularly notable for evaporator operations is the finding that uranium solids can form on existing NAS scale, including cancrinite solids. If NAS scale is present, and uranium is in sufficient concentration in solution to precipitate, a portion of the uranium can be expected to become associated with the scale. The data obtained to date on uranium-NAS affinity are qualitative. A necessary next step is to quantitatively determine the amounts of uranium that may be incorporated into NAS scale solids under differing conditions e.g., varying silicon/aluminum ratio, uranium concentration, temperature, and deposition time.

Hu, M.Z.

2002-11-27

46

Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks  

SciTech Connect

Zeolites are one of humanity’s most important synthetic products. These aluminosilicate-based materials represent a large segment of the global economy. Indeed, the value of zeolites used in petroleum refining as catalysts and in detergents as water softeners is estimated at $350 billion per year. A major current goal in zeolite chemistry is to create a structure in which metal ions and functionalizable organic units make up an integral part of the framework. Such a structure, by virtue of the flexibility with which metal ions and organic moieties can be varied, is viewed as a key to further improving zeolite properties and accessing new applications. Recently, it was recognized that the Si?O?Si preferred angle in zeolites (145°) is coincident with that of the bridging angle in the M?Im?M fragment (where M is Zn or Co and Im is imidazolate), and therefore it should be possible to make new zeolitic imidazolate frameworks (ZIFs) with topologies based on those of tetrahedral zeolites. This idea was successful and proved to be quite fruitful; within the last 5 years over 90 new ZIF structures have been reported. The recent application of high-throughput synthesis and characterization of ZIFs has expanded this structure space significantly: it is now possible to make ZIFs with topologies previously unknown in zeolites, in addition to mimicking known structures. In this Account, we describe the general preparation of crystalline ZIFs, discussing the methods that have been developed to create and analyze the variety of materials afforded. We include a comprehensive list of all known ZIFs, including structure, topology, and pore metrics. We also examine how complexity might be introduced into new structures, highlighting how link?link interactions might be exploited to effect particular cage sizes, create polarity variations between pores, or adjust framework robustness, for example. The chemical and thermal stability of ZIFs permit many applications, such as the capture of CO{sub 2} and its selective separation from industrially relevant gas mixtures. Currently, ZIFs are the best porous materials for the selective capture of CO{sub 2}; furthermore, they show exceptionally high capacity for CO{sub 2} among adsorbents operating by physisorption. The stability of ZIFs has also enabled organic transformations to be carried out on the crystals, yielding covalently functionalized isoreticular structures wherein the topology, crystallinity, and porosity of the ZIF structure are maintained throughout the reaction process. These reactions, being carried out on macroscopic crystals that behave as single molecules, have enabled the realization of the chemist’s dream of using “crystals as molecules”, opening the way for the application of the extensive library of organic reactions to the functionalization of useful extended porous structures.

Phan, Anh; Doonan, Christian J; Uribe-Romo, Fernando J; Knobler, Carolyn B; O'Keeffe, Michael; Yaghi, Omar M

2010-01-01

47

A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions  

NASA Astrophysics Data System (ADS)

Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can significantly improve zeolite CEC by bringing the material to near homoionic form. pH and temperature are the critical parameters for using natural zeolites as sorbents. Zeolites should not be used in extremely acidic, neither in extremely basic pH conditions, except for very short times. The exchange of Pb, requires low solution pH, to avoid precipitation but not too low because the H+ are competitive ions for ion exchange; as a result the zeolite CEC related to Pb removal may be downgraded. If pH enters the basic range (e.g. pH>8), more aquatic complexes with lower positive valence than those prevailing in lower pH are produced; these complexes are less attracted by the negative charged zeolitic matrix. Pb uptake is favored at higher temperatures as ion exchange (including the diffusion of exchangeable ions inside the material and the medium, and vice versa) is an endothermic process. With the increase of temperature there is a decrease in hydration of all available exchangeable cations that eases the movement within the channels of the solid matrix. Additionally, the mobility of the potassium ions, present in the zeolitic material, also increases with the temperature resulting in enhanced CEC.

Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

2013-04-01

48

Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation Hyungjun Kim, Wei-Qiao Deng, and William A. Goddard, III*  

E-print Network

Sodium Diffusion through Aluminum-Doped Zeolite BEA System: Effect of Water Solvation Hyungjun Kim To investigate the effect of hydration on the diffusion of sodium ions through the aluminum-doped zeolite BEA absorption into aluminosilicate zeolite structure under various conditions of vapor pressure and temperature

Goddard III, William A.

49

Salt-occluded zeolite waste forms: Crystal structures and transformability  

SciTech Connect

Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 {angstrom} diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms.

Richardson, J.W. Jr. [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source Div.

1996-12-31

50

The growth of zeolites A, X and mordenite in space  

NASA Technical Reports Server (NTRS)

Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

1994-01-01

51

TG and DTA Study of the Thermal Dehydration of Metal-exchanged Zeolite4A Samples  

Microsoft Academic Search

Zeolite-4A is a hydrated aluminosilicate which becomes more hydrated when exchanged with transition metals. In this work,\\u000a the dehydration kinetics of cobalt, nickel and copper(II)-exchanged zeolite-4A were studied by means of TG and DTA over the\\u000a temperature range from 20 to 500C, and the numbers of water molecules in the metal-exchanged zeolite samples were calculated.\\u000a It was observed that, as

M. Afzal; G. Yasmeen; M. Saleem; P. K. Butt; A. K. Khattak; J. Afzal

2000-01-01

52

Reclaiming silver from silver zeolite  

SciTech Connect

Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

Reimann, G.A.

1991-10-01

53

Reclaiming silver from silver zeolite  

SciTech Connect

Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

Reimann, G.A.

1991-10-01

54

Water solubility in aluminosilicate melts  

Microsoft Academic Search

We have compiled water solubility data for a wide range of natural and synthetic aluminosilicate melts in a search for correlations between melt composition and solubility. The published data reveal some interesting systematics. For example, molar water solubility increases with decreasing silica content in binary and pseudobinary silicates, and much higher solubilities are associated with alkali systems compared to alkaline

Paul F. McMillan; John R. Holloway

1987-01-01

55

Binding and catalytic reduction of NO by transition metal aluminosilicates  

SciTech Connect

The objective of this research is to provide the scientific understanding of processes that actively and selectively reduce NO in dilute exhaust streams, as well as in concentrated streams, to N{sub 2}. Experimental studies of NO chemistry in transition metal-containing aluminosilicate catalysts are being carried out with the aim of determining the chemical rules for NO reduction on non-precious metals. The catalyst supports chosen for this investigation are A and Y zeolites, mordenite, and monoliths based on cordierite. The supported transition metal cations that were examined are principally the first row redox metals, e.g. Cr(2), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Cu(I). The reactions of interest are the reductions of NO by H{sub 2}, CO, and CH{sub 4}, as well as the disproportionation of NO. Rare earth cations that possess redox properties were placed in the more shielded sites, e.g. Site I in Y zeolite, prior to or simultaneously with the exchange procedure with the transition metal cations. Theoretical calculations of the electronic structure of the transition metal cations in zeolitic sites were carried out by ab initio methods. The aim of this part of the research is to find the best match between the metal-based antibonding orbitals and the antibonding orbitals of the NO molecule such that the N-O bond is weakened and is readily broken. 9 refs., 4 figs., 3 tabs.

Klier, K.; Herman, R.G.; Hou, Shaolie.

1991-09-01

56

Mineral resource of the month: natural and synthetic zeolites  

USGS Publications Warehouse

Robert Virta, mineral commodity specialist for the U.S. Geological Survey, prepared the following information about the zeolite industry. Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.

Virta, R.

2008-01-01

57

Synthesis of Zeolite from Aluminium Etching By-Product: The Effect of Reaction Temperature on Crystallinity and Its CO2 Adsorption Property  

Microsoft Academic Search

The synthesis of zeolite from the by-product of aluminium etching process was investigated. The starting by-product reactant had high aluminium content, 92.17% wt. as Al2O3. Si and Na compositions were adjusted by the addition of sodium metasilicate, in the hydrogel process.The reaction time was fixed at 1 h., while the stirring speed was controlled at 200 rpm. and the temperature

Supaporn Douglas

2008-01-01

58

Towards a sustainable manufacture of hierarchical zeolites.  

PubMed

Hierarchical zeolites have been established as a superior type of aluminosilicate catalysts compared to their conventional (purely microporous) counterparts. An impressive array of bottom-up and top-down approaches has been developed during the last decade to design and subsequently exploit these exciting materials catalytically. However, the sustainability of the developed synthetic methods has rarely been addressed. This paper highlights important criteria to ensure the ecological and economic viability of the manufacture of hierarchical zeolites. Moreover, by using base leaching as a promising case study, we verify a variety of approaches to increase reactor productivity, recycle waste streams, prevent the combustion of organic compounds, and minimize separation efforts. By reducing their synthetic footprint, hierarchical zeolites are positioned as an integral part of sustainable chemistry. PMID:24520034

Verboekend, Danny; Pérez-Ramírez, Javier

2014-03-01

59

Crystallization Kinetics of Calcium-magnesium Aluminosilicate (CMAS) Glass  

NASA Technical Reports Server (NTRS)

The crystallization kinetics of a calcium-magnesium aluminosilicate (CMAS) glass with composition relevant for aerospace applications, like air-breathing engines, were evaluated using differential thermal analysis (DTA) in powder and bulk forms. Activation energy and frequency factor values for crystallization of the glass were evaluated. X-ray diffraction (XRD) was used to investigate the onset of crystallization and the phases that developed after heat treating bulk glass at temperatures ranging from 690 to 960 deg for various times. Samples annealed at temperatures below 900 deg remained amorphous, while specimens heat treated at and above 900 deg exhibited crystallinity originating at the surface. The crystalline phases were identified as wollastonite (CaSiO3) and aluminum diopside (Ca(Mg,Al) (Si,Al)2O6). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were employed to examine the microstructure and chemical compositions of crystalline phases formed after heat treatment.

Wiesner, Valerie L.; Bansal, Narottam P.

2015-01-01

60

21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729 Section...Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2012-04-01

61

21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 2014-04-01 false Sodium calcium aluminosilicate, hydrated. 182...Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2014-04-01

62

21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Sodium calcium aluminosilicate, hydrated. 182...Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2013-04-01

63

21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729 Section...Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2011-04-01

64

21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 2011-04-01 false Sodium calcium aluminosilicate, hydrated. 182...Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2011-04-01

65

21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729 Section...Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2014-04-01

66

21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 2012-04-01 false Sodium calcium aluminosilicate, hydrated. 182...Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2012-04-01

67

21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729 Section...Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2013-04-01

68

21 CFR 582.2729 - Hydrated sodium calcium aluminosilicate.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 false Hydrated sodium calcium aluminosilicate. 582.2729 Section...Agents § 582.2729 Hydrated sodium calcium aluminosilicate. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2010-04-01

69

21 CFR 182.2729 - Sodium calcium aluminosilicate, hydrated.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2009-04-01 true Sodium calcium aluminosilicate, hydrated. 182...Anticaking Agents § 182.2729 Sodium calcium aluminosilicate, hydrated. (a) Product. Hydrated sodium calcium aluminosilicate (sodium calcium...

2010-04-01

70

[Raman active vibrations of aluminosilicates].  

PubMed

Raman spectra of aluminosilicate minerals, namely kyanite, andalusite, and sillimanite and K2O-Al2O3-SiO2 glasses were recorded. Four alumino-silicon tetrahedral model clusters were calculated by self-consistent (SCF) molecular orbital ab-ini-tio calculation of the quantum chem (QC) method. The result shows a decrease tendency in Raman frequencies in the 800-1200 cm(-1) frequency region with increase in four-coordinated Al content, which is assigned to the Si--Onb symmetry stretching vibrations. The Raman spectra in the 700-800 cm(-1) frequency region is attributed to Al-Onb symmetry stretching vibrations. PMID:17205741

Pan, Feng; Yu, Xue-hui; Mo, Xuan-xue; You, Jing-lin; Wang, Chen; Chen, Hui; Jiang, Guo-chang

2006-10-01

71

Stability of zeolites under electron irradiation and imaging of heavy cations in silicates  

Microsoft Academic Search

The aluminosilicate framework of synthetic `zeolites' of type A (Na+-form) and ZSM-5, as well as the Na+-forms of faujasite (Fig. 1) in their so-called X- and Y-variants (fuller structural descriptions are given in ref s 1 and 2) have recently been imaged at near-atomic scale by high-resolution electron microscopy (HREM)3-5. However, the as-prepared synthetic and naturally occurring zeolites, all of

L. A. Bursill; J. M. Thomas; K. J. Rao

1981-01-01

72

Regenerative Cu/La zeolite supported desulfurizing sorbents  

NASA Technical Reports Server (NTRS)

Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

Voecks, Gerald E. (inventor); Sharma, Pramod K. (inventor)

1991-01-01

73

Multipore zeolites: synthesis and catalytic applications.  

PubMed

In the last few years, important efforts have been made to synthesize so-called "multipore" zeolites, which contain channels of different dimensions within the same crystalline structure. This is a very attractive subject, since the presence of pores of different sizes would favor the preferential diffusion of reactants and products through those different channel systems, allowing unique catalytic activities for specific chemical processes. In this Review we describe the most attractive achievements in the rational synthesis of multipore zeolites, containing small to extra-large pores, and the improvements reported for relevant chemical processes when these multipore zeolites have been used as catalysts. PMID:25664421

Moliner, Manuel; Martínez, Cristina; Corma, Avelino

2015-03-16

74

Origin of strong acidity in lanthanum-exchanged zeolites  

E-print Network

material, the high temperatures and acidity of hydrocracking processes can result in the collapse of the zeolite crystalline structure (17). These features require a thermally and chemically stable catalyst. As a large amount of structural aluminum... of this research was to determine the factors which give rise to strong acidity in zeolites. There is a linear relation between catalytic activity and zeolite framework aluminum number in the range of' 0 to 32 aluminum atoms per unit cell, whereas at higher...

Carvajal Freese, Ralf R.

1989-01-01

75

Thermal conductivity of pure silica MEL and MFI zeolite thin films Thomas Coquil,1  

E-print Network

Thermal conductivity of pure silica MEL and MFI zeolite thin films Thomas Coquil,1 Christopher M temperature cross-plane thermal conductivity of pure silica zeolite PSZ MEL and MFI thin films. PSZ MEL thin cross- talk noise, and iii power consumption.5 Pure silica zeolites PSZs are crystalline microporous

Pilon, Laurent

76

Influence of Zeolite Catalyst Supports on the Synthesis of Single-Walled Carbon Nanotubes  

E-print Network

1 Influence of Zeolite Catalyst Supports on the Synthesis of Single-Walled Carbon Nanotubes; catalytic CVD; metal catalyst; Zeolite ABSTRACT: Choice of the catalyst support is an important factor) method. Zeolites, which are a class of microporous crystalline material, have also been known

Maruyama, Shigeo

77

Selectivity of zeolite catalysts of hydrocracking of paraffin hydrocarbons  

Microsoft Academic Search

The selectivity of catalysts of hydrocracking based on three types of zeolites: HKE, HM, and HTsVM was studied in comparable conditions and it was found that in rigorous conditions of conducting the process (longer contact time, deeper conversion of the normal paraffin), the contribution of nonselective hydrocracking which takes place on the external crystalline surface of the zeolites becomes marked

A. N. Shakun; L. F. Ilicheva; N. L. Nikitina; B. K. Nefedov; L. D. Konovalchikov; T. V. Alekseeva

1988-01-01

78

Chemical Zeolites Combinatorial . . .  

E-print Network

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions Open Problems Home Page Title Page Page 1 of 100 Go Back Full Screen Close Quit ·First ·Prev ·Next ·Last ·Go Back ·Full Screen ·Close ·Quit Combinatorial Zeolites Herman Servatius -- Clark

Servatius, Brigitte

79

Selectivity of zeolite catalysts of hydrocracking of paraffin hydrocarbons  

SciTech Connect

The selectivity of catalysts of hydrocracking based on three types of zeolites: HKE, HM, and HTsVM was studied in comparable conditions and it was found that in rigorous conditions of conducting the process (longer contact time, deeper conversion of the normal paraffin), the contribution of nonselective hydrocracking which takes place on the external crystalline surface of the zeolites becomes marked on all of the catalysts. Incorporation of a hydrogenating component in the zeolite-containing catalyst results in an increase in nonselective hydrocracking on the external crystalline surface of the zeolites, and addition of significant amounts of molybdenum oxide also results in a decrease in the total conversion of the n-paraffin. The contribution of nonselective hydrocracking decreases with an increase in the intracrystalline activity of the zeolite.

Shakun, A.N.; Il'icheva, L.F.; Nikitina, N.L.; Nefedov, B.K.; Konoval'chikov, L.D.; Alekseeva, T.V.

1988-09-20

80

Molecular simulations and experimental studies of zeolites  

NASA Astrophysics Data System (ADS)

Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct oxygen sites (rather than one), and formation of a new supercell. New calorimetric measurements of enthalpy are used to examine the energetics of the hydrosodalite family of zeolites---specifically, formation enthalpies and hydration energies. Finally, force-field computational methods begin the examination of water in terms of energetics, structure, and radionuclide containment and diffusion.

Moloy, Eric C.

81

High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation  

PubMed Central

Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the ?-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

2013-01-01

82

Zeolites: Can they be synthesized by design  

SciTech Connect

Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high level of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''

Davis, M.E. (California Inst. of Technology, Pasadena, CA (United States))

1994-09-01

83

An introduction to zeolite molecular sieves  

Microsoft Academic Search

This book covers the following topics: What is a zeolite ; Natural zeolites and their occurrence; The structure of zeolites; Zeolite structure identification and characterization; Zeolite syntheses; Zeolites as ion exchangers; Zeolites as molecular sieves and drying agents; The stabilities of zeolite structures and their modification; Zeolites as catalysts; Zeolite-like materials (Zeotypes) containing elements other than Si or Al in

A. Dyer

1988-01-01

84

Database of Zeolite Structures  

NSDL National Science Digital Library

The Database of Zeolite Structures is provided by the Structure Commission of the International Zeolite Association. Links include an Atlas of Zeolite Framework Types, Collection of Simulated XRD Powder Patterns for Zeolites, Catalog of Disordered Zeolite Structures, Schemes for Building Zeolite Framework Models, and Zeolite Structure References, as well as various publications. The database can be searched or browsed, and contains several useful tools such as the "input your data" link, which allows the user to enter crystallographic data not available in the database and generate the diffraction pattern.

85

Assessing different zeolitic adsorbents for their potential use in Kr and Xe separation  

NASA Astrophysics Data System (ADS)

Separation of Kr from Xe is an important problem in spent nuclear fuel fission gas management. The energy intensive and expensive cryogenic distillation method is currently used to separate these gases. In this thesis, we have carried out the research into appropriate sorbents for the separation of Kr and Xe using pressure swing adsorption. We have examined zeolites using gas adsorption studies as they have the potential to be more cost effective than other sorbents. Zeolites are microporous aluminosilicates and have ordered pore structures. The pores in zeolites have extra-framework cations are substantially free to move. The mobility of cations and the uniformity in pore size permits the separation and removal of gases in zeolites. In our experiment, first, we have measured adsorption isotherms with same zeolitic framework but with different cations. Second, we have measured the adsorption isotherm with different zeolitic frameworks but with same cation. Using these adsorption isotherms, we have calculated the initial heats of adsorption to find out the strength of interaction between the zeolitic framework and the gases. Finally, we have compared the difference in the initial heats of adsorption to find the suitable zeolite that has the highest selectivity of Xe over Kr. In conclusion, we have found out that K LSX seems to have higher potential among the zeolites that we have compared for the separation of Kr from Xe with the differential heats of adsorption for Xe vs Kr as ˜7.4 kJ/mol.

Alagappan, Breetha

86

Energetics and structural evolution of Na-Ca exchanged zeolite A during heating.  

PubMed

The properties of zeolite A change significantly upon sodium-calcium exchange. The impact of cation composition on the temperature-induced phase transformations and energetics of Na-Ca exchanged zeolite A was studied systematically using powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high-temperature oxide melt solution calorimetry. As the temperature increases, the structural evolution of each Na-Ca exchanged zeolite A sample undergoes three distinct stages - dehydration, amorphization, and densification/recrystallization. Initially complete dehydration does not result in framework degradation, but further heating leads to zeolite phase degradation into other aluminosilicate phases. Both amorphization and recrystallization shift to higher temperatures as the calcium content increases. On the other hand, the enthalpies of formation for the high temperature aluminosilicate phases, the amorphous phase (AP) and the dense phase (DP), appear to be a linear function of calcium content (average ionic potential) with diminishing of energetic stability upon increasing the Ca content. 100% Na-A heated at 1200 °C has the most exothermic enthalpy of formation from oxides (-65.87 ± 0.87 kJ mol(-1)- TO2), while 97.9% CaNa-A heated at 945 °C has the least exothermic value (-5.26 ± 0.62 kJ mol(-1)- TO2). For different aluminosilicates with the same chemical composition, the dense phase (DP) assemblage is more stable than the amorphous phase (AP). PMID:25760889

Sun, H; Wu, D; Guo, X; Navrotsky, A

2015-04-14

87

Thermodynamic studies of zeolites: natrolite, mesolite and scolecite  

SciTech Connect

Calorimetric measurements have been carried out on specimens of natrolite, mesolite, and scolecite in order to assess the thermodynamic properties of a zeolite series having the same alumino-silicate framework. Low-temperature heat capacity and high-temperature enthalpy increments of natrolite and scolecite were measured by adiabatic and drop-calorimetric techniques. Standard enthalpies of formation at 298.15 K of all three zeolites were determined by solution calorimetry. Thermodynamic functions have been calculated for natrolite to 660 K and for scolecite to 470 K. The heat capacity and standard entropy at 298.15 K have been estimated for mesolite. With reference to zeolitic water, it is concluded that the entropy of water molecules in both natrolite and scolecite is similar to that in ice. A consideration of the X-ray results for the present specimen of natrolite leads to the conclusion that a contribution of about 9.2 J/(mol x K) to the standard entropy is made by the Al-Si disorder in the alumino-silicate framework. The new results allow calculations to be made by which the pressure and temperature effect can be deduced for such equilibria as: natrolite + SiO/sub 2/(aq) = 2 analcime, and natrolite + Ca/sup 2 +/(aq) + H/sub 2/O = mesolite + 2Na/sup +/(aq). Results are consistent with observed parageneses in natural occurrences. 21 references, 1 figure, 10 tables.

Johnson, G.K.; Flotow, H.E.; O'Hare, P.A.G.; Wise, W.S.

1983-01-01

88

Adsorption of chromium ions from aqueous solution by using activated carbo-aluminosilicate material from oil shale.  

PubMed

A novel activated carbo-aluminosilicate material was prepared from oil shale by chemical activation. The chemicals used in the activation process were 95 wt% sulfuric and 5 wt% nitric acids. The produced material combines the sorption properties and the mechanical strength of both activated carbon and zeolite. An X-ray diffraction analysis shows the formation of zeolite Y, Na-X, and A-types, sodalite, sodium silicate, mullite, and cancrinite. FT-IR spectrum shows the presence of carboxylic, phenolic, and lactonic groups on the surface of this material. The zero point of charge estimated at different mass to solution ratio ranged from 7.9 to 8.3. Chromium removal by this material showed sorption capacity of 92 mg/g. PMID:16626724

Shawabkeh, Reyad Awwad

2006-07-15

89

Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions  

NASA Technical Reports Server (NTRS)

Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process. At the same time, however, there is increased urgency to develop such an understanding in order to more accurately quantify the process. In order to better understand the results obtained from our prior space experiments, and design future experiments, a detailed fluid dynamic model simulating the crystal growth mechanism is required. This will not only add to the fundamental knowledge on the crystallization of zeolites, but also be useful in predicting the limits of size and growth of these important industrial materials. Our objective is to develop macro/microscopic theoretical and computational models to study the effect of transport phenomena in the growth of crystals grown in solutions. Our effort has concentrated so far in the development of separate macroscopic and microscopic models. The major highlights of our accomplishments are described.

Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

1999-01-01

90

Synthesis and characterization of nitrogen substituted zeolites  

NASA Astrophysics Data System (ADS)

The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in bond angle. The basicity experiments performed on the zeolites show an increase basicity with increase of the nitrogen content.

Dogan, Fulya

91

Isomerization of ?-pinene over dealuminated ferrierite-type zeolites  

Microsoft Academic Search

Isomerization of ?-pinene was performed on a series of dealuminated ferrierite (FER)-type zeolites in liquid phase at 363 K using a batch reactor. The course of zeolite dealumination was followed in detail using 29Si, 27Al, 1H MAS NMR, XRD, FTIR, and sorption of nitrogen. The ammonium form of FER was dealuminated with aqueous solutions of HCl. While retaining the crystallinity

Rafal Rachwalik; Zbigniew Olejniczak; Jian Jiao; Jun Huang; Michael Hunger; Bogdan Sulikowski

2007-01-01

92

Lithium alumino-silicate ion source development  

Microsoft Academic Search

We report experimental progress on Li+ source development in preparation for warm dense matter heating experiments. To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, we are pursuing the use of a low (E < 5 MeV) kinetic energy singly ionized lithium beam and a thin target. Two kinds of lithium (Li+) alumino-silicate ion sources,

Prabir Kumar Roy; Peter A. Seidl; Joe W. Kwan; Wayne G. Greenway; William L. Waldron; James K. Wu; Kavous Mazaheri

2009-01-01

93

Dehydrogenation of isobutane over a zeolitic catalyst  

SciTech Connect

A method of producing isobutane from isobutane is described comprising contacting the isobutane with a dehydrogenation catalyst in the presence of a sulfur-containing gas at a temperature of from 850/sup 0/F to 1250/sup 0/F, a pressure of less than 20 psig. a liquid hourly space velocity of below 40, and an H/sub 2/HC of less than 10; wherein the dehydrogenation catalyst comprises: (a) a sulfided, L zeolite containing from 8% to 10% by weight barium, from 0.6% to 1.0% by weight platinum, and tin at an atom ratio with the platinum of about 1:1; and (b) an inorganic binder selected from the group consisting of silica, alumina, and aluminosilicates.

Miller, S.J.

1988-02-23

94

ZEOLITES: EFFECTIVE WATER PURIFIERS  

EPA Science Inventory

Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

95

Hydrocracking with a zeolite in an alumina binder peptized in the presence of a surfactant  

SciTech Connect

A process for the conversion of a hydrocarbon charge stock is disclosed. The process comprises reacting the charge stock with hydrogen at hydrocracking conditions in contact with a catalytic composite having improved selectivity to middle distillate product during hydrocracking. The catalyst composite comprises alumina, a crystalline aluminosilicate, a Group VIB metal component and a Group VIII metal component and is prepared by the method comprising: admixing the alumina and crystalline aluminosilicate with a peptizing agent and an aqueous solution of a modified linear aliphatic polyether surfactant to form a dough; extruding the dough into discrete particles; and calcining and drying the particles.

O'Hara, M.J.

1984-11-27

96

Microscopic and Spectroscopic Characterization of Aluminosilicate Waste Form with Cs/Sr/Ba Loading Using Scanning Electron Microscopy, Transmission Electron Microscopy, and X-Ray Diffraction  

NASA Astrophysics Data System (ADS)

An aluminosilicate waste form has been proposed for the storage and disposal of cesium and strontium isolated from recycled nuclear fuel. To examine the impact of sintering temperature on the waste form product, thermal analysis (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)) was used to identify key transition temperature ranges. Samples were produced in each temperature range to examine the impact on phase formation and microstructure. Examination of the synthesized materials by X-ray diffraction (XRD) confirmed the formation of the expected Cs- and Sr-aluminosilicate crystalline phases. However, microscopic characterization by scanning electron microscopy (SEM) revealed a spongelike, glassy morphology with high porosity and no observed crystallinity. This discrepancy was investigated by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), which identified the presence of discrete, submicron, crystalline phases within the bulk amorphous matrix. Elemental analysis by energy-dispersive X-ray (EDX) indicated that the strontium and barium were incorporated into the crystalline phase, while the cesium was incorporated into the amorphous matrix. Further analysis of samples synthesized without barium or strontium allowed for the identification of submicron crystalline phases within the amorphous matrix, identifying the source of the cesium aluminosilicate crystal peaks in the XRD patterns, with elemental analysis showing that the cesium was present in both the crystalline inclusions and the amorphous bulk phase.

Cerefice, Gary; Ma, Longzhou; Kaminski, Michael

2009-12-01

97

The effects of surface modification on the speciation of metal ions intercalated into aluminosilicates  

SciTech Connect

Microporous aluminosilicates, including clay minerals and zeolites, are ion-exchange materials. In their most common forms, they have the ability to incorporate cationic species within their matrices. Because of this property, microporous aluminosilicates have been proposed as storage media for hazardous waste. In this paper the authors use X-ray absorption spectroscopy (XAS) to examine the structure of cations held within smectite clay minerals and to determine how modification of the surface of the clay using an organic monolayer affects the coordination of the stored cation. The effects of hydrothermal and thermal processing on the coordination of the ions contained within these systems are also investigated. The presence of the monolayer changes the surface of the clay from hydrophilic to hydrophobic. It inhibits the interlayer ions from exchanging freely into environmental water and reduces the leach rate of cations out of the clay by approximately a factor of 20. Significant changes are observed when these coated samples are treated under hydrothermal and thermal conditions. Reductions of uranium (VI), in the form of uranyl, and cupric ions occur. In addition, the uranium aggregates, forming small particles that appear similar to UO{sub 2}. Comparable conglomeration occurs with lead cations and with the reduced copper species.

Wasserman, S.R.; Giaquinta, D.M.; Yuchs, S.E.; Soderholm, L. [Argonne National Lab., IL (United States). Chemistry Div.

1996-12-31

98

The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins  

Microsoft Academic Search

Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe3+ and Fe2+ in meta-aluminosilicate glasses. Melts were formed at 1500°C in equilibrium with air and quenched to glass in liquid H2O with quenching rates exceeding 200°C\\/s. The aluminosilicate compositions were NaAlSi2O6, Ca0.5AlSi2O6, and Mg0.5AlSi2O6. Iron oxide was added in the form of Fe2O3,

Bjorn O. Mysen

2006-01-01

99

The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins  

Microsoft Academic Search

Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe3+ and Fe2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H2O with quenching rates exceeding 200 °C\\/s. The aluminosilicate compositions were NaAlSi2O6, Ca0.5AlSi2O6, and Mg0.5AlSi2O6. Iron oxide was added in the form

Bjorn O. Mysen

2006-01-01

100

Zeolite catalysis: technology  

SciTech Connect

Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

Heinemann, H.

1980-07-01

101

Double rotation NMR studies of zeolites and aluminophosphate molecular sieves  

SciTech Connect

Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

Jelinek, R. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1993-07-01

102

Densification of salt-occluded zeolite a powders to a leach-resistant monolith  

SciTech Connect

Pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR) yields a salt waste of LiCl-KCl that contains approximately 6 wt% fission products, primarily as CsCl and SrCl{sub 2}. Past work has shown that zeolite A will preferentially sorb cesium and strontium and will encapsulate the salt waste in a leach-resistant, radiation-resistant aluminosilicate matrix. However, a method is sill needed to convert the salt-occluded zeolite powders into a form suitable for geologic disposal. We are thus investigating a method that forms bonded zeolite by hot pressing a mixture of glass frit and salt-occluded zeolite powders at 990 K (717{degree}C) and 28 MPa. The leach resistance of the bonded zeolite was measured in static leach tests run for 28 days in 363 K (90{degree}C) deionized water. Normalized release rates of all elements in the bonded zeolite were low, <1 g/m{sup 2} d. Thus, the bonded zeolite may be a suitable waste form for IFR salt waste.

Lewis, M.A.; Fischer, D.F.; Murhpy, C.D.

1993-10-01

103

Microporous and Photoluminescent Chalcogenide Zeolite Analogs  

Microsoft Academic Search

Crystalline semiconducting sulfide and selenide zeolite analogs were synthesized that possess four-connected, three-dimensional tetrahedral networks built from tetravalent (M4+ = Ge4+ or Sn4+, where M = meta) and trivalent (M3+ = Ga3+ or In3+) cations. Microporous materials were obtained in all four combinations of M4+ and M3+, and some of them were thermally stable up to at least 380°C. These

Nanfeng Zheng; Xianhui Bu; Bing Wang; Pingyun Feng

2002-01-01

104

Study of molecular mobility of fluid in zeolite NaX  

Microsoft Academic Search

The self-diffusion of n-decane in zeolite NaX was studied by NMR PFG method. The situation when the liquid was only in the crystalline channels was studied in details. The restricted molecular motion of liquid in the crystalline channels was observed. The reasons of the anomalous self-diffusion of n-decane in zeolite bed were stated. The technique of the determination of the

A. V. Uryadov; V. D. Skirda

2001-01-01

105

Aluminosilicate melts: structure, composition and temperature  

NASA Astrophysics Data System (ADS)

The anionic structure of aluminosilicate melts of intermediate degree of polymerization (NBO/T = 0.5) and with along the composition join (LS4-LA4) has been examined in-situ to 1480°C, and compared with recent data for melts along the analog composition join and with less polymerized melts along the join and O_5. With , the anionic equilibrium, (1) , adequately describes the structure. With , a second expression, (2) , is required because an additional structural unit, Q1, is stabilized in the melts. The enthalpy, , of reaction (1) increases from - 36 +/-4 kJ/mol in the absence of aluminum to 34+/- 5 kJ/mol at and 64 +/- 4 kJ/mol at Al/(Al + Si) = 0.45. Similar trends are reported for other alkali aluminosilicate melts. Least-squares fitting of abundance of structural units as a function of temperature and bulk composition has been conducted. The unit abundance is dominantly a function of temperature, Al/(Al +Si), and bulk melt polymerization. Configurational entropy and heat capacity of mixing of melts above their glass transition temperatures have been calculated with the aid of the least-squares fitted equations. The values of these parameters indicate that as the ionization potential of the metal cations increases, configurational heat capacity of alkali aluminosilicate melts becomes temperature dependent. As a result, transport properties (viscosity, diffusivity, and conductivity) of such melts will not show Arrhenian behavior even in the high-temperature range. Further, discontinuous changes in entropy and heat capacity of mixing results from temperature-induced changes in types of structural units in the melts. Such discontinuous changes would also be reflected in discontinuous changes of temperature-dependent transport properties.

Mysen, B.

106

Association of Indigo with Zeolites for Improved Color Stabilization  

NASA Astrophysics Data System (ADS)

The durability of an organic colour and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidising conditions, using Raman and UV-visible spectrometric techniques. Blending indigo with MFI is shown to yield the most stable composite in all of our artificial indigo pigments. In absence of defects and substituted cations such as aluminum in the framework of the MFI zeolite matrix, we show that matching the pore size with the dimensions of the guest indigo molecule is the key factor. The evidence for the high colour stability of indigo@MFI opens a new path for modeling the stability of indigo in various alumino-silicate substrates such as in the historical Maya Blue pigment.

Dejoie, Catherine; Martinetto, Pauline; Dooryhée, Eric; van Elslande, Elsa; Blanc, Sylvie; Bordat, Patrice; Brown, Ross; Porcher, Florence; Anne, Michel

2010-10-01

107

Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash  

PubMed Central

A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29Si and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin–Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics. PMID:23687400

Liu, Minmin; Hou, Li-an; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

2013-01-01

108

[Enlargement test of synthesis of MCM-22 zeolite by means of XRD].  

PubMed

On the basis of MCM-22 zeolite synthesis at the static condition in 100 mL lined PTFE autoclave, 250 and 1000 mL stainless steel autoclave respectively, the synthesis of MCM-22 zeolite was studied at the rotating condition in 2, 5 and 200 L autoclave respectively. The samples as-synthesized and calcined were characterized by means of XRD and so on. The resultsshow that all the synthesized samples are the pure MCM-22 zeolites, and their crystallinities were high, and MCM-22 zeolite can be synthesized successfully at the rotating condition in 200 L stainless steel autoclave. PMID:17655132

Shi, Jian-gong; Lu, Guan-zhong; Cao, Gang; Yu, Xiao-dong

2007-05-01

109

Aluminosilicates as controlled molecular environments for selective photochemical and catalytic reactions  

SciTech Connect

This dissertation concerns research that involves photochemical, catalytic and spectroscopic studies of clays, pillared clays and zeolites. Incorporation of uranyl ions into hectorite, montmorillonite, bentonite and vermiculite clays was monitored by XRD and luminescence methods. Excitation and emission characteristics were studied in order to understand the behavior of uranyl ions in clays after various thermal treatments. Luminescence lifetime measurements elucidated the number of uranyl sites. Uranyl-exchanged clays were found to absorb light at lower energies (445-455nm) than analogous uranyl-exchanged zeolites (425nm). Each uranyl-exchanged clay was tested as a catalyst for the photoassisted oxidation of isopropyl alcohol. Energy transfer (ET) between uranyl and Eu(III) ions in different zeolite framework systems was examined. The efficiency of ET (eta/sub t/) was found to be affected by the type of framework present. Pillared bentonites were examined in the hydrocracking of decane. A catalytically and spectroscopically active dopant ion, Cr(III), was introduced into the clays in both pillared and unpillared forms depending upon synthetic conditions. EPR and DRS were employed to monitor the environment of Cr(III) for determination of its location - whether in the micropore structure or associated with alumina pillars. Catalytic behavior based upon this variability of location was examined. Incorporation of Cr(III) ions into an alumina pillar was found to increase the stability and activity with respect to an alumina PILC catalyst. The results of these studies suggest that selective, efficient catalysts can be designed around inorganic ions in aluminosilicate supports.

Carrado, K.A.

1986-01-01

110

Inorganic-organic composite nanoengineered films using self-assembled monolayers for directed zeolite film growth  

SciTech Connect

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Zeolites, or molecular sieves, are aluminosilicate cage structures that are typically grown from a heterogeneous mixture of organic template molecules, inorganic salts of alumina and silica, and water. These zeolites are used in industry for catalytic cracking of hydrocarbons (gasoline manufacture from oil), and contaminant removal from chemical production processes. Within one year, we developed a viable method for the deposition of a quaternary ammonium salt amphiphile onto silicon wafer substrates. Using a biomimetic growth process, we were also able to demonstrate the first thin-film formation of a zeolite structure from such an organic template. Additionally, we synthesized the precursor to another amphiphile which was to be for further studies.

Dye, R.C.; Hermes, R.E.; Martinez, M.G.; Peachey, N.M.

1997-10-01

111

Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template.  

PubMed

There are many viewpoints on the formation mechanisms for zeolites, but the details are not clear. An understanding of the elementary steps for their formation is important for the development of large-scale membranes and efficient manufacturing processes. In this study, the effects of silicon, aluminum, and the incorporation of 18-crown-6 (18C6) ether, on the formation of zeolite rho, using 18C6 as the structure directing agent (SDA) have been investigated by using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray fluorescence spectrometry (EDX), nuclear magnetic resonance spectroscopy (NMR), thermo gravimetric analysis (TGA), and the pH measurement. These results suggested that a zeolite rho has four synthesis steps; (1) 0-3 h, the dehydration and condensation reaction between the silica and alumina to form amorphous aluminosilicates; (2) 3-20 h, the particle growth and aggregation process for the amorphous aluminosilicates; (3) 20-48 h, the crystallization and crystal growth of zeolite rho, with the incorporation of 18C6; and (4) 48-96 h, gentle growth with an increase in Na/Si ratio and a change in rate for the bounding state between the silica- and the alumina-based species. We consider the above to reflect the four steps for the formation of zeolite rho. PMID:22450057

Araki, Sadao; Kiyohara, Yasato; Tanaka, Shunsuke; Miyake, Yoshikazu

2012-06-15

112

Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane  

SciTech Connect

Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

Varoon, Kumar [Univ. of Minnesota, Minneapolis, MN (United States); Zhang, Xueyi [Univ. of Minnesota, Minneapolis, MN (United States); Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States); Brewer, Damien D. [Univ. of Minnesota, Minneapolis, MN (United States); Gettel, Melissa [Univ. of Minnesota, Minneapolis, MN (United States); Kumar, Sandeep [Univ. of Minnesota, Minneapolis, MN (United States); Lee, J. Alex [Univ. of Minnesota, Minneapolis, MN (United States); Maheshwari, Sundeep [Univ. of Minnesota, Minneapolis, MN (United States); Mittal, Anudha [Univ. of Minnesota, Minneapolis, MN (United States); Sung, Chun-Yi [Univ. of Minnesota, Minneapolis, MN (United States); Cococcioni, Matteo [Univ. of Minnesota, Minneapolis, MN (United States); Francis, Lorraine F. [Univ. of Minnesota, Minneapolis, MN (United States); McCormick, Alon V. [Univ. of Minnesota, Minneapolis, MN (United States); Mkhoyan, K. Andre [Univ. of Minnesota, Minneapolis, MN (United States); Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States)

2011-10-06

113

Investigation of aluminosilicate as a solid oxide fuel cell refractory  

NASA Astrophysics Data System (ADS)

Aluminosilicate represents a potential low cost alternative to alumina for solid oxide fuel cell (SOFC) refractory applications. The objectives of this investigation are to study: (1) changes of aluminosilicate chemistry and morphology under SOFC conditions, (2) deposition of aluminosilicate vapors on yttria stabilized zirconia (YSZ) and nickel, and (3) effects of aluminosilicate vapors on SOFC electrochemical performance. Thermal treatment of aluminosilicate under high temperature SOFC conditions is shown to result in increased mullite concentrations at the surface due to diffusion of silicon from the bulk. Water vapor accelerates the rate of surface diffusion resulting in a more uniform distribution of silicon. The high temperature condensation of volatile gases released from aluminosilicate preferentially deposit on YSZ rather than nickel. Silicon vapor deposited on YSZ consists primarily of aluminum rich clusters enclosed in an amorphous siliceous layer. Increased concentrations of silicon are observed in enlarged grain boundaries indicating separation of YSZ grains by insulating glassy phase. The presence of aluminosilicate powder in the hot zone of a fuel line supplying humidified hydrogen to an SOFC anode impeded peak performance and accelerated degradation. Energy dispersive X-ray spectroscopy detected concentrations of silicon at the interface between the electrolyte and anode interlayer above impurity levels.

Gentile, Paul S.; Sofie, Stephen W.

2011-05-01

114

Removal of Phosphate from Aqueous Solution Using Zeolite Synthesized from Fly Ash by Alkaline Fusion Followed by Hydrothermal Treatment  

Microsoft Academic Search

The removal of phosphate from aqueous solution by adsorption process using zeolite synthesized from fly ash was investigated in this study. The XRD patterns revealed that the major crystalline phase of the synthesized zeolite was gismondine. The phosphate immobilization capacity (PIC) increased significantly from 52.7 mg\\/g of fly ash to 102.9 mg\\/g of synthesized zeolite after conversion. The batch experiments were conducted

Mulan Zhang; Huayong Zhang; Dan Xu; Lu Han; Jian Zhang; Luyi Zhang; Wensi Wu; Binghui Tian

2011-01-01

115

Hydrated sodium calcium aluminosilicate: a high affinity sorbent for aflatoxin.  

PubMed

Aluminas, silicas and aluminosilicates were evaluated for their ability to sorb radiolabeled aflatoxin B1 (AFB1) from aqueous solution (in vitro). Hydrated sodium calcium aluminosilicate (HSCAS) was selected for testing in vivo due to its high affinity for AFB1, because of its stable association with AFB1, and its GRAS (generally recognized as safe) status as an anticaking agent. The HSCAS, when added to the diet of Leghorn and broiler chicks at a level of .5%, significantly diminished the adverse effects of feeding 7.5 mg AFB1/kg of feed. Thus, this agent (and other aluminosilicate congeners) may prove effective in the preventive management of aflatoxicosis. PMID:2837754

Phillips, T D; Kubena, L F; Harvey, R B; Taylor, D R; Heidelbaugh, N D

1988-02-01

116

"A Novel Synthesis of Zeolite W..."  

SciTech Connect

Zeolite W has been synthesized using organometallic silicon and aluminum precursors in two hydrothermal systems: organocation containing and organocation-free. The reaction using the organocation yielded a fully crystalline, relatively uniform crystal size product, with no organic molecules occluded in the pores. In contrast, the product obtained from an identical reaction, except for the absence of the organocation, contained amorphous as well as crystalline material and the crystalline phase showed a large diversity of both crystal size and morphology. The use of organometallic precursors, either with or without an organocation, allows for the crystallization of the MER framework at much lower 0H/Si02 and (K+ Na - Al)/Si ratios than is typical of inorganic systems. The reaction products were characterized by XRD, SEM, EDS, and thermal analyses.

Nenoff, Tina M.; Thoma, Steven G.

1999-05-07

117

Diagram of Zeolite Crystals  

NASA Technical Reports Server (NTRS)

The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

2003-01-01

118

Hierarchical zeolites from class F coal fly ash  

NASA Astrophysics Data System (ADS)

Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons up to C9, a performance attesting the hierarchal pore structure. The preliminary techno-economic feasibility assessment demonstrates a net energy saving of 75% and cost saving of 63% compared to the commercial zeolite manufacturing process.

Chitta, Pallavi

119

Crystalline Silica  

Cancer.gov

An abundant natural material, crystalline silica is found in stone, soil, and sand. It is also found in concrete, brick, mortar, and other construction materials. Crystalline silica comes in several forms, with quartz being the most common. Quartz dust is respirable crystalline silica, which means it can be taken in by breathing.

120

Brillouin scattering study on the single-crystal elastic properties of natrolite and analcime zeolites  

NASA Astrophysics Data System (ADS)

The Brillouin light-scattering technique was used to investigate the single-crystal elastic properties of two aluminosilicate zeolites, natrolite (NAT) and analcime (ANA), at ambient conditions. An inversion of the acoustic velocity data results in the full set of elastic stiffness moduli (Cij's) for both materials. From the single-crystal moduli the aggregate adiabatic bulk moduli (Ks), shear moduli (G), and Poisson's ratios (?) were found to be Ks=48.5(1.0) GPa, G=31.6(1.0) GPa, and ?=0.232(5) for NAT, and Ks=59.8(1.2) GPa, G=32.1(1.0) GPa, and ?=0.272(5) for ANA (Voigt-Reuss-Hill averages). The bulk and shear moduli of both zeolites are relatively low compared with those of densely packed aluminosilicates, reflecting an open framework structure of (Al,SiO4) tetrahedra which is easily deformed by bending the Si-O-Al angles. As expected for a less dense crystal, NAT is softer and more compressible than ANA. An evaluation of the directional Young's moduli shows that the compressibility of NAT is nearly uniform along the [100] and [010] axes, while [001] is stiffer, in agreement with previous compression studies. We do not find experimental evidence of negative Poisson's ratios for NAT zeolites as predicted by recent theoretical calculations.

Sanchez-Valle, Carmen; Sinogeikin, Stanislav V.; Lethbridge, Zoe A. D.; Walton, Richard I.; Smith, Christopher W.; Evans, Kenneth E.; Bass, Jay D.

2005-09-01

121

Dietary aluminosilicate supplement enhances immune activity in mice and reinforces clearance of porcine circovirus type 2 in experimentally infected pigs.  

PubMed

Aluminosilicate is the major component of clay minerals such as zeolite, bentonite and clinoptilolite. The minerals possess a number of beneficial activities, especially in regulating the immune system. The aims of the present study were to evaluate immune enhancing effects of dietary aluminosilicate supplement (DAS) in mice, and to demonstrate clearance effects of DAS against porcine circovirus type 2 (PCV2) in experimentally infected pigs as an initial step towards the development of an antibiotic substitute for use in pigs. Relative messenger RNA expression levels of interferon-gamma, interleukin-4 and tumor necrosis factor-alpha, phagocytic activities of polymorphonuclear leucocytes, serum antibody production level and spleen B cell ratio were significantly increased in the DAS groups of mice compared with the control group (each feeding group had three replications with 5 mice each). The results indicated that general immune activity including cellular and humoral immunity could be enhanced by DAS in mice. In experimentally PCV2-infected pigs, the load of viral genome in nasal swab, serum and lung of the DAS group of pigs was significantly decreased compared with the control group at 28 days post-infection (each group three pigs). Corresponding histopathological analyses demonstrated that pigs in the DAS group displayed mild and less severe abnormal changes compared with the control group, indicating that DAS reinforces clearance of PCV2 in experimentally infected pigs. This may relate to general immune enhancing effects of DAS in mice. Therefore DAS will help the health of animal, especially in swine. PMID:20022715

Jung, Bock-Gie; Toan, Nguyen Tat; Cho, Sun-Ju; Ko, Jae-hyung; Jung, Yeon-Kwon; Lee, Bong-Joo

2010-07-14

122

Hydrothermal synthesis and characterization of aluminum-free Mn-? zeolite: a catalyst for phenol hydroxylation.  

PubMed

Zeolite beta, especially heteroatomic zeolite beta, has been widely used in the industries of fine chemicals and petroleum refining because of its outstanding thermal stability, acid resistance, and unique 3-D open-frame structure. In this paper, aluminum-free Mn-? zeolite was hydrothermally synthesized in the SiO2-MnO2-(TEA)2O-NaF-H2O system. The effect of the chemical composition of the precursor mixture to the crystallization of the Al-free Mn-? zeolite was investigated. The synthesized Al-free Mn-? zeolite was characterized by inductively coupled plasma (ICP), XRD, thermogravimetric/differential thermal analysis (TG/DTA), N2 adsorption-desorption, FT-IR, UV-vis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The results show that the synthesized zeolite has a structure of ? zeolite with good crystallinity and Mn ions present in the framework of the zeolite. The synthesized Al-free Mn-? zeolite shows great catalytic activity toward the phenol hydroxylation reaction using H2O2 as the oxidant. Approximately 35% of phenol conversion and ?98% of dihydroxybenzene selectivity can be obtained under the optimal conditions. PMID:25556927

He, Zhen; Wu, Juan; Gao, Bingying; He, Hongyun

2015-02-01

123

ZEOLITE CHARACTERIZATION TESTING  

SciTech Connect

The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

Jacobs, W; Herbert Nigg, H

2007-09-13

124

Composite zeolite membranes  

DOEpatents

A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

2002-01-01

125

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS  

SciTech Connect

The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

Conrad Ingram; Mark Mitchell

2004-06-30

126

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS  

SciTech Connect

The focus of this project is to improve the catalytic performance of zeolite Y for petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-25 nm) inside nanoporous silicate or aluminosilicate hosts. The encapsulated zeolite nanoparticles are expected to possess reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction and the blocking of the zeolite pores and active sites will be minimized. In this phase of the project, procedures for the synthesis of ordered nanoporous silica, such as SBA-15, using block copolymers and nonionic surfactant were successful reproduced. Expansion of the pores sizes of the nanoporous silica using trimethylbenzene is suggested based on shift in the major X-Ray Diffraction peak in the products to lower 2 angles compared with the parent SBA-15 material. The synthesis of ordered nanoporous materials with aluminum incorporated in the predominantly silicate framework was attempted but is not yet successful, and the procedures needs will be repeated and modified as necessary. Nanoparticles of zeolite Y of particle sizes in the range 40 nm to 120 nm were synthesized in the presence of TMAOH as the particle size controlling additive.

Conrad Ingram

2003-09-03

127

Hydraulic conductivity of compacted zeolites.  

PubMed

Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (?(dmax)) of fine zeolite was greater than that of granular zeolites. The ?(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low ?(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study. PMID:23460541

Oren, A Hakan; Ozdamar, Tu?çe

2013-06-01

128

Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates  

SciTech Connect

The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

Schneider, E.

1985-11-01

129

Preparation of functionalized zeolitic frameworks  

DOEpatents

The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

2012-11-20

130

Preparation of functionalized zeolitic frameworks  

DOEpatents

The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

2014-08-19

131

Preparation of functionalized zeolitic frameworks  

DOEpatents

The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

2013-07-09

132

Determining the aluminium occupancy on the active T-sites in zeolites using X-ray standing waves  

NASA Astrophysics Data System (ADS)

Zeolites are microporous crystalline materials that find wide application in industry, for example, as catalysts and gas separators, and in our daily life, for example, as adsorbents or as ion exchangers in laundry detergents. The tetrahedrally coordinated silicon and aluminium atoms in the zeolite unit cell occupy the so-called crystallographic T-sites. Besides their pore size, the occupation of specific T-sites by the aluminium atoms determines the performance of the zeolites. Despite its importance, the distribution of aluminium over the crystallographic T-sites remains one of the most challenging, unresolved issues in zeolite science. Here, we report how to determine unambiguously and directly the distribution of aluminium in zeolites by means of the X-ray standing wave technique using brilliant, focused X-rays from a third-generation synchrotron source. We report in detail the analysis of the aluminium distribution in scolecite, which demonstrates how the aluminium occupancy in zeolites can systematically be determined.

van Bokhoven, Jeroen A.; Lee, Tien-Lin; Drakopoulos, Michael; Lamberti, Carlo; Thieß, Sebastian; Zegenhagen, Jörg

2008-07-01

133

Reclaiming silver from silver zeolite  

Microsoft Academic Search

Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and\\/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite

Reimann

1991-01-01

134

ZSM-5 zeolite nanosheets with improved catalytic activity synthesized using a new class of structure-directing agents.  

PubMed

A new series of multiquaternary ammonium structure-directing agents, based on 1,4-diazabicyclo[2.2.2]octane, was prepared. ZSM-5 zeolites with nanosheet morphology (10?nm crystal thickness) were synthesized under hydrothermal conditions using multiquaternary ammonium surfactants as the zeolite structure-generating agents. Both wide-angle and small-angle diffraction patterns were obtained using only a suitable structure-directing agent under a specific zeolite synthesis composition. A mechanism of zeolite formation is proposed based on the results obtained from various physicochemical characterizations. ZSM-5 materials were investigated in catalytic reactions requiring medium to strong acidity, which are important for the synthesis of a wide range of industrially important fine and specialty chemicals. The catalytic activity of ZSM-5 materials was compared with that of the conventional ZSM-5 and amorphous mesoporous aluminosilicate Al-MCM-41. The synthesis strategy of the present investigation using the new series of structure-directing agents could be extended for the synthesis of other related zeolites or other porous materials in the future. Zeolite with a structural feature as small as the size of a unit cell (5-10?nm) with hierarchically ordered porous structure would be very promising for catalysis. PMID:25056112

Kore, Rajkumar; Srivastava, Rajendra; Satpati, Biswarup

2014-09-01

135

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST  

SciTech Connect

The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

Conrad Ingram; Mark Mitchell

2005-03-21

136

The influence of sodium carbonate on sodium aluminosilicate crystallisation and solubility in sodium aluminate solutions  

Microsoft Academic Search

Isothermal batch precipitation experiments have been carried out in synthetic Bayer liquors to investigate the effects of sodium carbonate concentration on both silica solubility and the crystallisation of sodium aluminosilicates. At both 90 and 160°C cancrinite (generically defined as a sodium aluminosilicate of space group P63) is the stable solid phase. Sodalite (generically defined as a sodium aluminosilicate with space

Kali Zheng; Andrea R. Gerson; Jonas Addai-Mensah; Roger St. C. Smart

1997-01-01

137

Synthesis and characterization of activated carbo-aluminosilicate material from oil shale  

E-print Network

Synthesis and characterization of activated carbo-aluminosilicate material from oil shale Reyad activated carbo-aluminosilicate materials were prepared from oil shale by chemical activation. The chemical Published by Elsevier Inc. Keywords: Synthesis; Activated carbo-aluminosilicate; Adsorption; Oil shale

Shawabkeh, Reyad A.

138

Luminescent properties of bismuth centres in aluminosilicate optical fibres  

SciTech Connect

The shape and spectral position of the luminescence bands of bismuth-doped aluminosilicate glass fibres are shown to depend on excitation power and wavelength. This indicates that the red and IR luminescence bands are composed of several components. The absorption and radiative transitions involved are identified, and a diagram of energy levels and transitions is obtained for four modifications of a bismuth centre in different environments in the aluminosilicate glass network. The effect of local environment on the optical properties of the bismuth centres is examined. (optical fibres and waveguides)

Bulatov, Lenar I [M. V. Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Mashinskii, Valerii M; Dvoirin, Vladislav V; Dianov, Evgenii M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Kustov, Evgenii F [Moscow Power Engineering Institute, Moscow (Russian Federation)

2010-02-28

139

Aluminosilicate and aluminosilicate based polymer composites: Present status, applications and future trends  

NASA Astrophysics Data System (ADS)

Aluminosilicates have traditionally been important materials for applications related to adsorbents, water softeners, catalysis and mechanical and thermal reinforcement due to their high surface area, excellent thermal/hydrothermal stability, high shape-selectivity and superior ion-exchange ability. Recently, their use as polymer fillers has allowed to increasingly extending their application range to innovative areas such as medical and biological fields as well as in sensors, filtration membranes, energy storage and novel catalysis routes. Further, the large versatility and tailoring possibilities of both filler and matrix indicates this area as one of the enabling key technologies of the near future. This work summarizes the main developments up to date in this increasingly interesting field, focuses on the main applications already developed as well as on the key challenges for the near future.

Lopes, A. C.; Martins, P.; Lanceros-Mendez, S.

2014-08-01

140

Advances in nanosized zeolites  

NASA Astrophysics Data System (ADS)

This review highlights recent developments in the synthesis of nanosized zeolites. The strategies available for their preparation (organic-template assisted, organic-template free, and alternative procedures) are discussed. Major breakthroughs achieved by the so-called zeolite crystal engineering and encompass items such as mastering and using the physicochemical properties of the precursor synthesis gel/suspension, optimizing the use of silicon and aluminium precursor sources, the rational use of organic templates and structure-directing inorganic cations, and careful adjustment of synthesis conditions (temperature, pressure, time, heating processes from conventional to microwave and sonication) are addressed. An on-going broad and deep fundamental understanding of the crystallization process, explaining the influence of all variables of this complex set of reactions, underpins an even more rational design of nanosized zeolites with exceptional properties. Finally, the advantages and limitations of these methods are addressed with particular attention to their industrial prospects and utilization in existing and advanced applications.

Mintova, Svetlana; Gilson, Jean-Pierre; Valtchev, Valentin

2013-07-01

141

Synthesis, deposition and characterization of magnesium hydroxide nanostructures on zeolite 4A  

SciTech Connect

Research highlights: {yields} Reports a simple precipitation-growth method to produce nanostructures of Mg(OH){sub 2} on the surface of zeolite 4A. {yields} Able to control the growth of the nanostructures by manipulating the experimental procedure. {yields} Able to deposit Mg(OH){sub 2} onto specific sites namely bridging hydroxyl protons (SiOHAl) on the surface of zeolite 4A. -- Abstract: The precipitation and self-assembly of magnesium hydroxide Mg(OH){sub 2} nanopetals on dispersed zeolite 4A particles was investigated. Mg(OH){sub 2}/zeolite nanocomposites were produced from magnesium chloride solutions and characterized via X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared analysis (FTIR), and solid state NMR. It was determined that Mg(OH){sub 2} interacted with bridging hydroxyl protons (SiOHAl) on the zeolite surface, but not with silanol or aluminol groups. NMR analysis showed that 13% of the tetrahedral Al sites on the zeolite were converted to octahedral Al. The zeolite structure and crystallinity remained intact after treatment, and no dealumination reactions were detected. This suggests that the deposition-precipitation process at ambient conditions is a facile method for controlling Mg(OH){sub 2} nanostructures on zeolites.

Koh, Pei-Yoong; Yan, Jing; Ward, Jason; Koros, William J. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100 (United States)] [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100 (United States); Teja, Amyn S., E-mail: amyn.teja@chbe.gatech.edu [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100 (United States); Xu, Bo [School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332-0295 (United States)] [School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332-0295 (United States)

2011-03-15

142

Removal of zinc, copper and lead by natural zeolite-a comparison of adsorption isotherms.  

PubMed

An uptake of zinc (Zn), copper (Cu), and lead (Pb) from aqueous solutions by ion exchange on natural zeolitic tuff has been studied. The Croatian zeolite clinoptilolite from the Donje Jesenje deposit has been used as a natural ion exchanger. The efficiency of removal is higher for Pb and Cu than for Zn ions. Measured concentrations of Si in the liquid phase identify the detachment of the aluminosilicate structure during ion exchange in the presence of H(+) and OH(-) ions. The adsorption isotherm equations; Langmuir-Freundlich, Redlich-Petersen, Toth, Dubinin-Radushkevich, modified Dubinin-Radushkevich, and Lineweawer-Burk were derived from the basic empirical equations, and used for calculation of ion exchange parameters. The best fitting of experimental results to the proposed isotherms was observed in models that assume that ionic species bind first at energetically most favorable sites, with multi-layer adsorption taking place subsequently. PMID:15026244

Peri?, J; Trgo, M; Vukojevi? Medvidovi?, N

2004-04-01

143

Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.  

PubMed

In this study, lactic acid and biomass production on liquid distillery stillage from bioethanol production with Lactobacillus rhamnosus ATCC 7469 was studied. The cells were immobilized onto zeolite, a microporous aluminosilicate mineral and the lactic acid production with free and immobilized cells was compared. The immobilization allowed simple cell separation from the fermentation media and their reuse in repeated batch cycles. A number of viable cells of over 10(10) CFU g(-1) of zeolite was achieved at the end of fourth fermentation cycle. A maximal process productivity of 1.69 g L(-1), maximal lactic acid concentration of 42.19 g L(-1) and average yield coefficient of 0.96 g g(-1) were achieved in repeated batch fermentation on the liquid stillage without mineral or nitrogen supplementation. PMID:23186681

Djuki?-Vukovi?, Aleksandra P; Mojovi?, Ljiljana V; Joki?, Bojan M; Nikoli?, Svetlana B; Pejin, Jelena D

2013-05-01

144

Iron silicates, iron-modulated zeolite catalysts, and molecular models thereof.  

PubMed

Iron centres incorporated in silicate frameworks or located in their pores have been shown to possess unique catalytic properties. As compared to aluminosilicates this area of zeolite chemistry is much younger and in the first part of this review the findings made so far are summarised. Molecular model compounds may help to understand the formation, corrosion and reactivity of such materials or to even develop new ones. Hence, the subsequent parts deal with molecular iron siloxides, the number of which is still quite limited, and their behaviour also in relation to the iron-modified zeolites is outlined. At first, compounds based on an incompletely condensed cubic silsequioxane are discussed, before iron(III) complexes of more basic siloxide ligands with varying steric demands are described. Finally, recent developments based on branched polydentate siloxides are presented. PMID:24939619

Pinkert, Denise; Limberg, Christian

2014-07-21

145

Multicomponent aluminosilicate glasses: Structure and acid corrosion  

NASA Astrophysics Data System (ADS)

The structure, acid durability, and surface layer formation of two series of fully polymerized aluminosilicate glasses with (CaO+Na2O):(Al 2O3) molar ratios of unity were examined. In particular, the effects of varying the network composition (Al2O3:SiO 2) on bulk glass structure, acid dissolution rate, and surface layer structure were determined. Surface layer formation and structure was investigated using a host of analytical techniques as a function of these compositional variables. It is shown that although the (CaO+Na2O):(Al2O 3) molar ratio remains unity throughout the series, a fully polymerized structure (expected based on "traditional" glass structure models) could not be validated. Bulk glass structures were determined experimentally with ultra-violet Raman spectroscopy (UV-Raman), infrared absorption spectroscopy (IR-absorption), and 29Si magic angle spinning nuclear magnetic resonance (29Si MAS-NMR), and were modeled with molecular dynamic (MD) simulations. The relative concentration of network bonding structures including: non-bridging oxygen (NBO) species, Al-O-Al bonding, and oxygen triclusters, were determined. These characteristics were used to explain dissolution rate, modifier release rate, and surface layer formation of the glasses when exposed to acid. Dissolution rate decreases with increasing Si-O-Si concentration. Dissolution and surface layer formation were the result of breaking network forming bonds (Al-O-Si and Al-O-Al), release of aluminum, sodium, and calcium at equal rates, and rapid re-polymerization of insoluble silica. The surface layers did not form through diffusion-limited ion-exchange between proton-bearing solution species and modifier ions within the glass. The transformed surface layers were found to be microporous, more structurally ordered than the bulk glass, and to contain primarily 3-membered and 4-membered silicate rings (with terminal silanols and trapped molecular water). The processes involved in the layer transformation were simulated using MD, and the resultant layer structures were consistent with the experimental 29Si MAS-NMR results; specifically localized condensation (relaxation) of insoluble silica as the reaction proceeds into the bulk glass.

Mellott, Nathan Petteys

146

A high acid mesoporous USY zeolite prepared by alumination  

NASA Astrophysics Data System (ADS)

A high-acidity HUSY zeolite with mesoporous structure was prepared by alumination with a dilute aqueous NaAlO2 solution and characterized by XRD, N2 adsorption, IR framework vibration and 29Si MAS NMR methods. The results indicated the extra-framework aluminum was reinserted into the tetrahedral framework through isomorphic substitution of framework Si (0Al) sites by Al ions, whereas the crystal and micropore structure were unaltered. FTIR spectra of hydroxyl vibrations and pyridine adsorbed on realuminated zeolites showed that the number of Brønsted acid sites and strong Lewis acid sites increased whereas weak Lewis acid sites decreased twice. The mesoporous structure composed of inter-and intra-crystalline pores in the aluminated HUSY increased the external surface area of the zeolite, improving accessibility of molecules to the active sites and enhancing its catalytic ability. The realuminated HUSY zeolite supported with Ru catalyst exhibited a higher catalytic activity for benzene hydrogenation than the parent HUSY zeolite; the reaction rate in comparison to the mesozeolite increased by 5.5 times.

Ma, Jinghong; Kang, Yuhong; Ma, Ning; Hao, Wenming; Wang, Yan; Li, Ruifeng

2013-01-01

147

Synthesis and characterization of zeolites prepared from industrial fly ash.  

PubMed

In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol?·?dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol?·?dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol?·?dm(-3) NaOH?+?0.4 dm(3) of 3 mol?·?dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2)?·?g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2)?·?g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq?·?g(-1), Na-P1 at 0.72 meq?·?g(-1), and sodalite at 0.56 meq?·?g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination. PMID:24838802

Franus, Wojciech; Wdowin, Magdalena; Franus, Ma?gorzata

2014-09-01

148

Clinoptilolite zeolitized tuff from Central Alborz Range, North Iran  

NASA Astrophysics Data System (ADS)

Zeolites are hydrated alumino-silicates of the alkaline and alkaline earth cations, principally sodium, potassium, calcium, and magnesium (Iijima 1980; Hay 1981). Zeolites occur principally in unmetamorphosed sedimentary rocks and are particularly widespread in volcani-clastic strata (Hay, 1978). Clinoptilolite is a natural zeolite of the heulandite group with the simplified formula of (Na, K)6 Si30 Al6 O72 .nH2. It is the most common natural zeolite found mainly in sedimentary rocks of volcanic origin. Alborz zone is one of the important geological divisions in Iran. This zone is restricted to Kopeh dagh zone in North & Central Iranian zone in South and is a region of active deformation within the broad Arabian-Eurasia collision zone (Allen et al. 2003). The zeolitized green tuff belt from Central Alborz which introduce here are made of volcanoclastic sequence of Karaj Formation. This belt is about 40 km long along Alborz Range and is Eocene in age. Zeolites and associated minerals of this altered vitric tuff studied. Zeolitization took place in some beds of Karaj Formations, with average range of 3 to 300 meters thickness. There are several gypsum lenses which interbed with a widespread green tuff succession in the studied area. On the basis of chemical composition these tuffs are in the range of acid to intermediate volcanic rocks. Also magmatic affinity is calc-alkaline and geological setting of the area belongs to volcanic arc granitoid. Petrographic data has shown that various shape and size of shard glass are the main component of tuffs. Based on the field studies, detail microscopy, XRD and electron microprobe analysis (EMPA), the following main minerals are determined: Clinoptilolite+montmorillonite+crystobalite. Clinoptilolite and smectite are predominant minerals in all altered samples. Concerning the Si/Al ratio of 40 point analyses of glass shards the Alborz tuff has clinoptilolite composition. Otherwise the chemical composition of altered shard glass is very similar to clinoptilolite structural formula. By using medium results of chemical data the structural formula for Firuzkuh clinoptilolite is as follow: Si 29.91 Al 6.01 Fe2+ 951 Mg2+ 0.393 Ca 0.222 Na 3.162 K 1.422 Paleogeographic conditions have provided a marginal shallow seawater environment which has been filled by volcanoclastics sequence. In Eocene the zeolitization occur as layers which are confined stratigraphically, it seems this process that took place only in preferred tuffaceous horizons which enriched by shard glass. So the term staratabound can be used for this type zeolitization. In altered tuffs there are a close relationship between clinoptiloite and montmorilonite in some deposits. Alborz range, there was an occasionally marine environment (existence of marine microfossils) with humid climate (remnants of plants in some points). Transformation process (glass zeolite + smectite) provides a further silica contribution to the system, which finally in supersaturation and decreasing pH favors the precipitation of silica in altered tuff. This may have occurred when ground water flow become to mix with saline water to lowering the pH.

Taghipour, Batoul

2010-05-01

149

Study of molecular mobility of fluid in zeolite NaX.  

PubMed

The self-diffusion of n-decane in zeolite NaX was studied by NMR PFG method. The situation when the liquid was only in the crystalline channels was studied in details. The restricted molecular motion of liquid in the crystalline channels was observed. The reasons of the anomalous self-diffusion of n-decane in zeolite bed were stated. The technique of the determination of the genuine self-diffusion coefficient in such porous systems was proposed. The genuine self-diffusion coefficients for system NaX/n-decane were obtained. PMID:11445324

Uryadov, A V; Skirda, V D

2001-01-01

150

ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS  

E-print Network

ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS By JORGE ANTONIO JEREZ-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS Abstract by Jorge Antonio Jerez Briones, Ph.D. Washington of reactive chemicals in the subsurface. Most commonly, silica sand is used as the model porous medium. Iron

Flury, Markus

151

Al Coordination Changes in High-Pressure Aluminosilicate Liquids  

Microsoft Academic Search

Understanding the effect of pressure on aluminosilicate glass and liquid structure is critical to understanding magma flow at depth. Aluminum coordination has been predicted by mineral phase analysis and molecular dynamic calculations to change with increasing pressure. Nuclear magnetic resonance studies of glasses quenched from high pressure provide clear evidence for an increase in the average coordination of Al with

J. L. Yarger; K. H. Smith; R. A. Nieman; J. Diefenbacher; G. H. Wolf; B. T. Poe; P. F. McMillan

1995-01-01

152

Separations Using Zeolite Membranes  

Microsoft Academic Search

This overview describes some of the main features of the use of zeolite membranes for separation applications. Four different types of separations are considered: separation of non-adsorbing compounds, of organic molecules, of permanent gases from vapors, and of water (or polar molecules) from organic (or non-polar) species. Several factors, such as the limiting pore size and pore size distribution, surface

Joaquín Coronas; Jesús Santamaría

1999-01-01

153

Diffusion in zeolites  

Microsoft Academic Search

Recent developments in the study of intracrystalline diffusion in zeolites by novel macroscopic methods and the results obtained by some of these methods are reviewed. For many systems there is a significant discrepancy between the macroscopic and microscopic (QENS, PFG NMR) diffusivity values. A possible explanation is suggested.

Douglas M. Ruthven

1995-01-01

154

The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins  

NASA Astrophysics Data System (ADS)

Iron-57 resonant absorption Mössbauer spectroscopy was used to describe the redox relations and structural roles of Fe 3+ and Fe 2+ in meta-aluminosilicate glasses. Melts were formed at 1500 °C in equilibrium with air and quenched to glass in liquid H 2O with quenching rates exceeding 200 °C/s. The aluminosilicate compositions were NaAlSi 2O 6, Ca 0.5AlSi 2O 6, and Mg 0.5AlSi 2O 6. Iron oxide was added in the form of Fe 2O 3, NaFeO 2, CaFe 2O 4, and MgFe 2O 4 with total iron oxide content in the range ˜0.9 to ˜5.6 mol% as Fe 2O 3. The Mössbauer spectra, which were deconvoluted by assuming Gaussian distributions of the hyperfine field, are consistent with one absorption doublet of Fe 2+ and one of Fe 3+. From the area ratios of the Fe 2+ and Fe 3+ absorption doublets, with corrections for differences in recoil-fractions of Fe 3+ and Fe 2+, the Fe 3+/?Fe is positively correlated with increasing total iron content and with decreasing ionization potential of the alkali and alkaline earth cation. There is a distribution of hyperfine parameters from the Mössbauer spectra of these glasses. The maximum in the isomer shift distribution function of Fe 3+, ?Fe 3+, ranges from about 0.25 to 0.49 mm/s (at 298 K relative to Fe metal) with the quadrupole splitting maximum, ?Fe 3+, ranging from ˜1.2 to ˜1.6 mm/s. Both ?Fe 3+ and ?Fe 2+ are negatively correlated with total iron oxide content and Fe 3+/?Fe. The dominant oxygen coordination number Fe 3+ changes from 4 to 6 with decreasing Fe 3+/?Fe. The distortion of the Fe 3+-O polyhedra of the quenched melts (glasses) decreases as the Fe 3+/?Fe increases. These polyhedra do, however, coexist with lesser proportions of polyhedra with different oxygen coordination numbers. The ?Fe 2+ and ?Fe 2+ distribution maxima at 298 K range from ˜0.95 to 1.15 mm/s and 1.9 to 2.0 mm/s, respectively, and decrease with increasing Fe 3+/?Fe. We suggest that these hyperfine parameter values for the most part are more consistent with Fe 2+ in a range of coordination states from 4- to 6-fold. The lower ?Fe 2+-values for the most oxidized melts are consistent with a larger proportion of Fe 2+ in 4-fold coordination compared with more reduced glasses and melts.

Mysen, Bjorn O.

2006-05-01

155

Zeolite crystal growth in space  

NASA Technical Reports Server (NTRS)

The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

1991-01-01

156

SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES  

SciTech Connect

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

MICHAEL GRUTZECK

1998-10-31

157

SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES  

SciTech Connect

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

Michael Grutzeck

1999-04-30

158

Structural effects induced by 2.5 MeV proton beam on zeolite 4A: Positron annihilation and X-ray diffraction study  

NASA Astrophysics Data System (ADS)

Structural changes induced by 2.5 MeV proton beam in zeolite 4A were studied at fluences of 1.1016, 8.1016 and 2.1017 ion/cm2. Positron lifetime (LT) measurements were performed in vacuum after a heat treatment to remove the water from samples. X-ray diffraction method (XRD) was also applied to determine the changes in the crystallinity of zeolite. Gradual transformation of the crystalline structure to amorphous one can be observed in dependence of the implanted doses. Combination of LT and XRD provides a consistent view on structural effects induced by H+ beam in zeolite 4A.

Tuyen, L. A.; Szilágyi, E.; Kótai, E.; Lázár, K.; Bottyán, L.; Dung, T. Q.; Cuong, L. C.; Khiem, D. D.; Phuc, P. T.; Nguyen, L. L.; Hue, P. T.; Hue, N. T. N.; Tao, C. V.; Chuong, H. D.

2015-01-01

159

Zeolite exposure and associated pneumoconiosis  

SciTech Connect

Naturally occurring zeolite minerals are aluminum silicates widespread in the earth's crust. Several of these minerals have fibrous forms and have been implicated as a possible cause of benign and malignant diseases of the lung and pleura in Turkey. This report describes a patient, living in an area of Nevada rich in zeolites, who presented with idiopathic pleural thickening and pulmonary fibrosis associated with extensive pulmonary deposition of zeolites.

Casey, K.R.; Shigeoka, J.W.; Rom, W.N.; Moatamed, F.

1985-06-01

160

EMM-23: a stable high-silica multidimensional zeolite with extra-large trilobe-shaped channels.  

PubMed

Stable, multidimensional, and extra-large pore zeolites are desirable by industry for catalysis and separation of bulky molecules. Here we report EMM-23, the first stable, three-dimensional extra-large pore aluminosilicate zeolite. The structure of EMM-23 was determined from submicron-sized crystals by combining electron crystallography, solid-state nuclear magnetic resonance (NMR), and powder X-ray diffraction. The framework contains highly unusual trilobe-shaped pores that are bound by 21-24 tetrahedral atoms. These extra-large pores are intersected perpendicularly by a two-dimensional 10-ring channel system. Unlike most ideal zeolite frameworks that have tetrahedral sites with four next-nearest tetrahedral neighbors (Q(4) species), this unusual zeolite possesses a high density of Q(2) and Q(3) silicon species. It is the first zeolite prepared directly with Q(2) species that are intrinsic to the framework. EMM-23 is stable after calcination at 540 °C. The formation of this highly interrupted structure is facilitated by the high density of extra framework positive charge introduced by the dicationic structure directing agent. PMID:25198917

Willhammar, Tom; Burton, Allen W; Yun, Yifeng; Sun, Junliang; Afeworki, Mobae; Strohmaier, Karl G; Vroman, Hilda; Zou, Xiaodong

2014-10-01

161

Solvent-free syntheses of hierarchically porous aluminophosphate-based zeolites with AEL and AFI structures.  

PubMed

Development of sustainable routes for synthesizing aluminophosphate-based zeolites are very important because of their wide applications. As a typical sustainable route, solvent-free synthesis of zeolites not only decreases polluted wastes but also increases product yields. Systematic solvent-free syntheses of hierarchically porous aluminophosphate-based zeolites with AEL and AFI structures is presented. XRD patterns and SEM images show that these samples have high crystallinity. N2 sorption isotherm tests show that these samples are hierarchically porous, and their surface areas are comparable with those of corresponding zeolites from hydrothermal route. Chosen as an example, catalytic oxidation of ethylbenzene with O2 shows that cobalt substituted APO-11 from the solvent-free route (S-CoAPO-11) is more active than conventional CoAPO-11 from hydrothermal route owing to the sample hierarchical porosity. PMID:25348837

Jin, Yinying; Chen, Xian; Sun, Qi; Sheng, Na; Liu, Yan; Bian, Chaoqun; Chen, Fang; Meng, Xiangju; Xiao, Feng-Shou

2014-12-22

162

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST  

SciTech Connect

The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and physicochemical characteristics will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

Conrad Ingram; Mark Mitchell

2005-03-31

163

One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals.  

PubMed

A hierarchical mesoporous network of zeolite beta with very high micropore as well as mesopore volume was synthesized without the need of a porogen at near 100% yield in the form of easily retrievable micrometer-sized particles. This was achieved by a dense-gel synthesis utilizing steam-assisted conversion (SAC) to induce a burst of nucleation. During the first phase of the synthesis, individual, evenly sized zeolite beta nanoparticles are formed that subsequently condense into a porous network displaying uniform mesopores. The final product consists of hierarchical self-sustaining macroscopic zeolite aggregates assembled from 20 nm crystalline domains of zeolite beta. The small size of the zeolite crystals in the resulting materials gives rise to mesopores with dominant pore sizes of about 13 nm. Large surface areas between 630 and 750 m(2)/g and total pore volumes up to 0.9 mL/g were obtained without sacrificing the microporosity (usually larger than 0.20 mL/g). Crystallization conditions were optimized for different Si/Al ratios between 10 and 33. A complete conversion into hierarchical zeolite beta was achieved in only a few hours at 170-180 °C if the amount of water present during the steam-assisted conversion was adequately adjusted. This dense gel steam conversion process proves to be a highly efficient strategy for fabricating hierarchical zeolite beta networks in a single step. PMID:21410255

Möller, Karin; Yilmaz, Bilge; Jacubinas, Richard M; Müller, Ulrich; Bein, Thomas

2011-04-13

164

Ammonium removal from aqueous solution by zeolite X synthesized from halloysite mineral.  

PubMed

Zeolite X was successfully synthesized from natural halloysite mineral by hydrothermal method. The synthesized zeolite X was characterized by XRD, SEM, TEM and HRTEM. The characterization indicated that zeolite X had high crystallinity together with symmetrical and uniform pore channels. Ammonium (NH?+) adsorption properties of zeolite X were studied using batch experiments. The results revealed that high initial concentration and low temperature favored NH?+ adsorption on zeolite X. Both Langmuir and Freundlich isotherms fit well with the equilibrium data. Kinetic studies showed that the adsorption followed pseudo-second-order model. Intra-particle diffusion analysis demonstrated that NH?+ diffused quickly among the particles at the initial 20 min of the adsorption process, and then the diffusion slowed down and stabilized. Thermodynamic parameters such as change in free energy (?G?), enthalpy (?H?) and entropy (?S?) indicated that the adsorption was spontaneous and exothermic at ambient conditions. The reusable ability of zeolite X was also evaluated. Due to its low cost, high adsorption capacity and fast adsorption rate, zeolite X synthesized from halloysite could be used as an effective and environmental-friendly adsorbent for NH?+ removal. PMID:20729599

Zhao, Yafei; Zhang, Bing; Zhang, Xiang; Wang, Jinhua; Liu, Jindun; Chen, Rongfeng

2010-01-01

165

Molecular Chemistry in a Zeolite: Genesis of a Zeolite Y-Supported Ruthenium Complex Catalyst  

SciTech Connect

Dealuminated zeolite Y was used as a crystalline support for a mononuclear ruthenium complex synthesized from cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2}. Infrared (IR) and extended X-ray absorption fine structure spectra indicated that the surface species were mononuclear ruthenium complexes, Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+}, tightly bonded to the surface by two Ru-O bonds at Al{sup 3+} sites of the zeolite. The maximum loading of the anchored ruthenium complexes was one complex per two Al{sup 3+} sites; at higher loadings, some of the cis-Ru(acac){sub 2}(C{sub 2}H{sub 4}){sub 2} was physisorbed. In the presence of ethylene and H{sub 2}, the surface-bound species entered into a catalytic cycle for ethylene dimerization and operated stably. IR data showed that at the start of the catalytic reaction, the acac ligand of the Ru(acac)(C{sub 2}H{sub 4}){sub 2}{sup 2+} species was dissociated and captured by an Al{sup 3+} site. Ethylene dimerization proceeded 600 times faster with a cofeed of ethylene and H{sub 2} than without H{sub 2}. These results provide evidence of the importance of the cooperation of the Al{sup 3+} sites in the zeolite and the H{sub 2} in the feed for the genesis of the catalytically active species. The results presented here demonstrate the usefulness of dealuminated zeolite Y as a nearly uniform support that allows precise synthesis of supported catalysts and detailed elucidation of their structures.

Ogino, I.; Gates, B.C.

2009-05-22

166

Further studies of effects of sodium aluminosilicate on egg shell quality.  

PubMed

Five experiments were conducted using 36 dietary treatments to compare chloride salts and HCl as chemical sources of Cl for the adjustment of dietary Cl when using sodium aluminosilicate (SAS), to compare SAS to natural zeolites (clinoptilolite and mordenite), and to determine the appropriate level of dietary SAS for optimum egg specific gravity. The methods of Na and Cl correction used in the various treatments included altering the levels of NaCl, calcium chloride (CaCl2), potassium chloride (KCl), magnesium chloride (MgCl2), iron chloride (FeCl3), or hydrochloric acid (HCl). Experimental diets were fed for 6 to 8 wk. Results of all experiments (except Experiment 2) indicated that the addition of SAS to layer diets improved egg specific gravity and that correction for Na by removal of NaCl and the addition of HCl was not necessary for SAS to be effective. No beneficial effects of dietary SAS on egg specific gravity were observed when Na and Cl corrections were made using CaCl2, KCl, MgCl2, or FeCl3. The feeding of SAS has no influence on egg production in Experiments 1 and 3 but significantly improved egg production in Experiment 4, when it was added to diets containing 2.75% Ca. An adverse effect on production of feeding SAS was observed, especially at the higher levels of SAS in Experiments 2 and 5. In general, SAS tended to reduce feed consumption, with no effect on egg weight. It was concluded that .75% SAS will improve egg specific gravity approximately 1 to 3 units and that correction for Na was not necessary for SAS to be effective. PMID:2841658

Roland, D A

1988-04-01

167

Development of Li+ alumino-silicate ion source  

SciTech Connect

To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

2009-04-21

168

Solid-state radioluminescent zeolite-containing composition and light sources  

DOEpatents

A new type of RL light source consisting of a zeolite crystalline material, the intralattice spaces of which a tritiated compound and a luminophore are sorbed, and which material is optionally further dispersed in a refractive index-matched polymer matrix.

Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

1992-01-01

169

Microstructural aspects of zeolite formation in alkali activated cements containing high levels of fly ash  

Microsoft Academic Search

Wasteforms made by reaction at elevated temperature of a highly e simulated low level nuclear waste solution, having high sodium ion concentration, with a cementitious blend high in fly ash have been studied. Significant formation of Na-P1 zeolite (gismondine framework) and of a sodalite occurred. The time evolution of the crystalline phases over the first 28 days is reported for

A. A. Kruger; A. R. Brough; A. Katz; T. Bakharev; G. K. Sun; R. J. Kirkpatrick; L. J. Struble; J. F. Young

1995-01-01

170

Zeolite formation from coal fly ash and its adsorption potential  

SciTech Connect

The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant [Chulalongkorn University, Bangkok (Thailand). Department of Chemical Engineering

2009-10-15

171

Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)  

Microsoft Academic Search

We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material,

Prabir K. Roy; Wayne G. Greenway; Joe W. Kwan; Peter A. Seidl; William L. Waldron; James K. Wu

2010-01-01

172

Verified Syntheses of Zeolitic Materials  

NSDL National Science Digital Library

From the International Zeolitic Association comes this online version of the special issue of Microporous and Mesoporous Materials, Volume 22, Issues 4-6, featuring a "cookbook" of "recipes" for making zeolites. Zeolites, of which there are over 100 structure types, occur naturally in some cases, but usually are prepared synthetically. Few are available commercially so researchers wanting to test a zeolite in a new application often must attempt the synthesis of the base zeolite in the laboratory. This book is intended to assist in this endeavor, says the editor, Dr. Harry Robson of Louisiana State University. The recipes can be accessed by material name or structure type. A preface, introductory and explanatory notes, and safety information are provided. The recipes include information on source materials, batch preparation and crystallization instructions, product phase, and XRD characterization. The contributor's name, date of entry, and references accompany each recipe.

173

Oxygen and hydrogen isotope geochemistry of zeolites  

NASA Technical Reports Server (NTRS)

Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

Karlsson, Haraldur R.; Clayton, Robert N.

1990-01-01

174

Enhancing nitrification at low temperature with zeolite in a mining operations retention pond.  

PubMed

Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9?months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July-September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10?g) was added to retention pond water (100?mL) amended with 5?mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1-20?mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass. PMID:22866052

Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y

2012-01-01

175

Enhancing Nitrification at Low Temperature with Zeolite in a Mining Operations Retention Pond  

PubMed Central

Ammonium nitrate explosives are used in mining operations at Diavik Diamond Mines Inc. in the Northwest Territories, Canada. Residual nitrogen is washed into the mine pit and piped to a nearby retention pond where its removal is accomplished by microbial activity prior to a final water treatment step and release into the sub-Arctic lake, Lac de Gras. Microbial removal of ammonium in the retention pond is rapid during the brief ice-free summer, but often slows under ice cover that persists up to 9?months of the year. The aluminosilicate mineral zeolite was tested as an additive to retention pond water to increase rates of ammonium removal at 4°C. Water samples were collected across the length of the retention pond monthly over a year. The structure of the microbial community (bacteria, archaea, and eukarya), as determined by denaturing gradient gel electrophoresis of PCR-amplified small subunit ribosomal RNA genes, was more stable during cold months than during July–September, when there was a marked phytoplankton bloom. Of the ammonia-oxidizing community, only bacterial amoA genes were consistently detected. Zeolite (10?g) was added to retention pond water (100?mL) amended with 5?mM ammonium and incubated at 12°C to encourage development of a nitrifying biofilm. The biofilm community was composed of different amoA phylotypes from those identified in gene clone libraries of native water samples. Zeolite biofilm was added to fresh water samples collected at different times of the year, resulting in a significant increase in laboratory measurements of potential nitrification activity at 4°C. A significant positive correlation between the amount of zeolite biofilm and potential nitrification activity was observed; rates were unaffected in incubations containing 1–20?mM ammonium. Addition of zeolite to retention ponds in cold environments could effectively increase nitrification rates year-round by concentrating active nitrifying biomass. PMID:22866052

Miazga-Rodriguez, Misha; Han, Sukkyun; Yakiwchuk, Brian; Wei, Kai; English, Colleen; Bourn, Steven; Bohnert, Seth; Stein, Lisa Y.

2012-01-01

176

The synthesis of zeolites from fly ash and the properties of the zeolite products  

Microsoft Academic Search

Fly ash produced during the combustion of powdered coal could be converted up to 45% into zeolite. By varying the experimental conditions different types of zeolite were produced, e.g. zeolite Na-P1, zeolite K-G and zeolite ZK19. By this zeolitization process the cation exchange capacity (CEC) was raised from 0.02 to circa 2.4 meq\\/g. Anionic heavy metals were largely extracted by

G Steenbruggen; G. G Hollman

1998-01-01

177

Template-free nanosized faujasite-type zeolites  

NASA Astrophysics Data System (ADS)

Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10–15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm3 g?1) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

2015-04-01

178

Template-free nanosized faujasite-type zeolites.  

PubMed

Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm(3) g(-1)) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings. PMID:25559425

Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

2015-04-01

179

Microstructure and Cs Behavior of Ba-Doped Aluminosilicate Pollucite Irradiated with F+ Ions  

SciTech Connect

Radionuclide 137Cs is one of the major fission products that dominate heat generation in spent fuels over the first 300 hundred years. A durable waste form for 137Cs that decays to 137Ba is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi2O6 is selected as a model waste form to study the decay-induced structural effects. While Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi2O6, they are found in Cs0.9Ba0.1AlSi2O6 and identified as monoclinic Ba2Si3O8. Pollucite is susceptible to electron irradiation induced amorphization. The threshold density of the electronic energy deposition for amorphization is determined to be ~235 keV/nm3. Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite is observed during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report.

Jiang, Weilin; Kovarik, Libor; Zhu, Zihua; Varga, Tamas; Engelhard, Mark H.; Bowden, Mark E.; Nenoff, Tina M.; Garino, Terry

2014-08-07

180

Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings  

NASA Technical Reports Server (NTRS)

The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

Ahlborg, Nadia L.; Zhu, Dongming

2013-01-01

181

Radiation damage of a glass-bonded zeolite waste form using ion irradiation.  

SciTech Connect

Glass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefining process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.4 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.

Allen, T. R.; Storey, B. G.

1997-12-05

182

Physicomechanical properties of polyurethane foam filled with pyrolytic chromium coated aluminosilicate ash microspheres  

Microsoft Academic Search

The possibility of depositing pyrolytic chromium on the surface of aluminosilicate ash microspheres and preparing rigid polyurethane\\u000a foam filled with aluminosilicate ash microspheres was examined. The physicomechanical properties of the materials obtained\\u000a were studied.

L. P. Varlamova; V. K. Cherkasov; G. A. Domrachev; A. M. Ob”edkov; N. M. Semenov; V. A. Egorov; B. S. Kaverin; A. I. Kirillov; S. A. Ryabov; V. A. Izvozchikova; I. V. Pikulin; V. S. Drozhzhin; A. N. Khovrin

2010-01-01

183

Li+ alumino-silicate ion source development for the neutralized drift compression experiment  

Microsoft Academic Search

We report results on lithium alumino-silicate ion source development in preparation for warm dense matter heating experiments on the new neutralized drift compression experiment II. The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the

Prabir K. Roy; Wayne G. Greenway; Joe W. Kwan; Peter A. Seidl; William L. Waldron; James K. Wu

2011-01-01

184

Cesium adsorption on composite ferrocyanide-aluminosilicate adsorbents  

SciTech Connect

The formation of composite ferrocyanide adsorbents prepared on the basis of clinoptilolite is studied by potentiometric titration, X-ray diffraction analysis, and IR spectroscopy, and the nature of ion-exchanging complex is established. Exchange capacity, selectivity, and hydrolytic stability of the sorbents are characterized. Distribution coefficients with modified samples can be as large as 10000 for {sup 137}Cs; however, with increase of the background salt concentration above 0.17 g l{sup -1}, competing ions have noticeable effect on the adsorption properties of the aluminosilicates.

Panasyugin, A.S.; Rat`ko, A.I.; Trofimenko, N.E. [Inst. of General and Inorganic Chemistry, Minsk (Russian Federation)] [and others

1995-11-01

185

Characterisation of frequency doubling in Eu(2+) doped aluminosilicate fibres  

NASA Technical Reports Server (NTRS)

The results of a series of experiments on efficient second-harmonic generation in a fiber with a Eu(2+)-doped aluminosilicate core are reported. The fiber was prepared by the seeding method with CW mode-locked radiation at 1.06 micron and produced ultrastable peak conversion efficiencies of 0.001 during mode-locked readout. Experiments were performed to determine the IR preparation intensity dependence, the stability of the output, and the type of erasure mechanisms which occur. The results are compared with those of germanosilicate fibers and some similarities and differences are discussed.

Driscoll, T. J.; Lawandy, N. M.; Killian, A.; Rienhart, L.; Morse, T. F.

1991-01-01

186

Adsorption of ?-galactosidase on silica and aluminosilicate adsorbents  

NASA Astrophysics Data System (ADS)

It is shown that adsorption of ?-galactosidase of Aspergillus oryzae fungi on mesoporous and biporous silica and aluminosilicate adsorbents and the rate of the process grow along with the diameter of the pores of the adsorbent. It is found that the shape of the adsorption isotherms changes as well, depending on the texture of the adsorbent: the Michaelis constant rises from 0.3 mM for the enzyme in solution to 0.4-0.5 mM for the enzyme on a surface in the hydrolysis of o-nitrophenyl-?-D-galactopyranoside. It is concluded that ?-galactosidase displays its maximum activity on the surface of biporous adsorbents.

Atyaksheva, L. F.; Dobryakova, I. V.; Pilipenko, O. S.

2015-03-01

187

New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes  

SciTech Connect

The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)

2014-05-15

188

Zeolite–Nafion composites as ion conducting membrane materials  

Microsoft Academic Search

Composite membranes formed of zeolitic fillers embedded in Nafion can be made by evaporating the solvents from a suspension of small zeolite crystals in a Nafion solution. Two natural zeolites were selected as fillers: chabazite and clinoptilolite. Membranes with various zeolite content were obtained. Composite membranes with zeolite content up to 40 vol.% exhibited uniform distribution of the zeolite fillers

Vincenzo Tricoli; Francesco Nannetti

2003-01-01

189

Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation reactions  

PubMed Central

Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of ?-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of ?-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate. PMID:24790940

Shamzhy, Mariya; Opanasenko, Maksym; Shvets, Oleksiy; ?ejka, Ji?í

2013-01-01

190

Acoustic study of low-energy activation processes in magnetic rare-earth glasses : amorphous holmium aluminosilicates  

E-print Network

holmium aluminosilicates F. Lerbet and G. Bellessa Laboratoire de Physique des Solides (*), Bâtiment 510 Nous présentons une étude acoustique de verres d'aluminosilicates de différentes teneurs en holmium of aluminosilicate glasses with various holmium contents is reported. The measurements are performed down to 100 m

Paris-Sud XI, Université de

191

The aluminum ordering in aluminosilicates: a dipolar 27Al NMR spectroscopy study.  

PubMed

The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2. PMID:14745814

Gee, Becky A

2004-01-01

192

Copper-containing zeolite catalysts  

DOEpatents

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, G.L.; Kanazirev, V.

1996-12-10

193

Copper-containing zeolite catalysts  

DOEpatents

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

1996-01-01

194

Brillouin scattering properties of lanthano-aluminosilicate optical fiber.  

PubMed

Utilizing measurements on a lanthano-aluminosilicate core optical fiber, the specific effects of lanthana (La2O3) on the Brillouin characteristics of silica-based oxide glass optical fibers are described. Lanthana is an interesting species to investigate since it possesses a wide transparency window covering the common fiber laser and telecom system wavelengths. As might be expected, it is found that the properties of lanthana are very similar to those of ytterbia (Yb2O3), namely, low acoustic velocity, wide Brillouin spectral width, and a negative photoelastic constant, with the latter two properties affording significant reductions to the Brillouin gain coefficient. However, lanthana possesses thermo-acoustic and strain-acoustic coefficients (acoustic velocity versus temperature or strain, TAC and SAC, respectively) with signs that are opposed to those of ytterbia. The lanthano-aluminosilicate (SAL) fiber utilized in this study is Brillouin-athermal (no dependence of the Brillouin frequency on temperature), but not atensic (is dependent upon the strain), which is believed to be, to the best of our knowledge, the first demonstration of such a glass fiber utilizing a compositional engineering approach. PMID:25321361

Dragic, P D; Kucera, C; Ballato, J; Litzkendorf, D; Dellith, J; Schuster, K

2014-09-01

195

Adsorption of unsaturated hydrocarbons on zeolites: the eects of the zeolite framework on adsorption  

E-print Network

Adsorption of unsaturated hydrocarbons on zeolites: the eects of the zeolite framework-FAU) and H-ZSM-5 zeolites have been investigated by both the cluster and embedded cluster approaches with the experimental observation that the ZSM-5 is more acidic than that of FAU zeolite. The adsorption energy

Truong, Thanh N.

196

Behavior of Holocarbons in Zeolitic Materials  

SciTech Connect

This report describes results on this grant over the 3 year period, 1999-2002. The emphasis of the work has continued to shift during 2001-2 from halocarbon adsorption in zeolites towards other separation processes in zeolites. These additional areas include (i) work on lithium-containing zeolites for non-cryogenic air separation, and (ii) the study of nickel phosphate molecular sieves for hydrogen storage. Nevertheless, they continued their experimental and computational work on halocarbons in zeolites.

Dr. Anthony K. Cheetham

2003-12-08

197

Zeolites as media for hydrogen storage  

Microsoft Academic Search

The use of zeolites as media for hydrogen storage was investigated using zeolites of different pore architecture and composition at temperatures from 293 to 573K and pressures from 2.5 to 10.0 MPa. The results suggest that zeolites containing sodalite cages in their structure are particularly suitable. Accordingly, the highest storage capacity was obtained with sodalite, i.e. the zeolite with the

J. Weitkamp; M. Fritz; S. Ernst

1995-01-01

198

Tina M. Nenoff Defect-free Thin Film Zeolite Membranes for H2 Separation and IsolationDefect-free Thin Film Zeolite Membranes for H2 Separation and Isolation  

E-print Network

: synthesis efforts with Al/Si & Si/Ti phases (organic vs. alkali templating) film growth on variety Separation Membranes: Introduction Goal: Synthesis of robust microporous zeolite membranes to improve on H2 Separation Membranes: Objectives Objectives: Synthesis Defect-free Inorganic crystalline thin-film membranes

199

Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties  

SciTech Connect

Bifunctional catalysts consisting of cobalt and nickel supported on HY zeolite were synthesized by solvent excess impregnation and characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, atomic absorption spectroscopy, thermogravimetric analysis and nitrogen adsorption. The profiles of metal reduction on zeolite were obtained by temperature-programmed reduction. The catalytic properties of the bifunctional catalysts were verified by n-hexane hydroconversion. X-ray diffraction and microstructural analyses showed the presence of crystalline phases in HY zeolite and in samples after impregnation. A decrease in the micropore surface area was observed by nitrogen adsorption experiments and attributed to a reduction in the accessibility to micropores. The catalysts showed catalytic activity in the hydroconversion of n-hexane with selectivity to branched hydrocarbons. Such catalytic activity was related to the acid and metallic properties of the bifunctional catalysts used.

Garrido Pedrosa, Anne M. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)]. E-mail: annemgp@yahoo.com; Souza, Marcelo J.B. [Federal University of Sergipe, Department of Chemical Engineering, 49100-000 Sao Cristovao-SE (Brazil); Melo, Dulce M.A. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil); Araujo, Antonio S. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)

2006-06-15

200

Magnetic self-assembled zeolite clusters for sensitive detection and rapid removal of mercury(II).  

PubMed

We reported here the fabrication of a hierarchical mesoporous zeolite nanocomposite using 20 nm crystalline domins of zeolite L as building "bricks" by a simple and general one-step synthetic approach. By taking advantages of the large pore volumes, superparamagnetic iron oxide nanocrystals could be encapsulated into the nanocomposite conveniently for further facilitate separation and detection. In addition, by covalent coupling of fluorescent receptor (rhodamine-hydrazine), the combination of well-defined inorganic nanomaterials and organic receptors could be applied to selective detection of Hg(2+). Importantly, the unique adsorption capacity enabled by the hierarchical mesoporous zeolite and the efficient removal ability form complex multiphase systems by the magnetic characteristic made this multifunctional nanomaterial an excellent probe for detection, adsorption, and removal of Hg(2+) from waste aqueous solution. PMID:22126125

Yin, Meili; Li, Zhenhua; Liu, Zhen; Yang, Xinjian; Ren, Jinsong

2012-01-01

201

SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS  

SciTech Connect

During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and precipitation of bayerite solid particles. (6) Based on analysis of the cleaning solutions from the full-scale test, the 'dirt capacity' of a 40 inch coalescer for these NAS solids was calculated to be 40-170 grams.

Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

2008-10-28

202

POLYMER-ZEOLITE NANOCOMPOSITE HIGH-TEMPERATURE  

E-print Network

POLYMER-ZEOLITE NANOCOMPOSITE HIGH-TEMPERATURE PROTON-EXCHANGE-MEMBRANE FOR FUEL CELLS Prepared For SMALL GRANT (EISG) PROGRAM INDEPENDENT ASSESSMENT REPORT (IAR) POLYMER-ZEOLITE NANOCOMPOSITE HIGH://www.energy.ca.gov/research/index.html. #12;Page 1 Polymer-Zeolite Nanocomposite High Temperature Proton-Exchange- Membrane for Fuel Cells EI

203

The aluminosilicate fraction of North Pacific manganese nodules  

USGS Publications Warehouse

Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

Bischoff, J.L.; Piper, D.Z.; Leong, K.

1981-01-01

204

Use of porous aluminosilicate pellets for drug delivery.  

PubMed

Three pelletized porous aluminosilicate ceramics were obtained commercially and their potential to act as extended release drug delivery systems was assessed. The pellets were drug loaded using a vacuum impregnation technique. Factors such as the concentration of the loading solution and the porosity and bulk density of the ceramic influenced the drug loading. The release of drug from the pellets was extended as the drug was entrapped within their porous interior. The rate of release was influenced by the porous microstructure of the pellets and the physicochemical properties of the drug. Extrusion-spheronization was used to prepare pellets similar to the porous ceramics. The pellet formulations contained an aluminosilicate clay mineral (kaolin or halloysite), ethylcellulose 100 cps, ethanol and varying quantities of sucrose. The latter two components acted as pore forming agents. Diltiazem HCl was loaded into the pellets and its release was extended. The release rate could be modified by changing the quantity of sucrose included in the initial formulation, as this influenced the porous microstructure of the pellets. In halloysite-based products the release was further extended due to entrapment of the drug within the halloysite microtubules. Porous kaolin-based pellets were also prepared by cryopelletization. This involved freezing droplets of an aqueous suspension containing kaolin, sodium silicate solution and sodium lauryl sulphate. The resulting pellets were freeze-dried, which removed ice from them to leave pores behind. The pellets gave extended drug release with the release rate being influenced by the porous microstructure of the pellets and their microclimate pH. PMID:16214789

Byrne, R S; Deasy, P B

2005-06-01

205

Zeolite-dye micro lasers  

E-print Network

We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO$_4$-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-$\\mu$m-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

Vietze, U; Laeri, F; Ihlein, G; Schüth, F; Limburg, B; Abraham, M

1998-01-01

206

A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC)  

NASA Astrophysics Data System (ADS)

As a solid waste, kaolinite type pyrite cinder (KTPC) is a special pyrite cinder, its mineral components include metakaolin and magnetite, and the chemical compositions of these minerals include SiO2, Al2O3, FeO and Fe2O3. In this study, a novel magnetic 4A zeolite adsorbent was synthesised from KTPC using the hydrothermal method, and the optimum hydrothermal synthesis conditions were investigated using X-ray diffraction (XRD) and by determining the specific surface area (SSA) and the saturated cation exchange adsorption capacity (SCEAC) to Cs+. Under the optimum hydrothermal synthesis conditions, the magnetic 4A zeolite adsorbent can be synthesised with high crystallinity, and the SSA and SCEAC to Cs+ are 24.49 m2/g and 106.63 mg/g, respectively. The further characterisations of pore size distribution, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) were performed. The results revealed that magnetic particles are coated onto the zeolite surface and further form magnetic aggregates, and the existing magnetic particles in KTPC do not change their crystal structure and do not affect the synthesis of the 4A zeolite. In addition, the synthesised 4A zeolite adsorbent can be used as a magnetic adsorbent in wastewater treatment with high magnetic sensitivity and is thermally stable up to approximately 900 °C.

Wang, Weiqing; Feng, Qiming; Liu, Kun; Zhang, Guofan; Liu, Jing; Huang, Yang

2015-01-01

207

STUDIES OF THE SURFACE CHARGE OF AMORPHOUS ALUMINOSILICATES USING SURFACE COMPLEXATION MODELS  

Technology Transfer Automated Retrieval System (TEKTRAN)

Synthetic noncrystaline aluminosilicates with variable charge, similar to allophanes present naturally in volcanic soils, were studied. The surface charge behavior was determined by zero point charge (ZPC) measured by electrophoretic mobility (isoelectric points, IEP) and determined by potentiometr...

208

Al NMR study of the structure of lanthanum and yttrium based aluminosilicate glasses and melts  

E-print Network

A 27 Al NMR study of the structure of lanthanum and yttrium based aluminosilicate glasses and melts actinides (Pu as well as minor actinides). Yttrium and lanthanum has been chosen to simulate actinides

Paris-Sud XI, Université de

209

Enhanced selectivity of zeolites by controlled carbon deposition  

DOEpatents

A method for carbonizing a zeolite comprises depositing a carbon coating on the zeolite pores by flowing an inert carrier gas stream containing isoprene through a regenerated zeolite at elevated temperature. The carbonized zeolite is useful for the separation of light hydrocarbon mixtures due to size exclusion and the differential adsorption properties of the carbonized zeolite.

Nenoff, Tina M.; Thoma, Steven G.; Kartin, Mutlu

2006-05-09

210

Fundamentals and applications of pervaporation through zeolite membranes  

Microsoft Academic Search

Zeolite membranes have uniform, molecular-sized pores, and they separate molecules based on differences in the molecules’ adsorption and diffusion properties. Zeolite membranes are thus well suited for separating liquid-phase mixtures by pervaporation, and the first commercial application of zeolite membranes has been for dehydrating organic compounds. Because of the large number of zeolites that can be prepared, zeolite membranes have

Travis C. Bowen; Richard D. Noble; John L. Falconer

2004-01-01

211

2.5 Zeolites 2.5.1 Introduction  

E-print Network

58 2.5 Zeolites 2.5.1 Introduction Zeolites are a well-established technology used in a range of processes and industries. Zeolites are not new materials--they have been investigated for over two in agriculture (St. Cloud 2007, BRZ Zeolite 2007, Zeolite Australia 2007), horticulture (ZeoPro 2007), gas

212

Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites  

SciTech Connect

This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

Pearson, J. (California Univ., Berkeley, CA (United States). Dept. of Chemistry Lawrence Berkeley Lab., CA (United States))

1991-07-01

213

Searching for microporous, strongly basic catalysts: experimental and calculated 29Si NMR spectra of heavily nitrogen-doped Y zeolites.  

PubMed

Nitrogen substituted zeolites with high crystallinity and microporosity are obtained by nitrogen substitution for oxygen in zeolite Y. The substitution reaction is performed under ammonia flow by varying the temperature and reaction time. We examine the effect of aluminum content and charge-compensating cation (H(+)/Na(+)/NH(4)(+)) on the degree of nitrogen substitution and on the preference for substitution of Si-O-Al vs Si-O-Si linkages in the FAU zeolite structure. Silicon-29 magic angle spinning (MAS) nuclear magnetic resonance (NMR) and (1)H/(29)Si cross-polarization MAS NMR spectroscopy have been used to probe the different local environments of the nitrogen-substituted zeolites. Experimental data are compared to simulated NMR spectra obtained by constructing a compendium (>100) of zeolite clusters with and without nitrogen, and by performing quantum calculations of chemical shifts for the NMR-active nuclei in each cluster. The simulated NMR spectra, which assume peak intensities predicted by statistical analysis, agree remarkably well with the experimental data. The results show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY materials, without significant loss in crystallinity. Experiments performed at lower temperatures (750-800 degrees C) show a preference for substitution at Si-OH-Al sites. No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 degrees C and 48 h). PMID:19722674

Dogan, Fulya; Hammond, Karl D; Tompsett, Geoffrey A; Huo, Hua; Conner, W Curtis; Auerbach, Scott M; Grey, Clare P

2009-08-12

214

Cation siting in low-silica zeolites with potential applications in pressure swing adsorption technology and structural studies of novel tectosilicates  

NASA Astrophysics Data System (ADS)

Adsorption and catalytic phenomena in zeolites are influenced by coulombic interactions within zeolite structure as well as by size restrictions imposed by zeolitic micropores. In the first part of this thesis, we investigate materials with potential applications in the selective adsorption of nitrogen. Studies have indicated the performance of LiX adsorbents correlates with the number of accessible lithium cations in the zeolite. However, in zeolite LiX only one-third of the lithium cations interact with adsorbed molecules. This prompted our investigation of other low-silica zeolites. The first zeolite examined was a cancrinite prepared in the presence of 1,3-butanediol. Neutron diffraction studies on the lithium-exchanged cancrinite suggest most of the lithium cations are ideally positioned within the micropores. However, our experiments show that carbonate anions are occluded within the micropores of this cancrinite. Another material examined in this study was zeolite (Ba,K)-GL. Neutron diffraction experiments show that 49 of the extraframework charges are located in the micropores. Unfortunately, less than 20% of these cations are replaced after lithium-exchange. We also attempted to directly synthesize a (Ba,Li)-GL. However, diffraction experiments and chemical analyses show that most of the extraframework charge is compensated by barium. Because of molecular size restrictions imposed by currently known zeolites, there is continued interest in the synthesis of materials that can be used for processing large molecules. This motivated our investigation of two tectosilicates MCM-61 and MCM-47. MCM-61 is an aluminosilicate made in the presence of the potassium-18-Crown-6 complex. Our structure solution shows MCM-61 is formed from novel [610412] polyhedral cage units that connect to form 18-membered-ring cages. The structure of MCM-61 suggests that crown ethers, azamacrocycles, and cryptands may be useful for the syntheses of extra-large pore zeolites. MCM-47 is prepared in the presence of tetramethylene bis(N-methylpyrrolidinium) dibromide. The structure solution of MCM-47 shows it is composed of noncovalently bound layers. The structure refinement and 1H MAS NMR experiment indicate these layers are bound together by strong hydrogen bonds between siloxy and silanol groups. MCM-47 can be delaminated to yield a high surface area material with potential applications in the catalysis of large molecules.

Burton, Allen Wayne

215

UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER  

EPA Science Inventory

Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

216

Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation.  

PubMed

Fly ash, a coal combustion byproduct with a predominantly aluminosilicate composition, is modified to develop an inexpensive sorbent for oil spill remediation. The as-produced fly ash is a hydrophilic material with poor sorption capacity. A simple two-step chemical modification process is designed to improve the oil sorption capacity. First, the fly ash was transformed to a zeolitic material via an alkali treatment, which increased the specific surface area up to 404 m(2) g(-1). Then, the material was surface functionalized to form a hydrophobic material with high contact angle up to 147° that floats on the surface of an oil-water mixture. The reported oil sorption capacities of X-type zeolite sorbent with different surface functionalization (propyl-, octyl-, octadecyl-trimethoxysilane and esterification) were estimated to 1.10, 1.02, 0.86, and 1.15 g g(-1), respectively. Oil sorption was about five times higher than the as-received fly ash (0.19 g g(-1)) and also had high buoyancy critical for economic cleanup of oil over water. PMID:23634731

Sakthivel, Tamilselvan; Reid, David L; Goldstein, Ian; Hench, Larry; Seal, Sudipta

2013-06-01

217

Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host  

SciTech Connect

The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of mesoporous aluminosilicate catalyst, Al-SBA-15, containing strong Broensted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt% Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst will be evaluated for the conversion of heavy petroleum feedstocks to naphtha and middle distillates.

Conrad Ingram; Mark Mitchell

2006-09-30

218

SODIUM ALUMINOSILICATE SOLIDS AFFINITY FOR CESIUM AND ACTINIDES  

SciTech Connect

Washed sodium-aluminosilicate (NAS) solids at initial concentrations of 3.55 and 5.4 g/L sorb or uptake virtually no cesium over 288 hours, nor do any NAS solids generated during that time. These concentrations of solids are believed to conservatively bound current and near-term operations. Hence, the NAS solids should not have affected measurements of the cesium during the mass transfer tests and there is minimal risk of accumulating cesium during routine operations (and hence posing a gamma radiation exposure risk in maintenance). With respect to actinide uptake, it appears that NAS solids sorb minimal quantities of uranium - up to 58 mg U per kg NAS solid. The behavior with plutonium is less well understood. Additional study may be needed for radioactive operations relative to plutonium or other fissile component sorption or trapping by the solids. We recommend this testing be incorporated in the planned tests using samples from Tank 25F and Tank 49H to extend the duration to bound expected inventory time for solution.

Peters, T; Bill Wilmarth, B; Samuel Fink, S

2007-07-31

219

Surface functionalization of aluminosilicate nanotubes with organic molecules  

PubMed Central

Summary The surface functionalization of inorganic nanostructures is an effective approach for enriching the potential applications of existing nanomaterials. Inorganic nanotubes attract great research interest due to their one-dimensional structure and reactive surfaces. In this review paper, recent developments in surface functionalization of an aluminosilicate nanotube, “imogolite”, are introduced. The functionalization processes are based on the robust affinity between phosphate groups of organic molecules and the aluminol (AlOH) surface of imogolite nanotubes. An aqueous modification process employing a water soluble ammonium salt of alkyl phosphate led to chemisorption of molecules on imogolite at the nanotube level. Polymer-chain-grafted imogolite nanotubes were prepared through surface-initiated polymerization. In addition, the assembly of conjugated molecules, 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid (HT3P) and 2-(5’’-hexyl-2,2’:5’,2’’-terthiophen-5-yl)ethylphosphonic acid 1,1-dioxide (HT3OP), on the imogolite nanotube surface was achieved by introducing a phosphonic acid group to the corresponding molecules. The optical and photophysical properties of these conjugated-molecule-decorated imogolite nanotubes were characterized. Moreover, poly(3-hexylthiophene) (P3HT) chains were further hybridized with HT3P modified imogolite to form a nanofiber hybrid. PMID:22428100

Ma, Wei; Yah, Weng On; Otsuka, Hideyuki

2012-01-01

220

Preliminary study on calcium aluminosilicate glass as a potential host matrix for radioactive 90Sr--an approach based on natural analogue study.  

PubMed

Given the environmental-, safety- and security risks associated with sealed radioactive sources it is important to identify suitable host matrices for (90)Sr that is used for various peaceful applications. As SrO promotes phase separation within borosilicate melt, aluminosilicate bulk compositions belonging to anorthite-wollastonite-gehlenite stability field are studied in this work. Tests for their homogeneity, microstructural characteristics and resistance to phase separation narrowed the choice down to the composition CAS11 (CaO=35 wt%, Al(2)O(3)=20 wt%, SiO(2)=45 wt%). We find that up to 30 wt% SrO can be loaded in this glass without phase separation (into Ca, Sr-rich and Sr-poor, Si-rich domains). Leaching behaviour of the glasses differs depending on the content and distribution of Sr. In general, the elemental leach rates determined from conventional PCT experimental procedure yield values better than 10(-7)gcm(-2)day(-1) for both CAS11 base glass as well as SrO doped glass. It was noted that leach rates calculated on the basis of Ca(2+) and Sr(2+) were of the same order and bit higher compared to those calculated on the basis of Si(4+) and Al(3+). During accelerated leaching tests, zeolite and zeolite+epidote were found to have developed on CAS11 base glass and SrO doped glasses respectively. The Sr bulk diffusion coefficients is found to vary from ? 10(-15) to 10(-13)cm(2)/s at temperature intervals as high as 725-850°C. Based on the experimental observations, it is suggested that CAS11 glass can be used as host matrix of (90)Sr for various applications of radioactive Sr-pencils. PMID:21477923

Sengupta, Pranesh; Fanara, Sara; Chakraborty, Sumit

2011-06-15

221

One-dimensional zeolites as hydrocarbon traps  

Microsoft Academic Search

Several zeolites with varying pore dimensionality have been investigated as hydrocarbon (HC) traps by studying the temperature programmed desorption of propane and toluene mixtures. In one-dimensional (1-D) zeolites, the diffusive motion of propane is blocked by the more-strongly adsorbed toluene thus raising the desorption temperature of propane above its single-component desorption temperature. In the 1-D zeolite EUO, propane is trapped

Kenneth F Czaplewski; Thomas L Reitz; Yoo Joong Kim; Randall Q Snurr

2002-01-01

222

Behavior of Holocarbons in Zeolitic Materials  

Microsoft Academic Search

This report describes results on this grant over the 3 year period, 1999-2002. The emphasis of the work has continued to shift during 2001-2 from halocarbon adsorption in zeolites towards other separation processes in zeolites. These additional areas include (i) work on lithium-containing zeolites for non-cryogenic air separation, and (ii) the study of nickel phosphate molecular sieves for hydrogen storage.

Anthony K. Cheetham

2003-01-01

223

Increased thermal conductivity monolithic zeolite structures  

DOEpatents

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25

224

Structure-Entropy Relationships in Aluminosilicate Garnets (Invited)  

NASA Astrophysics Data System (ADS)

Aluminosilicate garnet (X3Al2Si3O12) is a key rock-forming mineral whose geological occurrence is widespread. Various petrologic, geochemical and geophysical processes can be best interpreted if garnet's structure and thermodynamic properties are understood. Extensive research has been done on garnet's crystal-chemical properties using diffraction and spectroscopic measurements as well as computational methods. The level of understanding is, in general, good. In terms of macroscopic thermodynamic properties, there has also been much work done over the years. Here, however, the level of understanding is less. Consider the crystal chemistry and entropy behavior of two binary solid solutions, namely pyrope-grossular (Py-Gr) [(MgxCa1-x)3Al2Si3O12] and almandine-spessartine (Al-Sp) [(FexMn1-x)3Al2Si3O12]. The heat capacity, Cp, of a series of well characterized natural and synthetic almandine-spessartine garnets was recently measured between 3 and 300 K (Dachs et al., submitted). All garnets show a ?-type anomaly at low temperatures resulting from a paramagnetic-antiferromagnetic phase transition. The lattice heat capacity, Cp,vib, was calculated for each garnet member by applying the phonon dispersion model of Komada and Westrum (1997). This allows a decomposition of S298 into its vibrational (Svib) and magnetic (Smag) contributions. A full analysis shows that the Al-Sp binary is entropically ideal with ?Sex ? 0 at 298 K. Previously published calorimetric work on Py-Gr garnets shows, in contrast, substantial positive ?Sex across the join at 298 K (Dachs and Geiger, 2006). Why the difference? The vibrational behavior of the divalent X cations plays an important role in affecting macroscopic Cp,vib and Svib in aluminosilicate garnets. X-ray single-crystal diffraction and XAFS measurements show that the mean square amplitudes of vibration for Fe2+ in Al and Mn2+ in Sp are similar and, moreover, they do not vary significantly in magnitude as a function of composition across the Al-Sp binary. Vibrational modes in IR and Raman spectra of Al-Sp garnets show mostly continuous and linear variation in wavenumber across the binary. These results are fully consistent with the calorimetric work indicating ?Sex ? 0 at 298 K. In contrast, the mean square amplitudes of vibration of Mg and Ca in Py-Gr garnets are substantially different from each other. The behavior of IR and Raman modes in spectra of Py-Gr garnets are also quite different than the spectra of Al-Sp garnets. Low energy modes related to Ca and especially Mg do not shift linearly in energy across the Py-Gr join but soften in intermediate compositions. This behavior is considered to be the cause of the large positive ?Sex behavior. Al-Sp garnets differ, of course, from Py-Gr garnets because of their magnetic and electronic contributions to Cp and S.

Geiger, C. A.; Dachs, E.

2013-12-01

225

Zeolites Remove Sulfur From Fuels  

NASA Technical Reports Server (NTRS)

Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

Voecks, Gerald E.; Sharma, Pramod K.

1991-01-01

226

Imogolite: an aluminosilicate nanotube endowed with low cytotoxicity and genotoxicity.  

PubMed

High-aspect-ratio nanomaterials (HARN) (typically, single-walled carbon nanotubes (SWCNT) or multiwalled carbon nanotubes (MWCNT)) impair airway barrier function and are toxic to macrophages. Here, we assess the biological effects of nanotubes of imogolite (INT), a hydrated alumino-silicate [(OH)3Al2O3SiOH] occurring as single-walled NT, on murine macrophages and human airway epithelial cells. Cell viability was assessed with resazurin. RT-PCR was used to study the expression of Nos2 and Arg1, markers of classical or alternative macrophage activation, respectively, and nitrite concentration in the medium was determined to assess NO production. Epithelial barrier integrity was evaluated from the trans-epithelial electrical resistance (TEER). Potential genotoxicity of INT was assessed with comet and cytokinesis-block micronucleus cytome assays. Compared to MWCNT and SWCNT, INT caused much smaller effects on RAW264.7 and MH-S macrophage viability. The incubation of macrophages with INT at doses as high as 120 ?g/cm(2) for 72 h did not alter either Nos2 or Arg1 expression nor did it increase NO production, whereas IL6 was induced in RAW264.7 cells but not in MH-S cells. INT did not show any genotoxic effect in RAW264.7 and A549 cells except for a decrease in DNA integrity observed in epithelial A549 cells after treatment with the highest dose (80 ?g/cm(2)). No significant change in permeability was recorded in Calu-3 epithelial cell monolayers exposed to INT, whereas comparable doses of both SWCNT and MWCNT lowered TEER. Thus, in spite of their fibrous nature, INT appear not to be markedly toxic for in vitro models of lung-blood barrier cells. PMID:24933079

Rotoli, Bianca Maria; Guidi, Patrizia; Bonelli, Barbara; Bernardeschi, Margherita; Bianchi, Massimiliano G; Esposito, Serena; Frenzilli, Giada; Lucchesi, Paolo; Nigro, Marco; Scarcelli, Vittoria; Tomatis, Maura; Zanello, Pier Paolo; Fubini, Bice; Bussolati, Ovidio; Bergamaschi, Enrico

2014-07-21

227

Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses  

E-print Network

Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses Maxime Merciera, Andrea Di Muroab , Daniele Giordanoc , Nicole Métricha , Priscille Lesned of an accurate analytical procedure for determination of dissolved water in complex alumino-silicate glasses via

Paris-Sud XI, Université de

228

Li{sup +} alumino-silicate ion source development for the neutralized drift compression experiment  

SciTech Connect

We report results on lithium alumino-silicate ion source development in preparation for warm dense matter heating experiments on the new neutralized drift compression experiment II. The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of {approx_equal}1275 deg. C, a space-charge limited Li{sup +} beam current density of J {approx_equal}1 mA/cm{sup 2} was obtained. The lifetime of the ion source was {approx_equal}50 h while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 {mu}s.

Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California 94720 (United States)

2011-01-15

229

Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)  

SciTech Connect

We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

2010-10-01

230

Li+ alumino-silicate ion source development for the neutralized drift compression experiment.  

PubMed

We report results on lithium alumino-silicate ion source development in preparation for warm dense matter heating experiments on the new neutralized drift compression experiment II. The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ?1275 °C, a space-charge limited Li(+) beam current density of J ?1 mA/cm(2) was obtained. The lifetime of the ion source was ?50 h while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 ?s. PMID:21280822

Roy, Prabir K; Greenway, Wayne G; Kwan, Joe W; Seidl, Peter A; Waldron, William L; Wu, James K

2011-01-01

231

Enhancement of the CO(2) retention capacity of X zeolites by Na- and Cs-treatments.  

PubMed

Adsorption of carbon dioxide on alkaline modified X zeolites was investigated by temperature programmed desorption (TPD) analysis of these materials previously saturated with CO(2) at 50, 100 and 200 degrees C. Parent X zeolite (in its sodium form) was treated with different sodium and cesium aqueous solutions, using both carbonates and hydroxides as precursors. The resulting materials were characterised by nitrogen physisorption, XRD, and NH(3)-TPD, in order to determine their morphological, crystallographic and chemical properties. Slight desilication phenomena were observed using hydroxides as precursors, whereas the treatment with Cs salts lead to higher crystallinity losses. Several successive adsorption-desorption cycles were carried out in order to check the regenerability of the adsorbents. Cesium-treated zeolites present higher carbon dioxide retention capacities than the sodium treated and than the parent material. When working with these Cs-modified materials, the desorption takes place mainly at temperatures between 250 and 400 degrees C, results of great practical interest, since it allows the use these kinds of materials for adsorption-desorption cycles. The evolution of the retention capacity with temperature is also markedly more positive for Cs-treated zeolite, especially when carbonate is used as the precursor. These materials maintain high retention capacities at 100 degrees C (10mg g(-1)) and even at 200 degrees C (3mg g(-1)), temperatures at which the most of the adsorbents are inactive. PMID:17977576

Díaz, Eva; Muñoz, Emilio; Vega, Aurelio; Ordóñez, Salvador

2008-02-01

232

Design and fabrication of zeolite macro- and micromembranes  

Microsoft Academic Search

The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the

Lik Hang Joseph Chau

2001-01-01

233

UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER  

EPA Science Inventory

Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

234

Durability of Hydrophilic and Antimicrobial Zeolite Coatings under Water Immersion  

E-print Network

Durability of Hydrophilic and Antimicrobial Zeolite Coatings under Water Immersion Cory O-exchanged zeolite A (Ag-ZA) coatings have been shown to have excellent hydrophilicity and are highly antimicrobial Keywords: zeolite coating, zeolite A, hydrophilic, antimicrobial, gravity Introduction Condensing heat

Chen, Wilfred

235

Silver supported on natural Mexican zeolite as an antibacterial material  

Microsoft Academic Search

The antimicrobial effect of the Mexican zeolitic mineral from Taxco, Guerrero exchanged with silver ions was investigated. The zeolitic mineral as well as sodium and silver zeolitic minerals were characterized by using X-ray diffraction, electron microscopy and IR spectroscopy techniques. The elementary composition of the zeolitic mineral was determined by atomic absorption and microanalyses (EDAX). Escherichia coli and Streptococcus faecalis

M Rivera-Garza; M. T Olgu??n; I Garc??a-Sosa; D Alcántara; G Rodr??guez-Fuentes

2000-01-01

236

Selective anisotropic growth of zeolite crystals  

E-print Network

. To achieve this end we are attempting to grow zeolite particles in the confined water spaces formed in water/surfactant systems, using these "nanoreactors" to modulate zeolite growth. Our work to date has focused on the synthesis of two-dimensional (5x100x...

Desai, Tasha April

2013-02-22

237

SEQUESTERING MANURE N WITH SYNTHETIC ZEOLITES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Natural zeolites have a long and successful history of agricultural use in Japan and more recently in the U.S. However the price (often > $US500 Mg -1) limits their use in agriculture. Zeolites can be synthesized from fly ash by reaction with sodium hydroxide solutions and low temperature. The proje...

238

Application of zeolite membranes, films and coatings  

Microsoft Academic Search

Preparation methods of zeolite molecular sieve membranes and films with and without support were reviewed. Unsupported films have been prepared by in situ synthesis, casting of zeolite nanoparticles and solid state transformation, and supported films have been obtained by in situ synthesis, vapor-phase synthesis, secondary growth, casting of nanoparticles and their combinations or modifications. It is favorable to use supports

Fujio Mizukami

1999-01-01

239

Spectroscopy and laser action of rhodamine 6G doped aluminosilicate xerogels  

SciTech Connect

Rhodamine 6G (R6G) doped aluminosilicate glass synthesized by the sol-gel method exhibits laser action. Transparent 5 mm {times} 5 mm {times} 10 mm monoliths were used as cast in a simple laser cavity. This new material was pumped at rates of up to 25 Hz and was still active after as many as 40,000 pump pulses. Luminescence and free-running laser spectra are measured. The dependence of the R6G doped aluminosilicate dye laser output on the number of pump pulses and the pump pulse energy is discussed.

McKiernan, J.M.; Yamanaka, S.A.; Dunn, B.; Zink, J.I. (Univ. of California, Los Angeles (USA))

1990-07-26

240

Zeolitic Materials, Vol. 3, No. 1, December 2002, 20-28 20 Copyright 2002 Korean Zeolite Association  

E-print Network

Zeolitic Materials, Vol. 3, No. 1, December 2002, 20-28 20 Copyright ¨Ï 2002 Korean Zeolite activity than ZSM-5 zeolite, and also has higher catalytic stability than MCM-41- SO3H. Keywords: Periodic. / Synthesis and Alkylation of Phenol over PMO-SO3H Zeolitic Materials, Vol. 3, No. 1, December 2002 21

Kim, Ji Man

241

Zeolitic Materials, Vol. 3, No. 1, December 2002, 29-35 Copyright 2002 Korean Zeolite Association 29  

E-print Network

Zeolitic Materials, Vol. 3, No. 1, December 2002, 29-35 Copyright ¨Ï 2002 Korean Zeolite Association 29 Etherification Reaction of 2-Naphtol with Ethanol Using Dealuminated Beta Zeolite Jin Won Kim Korea *To whom correspondence should be addressed. E-mail: Yie@ajou.ac.kr ABSTRACT Zeolite H

Kim, Ji Man

242

Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites.  

PubMed

In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na+ adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na+ and H+) system. Although each zeolite has a constant amount of negative charge, the amount of Na+ adsorption of each zeolite decreased drastically at low pH-pNa values, where pH-pNa is equal to log{(Na+)/(H+)}. By using the plot of the amount of Na+ adsorption versus pH-pNa, an index of the H+ selectivity, which is similar to the pKa of acids, of each zeolite was estimated, and the index tended to increase with decreasing Si/Al ratio of zeolites. These indicate that zeolites with lower Si/Al and higher negative charge density have higher H+ adsorption selectivity, and in fact, such a zeolite species (4A and X) adsorbed considerable amount of H+ even at weakly alkaline pH region. The adsorption of H+ results in the decrease of cation adsorption ability, and may lead to the dissolution of zeolites in aqueous media. PMID:25493632

Munthali, Moses Wazingwa; Elsheikh, Mohammed Abdalla; Johan, Erni; Matsue, Naoto

2014-01-01

243

CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing.  

PubMed

A hierarchical MFI zeolite, with typical micro/meso bimodal pore structures, was prepared by desilication method. CuO nanoparticles (NPs) were incorporated into the hierarchical MFI zeolite by impregnation method. CuO/hierarchical zeolite composites were characterized by X-ray diffraction, transmission electron microscopy and nitrogen sorption. It is shown that the CuO nanoparticles are mostly dispersed in the mesopores with remaining of the crystallinity and morphology of the host zeolite. CuO nanoparticles located in hierarchical zeolite exhibit the excellent electrocatalytic performances to oxidation of glucose in alkaline media. The electrocatalytic activity enhances with increasing the loading content of CuO from 5% to 15%. The composites were fabricated for nonenzyme glucose sensing. Under the optimal conditions, the sensor shows a wide linear range from 5×10(-7) to 1.84×10(-2) M with a low detection limit of 3.7×10(-7) M. The sensor also exhibits good repeatability, long-term stability as well as high selectivity against interfering species. PMID:25499226

Dong, Junping; Tian, Taolei; Ren, Linxiao; Zhang, Yuan; Xu, Jiaqiang; Cheng, Xiaowei

2015-01-01

244

Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu–Mn–Zn catalysts  

Microsoft Academic Search

Synthesis of dimethyl ether (DME) via methanol dehydration were investigated over HY zeolite and over Fe-, Co-, Ni-, Cr-, or Zr-modified HY zeolite, and via direct CO hydrogenation over modified HY zeolite-supported Cu–Mn–Zn catalysts. Zr- and Ni-modified HY zeolite exhibited higher activity and stability for methanol dehydration, while Fe-, Co-, and Cr-modified HY zeolite deactivated quickly due to carbon deposition.

Jinhua Fei; Zhaoyin Hou; Bing Zhu; Hui Lou; Xiaoming Zheng

2006-01-01

245

Zeolites on Mars: Prospects for Remote Sensing  

NASA Technical Reports Server (NTRS)

The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

1985-01-01

246

EFFECT OF IMPURITIES ASSOCIATED WITH ALUMINOSILICATES ON ARSENIC SORPTION AND OXIDATION  

EPA Science Inventory

Arsenite, As(III), and arsenate, As(V), are of increasing environmental concern. Risk assessment and risk management of arsenic contaminated sites requires a better understanding of arsenic-mineral interactions. Aluminosilicate minerals, such as feldspars and clays, are the mos...

247

Jibamitra Ganguly Weiji Cheng Sumit Chakraborty Cation diffusion in aluminosilicate garnets: experimental determination  

E-print Network

Jibamitra Ganguly á Weiji Cheng á Sumit Chakraborty Cation diffusion in aluminosilicate garnets 1997 Abstract Diusion couples made from homogeneous gem quality natural pyrope and almandine garnets interdiusion coecient or D matrix elements for the purpose of modeling of diusion processes in natural garnets

Ganguly, Jibamitra

248

Copper-Exchanged Zeolite L Traps Oxygen  

NASA Technical Reports Server (NTRS)

Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

Sharma, Pramod K.; Seshan, Panchalam K.

1991-01-01

249

Luminescence quenching measurements on zeolite L monolayers  

NASA Astrophysics Data System (ADS)

The luminescence quenching of the oxygen sensitive Ru 2+ complex (Ru-ph4-TMS) used as a stopcock and attached to a zeolite L monolayer has been investigated. The luminescence lifetime of the attached Ru-ph4-TMS was the same under N II and under O II atmosphere. This remarkable result is attributed to the shielding provided by the channels of the zeolite L crystals arranged as a monolayer. The emitting 3MLCT state of the Ru-ph4-TMS stopcock is localized on the ligand bearing the phenyl groups forming the tail of this complex, which deeply penetrates into the zeolite L channel.

Albuquerque, Rodrigo Q.; Zabala Ruiz, Arantzazu; Li, Huanrong; De Cola, Luisa; Calzaferri, Gion

2006-04-01

250

Synthesis and structural characterization of Al-containing interlayer-expanded-MWW zeolite with high catalytic performance.  

PubMed

Treatment of the zeolitic layered precursor of Al-MWW, so-called Al-MWW(P), with diethoxydimethylsilane (DEDMS) in acidic media leads to the formation of an aluminosilicate-type interlayer-expanded zeolite MWW (Al-IEZ-MWW) with expanded 12-membered ring (12-MR) micropores. However, the silylation process under acidic conditions simultaneously causes dealumination from the MWW framework, resulting in a decrease in the acid amount. We have developed a method for preparing Al-IEZ-MWW without leaching of the Al species. The strategy is to conduct the silylation under weakly acidic conditions; the silylation was conducted in an aqueous solution of an ammonium salt, e.g., NH4Cl, instead of HNO3. Subsequent additional acid treatment led to the formation of Al-IEZ-MWW that shows a high catalytic performance in the acylation of anisole compared to typical Al-MWW as well as Al-IEZ-MWW directly prepared under acidic conditions. The change in the state of Al atoms during the preparation process was investigated by high-resolution solid-state (27)Al MAS NMR and (27)Al MQMAS NMR techniques. PMID:24798349

Yokoi, Toshiyuki; Mizuno, Shun; Imai, Hiroyuki; Tatsumi, Takashi

2014-07-21

251

Crystalline molecular flasks  

Microsoft Academic Search

A variety of host compounds have been used as molecular-scale reaction vessels, protecting guests from their environment or restricting the space available around them, thus favouring particular reactions. Such molecular 'flasks' can endow guest molecules with reactivities that differ from those in bulk solvents. Here, we extend this concept to crystalline molecular flasks, solid-state crystalline networks with pores within which

Yasuhide Inokuma; Masaki Kawano; Makoto Fujita

2011-01-01

252

Mixing of zeolite powders and molten salt  

SciTech Connect

Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product.

Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

1996-05-01

253

Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite  

NASA Technical Reports Server (NTRS)

X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in the Rocknest samples.

Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; DesMarais, D. J.; Downs, R. T.; Farmer, J. D.; Morookian, J. M.; Morrison, S. M.; Sarrazin, P.; Spanovich, N.; Stolper, E. M.; Treiman, A. H.; Vaniman, D. T.; Yen, A. S.

2013-01-01

254

Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host  

SciTech Connect

The addition of hydrothermally-aged zeolite Y precursor to an SBA-15 synthesis mixture under a mildly acidic condition resulted in the formation of a mesoporous aluminosilicate catalyst, AlSBA-15. The Al-SBA-15 mesoporous catalyst contains strong Br{umlt o}nsted acid sites and aluminum (Al) stabilized in a totally tetrahedral coordination. The physicochemical characteristics of the catalyst varied as a function of the synthesis conditions. The catalyst possessed surface areas ranging between 690 and 850 m{sup 2}/g, pore sizes ranging from 5.6 to 7.5 nm, and pore volumes up 1.03 cm{sup 3}, which were comparable to the parent SBA-15 synthesized under similar conditions. Two wt % Al was present in the catalyst that was obtained from the reaction mixture that contained the highest Al content. The Al remained stable in totally tetrahedral coordination after calcination at a temperature of 550 C. The Al-SBA-15 mesoporous catalyst showed significant catalytic activity for cumene dealkylation, and the activity increased as the amount of zeolite precursor added to the SBA-15 mixture was increased. In preparation for the final phase of the project, the catalyst was embedded into a psuedoboemite alumina (catapal B) matrix and then formed into pellets. In the final phase of the project, the pelletized catalyst is being evaluated for the conversion of a heavy petroleum feedstock to naphtha and middle distillates. This phase was significantly delayed during the past six months due to a serious malfunction of the fume hoods in the Clark Atlanta University's Research Center for Science and Technology, where the project is being conducted. The fume hood system was repaired and the catalyst evaluation is now underway.

Conrad Ingram; Mark Mitchell

2007-03-31

255

Optical control and dynamic patterning of zeolites  

NASA Astrophysics Data System (ADS)

Zeolite crystals have a wide use as model systems for artificial light harvesting systems, as nano-containers for supramolecular organization or as building blocks for 1D and 2D assemblies of several crystals. In particular the assembly of zeolite L crystals with the aim to bridge the gap between the nano- and the macroscopic world has been a focus of research during the last years. However, almost all available approaches to order, assemble and pattern Zeolite L are restricted to large amounts of crystals. Although these approaches have proven to be powerful for many applications, but they have only limited control over positioning or orientation of single crystals and are lacking if patterns or structures are required which are composed of a few or up to a few hundred individual crystals. We demonstrate here that holographic optical tweezers are a powerful and versatile instrument to control zeolite L on the single crystal level. It is shown that full three-dimensional positioning, including rotational control, of any zeolite L crystal can be achieved. Finally, we demonstrate fully reversible, dynamic patterning of a multitude of individually controlled zeolite L crystals.

Woerdemann, Mike; Alpmann, Christina; Hörner, Florian; Devaux, André; De Cola, Luisa; Denz, Cornelia

2010-08-01

256

Thermodynamic modeling of natural zeolite stability  

SciTech Connect

Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

Chipera, S.J.; Bish, D.L.

1997-06-01

257

Properties of glass-bonded zeolite monoliths  

SciTech Connect

It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m{sup 2}d in 28-day tests in deionized water and in brine at 363 K (90{degrees}C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young`s modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt.

Lewis, M.A.; Fischer, D.F. [Argonne National Lab., IL (United States); Murphy, C.D. [Univ. of Cincinnati, OH (United States)

1994-05-01

258

Topological crystalline insulator nanostructures  

NASA Astrophysics Data System (ADS)

Topological crystalline insulators are topological insulators whose surface states are protected by the crystalline symmetry, instead of the time reversal symmetry. Similar to the first generation of three-dimensional topological insulators such as Bi2Se3 and Bi2Te3, topological crystalline insulators also possess surface states with exotic electronic properties such as spin-momentum locking and Dirac dispersion. Experimentally verified topological crystalline insulators to date are SnTe, Pb1-xSnxSe, and Pb1-xSnxTe. Because topological protection comes from the crystal symmetry, magnetic impurities or in-plane magnetic fields are not expected to open a gap in the surface states in topological crystalline insulators. Additionally, because they have a cubic structure instead of a layered structure, branched structures or strong coupling with other materials for large proximity effects are possible, which are difficult with layered Bi2Se3 and Bi2Te3. Thus, additional fundamental phenomena inaccessible in three-dimensional topological insulators can be pursued. In this review, topological crystalline insulator SnTe nanostructures will be discussed. For comparison, experimental results based on SnTe thin films will be covered. Surface state properties of topological crystalline insulators will be discussed briefly.

Shen, Jie; Cha, Judy J.

2014-11-01

259

Effect of different glasses in glass bonded zeolite  

SciTech Connect

A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing.

Lewis, M.A.; Ackerman, J.P. [Argonne National Lab., IL (United States); Verma, S. [Univ. of Illinois, Chicago, IL (United States)

1995-05-01

260

Effects of aluminosilicate minerals in clay soil fractions on pore water hydroxide ion concentrations in soil/cement matrices  

E-print Network

between clay minerals and calcium hydroxide. Pozzolanic reactions between aluminosilicate minerals in soils and portiandite or calcium silicate hydrate, generated by cement hydration, may significantly reduce the hydroxide ion concentration in soi...

Cook, Evan Russell

1998-01-01

261

The zeolite deposits of Greece  

USGS Publications Warehouse

Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

Stamatakis, M.G.; Hall, A.; Hein, J.R.

1996-01-01

262

Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si\\/Al ratios  

Microsoft Academic Search

The production of liquid fuels from palm oil was studied at atmospheric pressure, reaction temperature of 723 K and weight hourly space velocity of 2.5 h?1 in a fixed bed micro-reactor containing aluminosilicate mesoporous material as cracking catalysts. The aluminosilicate materials with different Si\\/Al ratios were synthesized by direct (sol–gel and hydrothermal) and post-synthesis (ion-exchange and grafting) methods. The synthesized

Farouq A. Twaiq; Abdul Rahman Mohamed; Subhash Bhatia

2003-01-01

263

Influence of Boehmite Precursor on Aluminosilicate Aerogel Pore Structure, Phase Stability and Resistance to Densification at High Temperatures  

NASA Technical Reports Server (NTRS)

Aluminosilicate aerogels are of interest as constituents of thermal insulation systems for use at temperatures higher than those attainable with silica aerogels. It is anticipated that their effectiveness as thermal insulators will be influenced by their morphology, pore size distribution, physical and skeletal densities. The present study focuses on the synthesis of aluminosilicate aerogel from a variety of Boehmite (precursors as the Al source, and tetraethylorthosilicate (TEOS) as the Si source, and the influence of starting powder on pore structure and thermal stability.

Hurwitz, Frances I.; Guo, Haiquan; Newlin, Katy N.

2011-01-01

264

Bietti's Crystalline Dystrophy  

MedlinePLUS

... su visión!) Vision and Aging Program Training and Jobs All Training and Jobs NEI Summer Intern Program Diversity In Vision Research & ... Grants and Funding Research at NEI Education Programs Training and Jobs Facts About Bietti's Crystalline Dystrophy Listen This information ...

265

Triamterene crystalline nephropathy.  

PubMed

Medications can cause a tubulointerstitial insult leading to acute kidney injury through multiple mechanisms. Acute tubular injury, a dose-dependent process, occurs due to direct toxicity on tubular cells. Acute interstitial nephritis characterized by interstitial inflammation and tubulitis develops from drugs that incite an allergic reaction. Other less common mechanisms include osmotic nephrosis and crystalline nephropathy. The latter complication is rare but has been associated with several drugs, such as sulfadiazine, indinavir, methotrexate, and ciprofloxacin. Triamterene crystalline nephropathy has been reported only rarely, and its histologic characteristics are not well characterized. We report 2 cases of triamterene crystalline nephropathy, one of which initially was misdiagnosed as 2,8-dihydroxyadenine crystalline nephropathy. PMID:23958399

Nasr, Samih H; Milliner, Dawn S; Wooldridge, Thomas D; Sethi, Sanjeev

2014-01-01

266

Crystalline Silica Primer  

USGS Publications Warehouse

substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

Staff- Branch of Industrial Minerals

1992-01-01

267

Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations  

SciTech Connect

The main parameters of aluminosilicate microspheres formed at thermal power stations in Russia were studied. These parameters are responsible for the prospective industrial application of these microspheres. A comparative analysis of the properties of mineral coal components, the conditions of coal combustion, and the effects of chemical and phase-mineralogical compositions of mineral impurities in coals from almost all of the main coal deposits on the formation of microspheres was performed. The effects of thermal treatment conditions on gas evolution processes in mineral particles and on the fraction of aluminosilicate microspheres in fly ash were considered. It was found that the yield of microspheres was higher in pulverized coal combustion in furnaces with liquid slag removal, all other factors being equal. The regularities of microsphere formation were analyzed, and the mechanism of microsphere formation in fly ash during the combustion of solid fuels was considered.

V.S. Drozhzhin; M.Ya. Shpirt; L.D. Danilin; M.D. Kuvaev; I.V. Pikulin; G.A. Potemkin; S.A. Redyushev [Russian Federal Nuclear Center VNIIEF, Nizhegorodskaya oblast (Russia)

2008-04-15

268

Molecular orbital calculations for modeling acetate-aluminosilicate adsorption and dissolution reactions  

SciTech Connect

Possible molecular configurations of acetic acid and acetate adsorbed onto aluminosilicate minerals are examined. Molecular orbital calculations were performed on molecules and dimers; that are intended to mimic inner sphere and outer sphere adsorption complexes on mineral surfaces. The results predict the structure, energetics, and vibrational spectra of the acetic acid and acetate bonded to alumino-silicate groups. The most likely surface complexes are determined by reaction energetics and comparison of theoretical to experimental vibrational spectra. In addition, a reaction pathway of Si-O-Al cleavage by acetic acid and chemisorption of acetate with tetrahedral Al{sup 3+} is predicted. An activation energy for this reaction is estimated from constrained energy minimizations of the reactants along a reaction pathway. 89 refs., 6 figs., 6 tabs.

Kubicki, J.D.; Apitz, S.E. [Naval Command Control and Surveillance Center, San Diego, CA (United States)] [Naval Command Control and Surveillance Center, San Diego, CA (United States); Blake, G.A. [California Institute of Technology, Pasadena, CA (United States)] [California Institute of Technology, Pasadena, CA (United States)

1997-03-01

269

Single and Multiple Heteroatom Incorporation in MFI Zeolites  

E-print Network

.e. incorporation of other elements in their framework) to expand their applications. The present dissertation makes advances in this regard. Zeolites with novel compositions that include elements such as titanium and tin have been reported to have great... of zeolites topologies and local structures, and the introduction of fluoride media for zeolite synthesis35-37 (which later allowed the synthesis of many novel structures and heterosubstituted zeolites). During the 1980s and 1990s, AlPOs (aluminophosphates...

Garcia Vargas, Nataly

2012-11-05

270

Design and fabrication of zeolite macro- and micromembranes  

NASA Astrophysics Data System (ADS)

The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

Chau, Lik Hang Joseph

2001-07-01

271

Fly ash zeolite catalyst support for Fischer-Tropsch synthesis  

NASA Astrophysics Data System (ADS)

This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

Campen, Adam

272

Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.  

PubMed

The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. PMID:21924606

Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

2011-11-01

273

Oxidation behavior of a Si-C-O-fiber-reinforced magnesium aluminosilicate  

Microsoft Academic Search

The oxidation behavior of a Si-C-O-fiber-reinforced magnesium aluminosilicate has been investigated in the temperature range 1,000--1,200 C. Parabolic weight gain, together with other experimental observations, has suggested that the oxidation process was controlled by the outward diffusion of carbon monoxide gas. The matrix and fibers reacted to form enstatite and forsterite. During the initial stages of oxidation, an interlayer containing

Atul Kumar; Kevin M. Knowles

1996-01-01

274

Structure of Cl-containing silicate and aluminosilicate glasses: A 35Cl MAS-NMR study  

Microsoft Academic Search

Chlorine-35 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were collected at 14.1 and 18.8 Tesla fields to determine the atomic scale structural environments of the chloride ions in anhydrous and hydrous silicate and aluminosilicate glasses containing 0.2 to 0.7 wt% Cl. NMR peaks are broad and featureless, but are much narrower than the total chemical shift range for

Travis O. Sandland; Lin-Shu Du; Jonathan F. Stebbins; James D. Webster

2004-01-01

275

State-of-the-art alumino-silicate refractories for al electrolysis cells  

Microsoft Academic Search

The refractory material of choice for aluminum cell bottom linings worldwide is alumino-silicates, due to high availability,\\u000a relatively low cost, and empirically good performance. During operation of aluminum electrolysis cells, the alumino-silicates\\u000a are subjected to infiltration and attack by molten electrolyte components. The penetration of sodium and molten fluorides\\u000a through the cathode causes significant mineralogical transformation in the refractory, and,

Ole-Jacob Siljan; Christian Schoning; Tor Grande

2002-01-01

276

Effect of sodium aluminosilicate on phosphorus utilization by chicks and laying hens.  

PubMed

Three experiments were conducted to evaluate the effects of sodium aluminosilicate (SAS) on performance of chicks and laying hens fed diets varying in nonphytate P (NPP), phytate, and fiber content. In two chick growth experiments a corn and soybean meal diet and a phytate and fiber-free casein-dextrose diet were used. These diets contained .1% NPP and 1.1% Ca and were fortified with 0, .05, or .10% P from KH2PO4 and 0 or .5% SAS. A 3 x 2 factorial arrangement of treatments was used. Sodium aluminosilicate supplementation significantly (P less than .05) depressed growth of chicks fed the corn and soybean meal diets containing 0 or .05% supplemental AP. Sodium aluminosilicate addition decreased (P less than .05) tibia ash and total tibia P (tibia weight x P concentration) in both chick experiments, with the effect being greater for chicks fed the corn and soybean meal diet. In the laying hen experiment, birds were fed corn and soybean meal diets containing NPP levels of .1, .45, or 1.8% and SAS levels of 0 or 1.0%. Egg production and egg yield were depressed (P less than .05) by feeding diets containing .1 or 1.8% NPP, and egg specific gravity was decreased (P less than .05) by feeding 1.8% NPP. Addition of SAS to the .1% NPP diet caused a large reduction (P less than .05) in egg production, egg weight, and feed efficiency, whereas SAS supplementation of the 1.8% NPP diet had no significant effect. Sodium aluminosilicate supplementation increased (P less than .05) egg specific gravity for hens fed the .1 and 1.8% NPP diets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1652134

Moshtaghian, J; Parsons, C M; Leeper, R W; Harrison, P C; Koelkebeck, K W

1991-04-01

277

A Comparative Study of Surface Characteristics of Nickel Supported on Silica Gel, ?-Alumina, Aluminosilicate  

Microsoft Academic Search

Surface characteristics of the prepared nickel catalysts containing 7, 10, and 13 wt% Ni w\\/w over different supports—silica gel, ?-alumina, and aluminosilicate—were investigated. Surface areas, total pore volumes, and average pore radii were determined for all catalysts. Pore analysis was discussed based on Vl-t plots and pore size distribution. The measured surface areas and pore volumes of pure supports increased

H. M. Gobara; S. A. Hassan

2009-01-01

278

Elastic properties of laminated calcium aluminosilicate\\/silicon carbide composites determined by resonant ultrasound spectroscopy  

Microsoft Academic Search

The elastic properties of unidirectional and 0°\\/90° crossply Nicalon-SiC-fiber-reinforced calcium aluminosilicate (CAS\\/SiC) ceramic-matrix composites have been measured using a resonant ultrasound spectroscopy (RUS) technique. This approach has allowed the nondestructive determination of the complete set of independent second-order elastic stiffness constants of these ceramic composites. These stiffness data have been used to obtain the orientation dependence of Young`s modulus and

Y. Liu; Y. He; F. Chu; T. E. Mitchell; H. N. G. Wadley

1997-01-01

279

Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals  

NASA Astrophysics Data System (ADS)

Hydrothermal conversion of Faujasite-type (FAU) zeolite into Levynite (LEV) zeolite without the use of an organic structure-directing agent (OSDA) was successfully achieved in the presence of non-calcined seed crystals. The interzeolite conversion depended strongly upon the alkalinity (OH -/SiO 2) of the starting gel, the Si/Al ratio of the starting FAU zeolite and the type of alkaline metal employed. Successful conversion of FAU zeolites into pure LEV zeolite was achieved only for FAU zeolites with Si/Al ratios in the range of 19-26, under highly alkaline conditions (OH -/SiO 2=0.6) by using NaOH as an alkali source. Although the yield of LEV zeolite prepared by this method was lower (18-26%) than that of the conventional hydrothermal synthesis with the use of SDA, the obtained LEV zeolite exhibited a unique core/shell structure.

Yashiki, Ayako; Honda, Koutaro; Fujimoto, Ayumi; Shibata, Shohei; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

2011-06-01

280

Development of low-cost integrated zeolite collector  

Microsoft Academic Search

The optimum zeolite loading and the best zeolite for this purpose were determined by careful mathematical analysis, followed by experimental test, to confirm the theoretical results. The integrated collector design was then completed and the collector was constructed. After sealing and vacuum testing the zeolite panels and heat exchanges, the collector was coated with flat black paint and provided with

D. I. Tchernev

1981-01-01

281

OPTIMUM DILUTION PROFILES OF COMPOSITE ZEOLITES IN PACKED BEDS  

Microsoft Academic Search

The paper examines theoretically the conversion of methanol over composite zeolite spherical catalytic particles in a fixed bed reactor. The composite zeolite contains small zeolite particles uniformly distributed in an amorphous silica-alumina matrix. Two problems are considered. The first is concerned with the effect of dilution of the catalyst with amorphous silica-alumina on the concentrations of species and temperature along

PANAGIOTIS G. SMIRNIOTIS; ELI RUCKENSTEIN

1991-01-01

282

Characterization and environmental application of a Chilean natural zeolite  

Microsoft Academic Search

The use of natural zeolites for environmental applications is gaining new research interests mainly due to their properties and significant worldwide occurrence. The present work describes the characterization of a natural Chilean zeolite and the results as adsorbent for ammonia from aqueous solutions. The zeolitic-rich tuff sample, mainly composed of clinoptilolite and mordenite, consisted of 13 ?m mean volumetric particle

A. H. Englert; J. Rubio

2005-01-01

283

Microstructural Optimization of a Zeolite Membrane for Organic  

E-print Network

#12;Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation Zhiping Lai,1 growth method for the fabrication of high-permeance, high-separa- tion-factor zeolite (siliceous ZSM-5, such as twin overgrowths and random nucleation. Organic polycations are used as zeolite crystal shape modifiers

Kokkoli, Efie

284

Zeolite membranes – state of their development and perspective  

Microsoft Academic Search

An ideal zeolite membrane combines the general advantages of inorganic membranes (temperature stability, solvent resistance) with a perfect shape selectivity. Due to their “molecular sieve” function, zeolite membranes can principally discriminate the components of gaseous or liquid mixtures dependent on their molecular size. This molecular sieving principle requires a pinhole- and crack-free zeolite membrane. Remarkable separation effects can also be

J Caro; M Noack; P Kölsch; R Schäfer

2000-01-01

285

Crystal engineering of zeolites with graphene Paul Gebhardt,a  

E-print Network

Crystal engineering of zeolites with graphene Paul Gebhardt,a Sebastian W. Pattinson,b Zhibin Ren,b David J. Cooke,c James A. Elliottb and Dominik Eder*a Achieving control over the morphology of zeolite catalysis, sensors and separation. The complexity and sensitivity of zeolite synthesis processes, however

Elliott, James

286

MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved  

E-print Network

MATERIALS, INTERFACES, AND ELECTROCHEMICAL PHENOMENA Hydrophilic Zeolite Coatings for Improved Heat on the surface of a bare, ZSM-5 coated, and Zeolite-A coated stainless steel 304 substrate at different initial surface temperatures was experimentally studied. ZSM-5 and Zeolite-A coated SS-304 are more much more

Aguilar, Guillermo

287

STUDIES OF POTENTIAL INHIBITORS OF SODIUM ALUMINOSILICATE SCALES IN HIGH-LEVEL WASTE EVAPORATION  

SciTech Connect

The Savannah River Site (SRS) has 49 underground storage tanks used to store High Level Waste (HLW). The tank space in these tanks must be managed to support the continued operation of key facilities. The reduction of the tank volumes in these tanks are accomplished through the use of three atmospheric pressure HLW evaporators. For a decade, evaporation of highly alkaline HLW containing aluminum and silicates has produced sodium aluminosilicate scales causing both operation and criticality hazards in the 2H Evaporator System. Segregation of aluminum-rich wastes from silicate-rich wastes minimizes the amount of scale produced and reduces cleaning expenses, but does not eliminate the scaling nor increases operation flexibility in waste process. Similar issues have affected the aluminum refining industry for many decades. Over the past several years, successful commercial products have been identified to eliminate aluminosilicate fouling in the aluminum industry, but have not been utilized in a nuclear environment. Laboratory quantities of three proprietary aluminosilicate scale inhibitors have been produced and been shown to prevent formation of scales. SRNL has been actively testing these potential inhibitors to examine their radiation stability, radiolytic degradation behaviors, and downstream impacts to determine their viability within the HLW system. One of the tested polymers successfully meets the established criteria for application in the nuclear environment. This paper will describe a summary of the methodology used to prioritize laboratory testing protocols based on potential impacts/risks identified for inhibitor deployment at SRS.

Wilmarth, B; Lawrence Oji, L; Terri Fellinger, T; David Hobbs, D; Nilesh Badheka, N

2008-02-27

288

Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces  

PubMed Central

Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state 1H, 13C, 29Si, and 27Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications. PMID:21562207

Smith, Benjamin J.; Rawal, Aditya; Funkhouser, Gary P.; Roberts, Lawrence R.; Gupta, Vijay; Israelachvili, Jacob N.; Chmelka, Bradley F.

2011-01-01

289

Source fabrication and lifetime for Li{sup +} ion beams extracted from alumino-silicate sources  

SciTech Connect

A space-charge-limited beam with current densities (J) exceeding 1 mA/cm{sup 2} have been measured from lithium alumino-silicate ion sources at a temperature of {approx}1275 deg. C. At higher extraction voltages, the source appears to become emission limited with J{>=} 1.5 mA/cm{sup 2}, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, {<=}0.25 mm thick, has a measured lifetime of {approx}40 h at {approx}1275 deg. C, when pulsed at 0.05 Hz and with pulse length of {approx}6 {mu}s each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. The source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California 94720 (United States)

2012-04-15

290

Source fabrication and lifetime for Li{sup +} ion beams extracted from alumino-silicate sources  

SciTech Connect

A space-charge-limited beam with current densities (J) exceeding 1 mA/cm{sup 2} have been measured from lithium alumino-silicate ion sources at a temperature of ?1275{degrees}C. At higher extraction voltages, the source appears to become emission limited with J ? 1.5 mA/cm{sup 2}, and J increases weakly with the applied voltage. A source with an alumino-silicate coating 6.35 mm in diameter and ?0.25 mm thick, has a lifetime of ?40 hours at ?1275{degrees}C, when pulsed at 0.05 Hz and with pulse length of ?6 ?s each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Furthermore, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be extended if the temperature is reduced between pulses.

Greenway, W. G.; Kwan, J. W.

2012-02-10

291

Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources  

SciTech Connect

A space-charge-limited beam with current densities (J) exceeding 1 mA/cm{sup 2} have been measured from lithium alumino-silicate ion sources at a temperature of #24;~1275#14;{degrees} C. At higher extraction voltages, the source appears to become emission limited with J #21;{>=} 1.5 mA/cm{sup 2}, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, {<=}#20;0.25 mm thick, has a measured lifetime of ~#24;40 hours at ~#24;1275#14;{degrees} C, when pulsed at 0.05 Hz and with pulse length of #24;~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. The source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

2012-03-05

292

Preparation, Processing, and Characterization of Oriented Polycrystalline Zeolite and Aluminophosphate Membranes  

NASA Astrophysics Data System (ADS)

Since the advent of zeolite membranes, speculation on their industrial applicability has been closely monitored, although widespread commercialization has been hampered by limitations in fabrication and post-synthesis processing. Economical, energy-efficient technology breakthroughs require an evaluation of a range of material candidates which show robustness and reliability. Straightforward manufacturing techniques should be devised to generate thousands of square meters of membrane area; however, this demands control of structural characteristics on the scale of nanometers. As described in this dissertation, the path forward will be forged by exploiting the intrinsic crystalline properties of zeolites or aluminophosphates for the next advancement in membrane technology. A facile method is described for the preparation of silicalite-1 (MFI zeolite type) membranes using the secondary growth technique on symmetric porous stainless steel tubes. Activation through rapid thermal processing (RTP), a lamp-based heat-treatment process used as a critical fabrication step in silicon integrated circuit manufacturing, is proven to reduce the density of non-zeolitic transport pathways which are detrimental to high-resolution molecular sieving. RTP-treated membranes are shown to have enhanced performance in the binary separation of vapor-phase isomers (p-/o-xylene), gas-phase isomers (n-/i-butane), and alcohol/water when compared to membranes activated at a much slower heating rate but otherwise similarly-prepared. The performance is discussed in the context of the market potential for industrially-attractive separations: the recovery of p-xylene from an isomeric mixture or alcohol biofuels from aqueous post-fermentation streams. Hydrothermal growth techniques for the preparation and characterization of continuous aluminophosphate (AFI zeolite type) membranes with a preferential crystallographic alignment on porous alpha-Al2O3 disc supports are demonstrated. A mechanism is proposed for flake-like crystal formation in the early stages of in-plane crystalline intergrowth between oriented columnar crystals by electric heating. It is shown that elevated temperatures induce a phase transformation to a densified aluminophosphate phase despite framework metal substitution or alternative heat-treatment conditions. Additionally, stability and membrane characteristics following in situ microwave growth using a TiO2-coated support are examined. Indications of improved quality validate the candidacy of the microwave-grown membranes with regard to the potential for carbon nanotube synthesis in the aligned one-dimensional channels for high flux, high separation factor membrane fabrication.

Stoeger, Jared Andrew

293

Liquid crystalline composites containing phyllosilicates  

DOEpatents

The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko, David J.

2004-07-13

294

Determination of trace elements in zeolites by laser ablation ICP-MS.  

PubMed

Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1-11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower microg/g range (from 0.03 microg/g for Lu, Ta and Th to 7.3 microg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation conditions employed (lambda: 266 nm, repetition frequency: 10 Hz, pulse energy: 10 mJ, laser power density: 6 x 10(9) W/cm2) fractionation effects of the determined elements relative to the internal standard element Ti were not observed. PMID:11220836

Pickhardt, C; Brenner, I B; Becker, J S; Dietze, H J

2000-09-01

295

Crystallinity in cast Nafion  

SciTech Connect

The performance of a polymer electrolyte fuel cell is critically dependent on the water uptake in the polymer electrolyte, usually Nafion. Nafion in solution is often painted onto the electrodes of the fuel cell. It is important that this cast Nafion film stay amorphous and not crystallize. Cast Nafion films, ca. 1 {micro}m thick, crystallized on silicon plates when kept in air at room temperature for a long time. The films contain large crystalline regions ranging from 0.5 mm to several millimeters in size. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy have been used to investigate the crystalline and amorphous regions. The XRD shows two sharp peaks. One of the peaks is developed before the second one appears in the diffractogram, indicating that there might be two types of crystallizing processes. FTIR spectra of the amorphous and crystalline regions in the films show important differences. In the crystalline regions, the film contains the sulfonic acid at the end of the side chains; hence, the crystalline regions contain no water molecules. In the amorphous regions there is a complete proton transfer from the acid to the water molecules, and sulfonate groups are obtained.

Ludvigsson, M.; Lindgren, J.; Tegenfeldt, J.

2000-04-01

296

Capturing Ultrasmall EMT Zeolite from Template-Free Systems  

NASA Astrophysics Data System (ADS)

Small differences between the lattice energies of different zeolites suggest that kinetic factors are of major importance in controlling zeolite nucleation. Thus, it is critical to control the nucleation kinetics in order to obtain a desired microporous material. Here, we demonstrate how careful investigation of the very early stages of zeolite crystallization in colloidal systems can provide access to important nanoscale zeolite phases while avoiding the use of expensive organic templates. We report the effective synthesis of ultrasmall (6- to 15-nanometer) crystals of the large-pore zeolite EMT from template-free colloidal precursors at low temperature (30°C) and very high yield.

Ng, Eng-Poh; Chateigner, Daniel; Bein, Thomas; Valtchev, Valentin; Mintova, Svetlana

2012-01-01

297

Hydrogen Purification Using Natural Zeolite Membranes  

NASA Technical Reports Server (NTRS)

The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

DelValle, William

2003-01-01

298

Photophysical properties of metal ion functionalized NaY zeolite.  

PubMed

A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu(3+), Tb(3+), Ce(3+), Y(3+), Zn(2+), Cd(2+), Cu(2+)) exchanged zeolite, rare-earth ion (Eu(3+), Tb(3+), Ce(3+)) exchanged zeolite modified with Y(3+) and rare-earth ion (Eu(3+), Tb(3+), Ce(3+)) exchanged zeolite modified with Zn(2+) are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare-earth ion broadens the application of zeolite as a luminescent host. The Eu(3+) ion exchanged zeolite shows white light luminescence with a great application value and Ce(3+) exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite. PMID:24392790

Duan, Tian-Wei; Yan, Bing

2014-01-01

299

Studies of anions sorption on natural zeolites.  

PubMed

This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

Barczyk, K; Mozgawa, W; Król, M

2014-12-10

300

Association of indigo with zeolites for improved colour stabilization , Martinetto P.a,*  

E-print Network

Association of indigo with zeolites for improved colour stabilization Dejoie C.a , Martinetto P on the association of indigo #12;blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite of the MFI zeolite matrix, we show that matching the pore size with the dimensions of the guest indigo

Paris-Sud XI, Université de

301

Crystalline variational methods  

PubMed Central

A surface free energy function is defined to be crystalline if its Wulff shape (the equilibrium crystal shape) is a polyhedron. All the questions that one considers for the area functional, where the surface free energy per unit area is 1 for all normal directions, can be considered for crystalline surface free energies. Such questions are interesting for both mathematical and physical reasons. Methods from the geometric calculus of variations are useful for studying a number of such questions; a survey of some of the results is given. PMID:12427965

Taylor, Jean E.

2002-01-01

302

Biomimetic oxidation on Fe complexes in zeolites  

SciTech Connect

One-step hydroxylation of aromatic nucleus with nitrous oxide (N{sub 2}O) is among recently discovered organic reactions. A high efficiency of FeZSM-5 zeolites in this reaction relates to a pronounced biomimetic-type activity of iron complexes stabilized in ZSM-5 matrix. N{sub 2}O decomposition on these complexes produces particular atomic oxygen form (a-oxygen), whose chemistry is similar to that performed by the active oxygen of enzyme monooxygenases. Room temperature oxidation reactions of {alpha}-oxygen as well as the data on the kinetic isotope effect and Moessbauer spectroscopy show FeZSM-5 zeolite to be a successful biomimetic model.

Panov, G.I.; Sobolev, V.I.; Dubkov, K.A. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation)] [and others

1996-12-31

303

Polymerization of methylacetylene in hydrogen zeolites  

SciTech Connect

Acid zeolites as media for the alignment and packaging of included conjugated polymers were investigated with the goal of producing materials with enhanced nonlinear optical properties. Methylacetylene gas was absorbed onto acid forms of Mordenite, Omega, L, Y, Beta ZSM-5, and SAPO-5 at room temperature. The resulting yellow to red-brown powders were characterized by mass uptake, powder XRD, TPD-TGA, {sup 13}C CP/MAS NMR, {sup 1}H MAS NMR, UV-vis, ESR, FTIR, heptane absorption, ammonia bleaching, and chemical extraction techniques. The data show that large, conjugated, oligomeric species are formed within the internal void spaces of the zeolites.

Cox, S.D.; Stucky, G.D. (Univ. of California, Santa Barbara (USA))

1991-01-24

304

In situ evolution of Ni environment in magnesium aluminosilicate glasses and glass-ceramics-Influence of ZrO2 and TiO2 nucleating agents  

NASA Astrophysics Data System (ADS)

The evolution of Ni2+ environment has been systematically investigated using optical and in situ X-ray absorption spectroscopy (XAS) to determine the influence of nucleating agents (TiO2 and/or ZrO2) during the formation of spinel in magnesium aluminosilicate glass-ceramics. The results were complemented by in situ X-ray diffraction data. According to XAS and optical spectroscopy, the nature of nucleating agents does not modify significantly the Ni environment in initial glasses. However, it has a relatively strong influence in the observed crystallization sequence. Ni2+ ions do not enter the Zr-containing crystalline phase of ZrO2 or ZrTiO4 but a Ni2+ coordination change from the fivefold coordinated sites, with a small amount of tetrahedral sites in parent glasses, to [6]Ni2+ and [4]Ni2+ sites in spinel (in glasses nucleated by ZrO2 and/or TiO2) or in ?-quartz solid solutions (in glasses nucleated by ZrO2) has been found.

Dugué, A.; Dymshits, O.; Cormier, L.; Cochain, B.; Lelong, G.; Zhilin, A.; Belin, S.

2015-03-01

305

CRYSTALLINE THORIUM BORATE  

Microsoft Academic Search

Crystalline thorium borate (ThBâOâ) was synthesized by the ; reaction of thoria with boric oxide at elevated temperatures; crystals suitable ; for single-crystal x-ray studies were grown in molten boric oxide at 1300 deg C. ; Crystallographic, chemical, and some physical properties of thorium borate ; crystals are presented as well as the results of a preliminary phase study of

Y. Baskin; Y. Harada; J. H. Handwerk

1961-01-01

306

Development of a Composite Non-Electrostatic Surface Complexation Model Describing Plutonium Sorption to Aluminosilicates  

SciTech Connect

Due to their ubiquity in nature and chemical reactivity, aluminosilicate minerals play an important role in retarding actinide subsurface migration. However, very few studies have examined Pu interaction with clay minerals in sufficient detail to produce a credible mechanistic model of its behavior. In this work, Pu(IV) and Pu(V) interactions with silica, gibbsite (Aloxide), and Na-montmorillonite (smectite clay) were examined as a function of time and pH. Sorption of Pu(IV) and Pu(V) to gibbsite and silica increased with pH (4 to 10). The Pu(V) sorption edge shifted to lower pH values over time and approached that of Pu(IV). This behavior is apparently due to surface mediated reduction of Pu(V) to Pu(IV). Surface complexation constants describing Pu(IV)/Pu(V) sorption to aluminol and silanol groups were developed from the silica and gibbsite sorption experiments and applied to the montmorillonite dataset. The model provided an acceptable fit to the montmorillonite sorption data for Pu(V). In order to accurately predict Pu(IV) sorption to montmorillonite, the model required inclusion of ion exchange. The objective of this work is to measure the sorption of Pu(IV) and Pu(V) to silica, gibbsite, and smectite (montmorillonite). Aluminosilicate minerals are ubiquitous at the Nevada National Security Site and improving our understanding of Pu sorption to aluminosilicates (smectite clays in particular) is essential to the accurate prediction of Pu transport rates. These data will improve the mechanistic approach for modeling the hydrologic source term (HST) and provide sorption Kd parameters for use in CAU models. In both alluvium and tuff, aluminosilicates have been found to play a dominant role in the radionuclide retardation because their abundance is typically more than an order of magnitude greater than other potential sorbing minerals such as iron and manganese oxides (e.g. Vaniman et al., 1996). The sorption database used in recent HST models (Carle et al., 2006) and upscaled for use in CAU models (Stoller-Navarro, 2008) includes surface complexation constants for U, Am, Eu, Np and Pu (Zavarin and Bruton, 2004). Generally, between 15 to 30 datasets were used to develop the constants for each radionuclide. However, the constants that describe Pu sorption to aluminosilicates were developed using only 10 datasets, most of which did not specify the oxidation state of Pu in the experiment. Without knowledge or control of the Pu oxidation state, a high degree of uncertainty is introduced into the model. The existing Pu surface complexation model (e.g. Zavarin and Bruton, 2004) drastically underestimates Pu sorption and, thus, will overestimate Pu migration rates (Turner, 1995). Recent HST simulations at Cambric (Carle et al., 2006) suggest that the existing surface complexation model may underpredict Pu K{sub d}s by as much as 3 orders of magnitude. In order to improve HST and CAU-scale transport models (and, as a result, reduce the conservative nature Pu migration estimates), sorption experiments were performed over a range of solution conditions that brackets the groundwater chemistry of the Nevada National Security Site. The aluminosilicates examined were gibbsite, silica, and montmorillonite.

Powell, B A; Kersting, A; Zavarin, M; Zhao, P

2008-10-28

307

Calculation of the 13C NMR shieldings of the C0 2 complexes of aluminosilicates  

NASA Astrophysics Data System (ADS)

13C NMR shieldings have been calculated using the random-phase-approximation, localized-orbital local-origins version of ab initio coupled Hartree-Fuck perturbation theory for CO 2 and and for several complexes formed by the reaction of CO 2 with molecular models for aluminosilicate glasses, H 3TOT'H3 3-n, T,T' = Si,Al. Two isomeric forms of the CO 2-aluminosilicate complexes have been considered: (1) "CO 2-like" complexes, in which the CO 2 group is bound through carbon to a bridging oxygen and (2) "CO 3-like" complexes, in which two oxygens of a central CO 3 group form bridging bonds to the two TH 3 groups. The CO 2-like isomer of CO 2-H 3SiOSiH 3 is quite weakly bonded and its 13C isotropic NMR shielding is almost identical to that in free CO 2. As Si is progressively replaced by Al in the - H terminated aluminosilicate model, the CO 2-like isomers show increasing distortion from the free CO 2 geometry and their 13C NMR shieldings decrease uniformly. The calculated 13C shielding value for H 3AlO(CO 2)AlH 3-2 is only about 6 ppm larger than that calculated for point charge stabilized CO 3-2. However, for a geometry of H 3SiO(CO 2) AlH 3-1, in which the bridging oxygen to C bond length has been artificially increased to that found in the - OH terminated cluster (OH) 3SiO(CO 2)Al(OH) 3-1, the calculated 13C shielding is almost identical to that for free CO 2. The CO 3-like isomers of the CO 2-aluminosili-cate complexes show carbonate like geometries and 13C NMR shieldings about 4-9 ppm larger than those of carbonate for all T,T' pairs. For the Si,Si tetrahedral atom pair the CO 2-like isomer is more stable energetically, while for the Si,Al and Al,Al cases the CO 3-like isomer is more stable. Addition of Na + ions to the CO 3-2 or H 3AlO(CO 2)AlH 3-2 complexes reduces the 13C NMR shieldings by about 10 ppm. Complexation with either Na + or CO 2 also reduces the 29Si NMR shieldings of the aluminosilicate models, while the changes in 27Al shielding with Na + or CO 2 complexation are much smaller. Complexation with CO 2 greatly increases the electric field gradient at the bridging oxygen of H 3AlOAlH 3-2, raising it to a value similar to that found for Si?O?Si linkages. Comparison of these results with the experimental 13C NMR spectra support the formation of CO 2-like complexes at SiOSi bridges in albite glasses and CO 3-like complexes at SiOAl and AlOAl bridges in albite and nepheline glasses. Changes in the calculated shieldings as Na + ions are added to the complexes suggest that some of the observed complexes may be similar in their CO 2-aluminosilicate interactions, but different with respect to the positions of the charge-compensating Na + ions.

Tossell, J. A.

1995-04-01

308

Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.  

PubMed

Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility. PMID:24024515

Loomba, Leena; Scarabelli, Tiziano

2013-09-01

309

Chemical interactions in multimetal/zeolite catalysts  

SciTech Connect

Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

Sachtler, W.M.H.

1992-02-07

310

Dispersion enhanced metal/zeolite catalysts  

DOEpatents

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, Wolfgang M. H. (Evanston, IL); Tzou, Ming-Shin (Evanston, IL); Jiang, Hui-Jong (Evanston, IL)

1987-01-01

311

MERCURY SEPARATION FROM POLLUTANT WATER USING ZEOLITES  

EPA Science Inventory

Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water has been examined at room temperature. Experiments have...

312

C-14 tracer studies on zeolite catalysis  

NASA Astrophysics Data System (ADS)

To elucidate the mechanism of hydrocarbon conversion on zeolite catalysts, small amount of 14C-labelled substances were added to the regular feed. Catalytic studies on isomerization of m-xylene and n-butene were carried out in a fixed-bed microreactor and the 14C distribution was determined by Radio-GC and Radio-HPLC.

Bauer, F.; Bilz, E.; Freyer, A.

2006-01-01

313

Zeolite 5A Catalyzed Etherification of Diphenylmethanol  

ERIC Educational Resources Information Center

An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

2009-01-01

314

Dispersion enhanced metal/zeolite catalysts  

DOEpatents

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

1987-03-31

315

ARSENIC SEPARATION FROM WATER USING ZEOLITES  

EPA Science Inventory

Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

316

ARSENIC SEPARATION FROM WATER USING ZEOLITES: SYMPOSIUM  

EPA Science Inventory

NRMRL-ADA-01134 Shevade, S, Ford*, R., and Puls*, R.W. "Arsenic Separation from Water Using Zeolites." In: 222nd ACS National Meeting, ACS Environmental Chemistry Division Symposia, Chicago, IL, 08/26-30/2001. 2001. 04/23/2001 This...

317

Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites  

SciTech Connect

This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

2014-12-15

318

UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS  

EPA Science Inventory

Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

319

DOI: 10.1002/anie.200702628 Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined  

E-print Network

Zeolites DOI: 10.1002/anie.200702628 Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined- graphic position of aluminum in zeolite frameworks governs the location of the active sites, which in turn

Sklenak, Stepan

320

Structure of Cl-containing silicate and aluminosilicate glasses: A 35Cl MAS-NMR study  

NASA Astrophysics Data System (ADS)

Chlorine-35 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra were collected at 14.1 and 18.8 Tesla fields to determine the atomic scale structural environments of the chloride ions in anhydrous and hydrous silicate and aluminosilicate glasses containing 0.2 to 0.7 wt% Cl. NMR peaks are broad and featureless, but are much narrower than the total chemical shift range for the nuclide in inorganic chlorides. Peak widths are primarily due to quadrupole interactions and to a lesser extent to chemical shift distributions. Peak positions are quite different for the Na- and Ca-containing glasses, suggesting that most Cl - coordination environments contain network modifier cations. Comparison of peak positions and shapes for silicate and aluminosilicate glasses containing either Na or Ca suggests that there is no obvious contribution from Cl - bonded to Al, and relative quantitation of peak areas indicates that there is no systematic undercounting of 35Cl spins in the aluminous vs. the Al-free samples. In Ca-Na silicate glasses with varying Ca/(Ca + Na), the mixed-cation glasses have intermediate chemical shifts between those of the end members, implying that there is not a strong preference of either Ca 2+ or of Na + around Cl -. Hydrous Na-aluminosilicate glasses with H 2O contents up to 5.9 wt% show a shift to higher frequency NMR signal with increasing H 2O content, while the quadrupole coupling constant ( CQ) remains constant at ˜3.3 MHz. However, the change in frequency is much smaller than that expected if H 2O systematically replaced Na + in the first-neighbor coordination shell around Cl -. A series of hydrous Ca-aluminosilicate glasses with H 2O contents up to 5.5 wt% show no shift in NMR signal with increasing H 2O content. The CQ remains constant at ˜4.4 MHz, again suggesting no direct interaction between Cl - and H 2O in these samples.

Sandland, Travis O.; Du, Lin-Shu; Stebbins, Jonathan F.; Webster, James D.

2004-12-01

321

DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste  

SciTech Connect

The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

Gong, W. L.; Lutz, Werner; Pegg, Ian L.

2011-07-21

322

Aluminosilicate ceramic proppant for gas and oil well fracturing and method of forming same  

SciTech Connect

An aluminosilicate ceramic product or article and a method of forming the article from as-mined ore. The product is useful as a proppant in gas and oil well fracturing. The ratio, on a calcined basis, of alumina to silica is between approximately 2.2 to 4.0. The amount of iron in the product is controlled as a function of the alumina to silica ratio so as to produce products having less than ten percent (10%) crush loss when subjected to a force of 10,000 psi.

Watson, D. R.; Carithers, V. G.; McDaniel, L. T.

1985-11-26

323

Liquid crystalline composites containing phyllosilicates  

DOEpatents

The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

Chaiko; David J. (Naperville, IL)

2007-05-08

324

CO2 SEPARATIONS USING ZEOLITE MEMBRANES  

SciTech Connect

Zeolite and other inorganic molecular sieve membranes have shown potential for separations based on molecular size and shape because of their small pore sized, typically less than 1 nm, and their narrow pore size distribution. The high thermal and chemical stability of these inorganic crystals make them ideal materials for use in high temperature applications such as catalytic membrane reactors. Most of the progress with zeolite membranes has been with MFI zeolites prepared on porous disks and tubes. The MFI zeolite is a medium pore size structure having nearly circular pores with diameters between .53 and .56 nm. Separation experiments through MFI membranes indicate that competitive adsorption separates light gas mixtures. Light gas selectivities are typically small, however, owing to small differences in adsorption strengths and their small sizes relative to the MFI pore opening. Furthermore, competitive adsorption does not work well at high temperature where zeolite membranes are stable and have potential application. Separation by differences in size has a greater potential to work at high temperature than competitive adsorption, but pores smaller than those in MFI zeolites are required. Therefore, some studies focused on the synthesis of a small, 8-membered-pore structures such as zeolite A (0.41-nm pore diameter) and SAPO-34, a chabazite (about .4-nm pore diameter with about 1.4 nm cages) analog. The small pore size of the zeolite A and SAPO-34 structures made the separation of smaller molecules by differences in size possible. Zeolite MFI and SAPO-34 membranes were prepared on the inside surface of porous alumina tubes by hydrothermal synthesis, and single gas and binary mixture permeances were measured to characterize the membrane's performance. A mathematical diffusion model was developed to determine the relative quantities of zeolite and non-zeolite pores in different membranes by modeling the permeation date of CO{sub 2}. This model expresses the total flux through the membrane as the sum of surface diffusion through zeolite pores and viscous flow and Knudsen diffusion through non-zeolite pores. As predicted by the model, the permeance of CO{sub 2} decrease with increasing pressure at constant pressure drop for membranes with few non-zeolite pores, but the permeance increased through viscous flow pores and was constant through pores allowing Knudsen diffusion. Membranes having more non-zeolite pores had lower CO{sub 2}/CH{sub 4} selectivities. The SAPO-34 membranes were characterized for light gas separation applications, and the separation mechanisms were identified. Single gas permeances of CO{sub 2}, N{sub 2}, and CH{sub 4} decreased with increasing kinetic diameter. For the best membrane at 300K, the He and H{sub 2} permeances were less than that of CO{sub 2}, because He, H{sub 2} and CO{sub 2} were small compared to the SAPO-34 pore, and differences in the heat of adsorption determined the permeance order. The small component permeated the fastest in CO{sub 2}/CH{sub 4}, CO{sub 2}/N{sub 2}, N{sub 2}/CH{sub 4}, H{sub 2}/CH{sub 4}, and H{sub 2}/N{sub 2} mixtures between 300 and 470 K. For H{sub 2}/CO{sub 2} mixtures, which were separated by competitive adsorption at room temperature, the larger component permeated faster below 400K. The room temperature CO{sub 2}/CH{sub 4} selectivity was 36 and decreased with temperature. The H{sub 2}/CH{sub 4} mixture selectivity was 8 and constant with temperature up to 480 K. Calcination, slow temperature cycles, and exposure to water vapor had no permanent effect on membrane performance, but temperature changes of approximately 30 K/min decreased the membrane's effectiveness. The effects of humidity on gas permeation were studied with SAPO-34 membranes of different qualities. Membranes with high CO{sub 2}/CH{sub 4} selectivities (greater than 20) were stable in water vapor under controlled conditions, but degradation was seen for some membranes. The degradation opened non-SAPO-34 pores that were larger than SAPO-34 pores as shown by the IC{sub 4}H{sub 10} permeance, C

Richard D. Noble; John L. Falconer

2001-06-30

325

Crystalline color superconductors  

NASA Astrophysics Data System (ADS)

Inhomogeneous superconductors and inhomogeneous superfluids appear in a variety of contexts including quark matter at extreme densities, fermionic systems of cold atoms, type-II cuprates, and organic superconductors. In the present review the focus is on properties of quark matter at high baryonic density, which may exist in the interior of compact stars. The conditions realized in these stellar objects tend to disfavor standard symmetric BCS pairing and may favor an inhomogeneous color superconducting phase. The properties of inhomogeneous color superconductors are discussed in detail and in particular of crystalline color superconductors. The possible astrophysical signatures associated with the presence of crystalline color superconducting phases within the core of compact stars are also reviewed.

Anglani, Roberto; Casalbuoni, Roberto; Ciminale, Marco; Ippolito, Nicola; Gatto, Raoul; Mannarelli, Massimo; Ruggieri, Marco

2014-04-01

326

Crystalline titanate catalyst supports  

DOEpatents

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, Rayford G. (Bryan, TX); Dosch, Robert G. (Albuquerque, NM)

1993-01-01

327

Crystalline titanate catalyst supports  

DOEpatents

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, R.G.; Dosch, R.G.

1993-01-05

328

Seeding of Porous Alumina Substrate with MFI Zeolite Nanocrystals using Spin-coating Technique  

E-print Network

Zeolite membranes offer a great potential for applications in many challenging separation processes. Controlled thickness of zeolite membrane allows high flux and excellent selectivity commercially available; producing ...

Baroud, T.

329

Crystalline beam ground state  

SciTech Connect

In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing.

Wei, Jie [Brookhaven National Lab., Upton, NY (United States); Li, Xiao-Ping [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics; Sessler, A.M. [Lawrence Berkeley Lab., CA (United States)

1993-06-11

330

Paranitrophenol liquid-phase adsorption in dealuminated Y zeolite.  

PubMed

Was studied the liquid-phase paranitrophenol (PNP) dynamic adsorption in a packed bed adsorption reactor (PBAR), filled with dealuminated Y zeolite (DAY) and granulated active carbon (GAC). In addition, was measured the equilibrium maximum amount of adsorption for the system: PNP aqueous solution-DAY zeolite, at 300 K, to compare it with other adsorbents. The DAY zeolite and the GAC were characterized with adsorption methods. The DAY zeolite was, as well, characterized with: XRD, SEM and EDAX. Some of the operational parameters which characterize the performance of the PBAR were calculated. To evaluate these results, was considered the breakthrough experiment as a frontal analysis chromatographic event and were applied the DeVault and van Deemter equations. It was concluded that the reactor filled with the DAY zeolite operates more efficiently than those filled with the GAC, because of the stronger adsorbate-adsorbent interaction in the case of the DAY zeolite. PMID:18930242

Muñiz-Lopez, C; Duconge, J; Roque-Malherbe, R

2009-01-01

331

Atomic sites and stability of Cs+ captured within zeolitic nanocavities  

PubMed Central

Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

2013-01-01

332

Atomic sites and stability of Cs+ captured within zeolitic nanocavities  

NASA Astrophysics Data System (ADS)

Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations.

Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

2013-08-01

333

Zeolite catalysis in conversion of cellulosics. Annual report  

SciTech Connect

The authors have studied the kinetics of oxylose/xylulose isomerization in significant detail over a variety of zeolites and obtained the pseudo-first order reaction rate constants. The authors have found that HY zeolite is still the best material and zeolites are more selective than homogeneous acid catalysts where decomposition of the sugar compounds is much faster. They have completed, as described in the Year 2 Work Plan, the study of cellobiose hydrolysis with an ion exchange resin. The kinetics of the solid-catalyzed reaction is qualitatively similar to that for catalysis by homogeneous acids. The planned program of NMR studies has revealed the dynamics of sugar molecules within the zeolite cavities. Two chemisorbed and a physisorbed state have been identified in HY zeolite. A new state, accounting for as much as a half of the sugar, has been found in ZSM-5 zeolite.

Tsao, G.T.

1994-02-01

334

Chemical Interactions in Multimetal/Zeolite Catalysts  

SciTech Connect

This two-year project has led to a significant improvement in the fundamental understanding of the catalytic action of zeolite-supported redox catalysts. It turned out to be essential that we could combine four strategies for the preparation of catalysts containing transition metal (TM) ions in zeolite cavities: (1) ion exchange from aqueous solution; (2) chemical vapor deposition (CVD) of a volatile halide onto a zeolite in its acidic form; (3) solid state ion exchange; and (4) hydrothermal synthesis of a zeolite having TM ions in its lattice, followed by a treatment transporting these ions to ''guest positions''. Technique (2) enables us to position more TM ions into cavities than permitted by the conventional technique (1).viz one positive charge per Al centered tetrahedron in the zeolite lattice. The additional charge is compensated by ligands to the TM ions, for instance in oxo-ions such as (GaO){sup +} or dinuclear [Cu-O-Cu]{sup 2+}. While technique (3) is preferred over CVD where volatile halides are not available, technique (4) leads to rather isolated ''ex lattice'' oxo-ions. Such oxo-ions tend to be mono-nuclear, in contrast to technique (2) which preferentially creates dinuclear oxo-ions of the same TM element. A favorable element for the present research was that the PI is also actively engaged in a project on the reduction of nitrogen oxides, sponsored by EMSI program of the National Science Foundation and the US Department of Energy, Office of Science. This combination created a unique opportunity to test and analyze catalysts for the one step oxidation of benzene to phenol and compare them with catalysts for the reduction of nitrogen oxides, using hydrocarbons as the reductant. In both projects catalysts have been used which contain Fe ions or oxo-ions in the cavities the zeolite MFI, often called ZSM-5. With Fe as the TM-element and MFI as the host zeolite we found that catalysts with high Fe content, prepared by technique (2) were optimal for the De-NO{sub x} reaction, but extremely unselective for benzene oxidation to phenol. Conversely, the catalysts prepared with (4) had the highest turnover frequency for benzene oxidation, but performed very poorly for NO{sub x} reduction with so-butane. In fact the Fe concentration in the former catalysts were so low that it was necessary to design a special experimental program for the sole purpose of showing that it is really the Fe which catalyzes the benzene oxidation, not some acid center as has been proposed by other authors. For this purpose we used hydrogen sulfide to selectively poison the Fe sites, without deactivating the acidic sites. In addition we could show that the hydrothermal treatment of catalysts prepared by technique (4) is essential to transform iron ions in the zeolite lattice to ''ex lattice ions'' in guest positions. That line of the work required very careful experimentation, because a hydrothermal treatment of a zeolite containing Fe ions in its cavities can also lead to agglomeration of such ions to nano-particles of iron oxide which lowers the selectivity for the desired formation of phenol. This part of the program showed convincingly that indeed Fe is responsible for the benzene oxidation catalysis. The results and conclusion of this work, including the comparison of different catalysts, was published in a number of papers in the scientific literature, listed in the attached list. In these papers also our analysis of the reaction orders and the possible mechanism of the used test reaction are given.

Sachtler, Wolfgang M. H.

2004-04-16

335

Water solubility mechanism in hydrous aluminosilicate glasses: information from 27Al MAS and MQMAS NMR  

NASA Astrophysics Data System (ADS)

New 27Al NMR data are presented in order to clarify the discrepancies in the interpretation of the previous 27Al Magic Angle Spinning (MAS) spectra from hydrous aluminosilicate glasses. The 27Al MAS data have been collected at much higher magnetic field (14.1 and 17.6 T) than hitherto, and in addition, multiple quantum (MQ) MAS NMR data are presented for dry and hydrous nepheline glasses and NaAlSi 7.7O 17.4 glass that, according to the model of Zeng et al. (Zeng Q., Nekvasil H., and Grey C. P. 2000. In support of a depolymerisation model for water in sodium aluminosilicate glasses: Information from NMR spectroscopy. Geochim. Cosmochim. Acta64, 883-896), should produce a high fraction (up to 30%) of Al in Al Q 3-OH on hydration. Although small differences in the MAS spectra of anhydrous and hydrous nepheline glasses are observed, there is no evidence for the existence of significant (>˜2%) amounts of Q 3 Al-OH in these glasses in either the MAS or MQMAS data.

Padro, D.; Schmidt, B. C.; Dupree, R.

2003-04-01

336

Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites  

USGS Publications Warehouse

Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ?? 0.35) ?? 107. The experimentally determined Gibbs free energy of formation (??Gf,2980) for the kaolinite is -3,789.51 ?? 6.60 kj mol-1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ??Gf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ??Gf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ??Gf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions. ?? 1986.

May, H.M.; Klnniburgh, D.G.; Helmke, P.A.; Jackson, M.L.

1986-01-01

337

Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix  

SciTech Connect

Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

2014-05-15

338

Barrier properties of hydrogenated acrylonitrile-butadiene rubber composites containing modified layered aluminosilicates  

NASA Astrophysics Data System (ADS)

The resistance to permeation by the selected solvents of flat membranes made of cured hydrogenated acrylonitrile-butadiene rubber (HNBR) materials without any fillers and containing 5 phr of layered aluminosilicate nanofiller (bentonite), modified with various types of ammonium salts or N330 type carbon black, was investigated. The barrier properties were assessed on the basis of the breakthrough time of a liquid with low (cyclohexane) or average (butyl acetate) thermodynamic affinity to HNBR, determined according to EN 6529:2001, through a cured elastomer sample. The addition of bentonite, irrespectively of the method of modification of its particles, was found to increase the cured HNBR breakthrough time by 20 - 35 % in the case of slowly permeating non-polar cyclohexane, and by 50 - 130 % in the case of polar butyl acetate permeating more rapidly, in comparison with the barrier material containing no filler. The layered aluminosilicate nanofillers increased the breakthrough time of the material sample for both the tested solvents. In particular, the breakthrough time for polar butyl acetate was even longer than for conventional carbon black. Additionally, the increase of the breakthrough time was observed to depend on the modifier of bentonite particle surface.

Krzemi?ska, S.; Rzymski, W. M.

2011-12-01

339

Electromagnetic and Mechanical Properties of Silica-Aluminosilicates Plasma Sprayed Composite Coatings  

NASA Astrophysics Data System (ADS)

The physico-chemical and thermo-mechanical properties of aluminosilicate ceramics (high-melting point, low thermal expansion coefficient, excellent thermal shock resistance, low-density and good corrosion resistance) make this class of materials a good option for high-temperature structural applications. Al2O3-SiO2 compounds show an excellent refractory behavior allowing a wide use as wear-resistant thermal barrier coatings, in metallurgical and glass plants and in high temperature heat exchangers. Moreover, the low values of thermal expansion coefficient and of complex permittivity allow to extend the use of this ceramic for microelectronic devices, radome for antennas and electromagnetic windows for microwaves and infrared. The present article presents the results of an extensive experimental activity carried out to produce thick aluminosilicate coatings by plasma-spray technique. The APS deposition parameters were optimized on the basis of a surface response approach, as specified by design of experiments (DoE) methodologies. Samples were tested for phase composition, total porosity, microstructure, microhardness, deposition efficiency, fracture toughness, and modulus of rupture. Finally, coatings were characterized for their particularly interesting electromagnetic properties: complex permittivity was measured at microwave frequency using a network analyzer with wave guide.

Cipri, F.; Bartuli, C.; Valente, T.; Casadei, F.

2007-12-01

340

A HIGH CURRENT DENSITY LI+ ALUMINO-SILICATE ION SOURCE FOR TARGET HEATING EXPERIMENTS  

SciTech Connect

The NDCX-II accelerator for target heating experiments has been designed to use a large diameter ({approx_equal} 10.9 cm) Li{sup +} doped alumino-silicate source with a pulse duration of 0.5 {micro}s, and beam current of {approx_equal} 93 mA. Characterization of a prototype lithium alumino-silicate sources is presented. Using 6.35mm diameter prototype emitters (coated on a {approx_equal} 75% porous tungsten substrate), at a temperature of {approx_equal} 1275 C, a space-charge limited Li{sup +} beam current density of {approx_equal} 1 mA/cm{sup 2} was measured. At higher extraction voltage, the source is emission limited at around {approx_equal} 1.5 mA/cm{sup 2}, weakly dependent on the applied voltage. The lifetime of the ion source is {approx_equal} 50 hours while pulsing the extraction voltage at 2 to 3 times per minute. Measurements show that the life time of the ion source does not depend only on beam current extraction, and lithium loss may be dominated by neutral loss or by evaporation. The life time of a source is around {ge} 10 hours in a DC mode extraction, and the extracted charge is {approx_equal} 75% of the available Li in the sample. It is inferred that pulsed heating may increase the life time of a source.

Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.

2011-03-23

341

Development of low-cost integrated zeolite collector  

NASA Astrophysics Data System (ADS)

The optimum zeolite loading and the best zeolite for this purpose were determined by careful mathematical analysis, followed by experimental test, to confirm the theoretical results. The integrated collector design was then completed and the collector was constructed. After sealing and vacuum testing the zeolite panels and heat exchanges, the collector was coated with flat black paint and provided with double glazing, aluminum frame and insulation. Preliminary testing indicates close agreement with theoretical predictions of its performance.

Tchernev, D. I.

1981-07-01

342

Zeolite (clinoptilolite) as feed additive to reduce manure mineral content.  

PubMed

Clinoptilolite (a species of zeolite) as grower hog feed additive can potentially improve nutrient ingestion and lower manure nutrient levels. A first objective was to establish the optimal particle size of the zeolite powder, as a fine size increases the adsorption surface while a coarse size can facilitate handling. The second objective tested the effect of feeding zeolite on manure nutrient levels. For the first objective, three zeolite powders (250-500 microm; 50-250 microm, and 50-500 microm) were exposed to an NH(4)(+) solution under a pH of either 7.0 or 2.0. The resulting solutions were tested for cation exchange. A commercial zeolite was also tested for the pH of 2.0 to evaluate zeolite stability. At 0%, 5% and 10% humidity, the same three particle size powders were subjected to shear tests to determine the zeolite's angle of friction. For the second objective using metabolic cages, female hogs were subjected to one of four rations (a control and three with zeolite) while collecting and analyzing their manures. For the first objective, the coarse particle zeolite performed best, adsorbing 158 and 123 Cmol(+)/kg of NH(4)(+) under neutral and acid pH, respectively, and releasing an equivalent amount of minerals only under neutral pH. The commercial zeolite with less clinoptilolite released more Al, Fe, Cu and Pb, showing less stability. The high internal angle of friction of zeolite did not vary with particle size and moisture, indicating funnel flow under gravity. For the second objective, hogs fed a zeolite diet produced manure with 15% and 22% less N and P, respectively, and demonstrated a better feed conversion, although not statistically significant (P>0.05). These results show that there is some potential in using high quality clinoptilolite in the ration of grower hogs. PMID:16905313

Leung, S; Barrington, S; Wan, Y; Zhao, X; El-Husseini, B

2007-12-01

343

CO2 adsorption equilibria of the honeycomb zeolite beds  

Microsoft Academic Search

The CO2 adsorption equilibria of the honeycomb zeolite beds consisting of MS-13X or MS-4A were determined from breakthrough curves for various CO2-N2 mixtures, and the fitness of the Dubinin-Astakhov equation (Dubinin MM, Astakhov VA. Description of adsorption equilibria of vapors on zeolite over wide ranges of temperature and pressure. In: Flanigen M, Sand LB, editors. Molecular sieves zeolite II. Washington:

K. Kamiuto; Ermalina; K. Ihara

2001-01-01

344

CO 2 adsorption equilibria of the honeycomb zeolite beds  

Microsoft Academic Search

The CO2 adsorption equilibria of the honeycomb zeolite beds consisting of MS-13X or MS-4A were determined from breakthrough curves for various CO2–N2 mixtures, and the fitness of the Dubinin–Astakhov equation (Dubinin MM, Astakhov VA. Description of adsorption equilibria of vapors on zeolite over wide ranges of temperature and pressure. In: Flanigen M, Sand LB, editors. Molecular sieves zeolite II. Washington:

K. Kamiuto; Ermalina; K. Ihara

2001-01-01

345

Thermal analysis of fly ash-based zeolites  

Microsoft Academic Search

The paper presents research results on dehydration properties and thermal behaviour of zeolites synthesized from fly ash,\\u000a applying TG (thermogravimetry), DTG (derivative thermogravimetry) and SDTA (simultaneous differential thermal analysis) methods.\\u000a In result of the analysis conducted water contents in zeolite samples were defined. On the basis of the data obtained from\\u000a the thermogravimetric analysis, thermal behaviour of zeolites was assessed.

I. Majchrzak-Kuc?ba; W. Nowak

2004-01-01

346

Large zeolites - Why and how to grow in space  

NASA Technical Reports Server (NTRS)

The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.

Sacco, Albert, Jr.

1991-01-01

347

Synthetic zeolites as amendments for sewage sludge-based compost  

Microsoft Academic Search

The effects of incorporating a synthetic zeolite (Zeolite P) in a range of concentrations (0.1–1.0 w:w) into an experimental horticultural compost, derived from sewage sludge, have been investigated. The impact of zeolite treatment on time-related changes of the labile zinc, copper, iron and manganese pools within the compost was compared to lime incorporation (5% w:w) and to a proprietary unamended

L. R Nissen; N. W Lepp; R Edwards

2000-01-01

348

Synthesis of NaA zeolite membrane by microwave heating  

Microsoft Academic Search

The synthesis of NaA zeolite membrane on a porous ?-Al2O3 support by microwave heating (MH) was investigated. The formation of a NaA zeolite membrane was drastically promoted by MH. The synthesis time was reduced from 3 h for conventional heating (CH) to 15 min for MH. Surface seeding cannot only promote the formation of NaA zeolite on the support, but

Xiaochun Xu; Weishen Yang; Jie Liu; Liwu Lin

2001-01-01

349

Microwave synthesis of LTA zeolite membranes without seeding  

Microsoft Academic Search

A new method called “in-situ aging—microwave synthesis” was developed for zeolite membrane synthesis. High quality LTA zeolite membranes were successfully microwave-synthesized without seeding by this method. It was found that the formed zeolite layer was composed of sphere grains with undefined crystal facets. The necessity of in-situ aging was discussed. The effects of synthesis parameters including in-situ aging temperature, time

Yanshuo Li; Hongliang Chen; Jie Liu; Weishen Yang

2006-01-01

350

Transesterification of soybean oil with zeolite and metal catalysts  

Microsoft Academic Search

Transesterification of soybean oil with methanol was carried out at 60, 120, and 150°C in the presence of a series NaX faujasite zeolite, ETS-10 zeolite, and metal catalysts. The stock zeolites were exchanged with potassium and cesium; NaX containing occluded sodium oxide (NaOx\\/NaX) and occluded sodium azide (NaOx\\/NaX*). The catalysts were calcined at 500°C prior to use in order to

Galen J. Suppes; Mohanprasad A. Dasari; Eric J. Doskocil; Pratik J. Mankidy; Michael J. Goff

2004-01-01

351

Effects of zeolites on cultures of marine micro-algae  

Microsoft Academic Search

Goal, Scope and Background  The cation-exchange capacity of zeolites is well known and has been increasingly explored in different fields with both economic\\u000a and environmental successes. In aquatic medium with low salinity, zeolites have found multiple applications. However, a review\\u000a of the literature on the applications of zeolites in salt waters found relatively few articles, including some recently published\\u000a papers. The

Adriano Fachini; Maria Teresa S. D. Vasconcelos

2006-01-01

352

Zeolite Crystal Growth in Microgravity and on Earth  

NASA Technical Reports Server (NTRS)

The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

2003-01-01

353

Method for the recovery of silver from silver zeolite  

DOEpatents

High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

Reimann, George A. (Idaho Falls, ID)

1986-01-01

354

Method for the recovery of silver from silver zeolite  

DOEpatents

High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

Reimann, G.A.

1985-03-05

355

Electrical Response of PEDOT-PSS/FAU Zeolite Composites toward SO2: Controlling the Adsorption Properties of FAU Zeolite  

NASA Astrophysics Data System (ADS)

In our work, we propose to combine a conductive polymer, Poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT-PSS), with FAU zeolites to investigate the potential of the composites for use as SO2 sensing materials.Composites with PEDOT-PSS as a matrix containing faujasite zeolites of various cation types (divalent transition metal ions: Fe^2+, Co^2+, Ni^2+ and Cu^2+), were fabricated to investigate the effect of the cation type of the faujasite zeolites on the electrical conductivity response when exposed to SO2. The composite was tested through repeated sensing and recovery processes to investigate the reversibility and reproducibility. During the recovery process, the electrical conductivity of the composites were recovered, which proves that the sensing characteristics are repeatable. Responses and the interaction mechanism of the conductive polymer/zeolite composites were investigated. The composite with 20% (v/v) of zeolite content gives the highest sensitivity. The electrical conductivity responses of PEDOT-PSS/Zeolite composites can be altered due to the available adsorption sites for gas molecules. The addition of zeolites to the pristine PEDOT-PSS improved the electrical conductivity sensitivity of the composites by enhancing the interaction between PEDOT-PSS and SO2. The type of cation in the zeolite pores effected the sensitivity of the composites, depending on the acidity of the ion-exchanged zeolites.

Chanthaanont, Pojjawan; Sirivat, Anuvat

2012-02-01

356

Pf/Zeolite Catalyst for Tritium Stripping  

SciTech Connect

This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

Hsu, R.H.

2001-03-26

357

Microstructure-property relationships of SiC fibre-reinforced magnesium aluminosilicates—I. Microstructural characterisation  

Microsoft Academic Search

The microstructure of two magnesium aluminosilicates unidirectionally reinforced with SiC fibres (Nicalon) has been examined. A diphasic interlayer having a higher OSi ratio than in the fibres was found on the surface of the fibres in both composites. This interlayer could be identified as an amorphous mixture of silica and carbon in the composite hot-pressed just below the liquidus temperature

A. Kumar; K. M. Knowles

1996-01-01

358

Strain energy minimum and vibrational properties of single-walled aluminosilicate nanotubes Suchitra Konduri, Sanjoy Mukherjee, and Sankar Nair*  

E-print Network

is the unique single-walled aluminosilicate nanotube, imogolite.8,9 The wall is a layer of aluminum hydroxide arranged aluminum atoms connected by double oxygen bridges. On the outer surface, each oxygen is coordinated to two aluminum atoms and a hydrogen atom. On the inner surface the hydrogen atoms are replaced

Nair, Sankar

359

Raman spectra of zeolites exchanged with uranyl(VI) cations—II. Zeolite X  

NASA Astrophysics Data System (ADS)

The formation of hydrolysed uranyl(VI) species in UO 2X zeolites prepared by various methods has been investigated by Raman spectroscopy. Ion-exchange in aqueous (pH>3) and non-aqueous (anhydrous methanol and uranyl nitrate melts) media resulted in the formation of hydroxy-bridged complexes such as [(UO 2) 3(OH) 4] 2+, [(UO 2) 3(OH) 5] +, and [(UO 2) 4(OH) 7] +. Ion-exchange in more acidic media (initial pH < 3) was accompanied by the formation of a disordered phase incorporating UO 3, following extensive collapse of the zeolite framework structure. Cation speciation in the UO 2X system is compared to that in UO 2Y zeolites.

Bartlett, John R.; Cooney, Ralph P.

1989-01-01

360

Metal loading and reactivity of Zeolite Y  

E-print Network

be loaded with as much as fifty weight percent MoOs without destroying the zeolite structure. The final calcined product was bound with SiOi and crushed. The crushed par- ticles were 210 to 495 pm in diameter. The nitrogen adsorption specific surface... (', . Nickel Ion Exchange D. Molybdenum Irr&pregnat ion E. Calcination F. Reactivity 31 31 37 47 VI. CONCLUSIONS AND RECOMMENDATIONS 57 REFERENCES APPENDIX A: DETAILED PROCEDURES APPENDIX B: GAS CHROMATOGRAPHY CONDITIONS 60 62 75 VITA 77 LIST...

Sa?enz, Marc Gerard

1988-01-01

361

Polymerization of methylacetylene in hydrogen zeolites  

Microsoft Academic Search

Acid zeolites as media for the alignment and packaging of included conjugated polymers were investigated with the goal of producing materials with enhanced nonlinear optical properties. Methylacetylene gas was absorbed onto acid forms of Mordenite, Omega, L, Y, Beta ZSM-5, and SAPO-5 at room temperature. The resulting yellow to red-brown powders were characterized by mass uptake, powder XRD, TPD-TGA, ¹³C

Sherman D. Cox; Galen D. Stucky

1991-01-01

362

Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia  

DOEpatents

Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

1980-01-01

363

Zeolite compositions as proxies for eruptive paleoenvironment  

NASA Astrophysics Data System (ADS)

We report chemical compositions of authigenic alteration minerals in subglacially erupted hyaloclastite breccias from James Ross Island, Antarctica, which provide a geochemical proxy for paleoenvironment. Analyses of zeolites (phillipsite and chabazite) from several lava-fed deltas on the island were compared with published compositions of zeolites from known freshwater and marine environments. Using values of (Na + K)/Ca = 3.0 (for phillipsites) and 1.0 (for chabazites), the data successfully distinguish between marine and freshwater alteration. However, our study also suggests that volcanic breccias may not be sealed to fluids, even when the pore spaces are completely filled. The James Ross Island data show that, at higher elevations in lava-fed deltas, the zeolites preserve their original freshwater-influenced (i.e., glacial) compositions, whereas at lower elevations, (Na + K)/Ca ratios are generally higher and indicate a later marine influence. We suggest that water may penetrate several kilometers into the volcanic pile by movement along fractures and/or grain boundaries.

Johnson, Joanne S.; Smellie, John L.

2007-03-01

364

Infrared spectroscopic characterization of dehydration and accompanying phase transition behaviors in NAT-topology zeolites  

SciTech Connect

Relative humidity (PH2O, partial pressure of water)-dependent dehydration and accompanying phase transitions in NAT-topology zeolites (natrolite, scolecite, and mesolite) were studied under controlled temperature and known PH2O conditions by in situ diffuse-reflectance infrared Fourier transform spectroscopy and parallel X-ray powder diffraction. Dehydration was characterized by the disappearance of internal H2O vibrational modes. The loss of H2O molecules caused a sequence of structural transitions in which the host framework transformation path was coupled primarily via the thermal motion of guest Na?/Ca2? cations and H2O molecules. The observation of different interactions of H2O molecules and Na?/Ca2? cations with host aluminosilicate frameworks under highand low-PH2O conditions indicated the development of different local strain fields, arising from cation H2O interactions in NAT-type channels. These strain fields influence the Si O/Al O bond strength and tilting angles within and between tetrahedra as the dehydration temperature is approached. The newly observed infrared bands (at 2,139 cm-1 in natrolite, 2,276 cm-1 in scolecite, and 2,176 and 2,259 cm-1 in mesolite) result from strong cation H2O Al Si framework interactions in NAT-type channels, and these bands can be used to evaluate the energetic evolution of Na?/Ca2? cations before and after phase transitions, especially for scolecite and mesolite. The 2,176 and 2,259 cm-1 absorption bands in mesolite also appear to be related to Na?/Ca2? order disorder that occur when mesolite loses its Ow4 H2O molecules.

Wang, Hsiu-Wen [ORNL; Bishop, David [ORNL

2012-01-01

365

The Valence State of Silicon and Redox Dynamics in Aluminosilicate Melts  

NASA Astrophysics Data System (ADS)

Physicists have long been aware of the many valence states of Si and the roles these play in the kinetics of thermal oxidation of Si single crystals and the molecular structure of the amorphous oxide film (e.g., Borman et al., 1991). Similarly, the dynamics of oxidation and of vaporization of SiC are also affected by the presence of Si2+ in the amorphous silica surface film (e.g., Dunham et al., 1998; Mendybaev et al., 2002). Nevertheless, Si2+,4+ heterovalency is little considered in redox studies of silicate melts as reported in the petrology literature. We have performed experiments in which a liquid bronze (Cu,Sn) alloy was reacted with (1) a magnesium aluminosilicate melt and (2) a Zn2+-doped magnesium aluminosilicate melt, all done at a low oxygen fugacity (sufficient to keep the metal alloy from oxidizing in reaction with the gas environment). The driving potential for metal melt-silicate melt reaction has two components: (a) reduction of the silicate melt and oxidation of the metal alloy; (b) formation of a homogeneous silicate solution that incorporates ionic Cu and Sn. The reaction morphologies present compelling evidence that Si4+ in the silicate melt is reduced in part to Si2+, initially so as to incorporate Cu+,2+ into the melt; as the reaction proceeds, however, the Si2+ mobility becomes important in charge-compensation of the "inward" flux of Sn2+. Addition of Zn2+ to the starting silicate melt forces a spatially periodic variation in the silicate melt structure (as suggested by the chemistry) as the reaction proceeds. In separate experiments, reduction of an FeO-bearing calcium-magnesium aluminosilicate melt in a CO-rich environment creates a reaction morphology suggestive of reduction of Si4+ to facilitate the incorporation of carbonate ions into the melt. These experiments are perhaps exotic; nevertheless, they provoke the consideration of the potential role(s) played by silicon valence in any "self-buffering" process associated with the evolution of planetary interiors. Borman et al., Phys. Rev. Lett. 67:2387-2390 (1991). Dunham et al., Mater. Sci. Forum 264-2:391-394 (1998). Mendybaev et al., Geochim. Cosmochim. Acta 66:661-682 (2002).

Cooper, R. F.; Pettersen, C.; Everman, R. L.

2005-12-01

366

Design of composite photocatalyst of TiO2 and Y-zeolite for degradation of 2-propanol in the gas phase under UV and visible light irradiation.  

PubMed

Hydrophobic Y-zeolite (SiO2/Al2O3 = 810) and TiO2 composite photocatalysts were designed by using two different types of TiO2 precursors, i.e., titanium ammonium oxalate and ammonium hexafluorotitanate. The porous structure, surface property and state of TiO2 were investigated by various characterization techniques. By using an ammonium hexafluorotitanate as a precursor, hydrophobic modification of the Y-zeolite surface and realizing visible light sensitivity was successfully achieved at the same time after calcination at 773 K in the air. The prepared sample still maintained the porous structure of Y-zeolite and a large surface area. Highly crystalline anatase TiO2 was also formed on the Y-zeolite surface by the role of fluorine in the precursor. The usages of ammonium hexafluorotitanate were effective for the improvement of the photocatalytic performance of the composite in the degradation of 2-propanol in the gas phase under UV and visible light (? > 420 nm) irradiation. PMID:25314607

Kamegawa, Takashi; Ishiguro, Yasushi; Kido, Ryota; Yamashita, Hiromi

2014-01-01

367

Monitoring of the crystallization of zeolite LTA using Raman and chemometric tools.  

PubMed

LTA zeolite is used both in industry as well as in laboratories, because of its spatial-specific structure which is useful in gas adsorption and in ion exchange separation. At-line reaction monitoring and multivariate analysis of data, such as Principal Component Analysis (PCA), are fundamentals of the Process Analytical Technology (PAT), which consists of the use of analyzers with rapid detection and low sample preparation for analysis during the process stream. In this work, an optimization of zeolite LTA synthesis was performed aiming to obtain nanocrystals and the synthesis was monitored using Raman spectroscopy and PCA. A reaction mixture of 6.2Na2O?:?Al2O3?:?2SiO2?:?128H2O was used and it was possible to obtain a small particle size and high crystallinity after 72 h of synthesis at 25 °C. The synthesis was monitored at-line, using Raman spectroscopy in both liquid and solid phases. The extension of the reaction could be clearly observed by the PCA scores. As expected, the liquid phase presented changes over time, but the solid phase presented three specific stationary conditions at 0-24 h, 32-56 h and 72-80, related to the beginning of the reaction, the nucleation process, and the crystal formation, respectively. In addition, it was possible to identify the intermediates of the reaction and with the aid of PCA to monitor the reaction close to the real time. PMID:25460364

Chaves, T F; Soares, F L F; Cardoso, D; Carneiro, R L

2015-02-01

368

The characterisation by luminescence spectroscopy of uranium(VI) incorporated into zeolites and aluminas  

NASA Astrophysics Data System (ADS)

Luminescence spectroscopy of solids at 77 K has been used to characterise the uranium(VI) species incorporated into ?-alumina, ?-alumina and zeolites Y and ZSM-20 by adsorption from solution and into ZSM-5 by chemical synthesis. With uranyl adsorbed from nitrate solutions onto ?- and ?-aluminas, the luminescence measurements show the dominant uranium species is schoepite, UO 3· xH 2O, in agreement with results from X-ray diffraction and Raman spectroscopy. With uranyl acetate, there are indications that a crystalline acetate species is also present. With zeolite-Y and ZSM-20, the main species is a dimer. In addition, some monomeric [UO 2(H 2O) 5] 2+ is also present. With ZSM-5, although this is not observed in X-ray diffraction, the luminescence spectrum shows the presence of a species, similar to the schoepite seen with the aluminas. It is suggested that this may be due both to closely related polymeric species, and to uranyl anions, such as [UO 2(OH) 4] 2- and [UO 2(OH) 3] -.

Azenha, M. E. D. G.; da Graça Miguel, M.; Formosinho, S. J.; Burrows, H. D.

2001-05-01

369

Oxygen transport in zeolite Y measured by quenching of encapsulated tris(bipyridyl)ruthenium  

E-print Network

Oxygen transport in zeolite Y measured by quenching of encapsulated tris(bipyridyl)ruthenium Abstract This study deals with emission quenching of zeolite encapsulated trisbipyridyl ruthenium (II) (Ru the migration of O2 within zeolites using the emis- sion quenching of zeolite encapsulated ruthenium

Dutta, Prabir K.

370

Study on Preparation of Zeolite\\/Ag+ Composite Particles Material and Its Air Purification Property  

Microsoft Academic Search

Zeolit\\/Ag+ composite particles material (ZACPM) had been prepared using zeolite as carrier by carrying Ag+, solidifying Ag+ stably in the holes of zeolite and enhancing the adsorption property of zeolite. The effects of technological parameters on preparation of ZACPM, the air purification properties such as antibacterial property and the function of eliminating harmful gases and the microstructure of ZACPM were

Hao Ding; Ning Liang; Bai Kun Wang; Hong Zhou

2010-01-01

371

Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon.  

USGS Publications Warehouse

Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence. Although the zeolite assemblages are similar to those found in other major zeolite occurrences in basaltic pillow lavas, regional zoning of the zeolite assemblages is not apparent. The formation of the different assemblages is discussed.-D.F.B.

Keith, T.E.C.; Staples, L.W.

1985-01-01

372

1 Flexibility As an Indicator of Feasibility of Zeolite Frameworks 2 Colby J. Dawson,  

E-print Network

1 Flexibility As an Indicator of Feasibility of Zeolite Frameworks 2 Colby J. Dawson, Vitaliy Kapko two 6 million unique hypothetical zeolite structures. By a simple flexibility calculation, we have 7 feasibility as zeolites. 78 out of 97 officially approved zeolite framework types 9 that occur in the database

Thorpe, Michael

373

Zeolite Nanoslabs? On the TEM and AFM Evidence of Zeosil Nanoslabs  

E-print Network

Zeolite Nanoslabs? On the TEM and AFM Evidence of Zeosil Nanoslabs Present during the Synthesis · nanoslabs · silicates · zeolites The mechanism of formation of syn- thetic zeolite structures has been a subject of many recent investigations.[1­3] One of the commonly studied zeolites is silicalite-1

Kokkoli, Efie

374

SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES  

Microsoft Academic Search

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SOâ from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The

Michael Grutzeck

1999-01-01

375

CATION CONTROLLED SINGLET OXYGEN MEDIATED OXIDATION OF OLEFINS WITHIN ZEOLITES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Oxidation of trialkyl olefins has been performed within zeolites employing thionin as the singlet oxygen sensitizer. Unusual selectivity in favor of secondary hydroperoxides is observed within zeolites. In light of the fact that in solution such a selectivity is never observed the selectivity report...

376

Selective thermal oxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2000-01-01

377

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2001-01-01

378

Separation of fructooligosaccharides using zeolite fixed bed columns  

Microsoft Academic Search

Recent studies have shown that the chromatographic separation of mixtures of monosaccharides and disaccharides may be improved by employing Y zeolites, a procedure which holds promise in the separation of oligosaccharides. In the present study, a column packed with zeolite was employed to study the separation of fructooligosaccharides (FOS). FOS were produced by an enzyme isolated from Rhodotorula sp., which

Raquel Cristine Kuhn; Francisco Maugeri Filho

2010-01-01

379

Liquid holdup and flow dispersion in zeolite packed beds  

Microsoft Academic Search

A simple tracing method, based on residence time distribution measurements, is presented for the evaluation of the liquid holdup and dispersion in zeolite packed beds. Two tracers and two different materials, one porous (zeolite clinoptilolite) and one non-porous (SiC), were used in experiments on seven packed beds of different dimensions, operating under downflow or upflow condition, in the range of

V. J. Inglezakis; M. Lemonidou; H. P. Grigoropoulou

2001-01-01

380

Crewmember working on the mid deck Zeolite Crystal Growth experiment.  

NASA Technical Reports Server (NTRS)

View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

1992-01-01

381

Zeolites in the Pine Ridge Indian Reservation, South Dakota  

USGS Publications Warehouse

Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

Raymond, William H.; Bush, Alfred L.; Gude, Arthur J., 3rd

1982-01-01

382

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

1999-01-01

383

FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES  

EPA Science Inventory

Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

384

Synthesis of zeolites from coal fly ash: an overview  

Microsoft Academic Search

Coal combustion by-products production in USA and EU is estimated in around 115 million tons per year. A large portion of this production is accounted for the coal fly ash (CFA). Cement and concrete manufacturing consumes most of the CFA produced. Zeolite synthesized from CFA is a minor but interesting product, with high environmental applications. Zeolites may be easily obtained

X Querol; N Moreno; J. C Umaña; A Alastuey; E Hernández; A López-Soler; F Plana

2002-01-01

385

Effects of heating on salt-occluded zeolite  

SciTech Connect

The electrometallurgical treatment of spent nuclear fuel generates a waste stream of fission products in the electrolyte, LiCl-KCl eutectic salt. Argonne National Laboratory is developing a mineral waste form for this waste stream. The waste form consists of a composite formed by hot pressing salt-occluded zeolite and a glass binder. Pressing conditions must be judiciously chosen. For a given pressure, increasing temperatures and hold times give denser products but the zeolite is frequently converted to sodalite. Reducing the temperature or hold time leads to a porous zeolite composite. Therefore, conditions that affect the thermal stability of salt-occluded zeolite both with and without glass are being investigated in an ongoing study. The parameters varied in this stage of the work were heating time, temperature, salt loading, and glass content. The heat-treated samples were examined primarily by X-ray diffraction. Large variations were found in the rate at which salt-occluded zeolite converted to other phases such as nepheline, salt, and sodalite. The products depended on the initial salt loading. Heating times required for these transitions depended on the procedure and temperature used to prepare the salt-occluded zeolite. Mixtures of glass and zeolite reacted much faster than the pure salt-occluded zeolite and were almost always converted to sodalite.

Lewis, M.A.; Hash, M.C.; Pereira, C.; Ackerman, J.P.

1996-05-01

386

Transport properties of alkanes through ceramic thin zeolite MFI membranes  

Microsoft Academic Search

Polycrystalline randomly oriented defect free zeolite layers on porous ?-Al2O3 supports are prepared with a thickness of less than 5 ?m by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite

Z. A. E. P. Vroon; K. Keizer; M. J. Gilde; H. Verweij; A. J. Burggraaf

1996-01-01

387

Fictive temperature-independent density and minimum indentation size effect in calcium aluminosilicate glass  

SciTech Connect

Using the calcium aluminosilicate system a glass was developed that exhibits fictive temperature-independent density by creating an intermediate glass between normal and anomalous glasses. Normal glass, such as soda-lime silicate glass, exhibits decreasing density with increasing fictive temperature while anomalous glass, such as silica glass, exhibits increasing density with increasing fictive temperature. This intermediate glass composition was found to exhibit the minimum indentation size effect during indentation hardness testing. It appears that the indentation size effect is correlated with a deformation-induced fictive temperature increase, which is accompanied by a density change and hardness change in the vicinity of the indentation. It is suggested from these observations that indentation size effect originates from the energy required to create interfaces and defects such as shear bands, subsurface cracks, and point defects near the indenter-specimen boundary, which accompany the volume change.

Gross, T. M.; Tomozawa, M. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3593 (United States)

2008-09-15

388

Structural and dynamic properties of calcium aluminosilicate melts: A molecular dynamics study  

NASA Astrophysics Data System (ADS)

The structural and dynamic properties of calcium aluminosilicate (CaO-Al2O3)1-x(SiO2)x melts with low silica content, namely, along the concentration ratio R = 1 are studied by classical molecular dynamics. An empirical potential has been developed here on the basis of our previous ab initio molecular dynamics. The new potential gives a description of the structural as well as the dynamics with a good accuracy. The self-intermediate scattering function and associated ?-relaxation times are analyzed within the mode-coupling theory. Our results indicate a decrease of the fragility whose structural origin is a reduction of the number of fivefold coordinated Al atoms and non-bridging oxygen.

Bouhadja, M.; Jakse, N.; Pasturel, A.

2013-06-01

389

Synthesis and characterization of inorganic polymers from the alkali activation of an aluminosilicate  

NASA Astrophysics Data System (ADS)

This paper presents the results of the synthesis and characterization of inorganic polymers (IP) from aluminosilicates: bentonite (BT) and pumice (PP). The synthesis of IP, was carried out by two methods involving alkaline activation, at room temperature and 80 ± 5 °C, using as activating agent sodium silicate both commercial and analytical (Na2SiO3). Sodium hydroxide (NaOH) at 3 M, 7 M and 12 M was added. A lower degree of polymerization was obtained by using analytical precursors subjected to room temperature and 80 ± 5°C. Replacement of heating by the use of the commercial activating agent with greater alkalinity allows the formation of a 3D network. The materials were structurally characterized by FTIR spectroscopy with Attenuated Reflectance (ATR), Scanning Electron Microscope (SEM) and X -ray diffraction (DRX).

González, C. P.; Montaño, A. M.; González, A. K.; Ríos, C. A.

2014-06-01

390

Mesoporous nickel-aluminosilicate nanocomposite: a solid acid catalyst for ether synthesis.  

PubMed

Mesoporous nickel aluminosilicate, a solid acid catalyst prepared by sol-gel technique was utilized as a heterogeneous catalyst for the synthesis of symmetrical ethers by dehydro-condensation of alcohols. The prepared catalysts were characterized by Fourier-transform infra red spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), N2 adsorption-desorption analysis, temperature programmed desorption of ammonia (TPD) and X-ray photoelectron spectroscopic techniques. The presence of the catalyst assisted the etherification reaction in 30 minutes. Ethers formed in these reactions were quantified by gas chromatography (GC) and the identities of few of them were confirmed by nuclear magnetic resonance spectral data (NMR). PMID:23763171

Neelakandeswari, N; Karvembu, R; Dharmaraj, N

2013-04-01

391

A facile strategy to recycle template P123 from mesoporous aluminosilicates by ultrasonic extraction.  

PubMed

High synthesis cost of mesoporous aluminosilicates (MA) limits their practical application. Recycling of copolymer template employed in preparation of MA is an effective way to reduce the synthesis cost. An ultrasonic extraction strategy for recycling of organic template P123 in MAs is reported. Effects of different extraction parameters on P123 recovery are investigated and the optimum conditions are obtained. 75.0% P123 is recovered from MAs within 10 min by one-step ultrasonication. Characterizations indicated that the resulting P123-free MA (MA-U) exhibits excellent properties compared with that of calcined products. Moreover, recovered P123 can be employed to synthesize high hydrothermally stable MA. This investigation provides a facile strategy to recycle P123 from MA. PMID:24703432

Jin, Jun-su; Cao, Li; Su, Guang-xun; Xu, Chun-yan; Zhang, Ze-ting; Gao, Xiong-hou; Liu, Hong-hai; Liu, Hong-tao

2014-09-01

392

Tailoring of Boehmite-Derived Aluminosilicate Aerogel Structure and Properties: Influence of Ti Addition  

NASA Technical Reports Server (NTRS)

Aluminosilicate aerogels offer potential for extremely low thermal conductivities at temperatures greater than 900 C, beyond where silica aerogels reach their upper temperature limits. Aerogels have been synthesized at various Al:Si ratios, including mullite compositions, using Boehmite (AlOOH) as the Al source, and tetraethoxy orthosilicate as the Si precursor. The Boehmite-derived aerogels are found to form by a self-assembly process of AlOOH crystallites, with Si-O groups on the surface of an alumina skeleton. Morphology, surface area and pore size varies with the crystallite size of the starting Boehmite powder, as well as with synthesis parameters. Ternary systems, including Al-Si-Ti aerogels incorporating a soluble Ti precursor, are possible with careful control of pH. The addition of Ti influences sol viscosity, gelation time pore structure and pore size distribution, as well as phase formation on heat treatment.

Hurwitz, Frances I.; Guo, Haiquan; Sheets, Erik J.; Miller, Derek R.; Newlin, Katy N.

2010-01-01

393

Raman response of network modifier cations in alumino-silicate glasses.  

PubMed

Raman scattering is performed in three sets of aluminosilicate glasses with light cations and concentrations varying from peralcaline to peraluminate domain. The depolarized spectra highlight two cation modes below ?400 cm(-1). Comparison with infrared data reveals very stringent selection rules providing as much additional information for a vibrational analysis. The latter suggests in-phase (network-coupled) and out-of-phase (network-decoupled) displacements of the cations relative to their adjacent negatively charged structures. The low frequency vibration involves all cations whatever their role in the glass, network modifiers or charge compensators. Very interestingly, the second mode originates mostly from cations at modifier's places, providing thereby a new support for structural and chemical analysis of silicate glasses using Raman scattering. PMID:25710130

Hehlen, B; Neuville, D R

2015-03-12

394

Optical spectroscopy and waveguide fabrication in Sm3+/Tb3+ doped zinc-sodium-aluminosilicate glasses  

NASA Astrophysics Data System (ADS)

A spectroscopic investigation of sodium-zinc-aluminosilicate glasses activated with Sm3+ and Tb3+/Sm3+ ions is performed through their luminescence spectra and decay times. Yellowish-green light emission, with x = 0.37 and y = 0.58 CIE chromaticity coordinates, is obtained in the Tb3+/Sm3+ codoped glass excited at 318 nm. Such yellowish-green emission is generated by the simultaneous emission of Tb3+ and Sm3+ ions, samarium being sensitized by the terbium through a non-radiative energy transfer. From spectroscopic data it is inferred that this energy transfer takes place between Tb3+ and Sm3+ clusters through a short-range interaction mechanism. Optical waveguides are also effectively produced in the glasses by Ag+-Na+ ion exchange.

Caldiño, U.; Speghini, A.; Berneschi, S.; Bettinelli, M.; Brenci, M.; Pelli, S.; Righini, G. C.

2012-05-01

395

Response of commercial Leghorns to sodium aluminosilicate when fed different levels and sources of available phosphorus.  

PubMed

Two experiments were conducted to elucidate possible explanations for the adverse interaction of sodium aluminosilicate (ZA) and low phosphorus on egg production. In Experiment 1, hens were fed available phosphorus at two levels (.40 and .31%) and from three sources (dicalcium phosphate, defluorinated phosphate, and meat and bone meal). Two levels (0 and .75%) of ZA were concomitantly fed with these treatments. In Experiment 2, hens were fed two levels (.30 and .20%) and two sources (dicalcium phosphate and defluorinated phosphate) of phosphorus with and without ZA (0 and .75%). In both experiments, egg production, egg specific gravity, feed consumption, and egg weight were measured. In Experiment 2, plasma sodium, potassium, chloride, total and free calcium, and phosphorus were also monitored. Results of both Experiments indicated that ZA significantly increased egg specific gravity; whereas, phosphorus level and source had no effect on egg specific gravity. Egg production was influenced by ZA level, phosphorus source, and phosphorus level with significant phosphorus source by phosphorus level interactions. In Experiment 1, ZA reduced egg production at the higher phosphorus level when dicalcium phosphate or defluorinated phosphate was used but not at the lower phosphorus level. Egg production was not influenced by ZA when meat and bone meal was the source of phosphorus. In Experiment 2, ZA reduced egg production more at the lowest level of phosphorus and more when the phosphorus source was defluorinated phosphate than when it was dicalcium phosphate but the interaction was not significant. Sodium aluminosilicate had no influence on egg weight, but it did reduce feed consumption.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1964736

Roland, D A; Rabon, H W; Frost, T J; Laurent, S M; Barnes, D G

1990-12-01

396

Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations  

NASA Astrophysics Data System (ADS)

Addition of alumina to sodium silicate glasses considerably improves the mechanical properties and chemical durability and changes other properties such as ionic conductivity and melt viscosity. As a result, aluminosilicate glasses find wide industrial and technological applications including the recent Corning® Gorilla® Glass. In this paper, the structures of sodium aluminosilicate glasses with a wide range of Al/Na ratios (from 1.5 to 0.6) have been studied using classical molecular dynamics simulations in a system containing around 3000 atoms, with the aim to understand the structural role of aluminum as a function of chemical composition in these glasses. The short- and medium-range structures such as aluminum coordination, bond angle distribution around cations, Qn distribution (n bridging oxygen per network forming tetrahedron), and ring size distribution have been systematically studied. In addition, the mechanical properties including bulk, shear, and Young's moduli have been calculated and compared with experimental data. It is found that aluminum ions are mainly four-fold coordinated in peralkaline compositions (Al/Na < 1) and form an integral part of the rigid silicon-oxygen glass network. In peraluminous compositions (Al/Na > 1), small amounts of five-fold coordinated aluminum ions are present while the concentration of six-fold coordinated aluminum is negligible. Oxygen triclusters are also found to be present in peraluminous compositions, and their concentration increases with increasing Al/Na ratio. The calculated bulk, shear, and Young's moduli were found to increase with increasing Al/Na ratio, in good agreement with experimental data.

Xiang, Ye; Du, Jincheng; Smedskjaer, Morten M.; Mauro, John C.

2013-07-01

397

Percolative proton conductivity of sol-gel derived amorphous aluminosilicate thin films.  

PubMed

The finite size effect of proton conductivity of amorphous aluminosilicate thin films, a-Al(n)Si(1-n)O(x) (n = 0.07, 0.1, 0.2, 0.3 and 0.45), prepared by a sol-gel process was investigated by experimental and numerical techniques. High-resolution TEM clarified that a-Al(n)Si(1-n)O(x) films had the heterogeneous nanoscale microstructures comprised of the ion-conducting, condensed glass microdomain and the poor-conductive, uncondensed glass microdomain. ? of the films with n?0.1 exponentially increased upon decreasing thickness in the sub-100 nm range because the volume fraction of conductive domains was less than the percolation threshold and cluster size scaling of the conductive domain was operative. The numerical simulation suggested that conductance of the condensed domain was higher than that of the uncondensed domain by 2 orders of magnitude. Volume fractions of the condensed domain increased with increasing Al/Si molar ratio and were over the percolation threshold (24.5%) with n?0.2. However, conductance of the condensed domain decreased with increasing Al/Si ratio with n?0.2 because the aluminosilicate glass framework made of 4-fold-connected MO(4) tetrahedra was deformed by forming the octahedral AlO(6) moieties, as checked by Al K-edge XAS. It was found that the optimal Al/Si composition in terms of the conductance of the condensed domain is not in coincidence with that in terms of the average conductivity of the films. PMID:22262302

Aoki, Yoshitaka; Harada, Akihisa; Nakao, Aiko; Kunitake, Toyoki; Habazaki, Hiroki

2012-02-28

398

Prospects and challenges of iron pyroelectrolysis in magnesium aluminosilicate melts near minimum liquidus temperature.  

PubMed

Although steel production by molten oxide electrolysis offers potential economic and environmental advantages over classic extractive metallurgy, its feasibility is far from being convincingly demonstrated, mainly due to inherent experimental difficulties exerted by harsh conditions and lack of knowledge regarding relevant mechanisms and physico-chemical processes in the melts. The present work was intended to demonstrate the concept of pyroelectrolysis at very high temperature near the minimum liquidus point of magnesium aluminosilicate, being conducted under electron-blocking conditions using yttria-stabilized zirconia cells, and to provide a new insight into electrochemistry behind this process. Significant current yields are possible for pyroelectrolysis performed in electron-blocking mode using a solid electrolyte membrane to separate the anode and the molten electrolyte. Parasitic electrochemical processes rise gradually as the concentration of iron oxide dissolved in the molten electrolytes is depleted, impairing faradaic efficiency. Reduction of silica to metallic silicon was identified as a significant contribution to those parasitic currents, among other plausible processes. Direct pyroelectrolysis without electron blocking was found much less plausible, due to major limitations on faradaic efficiency imposed by electronic leakage and insufficient ionic conductivity of the aluminosilicate melt. Ohmic losses may consume an excessive fraction of the applied voltage, thus failing to sustain the Nernst potential required for reduction to metallic iron. The results suggest the need for further optimization of the molten electrolyte composition to promote ionic conductivity and to suppress electronic transport contribution, possibly, by tuning the Al/Si ratio and altering the network-forming/modifying behaviour of the iron cations. PMID:25760633

Ferreira, N M; Kovalevsky, A V; Mikhalev, S M; Costa, F M; Frade, J R

2015-04-14

399

Diminution of aflatoxicosis in growing chickens by the dietary addition of a hydrated, sodium calcium aluminosilicate.  

PubMed

The amelioration of aflatoxicosis in broiler and Leghorn chickens was examined by feeding a hydrated, sodium calcium aluminosilicate (HSCAS) or activated charcoal. In three experiments, HSCAS or activated charcoal at a concentration of .5% of the total diet were incorporated into diets for broiler and Leghorn chicks containing either no added, purified aflatoxin B1 (AFB1), 7.5 mg of AFB1 per kg, or 5 mg of aflatoxin (AF) per kg (produced by Aspergillus parasiticus on rice). Compared to the controls, the AFB1 reduced BW gains at 0 to 3 wk by 21 to 38% in broilers; and the AF reduced BW gains at 0 to 4 wk in Leghorns by 20 percent. The HSCAS significantly diminished the growth-inhibitory effects of AFB1 or of AF on growing chicks by 50 to 67 percent. Feeding 5 mg of AF per kg of diet with or without charcoal to Leghorn chicks caused a significant increase in the relative weights of the liver, kidney, proventriculus, and gizzard as well as significant increases in activity of serum gamma glutamyltransferase; also, significant decreases in the relative bursa weights as well as the concentrations of serum total protein and albumin. With the exception of the relative bursa weights, the toxic effects caused by aflatoxin were prevented or were reduced by adding hydrated, sodium calcium aluminosilicate. These data suggest that HSCAS can modulate the toxicity of AFB1 and AF in the chicken; however, adding activated charcoal to the diet did not appear to have protective properties against the effects of aflatoxin B1 or of aflatoxin. PMID:1973286

Kubena, L F; Harvey, R B; Phillips, T D; Corrier, D E; Huff, W E

1990-05-01

400

Adsorption kinetics and equilibrium of phenol drifts on three zeolites  

NASA Astrophysics Data System (ADS)

In this study, the sorption of phenol drifts was studied by performing batch kinetic sorption experiments. The equilibrium kinetic data was analyzed using the pseudo-second-order kinetic model. Fowler-Guggenheim model gives a perfect fitting with the isotherm data. The influence of porous structure of a zeolite particle on phenol adsorption from aqueous solutions is analyzed and discussed. The adsorption for phenol drifts on zeolite was proved to be an exothermic process. Thus the solubility of the phenolic compound and the pH of the solution play also an important role in adsorption phenomena. The relative affinity of the phenolic compound toward the zeolite was related to the electron donor-acceptor complexes that were formed between the basic sites on the zeolite (oxygen) and hydrogens (acidic site) of the phenols. Finally zeolite seems to be an efficient adsorbent; it can be easily regenerated by methanol leaching.

Koubaissy, Bachar; Toufaily, Joumana; El-Murr, Maya; Jean Daou, T.; Hafez, Hala; Joly, Guy; Magnoux, Patrick; Hamieh, Tayssir

2012-09-01

401

Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications  

PubMed Central

Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

2011-01-01

402

Single crystalline magnetite nanotubes.  

PubMed

We descried a method to synthesize single crystalline Fe3O4 nanotubes by wet-etching the MgO inner cores of MgO/Fe3O4 core-shell nanowires. Homogeneous Fe3O4 nanotubes with controllable length, diameter, and wall thickness have been obtained. Resistivity of the Fe3O4 nanotubes was estimated to be approximately 4 x 10-2 Omega cm at room temperature. Magnetoresistance of approximately 1% was observed at T = 77 K when a magnetic field of B = 0.7 T was applied. The synthetic strategy presented here may be extended to a variety of materials such as YBCO, PZT, and LCMO which should provide ideal candidates for fundamental studies of superconductivity, piezoelectricity, and ferromagnetism in nanoscale structures. PMID:15631421

Liu, Zuqin; Zhang, Daihua; Han, Song; Li, Chao; Lei, Bo; Lu, Weigang; Fang, Jiye; Zhou, Chongwu

2005-01-12

403

Liquid crystalline polymers  

NASA Technical Reports Server (NTRS)

The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline polymers (LCPs) have led to the use of these materials in structural applications where weight savings are critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique feature of LCPs (intrinsic orientation order) is itself problematic, and current understanding of processing with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of uniaxial fibers). The current and desirable characteristics of LCPs are reviewed and specific problems are identified along with issues that must be addressed so that advances in the use of these unique polymers can be expedited.

1990-01-01

404

Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials  

DOEpatents

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

2005-03-08

405

Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.  

PubMed

In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

2014-06-15

406

Probing zeolites with organic molecules: Supercages of X and Y zeolites are superpolar  

SciTech Connect

Supercages of Li{sup +}- and Na{sup +}-exchanged X and Y zeolites are much more polar than even water. The extent of polarity depends on the nature and the number of cations present within a supercage. The polarity of Li{sup +}- and Na{sup +}-exchanged X and Y zeolites decreases in the presence of water. In presence of water the contribution of cations toward polarity is much smaller than water itself. In this study polarity has been monitored with organic probe molecules, Nile red, pyrene 1-carboxaldehyde and coumarin-500. A connection between polarity and electric field within a cage has also been established. Since the supercages are much more polar than all organic solvents, they can be characterized as superpolar. Because of this one may be able to achieve excited-state switching of carbonyl compounds within a zeolite while such may not be possible in organic solvents. The n{pi}*-{pi}{pi}* state switching of acetophenones is easily achieved within a zeolite while such does not occur in polar solvent methanol-ethanol mixture.

Uppili, S.; Thomas, K.J.; Crompton, E.M.; Ramamurthy, V.

2000-01-11

407

Novel long-term immobilization method for radioactive iodine-129 using a zeolite/apatite composite sintered body.  

PubMed

The amount of radioactive iodine generated from nuclear power plants is expected to increase with the proliferation of nuclear energy production, and long-term immobilization methods for such radioactive elements need to be developed to make nuclear energy sustainable. The standard immobilization method of radioactive elements, vitrification, is not very effective for radioactive iodine-129 because of the low solubility of iodine in silicate melts, its very high volatility at standard vitrification process temperatures, and its instability in the alkaline environment of deep geological layers below 300 m. We have developed a novel three-phase ceramic composite produced by a sintering process. Iodine adsorbed onto Ca-type zeolite A was covered with a hydroxyapatite nanolayer through the exchange reaction of ammonium with calcium. Clusters of iodine of 30 nm within the zeolite structure were found to be thermally stable up to 1253 K because of the partial blockage of the alpha-cage apertures by ammonium ions and the partial change from a crystalline phase to an amorphous phase at 473 K. No gasification of iodine molecules was found to occur during the sintering process. The outer phase was highly crystalline hydroxyfluorapatite in which the hydroxyapatite nanolayer plays an important role for successful sintering. The elution of iodine in low-dioxygen water, similar to that found within the Earth's crust, was investigated and was found to occur only in the surface layer of the sintered body. PMID:20355964

Watanabe, Yujiro; Ikoma, Toshiyuki; Yamada, Hirohisa; Suetsugu, Yasushi; Komatsu, Yu; Stevens, Geoffrey W; Moriyoshi, Yusuke; Tanaka, Junzo

2009-07-01

408

Effect of zeolite in surface discharge plasma on the decomposition of toluene  

Microsoft Academic Search

Toluene was decomposed in a surface discharge plasma reactor packed with various zeolites. The positioning effect of the zeolite bed was also investigated Reactor-B, in which the zeolite bed was located upstream, performed much better than Reactor-A, in which the zeolite bed was located downstream. Furthermore, the decomposition efficiency in Reactor-B increased with the capacity for toluene adsorption on zeolite,

Seung-Min Oh; Hyun-Ha Kim; Atsushi Ogata; Hisahiro Einaga; Shigeru Futamura; Dong-Wha Park

2005-01-01

409

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee and Prabir K. Dutta*  

E-print Network

Charge Transport through a Novel Zeolite Y Membrane by a Self-Exchange Process Hyunjung Lee, and relatively pinhole-free zeolitic membranes is described. Nanocrystalline zeolite Y (100-200 nm) is used zeolite membranes toward this end.3 Zeolitic membranes are an active area of research because

Dutta, Prabir K.

410

Solid-liquid interfacial reaction of Zn 2+ ions on the surface of amorphous aluminosilicates with various Al\\/Si ratios  

Microsoft Academic Search

The adsorption behavior of Zn2+ ions onto the surface of amorphous aluminosilicates was studied using both potentiometric and spectroscopic methods (XANES: X-ray Absorption Near-Edge Structure). The aluminosilicates were prepared with different Al\\/Si ratios in order to compare the reactivities of surface aluminol and silanol groups toward Zn2+ ions. Potentiometric experiments were performed by maintaining the reacting suspensions at constant pH,

Akane Miyazaki; Ioan Balint; Yoshio Nakano

2003-01-01

411

Absorption and luminescence characteristics of 5I7 <--> 5I8 transitions of the holmium ion in Ho3+-doped aluminosilicate preforms and fibres  

NASA Astrophysics Data System (ADS)

We have obtained the spectral dependences of the absorption cross sections for the Ho3+ 5I8 ? 5I6 and 5I8 ? 5I7 transitions in Ho3+-doped aluminosilicate fibres and the spectral dependence of the stimulated emission cross section for the Ho3+ 5I7 ? 5I8 laser transition in Ho3+-doped aluminosilicate fibre preforms. The lifetime of the Ho3+ 5I7 upper laser level in the preforms has been determined.

Ryabochkina, P. A.; Chabushkin, A. N.; Kosolapov, A. F.; Kurkov, A. S.

2015-02-01

412

[Zeolite catalysis in conversion of cellulosics  

SciTech Connect

To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

Tsao, G.T.

1992-01-01

413

[Zeolite catalysis in conversion of cellulosics  

SciTech Connect

To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

Tsao, G.T.

1992-12-31

414

Characteristics of Lead Sorption by Zeolite Minerals  

NASA Astrophysics Data System (ADS)

Lead adsorption behavior was investigated using four Zeolite minerals (clinoptilolite, analcime, phillipsite and chabazite). The used Pb2+ concentrations were 0, 0.1, 0.5, 1.0, 2.0, 3.0 and 5 µmol mL-1. Results indicated that Pb2+ sorption followed the Langmuir adsorption isotherm, but over limited concentration ranges for clinoptilolite and analcime. The bindg energy (Kd) reached, 2.400 and 0.875 g L-1 for phillipsite and chabazite, respectively. The maximum adsorption capacity for such minerals reached 208.33 and 204.08 mg g-1 with correlation coefficient (R2) reached, 0.997 and 0.995, respectively. Meanwhile, two stages for Pb2+adsorption were observed with clinoptilolite and analcime in the low and high concentrations of the applied Pb2+. Data also was applicable to the Freundlich adsorption isotherm over the used entire Pb2+ concentration ranges. The binding energy (n) reached, 1.014, 1.005, 1.001 and 1.001 g L-1 for clinoptilolite, analcime, phillipsite and chabazite, respectively. However, the b values (maximum adsorption capacity) reached 202.582, 201.651, 207.062 and 206.871 mg g-1 with correlation coefficient (R2) nearly one for all studying minerals, respectively. Desorption data indicated that most of the sorbed Pb2+ was extractedin the 1st extraction following the adsorption experiment. The ability of the used zeolite minerals to retain Pb2+ was high and there were differences between the studied minerals in sorption of Pb2+. In conclusion, data eliminated that, zeolite minerals especially, philipsite and chabazite, could be successfully used as packing material in subsurface reactive barriers intercepting ground water plumes and for fixed bed reactors designed to remove Pb2+ from industrial wastewater.

Al-Sewailem, M. S.

415

Growth of large zeolite crystals in space  

NASA Technical Reports Server (NTRS)

Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

1988-01-01

416

Synthesis of zeolite phases from combustion by-products.  

PubMed

Synthesis of zeolites from combustion by-products, including fly ash, bottom ash and rice husk ash, was studied. A molar ratio of SiO2/Al2O3 of 1.5 was used for the syntheses. Refluxing and hydrothermal methods were also used for synthesis for comparison. The reaction temperatures of refluxing and hydrothermal methods were 100 degrees C and 130 degrees C, respectively. Sodalite, phillipsite-K, and zeolite P1 with analcime were obtained when fly ash, bottom ash and rice husk ash were used as starting materials, respectively. With rice husk ash as a starting material, zeolite P1 was produced. This result had advantages over previous studies as there was no prior activation required for the synthesis. The concentrations and types of alkaline used in the synthesis also determined the zeolite type. The different zeolites obtained from three systems were measured for specific surface area and pore size by using BET and Hg-porosimetry, respectively. Ammonium exchange capacities of the synthesised powders containing zeolites, sodalite, zeolite P1 and phillipsite-K were 38.5, 65.0 and 154.7 meq 100 g(-1), respectively. PMID:20421244

Pimraksa, Kedsarin; Chindaprasirt, Prinya; Setthaya, Naruemon

2010-12-01

417

Distribution of metal and adsorbed guest species in zeolites  

SciTech Connect

Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

Chmelka, B.F.

1989-12-01

418

Potential of Sustainable Hierarchical Zeolites in the Valorization of ?-Pinene.  

PubMed

In the valorization of ?-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of ?-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential. PMID:25736719

Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

2015-04-13

419

Thermodynamic properties of solid alkali aluminosilicates at elevated temperatures. [298K to approx. 2000K (in some cases)  

SciTech Connect

This report presents selected heat capacities, entropies, enthalpies, standard enthalpies of formation, standard free energies of formation and the equilibrium formation constants for solid sodium aluminate, solid potassium aluminate and solid aluminosilicates of lithium, sodium, and potassium. Values are listed in 28 tables for 17 different compositions (13 pure compounds and their polymorphs; 4 mixtures, each in low- and high-temperature configurations) from 298K to temperatures ranging up to 2000K.

Schumm, R.H.

1981-05-01

420

Determination of the origin and magnitude of Al\\/Si ordering enthalpy in framework aluminosilicates from ab initio calculations  

Microsoft Academic Search

Ab initio total energy calculations based on a new optimised oxygen pseudopotential has been used to determine the enthalpy\\u000a of disorder for the exchange of Al and Si in tetrahedral coordination in simple derivative aluminosilicate structures based\\u000a on the high temperature tridymite structure. The problem has been studied as a function of defect interaction, and defect\\u000a concentration, and the results

J. D. C. McConnell; A. De Vita; S. D. Kenny; V. Heine

1997-01-01

421

Catalytic conversion of palm oil over mesoporous aluminosilicate MCM-41 for the production of liquid hydrocarbon fuels  

Microsoft Academic Search

The catalytic cracking of palm oil to liquid hydrocarbon fuels was studied in a fixed bed micro-reactor operated at atmospheric pressure, reaction temperature of 723 K and weight hourly space velocity (WHSV) of 2.5 h?1 over the synthesized mesoporous molecular sieve MCM-41 materials. Mesoporous aluminosilicate with Si\\/Al ratio of 50 was synthesized using the hydrothermal method. Different pore sizes were

Farouq A. Twaiq; Noor Asmawati M. Zabidi; Abdul Rahman Mohamed; Subhash Bhatia

2003-01-01

422

Microstructure-property relationships of SiC fibre-reinforced magnesium aluminosilicates—II. Mechanical properties and failure characteristics  

Microsoft Academic Search

Interfacial frictional shear stresses, flexural properties and failure mechanisms are reported for two magnesium aluminosilicates unidirectionally reinforced with Nicalon SiC fibres. Composites A and B were hot-pressed at 1500 and 920°C, respectively. High values of interfacial frictional shear stresses inferred from Marshall's analysis of the micro-indentation technique could be attributed in part to the presence of compressive radial stresses at

A. Kumar; K. M. Knowles

1996-01-01

423

The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions  

Microsoft Academic Search

Analysis of aluminosilicate steady-state dissolution\\/precipitation rates indicate that in contrast to what is commonly assumed, the constant pH rates are not independent of chemical affinity at far from equilibrium conditions. Rather, the logarithm of these rates for albite and kaolinite are linear functions of the logarithm of aqueous Al concentration over wide ranges of saturation states. Consideration of both the

Eric H. Oelkers; Jacques Schott; Jean-Luc Devidal

1994-01-01

424

Efficacy of hydrated sodium calcium aluminosilicate and activated charcoal in reducing the toxicity of dietary aflatoxin to mink  

Microsoft Academic Search

Mink were fed diets that contained 0, 34, or 102 ppb (µg\\/kg) aflatoxins with or without 0.5% hydrated sodium calcium aluminosilicate (HSCAS) and\\/or 1.0% activated charcoal (AC) for 77 days. Consumption of the diet that contained 34 ppb aflatoxins was lethal to 20% of the mink, while 102 ppb dietary aflatoxins resulted in 100% mortality within 53 days. The addition

R. J. Bonna; R. J. Aulerich; S. J. Bursian; R. H. Poppenga; W. E. Braselton; G. L. Watson

1991-01-01

425

Flux Decoupling and Chemical Diffusion in Redox Dynamics in Aluminosilicate Melts and Glasses (Invited)  

NASA Astrophysics Data System (ADS)

Measurements of redox dynamics in silicate melts and glasses suggest that, for many compositions and for many external environments, the reaction proceeds and is rate-limited by the diffusive flux of divalent-cation network modifiers. Application of ion-backscattering spectrometry either (i) on oxidized or reduced melts (subsequently quenched before analysis) or (ii) on similarly reacted glasses, both of basalt-composition polymerization, demonstrates that the network modifiers move relative to the (first-order-rigid) aluminosilicate network. Thus, the textures associated with such reactions are often surprising, and frequently include metastable or unstable phases and/or spatial compositional differences. This response is only possible if the motion of cations can be decoupled from that of anions. In many cases, decoupling is accomplished by the presence in the melt/glass of transition-metal cations, whose heterovalency creates distortions in the electronic band structure resulting in electronic defects: electron “holes” in the valence band or electrons in the conduction band. (The prevalence of holes or electrons being a function of bulk chemistry and oxygen activity.) These electronic species make the melt/glass a “defect semiconductor.” Because (a) the critical issue in reaction dynamics is the transport coefficient (the product of species mobility and species concentration) and (b) the electronic species are many orders of magnitude more mobile than are the ions, very low concentrations of transition-metal ions are required for flux decoupling. For example, 0.04 at% Fe keeps a magnesium aluminosilicate melt/glass a defect semiconductor down to 800°C [Cook & Cooper, 2000]. Depending on composition, high-temperature melts can see ion species having a high-enough transport coefficient to allow decoupling, e.g., alkali cations in a basaltic melt [e.g., Pommier et al., 2010]. In this presentation, these ideas will be illustrated by examining redox dynamics in basaltic melts [e.g., Burgess et al., 2010; Cooper et al., 2010] and the reaction of magnesium aluminosilicate melts (transition-metal-ion-free and -doped) with liquid bronze (Cu-Sn alloy) [Pettersen et al., 2008], the latter demonstrating the importance of heterovalency in silicon [e.g., Borman et al., 1991] in effecting the reaction dynamics and resultant texture. Borman, V.D. et al. (1991) Phys. Rev. Lett. 67:2387-2390. Burgess, K. et al. (2010) Geochem. Geophys. Geosyst. 11:in press. Cook, G.B., and R.F. Cooper (2000) Am. Mineral. 85:397-406. Cooper, R.F. et al. (2010) Am. Mineral. 95:810-824. Pettersen, C., and R.F. Cooper (2008) J. Non-Crys. Solids 354:3194-3206. Pommier, A. et al. (2010) Geochim. Cosmochim. Acta 74:1653-1671.

Cooper, R. F.

2010-12-01

426

Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)  

SciTech Connect

To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li{sup +} ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 {micro}s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance {approx}2 {pi}-mm-mrad. Here, lithium aluminosilicate ion sources, of {beta}-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 {micro}s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V{sup 3/2}. A space-charge limited beam density of {approx}1 mA/cm{sup 2} was measured at 1275 C temperature, after allowing a conditioning time of about {approx} 12 hours. Maximum emission limited beam current density of {ge} 1.8mA/cm{sup 2} was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 {+-} 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral atoms. Our measurements suggest that for the low duty factor ({approx}10{sup -8}) required for NDCX-II, the lifetime of an emitter depends mostly on the duration that the emitter spends at elevated temperature, that is, at {ge} 1250 C. At this temperature, lithium loss is due mostly to neutral loss (not charged ion extraction). Extension of the lifetime of the source may be possible by lowering the temperature between beam pulses, when the idling time is sufficiently long between shots. The NDCX-II design seeks to operate the ion source at the maximum current density without running into heat management and lifetime problems. In preparation to fabricate a large (10.9 cm in diameter) source for the NDCXII experiment, recently a 7.6 cm diameter source has been fabricated. The method of fabrication of this larger source is similar to that of fabrication of a 6.3mm diameter source, except a longer furnace heating time was used due to mass differences. NDCX-II construction is in progress. Progress of lithium source study for NDCX-II is available in literature.

LBNL; Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

2011-04-20

427

State of molybdenum ions in ultrastable Y zeolite  

SciTech Connect

The methods of diffuse-reflection optical spectroscopy and EPR were used to study the state of molybdenum in catalysts prepared by impregnating ultrastable zeolite with molybdenum salt solutions and by mixing in the solid phase with MoCl/sub 5/. It has been shown that molybdenum introduced into zeolites in small amounts is found basically in the form of isolated hexavalent ions of molybdenum. In addition, Mo/sup 5 +/ and Mo/sup 4 +/ ions are also present. Heteropolycompounds also form. The molybdenum ions are most readily reduced in the zeolite prepared by impregnation with a solution of ammonium paramolybdate.

Kupcha, L.A.; Rusak, M.F.; Kozlov, N.S.; Potapovich, A.K.; Urbanovich, I.I.

1987-10-01

428

Method of preparing sodalite from chloride salt occluded zeolite  

DOEpatents

A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

Lewis, M.A.; Pereira, C.

1997-03-18

429

Method of preparing sodalite from chloride salt occluded zeolite  

DOEpatents

A method for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000.degree. K. to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

Lewis, Michele A. (Naperville, IL); Pereira, Candido (Lisle, IL)

1997-01-01

430

Zeolite crystal growth in space - What has been learned  

NASA Technical Reports Server (NTRS)

Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

1993-01-01

431

Structure of H 2O-saturated peralkaline aluminosilicate melt and coexisting aluminosilicate-saturated aqueous fluid determined in-situ to 800 °C and ˜800 MPa  

NASA Astrophysics Data System (ADS)

The structure of H 2O-saturated silicate melts and of silicate-saturated aqueous solutions, as well as that of supercritical silicate-rich aqueous liquids, has been characterized in-situ while the sample was at high temperature (to 800 °C) and pressure (up to 796 MPa). Structural information was obtained with confocal microRaman and with FTIR spectroscopy. Two Al-bearing glasses compositionally along the join Na 2O•4SiO 2-Na 2O•4(NaAl)O 2-H 2O (5 and 10 mol% Al 2O 3, denoted NA5 and NA10) were used as starting materials. Fluids and melts were examined along pressure-temperature trajectories of isochores of H 2O at nominal densities (from PVT properties of pure H 2O) of 0.85 g/cm 3 (NA10 experiments) and 0.86 g/cm 3 (NA5 experiments) with the aluminosilicate + H 2O sample contained in an externally-heated, Ir-gasketed hydrothermal diamond anvil cell. Molecular H 2O (H 2O°) and OH groups that form bonds with cations exist in all three phases. The OH/H 2O° ratio is positively correlated with temperature and pressure (and, therefore, fugacity of H 2O, f H2O) with (OH/H 2O°) melt > (OH/H 2O°) fluid at all pressures and temperatures. Structural units of Q3, Q2, Q1, and Q0 type occur together in fluids, in melts, and, when outside the two-phase melt + fluid boundary, in single-phase liquids. The abundance of Q0 and Q1 increases and Q2 and Q3 decrease with f H2O. Therefore, the NBO/ T (nonbridging oxygen per tetrahedrally coordination cations), of melt is a positive function of f H2O. The NBO/ T of silicate in coexisting aqueous fluid, although greater than in melt, is less sensitive to f H2O. The melt structural data are used to describe relationships between activity of H 2O and melting phase relations of silicate systems at high pressure and temperature. The data were also combined with available partial molar configurational heat capacity of Q n-species in melts to illustrate how these quantities can be employed to estimate relationships between heat capacity of melts and their H 2O content.

Mysen, Bjorn

2010-07-01

432

Quantitatively Probing the Al Distribution in Zeolites  

SciTech Connect

The degree of substitution of Si4+ by Al3+ in the oxygen-terminated tetrahedra (Al T-sites) of zeolites determines the concentration of ion-exchange and Brønsted acid sites. As the location of the tetrahedra and the associated subtle variations in bond angles influence the acid strength, quantitative information about Al T-sites in the framework is critical to rationalize catalytic properties and to design new catalysts. A quantitative analysis is reported that uses a combination of extended X-ray absorption fine structure (EXAFS) analysis and 27Al MAS NMR spectroscopy supported by DFT-based molecular dynamics simulations. To discriminate individual Al atoms, sets of ab initio EXAFS spectra for various T-sites are generated from DFT-based molecular dynamics simulations allowing quantitative treatment of the EXAFS single- and multiple-photoelectron scattering processes out to 3-4 atom shells surrounding the Al absorption center. It is observed that identical zeolite types show dramatically different Al-distributions. A preference of Al for T-sites that are part of one or more 4-member rings in the framework over those T-sites that are part of only 5- and 6-member rings in the HBEA150 sample has been determined from a combination of these methods. This work was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

Vjunov, Aleksei; Fulton, John L.; Huthwelker, Thomas; Pin, Sonia; Mei, Donghai; Schenter, Gregory K.; Govind, Niranjan; Camaioni, Donald M.; Hu, Jian Z.; Lercher, Johannes A.

2014-06-11

433

The selective adsorption of tellurium in the aluminosilicate regions of AFI- and MOR-type microporous crystals.  

PubMed

Attempts have been made to load tellurium (Te) atoms into the one-dimensional nano-channels of microporous crystals of aluminophosphate AlPO4-5 and of aluminosilicate mordenites of the Na(+) form (Na-MOR) and the H(+)-form (H-MOR) at 673 K. The density of the atoms adsorbed was in the sequence 0 ? AlPO4-5 ? H-MOR < Na-MOR. AlPO4-5 provides a shallow potential of periodical charge fluctuation for Te atoms, from the alternate ordering of Al and P atoms through O atoms. Mordenite offers a sufficiently strong potential for Te adsorption, but the magnitude varies with the type of cation. Dipoles between framework AlO2(-) anion sites and their Na(+) counter-ions in Na-MOR provide a stronger potential than the Brønsted acid points in H-MOR. The adsorption of Te atoms in the silico-aluminophosphate SAPO-5 was between that of AlPO4-5 and H-MOR, leading us to suspect that Te atoms are selectively adsorbed in the aluminosilicate regions accompanying the Brønsted acid points distributed in the major aluminophosphate network. The aluminosilicate regions in SAPO-5 are below 500 nm in size and are distributed throughout a single crystal. PMID:25117797

Kodaira, Tetsuya; Ikeda, Takuji

2014-10-01

434

Chlorine, in the Presence of Iron, Does Indeed Decrease the Viscosity of Aluminosilicate Melts  

NASA Astrophysics Data System (ADS)

The effect of volatiles on melt rheology is investigated here, as the degassing of magma before an eruption usually leads to an increase in magma viscosity; and therefore increases the probability of an explosive eruption. There is not a large amount of data on the effect of chlorine on viscosity. It would appear, however, that chlorine increases the viscosity of peralkaline sodium-aluminosilicate melts, and decreases the viscosity of peraluminous sodium-aluminosilicate melts. These different effects of chlorine on viscosity indicate that the chlorine sits in different structural sites in peraluminous and peralkaline melts. In previous studies of rheology in this laboratory, we have shown that chlorine does indeed increase the viscosity of a phonolite analog Na2O-CaO-Al2O3-SiO2 melt. In this study, we have extended our investigation of the rheology of chlorine-bearing melts to basaltic compositions. The melt composition used here is that of a basaltic glass taken from the mid-Atlantic Ridge at 3000 m depth during the Venture Cruise (Ireland) of 2011. The viscosities were determined using the micropenetration technique in the 109-1012 Pa s range at temperatures 600-800 C. It was found that the addition of 0.6 wt% Cl resulted in a 0.5 log unit decrease in viscosity. A synthetic haplo-basaltic melt with the iron replaced by Mg and the Al was also synthesized. The addition of 0.3 wt% chlorine to this melt resulted in a 0.3 log unit increase in viscosity; as observed previously for Fe-free peralkaline melts. Based on these viscosity data it would appear that the effect of chlorine on rheology is a function of the composition of the melt, and that the structural site taken by chlorine varies as a function of the presence or absence of iron. The addition of chlorine to the iron-bearing melt, increased the Fe2+/Fetot from 0.30 to 0.45. This indicates that the presence of chlorine results in an energetic preference for Fe2+ in the melt structure. Thus, it is not so much the structural role of chlorine which results in a decrease in viscosity in iron-bearing melts, but the formation of more network modifying Fe2+ at the expense of network forming Fe3+ which causes the viscosity decrease.

Webb, S. L.

2012-12-01

435

Alkali aluminosilicate melts and glasses: structuring at the middle range order of amorphous matter  

NASA Astrophysics Data System (ADS)

Rheological properties of silicate melts govern both magma ascension from the mantle to the surface of the earth and volcanological eruptions styles and behaviours. It is well known that several parameters impact strongly these properties, such as for instance the temperature, pressure, chemical composition and volatiles concentration, finally influencing eruptive behaviour of volcanoes. In this work, we will focus on the Na2O-K2O-Al2O3-SiO2 system, which is of a prime importance because it deals with a non-negligible part of natural melts, like for instance the Vesuvius (Italy) or Erebus (Antartica) magmas. In an oncoming paper in Chemical Geology (Le Losq and Neuville, 2012), we have communicated results of the study of mixing Na-K in tectosilicate melts containing a high concentration of silica (?75mol%). In the present communication, we will enlarge this first point of view to tectosilicate melts presenting a lower silica concentration. We will first present our viscosity data, and then the Adam and Gibbs theory that allows theoretically modelling Na-K mixing in aluminosilicate melts by using the so-called "mixed alkali effect". On the basis of the rheological results, the Na-K mixing cannot be explained with the ideal "mixed alkali effect", which involves random exchange of Na-K cationic pairs. To go further and as rheological properties are directly linked with structural properties, we will present our first results obtained by Raman and NMR spectroscopy. These last ones provide important structural pieces of information on the polymerization state of glasses and melts, and also on the environment of tetrahedrally coordinated cations. Rheological and structural results all highlight that Na and K are not randomly distributed in aluminosilicate glasses and melts networks. Na melts present a network with some channels and a non-random distribution of Al and Si. K networks are different. They also present a non-random distribution of Al and Si, but in two sub-networks: one is rich in Si and fully polymerized, the other is richer in Al and K. The size of K+ ions combined to the charge-balancing needs of Al3+ ions determine this structuring of potassium melts. Mixing Na and K melts thus returns to mix two different networks: one composed of Na-Al-Si-O atoms and another of K-Al-Si-O atoms. This impact melts properties, inducing complicated and non-linear effects.

Le Losq, C.; neuville, D. R.

2012-12-01

436

Development of a force field for zeolitic imidazolate framework-8 with structural flexibility  

NASA Astrophysics Data System (ADS)

A force field is developed for zeolitic imidazolate framework-8 (ZIF-8) with structural flexibility by combining quantum chemical calculations and classical Amber force field. The predicted crystalline properties of ZIF-8 (lattice constants, bond lengths, angles, dihedrals, and x-ray diffraction patterns) agree well with experimental results. A structural transition from crystalline to amorphous as found in experiment is observed. The mechanical properties of ZIF-8 are also described fairly well by the force field, particularly the Young's modulus predicted matches perfectly with measured value. Furthermore, the heat capacity of ZIF-8 as a typical thermophysical property is predicted and close to experimental data available for other metal-organic frameworks. It is revealed the structural flexibility of ZIF-8 exerts a significant effect on gas diffusion. In rigid ZIF-8, no diffusive behavior is observed for CH4 within the simulation time scale of current study. With the structural flexibility, however, the predicted diffusivities of CH4 and CO2 are close to reported data in the literature. The density distributions and free energy profiles of CH4 and CO2 in the pore of ZIF-8 are estimated to analyze the mechanism of gas diffusion.

Hu, Zhongqiao; Zhang, Liling; Jiang, Jianwen

2012-06-01

437

Aluminosilicate melts and glasses at 1 to 3 GPa: temperature and pressure effects on recovered structural and density changes  

NASA Astrophysics Data System (ADS)

The effects of pressure on aluminosilicate melt and glass structure have been studied by both in-situ methods and by quenching and recovering glasses from high pressure and temperature. Significant increases in the coordination number of Al are now well known from the pressure range of 6-10 GPa. New results show that even at shallower mantle pressures of 1-3 GPa, typical aluminosilicate melts have significant concentrations of aluminum cations with coordination numbers greater than 4, with up to 10's of percents of AlO5 and AlO6. Here, we compare the densities and Al coordinations of glass samples recovered from piston-cylinder experiments carried out at 1 to 3 GPa and different temperatures. Samples of two different compositions (Ca3Al2Si6O18 and Na2Si3O7 with 0.5% Al2O3) were compressed and held at temperatures ranging from near to their ambient glass transitions (Tg) up to temperatures above the liquidus. Our 2 GPa sodium aluminosilicate and calcium aluminosilicate glasses quenched from near to Tg show about 5 and 6 percent recovered densification, respectively. In both compositions, samples that were quenched from above the melting point showed substantially lower recovered density and lower Al coordination number compared to the samples that were held near to Tg. For example, sodium aluminosilicate glass quenched from 510°C (near to Tg) had 70% more AlO5 than samples from 1200°C. Based on the measurement of actual cooling rates, fictive temperature differences for the glasses from these two extreme temperatures are not large enough to account for this apparent loss in density and Al-coordination during quench. The most likely cause for these differences is therefore probably the pressure drop during cooling from temperatures above liquidus, as the pressure medium does not respond quickly enough to the thermal contraction of the liquid and furnace parts to remain isobaric. Results from previous high T and P quenching studies thus give only minimum estimates of pressure effects on melt structure. Samples were made in a piston-cylinder apparatus in 5mm platinum capsules, with 1 inch diameter calcium fluorite assemblies and graphite heaters. Structure was examined by Al-27 and Na-23 MAS NMR at 14.4 and 18.8 Tesla fields, and glass densities determined by high-precision sink-float methods.

Bista, S.; Stebbins, J. F.; Hankins, B.; Sisson, T. W.

2013-12-01

438

Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size  

SciTech Connect

The alkylation reaction of isobutane with trans-2-butene has been carried out on a series of steam-dealuminated Y zeolites with unit cell sizes ranging from 2.450 to 2.426 nm. A fixed-bed reactor connected to an automatized multiloop sampling system allowed differential product analysis from very short (1 min or less) to longer times on stream. A maximum in the initial 2-butene conversion was found on samples with unit cell sizes between 2.435 and 2.450 nm. However, the TMP/DMH ratio, i.e., the alkylation-to-oligomerization ratio, continuously increased with zeolite unit cell size. The concentration of reactants in the pores, the strength distribution of Bronsted acid sites, and the extent of hydrogen transfer reactions, which in turn depend on the framework Si/Al ratio of a given zeolite, were seen to affect activity and product distribution of the catalysts. Finally, the influence of these factors on the aging characteristics of the samples was also discussed. 17 refs., 7 figs., 4 tabs.

Corma, A.; Martinez, A.; Martinez, C. (Instituto de Tecnologia Quimica, Valencia (Spain))

1994-03-01

439

Iba of Zeolites Exchanged with Lithium for Co2 Retention  

NASA Astrophysics Data System (ADS)

A great concern on the global climatic change, partially due to industry CO2 expelled to the atmosphere, has motivated the search of new materials able to retain this gas. Clays, perovskites, zeolites and membranes have been utilized to trap the CO2. Zeolites are widely used as molecular sieves in different industrial processes related to gas purification or gas separation. Synthetic zeolites exchanged with lithium were prepared as potential material for CO2 retention. A NRA method using the 7Li (p,?)4He was performed in order to measure the the Li contents. With SEM-EDS the atomic concentrations of elements as C, Na, Si, Al, K, Ca, Fe, etc. were determined. Zeolites were also characterized by XRD.

Andrade, E.; Alfaro, S.; Valenzuela, M. A.; Solis, C.; Zaval, E. P.; Rocha, M. F.; Cruz, J.; Pfeiffer, H.; Bosch, P.; Contreras, C.; Baptiste, J.

2009-03-01

440

CO2 capture using zeolite 13X prepared from bentonite  

NASA Astrophysics Data System (ADS)

Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N2-adsorption-desorption measurements, and scanning electron microscopy. The CO2 capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m2/g with a high micropore volume (0.30 cm3/g), and exhibited high CO2 capture capacity (211 mg/g) and selectivity to N2 (CO2/N2 = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO2 adsorption-desorption recycling performance at both 25 and 200 °C.

Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

2014-02-01

441

Reactivity of isobutane on zeolites: a first principles study.  

PubMed

In this work, ab initio and density functional theory methods are used to study isobutane protolytic cracking, primary hydrogen exchange, tertiary hydrogen exchange, and dehydrogenation reactions catalyzed by zeolites. The reactants, products, and transition-state structures are optimized at the B3LYP/6-31G* level, and the final energies are calculated using the CBS-QB3 composite energy method. The computed activation barriers are 52.3 kcal/mol for cracking, 29.4 kcal/mol for primary hydrogen exchange, 29.9 kcal/mol for tertiary hydrogen exchange, and 59.4 kcal/mol for dehydrogenation. The zeolite acidity effects on the reaction barriers are also investigated by changing the cluster terminal Si-H bond lengths. The analytical expressions between activation barriers and zeolite deprotonation energies for each reaction are proposed so that accurate activation barriers can be obtained when using different zeolites as catalysts. PMID:16480305

Zheng, Xiaobo; Blowers, Paul

2006-02-23

442

The efficiency of Jordanian natural zeolite for heavy metals removal  

NASA Astrophysics Data System (ADS)

The capability of Jordanian natural zeolite to remove nickel from aqueous solutions was experimentally investigated using a packed bed column. The zeolite samples were obtained from Jabal AL Aritayn in the northeast of Jordan. The effects of the initial concentration of nickel ( C 0), the packed bed length ( L) and the zeolite grain size ( D p) on the adsorption process were considered. The finding indicated that these parameters named had a significant effect on the removal of nickel by the Jordanian zeolite. The characteristic breakthrough curves of the adsorption process were measured. The Klinkenberg model was adopted to explain the kinetic behavior of the adsorption phenomena, and we attempted to fit the packed bed experimental data to the breakthrough curve. The effective diffusivity was estimated and used to predict breakthrough curves under other adsorption conditions.

Taamneh, Yazan; Al Dwairi, Reyad

2013-03-01

443

Investigation of Zeolite Nucleation and Growth Using NMR Spectroscopy  

E-print Network

and control of the zeolite properties. The primary objective of this dissertation is to determine the strength of organicinorganic interactions (i.e., the adsorption Gibbs energy) in transparent synthesis mixtures using PFG NMR spectroscopy, in order...

Rivas Cardona, Alejandra

2012-02-14

444

Zeolite - A Natural Filter Material for Lead Polluted Water  

NASA Astrophysics Data System (ADS)

Reducing the concentration of lead ions in a wastewater using zeolite has proven to be a successful water treatement method, all over the world. Putting the two media (solid and liquid) in contact in static conditions had good results regarding the concentration of the filtered solution, the pH and the electric conductivity, depending on the values of certain parameters such as the amount of the zeolite, volume of the solution or interaction time. The present study highlights the zeolite ability to retain the lead ions from a solution, in dynamic interaction conditions between the two environments, in a short interaction time. The results confirmed the effectiveness of ion exchange water treatment method in the conditions set, emphasizing once again the properties of the filter material - the zeolite

Neam?u, Corina Ioana; Pic?, Elena Maria; Rusu, Tiberiu

2014-11-01

445

Hydration and dehydration of Zeolitic Tuff from Yucca Mountain, Nevada  

NASA Astrophysics Data System (ADS)

Naturally occurring zeolites expand and contract when hydrated or dehydrated. In tuffaceous rock composed largely of such zeolites, the entire rock may swell or contract significantly as the rock becomes saturated or dries out. If such rock is constrained, significant stresses may develop as a result of hydration or dehydration. We present experimental results that substantiate this. In a zeolitized, non-welded tuff from Yucca Mountain, NV, rock permeability governs the swelling rate since the major constituent, clinoptilolite, hydrates as fast as it can be exposed to water. At Yucca Mountain, where a nuclear waste repository is proposed, strata of welded, devitrified tuff overlie non-welded, zeolitic tuff. Should the hydration state of the units change significantly over the repository lifetime, additional stresses on the same order of magnitude as now exist may develop.

Kranz, R. L.; Bish, D. L.; Blacic, J. D.

1989-10-01

446

Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces.  

PubMed

Adsorption at mineral surfaces is a critical factor controlling the mobility of uranium(VI) in aqueous environments. Therefore, molecular dynamics (MD) simulations were performed to investigate uranyl(VI) adsorption onto two neutral aluminosilicate surfaces, namely, the orthoclase (001) surface and the octahedral aluminum sheet of the kaolinite (001) surface. Although uranyl preferentially adsorbs as a bidentate inner-sphere complex on both surfaces, the free energy of adsorption on the orthoclase surface (-15 kcal mol(-1)) is significantly more favorable than that at the kaolinite surface (-3 kcal mol(-1)), which is attributed to differences in surface functional groups and the ability of the orthoclase surface to release a surface potassium ion upon uranyl adsorption. The structures of the adsorbed complexes compare favorably with X-ray absorption spectroscopy results. Simulations of the adsorption of uranyl complexes with up to three carbonate ligands revealed that uranyl complexes coordinated to up to two carbonate ions are stable on the orthoclase surface whereas uranyl carbonate surface complexes are unfavored at the kaolinite surface. Combining the MD-derived equilibrium adsorption constants for orthoclase with aqueous equilibrium constants for uranyl carbonate species indicates the presence of adsorbed uranium complexes with one or two carbonates under alkaline conditions, in support of current uranium(VI) surface complexation models. PMID:24580048

Kerisit, Sebastien; Liu, Chongxuan

2014-04-01

447

Structure and mechanical properties of aluminosilicate geopolymer composites with Portland cement and its constituent minerals  

SciTech Connect

The compressive strengths and structures of composites of aluminosilicate geopolymer with the synthetic cement minerals C{sub 3}S, beta-C{sub 2}S, C{sub 3}A and commercial OPC were investigated. All the composites showed lower strengths than the geopolymer and OPC paste alone. X-ray diffraction, {sup 29}Si and {sup 27}Al MAS NMR and SEM/EDS observations indicate that hydration of the cement minerals and OPC is hindered in the presence of geopolymer, even though sufficient water was present in the mix for hydration to occur. In the absence of SEM evidence for the formation of an impervious layer around the cement mineral grains, the poor strength development is suggested to be due to the retarded development of C-S-H because of the preferential removal from the system of available Si because geopolymer formation is more rapid than the hydration of the cement minerals. This possibility is supported by experiments in which the rate of geopolymer formation is retarded by the substitution of potassium for sodium, by the reduction of the alkali content of the geopolymer paste or by the addition of borate. In all these cases the strength of the OPC-geopolymer composite was increased, particularly by the combination of the borate additive with the potassium geopolymer, producing an OPC-geopolymer composite stronger than hydrated OPC paste alone.

Tailby, Jonathan, E-mail: jmtailby@hotmail.co [School of Chemical and Physical Sciences Victoria University of Wellington, P.O. Box 600 Wellington (New Zealand); MacKenzie, Kenneth J.D. [School of Chemical and Physical Sciences Victoria University of Wellington, P.O. Box 600 Wellington (New Zealand)

2010-05-15

448

Synthesis and Properties of a Barium Aluminosilicate Solid Oxide Fuel Cell Glass-Ceramic Sealant  

SciTech Connect

A series of barium aluminosilicate glasses modified with CaO and B2O3, were prepared and evaluated with respect to their suitability in sealing planar solid oxide fuel cells (SOFCs). At a target operating temperature of 750ºC, the long-term CTE of one particular composition (35 mol% BaO, 15 mol% CaO, 10 mol% B2O3, 5 mol% Al2O3, bal. SiO2) was found to be particularly stable, due to devitrification to a mixture of glass and ceramic phases. This sealant composition exhibits minimal chemical interaction with the yttria-stabilized zirconia electrolyte, yet forms a strong bond with this material. Interactions with metal components were found to be more extensive and depended on the composition of the metal oxide scale that formed during sealing. Generally alumina-scale formers exhibited a more compact reaction zone with the glass than chromia-scale forming alloys. Mechanical measurements conducted on the bulk glass-ceramic and on seals formed using these materials indicate that the sealant is anticipated to display adequate long-term strength for most conventional stationary SOFC applications.

Meinhardt, Kerry D.; Kim, Dong-Sang; Chou, Y. S.; Weil, K. Scott

2008-07-15

449

Elastic properties of laminated calcium aluminosilicate/silicon carbide composites determined by resonant ultrasound spectroscopy  

SciTech Connect

The elastic properties of unidirectional and 0{degree}/90{degree} crossply Nicalon-SiC-fiber-reinforced calcium aluminosilicate (CAS/SiC) ceramic-matrix composites have been measured using a resonant ultrasound spectroscopy (RUS) technique. This approach has allowed the nondestructive determination of the complete set of independent second-order elastic stiffness constants of these ceramic composites. These stiffness data have been used to obtain the orientation dependence of Young`s modulus and the shear modulus. The results are in reasonably good agreement with the limited experimental data obtained from mechanical testing. The RUS measurements reveal that the unidirectional CAS/SiC composite is well modeled by transverse isotropic symmetry, indicating relatively isotropic fiber spacing in the transverse plane. The analysis indicates that the overall elastic anisotropy is also small for unidirectional and 0{degree}/90{degree} laminated CAS ceramic-matrix composites, a result that can be attributed to the relatively low modulus ratio of the Nicalon SiC fiber to the CAS matrix and to the moderate fiber volume fraction.

Liu, Y.; He, Y.; Chu, F.; Mitchell, T.E. [Los Alamos National Lab., NM (United States). Center for Materials Science; Wadley, H.N.G. [Univ. of Virginia, Charlottesville, VA (United States)

1997-01-01

450

Fabrication of large diameter alumino-silicate K{sup +} sources  

SciTech Connect

Alumino-silicate K{sup +} sources have been used in HIF experiments for many years. For example the Neutralized Transport Expt. (NTX) and the High Current Transport Expt. (HCX) are now using this type of ion source with diameters of 2.54 cm and 10 cm respectively. These sources have demonstrated ion currents of 80 mA and 700 mA, for typical HIF pulse lengths of 5-10 {micro}s. The corresponding current density is {approx} 10-15 mA/cm{sup 2}, but much higher current density has been observed using smaller size sources. Recently we have improved our fabrication techniques and, therefore, are able to reliably produce large diameter ion sources with high quality emitter surface without defects. This note provides a detailed description of the procedures employed in the fabrication process. The variables in the processing steps affecting surface quality, such as substrate porosity, powder size distribution, coating technique on large area concave surfaces, drying, and heat firing temperature have been investigated.

Baca, D.; Chacon-Golcher, E.; Kwan, J.W.; Wu, J.K.

2003-02-20

451

Preparation of bioinorganic fertilizing media by adsorption of humates on glassy aluminosilicates.  

PubMed

Surface-modified expanded perlite was synthesized using humic substances from the Megalopolis peaty lignite. Adsorption is efficient and increases at higher temperatures and lower pHs. The preparation can be carried out under mild conditions leading to an eco-friendly, bioinorganic material useful as soil conditioner and biofertilizer. Six adsorption models were applied; the Klotz, Freundlich and Redlich-Peterson isotherms fit more successfully to the experimental data. The obeying of the theoretical models was correlated with the heterogeneity and non-uniform distribution of the adsorption sites, host-guest attraction forces as well as the formation of self-assembled aggregates and self-organized multilayers of humic substances onto the aluminosilicate adsorbent, consistent with changes in micromorphology. Thermodynamic quantities revealing distinct physicochemical characteristics of the adsorption phenomena, i.e., enthalpy, entropy and free energy change, were calculated. Desorption experiments and cultivation of microorganisms demonstrated that perlite may act successfully as host material for microbial populations upgrading the humic-loaded perlite for soil applications. PMID:20692818

Chassapis, Konstantinos; Roulia, Maria; Vrettou, Evangelia; Parassiris, Anastassios

2010-11-01

452

Mechanochemical approach for preparation of Mo-containing ? -zeolite  

Microsoft Academic Search

The catalytically active solid materials were prepared by mechanochemical synthesis and impregnation. The starting material used as a support was ?-zeolite with a ratio SiO2\\/Al2O3=66. The molybdenum precursor was 12-molybdophosphoric heteropoly acid (HPMo). The samples were characterized by TPR and IR methods. The test reaction was thiophene hydrodesulfurization at atmospheric pressure. The interaction between HPMo and ?-zeolite in the catalyst

N. G. Kostova; A. A. Spojakina; E. Dutková; P. Baláz

2007-01-01

453

Study of 63Ni adsorption on NKF-6 zeolite  

Microsoft Academic Search

The adsorption of 63Ni from aqueous solutions using NKF-6 zeolite was investigated by a batch technique under ambient conditions. The adsorption was investigated as a function of contact time, pH, ionic strength, foreign ions, humic substances (FA\\/HA) and temperature. The kinetic adsorption was well described by the pseudo-second-order rate equation. The adsorption of 63Ni on NKF-6 zeolite was strongly dependent

Hui Zhang; Xianjin Yu; Lei Chen; Yongjie Jing; Zhiwei Ge

2010-01-01

454

SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES  

Microsoft Academic Search

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2<\\/sub> from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The

MICHAEL GRUTZECK

1998-01-01

455