Science.gov

Sample records for crystalline silicate zeolite

  1. Circumstellar Crystalline Silicates: Evolved Stars

    NASA Astrophysics Data System (ADS)

    Tartar, Josh; Speck, A. K.

    2008-05-01

    One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

  2. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    , Fuller's Earth, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite. The Cosmetic Ingredient Review (CIR. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that the extensive pulmonary damage in humans was the result of direct occupational inhalation of the dusts and noted that lesions seen in animals were affected by particle size, fiber length, and concentration. The Panel considers that most of the formulations are not respirable and of the preparations that are respirable, the concentration of the ingredient is very low. Even so, the Panel considered that any spray containing these solids should be formulated to minimize their inhalation. With this admonition to the cosmetics industry, the CIR Expert Panel concluded that these ingredients are safe as currently used in cosmetic formulations. The Panel did note that the cosmetic ingredient, Talc, is a hydrated magnesium silicate. Because it has a unique crystalline structure that differs from ingredients addressed in this safety assessment, Talc is not included in this report. PMID:12851164

  3. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A.; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  4. A highly crystalline layered silicate with three-dimensionally microporous layers

    NASA Astrophysics Data System (ADS)

    Jeong, Hae-Kwon; Nair, Sankar; Vogt, Thomas; Dickinson, L. Charles; Tsapatsis, Michael

    2003-01-01

    Layered silicates with three-dimensional microporosity within the layers have the potential to enable new applications in catalysis, adsorption and ion-exchange. Until now no such materials have been reported. However, here we present the synthesis and structure of AMH-3, a silicate with three-dimensionally microporous layers, obtained in high purity and crystallinity. AMH-3 is composed of silicate layers containing eight-membered rings in all three principal crystal directions, and spaced by strontium cations, sodium cations and water molecules. Because of its three-dimensional pore structure, acid and thermal stability, this layered material could find applications in polymer-silicate composites for membrane applications, for synthesis of combined microporous-mesoporous materials, and for the formation of new zeolites and microporous films. Its existence also opens new possibilities for the synthesis of other layered silicates with multidimensional microporous framework layers.

  5. Multiple episodes of zeolite deposition in fractured silicic tuff

    SciTech Connect

    Carlos, B.A.; Chipera, S.J.; Snow, M.G.

    1995-04-01

    Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.

  6. H-Bond interactions between silicates and water during zeolite pre-nucleation.

    PubMed

    Mora-Fonz, Miguel J; Catlow, C Richard A; Lewis, Dewi W

    2008-11-21

    The relative strength of water-water, water-silicate and silicate-silicate interactions are studied, in order to explain the low solubility of the monomer (Si(OH)(4)), and determine the degree of dispersion of silicate clusters in solution during the hydrothermal synthesis of zeolites. We will show how the hydrogen bond interactions between water and monomeric silicate species are similar to that in pure water, whilst monomer-monomer interactions are stronger. However, when larger silicate species are also considered we find the relative hydrogen-bonding strength to follow: water-water < silicate-water < silicate-silicate. The effects of pH are also considered. The implications of the relative strength of these interactions on the formation of larger silicate species, leading to zeolite pre-nucleation, are discussed. PMID:18979042

  7. The identification of crystalline olivine in cometary silicates

    NASA Astrophysics Data System (ADS)

    Campins, H.; Ryan, E. V.

    1989-06-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  8. The identification of crystalline olivine in cometary silicates

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Ryan, Eileen V.

    1989-01-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  9. Properties of cometary crystalline silicate before and after perihelion passage

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2013-01-01

    Crystalline silicate is sometimes observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to be born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough OC samples, while we have observed several ECs. Fortunately, we can observe three comets in this semester. In particular, C/2012 S1 (ISON) is a bright sungrazing comet, and we might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet. The comet C/2012 S1 (ISON), along with two other comets, is an unparalleled target for this study.

  10. Application of thermodynamics to silicate crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1972-01-01

    A review of thermodynamic relations is presented, describing Guggenheim's regular solution models, the simple mixture, the zeroth approximation, and the quasi-chemical model. The possibilities of retrieving useful thermodynamic quantities from phase equilibrium studies are discussed. Such quantities include the activity-composition relations and the free energy of mixing in crystalline solutions. Theory and results of the study of partitioning of elements in coexisting minerals are briefly reviewed. A thermodynamic study of the intercrystalline and intracrystalline ion exchange relations gives useful information on the thermodynamic behavior of the crystalline solutions involved. Such information is necessary for the solution of most petrogenic problems and for geothermometry. Thermodynamic quantities for tungstates (CaWO4-SrWO4) are calculated.

  11. Direct hydrothermal synthesis of hierarchically porous siliceous zeolite by using alkoxysilylated nonionic surfactant.

    PubMed

    Mukti, Rino R; Hirahara, Hirotomo; Sugawara, Ayae; Shimojima, Atsushi; Okubo, Tatsuya

    2010-02-16

    A hierarchically porous siliceous MFI zeolite (silicalite-1) with narrow mesoporosity has been hydrothermally synthesized by using trialkoxysilylated alkyl poly(oxyethylene ether) as mesopore-directing agent. A mesostructured silica-surfactant composite was formed at the early stage of the reaction, and zeolite crystallization proceeded during subsequent hydrothermal treatment. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations of the crystallized products showed that micro- and mesopores were hierarchically assembled in unique particle morphology with rugged surfaces. Solid-state (29)Si and (13)C NMR revealed that the covalent bonds between the zeolite framework and mesopore-directing agent were present in the products before calcination. The use of nonsilylated alkyl poly(oxyethylene ether) or a silylated alkytrimethyl-ammonium-type cationic surfactant for the synthesis of silicalite-1 resulted in a mixture of mesoporous silica and zeolite as the final product, which suggests that the covalent interaction and nonelectrostatic charge matching interaction favor the formation of hierarchically mesoporous siliceous zeolite. This alkoxysilylated nonionic surfactant can also be extended to synthesize aluminosilicate MFI zeolite (ZSM-5). PMID:19817366

  12. INTERSTELLAR SILICATE DUST IN THE z = 0.89 ABSORBER TOWARD PKS 1830-211: CRYSTALLINE SILICATES AT HIGH REDSHIFT?

    SciTech Connect

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni

    2012-03-20

    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  13. Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents.

    PubMed

    Jo, Changbum; Lee, Sungjune; Cho, Sung June; Ryoo, Ryong

    2015-10-19

    A microporous crystalline silica zeolite of the MEL structure type and three other zeolite analogues composed of germanosilicate frameworks were synthesized using tributylsulfonium, triphenylsulfonium, or tri(para-tolyl)sulfonium as the structure-directing agent. The germanosilicates thus obtained had ISV, ITT, or a new zeolite structure depending on the synthesis conditions. The structure of the new germanosilicate was solved using X-ray powder diffraction data with the aid of a charge-flipping method. The solution indicated a crystal structure belonging to the P63/mmc space group with cell parameters of a=16.2003 Å and c=21.8579 Å. After calcination, the new germanosilicate material exhibited two types of accessible micropores with diameters of 0.61 and 0.78 nm. PMID:26302889

  14. Iridium Complexes and Clusters in Dealuminated Zeolite HY: Distribution between Crystalline and Impurity Amorphous Regions

    SciTech Connect

    Martinez-Macias, Claudia; Xu, Pinghong; Hwang, Son-Jong; Lu, Jing; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

    2014-07-08

    Dealuminated zeolite HY was used to support Ir(CO)2 complexes formed from Ir(CO)2(C5H7O2). Infrared and X-ray absorption spectra and atomic-resolution electron microscopy images identify these complexes, and the images and 27Al NMR spectra identify impurity amorphous regions in the zeolite where the iridium is more susceptible to aggregation than in the crystalline regions. The results indicate a significant stability limitation of metal in amorphous impurity regions of zeolites.

  15. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.

    PubMed

    Choi, Minkee; Cho, Hae Sung; Srivastava, Rajendra; Venkatesan, Chithravel; Choi, Dae-Heung; Ryoo, Ryong

    2006-09-01

    Zeolites are a family of crystalline aluminosilicate materials widely used as shape-selective catalysts, ion exchange materials, and adsorbents for organic compounds. In the present work, zeolites were synthesized by adding a rationally designed amphiphilic organosilane surfactant to conventional alkaline zeolite synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses show that the present method is suitable as a direct synthesis route to highly mesoporous zeolites. The mesopore diameters could be uniformly tailored, similar to ordered mesoporous silica with amorphous frameworks. The mesoporous zeolite exhibited a narrow, small-angle XRD peak, which is characteristic of the short-range correlation between mesopores, similar to disordered wormhole-like mesoporous materials. The XRD patterns and electron micrographs of the samples taken during crystallization clearly showed the evolution of the mesoporous structure concomitantly to the crystallization of zeolite frameworks. The synthesis of the crystalline aluminosilicate materials with tunable mesoporosity and strong acidity has potentially important technological implications for catalytic reactions of large molecules, whereas conventional mesoporous materials lack hydrothermal stability and acidity. PMID:16892049

  16. Highly crystalline Zeolite-A from flyash of bituminous and lignite coal combustion.

    PubMed

    Rayalu, S S; Udhoji, J S; Munshi, K N; Hasan, M Z

    2001-11-16

    Flyash is being generated in voluminous amounts by large scale coal combustion process. It poses a serious threat to thermal power industries specifically, in India, wherein the percent of utilisation of flyash is very poor (3-5%). In view of this problem, newer methods of its disposal and utilisation are being explored. The synthesis of zeolite from flyash appears to be one of the most promising alternatives as it has emphasis on value addition to waste material. Flyashes originating from different sources of coal differ in their characteristics and have implications in this work on Zeolite-A production. These factors have been thoroughly investigated and the conditions favourable for formation of Zeolite-A have been delineated. The reactivity of flyash towards zeolite formation is directly dependent on the SiO(2)/Al(2)O(3) ratio, Fe(2)O(3) and CaO content. Amongst the flyashes investigated, so far the sub-bituminous coal based flyash with SiO(2)/Al(2)O(3) ratio of 3.47 appears to be a suitable substrate for Zeolite-A synthesis. These zeolites have been characterised with respect to XRD crystallinity, calcium binding capacity (CBC) and sorption capacity, wherein the crystallinity ranges from 50 to 100%, the CBC ranges from 290 to 560meq/100g and sorption capacity ranges from 16.6 to 23.8%. PMID:11606244

  17. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    SciTech Connect

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  18. Defect sites in highly siliceous HZSM-5 zeolites: A study performed by alumination and IR spectroscopy

    SciTech Connect

    Yamagishi, Kouji; Namba, Seitaro; Yashima, Tatsuaki )

    1991-01-24

    The concentration of oxygen atoms on defect sites in a highly siliceous HZSM-5 type zeolite was estimated by the {sup 18}O-exchange reaction between C{sup 18}O{sub 2} and the zeolite. The concentration of oxygen atoms on defect sites could be controlled by means of changes of the gel composition and of the use of various silica sources in the hydrothermal synthesis. The relationship between the concentration of oxygen atoms on defect sites in a highly siliceous HZSM-5 and the concentration of aluminum introduced into the framework of the HZSM-5 by an alumination was examined. The concentration of the framework aluminum was the same as one-fourth that of the oxygen atoms on defect sites. These results suggest that the defect sites into which aluminum atoms are introduced tetrahedrally can be identified with hydroxyl nests that consist of four silanol groups. The existence of hydroxyl nests could be confirmed by IR spectroscopy. From the {sup 18}O-exchange reaction and IR measurements, the authors conclude that the sharp band at 3,740 cm{sup {minus}1} can be attributed to both isolated SiOH groups on the external surface and intracrystalline isolated SiOH groups and that the broad band at 3,505 cm{sup {minus}1} can be attributed to the SiOH groups in hydroxyl nests.

  19. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    PubMed

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. PMID:25153822

  20. A SPITZER INFRARED SPECTROGRAPH DETECTION OF CRYSTALLINE SILICATES IN A PROTOSTELLAR ENVELOPE

    SciTech Connect

    Poteet, Charles A.; Megeath, S. Thomas; Fischer, William J.; Bjorkman, Jon E.; Watson, Dan M.; Remming, Ian S.; McClure, Melissa K.; Calvet, Nuria; Hartmann, Lee; Tobin, John J.; Sargent, Benjamin A.; Muzerolle, James; Furlan, Elise; Allen, Lori E.; Ali, Babar

    2011-06-01

    We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 {mu}m superimposed on the broad 9.7 and 18 {mu}m amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite (Mg{sub 2}SiO{sub 4}). Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line of sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium ({approx}<0.02-0.05). We propose that the amorphous silicates were annealed within the hot inner disk and/or envelope regions and subsequently transported outward into the envelope by entrainment in a protostellar outflow.

  1. Crystalline Silicate Feature of the Vega-like Star HD 145263

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko; Kataza, Hirokazu; Okamoto, Yoshiko K.; Miyata, Takashi; Yamashita, Takuya; Sako, Shigeyuki; Fujiyoshi, Takuya; Ito, Meguru; Okada, Yoko; Sakon, Itsuki; Onaka, Takashi

    2004-07-01

    We have observed the 8-13 μm spectrum (R~250) of the Vega-like star candidate HD 145263 using Subaru/COMICS. The spectrum of HD 145263 shows the broad trapezoidal silicate feature with the shoulders at 9.3 and 11.44 μm, indicating the presence of crystalline silicate grains. This detection implies that crystalline silicate may also be commonly present around Vega-like stars. The 11.44 μm feature is slightly shifted to a longer wavelength compared to the usual 11.2-3 μm crystalline forsterite feature detected toward Herbig Ae/Be stars and T Tauri stars. Although the peak shift due to the effects of the grain size cannot be ruled out, we suggest that Fe-bearing crystalline olivine explains the observed peak wavelength fairly well. Fe-bearing silicates are commonly found in meteorites and most interplanetary dust particles, which originate from planetesimal-like asteroids. According to studies of meteorites, Fe-bearing silicate must have been formed in asteroidal planetesimals, supporting the scenario that dust grains around Vega-like stars are of planetesimal origin, if the observed 11.44 μm peak is due to Fe-bearing silicates. ID="FN1"> 1Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  2. Cooked GEMS - Insights into the Hot Origins of Crystalline Silicates in Circumstellar Disks and the Cold Origins of GEMS

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.

    2005-01-01

    The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.

  3. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template.

    PubMed

    Zhu, Jie; Zhu, Yihan; Zhu, Liangkui; Rigutto, Marcello; van der Made, Alexander; Yang, Chengguang; Pan, Shuxiang; Wang, Liang; Zhu, Longfeng; Jin, Yinying; Sun, Qi; Wu, Qinming; Meng, Xiangju; Zhang, Daliang; Han, Yu; Li, Jixue; Chu, Yueying; Zheng, Anmin; Qiu, Shilun; Zheng, Xiaoming; Xiao, Feng-Shou

    2014-02-12

    Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules. PMID:24450997

  4. CRYSTALLINE SILICATES IN EVOLVED STARS. I. SPITZER/INFRARED SPECTROGRAPH SPECTROSCOPY OF IRAS 16456-3542, 18354-0638, AND 23239+5754

    SciTech Connect

    Jiang, B. W.; Zhang, Ke; Li, Aigen; Lisse, C. M. E-mail: kzhang@caltech.edu E-mail: carey.lisse@jhuapl.edu

    2013-03-01

    We report the Spitzer Infrared Spectrograph (IRS) observations of three evolved stars: IRAS 16456-3542, 18354-0638, and 23239+5754. The 9.9-37.2 {mu}m Spitzer/IRS high-resolution spectra of these three sources exhibit rich sets of enstatite-dominated crystalline silicate emission features. IRAS 16456-3542 is extremely rich in crystalline silicates, with >90% of its silicate mass in crystalline form, the highest to date ever reported for crystalline silicate sources.

  5. Discrete dipole approximation models of chrystalline forsterite: Applications to cometary crystalline silicates

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean Stephen

    The shape, size, and composition of crystalline silicates observed in comet comae and external proto-planetary disks are indicative of the formation and evolution of the dust grains during the processes of planetary formation. In this dissertation, I present the 3 -- 40 mum absorption efficiencies( Qabs) of irregularly shaped forsterite crystals computed with the discrete dipole approximation (DDA) code DDSCAT developed by Draine and Flatau and run on the NASA Advanced Supercomputing facility Pleiades. An investigation of grain shapes ranging from spheroidal to irregular indicate that the strong spectral features from forsterite are sensitive to grain shape and are potentially degenerate with the effects of crystal solid state composition (Mg-content). The 10, 11, 18, 23, and 33.5 mum features are found to be the most crystal shape sensitive and should be avoided in determining Mg-content. The distinct spectral features for the three shape classes are connected with crystal formation environment using a condensation experiment by (Kobatake et al., 2008). The condensation experiment demonstrates that condensed forsterite crystal shapes are dependent on the condensation environmental temperature. I generate DDSCAT target analog shapes to the condensed crystal shapes. These analog shapes are represented by the three shape classes: 1) equant, 2) a, c-columns, and 3) b-shortened platelets. Each of these shape classes exhibit distinct spectral features that can be used to interpret grain shape characteristics from 8 --- 40 mum spectroscopy of astronomical objects containing crystalline silicates. Synthetic spectral energy distributions (SEDs) of the coma of Hale-Bopp at rh = 2.8 AU are generated by thermally modeling the flux contributions of 5 mineral species present in comets. The synthetic SEDs are constrained using a chi2- minimization technique. The mineral species are amorphous carbon, amorphous pyroxene, amorphous olivine, crystalline enstatite, and crystalline

  6. Infrared spectra of crystalline phase ices condensed on silicate smokes at T less than 20 K

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Ferrante, Robert F.; Hudson, Reggie L.; Nuth, Joseph A., III; Donn, Bertram

    1994-01-01

    Infrared spectra of H2O, CH3OH, and NH3 condensed at T less than 20 K on amorphous silicate smokes reveal that predominantly crystalline phase ice forms directly on deposit. Spectra of these molecules condensed on aluminum substrates at T less than 20 K indicate that amorphous phase ice forms. On aluminum, crystalline phase H2O and CH3OH are formed by annealing amorphous deposits to 155 K and 130 K, respectively (or by direct deposit at these temperatures); crystalline NH3 is formed by direct deposit at 88 K. Silicate smokes are deposited onto aluminum substrates by evaporation of SiO solid or by combustion of SiH4 with O2 in flowing H2 followed by vapor phase nucleation and growth. Silicate smokes which are oxygen-deficient may contain active surface sites which facilitate the amorphous-to-crystalline phase transition during condensation. Detailed experiments to understand the mechanism are currently in progress. The assumption that amorphous phase ice forms routinely on grains at T less than 80 K is often used in models describing the volatile content of comets or in interpretations of interstellar cloud temperatures. This assumption needs to be reexamined in view of these results.

  7. Comet Samples Returned by Stardust, Insight into the Origin of Comets and Crystalline Silicates in Disks

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.; Joswiak, D.; Matrajt, G.; Tsou, P.

    2009-12-01

    The comet samples returned by the NASA Stardust mission contain abundant crystalline silicates that are very similar to inner solar materials found in primitive asteroidal meteorites. Isotopic compositions indicate that the bulk of the silicates from comet Wild 2 formed in the solar nebula and that the pre-solar content is less than in primitive meteorites. It appears that the bulk of the coarse-grained components of this Jupiter Family Comet formed in the inner regions of the solar nebula and were transported to the edge of the solar system where Kuiper Belt comets accreted. The data is consistent with substantial large-scale radial transport of micron to millimeter grains in the solar nebula. The isotopic, elemental and mineralogical compositions of the majority of Wild 2 silicates as well as the textural relationship between phases do not appear to be compatible with origin by 1000 K annealing of pre-solar grains.

  8. High Silicate Crystalline-to-Amorphous Ratios in Comets C/2001 Q4 (NEAT) and Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Harker, D. E.; Woodward, C. E.

    2004-01-01

    Crystalline silicates, by their apparent absence in the ISM, are dust grains that experienced high temperatures in the solar nebula. Mg-rich crystalline silicates formed either by condensation from hot nebular gases (1450 K) or by the annealing of Mg-rich amorphous silicates (approx. 1000 K) in shocks in the 5-10 AU region or by radial transport into and out of the hot inner zones, e.g., T(sub d) > 1000 K at r(sub h) < 5 AU, 10(exp -6) - 10(exp -5) M(sub O)/yr, alpha = 10(exp -4) of the early solar nebula. Mg-rich crystalline silicates are found in interplanetary dust particles (IDPs) and produce IR spectral features in many Oort cloud comets. In May 2004, we discovered strong crystalline silicate features in the dynamically new Oort cloud comet C/2001 Q4 (NEAT). Thermal emission modeling of comets Q4 and C/1995 O1 (Hale-Bopp) demonstrate that both these comets have similar, high silicate crystalline-to-amorphous ratios of 2.4 and 2.1, respectively, indicating that these icy planetesimals aggregated from similar reservoirs of material or that crystalline silicates were widely distributed within the comet-forming zone. This argues for efficient annealing mechanisms and radial mixing.

  9. High Silicate Crystalline-to-Amorphous Ratios in Comets C/2001 Q4 (NEAT) and Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Harker, D. E.; Wodward, C. E.

    2004-01-01

    Crystalline silicates, by their apparent absence in the ISM, are dust grains that experienced high temperatures in the solar nebula. Mg-rich crystalline silicates formed either by condensation from hot nebular gases (1450 K) or by the annealing of Mg-rich amorphous silicates (approximately 1000 K) in shocks in the 5-10AU region or by radial transport into and out of the hot inner zones, e.g., T(sub d) greater than 1000K at r(sub h) less than 5AU, 10(exp -6) -10(exp -5) solar mass per year, alpha = 10(exp -4) of the early solar nebula. Mg-rich crystalline silicates are found in interplanetary dust particles (IDPs) and produce IR spectral features in many Oort cloud comets. In May 2004, we discovered strong crystalline silicate features in the dynamically new Oort cloud comet C/2001 Q4 (NEAT). Thermal emission modeling of comets Q4 and C/1995 O1 (Hale-Bopp) demonstrate that both these comets have similar, high silicate crystalline-toamorphous ratios of 2.4 and 2.1, respectively, indicating that these icy planetesimals aggregated from similar reservoirs of material or that crystalline silicates were widely distributed within the comet-forming zone. This argues for efficient annealing mechanisms and radial mixing.

  10. Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Mellot-Draznieks, Caroline; Gervais, Christel; Blanc, Frédéric; Cheetham, Anthony K

    2015-10-14

    Zeolitic imidazolate frameworks (ZIFs) have attracted great interest in recent years due to their high chemical and thermal stability with promising applications in gas storage and separations. We investigate the structures of three different crystalline ZIFs - ZIF-4, ZIF-8, ZIF-zni - and their amorphous counterparts using high field (13)C and (15)N CP MAS NMR. The high field (20 T) allows for the observation of all crystallographically independent carbon and nitrogen atoms in the crystalline ZIFs. Combining our experimental results with density functional theory calculations enabled the assignment of all chemical shifts. The crystalline spectra reveal the potential of high field NMR to distinguish between two ZIF polymorphs, ZIF-4 and ZIF-zni, with identical [Zn(C3H3N2)2] chemical compositions. (13)C and (15)N CP MAS NMR data obtained for the amorphous ZIFs clearly showed signal broadening upon amorphization, confirming the retention of chemical composition and the structural similarity of amorphous ZIF-4 and ZIF-zni. In the case of amorphous ZIF-8, we present evidence for the partial de-coordination of the 2-methyl imidazole linker. PMID:26351979

  11. A Systematic Search for the Spectra with Features of Crystalline Silicates in the Spitzer IRS Enhanced Products

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Luo, Ali; Liu, Jiaming; Jiang, Biwei

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. The average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.

  12. On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    NASA Astrophysics Data System (ADS)

    Jones, O. C.; Kemper, F.; Sargent, B. A.; McDonald, I.; Gielen, C.; Woods, Paul M.; Sloan, G. C.; Boyer, M. L.; Zijlstra, A. A.; Clayton, G. C.; Kraemer, K. E.; Srinivasan, S.; Ruffle, P. M. E.

    2012-12-01

    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer spectra of 217 oxygen-rich asymptotic giant branch and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds, and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 μm. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ˜10-9 M⊙ yr-1. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-μm feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-μm band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

  13. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    SciTech Connect

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  14. Aluminum coordination and active sites on aluminas, Y zeolites and pillared silicates. Progress report, January 31, 1992--January 31, 1993

    SciTech Connect

    Fripiat, J.J.

    1992-12-31

    Effort was continued to characterize the nature of the Al species responsible for Lewis acidity in zeolites and in aluminas by NMR. While numerous techniques have been successful for scaling the acid strength of Broensted sites, the situation is not satisfactory for the Lewis acid sites. Initial rate of dehydrochlorination of 1,1,1-trichloroethane is sensitive to strength of Lewis acid sites. N-Butene isomerization has been extended to the new aluminas obtained from nano-sized precursors. O-Xylene isomerization was carried out in a recirculation reactor on H-mordenite samples containing Lewis or Broensted acid sites; effects of H{sub 2} and NO were also investigated. Cracking of methylcyclohexane and 3-methylpentane was investigated by EPR on H-mordenite. Sepiolite, a Mg silicate with zeolitic channels, had Al substituted for Si; the negative charge is balanced by, say, VO{sup 2+}. Transformation of ethanol into butadiene on this dual-function catalyst appears to result from a Prins reaction between acetaldeyde formed on the redox sites and ethylene resulting from dehydration of ethanol on Lewis sites.

  15. Crystalline Silicates in Comets: Modeling Irregularly-Shaped Forsterite Crystals and Its Implications on Condensation Conditions

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.

    2011-01-01

    Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.

  16. Absorption at 11 μm in the interstellar medium and embedded sources: evidence for crystalline silicates

    NASA Astrophysics Data System (ADS)

    Wright, Christopher M.; Do Duy, Tho; Lawson, Warrick

    2016-04-01

    An absorption feature is occasionally reported around 11 μm in astronomical spectra, including those of forming stars. Candidate carriers include water ice, polycyclic aromatic hydrocarbons, silicon carbide, crystalline silicates or even carbonates. All are known constituents of cosmic dust in one or more types of environments, though not necessarily together. In this paper, we present new ground-based 8-13 μm spectra of one evolved star, several embedded young stellar objects and a background source lying behind a large column of the interstellar medium (ISM) towards the Galactic Centre. Our observations, obtained at a spectral resolution of ˜100, are compared with previous lower resolution data, as well as data obtained with the Infrared Space Observatory (ISO) on these and other targets. By presenting a subset of a larger sample, our aim is to establish the reality of the feature and subsequently speculate on its carrier. All evidence points towards crystalline silicate. For instance, the 11 μm band profile is well matched with the emissivity of crystalline olivine. Furthermore, the apparent association of the absorption feature with a sharp polarization signature in the spectrum of two previously reported cases suggests a carrier with a relatively high band strength compared to amorphous silicates. If true, this would either set back the evolutionary stage in which silicates are crystallized, either to the embedded phase or even before within the ISM, or else the silicates ejected from the outflows of evolved stars retain some of their crystalline identity during their long residence in the ISM.

  17. The influence of hydrothermal temperature and time toward crystallinity of zeolite X supported on glass wool for CO2 adsorption

    NASA Astrophysics Data System (ADS)

    Anggita, R. K. Wardani; Yuniar, V. T. P.; Aini, W. T.; Nurul, W.

    2016-04-01

    In this study, the influence of hydrothermal temperature and time at zeolite X supported on glasswool were investigated. The results of characterization using XRD showed that a single phase zeolite X with highest crystallinity was obtained when hydrothermal temperature and time at 100°C during 24 hours (ZXF100-24H). The CO2 adsorption capacity of ZXF100-24H has reached up to 10.15 wt. %. Kinetics of CO2 adsorption onto zeolite X supported on glasswool was investigated using pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetic models. After evaluating three kinetic models for CO2 adsorption at adsorption temperatures of 30°C, 40°C and 50°C, it was found that intra-particle diffusion kinetic model provided the best fitting for the adsorption data. Furthermore, the thermodynamic parameters of CO2 adsorption were obtained as follows, Gibbs free energy change (ΔG°) are -0.409 kJ/mol at 30°C, -0.274 kJ/mol at 40°C and -0.138 kJ/mol at 50 °C, whereas the enthalpy change (ΔH°) is -4.53 kJ/mol and the entropy change (ΔS°) is -0.0135 kJ/(mol K).

  18. Endotoxin removal using a synthetic adsorbent of crystalline calcium silicate hydrate.

    PubMed

    Zhang, John P; Wang, Qun; Smith, Timothy R; Hurst, William E; Sulpizio, Thomas

    2005-01-01

    A synthetic adsorbent of crystalline calcium silicate hydrate, the product LRA by Advanced Minerals Corp., has been studied for endotoxin removal from aqueous solutions. This adsorbent removes endotoxin effectively, and the removal is greatly enhanced by the presence of an electrolyte such as NaCl, Tris-HCl, or Na2HPO4. It has an endotoxin removal capacity as high as 6 million endotoxin units (EU) per gram. Its endotoxin removal kinetics is fast, and for instance, over 99.9% endotoxin in a 5000 EU/mL solution was removed by mixing for 2 min at an adsorbent usage of 10 g/L. Using the chromatographic column method to treat a 5000 EU/mL solution, an endotoxin log-reduction factor of 6.2 was achieved with a single pass. This adsorbent also demonstrated significantly better performance when compared to many commonly used endotoxin removal agents, such as ActiClean Etox Endotoxin Removal Resin, Affi-Prep Polymyxin Support, Detroxi-Gel Endotoxin Removing Gel, Q Sepharose Fast Flow Media, and Sigma Endotoxin Removal Solution. Furthermore, it demonstrated a high selective removal of endotoxin from a solution of lambda DNA. This adsorbent provides opportunities for developing disposable, scaleable, and cost-effective methods for endotoxin reduction in many biotechnological and pharmaceutical processes. PMID:16080705

  19. A vibrational spectroscopic study of the silicate mineral harmotome--(Ba,Na,K)1-2(Si,Al)8O16⋅6H2O--a natural zeolite.

    PubMed

    Frost, Ray L; López, Andrés; Wang, Lina; Romano, Antônio Wilson; Scholz, Ricardo

    2015-02-25

    The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16⋅6H2O is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with catalytic potential. Raman bands at 1020 and 1102 cm(-1) are assigned to the SiO stretching vibrations of three dimensional siloxane units. Raman bands at 428, 470 and 491 cm(-1) are assigned to OSiO bending modes. The broad Raman bands at around 699, 728, 768 cm(-1) are attributed to water librational modes. Intense Raman bands in the 3100 to 3800 cm(-1) spectral range are assigned to OH stretching vibrations of water in harmotome. Infrared spectra are in harmony with the Raman spectra. A sharp infrared band at 3731 cm(-1) is assigned to the OH stretching vibration of SiOH units. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral harmotome. PMID:25203212

  20. A vibrational spectroscopic study of the silicate mineral harmotome - (Ba,Na,K)1-2(Si,Al)8O16ṡ6H2O - A natural zeolite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Wang, Lina; Romano, Antônio Wilson; Scholz, Ricardo

    2015-02-01

    The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16ṡ6H2O is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with catalytic potential. Raman bands at 1020 and 1102 cm-1 are assigned to the SiO stretching vibrations of three dimensional siloxane units. Raman bands at 428, 470 and 491 cm-1 are assigned to OSiO bending modes. The broad Raman bands at around 699, 728, 768 cm-1 are attributed to water librational modes. Intense Raman bands in the 3100 to 3800 cm-1 spectral range are assigned to OH stretching vibrations of water in harmotome. Infrared spectra are in harmony with the Raman spectra. A sharp infrared band at 3731 cm-1 is assigned to the OH stretching vibration of SiOH units. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral harmotome.

  1. The optical constants of crystalline silicate particles in mid- and far-infrared

    NASA Astrophysics Data System (ADS)

    Suto, Hiroshi; Koike, Chiyoe; Shibai, Hiroshi; Tuchiyama, Akira; Mizutani, Kohei

    The optical constants from the mid to far infrared region are presented for the crystalline silicate particles with submicron size, i.e. olivine, forsterite, clinopyroxene and orthopyroxene particles which are considered as major constituents of interplanetary, interstellar and circumstellar dust. The olivine, clinoproxene and orthopyroxene are natural from Ichinomegata, Akita and have the following characteristics, olivine: (Mg_0.90Fe_0.10)_2SiO_2(Fo_90), rho = 3.36g/cm^3 clinopyroxene: Ca(Mg,Fe,Al)(Si,Al)_2O_6 Mg / (Mg+Fe) = 0.90 - 0.92, Al_2O_3 = 1.9 - 4.9 wt%, rho = 3.28 g/cm^3 orthopyroxene: (Mg,Fe,Al)(Si,Al)O_3 3.36g / cm^3 Mg / (Mg+Fe) = 0.89 - 0.90, Al_2O_3 = 3.3 - 4.0 wt%, rho = 3.32 g/cm^3 The forsterite (Mg_2SiO_4, [Mg / (Mg+Fe) = 1]) is synthesized by the CZ method (Takei 1976). The optical constants have been derived from the transmission spectra of the particles with use of Kramers-Kronig relation (Rouleau and Martin 1991). The transmissions from 5 microns to 30 microns and 25 microns to 100 microns were measured respectively for KBr pellets and polyethylene sheets containing the particles. Under Rayleigh approximation (lambda gg particle size) the imaginary part of the polarizability A per unit volume has a form of A = (epsilon/epsilon_h-1) / ((epsilon/epsilon_h-1)L+1) where epsilon: dielectric constant of particle, epsilon_h: dielectric constant of host medium and L: shape parameter of dust with assumption of homogeneous spheroid. The imaginary part of A is proportional to the transmission T as Aimg = lambda/{(2pi nhost)} rho/M ln (1/T). Imaginary part of A at infrared region are given from our measurements, and with applying Kramers-Kronig relation to the polarizability the real part of A can be derived, then the optical constants of particles are evaluated from equation of A. The silicate's strong absorption features around 10 microns and 11 microns were measured for the particles placed on the surface of KBr or glass plate (not embedded in KBr

  2. A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline

    NASA Technical Reports Server (NTRS)

    Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

    1989-01-01

    A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

  3. Petrologic Constraints on Amorphous and Crystalline Magnesium Silicates: Dust Formation and Evolution in Selected Herbig Ae/Be Systems

    NASA Astrophysics Data System (ADS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and "amorphous silicates with olivine and pyroxene stoichiometry" around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting "astronomical nomenclature" and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the "Principle of Actualism" that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite ± tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  4. PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS

    SciTech Connect

    Rietmeijer, Frans J. M.; Nuth, Joseph A.

    2013-07-01

    The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

  5. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents.

    PubMed

    Hui, K S; Chao, C Y H

    2006-09-01

    Single phase chamfered-edge zeolite 4A samples in pure form with a high crystallinity were synthesized by applying step-change of synthesis temperature during hydrothermal treatment of coal fly ash. The calcium binding capacity of these zeolite 4A samples (prepared from coal fly ash) and the commercial detergent grade zeolite 4A were tested for usage as a detergent builder. The results show that these zeolite 4A samples behaved similarly as the commercial one in removing calcium ions during the washing cycle. Moreover, from the leaching tests (evaluation of toxicological safety), the results show that these zeolite 4A samples leached the same elements (Sb, As, Se and Tl) as the commercial one with the concentrations in the same order of magnitude. This shows that the toxicological effect of the coal fly ash converted zeolite 4A was not worse than that of the commercial sample. Finally, economic and environmental aspects of converting coal fly ash to useful products were discussed. PMID:16621273

  6. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff

    SciTech Connect

    Smyth, J.R.; Caporuscio, F.A.

    1981-06-01

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks.

  7. Structural, Dielectric, and Interface Properties of Crystalline Barium Silicate Films on Si(100): A Robust High-κ Material

    NASA Astrophysics Data System (ADS)

    Islam, S.; Hofmann, K. R.; Feldhoff, A.; Pfnür, H.

    2016-05-01

    The quality and crystallinity of ultrathin dielectric layers depend crucially on the details of interface formation and chemical stability. Using a combination of photoelectron (XPS) and electron-energy-loss spectroscopy, low-energy electron-diffraction, and transmission electron microscopy (TEM), we show that crystalline epitaxial layers of Ba2 SiO4 can be grown on Si(100) substrates from evaporated Ba in oxygen background atmosphere at 650 °C . Since the silicate is chemically by far more stable than the oxides of Si and Ba, an atomically sharp interface with no interface oxide is formed, as confirmed by XPS and TEM. However, the interface is rough on the atomic scale. dc and frequency-dependent electrical measurements reveal a relative dielectric constant of 22.8, low hysteresis in C V measurements, and low leakage currents but still fairly high interface trap densities.

  8. X‐ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One

    PubMed Central

    Ristanović, Zoran; Hofmann, Jan P.; Richard, Marie‐Ingrid; Jiang, Tao; Chahine, Gilbert A.; Schülli, Tobias U.; Meirer, Florian

    2016-01-01

    Abstract Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  9. X‐ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One

    PubMed Central

    Ristanović, Zoran; Hofmann, Jan P.; Richard, Marie‐Ingrid; Jiang, Tao; Chahine, Gilbert A.; Schülli, Tobias U.; Meirer, Florian

    2016-01-01

    Abstract Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27478278

  10. X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; Richard, Marie-Ingrid; Jiang, Tao; Chahine, Gilbert A; Schülli, Tobias U; Meirer, Florian; Weckhuysen, Bert M

    2016-06-20

    Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction (μ-XRD) and X-ray excited optical fluorescence (μ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ-XEOF) were correlated with local crystallinity and framework Al content, determined by μ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  11. Synthesis strategies in the search for hierarchical zeolites.

    PubMed

    Serrano, D P; Escola, J M; Pizarro, P

    2013-05-01

    Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the

  12. Lyotropic liquid crystalline L3 phase silicated nanoporous monolithic composites and their production

    DOEpatents

    McGrath, Kathryn M.; Dabbs, Daniel M.; Aksay, Ilhan A.; Gruner, Sol M.

    2003-10-28

    A mesoporous ceramic material is provided having a pore size diameter in the range of about 10-100 nanometers produced by templating with a ceramic precursor a lyotropic liquid crystalline L.sub.3 phase consisting of a three-dimensional, random, nonperiodic network packing of a multiple connected continuous membrane. A preferred process for producing the inesoporous ceramic material includes producing a template of a lyotropic liquid crystalline L.sub.3 phase by mixing a surfactant, a co-surfactant and hydrochloric acid, coating the template with an inorganic ceramic precursor by adding to the L.sub.3 phase tetramethoxysilane (TMOS) or tetraethoxysilane (TEOS) and then converting the coated template to a ceramic by removing any remaining liquids.

  13. Synthesis of zeolite Li-ABW from fly ash by fusion method.

    PubMed

    Yao, Z T; Xia, M S; Ye, Y; Zhang, L

    2009-10-30

    The zeolite Li-ABW was synthesized by fusion method using fly ash as raw material. It comprised alkaline fusion followed by hydrothermal treatment in LiOH x H2O medium. Crystallinity of zeolite as high as 97.8% was attained under the following conditions: LiOH x H2O concentration, 3M; hydrothermal temperature, 180 degrees C; the corresponding aging time, 12 h. The content of Li-ABW increased at the expense of lithium aluminum silicate or quartz with an increase of LiOH x H2O concentration. With increasing hydrothermal temperature and aging time, the soluble species re-crystallized and crystalline phase transformation between different zeolites was observed. Scanning electron microscopy (SEM) observation revealed that the obtained zeolite Li-ABW was a rod-like crystal. The pore size distribution curve indicated the presence of mesopores. PMID:19493616

  14. Quantifying defects in zeolites and zeolite membranes

    NASA Astrophysics Data System (ADS)

    Hammond, Karl Daniel

    Zeolites are crystalline aluminosilicates that are frequently used as catalysts to transform chemical feedstocks into more useful materials in a size- or shape-selective fashion; they are one of the earliest forms of nanotechnology. Zeolites can also be used, especially in the form of zeolite membranes (layers of zeolite on a support), to separate mixtures based on the size of the molecules. Recent advances have also created the possibility of using zeolites as alkaline catalysts, in addition to their traditional applications as acid catalysts and catalytic supports. Transport and catalysis in zeolites are greatly affected by physical and chemical defects. Such defects can be undesirable (in the case of zeolite membranes), or desirable (in the case of nitrogen-doped alkaline zeolites). Studying zeolites at the relevant length scales requires indirect experimental methods such as vapor adsorption or atomic-scale modeling such as electronic structure calculations. This dissertation explores both experimental and theoretical characterization of zeolites and zeolite membranes. Physical defects, important in membrane permeation, are studied using physical adsorption experiments and models of membrane transport. The results indicate that zeolite membranes can be modeled as a zeolite powder on top of a support---a "supported powder," so to speak---for the purposes of adsorption. Mesoporosity that might be expected based on permeation and confocal microscopy measurements is not observed. Chemical defects---substitutions of nitrogen for oxygen---are studied using quantum mechanical models that predict spectroscopic properties. These models provide a method for simulating the 29Si NMR spectra of nitrogendefected zeolites. They also demonstrate that nitrogen substitutes into the zeolite framework (not just on the surface) under the proper reaction conditions. The results of these studies will be valuable to experimentalists and theorists alike in our efforts to understand the

  15. Beryllosilicate frameworks and zeolites.

    PubMed

    Armstrong, Jennifer A; Weller, Mark T

    2010-11-10

    Using inspiration derived from studying naturally occurring minerals, a series of framework beryllosilicates have been synthesized under hydrothermal conditions. These include two new zeolite topologies, a unique layered beryllosilicate, and beryllosilicate analogues of numerous aluminosilicate zeolites. Materials with the structure of the rare zeolite mineral nabesite have been synthesized for the first time, including both sodium and potassium derivatives. The structural chemistry of these beryllosilicates frameworks is discussed with reference to the networks of linked tetrahedra, which include the first instance of pentagonal, two-dimensional Cairo-tiling of silicate tetrahedra in one of the new zeolite topologies, their porosity, and their thermal stability. PMID:20949941

  16. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method.

    PubMed

    Chen, Bao-Hui; Chao, Zi-Sheng; He, Hao; Huang, Chen; Liu, Ya-Juan; Yi, Wen-Jun; Wei, Xue-Ling; An, Jun-Fang

    2016-02-14

    Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite. PMID:26745008

  17. A simple and general route for the preparation of pure and high crystalline nanosized lanthanide silicates with the structure of apatite at low temperature

    SciTech Connect

    Ferdov, Stanislav; Rauwel, Protima; Lin, Zhi; Ferreira, Rute A. Sa; Lopes, Augusto

    2010-11-15

    Rare earth silicates with the structure of apatite are attracting considerable interest since they show oxygen ion conductivities higher than that of yttria-stabilized zirconia (YSZ) at moderate temperature. Based on the hydrothermal synthesis we presented a simple one step process for the direct preparation of the pure and the high crystalline nanosized rare earth silicates with the structure of apatite under a mild condition (230 {sup o}C). Since the preparation of the high crystalline silicon based rare earth apatites is performed at high temperature previously and accompanied by subsequent process of grinding, results of this work provide a promising alternative of the existing methodology. Furthermore, due to the relatively low temperature of the preparation of these materials, high doping of monovalent cation can be done, which was not achieved before. -- Graphical abstract: A simple one step process for the preparation of the rare earth silicates with the structure of apatite under a mild condition (230 {sup o}C) is presented. The process is based on the hydrothermal synthesis and the obtained powder materials are pure, high crystalline and with nanosize. Display Omitted

  18. Rapid synthesis of beta zeolites

    SciTech Connect

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  19. On the Mesoporogen-Free Synthesis of Single-Crystalline Hierarchically Structured ZSM-5 Zeolites in a Quasi-Solid-State System.

    PubMed

    Ge, Tongguang; Hua, Zile; He, Xiaoyun; Lv, Jian; Chen, Hangrong; Zhang, Lingxia; Yao, Heliang; Liu, Ziwei; Lin, Chucheng; Shi, Jianlin

    2016-06-01

    Hierarchically structured zeolites (HSZs) have gained much academic and industrial interest owing to their multiscale pore structures and consequent excellent performances in varied chemical processes. Although a number of synthetic strategies have been developed in recent years, the scalable production of HSZs single crystals with penetrating and three-dimensionally (3-D) interconnected mesopore systems but without using a mesoscale template is still a great challenge. Herein, based on a steam-assisted crystallization (SAC) method, we report a facile and scalable strategy for the synthesis of single-crystalline ZSM-5 HSZs by using only a small amount of micropore-structure-directing agents (i.e., tetrapropylammonium hydroxide). The synthesized materials exhibited high crystallinity, a large specific surface area of 468 m(2)  g(-1) , and a pore volume of 0.43 cm(3)  g(-1) without sacrificing the microporosity (≈0.11 cm(3)  g(-1) ) in a product batch up to 11.7 g. Further, a kinetically controlled nucleation-growth mechanism is proposed for the successful synthesis of single-crystalline ZSM-5 HSZs with this novel process. As expected, compared with the conventional microporous ZSM-5 and amorphous mesoporous Al-MCM-41 counterparts, the synthesized HSZs exhibited significantly enhanced activity and stability and prolonged lifetime in model reactions, especially when bulky molecules were involved. PMID:27106662

  20. Zeolite exposure and associated pneumoconiosis

    SciTech Connect

    Casey, K.R.; Shigeoka, J.W.; Rom, W.N.; Moatamed, F.

    1985-06-01

    Naturally occurring zeolite minerals are aluminum silicates widespread in the earth's crust. Several of these minerals have fibrous forms and have been implicated as a possible cause of benign and malignant diseases of the lung and pleura in Turkey. This report describes a patient, living in an area of Nevada rich in zeolites, who presented with idiopathic pleural thickening and pulmonary fibrosis associated with extensive pulmonary deposition of zeolites.

  1. IRAS 15099-5856: REMARKABLE MID-INFRARED SOURCE WITH PROMINENT CRYSTALLINE SILICATE EMISSION EMBEDDED IN THE SUPERNOVA REMNANT MSH15-52

    SciTech Connect

    Koo, Bon-Chul; Kim, Hyun-Jeong; Im, Myungshin; McKee, Christopher F.; Suh, Kyung-Won; Moon, Dae-Sik; Lee, Ho-Gyu; Onaka, Takashi; Burton, Michael G.; Hiramatsu, Masaaki; Bessell, Michael S.; Gaensler, B. M.; Lee, Jae-Joon; Jeong, Woong-Seob; Tatematsu, Ken'ichi; Kawabe, Ryohei; Ezawa, Hajime; Kohno, Kotaro; Wilson, Grant; Yun, Min S.

    2011-05-01

    We report new mid-infrared (MIR) observations of the remarkable object IRAS 15099-5856 using the space telescopes AKARI and Spitzer, which demonstrate the presence of prominent crystalline silicate emission in this bright source. IRAS 15099-5856 has a complex morphology with a bright central compact source (IRS1) surrounded by knots, spurs, and several extended ({approx}4') arc-like filaments. The source is seen only at {>=}10 {mu}m. The Spitzer mid-infrared spectrum of IRS1 shows prominent emission features from Mg-rich crystalline silicates, strong [Ne II] 12.81 {mu}m, and several other faint ionic lines. We model the MIR spectrum as thermal emission from dust and compare with the Herbig Be star HD 100546 and the luminous blue variable R71, which show very similar MIR spectra. Molecular line observations reveal two molecular clouds around the source, but no associated dense molecular cores. We suggest that IRS1 is heated by UV radiation from the adjacent O star Muzzio 10 and that its crystalline silicates most likely originated in a mass outflow from the progenitor of the supernova remnant (SNR) MSH 15-52. IRS1, which is embedded in the SNR, could have been shielded from the SN blast wave if the progenitor was in a close binary system with Muzzio 10. If MSH 15-52 is a remnant of Type Ib/c supernova (SN Ib/c), as has been previously proposed, this would confirm the binary model for SN Ib/c. IRS1 and the associated structures may be the relics of massive star death, as shaped by the supernova explosion, the pulsar wind, and the intense ionizing radiation of the embedded O star.

  2. A vibrational spectroscopic study of the silicate mineral analcime - Na2(Al4SiO4O12)·2H2O - a natural zeolite.

    PubMed

    Frost, Ray L; López, Andrés; Theiss, Frederick L; Romano, Antônio Wilson; Scholz, Ricardo

    2014-12-10

    We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe(2+) and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125cm(-1). The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119cm(-1). These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484cm(-1) is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600cm(-1) are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608cm(-1). The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime. PMID:24983920

  3. A vibrational spectroscopic study of the silicate mineral analcime - Na2(Al4SiO4O12)·2H2O - A natural zeolite

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Theiss, Frederick L.; Romano, Antônio Wilson; Scholz, Ricardo

    2014-12-01

    We have studied the mineral analcime using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral analcime Na2(Al4SiO4O12)·2H2O is a crystalline sodium silicate. Chemical analysis shows the mineral contains a range of elements including Na, Al, Fe2+ and Si. The mineral is characterized by intense Raman bands observed at 1052, 1096 and 1125 cm-1. The infrared bands are broad; nevertheless bands may be resolved at 1006 and 1119 cm-1. These bands are assigned to SiO stretching vibrational modes. Intense Raman band at 484 cm-1 is attributed to OSiO bending modes. Raman bands observed at 2501, 3542, 3558 and 3600 cm-1 are assigned to the stretching vibrations of water. Low intensity infrared bands are noted at 3373, 3529 and 3608 cm-1. The observation of multiple water bands indicate that water is involved in the structure of analcime with differing hydrogen bond strengths. This concept is supported by the number of bands in the water bending region. Vibrational spectroscopy assists with the characterization of the mineral analcime.

  4. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  5. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  6. Radiation effects and annealing kinetics in crystalline silicates, phosphates and complex Nb-Ta-Ti oxides. FInal Report

    SciTech Connect

    Ewing, R.C.

    1987-08-10

    Interaction of heavy particles (alpha-recoil nuclei, fission fragments, implanted ions) with ceramics is complex because they have a wide range of structure types, complex compositions and chemical bonding is variable. Radiation damage can produce diverse results, but most commonly, crystalline periodic materials become either polycrystalline or aperiodic (metamict state). We studied the transition from crystalline to aperiodic state in natural materials that have been damaged by alpha recoil nuclei in the U and Th decay series and in synthetic, analogous structure types which have been amorphized by ion implantation. Transition from crystalline to aperiodic was followed by analysis of XRD, high resolution TEM, and EXAFS/XANE spectroscopy. Use of these techniques with increasing dose provided data on an increasing finer scale as the damage process progressed.

  7. Oxygen isotopes in crystalline silicates of comet Wild 2: A comparison of oxygen isotope systematics between Wild 2 particles and chondritic materials

    NASA Astrophysics Data System (ADS)

    Nakashima, Daisuke; Ushikubo, Takayuki; Joswiak, David J.; Brownlee, Donald E.; Matrajt, Graciela; Weisberg, Michael K.; Zolensky, Michael E.; Kita, Noriko T.

    2012-12-01

    Oxygen three-isotope ratios of nine crystalline silicate particles from comet Wild 2 were measured to investigate oxygen isotope systematics of cometary materials. We are able to analyze particles as small as 4 μm using an ion microprobe with a˜1×2 μm beam by locating the analysis spots with an accuracy of ±0.4 μm. Three particles of Mn-rich forsterite, known as low-iron, manganese-enriched (LIME) olivine, showed extremely 16O-rich signatures (δ18O, δ17O˜-50‰), similar to refractory inclusions in chondrites. The three Mn-rich forsterite particles may have formed by condensation from an 16O-rich solar nebula gas. Other particles consist of olivine and/or pyroxene with a wide range of Mg# [=molar MgO/(FeO+MgO) %] from 60 to 96. Their oxygen isotope ratios plot nearly along the carbonaceous chondrite anhydrous mineral (CCAM) and Young and Russell lines with Δ17O(=δ17O-0.52×δ18O) values of -3.0‰ to +2.5‰. These data are similar to the range observed from previous analyses of Wild 2 crystalline silicates and those of chondrules in carbonaceous chondrites. Six particles extracted from Stardust track 77 show diverse chemical compositions and isotope ratios; two Mn-rich forsterites, FeO-poor pigeonite, and three FeO-rich olivines with a wide range of Δ17O values from -24‰ to +1.6‰. These results confirmed that the original projectile that formed track 77 was an aggregate (>6 μm) of silicate particles that formed in various environments. The Δ17O values of ferromagnesian Wild 2 particles (including data from previous studies) increase from ˜-23‰ to+2.5‰ with decreasing Mg#: Δ17O values of Mn-rich forsterite particles (Mg#=98-99.8) cluster at -23‰, those of FeO-poor particles (Mg#=95-97) cluster at -2‰, and those of FeO-rich particles (Mg#≤90) scatter mainly from -1.5‰ to+2.5‰. Compared to chondrules in primitive chondrites, the systematic trend between Mg# and Δ17O among the Wild 2 particles is most similar to that reported for CR

  8. Lack of Evidence of In-Situ Decay of Aluminum-26 in a FeO-Poor Ferromagnesian Crystalline Silicate Particle, Pyxie, from Comet Wild 2

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Weisberg, M. K.; Zolensky, M. E.; Ebel, D. S.; Kita, N. T.

    2014-01-01

    One of the important discoveries from the Stardust mission is the observation of crystalline silicate particles that resemble Ca, Al-rich inclusions (CAIs) and chondrules in carbonaceous chondrites], which suggests radial transport of high temperature solids from the inner to the outer solar nebula regions and capture by accreting cometary objects. The Al-Mg isotope analyses of CAI-like and type II chondrule-like particles revealed no excess of Mg-26 derived from in-situ decay of Al-26 (Tau)(sub 1/2) = 0.705Myr; ), suggesting late formation of these particles. However, the number of Wild 2 particles analyzed for Al-Mg isotopes is still limited (n = 3). In order to better understand the timing of the formation of Wild 2 particles and possible radial transport in the protoplanetary disk, we performed SIMS (Secondary Ion Mass Spectrometer) Al-Mg isotope analyses of plagioclase in a FeO-poor ferromagnesian Wild 2 particle, which is the most abundant type among crystalline Wild 2 particles.

  9. Cracking process with catalyst of combined zeolites

    SciTech Connect

    Gladrow, E. M.; Winter, W. E.

    1981-09-01

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zeolite such as mordenite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  10. Inelastic neutron scattering from tetramethylammonium cations occluded within zeolites

    SciTech Connect

    Brun, T.O.; Curtiss, L.A.; Iton, L.E.; Kleb, R.; Newsam, J.M.; Beyerlein, R.A.; Vaughan, D.E.W.

    1987-06-24

    The use of organic bases, for example, tetraalklylammonium hydroxides, and other organic reagents has greatly enhanced the scope of gel/solution synthesis routes to crystalline microporous materials such as zeolites. The role of these organic components, however, continues to be the topic of considerable debate. The organic components first modify the gel structural chemistry. The presence of tetramethylammonium (TMA) hydroxide, for example, promotes the formation of double four-ring units in silicate solutions. Occlusion of organic gel components in zeolite crystal structures, however, leads also to the concept of a templating effect in which the organic component provides a basis around which the developing zeolite cages form. The mechanism of this templating process remains somewhat ill defined and must, at least, be of variable specificity. The authors describe here the use of inelastic neutron scattering (INS) to measure TMA template torsional vibrations, vibrations that provide to be sensitive to the strength of the interaction between the template cation and the enclosing zeolite cage.

  11. Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method

    NASA Astrophysics Data System (ADS)

    Itakura, Masaya; Ota, Kai; Shibata, Shohei; Inoue, Takayuki; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

    2011-01-01

    In this study, hydrothermal conversions of *BEA and FAU type zeolites using various structure-directing agents were carried out. Highly crystalline and pure RUT type zeolites were obtained from both zeolites in the presence of tetramethylammonium hydroxide. There were no major differences between the characteristics of the RUT type zeolites obtained from the two starting zeolites. However, the Si/Al ratio and the crystallization rate of the RUT type zeolites were strongly dependent on both the framework structure and the Si/Al ratio of the starting zeolite. That is, the crystallization rate of the RUT type zeolite from the *BEA type zeolite did not depend on the Si/Al ratio of the starting *BEA type zeolite, whereas the crystallization rate of the RUT type zeolite from the FAU type zeolite was dependent on the Si/Al ratio of the starting FAU type zeolite. This suggests that the chemical structure and the concentration of locally ordered aluminosilicate species produced by the decomposition/dissolution of the starting zeolite can be altered by changing the framework structure of the zeolite.

  12. Synthesis and testing of nanosized zeolite Y

    NASA Astrophysics Data System (ADS)

    Karami, Davood

    This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were

  13. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  14. Sonochemical synthesis of zeolite NaP from clinoptilolite.

    PubMed

    Behin, Jamshid; Kazemian, Hossein; Rohani, Sohrab

    2016-01-01

    In the present work, natural clinoptilolite was converted to zeolite NaP using ultrasonic energy, in which the transformation time shortened remarkably. The effect of post-synthesis treatment using conventional hydrothermal was also investigated. The synthesized powders were characterized by XRD, TGA/DTA, SEM, and PSD analysis. The results showed that, increasing the sonication time (energy) has no significant effect on the product's morphology. The crystallinity of the synthesized samples increased slightly with increasing sonication time, but their yield remained relatively unchanged. Furthermore, post-synthesis hydrothermal treatment showed very little influence on properties of the final product. Because the ultrasonic irradiation creates acoustic cavitation cracks on the surface structure of clinoptilolite particulates and increases the concentration of soluble alumino-silicate species, which favors the prevailing super-saturation, crystallization and crystal growth of zeolite NaP happen faster. The particles of zeolite NaP synthesized by ultrasonic irradiation consist of small crystallites of uniform size. PMID:26341462

  15. Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure.

    PubMed

    Wang, Baoyu; Wu, Jianmei; Yuan, Zhong-Yong; Li, Niu; Xiang, Shouhe

    2008-04-01

    The synthesis of MCM-22 zeolite under hydrothermal crystallization conditions has been performed by an ultrasonic-assisted aging procedure. The ultrasonic-assisted aging of the initial aluminosilicate gel can shorten the crystallization time of MCM-22, decrease the amount of hexamethyleneimine (HMI) used, and broaden the range of SiO(2)/Al(2)O(3) ratios. By using the ultrasonic aging, pure phase of high-silica MCM-22 products with SiO(2)/Al(2)O(3)>100 can be obtained. When SiO(2)/Al(2)O(3) crystalline MCM-22 zeolites with the reduced average crystal sizes can be made even with low HMI/SiO(2) ratio of 0.05 under static crystallization conditions. The acoustic cavitation of the ultrasonic is believed to be responsible for these positive results due to its cracking the crystal seeds and improving the solubility of silicate species. PMID:17845863

  16. Hydrocarbon cracking with mixture of zeolites y and zsm-5

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1981-09-15

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zsm-type zeolite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  17. Ionic Liquid assisted Synthesis of Zeolite-TON

    PubMed Central

    Tian, Yuyang; McPherson, Matthew J; Wheatley, Paul S; Morris, Russell E

    2014-01-01

    An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites. PMID:26213423

  18. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    PubMed

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  19. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  20. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  1. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  2. Effect of crystal size on physical and catalytic properties of ZSM-5 type zeolites

    NASA Astrophysics Data System (ADS)

    Voogd, P.

    1991-09-01

    Diffusion of C6-alkanes in zeolite ZSM-5 and its aluminum free variant silicate-1 receives the greatest attention in the thesis. A physical property of zeolite like the ability to sorb, in particular, nonpolar compounds, was utilized in studying hydrocarbon diffusion by performing adsorption and desorption experiments. The diffusional behavior of the zeolite ZSM-5 and of aluminated silicate-1 at catalytically relevant temperatures was studied by way of a catalytic property of the zeolite. Descriptions of physical studies on nitrogen sorption in ZSM 5 type zeolites and of catalytic studies on the conversion of ethanol to hydrocarbons complete the thesis which tries to give a better understanding of adsorptive, diffusional, and catalytic behavior by describing experiments in which only one parameter has been varied, the zeolite crystal size. Discussions and conclusions are directed towards the industrial application of zeolite ZSM-5, as a catalyst.

  3. Synthesis of NaY zeolite on preformed kaolinite spheres. Evolution of zeolite content and textural properties with the reaction time

    SciTech Connect

    Basaldella, E.I.; Bonetto, R.; Tara, J.C. )

    1993-04-01

    The synthesis of NaY zeolite was carried out on fired kaolinite microspheres. Changes in porosity, chemical composition, and crystallinity of the solid show zeolite growth on both internal and external microsphere surfaces. It was also observed that, as a consequence of the alkaline treatment, the SiO[sub 2]/Al[sub 2]O[sub 3] ratio in the solid diminishes prior to the appearance of the zeolite, but increases when the zeolite begins to crystallize.

  4. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  5. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  6. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  7. Flexibility mechanisms in ideal zeolite frameworks.

    PubMed

    Treacy, M M J; Dawson, C J; Kapko, V; Rivin, I

    2014-02-13

    Zeolites are microporous crystalline aluminosilicate materials whose atomic structures can be usefully modelled in purely mechanical terms as stress-free periodic trusses constructed from rigid corner-connected SiO4 and AlO4 tetrahedra. When modelled this way, all of the known synthesized zeolite frameworks exhibit a range of densities, known as the flexibility window, over which they satisfy the framework mechanical constraints. Within the flexibility window internal stresses are accommodated by force-free coordinated rotations of the tetrahedra about their apices (oxygen atoms). We use rigidity theory to explore the folding mechanisms within the flexibility window, and derive an expression for the configurational entropic density throughout the flexibility window. By comparison with the structures of pure silica zeolite materials, we conclude that configurational entropy associated with the flexibility modes is not a dominant thermodynamic term in most bulk zeolite crystals. Nevertheless, the presence of a flexibility window in an idealized hypothetical tetrahedral framework may be thermodynamically important at the nucleation stage of zeolite formation, suggesting that flexibility is a strong indicator that the topology is realizable as a zeolite. Only a small fraction of the vast number of hypothetical zeolites that are known exhibit flexibility. The absence of a flexibility window may explain why so few hypothetical frameworks are realized in nature. PMID:24379426

  8. Zeolites: Can they be synthesized by design

    SciTech Connect

    Davis, M.E. )

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high level of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''

  9. Thermodynamic modeling of natural zeolite stability

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1997-06-01

    Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

  10. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    PubMed Central

    Vernimmen, Jarian; Cool, Pegie

    2011-01-01

    Summary In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. PMID:22259762

  11. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. PMID:26186874

  12. Factors that Determine Zeolite Stability in Hot Liquid Water.

    PubMed

    Zhang, Lu; Chen, Kuizhi; Chen, Banghao; White, Jeffery L; Resasco, Daniel E

    2015-09-16

    The susceptibility of zeolites to hot liquid water may hamper their full utilization in aqueous phase processes, such as those involved in biomass conversion and upgrading reactions. Interactions of zeolites with water strongly depend on the presence of hydrophilic moieties including Brønsted acid sites (BAS), extraframework cations, and silanol defects, which facilitate wetting of the surface. However, it is not clear which of these moieties are responsible for the susceptibility of zeolites to liquid water. Previous studies have offered contradictory explanations because the role of each of these characteristics has not been investigated independently. In this work, a systematic comparison has been attempted by relating crystallinity losses to the variation of each of the five zeolite characteristics that may influence their stability in liquid water, including number of BAS, Si-O-Si bonds, framework type, silanol defects, and extraframework Al. In this study, we have systematically monitored the crystallinity changes of a series of HY, H-ZSM-5, and H-β zeolite samples with varying Si/Al ratio, density of BAS, zeolite structure, and density of silanol defects upon exposure to liquid water at 200 °C. The results of this comparison unambiguously indicate that the density of silanol defects plays the most crucial role in determining susceptibility of zeolites to hot liquid water. By functionalizing the silanol defects with organosilanes, the hydrophobicity of defective zeolite is increased and the tolerance to hot liquid water is significantly enhanced. PMID:26301890

  13. Effects of solvent structure on the distribution of silicate anions in mixed aqueous/organic solutions of alkaline tetramethylammonium silicate

    SciTech Connect

    Hendricks, W.M.; Bell, A.T.; Radke, C.J. )

    1991-11-14

    Interest in the physical-chemical processes occurring during zeolite synthesis has stimulated the study of dissolved silicate oligomers in aqueous alkaline solution and their possible link to zeolite nucleation and crystal growth. Effects of solvent structure on the equilibrium distribution of silicate oligomers in mixed organic/aqueous solutions of tetramethylammonium hydroxide (TMAOH) have been investigated by using {sup 29}Si NMR spectroscopy. The results indicate that the presence of organic molecules leads to condensation of the silicates, particularly to double-ring structures. Equilibrium calculations indicate that the observed extent of silicate condensation exceeds what would be expected from mass action. The variety of organic solvents used allowed elucidation of structure effects due to the following: carbon chain length, carbon chain morphology, functional group, and placement of the functional group. The structural effects of organic solvents can be attributed to the ordering of water around the solvent molecules.

  14. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  15. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in

  16. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  17. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  18. Zeolite-like liquid crystals.

    PubMed

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  19. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  20. Zeolite catalysis: technology

    SciTech Connect

    Heinemann, H.

    1980-07-01

    Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

  1. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  2. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al < 2) are hydrophilic, acid soluble, and have a high ion exchange capacity. These new thin films also take advantage of some unique properties of zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our

  3. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    PubMed Central

    2013-01-01

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources. PMID:23298332

  4. Wet gringing of zeolite in stirred media mill

    NASA Astrophysics Data System (ADS)

    Mucsi, G.; Bohács, K.

    2016-04-01

    In the present study the results of systematic experimental series are presented with the specific goal of optimizing the zeolite nanoparticles' production using a wet stirred media mill. The diameter of the grinding media as well as the rotor velocity were varied in the experiments. Particle size distribution and "outer" specific surface area of the ground samples were measured by a laser particle size analyser. Additionally, BET, XRD and FT-IR analyses were performed for the characterization of the "total" specific surface area as well as the crystalline and material structure, respectively. Based on the results of the laboratory experiments it was found that wet stirred media milling provided significant reductions in the particle size of zeolite. Furthermore, the crystallinity of the samples also decreased, so not only the physical but the mineralogical characteristics of zeolite can be controlled by stirred media milling.

  5. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    SciTech Connect

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman; Brewer, Damien D.; Gettel, Melissa; Kumar, Sandeep; Lee, J. Alex; Maheshwari, Sundeep; Mittal, Anudha; Sung, Chun-Yi; Cococcioni, Matteo; Francis, Lorraine F.; McCormick, Alon V.; Mkhoyan, K. Andre; Tsapatsis, Michael

    2011-10-06

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

  6. Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks

    SciTech Connect

    Smyth, J.R.

    1982-12-31

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Non-welded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals: clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling which limits permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water vapor pressures, and they may break down either by reversible dehydration or by irreversible mineralogical reactions. All of the breakdown reactions occurring with increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide both a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in radioactive waste repositories in zeolite-bearing volcanic rocks. 3 figures.

  7. EFFECT OF QUARTZ/MULLITE BLEND CERAMIC ADDITIVE ON IMPROVING RESISTANCE TO ACID OF SODIUM SILICATE-ACTIVATED SLAG CEMENT. CELCIUS BRINE.

    SciTech Connect

    SUGAMA, T.; BROTHERS, L.E.; VAN DE PUTTE, T.R.

    2006-06-01

    We evaluated the usefulness of manufactured quartz/mullite blend (MQMB) ceramic powder in increasing the resistance to acid of sodium silicate-activated slag (SSAS) cementitious material for geothermal wells. A 15-day exposure to 90{sup o} CO{sub 2}-laden H{sub 2}SO{sub 4} revealed that the MQMB had high potential as an acid-resistant additive for SSAS cement. Two factors, the appropriate ratio of slag/MQMB and the autoclave temperature, contributed to better performance of MQMB-modified SSAS cement in abating its acid erosion. The most effective slag/MQMB ratio in minimizing the loss in weight by acid erosion was 70/30 by weight. For autoclave temperature, the loss in weight of 100 C autoclaved cement was a less than 2%, but at 300 C it was even lower. Before exposure to acid, the cement autoclaved at 100 C was essentially amorphous; increasing the temperature to 200 C led to the formation of crystalline analcime in the zeolitic mineral family during reactions between the mullite in MQMB and the Na from sodium silicate. In addition, at 300 C, crystal of calcium silicate hydrate (1) (CSH) was generated in reactions between the quartz in MQMB and the activated slag. These two crystalline phases (CSH and analcime) were responsible for densifying the autoclaved cement, conveying improved compressive strength and minimizing water permeability. The CSH was susceptible to reactions with H{sub 2}SO{sub 4}, forming two corrosion products, bassanite and ionized monosilicic acid. However, the uptake of ionized monosilicic acid by Mg dissociated from the activated slag resulted in the formation of lizardite as magnesium silicate hydrate. On the other hand, the analcime was barely susceptible to acid if at all. Thus, the excellent acid resistance of MQMB-modified SSAS cement was due to the combined phases of lizardite and analcime.

  8. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption.

    PubMed

    Medina, Adriana; Gamero, Prócoro; Almanza, José Manuel; Vargas, Alfredo; Montoya, Ascención; Vargas, Gregorio; Izquierdo, María

    2010-09-15

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 degrees C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na(2)HAsO(4).7H(2)O originally containing 740 ppb. PMID:20537461

  9. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  10. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  11. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  12. ZEOLITE CHARACTERIZATION TESTING

    SciTech Connect

    Jacobs, W; Herbert Nigg, H

    2007-09-13

    The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

  13. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  14. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  15. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  16. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  17. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  18. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  19. Structural analysis of hierarchically organized zeolites

    NASA Astrophysics Data System (ADS)

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-10-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

  20. Structural analysis of hierarchically organized zeolites.

    PubMed

    Mitchell, Sharon; Pinar, Ana B; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  1. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  2. Noble gas adsorption in two-dimensional zeolites: a combined experimental and density functional theory study

    NASA Astrophysics Data System (ADS)

    Wang, Mengen; Zhong, Jianqiang; Boscoboinik, Jorge Anibal; Lu, Deyu

    Zeolites are important industrial catalysts with porous three-dimensional structures. The catalytically active sites are located inside the pores, thus rendering them inaccessible for surface science measurements. We synthesized a two-dimensional (2D) zeolite model system, consisting of an (alumino)silicate bilayer weakly bound to a Ru (0001) surface. The 2D zeolite is suitable for surface science studies; it allows a detailed characterization of the atomic structure of the active site and interrogation of the model system during the catalytic reaction. As an initial step, we use Ar adsorption to obtain a better understanding of the atomic structure of the 2D zeolite. In addition, atomic level studies of rare gas adsorption and separation by zeolite are important for its potential application in nuclear waste sequestration. Experimental studies found that Ar atoms can be trapped inside the 2D-zeolite, raising an interesting question on whether Ar atoms are trapped inside the hexagonal prism nano-cages or at the interface between the (alumino)silicate bilayer and Ru(0001), or both. DFT calculations using van der Waals density functionals were carried out to determine the preferred Ar adsorption sites and the corresponding adsorption energies. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  3. Sol-gel synthesis and luminescence of unexpected microrod crystalline Ca 5La 5(SiO 4) 3(PO 4) 3O 2:Dy 3+ phosphors employing different silicate sources

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Huang, Honghua

    2007-08-01

    Ca5La5(SiO4)3(PO4)3O2 doped with Dy3+ were synthesized by sol-gel technology with hybrid precursor employed four different silicate sources, 3-aminopropyl-trimethoxysilane (APMS), 3-aminopropyl-triethoxysilane (APES), 3-aminopropyl-methyl-diethoxysilane (APMES) and tetraethoxysilane (TEOS), respectively. The SEM diagraphs show that there exist some novel unexpected morphological structures of microrod owing to the crosslinking reagents than TEOS as silicate source for their amphipathy template effect. X-ray pictures confirm that Ca5La5(SiO4)3(PO4)3O2:Dy3+ compound is formed by a pure apatitic phase. The Dy3+ ions could emit white light in Ca5La5(SiO4)3(PO4)3O2 compound, and the ratio of Y/B is 1.1, when the Dy3+ doped concentration is 1.0 mol%.

  4. Controlling the adsorption enthalpy of CO(2) in zeolites by framework topology and composition.

    PubMed

    Grajciar, Lukáš; Čejka, Jiří; Zukal, Arnošt; Otero Areán, Carlos; Turnes Palomino, Gemma; Nachtigall, Petr

    2012-10-01

    Zeolites are often investigated as potential adsorbents for CO(2) adsorption and separation. Depending on the zeolite topology and composition (Si/Al ratio and extra-framework cations), the CO(2) adsorption heats at low coverages vary from -20 to -60 kJ mol(-1), and with increasing surface coverage adsorption heats either stay approximately constant or they quickly drop down. Experimental adsorption heats obtained for purely siliceous porous solids and for ion-exchanged zeolites of the structural type MFI, FER, FAU, LTA, TUN, IMF, and -SVR are discussed in light of results of periodic density functional theory calculations corrected for the description of dispersion interactions. Key factors influencing the stability of CO(2) adsorption complexes are identified and discussed at the molecular level. A general model for CO(2) adsorption in zeolites and related materials is proposed and data reported in literature are evaluated with regard to the proposed model. PMID:22887989

  5. Effect of synthetic conditions on the adsorption properties of the resulting offretite-type zeolite

    NASA Astrophysics Data System (ADS)

    Gorshunova, K. K.; Travkina, O. S.; Kapustin, G. I.; Kustov, L. M.; Pavlov, M. L.; Kutepov, B. I.

    2015-05-01

    The effect of the nature of the silicon-containing component of the reaction mixture and that of the crystallization conditions on characteristics of the resulting offretite-type zeolite powder, including its degree of crystallinity, particle-size distribution, and adsorption properties with respect to toluene, cyclohexane, n-hexane, and water molecules, are considered. The thermal desorption of toluene from cationic forms of the offretite-type zeolite is reported. The K-forms of this zeolite can retain adsorbed toluene up to 300-400°C.

  6. The importance of zeolites in the potential high-level radioactive waste repository at Yucca Mountain, Nevada

    SciTech Connect

    Vaniman, D.T.; Bish, D.L.

    1993-07-01

    Zeolitic rocks play an important role in retarding the migration of radionuclides that occur in solution as simple cations (Cs, Sr, Ba). However, the interaction of zeolites with complex transuranic species in solution provides little if any advantage over other common silicate minerals. The most important consequences of zeolite occurrences near a high-level radioactive waste repository environment are likely to be their response to thermal loading and their impact on site hydrology. Partial zeolite dehydration during the early thermal pulse from the repository and rehydration as the repository slowly cools can have an important impact on the water budget of a repository in unsaturated rocks, provided that the long-term heating does not result in zeolite destabilization.

  7. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.

    PubMed

    Lin, Qipu; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Sasan, Koroush; Feng, Pingyun

    2015-05-20

    High-silica zeolites, as exemplified by ZSM-5, with excellent chemical and thermal stability, have generated a revolution in industrial catalysis. In contrast, prior to this work, high-silica-zeolite-like chalcogenides based on germanium/tin remained unknown, even after decades of research. Here six crystalline high-germanium or high-tin zeolite-type sulfides and selenides with four different topologies are reported. Their unprecedented framework compositions give these materials much improved thermal and chemical stability with high surface area (Langmuir surface area of 782 m(2)/g(-1)) comparable to or better than zeolites. Among them, highly stable CPM-120-ZnGeS allows for ion exchange with diverse metal or complex cations, resulting in fine-tuning in porosity, fast ion conductivity, and photoelectric response. Being among the most porous crystalline chalcogenides, CPM-120-ZnGeS (exchanged with Cs(+) ions) also shows reversible adsorption with high capacity and affinity for CO2 (98 and 73 cm(3) g(-1) at 273 and 298 K, respectively, isosteric heat of adsorption = 40.05 kJ mol(-1)). Moreover, CPM-120-ZnGeS could also function as a robust photocatalyst for water reduction to generate H2. The overall activity of H2 production from water, in the presence of Na2S-Na2SO3 as a hole scavenger, was 200 μmol h(-1)/(0.10 g). Such catalytic activity remained undiminished under illumination by UV light for as long as measured (200 h), demonstrating excellent resistance to photocorrosion even under intense UV radiation. PMID:25950820

  8. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  9. Composition of the Silicates around Evolved Stars and Protostars

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Dartois, E.; Wiesemeyer, H.; Jones, A.; D'Hendecourt, L.; Jourdain de Muizon, M.; Heras, A. M.

    2000-11-01

    We present a study of the composition of the silicates around five evolved stars and three high-mass protostars. Around evolved stars, the oxygen-rich dust is composed of amorphous olivine, crystalline silicates (enstatite, forsterite, diopside) and some oxides (FeO, Al2O3). Using a radiative transfer code we have modelled the SED of two OH/IR stars. We estimate that the amount of crystalline silicates in these objects is of the order of 20%. Around protostars, the dust is composed of porous pyroxene and/or aluminosilicate grains containing iron oxide. We calculate that at most 1-2% of the dust mass is crystalline. The newly formed dust around evolved stars has a different structure and composition from the old dust found around protostars. This implies that some mechanism, which remains to be found, occurs during the grain lifetime and alters the chemical composition and structure of the grains.

  10. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    SciTech Connect

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  11. Synthesis, deposition and characterization of magnesium hydroxide nanostructures on zeolite 4A

    SciTech Connect

    Koh, Pei-Yoong; Yan, Jing; Ward, Jason; Koros, William J.; Teja, Amyn S.; Xu, Bo

    2011-03-15

    Research highlights: {yields} Reports a simple precipitation-growth method to produce nanostructures of Mg(OH){sub 2} on the surface of zeolite 4A. {yields} Able to control the growth of the nanostructures by manipulating the experimental procedure. {yields} Able to deposit Mg(OH){sub 2} onto specific sites namely bridging hydroxyl protons (SiOHAl) on the surface of zeolite 4A. -- Abstract: The precipitation and self-assembly of magnesium hydroxide Mg(OH){sub 2} nanopetals on dispersed zeolite 4A particles was investigated. Mg(OH){sub 2}/zeolite nanocomposites were produced from magnesium chloride solutions and characterized via X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared analysis (FTIR), and solid state NMR. It was determined that Mg(OH){sub 2} interacted with bridging hydroxyl protons (SiOHAl) on the zeolite surface, but not with silanol or aluminol groups. NMR analysis showed that 13% of the tetrahedral Al sites on the zeolite were converted to octahedral Al. The zeolite structure and crystallinity remained intact after treatment, and no dealumination reactions were detected. This suggests that the deposition-precipitation process at ambient conditions is a facile method for controlling Mg(OH){sub 2} nanostructures on zeolites.

  12. Silicate volcanism on Io

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1986-01-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  13. Mg/Fe FRACTIONATION IN CIRCUMSTELLAR SILICATE DUST INVOLVED IN CRYSTALLIZATION

    SciTech Connect

    Murata, K.; Takakura, T.; Chihara, H.; Koike, C.; Tsuchiyama, A.

    2009-05-10

    Infrared astronomical observations of oxygen-rich young and evolved stars show that only magnesium-rich crystalline silicates exist in circumstellar regions, and iron, one of the most important dust-forming elements, is extremely depleted. The compositional characteristic of circumstellar crystalline silicates is fundamentally different from that of primitive extraterrestrial materials in our solar system, such as chondritic meteorites and interplanetary dust particles. Amorphous silicates are ubiquitous and abundant in space, and are a promising carrier of iron. However, since the first detection of crystalline silicates, there has been an unsolved inconsistency due to differing compositions of coexisting crystalline and amorphous phases, considering that amorphous silicates have been expected to be precursors of these crystals. Here we show the first experimental evidence that Fe-depleted olivine can be formed by crystallization via thermal heating of FeO-bearing amorphous silicates under subsolidus conditions. Mg/Fe fractionation involved in crystallization makes possible to coexist Mg-rich crystalline silicates with Fe-bearing amorphous silicates around stars.

  14. Optical Properties of Astronomical Silicates in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  15. Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers.

    PubMed

    Marler, Bernd; Müller, Melanie; Gies, Hermann

    2016-06-21

    ITQ-8 is a new hydrous layer silicate (HLS) with a chemical composition of [C4H8(C7H13N)2]8 [Si64O128(OH)16]·48H2O per unit cell. The synthesis of ITQ-8 was first described in 2002 by Díaz-Cabañas et al., the structure of this material, however, remained unsolved at that time. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and FTIR spectroscopy confirmed that ITQ-8 is a layer silicate. The XRD powder pattern was indexed in the monoclinic system with lattice parameters of a0 = 35.5168(5) Å, b0 = 13.3989(2) Å, c0 = 16.0351(2) Å, β = 106.74(2)°. The crystal structure was solved by simulated annealing. Rietveld refinement of the structure in space group C2/c converged to residual values of RBragg = 0.023, RF = 0.022 and chi(2) = 2.3 confirming the structure model. The structure of ITQ-8 contains silicate layers with a topology that resembles a (11-1) section of the framework of zeolite levyne. So far, this layer topology is unique among layer silicates. The layer can be regarded as made up of 4-, 6-, double-six and 8-rings which are interconnected to form cup-like "half-cages". Unlike other HLSs, which possess impermeable silicate layers, ITQ-8 contains 8-rings pores with a free diameter of 3.5 Å × 3.4 Å and can be regarded as a "small-pore layer silicate". In the crystal structure, the organic cations, 1,4-diquiniclidiniumbutane, used as structure directing agents during synthesis are intercalated between the silicate layers. Clusters (bands) of water molecules which are hydrogen bonded to each other and to the terminal Si-OH/Si-O(-) groups are located between the organic cations and interconnect the silicate layers. ITQ-8 is a very interesting material as precursor for the synthesis of microporous framework silicates by topotactic condensation or interlayer expansion reactions leading to 3D micro-pore systems which may be useful in applications as e.g. catalysts, catalyst supports and adsorbents of for separation. PMID

  16. Association of Indigo with Zeolites for Improved Color Stabilization

    NASA Astrophysics Data System (ADS)

    Dejoie, Catherine; Martinetto, Pauline; Dooryhée, Eric; van Elslande, Elsa; Blanc, Sylvie; Bordat, Patrice; Brown, Ross; Porcher, Florence; Anne, Michel

    2010-10-01

    The durability of an organic colour and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidising conditions, using Raman and UV-visible spectrometric techniques. Blending indigo with MFI is shown to yield the most stable composite in all of our artificial indigo pigments. In absence of defects and substituted cations such as aluminum in the framework of the MFI zeolite matrix, we show that matching the pore size with the dimensions of the guest indigo molecule is the key factor. The evidence for the high colour stability of indigo@MFI opens a new path for modeling the stability of indigo in various alumino-silicate substrates such as in the historical Maya Blue pigment.

  17. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  18. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals.

    PubMed

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites. PMID:27378145

  19. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals

    PubMed Central

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites. PMID:27378145

  20. Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anand, Chokkalingam; Yamaguchi, Yudai; Liu, Zhendong; Ibe, Sayoko; Elangovan, Shanmugam P.; Ishii, Toshihiro; Ishikawa, Tsuyoshi; Endo, Akira; Okubo, Tatsuya; Wakihara, Toru

    2016-07-01

    Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.

  1. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect

    Conrad Ingram

    2003-09-03

    The focus of this project is to improve the catalytic performance of zeolite Y for petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-25 nm) inside nanoporous silicate or aluminosilicate hosts. The encapsulated zeolite nanoparticles are expected to possess reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction and the blocking of the zeolite pores and active sites will be minimized. In this phase of the project, procedures for the synthesis of ordered nanoporous silica, such as SBA-15, using block copolymers and nonionic surfactant were successful reproduced. Expansion of the pores sizes of the nanoporous silica using trimethylbenzene is suggested based on shift in the major X-Ray Diffraction peak in the products to lower 2 angles compared with the parent SBA-15 material. The synthesis of ordered nanoporous materials with aluminum incorporated in the predominantly silicate framework was attempted but is not yet successful, and the procedures needs will be repeated and modified as necessary. Nanoparticles of zeolite Y of particle sizes in the range 40 nm to 120 nm were synthesized in the presence of TMAOH as the particle size controlling additive.

  2. Disilane-modified mordenite zeolites

    SciTech Connect

    Yan, Y.; Vansant, E.F. )

    1990-03-22

    The effective pore size of H-mordenite zeolite can be decreased by implantation of disilyl compounds. Chemisorption of disilane at high temperature results in denser packing of the implanted entities on the external surface. This in turn enhances the pore narrowing effect. After hydrolysis-dehydration, the external surface of the disilanated zeolite can be reactivated by partial rehydration; thus a successive modification of the zeolite surface is possible.

  3. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    Michael Grutzeck

    1999-04-30

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

  4. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    MICHAEL GRUTZECK

    1998-10-31

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

  5. Hydrothermal synthesis and characterization of aluminum-free Mn-β zeolite: a catalyst for phenol hydroxylation.

    PubMed

    He, Zhen; Wu, Juan; Gao, Bingying; He, Hongyun

    2015-02-01

    Zeolite beta, especially heteroatomic zeolite beta, has been widely used in the industries of fine chemicals and petroleum refining because of its outstanding thermal stability, acid resistance, and unique 3-D open-frame structure. In this paper, aluminum-free Mn-β zeolite was hydrothermally synthesized in the SiO2-MnO2-(TEA)2O-NaF-H2O system. The effect of the chemical composition of the precursor mixture to the crystallization of the Al-free Mn-β zeolite was investigated. The synthesized Al-free Mn-β zeolite was characterized by inductively coupled plasma (ICP), XRD, thermogravimetric/differential thermal analysis (TG/DTA), N2 adsorption-desorption, FT-IR, UV-vis, X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The results show that the synthesized zeolite has a structure of β zeolite with good crystallinity and Mn ions present in the framework of the zeolite. The synthesized Al-free Mn-β zeolite shows great catalytic activity toward the phenol hydroxylation reaction using H2O2 as the oxidant. Approximately 35% of phenol conversion and ∼98% of dihydroxybenzene selectivity can be obtained under the optimal conditions. PMID:25556927

  6. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  7. Improved zeolitic isocracking catalysts

    SciTech Connect

    Dahlberg, A.J.; Habib, M.M.; Moore, R.O.; Law, D.V.; Convery, L.J.

    1995-09-01

    Chevron Research Company introduced the first low pressure, low temperature catalytic hydrocracking process--ISOCRACKING--in 1959. Within the last four years, Chevron has developed and commercialized three new zeolitic ISOCRACKING catalysts. ICR 209 is Chevron`s latest noble metal ISOCRACKING catalyst. It offers improved liquid yield stability, longer life, and superior polynuclear aromatics control compared to its predecessor. ICR 209`s high hydrogenation activity generates the highest yields of superior quality jet fuel of any zeolitic ISOCRACKING catalyst. The second new ISOCRACKING catalyst, ICR 208, is a base metal catalyst which combines high liquid selectivity and high light naphtha octane in hydrocrackers operating for maximum naphtha production. ICR 210 is another new base metal catalyst which offers higher liquid yields and longer life than ICR 208 by virtue of a higher hydrogenation-to-acidity ratio. Both ICR 208 and ICR 210 have been formulated to provide higher liquid yield throughout the cycle and longer cycle length than conventional base metal/zeolite catalysts. This paper will discuss the pilot plant and commercial performances of these new ISOCRACKING catalysts.

  8. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  9. Abu Zenima synthetic zeolite for removing iron and manganese from Assiut governorate groundwater, Egypt

    NASA Astrophysics Data System (ADS)

    Farrag, Abd El Hay Ali; Abdel Moghny, Th.; Mohamed, Atef Mohamed Gad; Saleem, Saleem Sayed; Fathy, Mahmoud

    2016-06-01

    Groundwater in Upper Egypt especially in Assiut Governorate is considered the second source of fresh water and used for drinking, agriculture, domestic and industrial purposes. Unfortunately, it is characterized by high concentrations of iron and manganese ions. The study aimed at synthesizing zeolite-4A from kaolinite for removing the excess iron and manganese ions from Assiut Governorate groundwater wells. Therefor, the kaolinite was hydrothermally treated through the metakaolinization and zeolitization processes to produce crystalline zeolite-4A. The chemical composition of crystalline zeolite-4A and its morphology were then characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Then the column experiments were conducted to study the performance of crystalline salt-4A as ion exchange and investigate their operating parameters and regeneration conditions. Thomas and Yoon-Nelson models were applied to predict adsorption capacity and the time required for 50 % breakthrough curves. The effects of initial concentrations of 600 and 1000 mg L-1 for Fe2+ and Mn2+, feed flow rate of 10-30 ml/min, and height range of 0.4-1.5 cm on the breakthrough behavior of the adsorption system were determined. The obtained results indicated that the synthesized zeolite-A4 can remove iron and manganese ions from groundwater to the permissible limit according to the standards drinking water law.

  10. Effect of geological reaction time on transformation temperature in zeolitic diagenesis

    SciTech Connect

    Sasaki, A.

    1986-01-01

    Zeolites found in the Neogene sediments in northern Japan show a vertical zonal arrangement. The zeolite zones are formed primarily by maximum temperature during burial diagenesis. The effect of geological reaction time on transformation temperature to progress in the zeolitization was studied at eight deeply drilled wells in oil-producing areas of Japan. The strata in these wells have continuously deposited under marine environments until recent time and reach geologically maximum burial depth. The geological reaction time at the upper limit of each zeolite zone was estimated from the sedimentation rate on the basis of micropaleontological datum levels and corresponds to the burial time during which the strata have subsided. The transformation temperature of zeolites was determined from the present subsurface temperature, which was obtained by the correction of bottom-hole temperature measured during a wireline log run. The transformation temperature decreases gradually with increasing geological reaction time. The transformation temperatures of silicic glass to clinoptilolite and clinoptilolite to analcime are 58 and 105/sup 0/C at 1.8 mega-annum (Ma) and 50 and 92/sup 0/C at 5 Ma. respectively. The temperature-time relation on the zeolitization in marine sediments is similar to that in thermal maturation of organic matter in sediments.

  11. Thermal behavior of natural zeolites

    SciTech Connect

    Bish, D.L.

    1993-09-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H{sub 2}0 upon heating, but recent data show that distinct ``types`` of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H{sub 2}0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating.

  12. Temperature dependent thermal conductivity of pure silica MEL and MFI zeolite thin films

    NASA Astrophysics Data System (ADS)

    Fang, Jin; Huang, Yi; Lew, Christopher M.; Yan, Yushan; Pilon, Laurent

    2012-03-01

    This paper reports the temperature dependent cross-plane thermal conductivity of pure silica zeolite (PSZ) MFI and MEL thin films measured using the 3ω method between 30 and 315 K. PSZ MFI thin films were b-oriented, fully crystalline, and had a 33% microporosity. PSZ MEL thin films consisted of MEL nanoparticles embedded in a nonuniform and porous silica matrix. They featured porosity, relative crystallinity, and particle size ranging from 40% to 59%, 23% to 47%, and 55 to 80 nm, respectively. Despite their crystallinity, MFI films had smaller thermal conductivity than that of amorphous silica due to strong phonon scattering by micropores. In addition, the effects of increased relative crystallinity and particle size on thermal conductivity of MEL thin films were compensated by the simultaneous increase in porosity. Finally, thermal conductivity of MFI zeolite was predicted and discussed using the Callaway model based on the Debye approximation.

  13. Synthesis of non-siliceous mesoporous oxides.

    PubMed

    Gu, Dong; Schüth, Ferdi

    2014-01-01

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed. PMID:23942521

  14. Adamantanes from petroleum, with zeolites

    SciTech Connect

    Rollmann, L.D.; Green, L.A.; Bradway, R.A.

    1995-12-31

    Experiments with zeolite Beta and zeolite {Upsilon} demonstrate that adamantane and methyl adamantanes can be isolated very effectively from modern refinery streams by mild hydrocracking over Pt- and Pd-containing large pore zeolites. Yield depends importantly on individual refinery crude source and process configuration. Heavy crudes and refineries with conventional hydrocracking and FCC feed hydrotreater facilities are particularly desirable, and an ideal feed for adamantane isolation in such a situation is the 150{degrees}-250{degrees}C fraction of the hydrocracker (HDC) recycle stream. When Pt- or Pd-containing zeolite Beta was used with such a stream, temperatures of some 250{degrees}C and pressures below 3.5 mPa (500 psig) sufficed to remove selectively well over 90% of the non-adamantane hydrocarbon, with little conversion of adamantanes. High selectivity for adamantanes is attributed in large part to size-selective exclusion of these molecules from the pores of zeolite Beta.

  15. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.

    PubMed

    Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe

    2016-06-22

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. PMID:27167613

  16. Zeolite formation from coal fly ash and its adsorption potential

    SciTech Connect

    Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant

    2009-10-15

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

  17. Calibration analysis of zeolites by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Horňáčková, M.; Grolmusová, Z.; Horňáček, M.; Rakovský, J.; Hudec, P.; Veis, P.

    2012-08-01

    Laser induced breakdown spectroscopy was used for calibration analysis of different types of microporous crystalline aluminosilicates with exactly ordered structure — zeolites. The LIBS plasma was generated using a Q-switched Nd:YAG laser operating at the wavelength of 532 nm and providing laser pulses of 4 ns duration. Plasma emission was analysed by echelle type emission spectrometer, providing wide spectral range 200-950 nm. The spectrometer was equipped with intensified CCD camera providing rapid spectral acquisition (gating time from 5 ns). The optimum experimental conditions (time delay, gate width and laser pulse energy) have been determined for reliable use of LIBS for quantitative analysis. Samples of different molar ratios of Si/Al were used to create the calibration curves. Calibration curves for different types of zeolites (mordenite, type Y and ZSM-5) were constructed. Molar ratios of Si/Al for samples used for calibration were determined by classical wet chemical analysis and were in the range 5.3-51.8 for mordenite, 2.3-12.8 for type Y and 14-600 for ZSM-5. Zeolites with these molar ratios of Si/Al are usually used as catalysts in alkylation reactions. Laser induced breakdown spectroscopy is a suitable method for analysis of molar ratio Si/Al in zeolites, because it is simple, fast, and does not require sample preparation compared with classical wet chemical analysis which are time consuming, require difficult sample preparation and manipulation with strong acids and bases.

  18. Effect of chemical environment on the dynamics of water confined in calcium silicate minerals: natural and synthetic tobermorite.

    PubMed

    Monasterio, Manuel; Gaitero, Juan J; Manzano, Hegoi; Dolado, Jorge S; Cerveny, Silvina

    2015-05-01

    Confined water in the slit mesopores of the mineral tobermorite provides an excellent model system for analyzing the dynamic properties of water confined in cement-like materials. In this work, we use broadband dielectric spectroscopy (BDS) to analyze the dynamic of water entrapped in this crystalline material. Two samples, one natural and one synthetic, were analyzed, and despite their similar structure, the motion of confined water in their zeolitic cavity displays considerably different behavior. The water dynamics splits into two different behaviors depending on the chemical nature of the otherwise identical structural environment: water molecules located in areas where the primary building units are SiO4 relax slowly compared to water molecules located in cavities built with both AlO4 and SiO4. Compared to water confined in regular porous systems, water restricted in tobermorite is slower, indicating that the mesopore structure induces high disorder in the water structure. A comparison with water confined in the C-S-H gel is also discussed in this work. The strong dynamical changes in water due to the presence of aluminum might have important implications in the chemical transport of ions within hydrated calcium silicates, a process that governs the leaching and chemical degradation of cement. PMID:25867059

  19. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  20. Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance.

    PubMed

    Sun, Qiming; Wang, Ning; Guo, Guanqi; Yu, Jihong

    2015-11-25

    Nano-sized SAPO-34 zeolites with high crystallinity are obtained in 10 minutes by fast heating the reaction gel in a stainless steel tubular reactor combined with the seed-assisted method, which show outstanding performance in methanol-to-olefin (MTO) reaction. PMID:26412585

  1. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    ERIC Educational Resources Information Center

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  2. Solid-state radioluminescent zeolite-containing composition and light sources

    DOEpatents

    Clough, Roger L.; Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.; Shepodd, Timothy J.; Smith, Henry M.

    1992-01-01

    A new type of RL light source consisting of a zeolite crystalline material, the intralattice spaces of which a tritiated compound and a luminophore are sorbed, and which material is optionally further dispersed in a refractive index-matched polymer matrix.

  3. Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany

    NASA Astrophysics Data System (ADS)

    Weisenberger, Tobias Björn; Spürgin, Simon; Lahaye, Yann

    2014-11-01

    The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine-augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca-Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in and decrease in of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

  4. X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling

    SciTech Connect

    Black, Leon . E-mail: l.black@shu.ac.uk; Garbev, Krassimir; Beuchle, Guenter; Stemmermann, Peter; Schild, Dieter

    2006-06-15

    X-ray photoelectron spectroscopy (XPS) has been used to analyse a series of mechanochemically synthesised, nanocrystalline calcium silicate hydrates (C-S-H). The samples, with Ca/Si ratios of 0.2 to 1.5, showed structural features of C-S-H(I). XPS analysis revealed changes in the extent of silicate polymerisation. Si 2p, Ca 2p and O 1s spectra showed that, unlike for the crystalline calcium silicate hydrate phases studied previously, there was no evidence of silicate sheets (Q{sup 3}) at low Ca/Si ratios. Si 2p and O 1s spectra indicated silicate depolymerisation, expressed by decreasing silicate chain length, with increasing C/S. In all spectra, peak narrowing was observed with increasing Ca/Si, indicating increased structural ordering. The rapid changes of the slope of FWHM of Si 2p, {delta} {sub Ca-Si} and {delta} {sub NBO-BO} as function of C/S ratio indicated a possible miscibility gap in the C-S-H-solid solution series between C/S 5/6 and 1. The modified Auger parameter ({alpha}') of nanocrystalline C-S-H decreased with increasing silicate polymerisation, a trend already observed studying crystalline C-S-H. Absolute values of {alpha}' were shifted about - 0.7 eV with respect to crystalline phases of equal C/S ratio, due to reduced crystallinity.

  5. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix. PMID:21047018

  6. Silicate Stardust in Meteorites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2004-06-01

    One of the most exciting discoveries in cosmochemistry during the past 15 years is the presence of presolar grains in meteorites. They are identified by the unusual abundances of isotopes of oxygen, silicon, and other elements. Presolar grains, also called stardust, are exotic compounds such as diamond, graphite, aluminum oxide, and silicon carbide. Why are there no silicates? Spectroscopic observations of young stars show that silicates are abundant. This means that silicates are abundant in molecular clouds like the one in which the solar system formed. Cosmochemists wondered why do we not find silicates in the most primitive extraterrestrial materials: interplanetary dust particles (IDPs) and primitive chondrites. These materials are the least altered since they formed and if any preserved presolar silicate grains, IDPs and chondrites would. Were they all destroyed as the solar system formed? Or was it that we were looking for stardust in all the wrong places? As we reported previously [see PSRD article A New Type of Stardust], Scott Messenger and colleagues have found silicates in IDPs. Now, researchers report finding presolar silicate grains in primitive chondritic meteorites. Ann Nguyen and Ernst Zinner (Washington University in St. Louis) and Kazuhide Nagashima and Hisayoshi Yurimoto (Tokyo Institute of Technology), with Alexander Krot (University of Hawaii) used advanced instrumentation to image the isotopic compositions of small regions of the Acfer 094 carbonaceous chondrite and found several silicate grains with isotopically anomalous oxygen isotopes, a clear indicator of presolar origin. Nagashima and his colleagues also investigated the primitive CR2 carbonaceous chondrite Northwest Africa 530, finding presolar grains in it as well. The grains will shed (star)light on the histories of the stars in which they formed. The relative abundances of presolar silicates in different types of meteorites will help cosmochemists understand the processes of heating

  7. Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

    2013-01-01

    Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

  8. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  9. Removal of radionuclides using zeolites

    SciTech Connect

    Reddy, R.G.; Cai, Z.

    1996-10-01

    Adsorption of uranium(VI) from aqueous solutions on natural zeolites, i.e., chabazite, clinoptilolite, erionite and mordenite, was investigated. The influence of time and pH of the solution were studied. The results showed that uranium(VI) species are strongly adsorbed on the zeolites between pH 6 to 9. The amount of uranium adsorption is strongly dependent on pH and, to some extent, on the type of zeolites. For pH {ge} 6 and at 25 C, more than 92% of uranium from solution was removed in 10 minutes. Adsorption mechanism of uranium is discussed.

  10. Template-free nanosized faujasite-type zeolites

    NASA Astrophysics Data System (ADS)

    Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

    2015-04-01

    Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm3 g-1) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

  11. Thermal conductivity of model zeolites: molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Murashov, Vladimir V.

    1999-02-01

    The thermal conductivity of model zeolites was investigated using non-equilibrium molecular dynamics calculations. This type of calculation was found to overestimate the thermal conductivity of low-density silica polymorphs. A better reproduction of the experimental results was found for zeolites, and this was related to the lower phonon mean free path. The thermal conductivity of framework silicates was shown to be determined primarily by the vibrations of the continuous oxygen sublattice. Thus, the most drastic suppression of the heat transfer was related to alterations of the O-O distances; for example, a sixfold reduction in thermal conductivity compared to that of siliceous LTA zeolite was found for LTA-A1PO4. Framework cations were shown to affect the heat transfer by changing the vibrational modes of the structural building units of the framework and non-framework counter-cations, by disturbing the oxygen sublattice locally and acting as Rayleigh and resonant scatterers. A model assuming the heat transfer to be due only to non-dispersive acoustic phonons failed to reproduce the dependence of the thermal conductivity on the mass of the cations and the unit-cell dimension, thus suggesting a more sophisticated mechanism of heat transfer to be operative in framework materials. The effect of non-framework non-ionic species on the thermal conductivity was shown to be determined by their effect on the characteristics of the oxygen framework vibrations. Thus, repulsive interactions between the oxygen sublattice and Xe8 clusters, reducing the anisotropy and anharmonicity of the oxygen vibrations, give rise to enhanced heat transfer in LTA-SiO2 at ambient conditions.

  12. Clinoptilolite zeolitized tuff from Central Alborz Range, North Iran

    NASA Astrophysics Data System (ADS)

    Taghipour, Batoul

    2010-05-01

    Zeolites are hydrated alumino-silicates of the alkaline and alkaline earth cations, principally sodium, potassium, calcium, and magnesium (Iijima 1980; Hay 1981). Zeolites occur principally in unmetamorphosed sedimentary rocks and are particularly widespread in volcani-clastic strata (Hay, 1978). Clinoptilolite is a natural zeolite of the heulandite group with the simplified formula of (Na, K)6 Si30 Al6 O72 .nH2. It is the most common natural zeolite found mainly in sedimentary rocks of volcanic origin. Alborz zone is one of the important geological divisions in Iran. This zone is restricted to Kopeh dagh zone in North & Central Iranian zone in South and is a region of active deformation within the broad Arabian-Eurasia collision zone (Allen et al. 2003). The zeolitized green tuff belt from Central Alborz which introduce here are made of volcanoclastic sequence of Karaj Formation. This belt is about 40 km long along Alborz Range and is Eocene in age. Zeolites and associated minerals of this altered vitric tuff studied. Zeolitization took place in some beds of Karaj Formations, with average range of 3 to 300 meters thickness. There are several gypsum lenses which interbed with a widespread green tuff succession in the studied area. On the basis of chemical composition these tuffs are in the range of acid to intermediate volcanic rocks. Also magmatic affinity is calc-alkaline and geological setting of the area belongs to volcanic arc granitoid. Petrographic data has shown that various shape and size of shard glass are the main component of tuffs. Based on the field studies, detail microscopy, XRD and electron microprobe analysis (EMPA), the following main minerals are determined: Clinoptilolite+montmorillonite+crystobalite. Clinoptilolite and smectite are predominant minerals in all altered samples. Concerning the Si/Al ratio of 40 point analyses of glass shards the Alborz tuff has clinoptilolite composition. Otherwise the chemical composition of altered shard glass

  13. Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method.

    PubMed

    Pal, Pameli; Das, Jugal K; Das, Nandini; Bandyopadhyay, Sibdas

    2013-01-01

    NaP zeolite nano crystals were synthesized by sonochemical method at room temperature with crystallization time of 3h. For comparison, to insure the effect of sonochemical method, the hydrothermal method at conventional synthesis condition, with same initial sol composition was studied. NaP zeolites are directly formed by ultrasonic treatment without the application of autogenous pressure and also hydrothermal treatment. The effect of ultrasonic energy and irradiation time showed that with increasing sonication energy, the crystallinity of the powders decreased but phase purity remain unchanged. The synthesized powders were characterized by XRD, IR, DTA TGA, FESEM, and TEM analysis. FESEM images revealed that 50 nm zeolite crystals were formed at room temperature by using sonochemical method. However, agglomerated particles having cactus/cabbage like structure was obtained by sonochemical method followed by hydrothermal treatment. In sonochemical process, formation of cavitation and the collapsing of bubbles produced huge energy which is sufficient for crystallization of zeolite compared to that supplied by hydrothermal process for conventional synthesis. With increasing irradiation energy and time, the crystallinity of the synthesized zeolite samples increased slightly. PMID:22922038

  14. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  15. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  16. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of

  17. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  18. Radiation damage of a glass-bonded zeolite waste form using ion irradiation.

    SciTech Connect

    Allen, T. R.; Storey, B. G.

    1997-12-05

    Glass-bonded zeolite is being considered as a candidate ceramic waste form for storing radioactive isotopes separated from spent nuclear fuel in the electrorefining process. To determine the stability of glass-bonded zeolite under irradiation, transmission electron microscope samples were irradiated using high energy helium, lead, and krypton. The major crystalline phase of the waste form, which retains alkaline and alkaline earth fission products, loses its long range order under both helium and krypton irradiation. The dose at which the long range crystalline structure is lost is about 0.4 dpa for helium and 0.1 dpa for krypton. Because the damage from lead is localized in such a small region of the sample, damage could not be recognized even at a peak damage of 50 dpa. Because the crystalline phase loses its long range structure due to irradiation, the effect on retention capacity needs to be further evaluated.

  19. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2004-06-30

    The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

  20. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-21

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  1. Cost-effective two-stage varying-temperature rapid crystallization of zeolite T and SAPO-34

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-05-01

    In this paper, zeolite T and SAPO-34 have been synthesized by two-stage varying temperature crystallization method (TVTC method). The feature of this method is dividing the hydrothermal process into two steps. The first step is lower temperature treatment which is favorable for the crystals nucleation and the second step is higher temperature treatment which is helpful to the crystals growth. The advantage of this method is that it greatly reduces the crystallization time and particle size compared to conventional constant temperature crystallization method (CCTC method). The influences of different initial and final temperatures on the zeolite crystallinity, morphology and particle size have been investigated in detail. Ultimately, the optimal crystallization conditions of zeolite T and SAPO-34 using this method have been summarized. The samples prepared with TVTC method and CCTC method also have been contrasted. With TVTC method, the synthesis time of zeolite T crystals is reduced from 7 days to 4 days and the synthesis time of SAPO-34 crystals is reduced from 48 h to 16 h. Furthermore, the sample prepared by TVTC method has higher crystallinity compared with the sample prepared by CCTC method. The particle size distributions of samples prepared by two methods have strongly confirmed that TVTC method is beneficial to form uniform and small zeolite particles. This paper provides an efficient and economical route to the industrial preparation of zeolite T and SAPO-34.

  2. Electron microscopy study of zeolite ZK-14; a synthetic chabazite

    NASA Astrophysics Data System (ADS)

    Cartlidge, S.; Wessicken, R.; Nissen, H.-U.

    1983-03-01

    The defect structure of zeolite (K+, TMA+) — ZK-14, a synthetic chabazite, has been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM together with TEM bright field (BF) and dark field (DF) micrographs indicate that the hexagonal, platelet ZK-14 crystals are built up of crystalline blocks joined by twinning along (00.1). High resolution transmission electron microscopy (HRTEM) reveals faulting of the ideal AABBCC single 6-ring stacking sequence of ZK-14. This is consistent with an observed line broadening in its X-ray powder diffraction profile. Channel apertures are imaged, even for thick specimens.

  3. Probing zeolite syntheses to determine natural occurances of zeolites

    NASA Astrophysics Data System (ADS)

    Chen, H.; Song, S.; Fang, J.

    2003-12-01

    In this study, zeolites were synthesized from different glasses to probe the occurrence of zeolites in nature. The experiments were carried out with synthetic glass systems of Na2O.Al2O3.nSiO2, CaO.Al2O3.nSiO2, xNa2O.(1-x)CaO.Al2O3.nSiO2 and xNa2O.(1-x)K2O.Al2O3.6SiO2 in alkaline solutions of NaOH, KOH, Na2CO3, NH4OH, NaOH (+) NaCl and NaOH (+) KOH at temperatures ranging from 110›J to 210›J and with autogeneous pressures in the autoclaves. Synthetic products were examined by an X-ray powder diffractometer, a scanning electron microscopy with an energy dispersive spectrometer, and an electron microprobe. The minerals synthesized included zeolites, i.e., thomsonite, gismondine, amicite, garronite, gobbinsite, analcime, phillipsite, merlinoite, chabazite and mordenite; artificial synthetic zeolites, and feldspars. Chemical analyses indicated that the composition of synthetic zeolites is profoundly influenced by the composition of the initial glasses, especially the SiO2/Al2O3 ratios and cations. On the other hand, the influence of Na+ and K+ have over the formation of zeolites in solution, other ions, such as CO32- were involved in the preventing of the formation of Ca-zeolites. Comparing the experimental results with natural occurrences suggests that thomsonite, gismondine and amicite are usually found in ultrabasic and basic rocks; garronite and gobbinsite in basic to intermediate rocks; analcime, phillipsite, and chabazite in basic to acid rocks; merlinoite in high-potassium rocks; and mordenite in acid rocks. In addition, Ca-zeolites including thomsonite, gismondine and garronite are favored in fresh water environments, and alkali zeolites including gobbinsite, phillipsite, and analcime are most abundant in saline lake and deep sea conditions.

  4. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  5. Selective preparation of zeolite X and A from flyash and its use as catalyst for biodiesel production.

    PubMed

    Volli, Vikranth; Purkait, M K

    2015-10-30

    This work discusses the utilization of flyash for synthesis of heterogeneous catalyst for transesterification. Different types of zeolites were synthesized from alkali fusion followed by hydrothermal treatment of coal flyash as source material. The synthesis conditions were optimized to obtain highly crystalline zeolite based on degree of crystallinity and cation exchange capacity (CEC). The effect of CEC, acid treatment, Si/Al ratio and calcination temperature (800, 900 and 1000 °C) on zeolite formation was also studied. Pure, single phase and highly crystalline zeolite was obtained at flyash/NaOH ratio (1:1.2), fusion temperature (550 °C), fusion time (1 h), hydrothermal temperature (110 °C) and hydrothermal time (12h). The synthesized zeolite was ion-exchanged with potassium and was used as catalyst for transesterification of mustard oil to obtain a maximum conversion of 84.6% with 5 wt% catalyst concentration, 12:1 methanol to oil molar ratio, reaction time of 7 h at 65 °C. The catalyst was reused for 3 times with marginal reduction in activity. PMID:25956640

  6. Far-Infrared Optical Properties of Iron-Silicate Dust Analogues

    NASA Astrophysics Data System (ADS)

    Kinzer, Raymond; Rinehart, S.; Benford, D.; Cataldo, G.; Dwek, E.; Henry, R.; Nuth, J.; Richey, C.; Silverberg, R.; Wollack, E.

    2012-01-01

    Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or oxygen-rich (silicate grains). Astronomical observations and ground-based data show that the optical properties of silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength, temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety of techniques. A combination of both new and established experiments are used to measure the extinction, reflection, and emission properties of amorphous silicates across the infrared, thus providing a comprehensive data set characterizing the optical parameters of dust samples. We present room temperature and cryogenic spectroscopic data, the various experimental apparatus and measurement techniques, and the computed optical constants for a sample of iron-silicate dust analogues.

  7. Optical Properties of Astronomical Silicates with Infrared Techniques (OPASI-T)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2010-01-01

    Astronomical dust is observed in a variety of astrophysical environments and plays an important role in radiative processes and chemical evolution in the galaxy. Depending upon the environment, dust can be either carbon-rich or oxygen-rich (silicate grains). Both astronomical observations and ground-based data show that the optical properties of silicates can change dramatically with the crystallinity of the material, and recent laboratory research provides evidence that the optical properties of silicate dust vary as a function of temperature as well. Therefore, correct interpretation of a vast array of astronomical data relies on the understanding of the properties of silicate dust as functions of wavelength, temperature, and crystallinity. The OPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project addresses the need for high quality optical characterization of metal-enriched silicate condensates using a variety of techniques. A combination of both new and established experiments are used to measure the extinction, reflection, and emission properties of amorphous silicates across the infrared (near infrared to millimeter wavelengths), providing a comprehensive data set characterizing the optical parameters of dust samples. We present room temperature measurements and the experimental apparatus to be used to investigate and characterize additional metal-silicate materials.

  8. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  9. Substitution clustering in a non-stoichiometric celsian synthesized by the thermal transformation of barium exchanged zeolite X

    NASA Astrophysics Data System (ADS)

    Clayden, Nigel J.; Esposito, Serena; Ferone, Claudio; Pansini, Michele

    2006-07-01

    The thermal transformation of Ba exchanged zeolite X to celsian has been studied by 27Al and 29Si MAS NMR spectroscopy. Evidence for the degradation of the zeolite framework is present in the 29Si NMR spectra after thermal treatment at 850 °C. Confirmation is provided by the 29Si NMR data that synthesis of celsian via the decomposition of Ba exchanged zeolite leads to a single defect phase. Clustering of the isomorphous replacement of aluminium by silicon must occur to explain the observed 29Si chemical shifts. The 27Al NMR data show distorted aluminium co-ordination sites upon the thermal transformation of Ba exchanged zeolite X. The distortions present in the amorphous matrix are greater than those present in the monoclinic and hexagonal crystalline phases of celsian.

  10. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  11. Tailored crystalline microporous materials by post-synthesis modification.

    PubMed

    Valtchev, Valentin; Majano, Gerardo; Mintova, Svetlana; Pérez-Ramírez, Javier

    2013-01-01

    Crystalline microporous solids are an important class of inorganic materials with uses in different areas impacting our everyday lives, namely as catalysts, adsorbents, and ion exchangers. Advancements in synthesis have been invaluable in expanding the classical aluminosilicate zeolites to new unique framework types and compositions, motivating innovative developments. However, the inexhaustible post-synthetic options to tailor zeolite properties have been and will continue to be indispensable to realize emerging and to improve conventional applications. Starting from the routine drying and template removal processes that every zeolite must experience prior to use, a wide spectrum of treatments exists to alter individual or collective characteristics of these materials for optimal performance. This review documents the toolbox of post-synthetic strategies available to tune the properties of zeolitic materials for specific functions. The categorisation is based on the scale at which the alteration is aimed at, including the atomic structure (e.g. the introduction, dislodgment, or replacement of framework atoms), the micropore level (e.g. template removal and functionalisation by inorganic and organic species), and the crystal and particle levels (e.g. the introduction of auxiliary porosity). Through examples in the recent literature, it is shown that the combination of post-synthetic methods enables rational zeolite design, extending the characteristics of these materials way beyond those imposed by the synthesis conditions. PMID:22996351

  12. Magnetic self-assembled zeolite clusters for sensitive detection and rapid removal of mercury(II).

    PubMed

    Yin, Meili; Li, Zhenhua; Liu, Zhen; Yang, Xinjian; Ren, Jinsong

    2012-01-01

    We reported here the fabrication of a hierarchical mesoporous zeolite nanocomposite using 20 nm crystalline domins of zeolite L as building "bricks" by a simple and general one-step synthetic approach. By taking advantages of the large pore volumes, superparamagnetic iron oxide nanocrystals could be encapsulated into the nanocomposite conveniently for further facilitate separation and detection. In addition, by covalent coupling of fluorescent receptor (rhodamine-hydrazine), the combination of well-defined inorganic nanomaterials and organic receptors could be applied to selective detection of Hg(2+). Importantly, the unique adsorption capacity enabled by the hierarchical mesoporous zeolite and the efficient removal ability form complex multiphase systems by the magnetic characteristic made this multifunctional nanomaterial an excellent probe for detection, adsorption, and removal of Hg(2+) from waste aqueous solution. PMID:22126125

  13. Entrapping of Cs and Sr in heat-treated zeolite matrices

    NASA Astrophysics Data System (ADS)

    Liguori, B.; Caputo, D.; Iucolano, F.; Aprea, P.; de Gennaro, B.

    2013-04-01

    A solidification-stabilization procedure aiming at immobilizing Cs+ and Sr2+, two of the radioactive species more frequently present in nuclear power plant wastewaters, was successfully tested. Both cations were simultaneously exchanged by a blend of two zeolites, a phillipsite-rich tuff, selective for Cs+, and a synthetic zeolite Linde-type A, selective for Sr2+. The contaminated material was then heat treated up to 1200 °C with the result of safely immobilizing both cations, as demonstrated by leaching estimation with three different procedures. X-ray studies of the single cation-loaded zeolites or mixture of them helped to interpret the immobilization mechanism, involving cation trapping in chemically stable crystalline/amorphous matrices formed as a result of firing.

  14. The limitations of melting on the reactivation of silicic mushes

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Bachmann, Olivier; Dufek, Josef

    2010-08-01

    High crystallinity silicic ignimbrites (such as the Monotonous Intermediates) typically erupt magma with an average crystallinity ranging from 40 to 50%. This average crystallinity is believed to be just under the threshold at which magma behaves as a solid (50-60% crystals), i.e. the locking point crystallinity, where convection is suppressed and large eruptions are unlikely. These magmas often display textural features which suggest that their average crystallinity was once higher and decreased before the eruption as a result of reheating through the injection of new magma. In this study, we use a theoretical 1D heat conduction model with phase change to test the ability of different melting scenarios of crystal mushes to meet the 40 to 50% crystallinity constraint observed in the field. Our heat conduction and melting models allow us to derive analytical solutions for the average crystallinity in the magma body (initially a crystal mush). We focus on the propagation of the melting front coinciding with the locking point crystallinity for different crystallinity-temperature relationships and various choices of temperature boundary conditions. We develop another analytical model based on stagnant-lid convection scaling to assess the role of convection on the expected average crystallinity of the magma subjected to wholesale steady-state convection. We find that, for all realistic melting scenarios, the average crystallinity of a silicic magma body that passed through the rheological transition is always substantially lower than what is observed in the field. We further show with a simple energy balance that the thermal energy needed to unlock/remobilize these magma bodies requires the intrusion of about an order of magnitude of more magma than the mush. Based on these results we argue that, although melting is a key process in the thermal reactivation of high crystallinity magma bodies, another coupled process is required in order to reactivate large volumes of

  15. Zeolite synthesis: an energetic perspective.

    PubMed

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis. PMID:20938518

  16. Effect of mechanical treatment on the silicate lattice of kaolinite

    NASA Astrophysics Data System (ADS)

    Zulumyan, N. H.; Papakhchyan, L. R.; Isahakyan, A. R.; Beglaryan, H. A.; Aloyan, S. G.

    2012-12-01

    X-ray diffraction, differential thermal and chemical analysis have been used to investigate the effect of mechanical treatment on the crystalline lattice of kaolinite. It was established that mechanical treatment leads to amorphization of the mineral and the release of hydroxyl water, but the continuity of kaolinite's silicate lattice remains intact despite certain deformations, and the phase transformations of the mineral thus occur without any noticeable change in temperature.

  17. Annealing of Silicate Dust by Nebular Shocks at 10 AU

    NASA Technical Reports Server (NTRS)

    Harker, David E.; Desch, Steven J.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.

  18. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can

  19. Translational dynamics of water in a nanoporous layered silicate

    NASA Astrophysics Data System (ADS)

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by Si29 NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process ( Dtilde 10-9m2/s at 300 K), and a much slower process ( Dtilde 10-11m2/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  20. Translational dynamics of water in a nanoporous layered silicate

    SciTech Connect

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by {sup 29}Si NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process (D{approx}10{sup -9} m{sup 2}/s at 300 K), and a much slower process (D{approx}10{sup -11} m{sup 2}/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  1. Metal immobilization in soils using synthetic zeolites.

    PubMed

    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca. PMID:12026084

  2. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and

  3. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.

    PubMed

    Zhang, Na; Li, Hongxu; Zhao, Yazhao; Liu, Xiaoming

    2016-04-01

    Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al2O3 from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C-A-S-H gel, rod-like ettringite and hexagonal-sheet Ca(OH)2 with small amount of zeolite-like minerals such as CaAl2Si2O8·4H2O and Na2Al2Si2O8·H2O. As the predominant hydration products, rod-like ettringite and amorphous C-A-S-H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities. PMID:26691955

  4. A novel magnetic 4A zeolite adsorbent synthesised from kaolinite type pyrite cinder (KTPC)

    NASA Astrophysics Data System (ADS)

    Wang, Weiqing; Feng, Qiming; Liu, Kun; Zhang, Guofan; Liu, Jing; Huang, Yang

    2015-01-01

    As a solid waste, kaolinite type pyrite cinder (KTPC) is a special pyrite cinder, its mineral components include metakaolin and magnetite, and the chemical compositions of these minerals include SiO2, Al2O3, FeO and Fe2O3. In this study, a novel magnetic 4A zeolite adsorbent was synthesised from KTPC using the hydrothermal method, and the optimum hydrothermal synthesis conditions were investigated using X-ray diffraction (XRD) and by determining the specific surface area (SSA) and the saturated cation exchange adsorption capacity (SCEAC) to Cs+. Under the optimum hydrothermal synthesis conditions, the magnetic 4A zeolite adsorbent can be synthesised with high crystallinity, and the SSA and SCEAC to Cs+ are 24.49 m2/g and 106.63 mg/g, respectively. The further characterisations of pore size distribution, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry-derivative thermogravimetry-differential thermal analysis (TG-DTG-DTA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) were performed. The results revealed that magnetic particles are coated onto the zeolite surface and further form magnetic aggregates, and the existing magnetic particles in KTPC do not change their crystal structure and do not affect the synthesis of the 4A zeolite. In addition, the synthesised 4A zeolite adsorbent can be used as a magnetic adsorbent in wastewater treatment with high magnetic sensitivity and is thermally stable up to approximately 900 °C.

  5. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    SciTech Connect

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling; Yuan, En-Hui; Ma, Xiao-Jing; Lam, Koon-Fung; Xue, Qing-Song; Zhang, Kun

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor is critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.

  6. Pockels effect of silicate glass-ceramics: Observation of optical modulation in Mach–Zehnder system

    PubMed Central

    Yamaoka, Kazuki; Takahashi, Yoshihiro; Yamazaki, Yoshiki; Terakado, Nobuaki; Miyazaki, Takamichi; Fujiwara, Takumi

    2015-01-01

    Silicate glass has been used for long time because of its advantages from material’s viewpoint. In this paper, we report the observation of Pockels effect by Mach–Zehnder interferometer in polycrystalline ceramics made from a ternary silicate glass via crystallization due to heat-treatment, i.e., glass-ceramics. Since the silicate system is employed as the precursor, merits of glass material are fully utilized to fabricate the optical device component, in addition to that of functional crystalline material, leading us to provide an electro-optic device, which is introducible into glass-fiber network. PMID:26184722

  7. A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Cairns, Andrew B; Brownbill, Nick J; Goodwin, Andrew L; Keen, David A; Chater, Philip A; Blanc, Frédéric; Cheetham, Anthony K

    2016-03-14

    X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor. PMID:26575842

  8. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  9. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  10. Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites

    SciTech Connect

    Pearson, J. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

  11. DIRECT LABORATORY ANALYSIS OF SILICATE STARDUST FROM RED GIANT STARS

    SciTech Connect

    Vollmer, Christian; Hoppe, Peter; Brenker, Frank E.

    2009-07-20

    We performed combined focused ion beam/transmission electron microscopy studies to investigate the chemistry and structure of eight presolar silicate grains that were previously detected by NanoSIMS oxygen isotope mapping of the carbonaceous chondrite Acfer 094. The analyzed presolar silicates belong to the O isotope Groups I/II ({sup 17}O-enriched and {sup 18}O-depleted) and therefore come from 1-2.5 M{sub sun} asymptotic giant branch stars of close-to-solar or slightly lower-than-solar metallicity. Three grains are amorphous, Mg-rich, and show a variable, but more pyroxene-like composition. Most probably, these grains have formed under circumstellar low-temperature conditions below the crystallization temperature. Three grains are Fe-bearing glasses similar to the 'glass with embedded metal and sulfides' (GEMS) grains found in interplanetary dust particles. However, two of the meteorite GEMS grains from this study lack comparatively large ({approx}>20 nm) Fe-rich inclusions and have sulfur contents <1 at.%, which is different than observed for the majority of GEMS grains. These grains likely condensed under strong non-equilibrium conditions from an Si-enriched gas. One olivine is characterized by a crystalline core and an amorphous, more Fe-rich rim, which is probably the result of interstellar medium sputtering combined with Mg removal. The detection of another olivine with a relatively high Fe content (Mg no. 0.9) shows that circumstellar crystalline silicates are more Fe-rich than astrophysical models usually suggest. The overall predominance of olivine among the crystalline silicate stardust population compared to pyroxene indicates preferential formation or survival of this type of mineral. As pyroxene is indeed detected in circumstellar outflows, it remains to be seen how this result is compatible with astrophysical observations and experimental data.

  12. Osmium(0) nanoclusters stabilized by zeolite framework; highly active catalyst in the aerobic oxidation of alcohols under mild conditions.

    PubMed

    Zahmakiran, Mehmet; Akbayrak, Serdar; Kodaira, Tetsuya; Ozkar, Saim

    2010-08-28

    Osmium(0) nanoclusters stabilized by zeolite-Y framework were reproducibly prepared by a simple two step procedure involving the incorporation of osmium(III) cations into the zeolite matrix by ion-exchange, followed by their reduction within the cavities of zeolite with sodium borohydride in aqueous solution all at room temperature. The composition and morphology of osmium(0) nanoclusters stabilized by zeolite framework, as well as the integrity and crystallinity of the host material were investigated by using ICP-OES, XRD, XPS, SEM, TEM, HRTEM, TEM/EDX, mid-IR, far-IR spectroscopies, and N(2)-adsorption/desorption technique. The results of the multiprong analysis reveal the formation of osmium(0) nanoclusters within the cavities of zeolite-Y without causing alteration in the framework lattice, formation of mesopores, or loss in the crystallinity of the host material. More importantly, far-IR studies showed that after the reduction of Os(3+) cations by sodium borohydride the Na(+) cations reoccupy their authentic cation sites restoring the integrity of zeolite-Y. The catalytic activity of osmium(0) nanoclusters stabilized by zeolite framework was tested in the aerobic oxidation of activated, unactivated and heteroatom containing alcohols to carbonyl compounds and was found to provide high activity and selectivity even under mild conditions (80 degrees C and 1 atm O(2) or air). Moreover, they were found to be stable enough to be isolated and bottled as solid material, which can be reused as active catalyst under the identical conditions of the first run. PMID:20614055

  13. A Model for the Dust Envelope of the Silicate Carbon Star IRAS 09425-6040

    NASA Astrophysics Data System (ADS)

    Suh, Kyung-Won

    2016-03-01

    IRAS 09425-6040 (I09425) is a silicate carbon star with conspicuous crystalline silicate and water-ice features and emission excesses in the far-infrared and millimeter (mm) wavelength ranges. To understand properties of the dust envelope of I09425, we propose a physical model based on the observations and known properties of asymptotic giant branch stars and dust. We perform radiative transfer model calculations using multiple dust shells and disks with various dust species. We compare the model results with the observed spectral energy distribution (SED) acquired with different telescopes. We find that the physical model for I09425 using multiple shells of carbon and silicate dust and multiple disks of amorphous and crystalline silicates reproduces the observed SED fairly well. This object looks to have detached cold O-rich (silicate and water-ice) dust shells, which could be remnants of the recent chemical transition from O to C and an inner C-rich dust shell. A long-lived thin disk of very large silicate grains can reproduce the emission excess in the mm wavelength band and a recently formed thick disk of crystalline silicates can reproduce the prominent emission features in the spectral range 8-45 μm. The highly crystallized silicates could be recently formed by high temperature annealing due to the last O-rich superwind just before the chemical transition of the central star. I09425 could be a rare object that has the remnants of past O-rich stellar winds in the outer shells as well as in the circumbinary disks.

  14. The impact of aqueous medium on zeolite framework integrity

    SciTech Connect

    Vjunov, Aleksei; Fulton, John L.; Camaioni, Donald M.; Hu, Jian Z.; Burton, Sarah D.; Arslan, Ilke; Lercher, Johannes A.

    2015-05-12

    Understanding the zeolite framework stability in aqueous phase is crucial to develop stable catalysts. Al K–edge, extended X–ray absorption fine structure and 27Al MAS NMR spectroscopies in combination with DFT calculations have been used to monitor both qualitative and quantitative structural changes of two well–characterized samples with BEA structure. The effects of various properties on stability were explored, including Al concentration, Al distribution, particle size and structural defects. As the samples were degraded by treatment in hot liquid water, the local structure about the Al T–site remained mostly intact, including the Al–O–Si angles and bond distances, while the nano–scale crystalline structure as measured by XRD and TEM was disrupted. The combined data suggest a three–step mechanism in which, initially, the HBEA framework crystallinity decreases via hydrolysis of T–O bonds along polymorph stacking faults and inter–grain boundaries in a mode similar to crack propagation in glass. With prolonged exposure, amorphization occurs via hydrolysis of surface Si–OH groups propagating inward through the zeolite lattice. In parallel, cracks propagate within the crystalline micro–domains along paths through specific T–O–T groups. Authors thank B. W. Arey (PNNL) for HIM measurements, T. Huthwelker for support during Al XAFS measurements at the Swiss Light Source (PSI, Switzerland) and M. Y. Hu (PNNL) for support during NMR experiments. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. NMR experiments were performed at the Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research, and Physical Science Laboratory both located at Pacific Northwest National Laboratory (PNNL). PNNL is a multi–program national laboratory

  15. Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite

    NASA Technical Reports Server (NTRS)

    Wooden, Diane

    2012-01-01

    Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8

  16. Effect of metal loading processes on the stability and thermal transformation of Co{sup 2+}- and Cu{sup 2+}-zeolite Y prepared from Egyptian kaolin

    SciTech Connect

    EL-Mekkawi, Doaa M. Selim, Mohamed M.

    2012-07-15

    This paper aims to assess the effect of the transition metals (TM) loading procedure on the incorporation of Co{sup 2+} and Cu{sup 2+} in zeolite Y, and their relevance to stability of the zeolite, particularly with respect to the thermal transformation to the spinel phases. In this work, zeolite Y prepared from Egyptian kaolin was used. XRF, XRD, TEM, UV/visible absorption measurements, and atomic absorption analyses in addition to the visual observations are recorded. XRF has been used to investigate the materials composition. TEM and XRD indicate the presence of nanoparticle spinel upon the calcination of the TM-zeolites at 1000 Degree-Sign C. In addition to spinel particles, XRD shows the formation of metal oxides, SiO{sub 2} and alumino-silicate phases. According to the transition metal and the cation loading process, different phases were detected. UV/visible absorption measurements and the visual observations are used to determine the experimental condition of the highest spinel content. It has been noticed that the experimental conditions of the metal sorption processes greatly affect the phase transformation. Stability and thermal transformation of zeolite depend on the initial concentration of the transition cation solutions and the number of loading cycles. - Highlights: Black-Right-Pointing-Pointer We study the effects of loading procedure in the incorporation of TM in zeolite Y. Black-Right-Pointing-Pointer Synthetic zeolite Y prepared from Egyptian kaolin has been used. Black-Right-Pointing-Pointer The type of TM affects the stability and thermal transformation of zeolite. Black-Right-Pointing-Pointer Loading processes affect the stability and thermal transformation of zeolite.

  17. On the Filling Process Forming Silicic Segregations

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2001-05-01

    Interdigitating silicic lenses are particularly well developed and well exposed in the Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. Silicic segregations are texturally splotchy, have sharp upper contacts, and diffuse lower contacts that grade into normal dolerite. What is unusual about these 1- 2 m lenses is that the background sill shows very little compositional variation and yet the silicic segregations show wide compositional variation. In particular, silica content varies between 47 and 68%, and thus produces for the sill overall a bimodal composition. We have analyzed over 100 segregation samples in order to investigate the nature of the filling process. Previous work (Zavala & Marsh, 1999) has shown that segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63 % and temperatures between 1135° and 1115° . Additionally, it was noted that the large segregation lenses are not homogeneous and exhibit cyclic variations in silica content. This observation lead to the current study, in which new samples from the Peneplain Sill (235 to 241) show remarkable correlations between segregation texture, stratigraphic position and silica enrichment. Incompatibles like Zr indicate relatively low 35 to 40% concentrations of melt at the point of segregation extraction, which supports the notion that segregations formed by withdrawal of interstitial melt into tears as the solidification front (SF) became gravitationally unstable. The details of the filling process can also be gauged using chemical profiles normalized to segregation thickness. One group shows distinct multiple smaller cycles of silica enrichment versus depth, which suggests successive stages of opening. The other group shows a strong enrichment in silica followed by a steady decay to the base. The general form of this latter pattern measures the gradient in melt composition immediately below the segregation at the time of infilling. From

  18. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  19. Synthesis of ‘unfeasible’ zeolites

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wheatley, Paul S.; Navarro, Marta; Roth, Wieslaw J.; Položij, Miroslav; Mayoral, Alvaro; Eliášová, Pavla; Nachtigall, Petr; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such ‘unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.

  20. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    SciTech Connect

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K.

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  1. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  2. Crystalline and Crystalline International Disposal Activities

    SciTech Connect

    Viswanathan, Hari S.; Chu, Shaoping; Reimus, Paul William; Makedonska, Nataliia; Hyman, Jeffrey De'Haven; Karra, Satish; Dittrich, Timothy M.

    2015-12-21

    This report presents the results of work conducted between September 2014 and July 2015 at Los Alamos National Laboratory in the crystalline disposal and crystalline international disposal work packages of the Used Fuel Disposition Campaign (UFDC) for DOE-NE’s Fuel Cycle Research and Development program.

  3. Trends in the adsorption and reactivity of hydrogen on magnesium silicate nanoclusters.

    PubMed

    Oueslati, Ichraf; Kerkeni, Boutheïna; Bromley, Stefan T

    2015-04-14

    We study nanoclusters of Mg-rich olivine and pyroxene (having (MgO)6(SiO2)3 and (MgO)4(SiO2)4 compositions) with respect to their reactivity towards hydrogen atoms, using density functional calculations. Ultrasmall silicate particles are fundamental intermediates in cosmic dust grain formation and processing, and are thought to make up a significant mass fraction of the grain population. Due to their nanoscale dimensions and high surface area to bulk ratios, they are likely to also have a disproportionately large influence on surface chemistry in the interstellar medium. This work investigates the potential role of silicate nanoclusters in vital interstellar hydrogen-based chemistry by studying atomic H adsorption and H2 formation. Our extensive set of calculations confirm the generality of a Brønsted-Evans-Polanyi (BEP) relation between the H2 reaction barrier and the 2Hchem binding energy, suggesting it to be independent of silicate dust grain shape, size, crystallinity and composition. Our results also suggest that amorphous/porous grains with forsteritic composition would tend to dissociate H2, but relatively Mg-poor silicate grains (e.g. enstatite composition) and/or more crystalline/compact silicate grains would tend to catalyse H2 formation. The high structural thermostability of silicate nanoclusters with respect to the heat released during exothermic H2 formation reactions is also verified. PMID:25746007

  4. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof

    PubMed Central

    Shao, Hua

    2010-01-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by 29Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m2/g) and zeolite end members (8.9 - 40 m2/g), as well as their unique mixed phase composites (124 - 329 m2/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils. PMID:21709774

  5. Synthesis and Properties of Nanoparticle Forms Saponite Clay, Cancrinite Zeolite and Phase Mixtures Thereof.

    PubMed

    Shao, Hua; Pinnavaia, Thomas J

    2010-09-01

    The low-temperature synthesis (90°C) of nanoparticle forms of a pure phase smectic clay (saponite) and zeolite (cancrinite) is reported, along with phase mixtures thereof. A synthesis gel corresponding to the Si:Al:Mg unit cell composition of saponite (3.6:0.40:3.0) and a NaOH/Si ratio of 1.39 affords the pure phase clay with disordered nanolayer stacking. Progressive increases in the NaOH/Si ratio up to a value of 8.33 results in the co-crystallization of first garronite and then cancrinite zeolites with nanolath morphology. The resulting phase mixtures exhibit a compound particulate structure of intertwined saponite nanolayers and cancrinite nanolaths that cannot be formed through physical mixing of the pure phase end members. Under magnesium-free conditions, pure phase cancrinite nanocrystals are formed. The Si/Al ratio of the reaction mixture affects the particle morphology as well as the chemical composition of the cancrinite zeolite. Ordinarily, cancrinite crystallizes with a Si/Al ratio of 1.0, but a silicon-rich form of the zeolite (Si/Al=1.25) is crystallized at low temperature from a silica rich synthesis gel, as evidenced by (29)Si NMR spectroscopy and XEDS-TEM. Owing to the exceptionally high external surface areas of the pure phase clay (875 m(2)/g) and zeolite end members (8.9 - 40 m(2)/g), as well as their unique mixed phase composites (124 - 329 m(2)/g), these synthetic derivatives are promising model nanoparticles for studies of the bioavailability of poly-aromatic hydrocarbons immobilized in silicate bearing sediments and soils. PMID:21709774

  6. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  7. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  8. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  9. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  10. Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)

    SciTech Connect

    Grutzeck, Michael W.

    2005-06-27

    Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to {approx}700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''.

  11. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    PubMed Central

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  12. Visible emission from Ag+ exchanged SOD zeolites

    NASA Astrophysics Data System (ADS)

    Lin, H.; Imakita, K.; Fujii, M.; Prokof'ev, V. Yu.; Gordina, N. E.; Saïd, B.; Galarneau, A.

    2015-09-01

    Broad visible emissions dominant at green or red have been observed for the thermally-treated Ag+ exchanged SOD zeolites, determined by the Ag+ loading contents and the excitation wavelengths. Contrary to the notable reversible green/red dominant emission evolution in the Ag+ exchanged LTA zeolites upon hydration/dehydration in air (or water vapor)/vacuum, emission spectra of the Ag+ exchanged SOD zeolites are insensitive to the environmental change. This is most probably due to the difficult H2O permeation in SOD zeolites in comparison with LTA zeolites. By combining the environment dependent emission spectra of the Ag+ exchanged LTA and SOD zeolites, we proposed the following emission mechanisms for Ag+ exchanged LTA and SOD zeolites: the green emission is due to the transition from ligand-to-metal (framework O2- --> Ag+) charge transfer state to the ground state and the red emission is due to the transition from the metal-metal (Ag+-Ag+) charge transfer state to the ground state. The insensitive environment dependent emission characteristics of Ag+ exchanged SOD zeolites may have potential applications as robust phosphors.

  13. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  14. In-situ application of Ultrasonic Pulse Velocity measurements to determine the degree of zeolitic alteration of ignimbrites

    NASA Astrophysics Data System (ADS)

    Evren Çubukçu, H.; Yurdakul, Yasin; Erkut, Volkan; Akkaş, Efe; Akın, Lütfiye; Ulusoy, İnan; Şen, Erdal

    2016-04-01

    The velocity of P-waves passing through a rock body is strongly dependent on the petrographical properties such as texture, crystallinity, porosity and fracture network. For this reason, the measurement of ultrasonic pulse velocities (UPV) has been widely used in various applications interested in mechanical properties of solid rock bodies. An ignimbrite is a deposit of pyroclastic density current originating from an explosive volcanic eruption and comprises of vitric volcanic ash, free crystals, juvenile magma fragments (pumice) and accidental xenoliths. The complex nature of the componentry of ignimbrites also exhibits spatial variation depending on the location of deposition. Furthermore, both syn- and post-depositional processes (i.e. welding, alteration etc.) may have drastic impact on the mechanical characteristics of the ignimbrites. Alteration can be defined as the devitrification and the crystallization of vitric components and the transformation of pre-existing minerals of the ignimbrite into new minerals under changing thermodynamic conditions. In this context, zeolitization is an alteration process in which metastable (vitric) components of an ignimbrite body are replaced by zeolite group of minerals under low temperature and pressure induced by hydrothermal activity. The crystallization of zeolite minerals in the pore space promotes an increase in crystallinity and therefore a decrease in porosity. Hence, the velocity of P-waves passing through a zeolitized ignimbrite will be considerably higher compared to those in unaltered counterparts. Within the scope of a TUBİTAK project (No:113Y439) in which the alteration properties of Cappadocian Ignimbrites (Nevşehir, Turkey) are being investigated, in-situ UPV measurements have been performed using a portable pulse test instrument. The acquired velocity data has been correlated with the modal proportions of secondary zeolite minerals obtained by SEM-EDS. The results demonstrate that the measured P

  15. The silicate absorption profile in the interstellar medium towards the heavily obscured nucleus of NGC 4418

    NASA Astrophysics Data System (ADS)

    Roche, P. F.; Alonso-Herrero, A.; Gonzalez-Martin, O.

    2015-05-01

    The 9.7-μm silicate absorption profile in the interstellar medium (ISM) provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse ISM is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 μm spectrum obtained with Thermal-Region Camera Spectrograph on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.

  16. Connecting the Silicate Dust and Gas Properties of Distant Galaxies Using Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; Morrison, Sean

    2016-01-01

    We present recent results from our program investigating the silicate dust properties in distant galaxies using quasar absorption systems. The dust and gas properties of distant galaxies can be characterized by studying the absorption features produced by them along the sightlines to luminous background quasars. Based on our prior finding that silicate dust absorption in z<1.5 quasar absorption systems exhibits a range of optical depths and absorption feature substructures, suggestive of silicate grain property variations, we are investigating silicate dust absorption in quasar absorption systems toward quasars with archival Spitzer Space Telescope Infrared Spectrograph (IRS) spectra. We present our measurements of the 10 and/or 18 micron silicate dust absorption feature(s) in these systems, and discuss constraints on the grain properties, such as composition and crystallinity, based on the shape and substructure present in these features. We also investigate the correlations between the silicate dust properties and the reddening. Connections between the silicate dust and gas phase metal absorption properties can also be probed for some of our targets with archival ground-based spectra. These relationships will yield valuable insights into the star formation history and evolution of metals and dust. This work is supported by NASA through ADAP grant NNX14AG74G and by an award issued by JPL/Caltech, and from US-NSF grant AST-1108830 to the University of South Carolina.

  17. Polymerized nanotube structures new zeolites?

    NASA Astrophysics Data System (ADS)

    Chernozatonskii, Leonid A.

    1998-11-01

    Polymers of single-wall carbon nanotubes - possible new zeolites - are modeled by molecular mechanics (MM2 calculation method). The polymerization at issue occurs by bonding of 6 sp 3 atomic pairs in each nanotube unit cell with similar atomic pairs located on 6 neighboring tubes like 2+2 cycloaddition in a rhombic two-dimensional C 60 polymer. It is shown these bonding in armchair ( n, n) SWNT ropes ( n=6, 8, 10, 12) changes positive radial curvature of tube segments to a negative one.

  18. Post-synthetic preparation of Sn-, Ti- and Zr-beta: a facile route to water tolerant, highly active Lewis acidic zeolites.

    PubMed

    Wolf, Patrick; Hammond, Ceri; Conrad, Sabrina; Hermans, Ive

    2014-03-21

    A two-step procedure for the post-synthetic preparation of Lewis acidic Sn-, Zr- and Ti-zeolite β is reported. Dealumination of a commercially available Al-β zeolite leads to the formation of highly siliceous material containing silanol nests, which can be filled in a second step via the solid-state ion-exchange or impregnation of an appropriate metal precursor. Spectroscopic studies indicate that each metal is subsequently coordinated within the zeolite framework, and that little or no bulk oxides are formed--despite the high metal loadings. The synthesised catalysts demonstrate excellent activity for the isomerisation of glyceraldehyde to dihydroxyacetone, a key model reaction for the upgrading of bio-renewable feedstocks, and the epoxidation of bulky olefins. PMID:24407516

  19. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  20. Stardust silicates from primitive meteorites.

    PubMed

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

    2004-04-29

    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula. PMID:15118720

  1. Steps toward interstellar silicate mineralogy. 1: Laboratory results of a silicate glass of mean cosmic composition

    NASA Astrophysics Data System (ADS)

    Jaeger, C.; Mutschke, H.; Begemann, B.; Dorschner, J.; Henning, Th.

    1994-12-01

    Although extrasolar silicates were detected more than 25 years ago, important questions concerning chemical composition, material properties, and grain structure are still without reliable answers. The most important of these questions are listed at the beginning of this paper because they play decisive roles as guide-posts for the silicate research program of the Jena laboratory astrophysics group. This paper communicates the first results of this program aimed at a closer mineralogical characterization of the interstellar/circumstellar silicates that have been observed in different types of objects. In this first approach, pyroxene glass samples, the cation content of which reflects mean cosmic proportions of the four most abundant metals, have been prepared and analytically characterized. They are expected to be good candidates for matching the silicate spectra of star-forming regions and young stellar objects (YSOs). For the pyroxene glass, optical constants from 250 nm to 500 micrometers have been determined. Particles having sizes within the Rayleigh limit show broad bands peaking at 9.5 and 18.8 micrometers. For the sake of comparison, a crystalline sample of the same composition was also measured. Its narrow bands are positioned at 9.4, 10.5, 11.1, 13.7, 15.6, 18.1, 19.5, 26.5, 29.5, 37.5, and 49 micrometers in agreement with expectations for a chemical composition corresponding to hypersthene. In addition to the vibration bands weak crystal field bands at 1 and 2 micrometers due to Fe(2+) have also been detected for the pyroxene glass. If these bands were detectable in interstellar and circumstellar sources they would offer a unique possibility of discriminating the pyroxene-type from the olivine-type silicates. The FIR absorption coefficient measured for the glass sample turned out to be proportional to lambda-2. The centroids of the 10 and 19 micrometer bands of the pyroxene glass satisfactorily match those observed in the Orion Trapezium and massive

  2. Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite.

    PubMed

    Baldovi, Herme G; Valencia, Susana; Alvaro, Mercedes; Asiri, Abdullah M; Garcia, Hermenegildo

    2015-02-01

    C-dots obtained in the homogeneous phase may exhibit a broad particle size distribution. The formation of C-dots within nanometric reaction cavities could be a methodology to gain control on their size distribution. Among the various possibilities, in the present work, the cavities of small pore size zeolites have been used to confine C-dots generated by the pyrolysis of the organic structure directing agent present in the synthesis of these crystalline aluminosilicates. To explore this methodology, ITQ-29 zeolite having a Linde type A (LTA) structure was prepared as pure silica with 4-methyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3.2.1-ij]quinolinium as the organic structure directing agent. Pyrolysis under an inert atmosphere at 550 °C of a pure-silica ITQ-29 sample (cubic particles of 4 μm edge) renders a highly fluorescent zeolite containing about 15 wt% of the carbonised residue. While another small pore zeolite, ITQ-12 (ITW), also renders photoluminescent C-dots under similar conditions, medium or large pore zeolites, such as silicalite (MFI) or pure silica Beta (BEA), failed to produce fluorescent powders under analogous thermal treatment and only decomposition and complete removal of the corresponding quaternary ammonium ion templates was observed for these zeolites. The dissolution of the pyrolysed ITQ-29 zeolite framework and the extraction of the carbon residue with ethyl acetate have allowed the characterisation of C-dots with particle sizes between 5 and 12 nm and a photoluminescence quantum yield of 0.4 upon excitation at 350 nm that is among the highest reported for non-surface functionalized C-dots. Photoluminescence varies with the excitation wavelength and is quenched by oxygen. Pyrolysed ITQ-29 powders can act as fluorescent oxygen sensors. PMID:25516465

  3. Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite

    NASA Astrophysics Data System (ADS)

    Baldovi, Herme G.; Valencia, Susana; Alvaro, Mercedes; Asiri, Abdullah M.; Garcia, Hermenegildo

    2015-01-01

    C-dots obtained in the homogeneous phase may exhibit a broad particle size distribution. The formation of C-dots within nanometric reaction cavities could be a methodology to gain control on their size distribution. Among the various possibilities, in the present work, the cavities of small pore size zeolites have been used to confine C-dots generated by the pyrolysis of the organic structure directing agent present in the synthesis of these crystalline aluminosilicates. To explore this methodology, ITQ-29 zeolite having a Linde type A (LTA) structure was prepared as pure silica with 4-methyl-2,3,6,7-tetrahydro-1H,5H-pyrido[3.2.1-ij]quinolinium as the organic structure directing agent. Pyrolysis under an inert atmosphere at 550 °C of a pure-silica ITQ-29 sample (cubic particles of 4 μm edge) renders a highly fluorescent zeolite containing about 15 wt% of the carbonised residue. While another small pore zeolite, ITQ-12 (ITW), also renders photoluminescent C-dots under similar conditions, medium or large pore zeolites, such as silicalite (MFI) or pure silica Beta (BEA), failed to produce fluorescent powders under analogous thermal treatment and only decomposition and complete removal of the corresponding quaternary ammonium ion templates was observed for these zeolites. The dissolution of the pyrolysed ITQ-29 zeolite framework and the extraction of the carbon residue with ethyl acetate have allowed the characterisation of C-dots with particle sizes between 5 and 12 nm and a photoluminescence quantum yield of 0.4 upon excitation at 350 nm that is among the highest reported for non-surface functionalized C-dots. Photoluminescence varies with the excitation wavelength and is quenched by oxygen. Pyrolysed ITQ-29 powders can act as fluorescent oxygen sensors.

  4. Studies on the formation of hierarchical zeolite T aggregates with well-defined morphology in different template systems

    NASA Astrophysics Data System (ADS)

    Yin, Xiaoyan; Chu, Naibo; Lu, Xuewei; Li, Zhongfang; Guo, Hong

    2016-01-01

    In this paper, the disk-like and pumpkin-like hierarchical zeolite T aggregates consisted of primary nano-grains have been hydrothermally synthesized with and without the aid of the second template. The first template is used with tetramethylammonium hydroxide (TMAOH) and the second template is used with triethanolamine (TEA) or polyving akohol (PVA). A combination of characterization techniques, including XRD, SEM, TEM and N2 adsorption-desorption to examine the crystal crystallinity, morphology and surface properties of hierarchical zeolite T aggregates. In the single-template preparation process, the two-step varying-temperature treatment has been used to improve the meso-porosity of zeolite T aggregates. In the double-template preparation process, the amounts of PVA or TEA on the crystallinity, morphology and meso-porosity of zeolite T aggregates have been studied. It has been proved that the interstitial voids between the primary grains of aggregates are the origin of additional mesopores of samples. The micro- and meso-porosities of samples prepared with and without the second template have been contrasted in detail at last. In particular, the sample synthesized with the addition of PVA presents a hierarchical pore structure with the highest Sext value of 122 m2/g and Vmeso value of 0.255 cm3/g.

  5. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing.

    PubMed

    Dong, Junping; Tian, Taolei; Ren, Linxiao; Zhang, Yuan; Xu, Jiaqiang; Cheng, Xiaowei

    2015-01-01

    A hierarchical MFI zeolite, with typical micro/meso bimodal pore structures, was prepared by desilication method. CuO nanoparticles (NPs) were incorporated into the hierarchical MFI zeolite by impregnation method. CuO/hierarchical zeolite composites were characterized by X-ray diffraction, transmission electron microscopy and nitrogen sorption. It is shown that the CuO nanoparticles are mostly dispersed in the mesopores with remaining of the crystallinity and morphology of the host zeolite. CuO nanoparticles located in hierarchical zeolite exhibit the excellent electrocatalytic performances to oxidation of glucose in alkaline media. The electrocatalytic activity enhances with increasing the loading content of CuO from 5% to 15%. The composites were fabricated for nonenzyme glucose sensing. Under the optimal conditions, the sensor shows a wide linear range from 5×10(-7) to 1.84×10(-2) M with a low detection limit of 3.7×10(-7) M. The sensor also exhibits good repeatability, long-term stability as well as high selectivity against interfering species. PMID:25499226

  6. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Sineva, L. V.; Asalieva, E. Yu; Mordkovich, V. Z.

    2015-11-01

    The review deals with the specifics of the Fischer-Tropsch synthesis for the one-stage syncrude production from CO and H2 in the presence of cobalt-zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer-Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer-Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references.

  7. Phase transitions in natural zeolites and the importance of P H2O

    NASA Astrophysics Data System (ADS)

    Bish, David L.; Wang, Hsiu-Wen

    2010-06-01

    Zeolites are low-density silicates with structures consisting of a negatively charged aluminosilicate framework that creates a system of uniform linked channels and cavities. Variable amounts of extraframework cations and H2O molecules occupy the channel system, and the H2O molecules are very responsive to changes in temperature, pressure and partial pressure of water (i.e. P H2O or relative humidity, RH). As the H2O molecules occupy much of the volume of the extraframework sites, a gain or loss of H2O molecules has a direct effect on the extraframework cations and an indirect effect on the framework. Temperature or RH-induced changes can result in both first- and second-order phase transitions, the latter resulting from continuous, minor changes in hydration state and cation position, and the former resulting from discrete changes in hydration state, which can cause similar shifts in cation position. Second-order transitions are typically reversible with no hysteresis, but first-order transitions exhibit considerable hysteresis. As H2O molecules are crucial in determining zeolite behavior, it is important that any study of thermal behavior involve control of not only temperature but also of relative humidity. Stabilization of a zeolite's hydrated phase to higher temperatures under higher RH conditions can cause some phase transitions to be missed, as is the case with natrolite.

  8. Framework-incorporated Mn and Co analcime zeolites: Synthesis and characterization

    SciTech Connect

    Azizi, Seyed Naser; Ehsani Tilami, Salma

    2013-02-15

    The framework-substituted cobalt and manganese analcime zeolites were synthesized via a direct hydrothermal approach. The obtained samples were characterized by XRD powder, SEM-EDX, nitrogen physical adsorption, Raman microscopy, diffuse reflectance UV-Vis and IR spectroscopy which complementarily demonstrated the incorporation of cobalt and manganese into the zeolites framework. The results showed that substitution of Mn and Co could be placed in two synthesis gels with same compositions containing Al/Mn=5 and Al/Co=4 mol ratios, respectively. In addition, with replacing Al with Mn and synthesis of Mn-modified analcime, zeolite with higher surface area and pore volume could be achieved than the Co modified analcime. - Graphical abstract: The images and adsorption-desorption isotherms of N{sub 2} at 77 K for (a) Co (b) Mn modified analcime. Highlights: Black-Right-Pointing-Pointer Synthesis of Co and Mn modified analcime for the first time. Black-Right-Pointing-Pointer Framework-incorporation of Co and Mn using the same silicate gel composition. Black-Right-Pointing-Pointer Applying several techniques to provide proofs for the characterization.

  9. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheets

    PubMed Central

    Kumar, Prashant; Agrawal, Kumar Varoon; Tsapatsis, Michael; Mkhoyan, K. Andre

    2015-01-01

    Some two-dimensional (2D) exfoliated zeolites are single- or near single-unit cell thick silicates that can function as molecular sieves. Although they have already found uses as catalysts, adsorbents and membranes precise determination of their thickness and wrinkling is critical as these properties influence their functionality. Here we demonstrate a method to accurately determine the thickness and wrinkles of a 2D zeolite nanosheet by comprehensive 3D mapping of its reciprocal lattice. Since the intensity modulation of a diffraction spot on tilting is a fingerprint of the thickness, and changes in the spot shape are a measure of wrinkling, this mapping is achieved using a large-angle tilt-series of electron diffraction patterns. Application of the method to a 2D zeolite with MFI structure reveals that the exfoliated MFI nanosheet is 1.5 unit cells (3.0 nm) thick and wrinkled anisotropically with up to 0.8 nm average surface roughness. PMID:25958985

  10. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.