These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Circumstellar Crystalline Silicates: Evolved Stars  

NASA Astrophysics Data System (ADS)

One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

Tartar, Josh; Speck, A. K.

2008-05-01

2

Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks  

SciTech Connect

Interactions of fluoride anions and organocations with crystalline silicate frameworks are shown to depend subtly on the architectures of the organic species, which significantly influence the crystalline structures that result. One- and two-dimensional (2D) {sup 1}H, {sup 19}F, and {sup 29}Si nuclear magnetic resonance (NMR) spectroscopy measurements establish distinct intermolecular interactions among F{sup -} anions, imidazolium structure-directing agents (SDA{sup +}), and crystalline silicate frameworks for as-synthesized siliceous zeolites ITW and MTT. Different types and positions of hydrophobic alkyl ligands on the imidazolium SDA{sup +} species under otherwise identical zeolite synthesis compositions and conditions lead to significantly different interactions between the F{sup -} and SDA{sup +} ions and the respective silicate frameworks. For as-synthesized zeolite ITW, F{sup -} anions are established to reside in the double-four-ring (D4R) cages and interact strongly and selectively with D4R silicate framework sites, as manifested by their strong {sup 19}F{sup 29}Si dipolar couplings. By comparison, for as-synthesized zeolite MTT, F{sup -} anions reside within the 10-ring channels and interact relatively weakly with the silicate framework as ion pairs with the SDA{sup +} ions. Such differences manifest the importance of interactions between the imidazolium and F{sup -} ions, which account for their structure-directing influences on the topologies of the resulting silicate frameworks. Furthermore, 2D {sup 29}Si{l_brace}{sup 29}Si{r_brace} double-quantum NMR measurements establish {sup 29}Si-O-{sup 29}Si site connectivities within the as-synthesized zeolites ITW and MTT that, in conjunction with synchrotron X-ray diffraction analyses, establish insights on complicated order and disorder within their framework structures.

Shayib, Ramzy M.; George, Nathan C.; Seshadri, Ram; Burton, Allen W.; Zones, Stacey I.; Chmelka, Bradley F. (UCSB); (Chevron ETC)

2012-02-06

3

Crystalline Silicates in Circumstellar Dust Shells  

NASA Astrophysics Data System (ADS)

The discovery of crystalline silicates outside our own Solar System by the infrared space observatory (ISO) in both young (Waelkens et al. 1996, A&A 315, L245), and evolved stars (Waters et al. 1996, A&A 315, L361) brought new inside in the circumstellar dust formation and evolution. We will present here an extensive overview of the solid state bands found in a sample of 17 stars all with oxygen-rich dust around them. For all stars good ISO-SWS (short wavelength spectrometer 2--45 ? m) spectra were available and for 12 stars also reliable ISO-LWS (long wavelength spectrometer 43--195 ? m) spectra were taken. We could identify about 50 different spectral features, most of them clustered into one of the 7 complexes (which we defined). Most bands could be identified with crystalline silicates and crystalline water ice, however still roughly 20% remains unidentified. An important result was that the presence of strong crystalline silicates bands always correlates with the presence of a disk like structure (N.B. The presence of a disk does not necessary imply a high fraction of crystalline silicates)(Molster et al. 1999, Nature 401, 563). We found that not only the strength but also the shape of the crystalline silicate features is different for sources with and without the presence of a disk. Another surprising result of this research is that the crystalline silicates contain no measurable amount of Fe. The main minerals found, are forsterite (Mg2 SiO4) and enstatite (MgSiO3). We have calculated mean crystalline silicate spectra for both the disk and the non-disk sources. By simple model fitting we derived estimates for the (relative) mass and temperature of the amorphous silicates, forsterite and enstatite. Based on these results we drew the conclusion that the crystalline and amorphous silicate grains are two separate grain populations. This work was part of a PhD-thesis and funded by NWO.

Molster, F. J.; Waters, L. B. F. M.; Tielens, A. G. G. M.

2000-12-01

4

Diffusion of an alkane molecule in siliceous zeolite beta Matthew Aronson  

E-print Network

1 Diffusion of an alkane molecule in siliceous zeolite beta Matthew was performed to study the diffusion of an alkane molecule in siliceous zeolite beta, as a function of chain length and temperature. The alkane was modeled

Shell, M. Scott

5

Partially Crystalline Silicate Dust in Protostellar Disks  

NASA Technical Reports Server (NTRS)

We examine the infrared emission of the Herbig Ae/Be stars and show that some possess characteristics indicative of partially crystalline grains similar to those seen in Beta Pictoris and some solar system comets.

Sitko, M. L.; Lynch, D. K.; Russell, R. W.; Hanner, M. S.; Grady, C. A.

1996-01-01

6

Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets  

Microsoft Academic Search

There is much debate about the origin of crystalline silicates in comets. Silicates in the protosolar cloud were likely amorphous, however the temperature of the outer solar nebula was too cold to allow their formation in this region by thermal annealing or direct condensation. This paper investigates the formation of crystalline silicates in the inner hot regions of the solar

D. Bockelée-Morvan; D. Gautier; F. Hersant; J.-M. Huré; F. Robert

2002-01-01

7

Aluminum coordination and active sites on aluminas, Y zeolites and pillared layered silicates  

SciTech Connect

Our work has been deployed in four directions, namely, (1) Study of the distribution of aluminum within three possible kinds of coordination shells: four-fold (IV), five-fold (V), and six-fold (VI), in aluminas and dealuminated zeolites by high-resolution solid state NMR or magic angle NMR. Besides the classical one pulse spectra, nutation spectra have been studied. (2) Study of the electron deficient sites by electron paramagnetic resonance (EPR) of probe molecules on aluminas and decationated zeolites. Electron deficient sites are considered as Lewis sites. (3) Study of the model isomerization reaction 1 butene {yields} 2 cis or trans butene on the aluminas characterized in 1 and 2. (4) Synthesis of a silicate lattice in which silicon has been partially replaced by aluminum. The chosen silicate is that of the zeolite (fibrous) sepiolite. It has been characterized as indicated in 1 and 2.

Fripiat, J.J.

1991-01-01

8

Topotactic conversion of ?-helix-layered silicate into AST-type zeolite through successive interlayer modifications.  

PubMed

AST-type zeolite with a plate morphology can be synthesized by topotactic conversion of a layered silicate (?-helix-layered silicate; HLS) by using N,N-dimethylpropionamide (DPA) to control the layer stacking of silicate layers and the subsequent interlayer condensation. Treatment of HLS twice with 1)?hydrochloric acid/ethanol and 2)?dimethylsulfoxide (DMSO) are needed to remove interlayer hydrated Na ions and tetramethylammonium (TMA) ions in intralayer cup-like cavities (intracavity TMA ions), both of which are introduced during the preparation of HLS. The utilization of an amide molecule is effective for the control of the stacking sequence of silicate layers. This method could be applicable to various layered silicates that cannot be topotactically converted into three-dimensional networks by simple interlayer condensation by judicious choice of amide molecules. PMID:24431158

Asakura, Yusuke; Takayama, Ryosuke; Shibue, Toshimichi; Kuroda, Kazuyuki

2014-02-10

9

?-? interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets  

NASA Astrophysics Data System (ADS)

One of the challenges in material science has been to prepare macro- or mesoporous zeolite. Although examples of their synthesis exist, there is a need for a facile yet versatile approach to such hierarchical structures. Here we report a concept for designing a single quaternary ammonium head amphiphilic template with strong ordered self-assembling ability through ?-? stacking in hydrophobic side, which stabilizes the mesostructure to form single-crystalline mesostructured zeolite nanosheets. The concept is demonstrated for the formation of a new type of MFI (zeolite framework code by International Zeolite Association) nanosheets joined with a 90° rotational boundary, which results in a mesoporous zeolite with highly specific surface area even after calcination. Low binding energies for this self-assembling system are supported by a theoretical analysis. A geometrical matching between the arrangement of aromatic groups and the zeolitic framework is speculated for the formation of single-crystalline MFI nanosheets.

Xu, Dongdong; Ma, Yanhang; Jing, Zhifeng; Han, Lu; Singh, Bhupendra; Feng, Ji; Shen, Xuefeng; Cao, Fenglei; Oleynikov, Peter; Sun, Huai; Terasaki, Osamu; Che, Shunai

2014-06-01

10

Zeolites  

NASA Technical Reports Server (NTRS)

Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco

1992-01-01

11

Calcium-aluminum-silicate-hydrate "cement" phases and rare Ca-zeolite association at Colle Fabbri, Central Italy  

NASA Astrophysics Data System (ADS)

Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate-alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite-afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) — "cement" phases - i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon-dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. Most of these minerals are specifically related to hydration processes of: (1) pyrometamorphic metacarbonate/metapelitic rocks (natural analogues of cement clinkers); (2) mineralization between intrusive stocks and slates; and (3) high-calcium, alkaline igneous rocks such as melilitites and foidites as well as carbonatites. The Colle Fabbri outcrop offers an opportunity to study in situ complex crystalline overgrowth and specific crystal chemistry in mineral phases formed in igneous to hydrothermal conditions.

Stoppa, F.; Scordari, F.; Mesto, E.; Sharygin, V. V.; Bortolozzi, G.

2010-06-01

12

Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.  

PubMed

Zeolites are a family of crystalline aluminosilicate materials widely used as shape-selective catalysts, ion exchange materials, and adsorbents for organic compounds. In the present work, zeolites were synthesized by adding a rationally designed amphiphilic organosilane surfactant to conventional alkaline zeolite synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses show that the present method is suitable as a direct synthesis route to highly mesoporous zeolites. The mesopore diameters could be uniformly tailored, similar to ordered mesoporous silica with amorphous frameworks. The mesoporous zeolite exhibited a narrow, small-angle XRD peak, which is characteristic of the short-range correlation between mesopores, similar to disordered wormhole-like mesoporous materials. The XRD patterns and electron micrographs of the samples taken during crystallization clearly showed the evolution of the mesoporous structure concomitantly to the crystallization of zeolite frameworks. The synthesis of the crystalline aluminosilicate materials with tunable mesoporosity and strong acidity has potentially important technological implications for catalytic reactions of large molecules, whereas conventional mesoporous materials lack hydrothermal stability and acidity. PMID:16892049

Choi, Minkee; Cho, Hae Sung; Srivastava, Rajendra; Venkatesan, Chithravel; Choi, Dae-Heung; Ryoo, Ryong

2006-09-01

13

[Aluminum coordination and active sites on aluminas, Y-zeolites and pillared layered silicates]. Progress report  

SciTech Connect

This report is organized in four sections. In the first the authors will outline structural features which are common to all fine grained alumina, as well as to non-framework alumina in zeolites. This section will be followed by a study of the surface vs. bulk coordination of aluminum. The third section will deal with measurement of the number of acid sites and the scaling of their strength. The fourth and last section will describe three model reactions: the isomerization of 1-butene and of 2 cis-butene; the isomerization and disproportionation of oxtho-xylene; and the transformation of trichloroethane into vinyl chloride followed by the polymerization of the vinyl chloride. The relationship between chemical activity and selectivity and what is known of the local structure of the active catalytic sites will be underlined. Other kinds of zeolites besides Y zeolite have been studied. Instead of the aluminum pillared silicates they found it more interesting to study the substitution of silicon by aluminum in a layered structure containing a permanent porosity (aluminated sepiolite).

Fripiat, J.J.

1994-02-01

14

Discrete Dipole Approximation Models of Crystalline Forsterite: Applications to Cometary Crystalline Silicates  

NASA Astrophysics Data System (ADS)

In cometary comae, the crystalline silicate forsterite (Mg2SiO4) is the dominant crystalline component. Within the 8 - 40 micron spectral range, the crystal shape has been demonstrated to have a measurable effect on the crystalline features’ shape and peak wavelength locations. We present discrete dipole approximation (DDA) absorption efficiencies for a variety of forsterite grain shapes to demonstrate: a) that the 10, 11, 19, 23, and 33.5 micron resonances are sensitive to grain shape; b) spectral trends are associated with variations in crystallographic axial ratios; and c) that groups of similar grain shapes (shape classes) have distinct spectral features. These computations are performed using DDSCAT v7.0 run on the NASA Advanced Supercomputing (NAS) facility Pleiades. We generate synthetic spectral energy distribution (SED) fits to the Infrared Space Observatory (ISO) SWS spectra for the coma of comet C/1995 O1 (Hale-Bopp) at a heliocentric distance of 2.8 AU. Hale-Bopp is best fit by equant grain shapes whereas rounded grain shapes fit significantly poorer than crystals with sharp edges with well-defined faces. Moreover, crystals that are not significantly elongated along a crystallographic axis fit better. By comparison with Kobatake et al. (2008) condensation experiments and Takigawa et al. (2009) evaporation experiments, our analyses suggest that the forsterite crystals in the coma of Hale-Bopp predominantly are high temperature condensates. The laboratory experiments show that grain shape and grain formation temperature, and hence disk environment, are causally linked. Specifically, the Kobatake et al. (2008) condensation experiment reveals three shape classes associated with temperature: 1) ‘Bulky’ grains (1300 K < T < 1700 K), 2) ‘Platy’ grains (1000 K < T < 1300 K), and 3) columnar/needle grains (T < 1000 K). We construct DDA grain shape analogs to these shape classes to connect grain shapes to distinguishable spectral signatures and crystal formation environments.

Lindsay, Sean; Wooden, D. H.; Woodward, C. E.; Harker, D. E.; Kelley, M. S.; Murphy, J. R.

2012-10-01

15

A SPITZER INFRARED SPECTROGRAPH DETECTION OF CRYSTALLINE SILICATES IN A PROTOSTELLAR ENVELOPE  

SciTech Connect

We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 {mu}m superimposed on the broad 9.7 and 18 {mu}m amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite (Mg{sub 2}SiO{sub 4}). Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line of sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium ({approx}<0.02-0.05). We propose that the amorphous silicates were annealed within the hot inner disk and/or envelope regions and subsequently transported outward into the envelope by entrainment in a protostellar outflow.

Poteet, Charles A.; Megeath, S. Thomas; Fischer, William J.; Bjorkman, Jon E. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Watson, Dan M.; Remming, Ian S.; McClure, Melissa K. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Calvet, Nuria; Hartmann, Lee; Tobin, John J. [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Sargent, Benjamin A.; Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Furlan, Elise [Jet Propulsion Laboratory, California Institute of Technology, Mail Stop 264723, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Allen, Lori E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Ali, Babar, E-mail: charles.poteet@gmail.com [NHSC/IPAC, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

2011-06-01

16

Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.  

PubMed

Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296mg CaCO3/g, comparable to commercially-available zeolite (310mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. PMID:25153822

Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

2014-11-01

17

Cooked GEMS - Insights into the Hot Origins of Crystalline Silicates in Circumstellar Disks and the Cold Origins of GEMS  

NASA Technical Reports Server (NTRS)

The comparison of interstellar, circumstellar and primitive solar nebula silicates has led to a significant conundrum in the understanding of the nature of solid materials that begin the planet forming processes. Crystalline silicates are found in circumstellar regions around young stars and also evolved stars ejecting particles into the interstellar medium (ISM) but they are not seen in the interstellar medium itself, the source material for star and planet formation. Crystalline silicates are minor to major components of all known early solar system materials that have been examined as meteorites or interplanetary dust samples. The strong presence of Mg-rich crystalline silicates in Oort cloud comets and their minor presence in some Kuiper belt comets is also indicated by 11.2 m peak in approx. 10 microns "silicate" infrared feature. This evidence strongly indicates that Mg-rich crystalline silicates were abundant components of the solar nebula disk out to at least 10 AU, and present out to 30 AU.

Brownlee, D. E.; Joswiak, D. J.; Bradley, J. P.; Matrajt, G.; Wooden, D. H.

2005-01-01

18

First-principles molecular modeling of structure-property relationships and reactivity in the zeolite chabazite  

E-print Network

Zeolites are crystalline, porous aluminosilicates; while a pure silicate structure is charge-neutral, the substitution of A1³? for Si?? creates in the framework a negative charge, which can be compensated by a proton that ...

Lo, Cynthia

2005-01-01

19

Infrared spectra of crystalline phase ices condensed on silicate smokes at T less than 20 K  

NASA Astrophysics Data System (ADS)

Infrared spectra of H2O, CH3OH, and NH3 condensed at T less than 20 K on amorphous silicate smokes reveal that predominantly crystalline phase ice forms directly on deposit. Spectra of these molecules condensed on aluminum substrates at T less than 20 K indicate that amorphous phase ice forms. On aluminum, crystalline phase H2O and CH3OH are formed by annealing amorphous deposits to 155 K and 130 K, respectively (or by direct deposit at these temperatures); crystalline NH3 is formed by direct deposit at 88 K. Silicate smokes are deposited onto aluminum substrates by evaporation of SiO solid or by combustion of SiH4 with O2 in flowing H2 followed by vapor phase nucleation and growth. Silicate smokes which are oxygen-deficient may contain active surface sites which facilitate the amorphous-to-crystalline phase transition during condensation. Detailed experiments to understand the mechanism are currently in progress. The assumption that amorphous phase ice forms routinely on grains at T less than 80 K is often used in models describing the volatile content of comets or in interpretations of interstellar cloud temperatures. This assumption needs to be reexamined in view of these results.

Moore, Marla H.; Ferrante, Robert F.; Hudson, Reggie L.; Nuth, Joseph A., III; Donn, Bertram

1994-06-01

20

Antimicrobial effects of silver zeolite, silver zirconium phosphate silicate and silver zirconium phosphate against oral microorganisms  

PubMed Central

Objective To evaluate the antimicrobial activities of silver inorganic materials, including silver zeolite (AgZ), silver zirconium phosphate silicate (AgZrPSi) and silver zirconium phosphate (AgZrP), against oral microorganisms. In line with this objective, the morphology and structure of each type of silver based powders were also investigated. Methods The antimicrobial activities of AgZ, AgZrPSi and AgZrP were tested against Streptococcus mutans, Lactobacillus casei, Candida albicans and Staphylococcus aureus using disk diffusion assay as a screening test. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the modified membrane method. Scanning electron microscope and X-ray diffraction were used to investigate the morphology and structure of these silver materials. Results All forms of silver inorganic materials could inhibit the growth of all test microorganisms. The MIC of AgZ, AgZrPSi and AgZrP was 10.0 g/L whereas MLC ranged between 10.0–60.0 g/L. In terms of morphology and structure, AgZrPSi and AgZrP had smaller sized particles (1.5–3.0 µm) and more uniformly shaped than AgZ. Conclusions Silver inorganic materials in the form of AgZ, AgZrPSi and AgZrP had antimicrobial effects against all test oral microorganisms and those activities may be influenced by the crystal structure of carriers. These results suggest that these silver materials may be useful metals applied to oral hygiene products to provide antimicrobial activity against oral infection. PMID:23570016

Saengmee-anupharb, Sirikamon; Srikhirin, Toemsak; Thaweboon, Boonyanit; Thaweboon, Sroisiri; Amornsakchai, Taweechai; Dechkunakorn, Surachai; Suddhasthira, Theeralaksna; Kamaguchi, Arihide

2013-01-01

21

Aluminum coordination and active sites on aluminas, Y zeolites and pillared layered silicates. Progress report, June 1, 1990--January 31, 1992  

SciTech Connect

Our work has been deployed in four directions, namely, (1) Study of the distribution of aluminum within three possible kinds of coordination shells: four-fold (IV), five-fold (V), and six-fold (VI), in aluminas and dealuminated zeolites by high-resolution solid state NMR or magic angle NMR. Besides the classical one pulse spectra, nutation spectra have been studied. (2) Study of the electron deficient sites by electron paramagnetic resonance (EPR) of probe molecules on aluminas and decationated zeolites. Electron deficient sites are considered as Lewis sites. (3) Study of the model isomerization reaction 1 butene {yields} 2 cis or trans butene on the aluminas characterized in 1 and 2. (4) Synthesis of a silicate lattice in which silicon has been partially replaced by aluminum. The chosen silicate is that of the zeolite (fibrous) sepiolite. It has been characterized as indicated in 1 and 2.

Fripiat, J.J.

1991-12-31

22

The effect of crystallinity on dissolution rates and CO 2 consumption capacity of silicates  

NASA Astrophysics Data System (ADS)

Comparison of measured far-from-equilibrium dissolution rates of natural glasses and silicate minerals at 25 °C and pH 4 reveals the systematic effects of crystallinity and elemental composition on these rates. Rates for both minerals and glasses decrease with increasing Si:O ratio, but glass dissolution rates are faster than corresponding mineral rates. The difference between glass and mineral dissolution rates increases with increasing Si:O ratio; ultra-mafic glasses (Si:O ? 0.28) dissolve at similar rates as correspondingly compositioned minerals, but Si-rich glasses such as rhyolite (Si:O ˜ 0.40) dissolve ?1.6 orders of magnitude faster than corresponding minerals. This behaviour is interpreted to stem from the effect of Si-O polymerisation on silicate dissolution rates. The rate controlling step of dissolution for silicate minerals and glasses for which Si:O > 0.28 is the breaking of Si-O bonds. Owing to rapid quenching, natural glasses will exhibit less polymerisation and less ordering of Si-O bonds than minerals, making them less resistant to dissolution. Dissolution rates summarized in this study are used to determine the Ca release rates of natural rocks at far-from-equilibrium conditions, which in turn are used to estimate their CO 2 consumption capacity. Results indicate that Ca release rates for glasses are faster than those of corresponding rocks. This difference is, however, significantly less than the corresponding difference between glass and mineral bulk dissolution rates. This is due to the presence of Ca in relatively reactive minerals. In both cases, Ca release rates increase by ˜two orders of magnitude from high to low Si:O ratios (e.g., from granite to gabbro or from rhyolitic to basaltic glass), illustrating the important role of Si-poor silicates in the long-term global CO 2 cycle.

Wolff-Boenisch, Domenik; Gislason, Sigurdur R.; Oelkers, Eric H.

2006-02-01

23

Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation.  

PubMed

Layered magadiite and zeolites Y containing framework Co or small CoO clusters in the pores have been synthesized and tested as photocatalysts for water splitting, in the absence and presence of methanol, upon UV or simulated sunlight irradiation; the best performing material was Co-magadiite. PMID:25314124

Nea?u, Stefan; Puche, Marta; Fornés, Vicente; Garcia, Hermenegildo

2014-12-01

24

Crystalline Silicates in Comets: Modeling Irregularly-Shaped Forsterite Crystals and Its Implications on Condensation Conditions  

NASA Technical Reports Server (NTRS)

Crystalline silicates in comets are a product of the condensation in the hot inner regions (T > or approx. equals 1400 K [1]) of our proto-planetary disk or annealing at somewhat lower temperatures (T > or approx. equals 1000-1200 K) [2, 3, 4] in shocks coupled with disk evolutionary processes that include radial transport of crystals from their formation locations out to the cold outer regions where comet nuclei formed. The grain shape of forsterite (crystals) could be indicative of their formation pathways at high temperatures through vapor-solid condensation or at lower temperatures through vapor-liquid-solid formation and growth [5, 6, 7]. Experiments demonstrate that crystals that formed from a rapidly cooled highly supersaturated silicate vapor are characterized by bulky, platy, columnar/needle and droplet shapes for values of temperature and supersaturation, T and sigma, of 1000-1450 C and < 97, 700-1000 C and 97-161, 580-820 C and 131-230, and <500 C and > 230, respectively [7]. The experimental columnar/needle shapes, which form by vapor-liquid-solid at lower temperatures (<820 C), are extended stacks of plates, where the extension is not correlated with an axial direction: columnar/needles may be extended in the c-axis or a-axis direction, can change directions, and/or are off-kilter or a bit askew extending in a combination of the a- and c-axis direction.

Wooden, Diane H.; Lindsay, Sean S.

2011-01-01

25

Crystalline Silicate Grains Of Comet 17P/Holmes Ejected At Its Outburst Observed With Subaru/COMICS  

NASA Astrophysics Data System (ADS)

Comets had formed from dust and icy materials in the solar nebula 4.6 Gyrs ago. The cometary materials are considered as the most pristine in the solar system and both dust grains and icy materials in comets have been used to investigate the formation conditions of the solar system. Furthermore, it is considered that the existence of crystalline silicate in comets indicates the radial mixing of materials in the early solar nebula. Crystalline silicate is formed in high temperature environment. Then, it is clue to understand the difference between thermal and dynamical evolution of dust in proto-solar nebula. A large outburst of comet 17P/Holmes has occurred in late October 2007. Just after the outburst began, we carried out low-dispersion spectroscopic observation in mid-infrared region (8 -13 µm) with COMICS mounted on the 8.2-m Subaru Telescope on October 25th-28 th, 2007 UT, when the comet was at a heliocentric distance of 2.44 -2.45 AU. We detected an isolated dust cloud that moved toward the south-west direction from the nucleus by imaging observations in mid-infrared region. The 11.2 µm peak of a crystalline silicate feature onto a broad amorphous silicate feature was detected both in the central condensation of the nucleus and an isolated dust cloud. We will present the time variation of the spectra at different positions in the coma of comet 17P/Holmes at the outburst.

Yamaguchi, Mitsuru; Ootsubo, T.; Watanabe, J.; Honda, M.; Sakon, I.; Ishiguro, M.; Sarugaku, Y.; Shinnaka, Y.; Kobayashi, H.; Kawakita, H.

2010-10-01

26

Spectroscopic analysis of Eu3+ -and Eu3+:Yb3+-doped yttrium silicate crystalline powders prepared by combustion synthesis  

Microsoft Academic Search

Yttrium silicate powders doped with Eu3+ and codoped with Eu3+ and Yb3+ were prepared by combustion synthesis. The x-ray powder diffraction data showed the presence of Y2SiO5 and Y2Si2O7 crystalline phases. Singly doped (1 wt %) sample illuminated with ultraviolet light (lambda=256 nm) showed the characteristic red luminescence corresponding to 5D0-->7FJ transitions of Eu3+. The Judd-Ofelt intensity parameters were calculated

Nikifor Rakov; Dayanne F. Amaral; Glauco S. Maciel

2010-01-01

27

Spectroscopic analysis of Eu3+ -and Eu3+:Yb3+-doped yttrium silicate crystalline powders prepared by combustion synthesis  

Microsoft Academic Search

Yttrium silicate powders doped with Eu3+ and codoped with Eu3+ and Yb3+ were prepared by combustion synthesis. The x-ray powder diffraction data showed the presence of Y2SiO5 and Y2Si2O7 crystalline phases. Singly doped (1 wt %) sample illuminated with ultraviolet light (?=256 nm) showed the characteristic red luminescence corresponding to 5D0?7FJ transitions of Eu3+. The Judd–Ofelt intensity parameters were calculated

Nikifor Rakov; Dayanne F. Amaral; Renato B. Guimarães; Glauco S. Maciel

2010-01-01

28

Zealous zeolites  

Microsoft Academic Search

Zeolites have made significant inroads in fluid cracking catalysts for gasoline and have pushed phosphates out of laundry detergents. But these crystalline aluminosilicate structures are just beginning to make their mark in chemical processes and environmental applications. Ideally suited for work as molecular sieves and catalysts, zeolites sport uniform surface pores and channels that are receptive only to molecules of

1996-01-01

29

A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline  

NASA Technical Reports Server (NTRS)

A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

1989-01-01

30

Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime; applications to radioactive waste isolation in silicic tuff  

SciTech Connect

Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Nonwelded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling that limits the permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a formidable natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water-vapor pressures and may break down either by reversible dehydration or by irreversible mineralogical reactions. All the breakdown reactions occurring at increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in waste repositories in volcanic rocks.

Smyth, J.R.; Caporuscio, F.A.

1981-06-01

31

CRYSTALLINE SILICATE EMISSION IN THE PROTOSTELLAR BINARY SERPENS SVS 20 David R. Ciardi  

E-print Network

resolved mid-infrared spectroscopy of the Class I/flat-spectrum protostellar binary system SVS 20 20-South, the more luminous of the two sources, exhibits a mid-infrared emission spectrum peaking near 11.3 m, while SVS 20-North exhibits a shallow amorphous silicate absorption spectrum with a peak

De Buizer, James Michael

32

CVD Synthesis of Single-Walled Carbon Nanotubes from Catalylsts Supported on Zeolite and Layered Silicate Surfaces  

E-print Network

CVD Synthesis of Single-Walled Carbon Nanotubes from Catalylsts Supported on Zeolite and Layered for future use of SWNTs. In chemical vapor deposition (CVD) processes, by which SWNTs are synthesized materials at an elevated temperature for CVD is considered to be effective. We aim to achieve

Maruyama, Shigeo

33

Synthesis strategies in the search for hierarchical zeolites.  

PubMed

Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the formation of organic-inorganic composites that, upon calcination, are transformed into hierarchical zeolites. However, in spite of this impressive progress in novel strategies for the preparation of hierarchical zeolites, significant challenges are still ahead. The overall one is the development of methods that are versatile in terms of zeolite structures and compositions, capable of tuning the secondary porosity properties, and being scaled up in a cost-effective way. Recent works have demonstrated that it is possible to scale-up easily the synthesis of hierarchical zeolites by desilication. Economic aspects may become a significant bottleneck for the commercial application of hierarchical zeolites since most of the synthesis strategies so far developed imply the use of more expensive procedures and reagents compared to conventional zeolites. Nevertheless, the use of hierarchical zeolites as efficient catalysts for the production of high value-added compounds could greatly compensate these increased manufacturing costs. PMID:23138888

Serrano, D P; Escola, J M; Pizarro, P

2013-05-01

34

Spectroscopic analysis of Eu{sup 3+} -and Eu{sup 3+}:Yb{sup 3+}-doped yttrium silicate crystalline powders prepared by combustion synthesis  

Microsoft Academic Search

Yttrium silicate powders doped with Eu{sup 3+} and codoped with Eu{sup 3+} and Yb{sup 3+} were prepared by combustion synthesis. The x-ray powder diffraction data showed the presence of YSiO and YSiO crystalline phases. Singly doped (1 wt %) sample illuminated with ultraviolet light (=256 nm) showed the characteristic red luminescence corresponding to DF{sub J} transitions of Eu{sup 3+}. The

Nikifor Rakov; Dayanne F. Amaral; Renato B. Guimaraes; Glauco S. Maciel

2010-01-01

35

A simple and general route for the preparation of pure and high crystalline nanosized lanthanide silicates with the structure of apatite at low temperature  

SciTech Connect

Rare earth silicates with the structure of apatite are attracting considerable interest since they show oxygen ion conductivities higher than that of yttria-stabilized zirconia (YSZ) at moderate temperature. Based on the hydrothermal synthesis we presented a simple one step process for the direct preparation of the pure and the high crystalline nanosized rare earth silicates with the structure of apatite under a mild condition (230 {sup o}C). Since the preparation of the high crystalline silicon based rare earth apatites is performed at high temperature previously and accompanied by subsequent process of grinding, results of this work provide a promising alternative of the existing methodology. Furthermore, due to the relatively low temperature of the preparation of these materials, high doping of monovalent cation can be done, which was not achieved before. -- Graphical abstract: A simple one step process for the preparation of the rare earth silicates with the structure of apatite under a mild condition (230 {sup o}C) is presented. The process is based on the hydrothermal synthesis and the obtained powder materials are pure, high crystalline and with nanosize. Display Omitted

Ferdov, Stanislav [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Physics, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Department of Physics, University of Minho, 4800-058 Guimaraes (Portugal); Rauwel, Protima [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Lin, Zhi, E-mail: zlin@ua.p [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Ferreira, Rute A. Sa [Department of Physics, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Lopes, Augusto [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

2010-11-15

36

Rates of Exchange of Cs and Sr for Poorly Crystalline Sodium Titanium Silicate (CST) in Nuclear Waste Systems  

Microsoft Academic Search

The compound sodium titanium silicate, popularly known as CST, is highly selective for Cs. It was synthesized for the purpose of removing Cs from basic nuclear waste systems. This compound has a tunnel structure in which the Cs ion just fits but diffusion through the tunnels is relatively slow. CST loses its ability to sequester Cs in the strongly basic

Abraham Clearfield; Dmitry G. Medvedev; Steven Kerlegon; Timothy Bosser; Jonathan D. Burns; Milton Jackson

2012-01-01

37

X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5  

SciTech Connect

Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs.

Csencsits, R.; Lyman, C.E.; Gronsky, R.

1988-03-01

38

Thermal desorption characteristics of CO, O2 and CO2 on non-porous water, crystalline water and silicate surfaces at sub-monolayer and multilayer coverages  

E-print Network

The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments exploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.

Noble, J A; Dulieu, F; Fraser, H J

2011-01-01

39

Composites of microporous aluminum phosphates and zeolites and conversions over these catalysts  

SciTech Connect

A process for dewaxing a hydrocarbon feedstock is described comprising contacting the feedstock under sufficient dewaxing conditions with a catalyst composition comprising (i) a catalytically active crystalline silicate and (ii) a crystalline aluminum phosphate, wherein the crystalline silicate is an aluminosilicate zeolite having a silica to alumina mole ratio of from about 2 to about 500, and wherein the aluminum phosphate has a microporous framework structure in which the pores are uniform and have nominal diameters within the range of about 3 to 10 Angstroms. The aluminum phosphate has an intracrystalline adsorption capacity for water at 4.6 torr and 24/sup 0/C of at least 3.5 weight percent. The adsorption and desorption of water in the aluminum phosphate is completely reversible while retaining the same essential phosphate framework topology in both the hydrated and dehydrated state.

Kirker, G.W.; Landis, M.E.; Yen, J.H.

1988-02-09

40

Lack of Evidence of In-Situ Decay of Aluminum-26 in a FeO-Poor Ferromagnesian Crystalline Silicate Particle, Pyxie, from Comet Wild 2  

NASA Technical Reports Server (NTRS)

One of the important discoveries from the Stardust mission is the observation of crystalline silicate particles that resemble Ca, Al-rich inclusions (CAIs) and chondrules in carbonaceous chondrites], which suggests radial transport of high temperature solids from the inner to the outer solar nebula regions and capture by accreting cometary objects. The Al-Mg isotope analyses of CAI-like and type II chondrule-like particles revealed no excess of Mg-26 derived from in-situ decay of Al-26 (Tau)(sub 1/2) = 0.705Myr; ), suggesting late formation of these particles. However, the number of Wild 2 particles analyzed for Al-Mg isotopes is still limited (n = 3). In order to better understand the timing of the formation of Wild 2 particles and possible radial transport in the protoplanetary disk, we performed SIMS (Secondary Ion Mass Spectrometer) Al-Mg isotope analyses of plagioclase in a FeO-poor ferromagnesian Wild 2 particle, which is the most abundant type among crystalline Wild 2 particles.

Nakashima, D.; Ushikubo, T.; Weisberg, M. K.; Zolensky, M. E.; Ebel, D. S.; Kita, N. T.

2014-01-01

41

Zeolites and Intrazeolite Chemistry: Insights from Infrared Spectroscopy  

Microsoft Academic Search

Zeolites are widely used as adsorbents, catalysts, ion exchangers and molecular sieves. However, less is known about the potential use of zeolites and related microporous solids for tailored synthesis of advanced materials. Zeolite-based host-guest nanocomposites are a type of advanced material in which zeolites act as hosts for encapsulating and organizing molecules, crystalline nano-phases and supramolecular entities inside the zeolite

C. Otero Areán

2000-01-01

42

Synthesis and testing of nanosized zeolite Y  

NASA Astrophysics Data System (ADS)

This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were kept constant. The extent to which the nanosized zeolite Y was formed depended on the types and amount of the organic templates as well as the ageing duration. The activity testing of four FCC catalysts prepared by using CREY (Calcined Rare Earth ion-exchanged) zeolites with different particle sizes was carried out in a fluidized bench-scale batch riser simulator reactor. The starting zeolites NaY of different particle sizes were subjected to two cycles of ion exchange treatment. The particle size of the supported zeolites was varied between 150 and 1800 nm. The preparation of FCC catalysts was conducted by mixing the CREY zeolite with silica-alumina matrix and silica sol binder. Each catalyst contained 25% zeolite. The results of catalytic cracking demonstrated the significant effect of size reduction of the starting zeolite Y on catalytic performance of FCC catalyst. Keywords. Zeolite NaY, Faujasite, Nanosized particles, Nanozeolite, Nanotechnology, Synthesis, Crystallization, Seeding, Ageing, Precipitated silica, Sylopol silica, Fumed silica, Silica sol, Soluble silicates, Alumina, SAR or SiO2/Al2O3 Ratios, Sodium hydroxide, Sodium aluminate, Organic templates, TMAOH, Surfactant (CTAB), Ammonium Sulfate, BET surface area, BJH Pore Size Distribution, Zetasizer Particle Size Distribution, Powder XRD, 27Al Solid-State NMR, Catalytic Impregnation, CREY Zeolite, Silica-Alumina Matrix, Ion Exchange, FCC Catalyst, Catalytic cracking, Riser SimulatorRTM, Steaming, Zeolite HY, Utrastable Zeolite Y (USY)

Karami, Davood

43

Crystalline Membranes  

NASA Technical Reports Server (NTRS)

In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

2008-01-01

44

Zeolite Studies. Aluminium Phosphate Zeolites.  

National Technical Information Service (NTIS)

Alpo-zeolites (ALPO sub 4 -zeolites) have been synthesized by hydrothermal synthesis in an autoclave from alumina, tetralkylammonium hydroxide and phosphorus acid. Catalysis tests with hydrocarbons indicate that the compounds have good olefinisomerization...

G. S. Haegh, U. Blindheim

1983-01-01

45

Study of pure-silica Zeolite Nucleation and Growth from Solution  

E-print Network

Zeolites are microporous crystalline materials, which are widely used in catalysis, adsorption, and ion-exchange processes. However, in most cases, the synthesis of novel zeolites as functional materials still relies on trial-and-error methods...

Li, Xiang

2011-10-21

46

Growth of zeolite crystals in the microgravity environment of space  

NASA Technical Reports Server (NTRS)

Zeolites are hydrated, crystalline aluminosilicates with alkali and alkaling earth metals substituted into cation vacancies. Typically zeolite crystals are 3 to 8 microns. Larger cyrstals are desirable. Large zeolite crystals were produced (100 to 200 microns); however, they have taken restrictively long times to grow. It was proposed if the rate of nucleation or in some other way the number of nuclei can be lowered, fewer, larger crystals will be formed. The microgravity environment of space may provide an ideal condition to achieve rapid growth of large zeolite crystals. The objective of the project is to establish if large zeolite crystals can be formed rapidly in space.

Sacco, A., Jr.; Sand, L. B.; Collette, D.; Dieselman, K.; Crowley, J.; Feitelberg, A.

1986-01-01

47

Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction  

SciTech Connect

The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

Snellings, R., E-mail: ruben.snellings@ees.kuleuven.b [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Heverlee (Belgium); Mertens, G. [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Heverlee (Belgium); Cizer, O. [Department of Civil Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 40, B-3001 Heverlee (Belgium); Elsen, J. [Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Heverlee (Belgium)

2010-12-15

48

Reclaiming silver from silver zeolite  

SciTech Connect

Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

Reimann, G.A.

1991-10-01

49

Reclaiming silver from silver zeolite  

SciTech Connect

Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

Reimann, G.A.

1991-10-01

50

ELSEVIER Journal ofNon-CrystallineSolids208 (1996)267-276 An XPS study of iron sodium silicate glass surfaces  

E-print Network

ELSEVIER Journal ofNon-CrystallineSolids208 (1996)267-276 JOURNAL OF An XPS study of iron sodium-ray photoelectron spectroscopy (XPS). The quantitative ratio [Fe2+]/[Fetotal], for each glass has been determined. Introduction The chemical analysis of glass surfaces by means of XPS has previously been applied to a study

Mekki, Abdelkarim

51

Effect of crystal size on physical and catalytic properties of ZSM-5 type zeolites  

NASA Astrophysics Data System (ADS)

Diffusion of C6-alkanes in zeolite ZSM-5 and its aluminum free variant silicate-1 receives the greatest attention in the thesis. A physical property of zeolite like the ability to sorb, in particular, nonpolar compounds, was utilized in studying hydrocarbon diffusion by performing adsorption and desorption experiments. The diffusional behavior of the zeolite ZSM-5 and of aluminated silicate-1 at catalytically relevant temperatures was studied by way of a catalytic property of the zeolite. Descriptions of physical studies on nitrogen sorption in ZSM 5 type zeolites and of catalytic studies on the conversion of ethanol to hydrocarbons complete the thesis which tries to give a better understanding of adsorptive, diffusional, and catalytic behavior by describing experiments in which only one parameter has been varied, the zeolite crystal size. Discussions and conclusions are directed towards the industrial application of zeolite ZSM-5, as a catalyst.

Voogd, P.

1991-09-01

52

Single and Multiple Heteroatom Incorporation in MFI Zeolites  

E-print Network

Zeolites are crystalline inorganic solids that are industrially used for adsorption, ion exchange and catalysis. As catalysts, they have been particularly successful in the hydrocarbon processing industry due to their unique activities...

Garcia Vargas, Nataly

2012-11-05

53

Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste.  

PubMed

Fly ash from pulp and paper industries was used as a raw material for synthesizing zeolite catalyst. Main compositions of fly ash consisted of 41 wt%SiO2, 20 wt%Al2O3, 14 wt%CaO, and 8 wt% Fe2O3. High content of silica and alumina indicated that this fly ash has potential uses for zeolite synthesis. Fly ash was mixed with 1-3 M NaOH solution. Sodium silicate acting as silica source was added into the solution to obtain the initial SiO2/Al2O3 molar ratio of 23.9. The mixtures were then crystallized at 160 degrees C for 24 and 72 h. Zeolites synthesized after a long synthesis time of 72 h showed superior properties in terms of high crystallinity, less impurity, and small particle size. The catalytic activities of fly ash-derived zeolites were investigated via fast pyrolysis of Jatropha wastes using analytical pyrolysis-gas chromatograph/mass spectrometer (GC/MS). Pyrolysis temperature was set at 500 degrees C with Jatropha wastes to catalyst ratio of 1:1, 1:5, and 1:10. Results showed that higher amounts of catalyst have a positive effect on enhancing aromatic hydrocarbons as well as decreasing in the oxygenated and N-containing compounds. Zeolite Socony Mobil-5 (ZSM-5) treated with 3 M NaOH at 72 h showed the highest hydrocarbon yield of 97.4%. The formation of hydrocarbon led to the high heating value of bio-oils. In addition, the presence of ZSM-5 derived from fly ash contributed to reduce the undesirable oxygenated compounds such as aldehydes, acids, and ketones which cause poor quality of bio-oil to only 0.8% while suppressed N-compounds to 1.7%. Overall, the ZSM-5 synthesized from fly ash proved to be an effective catalyst for catalytic fast pyrolysis application. PMID:25145178

Vichaphund, S; Aht-Ong, D; Sricharoenchaikul, V; Atong, D

2014-01-01

54

Zeolites: Can they be synthesized by design  

SciTech Connect

Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high level of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''

Davis, M.E. (California Inst. of Technology, Pasadena, CA (United States))

1994-09-01

55

Synthesis and catalytic applications of combined zeolitic/mesoporous materials  

PubMed Central

Summary In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. PMID:22259762

Vernimmen, Jarian; Cool, Pegie

2011-01-01

56

The ITQ-37 mesoporous chiral zeolite.  

PubMed

The synthesis of crystalline molecular sieves with pore dimensions that fill the gap between microporous and mesoporous materials is a matter of fundamental and industrial interest. The preparation of zeolitic materials with extralarge pores and chiral frameworks would permit many new applications. Two important steps in this direction include the synthesis of ITQ-33, a stable zeolite with 18 x 10 x 10 ring windows, and the synthesis of SU-32, which has an intrinsically chiral zeolite structure and where each crystal exhibits only one handedness. Here we present a germanosilicate zeolite (ITQ-37) with extralarge 30-ring windows. Its structure was determined by combining selected area electron diffraction (SAED) and powder X-ray diffraction (PXRD) in a charge-flipping algorithm. The framework follows the SrSi(2) (srs) minimal net and forms two unique cavities, each of which is connected to three other cavities to form a gyroidal channel system. These cavities comprise the enantiomorphous srs net of the framework. ITQ-37 is the first chiral zeolite with one single gyroidal channel. It has the lowest framework density (10.3 T atoms per 1,000 A(3)) of all existing 4-coordinated crystalline oxide frameworks, and the pore volume of the corresponding silica polymorph would be 0.38 cm(3) g(-1). PMID:19407798

Sun, Junliang; Bonneau, Charlotte; Cantín, Angel; Corma, Avelino; Díaz-Cabañas, María J; Moliner, Manuel; Zhang, Daliang; Li, Mingrun; Zou, Xiaodong

2009-04-30

57

Zeolite coatings on metal alloys for corrosion resistance, hydrophilicity, and microbiocidal activity  

NASA Astrophysics Data System (ADS)

The recent advent of polycrystalline zeolite coatings on metal alloys has heralded a paradigm shift in zeolitic application and function as well as their requisite synthesis. The prevailing paradigm for zeolite utilization and employment was through the exploitation of their uniform microporosity. We have demonstrated the utility of the non-porous as-synthesized form of high-silica-zeolite (HSZ) MFI coatings on aluminum alloys for corrosion resistance. A single chemical formulation was able to generate excellent corrosion-resistant HSZ MFI coatings on all aluminum alloys studied. Functional zeolite coatings have traditionally been synthesized as coatings comprised of single zeolite species. We have successfully generated functional zeolite hybrid coatings comprised of disparate zeolite species with controlled composition. A three-layer zeolite coating was developed to apply a low-silica-zeolite (LSZ), zeolite Y (ZY), to aluminum substrates. The middle layer was a zeolite hybrid coating of ZY crystals embedded within a MFI matrix. The mixed zeolite middle layer allowed for the adhesion of the single species HSZ MFI bottom layer to the single species LSZ ZY, top layer. A two-layer hydrophilic and antimicrobial hybrid zeolite coating on aluminum alloys was also developed. The base layer was a HSZ MFI coating and the top layer consisted of zeolite A (ZA) crystals embedded within a matrix of HSZ MFI. The ZA crystals are still present at the surface of the hybrid layer, as such; their hydrophilicity is accessible and can be exploited for their hydrophilic and antimicrobial potential. The great utility of the zeolite hybrid layer is realized with the formation of single-layer hybrid coatings on metal alloys. The hybrid coating is made of mixed inorganic crystalline species imbedded in a matrix of HSZ MFI. The inorganic species used is not limited to zeolite types; other inorganic crystalline species can be used. We have generated hybrid coatings made from LSZ ZY and HSZ MR, and hybrid coatings made from hydrotalcite, an inorganic crystalline species distinctly different from zeolite, and HSZ MFI. The single layer hybrid coatings have great utility and their function and application can be easily tuned by changing the zeolite or crystalline inorganic species used to generate them.

Beving, Derek Eugene

58

Structural Characterization of Nanosheet-type MFI Zeolite  

NASA Astrophysics Data System (ADS)

Zeolites are microporous crystalline aluminosilicates and have ordered micropores of a few Å in the structure. Zeolites are widely used in petrochemistry and fine-chemical synthesis because strong acid sites within their uniform micropores enable size- and shape-selective catalysis. Here we show that appropriately designed bifunctional surfactants can direct the formation of zeolite structures on the mesoporous and microporous length scales simultaneously, and thus produce nanosheet-type MFI zeolite that are only 2 nm thick, which corresponds to the b-axis dimension of a single MFI unit cell. The nanosheet-type MFI zeolite showd a significantly increased surface area, high catalytic activities, and excellent thermal and hydrothermal stability.

Sakamoto, Yasuhiro; Choi, Minkee; Na, Kyungsu; Kim, Jeongnam; Park, Woojin; Ryoo, Ryong; Terasaki, Osamu

59

Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host  

SciTech Connect

The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

Conrad Ingram; Mark Mitchell

2007-09-30

60

ZEOLITES: EFFECTIVE WATER PURIFIERS  

EPA Science Inventory

Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

61

The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology.  

PubMed

X-Ray powder diffraction studies have been used to measure the thermal expansion properties of three zeolites with the LTA topology and provide details of the underlying structural changes. Siliceous ITQ-29 and dehydrated and hydrated silver zeolite A have large negative, moderate negative and positive thermal expansion coefficients, respectively. PMID:22558634

Carey, Thomas; Corma, Avelino; Rey, Fernando; Tang, Chiu C; Hriljac, Joseph A; Anderson, Paul A

2012-06-14

62

ZEOLITE COATING SYSTEM FOR CORROSION CONTROL TO ELIMINATE HEXAVALENT CHROMIUM FROM DOD APPLICATIONS  

Microsoft Academic Search

Zeolites are microporous crystalline aluminosilicates with uniform and molecular sized pores. They are non-toxic and have been explored for medical applications. We have been investigating the application of zeolite films as chromium-free protective coatings on aluminum alloys. We have shown that as-synthesized organic template containing high-silica-zeolite (HSZ) MFI coatings on AA-2024-T3 are non-porous and have excellent corrosion resistance in strong

Derek E. Beving; Cory R. O'Neill; Yushan Yan; Nicole Anderson

63

Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy  

PubMed Central

Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources. PMID:23298332

2013-01-01

64

ZEOLITE STRUCTURE ANALYSIS WITH POWDER X-RAY DIFFRACTION AND SOLID-STATE NMR TECHNIQUES  

Microsoft Academic Search

Large advances in the development of catalytic materials were made with the synthesis of zeolites, which are porous crystalline materials that can be used as catalysts, catalyst supports, sorbents and ion exchangers. Zeolite structures consist of T-atoms tetrahedrally coordinated to oxygen atoms, where T can be AI, Si, or any other element capable of isomorphous substitution for Si. The unavailability

G. T. KOKOTAILO; C. A. FYFE

65

Growth of large zeolite crystals in space  

NASA Technical Reports Server (NTRS)

Synthesis studies performed using close analogs of triethanolamine (TEA) have shown that all three hydroxyl groups and the amine group in this molecule are necessary to provide nucleation suppression. Studies using C-13 nuclear magnetic resonance (NMR) revealed that the hydroxyl ions and the amine group are involved in the formation of an aluminum complex. It was also shown that silicate species fo not interact this way with TEA in an alkaline solution. These results suggest that successful aluminum complexation leads to nucleation in zeolite-A crystallization.

Sacco, A., Jr.; Dixon, A.; Thompson, R.; Scott, G.; Ditr, J.

1988-01-01

66

Silicate Emission in the TW Hydrae Association  

E-print Network

The TW Hydrae Association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 microns. In TW Hya the spectrum shows a silicate emission feature that is similar to many other young stars with protostellar disks. The 11.2 micron feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us but also reported by Sylvester and Skinner (1996)) is intermediate in strength between TW Hya and HR 4796.

M. L. Sitko; D. K. Lynch; R. W Russell

2000-08-01

67

Solid state NMR of porous materials : zeolites and related materials.  

PubMed

Solid state NMR spectroscopy applied to the science of crystalline micro- and mesoporous silica materials over the past 10 years is reviewed. A survey is provided of framework structure and connectivity analyses from chemical shift effects of various elements in zeolites including heteroatom substitutions, framework defects and pentacoordinated silicon for zeolites containing fluoride ions. New developments in the field of NMR crystallography are included. Spatial host-guest ordering and confinement effects of zeolite-sorbate complexes are outlined, with special emphasis on NMR applications utilizing the heteronuclear dipolar interaction. The characterization of zeolite acid sites and in situ NMR on catalytic conversions is also included. Finally, the motion of extra-framework cations is investigated in two tutorial cases of sodium hopping in sodalite and cancrinite. PMID:21452082

Koller, Hubert; Weiss, Mark

2012-01-01

68

Thermodynamics of rock forming crystalline solutions  

NASA Technical Reports Server (NTRS)

Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

Saxena, S. K.

1971-01-01

69

Kinetics of silicate exchange in alkaline aluminosilicate solutions.  

PubMed

In strongly alkaline aqueous KOH solutions containing SiIV in large excess over AlIII, the kinetics of exchange of monomeric silicate with small acyclic aluminosilicate solute species is much more rapid than with either cyclic aluminosilicates or any all-silicate anions. Selective inversion recovery 29Si NMR studies of homogeneous solutions of stoichiometric composition 3.0 mol kg-1 of SiO2, 0.1 mol kg-1 of Al2O3, and 8.0 mol kg-1 of K2O in 60-75% D2O gave rate constants of 2.0 +/- 0.2 kg mol-1 s-1 and 17 +/- 4 s-1 for the forward and reverse reactions of monomeric silicate with (HO)3AlOSiOn(OH)(3-n)(n+1)- (n = 2 or 3) at 0 degree C. These rate constants are more than 10(4)-fold faster than those extrapolated from 60 to 90 degrees C for comparable reactions of silicate anions. The greater lability of acyclic aluminate centers relative to silicate is ascribed partly to the availability of HO- groups for condensation reactions on Al and mainly to the ease of expansion of the coordination number of AlIII beyond 4. The latter attribute is diminished when AlIII is constrained to be tetrahedral in cyclic structures. With respect to the mechanism of formation of zeolites from alkaline aqueous media, it is suggested that small, labile AlOSi units add rapidly to growing zeolitic structures "on demand", whereas the more kinetically inert cage or ring structures cannot. This would explain why a silicate or aluminosilicate structure that is dominant among solute species at equilibrium in the presence of a particular cation may bear little or no geometric relation to the zeolitic framework promoted kinetically by that same cation. PMID:11197023

North, M R; Swaddle, T W

2000-06-12

70

Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.  

PubMed

Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required. PMID:24242073

Demirci, Selami; Ustao?lu, Zeynep; Y?lmazer, Gonca Alt?n; Sahin, Fikrettin; Baç, Nurcan

2014-02-01

71

Kinetic Monte Carlo modeling of silicate oligomerization and early gelation.  

PubMed

We present a lattice-gas kinetic Monte Carlo model to investigate the formation of silicate oligomers, their aggregation and the subsequent gelation process. In the early oligomerization stage, the 3-rings are metastable, 5-rings and 6-rings are formed in very small quantities, 4-rings are abundant species, linear and branched species are transformed into more compact structures. Results reveal that the gelation proceeds from 4-ring containing species. A significant amount of 5-rings and 6-rings, sharing Si with 4-ring, form in the aging stage. These reveal the formation mechanism of silicate rings and clusters during zeolite synthesis. PMID:22847244

Zhang, Xue-Qing; van Santen, Rutger A; Jansen, Antonius P J

2012-09-14

72

A study of zeolite film synthesis on porous substrates  

NASA Astrophysics Data System (ADS)

Synthetic zeolites are attractive for chemical processing applications due to their high thermal and chemical stability. Potential new applications include zeolite membranes for gas separation, catalysis, sensor application, etc. The use of zeolite ZSM-5 for gas separation has been widely used due to the intermediate pore size. The formation of a zeolite layer on the heterogeneous surface depends on several factors. This study was conducted in order to investigate the synthesis techniques and the conditions for zeolite layer formation for zeolite ZSM-5 and zeolite LTA. The synthesis of the zeolite ZSM-5 layer was performed using an electrophoretic deposition technique on alpha-alumina substrates. The effects of chemical composition and applied electrical potential were evaluated using SEM, gas permeation, and the Maxwell-Stefan model. The results show that the thickness of the layers is controlled by the synthesis concentration and electrical potential across two electrodes. This indicates that the surface charge has a strong influence on zeolite layer formation on a substrate. The evaluation of the zeolite layers was performed using gas permeation analysis and the modeling using the Maxwell-Stefan diffusion approach. This analysis reveals that small defects in less than 0.1% of the zeolite layer can give a difference of about two orders of magnitude between the membrane diffusivity and zeolite particle diffusivity, which resulted in the high gas permeation rates observed. The zeolite LTA framework is composed of an equal amount of silica and alumina arranged in a three-dimension tetrahedral structure. This high alumina content zeolite possesses a strong negative surface charge in a basic solution due to the substitution of aluminum atoms into a SiO4 tetrahedral structure making it difficult to form a continuous layer in solution. This study is conducted in order to understand the differences in the formation of the zeolite in a solution and on a surface. Synthesis parameters such as synthesis duration, chemical composition, and synthesis temperature were varied. The crystallization kinetics was carried out using the particle size measurement, percent crystallinity from XRD analysis, IR absorption of tetrahedra using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), and the exponential growth model. The relationship of the substrate variation to the zeolite layer quality was examined using SEM and gas permeation tests. The results show that the formation of the zeolite layer depends on the surface nucleation site, the mass transfer rate of the nutrient onto the surface, and the relative surface charge of the zeolite particles and substrates. The evaluation of the electrical double layer effect using the colloid particle interaction theory shows a strong repulsion between zeolite LTA particles and the substrates. Increasing the crystal size results in a stronger repulsion between particles, causing the particles to grow individually and precipitate out of the solution.

Oonkhanond, Bovornlak

73

Diagram of Zeolite Crystals  

NASA Technical Reports Server (NTRS)

The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

2003-01-01

74

Pillared MFI zeolite nanosheets of a single-unit-cell thickness.  

PubMed

Zeolite MFI nanosheets of 2-nm thickness have been hydrothermally synthesized via cooperative assembly between silica and an organic surfactant, which is functionalized with a diquaternary ammonium group. The zeolite nanosheets have been further assembled into their ordered multilamellar mesostructure through hydrophobic interactions between the surfactant tails located outside the zeolite nanosheet. This assembly process involves successive transformations from an initially hexagonal mesophase to a multilamellar mesophase without crystallinity and then to a lamellar mesophase with a crystalline zeolite framework. The mesopore volume in the interlamellar space could be retained by supporting the zeolite nanosheets with silica pillars, as in pillared clays, even after surfactant removal by calcination. The mesopore diameters could be controlled according to the surfactant tail lengths. Due to the interlamellar structural coherence, the hierarchically mesoporous/microporous zeolite could exhibit small-angle X-ray diffraction peaks up to the fourth-order reflections corresponding to the interlayer distance. In addition, an Ar adsorption analysis and transmission electron microscopic investigation indicated that the pillars were highly likely to be built with an MFI structure. The present approach using a zeolite structure-directing functional group contained in a surfactant would be suitable for the synthesis of other related nanomorphous zeolites in the future. PMID:20136135

Na, Kyungsu; Choi, Minkee; Park, Woojin; Sakamoto, Yasuhiro; Terasaki, Osamu; Ryoo, Ryong

2010-03-31

75

Hierarchical zeolites from class F coal fly ash  

NASA Astrophysics Data System (ADS)

Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons up to C9, a performance attesting the hierarchal pore structure. The preliminary techno-economic feasibility assessment demonstrates a net energy saving of 75% and cost saving of 63% compared to the commercial zeolite manufacturing process.

Chitta, Pallavi

76

Composite zeolite membranes  

DOEpatents

A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

Nenoff, Tina M. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Reed, Scott T. (Albuquerque, NM)

2002-01-01

77

ZEOLITE CHARACTERIZATION TESTING  

SciTech Connect

The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

Jacobs, W; Herbert Nigg, H

2007-09-13

78

The effect of Si\\/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size  

Microsoft Academic Search

ZSM-5 zeolite crystal with different Si\\/Al molar ratios in the range of 10-50 was synthesized using sodium silicate, aluminum sulfate and tetrapropylammonium bromide (TPA-Br) as the organic template. The produced samples were characterized using XRD, FT-IR, SEM and EDX techniques. All synthesized samples were found to be ZSM-5 zeolite as confirmed by XRD and supported by FT-IR. SEM results showed

L. Shirazi; E. Jamshidi; M. R. Ghasemi

2008-01-01

79

Sorption effects in zeolite catalysis  

SciTech Connect

Catalysis by zeolites and other microcrystalline materials is characterized by an unusually high degree of fundamental understanding. In acid catalysis, the active sites are part of the zeolite structure, not surface defects, and their nature and number can often be accurately determined. The dynamics of adsorption and desorption of reactant and product molecules, i.e. diffusion in zeolites, has also been extensively studied. Much less emphasis has been placed on a quantitative understanding of thermodynamic equilibrium sorption phenomena in zeolite catalyzed reactions. This talk will briefly discuss the principles and experimental data for hydrocarbon sorption in a variety of zeolites. It will then describe the application of these principles to a variety of zeolite catalyzed reactions. These include rate enhancements by non-acidic zeolites in thermal Diels-Alder reactions and paraffin cracking, the effect of carbon number and of zeolite structure on the observed activation energy of catalytic cracking, and the observation of very strong rate inhibition in ethylbenzene disproportionation.

Haag, W.O.

1996-10-01

80

Preparation of functionalized zeolitic frameworks  

DOEpatents

The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

2012-11-20

81

Preparation of functionalized zeolitic frameworks  

DOEpatents

The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

2013-07-09

82

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum  

E-print Network

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium

Ahmad, Sajjad

83

Mg/Fe FRACTIONATION IN CIRCUMSTELLAR SILICATE DUST INVOLVED IN CRYSTALLIZATION  

SciTech Connect

Infrared astronomical observations of oxygen-rich young and evolved stars show that only magnesium-rich crystalline silicates exist in circumstellar regions, and iron, one of the most important dust-forming elements, is extremely depleted. The compositional characteristic of circumstellar crystalline silicates is fundamentally different from that of primitive extraterrestrial materials in our solar system, such as chondritic meteorites and interplanetary dust particles. Amorphous silicates are ubiquitous and abundant in space, and are a promising carrier of iron. However, since the first detection of crystalline silicates, there has been an unsolved inconsistency due to differing compositions of coexisting crystalline and amorphous phases, considering that amorphous silicates have been expected to be precursors of these crystals. Here we show the first experimental evidence that Fe-depleted olivine can be formed by crystallization via thermal heating of FeO-bearing amorphous silicates under subsolidus conditions. Mg/Fe fractionation involved in crystallization makes possible to coexist Mg-rich crystalline silicates with Fe-bearing amorphous silicates around stars.

Murata, K.; Takakura, T.; Chihara, H.; Koike, C.; Tsuchiyama, A. [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)], E-mail: keisuke@astroboy.ess.sci.osaka-u.ac.jp

2009-05-10

84

Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts  

Microsoft Academic Search

Zeolites-microporous crystalline aluminosilicates-are widely used in petrochemistry and fine-chemical synthesis because strong acid sites within their uniform micropores enable size- and shape-selective catalysis. But the very presence of the micropores, with aperture diameters below 1nm, often goes hand-in-hand with diffusion limitations that adversely affect catalytic activity. The problem can be overcome by reducing the thickness of the zeolite crystals, which

Minkee Choi; Kyungsu Na; Jeongnam Kim; Yasuhiro Sakamoto; Osamu Terasaki; Ryong Ryoo

2009-01-01

85

The importance of zeolites in the potential high-level radioactive waste repository at Yucca Mountain, Nevada  

SciTech Connect

Zeolitic rocks play an important role in retarding the migration of radionuclides that occur in solution as simple cations (Cs, Sr, Ba). However, the interaction of zeolites with complex transuranic species in solution provides little if any advantage over other common silicate minerals. The most important consequences of zeolite occurrences near a high-level radioactive waste repository environment are likely to be their response to thermal loading and their impact on site hydrology. Partial zeolite dehydration during the early thermal pulse from the repository and rehydration as the repository slowly cools can have an important impact on the water budget of a repository in unsaturated rocks, provided that the long-term heating does not result in zeolite destabilization.

Vaniman, D.T.; Bish, D.L.

1993-07-01

86

A high acid mesoporous USY zeolite prepared by alumination  

NASA Astrophysics Data System (ADS)

A high-acidity HUSY zeolite with mesoporous structure was prepared by alumination with a dilute aqueous NaAlO2 solution and characterized by XRD, N2 adsorption, IR framework vibration and 29Si MAS NMR methods. The results indicated the extra-framework aluminum was reinserted into the tetrahedral framework through isomorphic substitution of framework Si (0Al) sites by Al ions, whereas the crystal and micropore structure were unaltered. FTIR spectra of hydroxyl vibrations and pyridine adsorbed on realuminated zeolites showed that the number of Brønsted acid sites and strong Lewis acid sites increased whereas weak Lewis acid sites decreased twice. The mesoporous structure composed of inter-and intra-crystalline pores in the aluminated HUSY increased the external surface area of the zeolite, improving accessibility of molecules to the active sites and enhancing its catalytic ability. The realuminated HUSY zeolite supported with Ru catalyst exhibited a higher catalytic activity for benzene hydrogenation than the parent HUSY zeolite; the reaction rate in comparison to the mesozeolite increased by 5.5 times.

Ma, Jinghong; Kang, Yuhong; Ma, Ning; Hao, Wenming; Wang, Yan; Li, Ruifeng

2013-01-01

87

Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate  

NASA Technical Reports Server (NTRS)

Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

2005-01-01

88

Zeolite crystal growth in space  

NASA Technical Reports Server (NTRS)

The growth of large, uniform zeolite crystals in high yield in space can have a major impact on the chemical process industry. Large zeolite crystals will be used to improve basic understanding of adsorption and catalytic mechanisms, and to make zeolite membranes. To grow large zeolites in microgravity, it is necessary to control the nucleation event and fluid motion, and to enhance nutrient transfer. Data is presented that suggests nucleation can be controlled using chemical compounds (e.g., Triethanolamine, for zeolite A), while not adversely effecting growth rate. A three-zone furnace has been designed to perform multiple syntheses concurrently. The operating range of the furnace is 295 K to 473 K. Teflon-lined autoclaves (10 ml liquid volume) have been designed to minimize contamination, reduce wall nucleation, and control mixing of pre-gel solutions on orbit. Zeolite synthesis experiments will be performed on USML-1 in 1992.

Sacco, Albert, Jr.; Thompson, Robert W.; Dixon, Anthony G.

1991-01-01

89

SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES  

SciTech Connect

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

Michael Grutzeck

1999-04-30

90

SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES  

SciTech Connect

It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

MICHAEL GRUTZECK

1998-10-31

91

Calculation of quarzite crystallinity index by infrared absorption spectrum  

NASA Astrophysics Data System (ADS)

Quarzites retrieved from the Sopks-248 deposit and Belokamenka deposit, Antonovsk field cluster (Russia, West Siberia) were studied by the infrared spectroscopy method. The silicate thickness alteration rate was determined and the most crystalline quartzite variations were identified by defining the crystallinity index Ki according infrared absorption spectrum. To calculate "crystallinity index" the ratio of quintet peaks of 778 cm-1 as to peaks of 695 cm-1 were applied. It should be noted that the most crystalline quartzite variations are characterized by the relative value of crystallinity index.

Razva, O.; Anufrienkova, A.; Korovkin, M.; Ananieva, L.; Abramova, R.

2014-08-01

92

Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design.  

PubMed

The introduction of synthetic zeolites has led to a paradigm shift in catalysis, separations, and adsorption processes, due to their unique properties such as crystallinity, high-surface area, acidity, ion-exchange capacity, and shape-selective character. However, the sole presence of micropores in these materials often imposes intracrystalline diffusion limitations, rendering low utilisation of the zeolite active volume in catalysed reactions. This critical review examines recent advances in the rapidly evolving area of zeolites with improved accessibility and molecular transport. Strategies to enhance catalyst effectiveness essentially comprise the synthesis of zeolites with wide pores and/or with short diffusion length. Available approaches are reviewed according to the principle, versatility, effectiveness, and degree of reality for practical implementation, establishing a firm link between the properties of the resulting materials and the catalytic function. We particularly dwell on the exciting field of hierarchical zeolites, which couple in a single material the catalytic power of micropores and the facilitated access and improved transport consequence of a complementary mesopore network. The carbon templating and desilication routes as examples of bottom-up and top-down methods, respectively, are reviewed in more detail to illustrate the benefits of hierarchical zeolites. Despite encircling the zeolite field, this review stimulates intuition into the design of related porous solids (116 references). PMID:18949124

Pérez-Ramírez, Javier; Christensen, Claus H; Egeblad, Kresten; Christensen, Christina H; Groen, Johan C

2008-11-01

93

Crystal Structure and Chemical Composition of a Presolar Silicate from the Queen Elizabeth Range 99177 Meteorite  

NASA Technical Reports Server (NTRS)

Mineral characterization of presolar silicate grains, the most abundant stardust phase, has provided valuable information about the formation conditions in circumstellar environments and in super-nova (SN) outflows. Spectroscopic observations of dust around evolved stars suggest a majority of amor-phous, Mg-rich olivine grains, but crystalline silicates, most of which are pyroxene, have also been observed [1]. The chemical compositions of hundreds of presolar silicates have been determined by Auger spectroscopy and reveal high Fe contents and nonstoichiometric compositions intermediate to olivine and pyroxene [2-6]. The unexpectedly high Fe contents can partly be attributed to secondary alteration on the meteorite parent bodies, as some grains have Fe isotopic anomalies from their parent stellar source [7]. Only about 35 presolar silicates have been studied for their mineral structures and chemical compositions by transmission electron microscopy (TEM). These grains display a wide range of compositions and structures, including crystalline forsterite, crystalline pyroxene, nanocrystalline grains, and a majority of amorphous nonstoichiometric grains. Most of these grains were identified in the primitive Acfer 094 meteorite. Presolar silicates from this meteorite show a wide range of Fe-contents, suggestive of secondary processing on the meteorite parent body. The CR chondrite QUE 99177 has not suffered as much alteration [8] and displays the highest presolar silicate abundance to date among carbonaceous chondrites [3, 6]. However, no mineralogical studies of presolar silicates from this meteorite have been performed. Here we examine the mineralogy of a presolar silicate from QUE 99177.

Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S.

2013-01-01

94

Silicate Stardust in Meteorites  

NASA Astrophysics Data System (ADS)

One of the most exciting discoveries in cosmochemistry during the past 15 years is the presence of presolar grains in meteorites. They are identified by the unusual abundances of isotopes of oxygen, silicon, and other elements. Presolar grains, also called stardust, are exotic compounds such as diamond, graphite, aluminum oxide, and silicon carbide. Why are there no silicates? Spectroscopic observations of young stars show that silicates are abundant. This means that silicates are abundant in molecular clouds like the one in which the solar system formed. Cosmochemists wondered why do we not find silicates in the most primitive extraterrestrial materials: interplanetary dust particles (IDPs) and primitive chondrites. These materials are the least altered since they formed and if any preserved presolar silicate grains, IDPs and chondrites would. Were they all destroyed as the solar system formed? Or was it that we were looking for stardust in all the wrong places? As we reported previously [see PSRD article A New Type of Stardust], Scott Messenger and colleagues have found silicates in IDPs. Now, researchers report finding presolar silicate grains in primitive chondritic meteorites. Ann Nguyen and Ernst Zinner (Washington University in St. Louis) and Kazuhide Nagashima and Hisayoshi Yurimoto (Tokyo Institute of Technology), with Alexander Krot (University of Hawaii) used advanced instrumentation to image the isotopic compositions of small regions of the Acfer 094 carbonaceous chondrite and found several silicate grains with isotopically anomalous oxygen isotopes, a clear indicator of presolar origin. Nagashima and his colleagues also investigated the primitive CR2 carbonaceous chondrite Northwest Africa 530, finding presolar grains in it as well. The grains will shed (star)light on the histories of the stars in which they formed. The relative abundances of presolar silicates in different types of meteorites will help cosmochemists understand the processes of heating and chemical reaction that took place in the cloud of gas and dust in which the Sun and planets formed. The significance of this work is discussed in a lucid editorial by Sara Russell (Natural History Museum, London.)

Taylor, G. J.

2004-06-01

95

Ni–Pt\\/H–Y Zeolite Catalysts for Disproportionation of Toluene and 1,2,4-trimethylbenzene  

Microsoft Academic Search

Ni–Pt\\/H–Y zeolite catalysts with different Ni contents were prepared and applied to the disproportionation of toluene and 1,2,4-trimethylbenzene in the temperature range 250–400 °C. The line broadening XRD analysis indicates that the increasing Ni addition decreases the crystallinity of zeolites. ESCA studies show the complete reduction of Ni species up to 0.3 wt.% Ni addition over 0.1 wt.% Pt\\/H-Y and further

A. Geetha Bhavani; D. Karthekayen; A. Sreenivasa Rao; N. Lingappan

2005-01-01

96

Thermal behavior of natural zeolites  

SciTech Connect

Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H{sub 2}0 upon heating, but recent data show that distinct ``types`` of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H{sub 2}0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating.

Bish, D.L.

1993-09-01

97

Solid state radioluminescent sources using zeolites  

Microsoft Academic Search

Inorganic zeolites show promise as an alternative to traditional tritium gas tube light sources. Greater proximity of tritium atoms and luminescing centers, as well as greater tritium loading density, have been obtained within the zeolite aluminosilicate matrix. Zeolites are in addition optically clear and radiation stable. The zeolite radioluminescence program is described. Procedures for obtaining light sources are presented and

John T. Gill; Daniel B. Hawkins; Clifford L. Renschler

1990-01-01

98

Solid state radioluminescent sources using zeolites  

NASA Astrophysics Data System (ADS)

Inorganic zeolites show promise as an alternative to traditional tritium gas tube light sources. Greater proximity of tritium atoms and luminescing centers, as well as greater tritium loading density, have been obtained within the zeolite aluminosilicate matrix. Zeolites are in addition optically clear and radiation stable. The zeolite radioluminescence program is described. Procedures for obtaining light sources are presented and results are discussed.

Gill, John T.; Hawkins, Daniel B.; Renschler, Clifford L.

99

Vibrational spectroscopy of the double 4-, 6-membered rings in silicates and siloxanes  

NASA Astrophysics Data System (ADS)

Siloxanes and silicates are different chemical compounds but they all contain silicooxygen units. Double 6-membered silicooxygen rings are important building units of more complicated silicate structures (silicalites and zeolites). The aim of this work is to understand vibrational spectra of double 6-membered cyclosilicates based on the spectra of selected siloxanes. For the selected siloxane molecules infrared spectra have been calculated (using various terminal groups) by ab initio method and compared with the experimental ones of silicates. Visualization of the calculated normal modes has been used as a tool to define the band type in the spectra of siloxanes and to interpret them in terms of group-characteristic frequencies as tetrahedral, overtetrahedral and ring bands. Similarities between IR spectra of T8 and T12 siloxanes and the spectra of double 4-, 6-membered cyclosilicates allow to identify the bands in the experimental spectra of silicates.

Handke, Miros?aw; Jastrz?bski, Witold

2005-06-01

100

Zeolite formation from coal fly ash and its adsorption potential.  

PubMed

The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m2/g. Optimal crystallization temperature and time were 90 degrees C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. PMID:19842322

Ruen-ngam, Duangkamol; Rungsuk, Doungmanee; Apiratikul, Ronbanchob; Pavasant, Prasert

2009-10-01

101

Solid-state radioluminescent zeolite-containing composition and light sources  

DOEpatents

A new type of RL light source consisting of a zeolite crystalline material, the intralattice spaces of which a tritiated compound and a luminophore are sorbed, and which material is optionally further dispersed in a refractive index-matched polymer matrix.

Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

1992-01-01

102

Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method  

ERIC Educational Resources Information Center

Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

Saini, Vipin K.; Pires, Joao

2012-01-01

103

European Microgravity Facilities for ZEOLITE Experiments on the International Space Station  

NASA Astrophysics Data System (ADS)

Synthetic zeolites are complex porous silicates. Zeolites are applied as catalysts, adsorbents and sensors. Whereas the traditional applications are situated in the petrochemical area, zeolite catalysis and related zeolite-based technologies have a growing impact on the economics and sustainability of products and processes in a growing number of industrial sectors, including environmental protection and nanotechnology. A Sounding Rocket microgravity experiment led to significant insight in the physical aggregation patterns of zeolitic nanoscopic particles and the occurrence of self-organisation phenomena when undisturbed by convection. The opportunity of performing longer microgravity duration experiments on zeolite structures was recently offered in the frame of a Taxi-Flight to the ISS in November 2002 organized by Belgium and ESA. Two facilities are currently under development for this flight. One of them will use the Microgravity Science Glovebox (MSG) in the US Lab. Destiny to achieve thermal induced self-organization of different types of Zeosil nanoslabs by heating and cooling. The other facility will be flown on the ISS Russian segment and will allow to form Zeogrids at ambient temperature. On the other hand, the European Space Agency (ESA) is studying the possibility of developing a dedicated insert for zeolite experiments to be used with the optical and diagnostic platform of the Protein Crystallisation Diagnostic Facility (PCDF), that will fly integrated in the European Drawer Rack on the Columbus Laboratory starting in 2004. This paper will present the approach followed by ESA to prepare and support zeolite investigations in microgravity and will present the design concept of these three facilities.

Pletser, V.; Minster, O.; Kremer, S.; Kirschhock, C.; Martens, J.; Jacobs, P.

2002-01-01

104

Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany  

NASA Astrophysics Data System (ADS)

The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine-augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca-Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in and decrease in of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

Weisenberger, Tobias Björn; Spürgin, Simon; Lahaye, Yann

2014-11-01

105

Steps toward interstellar silicate mineralogy. V. Thermal Evolution of Amorphous Magnesium Silicates and Silica  

NASA Astrophysics Data System (ADS)

The thermally induced amorphous-to-crystalline transition has been studied for bulk sheets and micrometre-sized particles of magnesium silicate glass (MgSiO3), nanometre-sized amorphous magnesium silicate (MgSiO3 and Mg2SiO4 smokes) and amorphous silica particles (SiO2). Silicate glass was produced by the shock-quenching of melts. Samples of nanometre-sized smoke particles have been obtained by the laser ablation technique. Both the MgSiO3 and the Mg2SiO4 smokes have been found to consist of two particle species; particles of smaller size ranging in diametre from 10 nm to about 100 nm and bigger size ranging from a few 100 nm to almost 3 micrometres in diametre. Nanometre-sized particles have been shown to be depleted in magnesium whereas the micrometre-sized particles were found to be enriched in Mg. Generally, the particles are composed of nonstoichiometric magnesium silicates with compositions varying even inside of the particles. Frequently, the particles contained internal voids that are assumed to have been formed by thermal shrinkage or outgassing of the particles' interior during cooling. Annealing at 1000 K transformed the magnesium silicate smokes into crystalline forsterite (c-Mg2SiO4), tridymite (a crystalline modification of SiO2) and amorphous silica (a-SiO2) according to the initial Mg/Si-ratio of the smoke. Crystallization took place within a few hours for the Mg2SiO4 smoke and within one day for the MgSiO3 smoke. The MgSiO3 glass evolved more slowly because crystallization started at the sample surface. It has been annealed at temperatures ranging from 1000 to 1165 K. In contrast to the smoke samples, MgSiO3 glass crystallized as orthoenstatite (MgSiO3). Only after 50 hours of annealing at 1000 K, weak indications of forsterite and tridymite formation have been found in the X-ray diffraction spectra. At a temperature of 1000 K, amorphous silica nanoparticles showed distinctly lower rates of thermal evolution compared with the magnesium silicates. At 1220 K, the timescale of crystallization of a-SiO2 into cristobalite and tridymite amounts to 4.5 h. From the experiments, crystallization parameters have been obtained: activation energy and velocity of crystal growth. The spectra shown in this study will be made publically available in the electronic database (http://www.astro.uni-jena.de).

Fabian, D.; Jäger, C.; Henning, Th.; Dorschner, J.; Mutschke, H.

2000-12-01

106

Oxygen and hydrogen isotope geochemistry of zeolites  

NASA Technical Reports Server (NTRS)

Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

Karlsson, Haraldur R.; Clayton, Robert N.

1990-01-01

107

Dispersion and orientation of zeolite ZSM-5 crystallites within a fluid catalytic cracking catalyst particle.  

PubMed

Confocal fluorescence microscopy was employed to selectively visualize the dispersion and orientation of zeolite ZSM-5 domains inside a single industrially applied fluid catalytic cracking (FCC) catalyst particle. Large ZSM-5 crystals served as a model system together with the acid-catalyzed fluorostyrene oligomerization reaction to study the interaction of plane-polarized light with these anisotropic zeolite crystals. The distinction between zeolite and binder material, such as alumina, silica, and clay, within an individual FCC particle was achieved by utilizing the anisotropic nature of emitted fluorescence light arising from the entrapped fluorostyrene-derived carbocations inside the zeolite channels. This characterization approach provides a non-invasive way for post-synthesis characterization of an individual FCC catalyst particle in which the size, distribution, orientation, and amount of zeolite ZSM-5 aggregates can be determined. It was found that the amount of detected fluorescence light originating from the stained ZSM-5 aggregates corresponds to about 15?wt?%. Furthermore, a statistical analysis of the emitted fluorescence light indicated that a large number of the ZSM-5 domains appeared in small sizes of about 0.015-0.25??m(2), representing single zeolite crystallites or small aggregates thereof. This observation illustrated a fairly high degree of zeolite dispersion within the FCC binder material. However, the highest amount of crystalline material was aggregated into larger domains (ca. 1-5??m(2)) with more or less similarly oriented zeolite crystallites. It is clear that this visualization approach may serve as a post-synthesis quality control on the dispersion of zeolite ZSM-5 crystallites within FCC particles. PMID:24616006

Sprung, Christoph; Weckhuysen, Bert M

2014-03-24

108

The synthesis of zeolites from fly ash and the properties of the zeolite products  

Microsoft Academic Search

Fly ash produced during the combustion of powdered coal could be converted up to 45% into zeolite. By varying the experimental conditions different types of zeolite were produced, e.g. zeolite Na-P1, zeolite K-G and zeolite ZK19. By this zeolitization process the cation exchange capacity (CEC) was raised from 0.02 to circa 2.4 meq\\/g. Anionic heavy metals were largely extracted by

G Steenbruggen; G. G Hollman

1998-01-01

109

Catalytic cracking of hydrocarbons with oxygen promoted alkali metal zeolite cracking catalyst  

SciTech Connect

This patent describes a process for the catalytic cracking of a hydrocarbon oil. It comprises contacting the oil with 0.001 to 0.1 weight parts of oxygen for each weight of oil at a temperature in excess 1000 {degrees} F. with a catalyst which is essentially free of shape selective combustion catalyst and comprising a large pore, alkali metal silicate zeolite cracking catalyst.

Chen, N.Y.; Degnan, T.F.

1989-11-21

110

Calcium silicate insulation structure  

DOEpatents

An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

Kollie, Thomas G. (Oak Ridge, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01

111

Zeolites as solid solvents 1 Paper presented at the International Symposium `Organic Chemistry and Catalysis' on the occasion of the 65th birthday of Prof. H. van Bekkum, Delft, Netherlands, 2–3 October 1997. 1  

Microsoft Academic Search

In addition to their natural appeal as crystalline solids possessing a void intracrystalline volume consisting of channels and cages, sometimes interconnected, zeolites also have remarkable features resulting from the surface curvature of their internal surface. These features involve non-covalent interactions between the framework of the zeolite and molecules adsorbed in their intracrystalline free space. These interactions extend beyond the molecular

Eric G. Derouane

1998-01-01

112

Properties and applications of zeolites.  

PubMed

Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix. PMID:21047018

Rhodes, Christopher J

2010-01-01

113

Thermal Processing of Silicate Dust in the Solar Nebula: Clues from Primitive Chondrite Matrices  

E-print Network

The most abundant matrix minerals in chondritic meteorites, hydrated phyllosilicates and ferrous olivine crystals, formed predominantly in asteroids during fluid-assisted metamorphism. We infer that they formed from minerals present in three less altered carbonaceous chondrites that have silicate matrices composed largely of micrometer- and nanometer-sized grains of crystalline forsterite, Mg2SiO4, and enstatite MgSiO3, and amorphous, ferromagnesian silicate. Compositional and structural features of enstatite and forsterite suggest that they formed as condensates that cooled below 1300 K at \\~1000 K/h. Most amorphous silicates are likely to be solar nebula condensates also, as matrix, which is approximately solar in composition, is unlikely to be a mixture of genetically unrelated materials with different compositions. Since chondrules cooled at 10-1000 K/h, and matrix and chondrules are chemically complementary, most matrix silicates probably formed close to chondrules in transient heating events. Shock heating is favored as nebular shocks capable of melting millimeter-sized aggregates vaporize dust. The crystalline and amorphous silicates in the primitive chondrite matrices share many characteristic features with silicates in chondritic interplanetary dust particles suggesting that most of the crystalline silicates and possibly some amorphous silicates in the interplanetary dust particles are also nebular condensates. Except for small amounts of refractory oxides that formed with Ca-Al-rich inclusions at the inner edge of the disk and presolar dust, most of the crystalline silicate dust that accreted into chondritic asteroids and long-period comets appears to have formed from shock heating at ~2-10 AU. Forsterite crystals around young stars may have a similar origin.

Edward R. D. Scott; Alexander N. Krot

2005-01-05

114

Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil  

NASA Astrophysics Data System (ADS)

Natural zeolite such as heulandite and clipnotilolite are found in abundant quantities in many regions in the world, particularly in Indonesia. The catalytic ability of natural zeolites were investigated in aquathermolysis in order to decreasing the viscosity of heavy oil. Prior to test the ability, a milling treatment of natural zeolite was carried out on variation of time 4, 6 and 8 hrs and subsequently followed by activation with a simple heating at 300°C. The physical and chemical properties of zeolites before and after of milling as well as the activation were characterized using XRD, SEM and EDS. XRD results indicated the decreasing crystallinity of the treated zeolite. SEM results showed that the particle size was from 0.5 to 2 ?m, indicating the reducing of particle size after the treatment. The catalytic test showed that the addition of natural zeolite (0.5 wt.%) on the mixed of heavy oil and water in an autoclave at temperature 200°C during 6 hrs can reduce the viscosity of heavy oil up to 65%.

Merissa, Shanti; Fitriani, Pipit; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

2013-09-01

115

Hierarchical hybrid organic-inorganic materials with tunable textural properties obtained using zeolitic-layered precursor.  

PubMed

Novel layered zeolitic organic-inorganic materials have been synthesized using a two-dimensional zeolite precursor IPC-1P prepared by a top-down approach from zeolite UTL. The formation of porous materials containing organic linkers or polyhedral oligomeric siloxane covalently bonded to zeolite layers in the interlayer space was confirmed by a variety of characterization techniques (N2/Ar sorption analysis, XRD, (29)Si and (13)C NMR, TEM). The organic-inorganic porous hybrids obtained by intercalation with silsesquioxane posessed layered morphology and contained large crystalline domains. The hybrids exhibited mesoporous or hierarchical micro-/mesoporous systems, stable up to 350 °C. Textural properties of the formed zeolitic organic-inorganic materials can be controlled by varying the linker or synthetic conditions over a broad range. Surface areas and pore volumes of synthesized hybrids significantly exceed those for parent zeolite UTL and corresponding swollen material; the amount of micropores increased with increasing rigidity and size of the organic linker in the order biphenyl > phenylene > ethanediyl. PMID:24451039

Opanasenko, Maksym; Parker, Wallace O'Neil; Shamzhy, Mariya; Montanari, Erica; Bellettato, Michela; Mazur, Michal; Millini, Roberto; ?ejka, Ji?í

2014-02-12

116

The growth of zeolites A, X and mordenite in space  

NASA Technical Reports Server (NTRS)

Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of supersaturation, and this gel undergoes a continuous 'polymerization' type reaction during nucleation and growth. Generally, for structure characterization and diffusion studies, which are useful in evaluating zeolites for improving yield in petroleum refining as well as for many of the proposed new applications (e.g., catalytic membranes, molecular electronics, chemical sensors) large zeolites (greater than 100 to 1000 times normal size) with minimum lattice defects are desired. Presently, the lack of understanding of zeolite nucleation and growth precludes the custom design of zeolites for these or other uses. It was hypothesized that the microgravity levels achieved in an orbiting spacecraft could help to isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation, which occurs since zeolites are twice as dense as the solution from which they are formed. This was expected to promote larger crystals by allowing growing crystals a longer residence time in a high-concentration nutrient field. Thus it was hypothesized that the microgravity environment of Earth orbit would allow the growth of large, more defect-free zeolite crystals in high yield.

Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

1994-01-01

117

IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS  

SciTech Connect

The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

Conrad Ingram; Mark Mitchell

2004-06-30

118

Copper-containing zeolite catalysts  

DOEpatents

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, Geoffrey L. (Baton Rouge, LA); Kanazirev, Vladislav (Sofia, BG)

1996-01-01

119

Copper-containing zeolite catalysts  

DOEpatents

A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

Price, G.L.; Kanazirev, V.

1996-12-10

120

Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43.  

PubMed

The formation of mesopores in microporous zeolites is generally performed by postsynthesis acid, basic, and steam treatments. The hierarchical pore systems thus formed allow better adsorption, diffusion, and reactivity of these materials. By combining organic and inorganic structure-directing agents and high-throughput methodologies, we were able to synthesize a zeolite with a hierarchical system of micropores and mesopores, with channel openings delimited by 28 tetrahedral atoms. Its complex crystalline structure was solved with the use of automated diffraction tomography. PMID:21868673

Jiang, Jiuxing; Jorda, Jose L; Yu, Jihong; Baumes, Laurent A; Mugnaioli, Enrico; Diaz-Cabanas, Maria J; Kolb, Ute; Corma, Avelino

2011-08-26

121

Geochemical assessment of a siliceous limestone sample for cement making  

Microsoft Academic Search

A low grade siliceous limestone sample from the Jayantipuram mine of Andhra Pradesh, India, has been investigated for its\\u000a suitability for cement making. Petrological as well as X-ray diffraction pattern studies indicated that the limestone sample\\u000a was crystalline and dominantly composed of calcite and quartz. They are simple in mineralogy, and yet they have variable silica\\u000a and lime contents. Geochemical

D. S. Rao; T. V. Vijayakumar; S. Prabhakar; G. Bhaskar Raju

2011-01-01

122

Mixing of zeolite powders and molten salt  

Microsoft Academic Search

Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete

C. Pereira; V. N. Zyryanov; M. A. Lewis; J. P. Ackerman

1996-01-01

123

Thermal behaviour of a zeolitic tuff  

Microsoft Academic Search

Natural zeolites undergo structural changes after heating which open their possible use in different fields, related to their chemical and physical properties, such as building stone, lightweight aggregate, ceramic foam, concrete bricks, tiles, porcelain stoneware and additive in puzzolonic cements. In this study, thermal behavior of zeolitic tuff quarried from Gördes-Manisa, region of Turkey was investigated. Zeolitic rocks were first

Ö. Ça?lar Duvarc?; Y. Akdeniz; F. Özm?hç?; S. Ülkü; D. Balköse; M. Çiftçio?lu

2007-01-01

124

Interaction of phenol with NaX zeolite as studied by 1H MAS NMR, 29Si MAS NMR and 29Si CP MAS NMR spectroscopy  

Microsoft Academic Search

The interaction of phenol with zeolite NaX has been studied by 1H and 29Si MAS and 29Si-CP-MAS NMR spectroscopy. A large displacement of the chemical shift of hydroxyl protons from 1.2 ppm in the crystalline state to about 9 ppm occurs upon H-bonding of phenol to basic oxygen atoms of the zeolite. An enhancement of the 29Si-CP-MAS signal is observed

T Beutel; M.-J Peltre; B. L Su

2001-01-01

125

Characterization of hafnium silicate thin films grown by MOCVD using a new combination of precursors  

NASA Astrophysics Data System (ADS)

Hafnium silicate [(HfO2)X(SiO2)1-X] films were deposited by metalorganic chemical vapor deposition using a new combination of precursors: tetrakis-diethylamido-hafnium [Hf(NEt2)4] and tetra-n-butyl-orthosilicate [Si(OnBu)4]. An atomically flat interface of silicate/silicon was observed with no interfacial silicon oxide layers. The impurity concentrations in grown films were less than 0.1 at% (below detection limits). Hafnium silicate films were amorphous up to 800°C. Above 900°C, phase separation of the films occurred into crystalline HfO2 and amorphous Si-rich silicate phases. Dielectric constant (k) of the Hf-silicate films was about 8. Hysteresis in capacitance-voltage (C-V) measurements was less than 0.1 V.

Kim, Jaehyun; Yong, Kijung

2004-03-01

126

Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties  

SciTech Connect

Bifunctional catalysts consisting of cobalt and nickel supported on HY zeolite were synthesized by solvent excess impregnation and characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, atomic absorption spectroscopy, thermogravimetric analysis and nitrogen adsorption. The profiles of metal reduction on zeolite were obtained by temperature-programmed reduction. The catalytic properties of the bifunctional catalysts were verified by n-hexane hydroconversion. X-ray diffraction and microstructural analyses showed the presence of crystalline phases in HY zeolite and in samples after impregnation. A decrease in the micropore surface area was observed by nitrogen adsorption experiments and attributed to a reduction in the accessibility to micropores. The catalysts showed catalytic activity in the hydroconversion of n-hexane with selectivity to branched hydrocarbons. Such catalytic activity was related to the acid and metallic properties of the bifunctional catalysts used.

Garrido Pedrosa, Anne M. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)]. E-mail: annemgp@yahoo.com; Souza, Marcelo J.B. [Federal University of Sergipe, Department of Chemical Engineering, 49100-000 Sao Cristovao-SE (Brazil); Melo, Dulce M.A. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil); Araujo, Antonio S. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)

2006-06-15

127

Entrapping of Cs and Sr in heat-treated zeolite matrices  

NASA Astrophysics Data System (ADS)

A solidification-stabilization procedure aiming at immobilizing Cs+ and Sr2+, two of the radioactive species more frequently present in nuclear power plant wastewaters, was successfully tested. Both cations were simultaneously exchanged by a blend of two zeolites, a phillipsite-rich tuff, selective for Cs+, and a synthetic zeolite Linde-type A, selective for Sr2+. The contaminated material was then heat treated up to 1200 °C with the result of safely immobilizing both cations, as demonstrated by leaching estimation with three different procedures. X-ray studies of the single cation-loaded zeolites or mixture of them helped to interpret the immobilization mechanism, involving cation trapping in chemically stable crystalline/amorphous matrices formed as a result of firing.

Liguori, B.; Caputo, D.; Iucolano, F.; Aprea, P.; de Gennaro, B.

2013-04-01

128

An emulsion-based droplet hydrothermal synthesis method for the production of uniform sized zeolite nanocrystals.  

PubMed

A droplet based new hydrothermal synthesis method for nano-zeolite synthesis in bulk amount with uniform size, shape and morphology is presented. The proposed process addresses the limitation and shortcomings of droplet based microfluidic reactors and conventional hydrothermal methods. The process has been designed on the concept of mixing two immiscible solutions at high speed which then produces nano/submicron size droplets. Confinement within the droplet provides uniform heat transfer, enhanced mass transfer to growing crystal, chaotic advection within droplet facilitate rapid mixing, prevent the contact between growing crystals etc. Fine-tuned nano-cubic LTA zeolite crystals of size ?100 nm with uniform morphology and size distribution were prepared. Just within 4h of reaction time (aging+crystallization) well shaped cubic crystals with high crystallinity and size uniformity can be synthesized by the proposed synthesis process. Diffraction and electron microscopic studies reveal the high phase purity and size uniformity of as-synthesized LTA zeolite particles. PMID:24655827

Sharma, Pankaj; Han, Moon Hee; Cho, Churl Hee

2014-05-15

129

Formation of cobalt hydrotalcite by cation exchange of Co2+-substitued zeolite X  

NASA Astrophysics Data System (ADS)

Zeolite has been utilized to sequester heavy metals and nuclides due to the high cation exchange capacity. However, once-immobilized cations by zeolite tend to be re-exchanged by other cations (Ca2+, Mg2+, Na+, etc) present in groundwater. Thus, it is important to understand the mechanism associated with re-exchange reactions to predict the environmental fate and behavior of the metal cations sequestered by zeolite. In this study, we performed a series of cation exchange experiments using Co2+-substituted zeolite X (Co-X) in concentrated CaCl2 solutions. The radioactive isotope of cobalt (60Co2+), commonly found in low-to-intermediate level nuclear wastes, undergoes radioactive decay, likely altering the physicochemical properties of zeolite by generating heat and irradiation. To simulate such effects, Co-X was thermally treated at 400 and 600oC before re-exchange experiments. At the higher treatment temperature, the re-exchanged amount of Co2+ in Co-X by Ca2+ was found to decrease. According to X-ray diffraction, the re-exchange led to little change in the zeolite crystallinity for thermally untreated samples, but the significantly decreased crystallinity was noted for re-exchanged, thermally treated samples. Nonetheless, 27Al MAS NMR spectra of all re-exchanged samples revealed that the peaks corresponding to 4-fold coordinated Al became broader with their position shifting as a result of the re-exchange, suggesting that the re-exchange caused a short-range order structural distortion for both thermally untreated and treated samples. Also, Co-K edge X-ray absorption spectroscopy (XAS) was employed to examine the mechanism(s) involved in the re-exchange. By comparison of XAS spectra between re-exchanged samples and model compounds, Co2+ was likely to be either present as an extraframwork cation within zeolite or incorporated into a cobalt hydrotalcite (Co6Al2(OH)16(An-)2/n where An- is an interlayer anion) phase. The relative contribution of an extraframwork Co2+ versus cobalt hydrotalcite in re-exchanged samples was determined using the least squares fitting of EXAFS spectra. Formation of cobalt hydrotalcite became greater with the increasing treatment temperature. Taken together, thermally-induced structural distortion of zeolite enhanced the dealumination of zeolite and the subsequent formation of cobalt hydrotalcite.

Jeong, H. Y.; Lee, K.

2013-12-01

130

Drastic sensitivity enhancement in 29Si MAS NMR of zeolites and mesoporous silica materials by paramagnetic doping of Cu2+.  

PubMed

The paramagnetic doping of Cu(2+) in both mesoporous silica materials and microporous silicate crystals (zeolites) can be used effectively to enhance the signal intensity of (29)Si solid state magic angle spinning NMR, as a result of shortening of the spin-lattice relaxation time, T1, by the paramagnetic effect, because of the Cu(2+) electronic relaxation time in the range of 10(-8) s. This leads to drastically reduced data-collection times, typically 80-fold shorter than that in mesoporous silica. We found that the estimated range of the paramagnetic effect of Cu(2+) doping in porous silicates was at least 1 nm. PMID:23824320

Inagaki, Satoshi; Kawamura, Izuru; Sasaki, Yukichi; Yoshida, Kaname; Kubota, Yoshihiro; Naito, Akira

2013-08-28

131

Exfoliated zeolite sheets and block copolymers as building blocks for composite membranes  

NASA Astrophysics Data System (ADS)

Mixed matrix materials, comprising of zeolites incorporated in suitable matrix (polymeric or inorganic), are promising as future membrane materials with high permselectivity. However, they suffer from the drawback of low productivity due to increase in the membrane thickness by incorporation of micron-sized zeolites crystals as well as the low-permeability matrices employed currently. Nanocomposite membranes, consisting of thin zeolite sheets (˜2 nm) embedded in an appropriate matrix, can provide a solution to this problem. This thesis addresses some of the material challenges to make such nanocomposite membranes. A high permeability polymer was synthesized by combining the glassy polystyrene (PS) with the rubbery polydimethylsiloxane (PDMS) in a block copolymer architecture. The mechanical toughness of the material was optimized to facilitate the fabrication of thin free standing films and its gas transport properties were evaluated. The PS-PDMS-PS triblock copolymers were successfully hydrogenated for the first time to obtain the PCHE-PDMS-PCHE triblock copolymers (PCHE stands for polycyclohexylethylene). The hydrogenation reaction proceeded without any polymer chain breaking and the resultant polymer showed some interesting, rather unexpected thermodynamic properties. These polymeric materials are potentially useful as the matrix of nanocomposite membranes. Highly crystalline zeolite sheets were obtained by exfoliation of zeolite lamellae. Preservation of crystal morphology and pore structure, which presents a major challenge during the exfoliation process, was successfully addressed in this work by judicious choice of operating conditions. Lamellae were exfoliated by surfactant intercalation and subsequently melt processing with polymers, resulting in polymer nanocomposites containing thin zeolite sheets (˜2.5 nm) with well preserved pore structure. A method to obtain polymer-free exfoliated sheets was also developed to facilitate the fabrication of inorganic composite membranes. These zeolite sheets can be used as the selectivity-enhancement additive in composite membranes.

Maheshwari, Sudeep

132

DIRECT LABORATORY ANALYSIS OF SILICATE STARDUST FROM RED GIANT STARS  

SciTech Connect

We performed combined focused ion beam/transmission electron microscopy studies to investigate the chemistry and structure of eight presolar silicate grains that were previously detected by NanoSIMS oxygen isotope mapping of the carbonaceous chondrite Acfer 094. The analyzed presolar silicates belong to the O isotope Groups I/II ({sup 17}O-enriched and {sup 18}O-depleted) and therefore come from 1-2.5 M{sub sun} asymptotic giant branch stars of close-to-solar or slightly lower-than-solar metallicity. Three grains are amorphous, Mg-rich, and show a variable, but more pyroxene-like composition. Most probably, these grains have formed under circumstellar low-temperature conditions below the crystallization temperature. Three grains are Fe-bearing glasses similar to the 'glass with embedded metal and sulfides' (GEMS) grains found in interplanetary dust particles. However, two of the meteorite GEMS grains from this study lack comparatively large ({approx}>20 nm) Fe-rich inclusions and have sulfur contents <1 at.%, which is different than observed for the majority of GEMS grains. These grains likely condensed under strong non-equilibrium conditions from an Si-enriched gas. One olivine is characterized by a crystalline core and an amorphous, more Fe-rich rim, which is probably the result of interstellar medium sputtering combined with Mg removal. The detection of another olivine with a relatively high Fe content (Mg no. 0.9) shows that circumstellar crystalline silicates are more Fe-rich than astrophysical models usually suggest. The overall predominance of olivine among the crystalline silicate stardust population compared to pyroxene indicates preferential formation or survival of this type of mineral. As pyroxene is indeed detected in circumstellar outflows, it remains to be seen how this result is compatible with astrophysical observations and experimental data.

Vollmer, Christian; Hoppe, Peter [Max Planck Institute for Chemistry, Particle Chemistry Dept., Joh.-J.-Becherweg 27, D-55128 Mainz (Germany); Brenker, Frank E. [Geoscience Institute/Mineralogy, Goethe-University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany); Stroud, Rhonda M. [Naval Research Laboratory, Code 6360, Washington, DC 20375 (United States)], E-mail: cvollmer@mpch-mainz.mpg.de

2009-07-20

133

Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline  

E-print Network

and thoroughly charac- terized by chemical analysis, XRD, FT-IR, solid state MAS NMR, N2 adsorption, TEM, NH3-TPD hydrothermal synthesis temperature and % relative XRD crystallinity. Incorporation of aluminum in the ZSM-5-ray amorphous aluminosilicates possessed tetrahedral aluminum atoms which were more zeolitic in character

Trikalitis, Pantelis N.

134

Analyses of Cometary Silicate Crystals: DDA Spectral Modeling of Forsterite  

NASA Technical Reports Server (NTRS)

Comets are the Solar System's deep freezers of gases, ices, and particulates that were present in the outer protoplanetary disk. Where comet nuclei accreted was so cold that CO ice (approximately 50K) and other supervolatile ices like ethane (C2H2) were preserved. However, comets also accreted high temperature minerals: silicate crystals that either condensed (greater than or equal to 1400 K) or that were annealed from amorphous (glassy) silicates (greater than 850-1000 K). By their rarity in the interstellar medium, cometary crystalline silicates are thought to be grains that formed in the inner disk and were then radially transported out to the cold and ice-rich regimes near Neptune. The questions that comets can potentially address are: How fast, how far, and over what duration were crystals that formed in the inner disk transported out to the comet-forming region(s)? In comets, the mass fractions of silicates that are crystalline, f_cryst, translate to benchmarks for protoplanetary disk radial transport models. The infamous comet Hale-Bopp has crystalline fractions of over 55%. The values for cometary crystalline mass fractions, however, are derived assuming that the mineralogy assessed for the submicron to micron-sized portion of the size distribution represents the compositional makeup of all larger grains in the coma. Models for fitting cometary SEDs make this assumption because models can only fit the observed features with submicron to micron-sized discrete crystals. On the other hand, larger (0.1-100 micrometer radii) porous grains composed of amorphous silicates and amorphous carbon can be easily computed with mixed medium theory wherein vacuum mixed into a spherical particle mimics a porous aggregate. If crystalline silicates are mixed in, the models completely fail to match the observations. Moreover, models for a size distribution of discrete crystalline forsterite grains commonly employs the CDE computational method for ellipsoidal platelets (c:a:b=8.14x8.14xl in shape with geometrical factors of x:y:z=1:1:10, Fabian et al. 2001; Harker et al. 2007). Alternatively, models for forsterite employ statistical methods like the Distribution of Hollow Spheres (Min et al. 2008; Oliveira et al. 2011) or Gaussian Random Spheres (GRS) or RGF (Gielen et al. 200S). Pancakes, hollow spheres, or GRS shapes similar to wheat sheaf crystal habit (e.g., Volten et al. 2001; Veihelmann et al. 2006), however, do not have the sharp edges, flat faces, and vertices seen in images of cometary crystals in interplanetary dust particles (IDPs) or in Stardust samples. Cometary forsterite crystals often have equant or tabular crystal habit (J. Bradley). To simulate cometary crystals, we have computed absorption efficiencies of forsterite using the Discrete Dipole Approximation (DDA) DDSCAT code on NAS supercomputers. We compute thermal models that employ a size distribution of discrete irregularly shaped forsterite crystals (nonspherical shapes with faces and vertices) to explore how crystal shape affects the shape and wavelength positions of the forsterite spectral features and to explore whether cometary crystal shapes support either condensation or annealing scenarios (Lindsay et al. 2012a, b). We find forsterite crystal shapes that best-fit comet Hale-Bopp are tetrahedron, bricks or brick platelets, essentially equant or tabular (Lindsay et al. 2012a,b), commensurate with high temperature condensation experiments (Kobatake et al. 2008). We also have computed porous aggregates with crystal monomers and find that the crystal resonances are amplified. i.e., the crystalline fraction is lower in the aggregate than is derived by fitting a linear mix of spectral features from discrete subcomponents, and the crystal resonances 'appear' to be from larger crystals (Wooden et al. 2012). These results may indicate that the crystalline mass fraction in comets with comae dominated by aggregates may be lower than deduced by popular methods that only emoy ensembles of discrete crystals.

Wooden, Diane

2012-01-01

135

Scratch-resistant zeolite anti-reflective coating on glass for solar applications  

Microsoft Academic Search

Sol-gel SiO2 anti-reflection (AR) coating on solar glass is known to increase the current output by a few percent, but its mechanical durability is of concern. To improve its strength, the amorphous SiO2 may be replaced by zeolite, which is a microporous aluminosilicate crystalline material. Scratch-resistant AR coating has been prepared by the dip coating of a composition which contains

Chien-Hung Chen; Shiao-Yi Li; Anthony S. T. Chiang; Albert T. Wu; Y. S. Sun

2011-01-01

136

UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER  

EPA Science Inventory

Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

137

Comparing quantum-chemical calculation methods for structural investigation of zeolite crystal structures by solid-state NMR spectroscopy.  

PubMed

Combining quantum-chemical calculations and ultrahigh-field NMR measurements of (29)Si chemical shielding (CS) tensors has provided a powerful approach for probing the fine details of zeolite crystal structures. In previous work, the quantum-chemical calculations have been performed on 'molecular fragments' extracted from the zeolite crystal structure using Hartree-Fock methods (as implemented in Gaussian). Using recently acquired ultrahigh-field (29) Si NMR data for the pure silica zeolite ITQ-4, we report the results of calculations using recently developed quantum-chemical calculation methods for periodic crystalline solids (as implemented in CAmbridge Serial Total Energy Package (CASTEP) and compare these calculations to those calculated with Gaussian. Furthermore, in the context of NMR crystallography of zeolites, we report the completion of the NMR crystallography of the zeolite ITQ-4, which was previously solved from NMR data. We compare three options for the 'refinement' of zeolite crystal structures from 'NMR-solved' structures: (i) a simple target-distance based geometry optimization, (ii) refinement of atomic coordinates in which the differences between experimental and calculated (29)Si CS tensors are minimized, and (iii) refinement of atomic coordinates to minimize the total energy of the lattice using CASTEP quantum-chemical calculations. All three refinement approaches give structures that are in remarkably good agreement with the single-crystal X-ray diffraction structure of ITQ-4. PMID:20623826

Brouwer, Darren H; Moudrakovski, Igor L; Darton, Richard J; Morris, Russell E

2010-12-01

138

Analysis of an altered simple silicate glass using different mineral and glass standards  

SciTech Connect

Quantitative analyses of alteration products formed during the aqueous corrosion of glass were performed using four different sets of standards: relevant mineral standards, an NBS glass standard, and the unreacted center of the reacted glass. A simple silicate glass (containing Na, Mg, Al, Si, and Ca) was reacted in water vapor at 200/degree/C for 14 days. Up to eight alteration phases, including a Mg-rich smectite clay and a zeolite intermediate in composition between Ca-harmotome and phillipsite, formed on the glass surface. A set of EDS spectra of the bulk glass, the clay, and the zeolite were collected from a polished cross-section of the reacted sample. Results are discussed. 6 refs., 2 figs., 3 tabs.

Mazer, J.J.; Bates, J.K.

1989-03-01

139

The Silicate Structures: Chalkboard Demonstration  

NSDL National Science Digital Library

Three-dimensional, magnetic representations of SiO tetrahedra and cations are manipulated on a chalkboard to create five basic silicate structures. Students are expected to complete a worksheet accompanying the exercise, which addresses silicate structures, bond types and strengths, physical properties (e.g. fracture, cleavage), Si:O ratio and introduction to vocabulary such as "felsic" and "mafic," and mineral formulae. The worksheet and chalkboard demonstration are designed to simplify silicate structures from complex ball-and-stick models typically used in textbook figures, and to grant students a visual, three-dimensional, manipulable, perspective on what tends to be a confusing concept. This exercise may be simplified or expanded to suit timeframe and the needs of the audience. Benefits of this approach include reinforcement of lecture concepts, broad appeal for a student group with multiple learning styles and degrees of knowledge, and strengthened understanding of the silicate structures.

Stevens, Liane

140

Analysis of a Sheet Silicate.  

ERIC Educational Resources Information Center

Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

Adams, J. M.; Evans, S.

1980-01-01

141

Phonolite-hosted zeolite deposits in the Kaiserstuhl Volcanic Complex, Germany  

NASA Astrophysics Data System (ADS)

Several subvolcanic phonolitic intrusions occur within the Miocene Kaiserstuhl Volcanic Complex (KVC) located in the central-southern segment of the Upper Rhine Graben, which is part of the European Cenozoic Rift System. Hydrothermally altered phonolitic rocks are of economic interest, due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. These properties have widespread industrial application in water softening, catalysis, remediation of soils and soil quality, wastewater treatment, and as additive in the cement industry. Currently the largest phonolite intrusion Fohberg is active in mining, located in the eastern part of the KVC. The Endhale phonolite, approximately 1.5 km to the north marks a further deposit currently under exploration. Both phonolites are hosted in Tertiary sedimentary units. The aim of this study is to carry out a new mineralogical and geochemical data a) to evaluate the manifestation of hydrothermal alteration of the Fohberg and Endhale phonolitic intrusions, and b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement of primary igneous minerals. The high degree of alteration is in contrast to the only slightly altered Kirchberg phonolite in the western KVC. The alkaline intrusive bodies are characterized by the primary mineralogy: feldspathoid mineral, K-feldspar, aegirine-augite, wollastonite, and andradite, with additional REE-minerals (e.g. götzenite). Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by secondary phases including various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. The large variability of secondary minerals indicates a heterogenic fluid composition throughout the phonolitic intrusions and through time. Zeolites formed during sub-solidus hydrothermal alteration under alkaline conditions and completely replace feldspathoid minerals in the matrix of the rock. A sequence of Ca-Na dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by pure sodium endmember species (analcime, natrolite). These sequence reflects an increase in log[aNa+)/(aH+)] of the precipitating fluid. In contrast to the Fohberg phonolitc the Endhale phonolite contains analcime in addition to natrolite as pure Na zeolite species. The appearance of analcime is caused by higher silica activity during fluid rock interaction, which favors the formation of analcime over natrolite. The Fohberg phonolite is cut by fractures, which are totally or partially sealed with secondary minerals. Secondary minerals contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulphates as younger generations. Stable isotope analyses of late fracture calcite indicate the late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

Weisenberger, Tobias; Spürgin, Simon

2014-05-01

142

Three Mile Island zeolite vitrification demonstration program  

Microsoft Academic Search

This paper presents a brief overview of the Three Mile Island (TMI) zeolite vitrification program. The formulation of a glass suitable for immobilizing submerged demineralizer system (SDS) zeolites is discussed. A feed system that was developed to feed zeolites to the in-can melter is described. The in-can melting process and the government-owned facilities in which the demonstrations will take place

D. H. Siemens; D. E. Knowlton; M. W. Shupe

1982-01-01

143

Increased thermal conductivity monolithic zeolite structures  

DOEpatents

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25

144

Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr  

NASA Astrophysics Data System (ADS)

Hollow microsphere zeolite materials with a bilayered zeolite/glass crystalline shell bearing NaP1 zeolite were synthesized by the hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) in an alkaline medium. Cs+ and/or Sr2+ forms of zeolitized cenospheres with the different Cs+ and/or Sr2+ loading were prepared by the ion exchange from nitrate solutions. The resulted (Cs,Na)P1, (Sr,Na)P1 and (Cs,Sr,Na)P1 bearing microsphere zeolites were converted to glass ceramics by heating at 900-1000 °C. The differential scanning calorimetry and quantitative phase analysis were used to monitor the solid-phase transformation of the initial and ion exchanged zeolite materials. It was established that the final solidified forms of Cs+ and/or Sr2+ are glass-crystalline ceramic materials based on pollucite-nepheline, Sr-feldspar-nepheline and Sr-feldspar-pollucite composites including ˜60 wt.% of the major host phases (pollucite, Sr-feldspar) and 10-20 wt.% of glass. The 137Cs leaching rate of 4.1 × 10-7 g cm-2 day-1 was determined for the pollucite glass-ceramic according to Russian State Standard (GOST) No. 52126 P-2003 (7 day, 25 °C, distilled water).

Vereshchagina, Tatiana A.; Vereshchagin, Sergei N.; Shishkina, Nina N.; Vasilieva, Nataly G.; Solovyov, Leonid A.; Anshits, Alexander G.

2013-06-01

145

Synthesis and crystal structure of a layered silicate HUS-1 with a halved sodalite-cage topology.  

PubMed

A new layered silicate, HUS-1, was synthesized by hydrothermal synthesis using decomposed FAU- and *BEA-type zeolites as nanosized silica parts. Structural analyses by X-ray powder diffractometry and solid-state magic-angle-spinning (MAS) NMR spectroscopy revealed that HUS-1 has a layered structure containing a silicate layer per unit cell along a stacking direction. Its framework topology is similar to that of SOD-type zeolites and consists of a halved sodalite cage, which includes four- and six-membered Si rings. Structure refinement by the Rietveld method showed that tetramethylammonium (TMA) ions used as a structure-directing agent (SDA) were incorporated into the interlayer. The four methyl groups of the TMA molecule were located orderly in a hemispherical cage in the silicate layer, which suggests restraint of molecular motion. The interlayer distance is estimated at about 0.15 nm, which is unusually short in comparison with that in other layered silicates (e.g., ?-HLS or RUB-15) with similar framework topologies. The presence of hydrogen bonding between adjacent terminal O atoms was clearly revealed by the (1)H MAS NMR spectroscopy and by electron-density distribution obtained by the maximum entropy method. PMID:21294579

Ikeda, Takuji; Oumi, Yasunori; Honda, Koutaro; Sano, Tsuneji; Momma, Koichi; Izumi, Fujio

2011-03-21

146

Zeolites Remove Sulfur From Fuels  

NASA Technical Reports Server (NTRS)

Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

Voecks, Gerald E.; Sharma, Pramod K.

1991-01-01

147

A Site-Isolated Iridium Diethylene Complex Supported on Highly Dealuminated Y Zeolite: Synthesis and Characterization  

SciTech Connect

Highly dealuminated Y zeolite-supported mononuclear iridium complexes with reactive ethylene ligands were synthesized by chemisorption of Ir(C2H4)2(C5H7O2). The resultant structure and its treatment in He, CO, ethylene, and H2 were investigated with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The IR spectra show that Ir(C2H4)2(C5H7O2) reacted readily with surface OH groups of the zeolite, leading to the removal of C5H7O2 ligands and the formation of supported mononuclear iridium complexes, confirmed by the lack of Ir-Ir contributions in the EXAFS spectra. The EXAFS data show that each Ir atom was bonded to four carbon atoms at an average distance of 2.10 Angstroms, consistent with the presence of two ethylene ligands per Ir atom and in agreement with the IR spectra indicating p-bonded ethylene ligands. The EXAFS data also indicate that each Ir atom was bonded to two oxygen atoms of the zeolite at a distance of 2.15 Angstroms . The supported iridium-ethylene complex reacted with H2 to give ethane, and it also catalyzed ethylene hydrogenation at atmospheric pressure and 294 K. Treatment of the sample in CO led to the formation of Ir(CO)2 complexes bonded to the zeolite. The sharpness of the ?CO bands indicates a high degree of uniformity of these complexes on the support. The iridium-ethylene complex on the crystalline zeolite support is inferred to be one of the most nearly uniform supported metal complex catalysts. The results indicate that it is isostructural with a previously reported rhodium complex on the same zeolite; thus, the results are a start to a family of analogous, structurally well-defined supported metal complex catalysts.

Uzun,A.; Bhirud, V.; Kletnieks, P.; Haw, J.; Gates, B.

2007-01-01

148

Characterization and comparison of pore landscapes in crystalline porous materials.  

PubMed

Crystalline porous materials have many applications, including catalysis and separations. Identifying suitable materials for a given application can be achieved by screening material databases. Such a screening requires automated high-throughput analysis tools that characterize and represent pore landscapes with descriptors, which can be compared using similarity measures in order to select, group and classify materials. Here, we discuss algorithms for the calculation of two types of pore landscape descriptors: pore size distributions and stochastic rays. These descriptors provide histogram representations that encode the geometrical properties of pore landscapes. Their calculation involves the Voronoi decomposition as a technique to map and characterize accessible void space inside porous materials. Moreover, we demonstrate pore landscape comparisons for materials from the International Zeolite Association (IZA) database of zeolite frameworks, and illustrate how the choice of pore descriptor and similarity measure affects the perspective of material similarity exhibiting a particular emphasis and sensitivity to certain aspects of structures. PMID:23876827

Pinheiro, Marielle; Martin, Richard L; Rycroft, Chris H; Jones, Andrew; Iglesia, Enrique; Haranczyk, Maciej

2013-07-01

149

Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)  

SciTech Connect

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to {approx}700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''.

Grutzeck, Michael W.

2005-06-27

150

Stardust silicates from primitive meteorites.  

PubMed

Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula. PMID:15118720

Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

2004-04-29

151

Synthesis and immobilization of quaternary ammonium cations in acidic zeolites  

Microsoft Academic Search

A general method for the synthesis of quaternary ammo- nium cations in acidic zeolites by a direct reaction of tertiary amines and alcohols is described. Zeolites and zeolite-related porous solids are ideal inorganic hosts for accommodating a large variety of guest species. 1 Bulky carbon-centered ionic intermediates, such as triar- ylmethyl cations, can be encapsulated within zeolite supercages via a

Wei Wang; Andreas Buchholz; Irina I. Ivanova; Jens Weitkampa; Michael Hunger

2003-01-01

152

The potential application of natural zeolite for greywater treatment  

Microsoft Academic Search

Natural zeolites are good potential material for water and wastewater treatment. It is due to the advantages of low cost, ion-exchange and adsorption capability of the natural zeolites. It can also be modified and regenerated. This paper thus looks at efforts made in exploring the potential application of natural zeolites and modified natural zeolites in water and wastewater treatment especially

Nurul Widiastuti; Hongwei Wu; Ming Ang; Dong-ke Zhang

2008-01-01

153

Solid state radioluminescent sources using tritium-loaded zeolites  

Microsoft Academic Search

Zeolite-based tritium lamps are a possible alternative to traditional tritium gas tube light sources. Rare earth luminescing centers may be ion-exchanged into zeolite matrices. Close proximity of tritium atoms to the rare earths can be provided by highly tritiated water sorbed within the pore structure of the zeolite aluminosilicate matrix. Zeolites are optically clear and radiation stable. Light outputs from

J. T. Gill; D. B. Hawkins; C. L. Renschler

1991-01-01

154

Synthesis of MFI zeolite membranes for water desalination  

Microsoft Academic Search

Zeolite membranes have been extensively researched for many industrial separations via gas permeation and liquid pervaporation processes. General separation mechanisms in zeolite membranes include molecular sieving and competitive adsorption and diffusion. Recently, the possibility of using zeolite membranes to remove ions from aqueous solutions by reverse osmosis (RO) has been explored. RO desalination by zeolite membranes may offer an alternative

Mansoor Kazemimoghadam; Toraj Mohammadi

2007-01-01

155

UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER  

EPA Science Inventory

Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

156

[A case of silicate urolithiasis].  

PubMed

We report a case of silicate calculi with no history of taking magnesium trisilicate. A 33-year-old woman was sent to our hospital as an emergency case because of severe right lower flank pain. Physical examination was unremarkable except for severe right cost-vertebral angle knock pain. She denied administration of a magnesium trisilicate anti-acid before. She was admitted to the urologic ward since the pain did not relieve in spite of several analgesics. The stone passed spontaneously on the third hospital day. Analysis by infrared spectrophotometry demonstrated the composition to be over 98% of silicate. A review of the literatures discloses only 21 cases of silicate stones. PMID:2160774

Yamamoto, N; Maeda, S; Shinoda, I; Takeuchi, T; Fujihiro, S; Kanematsu, M; Kuriyama, M; Ban, Y; Kawada, Y

1990-02-01

157

Zeolitic materials with hierarchical porous structures.  

PubMed

During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. PMID:21495091

Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

2011-06-17

158

Phosphatation of zeolite H-ZSM-5: a combined microscopy and spectroscopy study.  

PubMed

A variety of phosphated zeolite H-ZSM-5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse (27)Al, (29)Si, (31)P, (1)H-(31)P cross polarization (CP), (27)Al-(31)P CP, and (27)Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, scanning transmission X-ray microscopy (STXM) and N2 physisorption. This approach leads to insights into the physicochemical processes that take place during phosphatation. Direct phosphatation of H-ZSM-5 promotes zeolite aggregation, as phosphorus does not penetrate deep into the zeolite material and is mostly found on and close to the outer surface of the zeolite, acting as a glue. Phosphatation of pre-steamed H-ZSM-5 gives rise to the formation of a crystalline tridymite AlPO4 phase, which is found in the mesopores of dealuminated H-ZSM-5. Framework aluminum species interacting with phosphorus are not affected by hydrothermal treatment. Dealuminated H-ZSM-5, containing AlPO4 , retains relatively more framework Al atoms and acid sites during hydrothermal treatment than directly phosphated H-ZSM-5. PMID:24402742

van der Bij, Hendrik E; Aramburo, Luis R; Arstad, Bjørnar; Dynes, James J; Wang, Jian; Weckhuysen, Bert M

2014-02-01

159

Salt-thermal zeolitization of fly ash.  

PubMed

The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste. PMID:11452614

Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

2001-07-01

160

Reaction of Sodium Hydroxide with Silicate Minerals.  

National Technical Information Service (NTIS)

The reactions of individual silicate minerals with caustic solution were measured over a 1-week period. These silicate minerals included: two feldspars (microcline and albite), two micas (biotite and muscovite), and three clays (chlorite, Kaolinite and mo...

S. D. Thornton

1986-01-01

161

Battery components employing a silicate binder  

SciTech Connect

A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

2011-05-24

162

21 CFR 182.2227 - Calcium silicate.  

Code of Federal Regulations, 2010 CFR

...Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations, restrictions...as safe when used at levels not exceeding 2 percent in table salt and 5 percent in baking powder in accordance with good...

2010-04-01

163

21 CFR 582.2437 - Magnesium silicate.  

Code of Federal Regulations, 2010 CFR

...silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation...substance is generally recognized as safe when used in table salt in accordance with good manufacturing or feeding...

2010-04-01

164

21 CFR 582.2227 - Calcium silicate.  

Code of Federal Regulations, 2010 CFR

...Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c) Limitations, restrictions...as safe when used at levels not exceeding 2 percent in table salt and 5 percent in baking powder in accordance with good...

2010-04-01

165

21 CFR 182.2437 - Magnesium silicate.  

Code of Federal Regulations, 2010 CFR

...silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation...substance is generally recognized as safe when used in table salt in accordance with good manufacturing...

2010-04-01

166

21 CFR 582.2906 - Tricalcium silicate.  

Code of Federal Regulations, 2010 CFR

...silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation...substance is generally recognized as safe when used in table salt in accordance with good manufacturing or feeding...

2010-04-01

167

21 CFR 182.2906 - Tricalcium silicate.  

Code of Federal Regulations, 2010 CFR

...silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation...substance is generally recognized as safe when used in table salt in accordance with good manufacturing...

2010-04-01

168

Tobermorite group of silicates (Tables)  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It contains the data of the tobermorite group of silicates (Tables)

Burzo, E.

169

Tobermorite group of silicates (Figures)  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It contains the data of the tobermorite group of silicates (Figures)

Burzo, E.

170

Tobermorite group of silicates (Text)  

NASA Astrophysics Data System (ADS)

This document is part of Subvolume I4 'Inosilicates' of Volume 27 'Magnetic properties of non-metallic inorganic compounds based on transition elements' of Landolt-Börnstein - Group III Condensed Matter. It contains the data of the tobermorite group of silicates (Text)

Burzo, E.

171

Hemolytic activity of five different calcium silicates.  

PubMed Central

Mineral characteristics and the in vitro hemolytic activity of three synthetic and two natural calcium silicates (CaSi) are compared. Hemolysis is higher for the synthetic compounds than for the natural ones. The difference is accentuated by weak ultrasonication of the minerals. No variation was observed within the two groups, including both acicular and fibrous forms. Calcium was released from the minerals during storage in Tris-buffered saline. At the same time, hemolysis decreased, and crystallographic alterations occurred in the leached minerals. Treatment of the CaSi with calcium chelators (EGTA and EDTA) did not change hemolytic activity. An increase was observed when 30 mM calcium was added. Hemolysis is related to specific surface areas and the crystalline structure of the minerals. Calcium may also be a contributing factor. Images FIGURE 1. a FIGURE 1. b FIGURE 1. c FIGURE 1. d FIGURE 1. e FIGURE 1. f FIGURE 7. a FIGURE 7. b FIGURE 7. c FIGURE 7. d FIGURE 7. e FIGURE 7. f PMID:6315361

Skaug, V; Gylseth, B

1983-01-01

172

Framework-incorporated Mn and Co analcime zeolites: Synthesis and characterization  

SciTech Connect

The framework-substituted cobalt and manganese analcime zeolites were synthesized via a direct hydrothermal approach. The obtained samples were characterized by XRD powder, SEM-EDX, nitrogen physical adsorption, Raman microscopy, diffuse reflectance UV-Vis and IR spectroscopy which complementarily demonstrated the incorporation of cobalt and manganese into the zeolites framework. The results showed that substitution of Mn and Co could be placed in two synthesis gels with same compositions containing Al/Mn=5 and Al/Co=4 mol ratios, respectively. In addition, with replacing Al with Mn and synthesis of Mn-modified analcime, zeolite with higher surface area and pore volume could be achieved than the Co modified analcime. - Graphical abstract: The images and adsorption-desorption isotherms of N{sub 2} at 77 K for (a) Co (b) Mn modified analcime. Highlights: Black-Right-Pointing-Pointer Synthesis of Co and Mn modified analcime for the first time. Black-Right-Pointing-Pointer Framework-incorporation of Co and Mn using the same silicate gel composition. Black-Right-Pointing-Pointer Applying several techniques to provide proofs for the characterization.

Azizi, Seyed Naser, E-mail: azizi@umz.ac.ir [Analytical Division, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar (Iran, Islamic Republic of); Ehsani Tilami, Salma [Analytical Division, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar (Iran, Islamic Republic of)] [Analytical Division, Faculty of Chemistry, University of Mazandaran, P.O. Box 47416-95447, Babolsar (Iran, Islamic Republic of)

2013-02-15

173

Zeolites on Mars: Prospects for Remote Sensing  

NASA Technical Reports Server (NTRS)

The Martian surface composition measured by Viking can be represented by several combinations of minerals incorporating major fractions of zeolites known to occur in altered mafic rocks and polar soils on Earth. The abundant occurrence of zeolites on Mars is consistent with what is known about both the physical and chemical environment of that planet. The laboratory reflectance spectra (0.65 to 2.55 microns) of a number of relatively pure zeolite minerals and some naturally occurring zeolite-clay soils were measured. All of the spectra measured are dominated by strong absorption near 1.4 and 1.9 microns and a steep reflectance drop longward of about 2.2 microns, all of which are due to abundant H2O. Weaker water overtone bands are also apparent, and in most cases there is spectral evidence for minor Fe(3+). In these features the zeolite spectra are similar to spectra of smectite clays which have abundant interlayer water. The most diagnostic difference between clay and zeolite spectra is the total absence in the zeolites of the weak structural OH absorption.

Gaffney, E. S.; Singer, R. B.; Kunkle, T. D.

1985-01-01

174

Identifying the crystal graveyards remaining after large silicic eruptions  

NASA Astrophysics Data System (ADS)

The formation of crystal-poor high-silica rhyolite via extraction of interstitial melt from an upper crustal mush predicts the complementary formation of large amounts of (typically unerupted) silicic cumulates. However, identification of these cumulates remains controversial. One hindrance to our ability to identify them is a lack of clear predictions for complementary chemical signatures between extracted melts and their residues. To address this discrepancy, we present a generalized geochemical model tracking the evolution of trace elements in a magma reservoir concurrently experiencing crystallization and extraction of interstitial melt. Our method uses a numerical solution rather than analytical, thereby allowing for various dependencies between crystallinity, partition coefficients for variably compatible and/or incompatible elements, and melt extraction efficiency. Results reveal unambiguous fractionation signatures for the extracted melts, while those signatures are muted for their cumulate counterparts. Our model is first applied to a well-constrained example (Searchlight pluton, USA), and provides a good fit to geochemical data. We then extrapolate our results to understanding the relationship between volcanic and plutonic silicic suites on a global scale. Utilizing the NAVDAT database to identify crystal accumulation or depletion signatures for each suite, we suggest that many large granitoids are indeed silicic cumulates, although their crystal accumulation signature is expected to be subtle.

Gelman, Sarah E.; Deering, Chad D.; Bachmann, Olivier; Huber, Christian; Gutiérrez, Francisco J.

2014-10-01

175

TRANSMISSION ELECTRON MICROSCOPY OF Al-RICH SILICATE STARDUST FROM ASYMPTOTIC GIANT BRANCH STARS  

SciTech Connect

We report on transmission electron microscopy (TEM) investigations of two mineralogically unusual stardust silicates to constrain their circumstellar condensation conditions. Both grains were identified by high spatial resolution nano secondary ion mass spectrometry (NanoSIMS) in the Acfer 094 meteorite, one of the most pristine carbonaceous chondrites available for study. One grain is a highly crystalline, highly refractory (Fe content < 0.5 at%), structurally undisturbed orthopyroxene (MgSiO{sub 3}) with an unusually high Al content (1.8 {+-} 0.5 at%). This is the first TEM documentation of a single crystal pyroxene within the complete stardust silicate data set. We interpret the microstructure and chemistry of this grain as being a direct condensate from a gas of locally non-solar composition (i.e., with a higher-than-solar Al content and most likely also a lower-than-solar Mg/Si ratio) at (near)-equilibrium conditions. From the overabundance of crystalline olivine (six reported grains to date) compared to crystalline pyroxene (only documented as a single crystal in this work) we infer that formation of olivine over pyroxene is favored in circumstellar environments, in agreement with expectations from condensation theory and experiments. The second stardust silicate consists of an amorphous Ca-Si rich material which lacks any crystallinity based on TEM observations in which tiny (<20 nm) hibonite nanocrystallites are embedded. This complex assemblage therefore attests to the fast cooling and rapidly changing chemical environments under which dust grains in circumstellar shells form.

Vollmer, Christian [Institute for Mineralogy, University of Muenster, Correnssstr. 24, D-48149 Muenster (Germany); Hoppe, Peter [Max Planck Institute for Chemistry, Particle Chemistry Department, Hahn-Meitner-Weg 1, D-55128 Mainz (Germany); Brenker, Frank E., E-mail: christian.vollmer@wwu.de [Institute of Geoscience/Mineralogy, Goethe-University Frankfurt, Altenhoeferallee 1, D-60438 Frankfurt (Germany)

2013-05-20

176

Interaction between zeolites and cluster compounds. Part 1.?Adsorption of iron pentacarbonyl on zeolites  

Microsoft Academic Search

Received 1 1 th November, 1982 The adsorption isotherms of Fe(CO), on Nay, HY and Linde L zeolites obtained in McBain balances show micropore adsorption, whereas additional capillary condensation is found with zeolite omega and Na-mordenite. The pores and\\/or cages of the zeolites studied are completely filled with the complex upon saturation, with the exception of Na-mordenite. Their behaviour is

Thomas Bein; Peter A. Jacobs

1983-01-01

177

Copper-Exchanged Zeolite L Traps Oxygen  

NASA Technical Reports Server (NTRS)

Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.

Sharma, Pramod K.; Seshan, Panchalam K.

1991-01-01

178

Effects of ionization on silicate glasses. [Silicate glasses  

SciTech Connect

This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

Primak, W.

1982-02-01

179

Phospho-silicate and silicate layers modified by hydroxyapatite particles  

NASA Astrophysics Data System (ADS)

Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.

Rokita, M.; Bro?ek, A.; Handke, M.

2005-06-01

180

Mixing of zeolite powders and molten salt  

SciTech Connect

Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product.

Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

1996-05-01

181

Dehydrated Lanthanum-exchanged Type Y Zeolite  

Microsoft Academic Search

Lanthanum atoms occupy different sites in the crystal structure of dehydrated type Y zeolite as the temperature changes, probably because of the absence of residual molecules for bonding at 725° C compared with their presence at lower temperatures.

J. V. Smith; J. M. Bennett; E. M. FLANIGEN

1967-01-01

182

Factors affecting the MTW zeolite cristallization process  

SciTech Connect

The synthesis mechanism of the high silica zeolite types other than MFI is rarely studied in the open literature. This work is devoted to the role of different parameters governing the zeolite MTW crystallization process. The influence of the most important factors: the nature of the silica and alumina source, the type of the organic cation, the alkalinity of the reaction mixture and the crystallization temperature, was studied. The molar composition of the initial hydrogel was varied in other to determine the crystallization field of the zeolite MTW. The observed morphology and particle size of the crystallites are related to the corresponding reaction conditions. The competitive formation of the other zeolite types (prevalently MFI and BEA) is discussed.

Katovic, A.; Giordano, G. [Universita della Calabria, Rende (Italy)

1995-12-01

183

Modifying Silicates for Better Dispersion in Nanocomposites  

NASA Technical Reports Server (NTRS)

An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces, the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

Campbell, Sandi

2005-01-01

184

Solid state radioluminescent sources using tritium-loaded zeolites  

NASA Astrophysics Data System (ADS)

Zeolite-based tritium lamps are a possible alternative to traditional tritium gas tube light sources. Rare earth luminescing centers may be ion-exchanged into zeolite matrices. Close proximity of tritium atoms to the rare earths can be provided by highly tritiated water sorbed within the pore structure of the zeolite aluminosilicate matrix. Zeolites are optically clear and radiation stable. Light outputs from tritium-loaded zeolites are shown here to exceed 2 micro-W/sq cm, with good stability. Procedures for obtaining light sources are presented and results are discussed. The possible use of these luminescent materials as process monitors for zeolite absorption columns in tritium service is also discussed.

Gill, J. T.; Hawkins, D. B.; Renschler, C. L.

185

Zeolite based catalysts for hydrodenitrogenation of quinoline  

E-print Network

ZEOLITE BASED CATALYSTS FOR HYDRODENITROGENATION OF QUINOLINE A Thesis by BHAVYEN SUNAN SANGHVI submitted to the Graduate College of Texas A 6 N University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1982 Najor Subject:Chemical Engineering ZEOLITE BASED CATALYSTS FOR HYDRODENITROGENATION OF QUINOLINE A Thesis by BHAVYEN SUNAN SANGHVI Approved as to style and content by: (Chairman of ommittee) (member) (member) yg-, , rn- !' (member...

Sanghvi, Bhavyen Suman

2012-06-07

186

Metal loading and reactivity of Zeolite Y  

E-print Network

METAL LOADING AND REACTIVITY OF ZEOLITE Y A Thesis by MARC GERARD SAENZ Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1988 Major Subject...: Chemical Engineering METAL LOADING AND REACTIVITY OF ZEOLITE Y A Thesis by MARC GERARD SAENZ Approved as to style and content by: ydin Akgerma (Chairman of Co ttee) Da id L. Cocke (Member) Ahmed M. Gadalla (Member ) Raymond W. Plumer elt (Head...

Sa?enz, Marc Gerard

2012-06-07

187

Adsorption Behavior of Chlorophenols on Natural Zeolite  

Microsoft Academic Search

The adsorption of aqueous organic pollutants, i.e., phenol, monochlorophenols (2?and 4?), and dichlorophenols (2,4?and 3,5?) on natural Jordanian zeolitic tuff was studied. Three simplified kinetic models, viz., pseudo?first order, pseudo?second order, and intraparticle diffusion models were used to fit the kinetics data. The results revealed that at earlier stages of adsorption of phenols onto zeolite, the pseudo?second order and the

Rushdi I. Yousef

2007-01-01

188

Silicates of the rare earths  

Microsoft Academic Search

of Silicate Chemistry, we have plotted phase diagrams for binary systems of silica with oxides of lanthanum, samarium, ga0olinium, dysprosium, yttrium, erbium, and ytterbium. The investigations showed similarities in the structure of these systems: the existence of three types of compounds - the oxyorthosilicates (Ln~O[SiO4] or Ln20 s ?9 sin2), the orthosilicates (Ln4[SiO4]s or 2Ln20 s ?9 3SIO2), the diorthosilicates

F. Ya. Galakhov; N. A. Toropov

1962-01-01

189

Longevity of silicate ceramic restorations.  

PubMed

The demand for esthetic restorations has resulted in an increased use of dental ceramics as a biocompatible and functionally sufficient alternative to conventional restorative materials. Silicate ceramic restorations are widely used for veneers, inlays, onlays, and crowns in dentistry. Long-term data are of crucial importance to optimize clinical practice. The purpose of the present article is to summarize data of the Innsbruck ceramic evaluation up to 261 months with the focus on longevity and failure characteristics. PMID:25126640

Beier, Ulrike Stephanie; Dumfahrt, Herbert

2014-09-01

190

Topological crystalline insulator nanostructures.  

PubMed

Topological crystalline insulators are topological insulators whose surface states are protected by the crystalline symmetry, instead of the time reversal symmetry. Similar to the first generation of three-dimensional topological insulators such as Bi2Se3 and Bi2Te3, topological crystalline insulators also possess surface states with exotic electronic properties such as spin-momentum locking and Dirac dispersion. Experimentally verified topological crystalline insulators to date are SnTe, Pb1-xSnxSe, and Pb1-xSnxTe. Because topological protection comes from the crystal symmetry, magnetic impurities or in-plane magnetic fields are not expected to open a gap in the surface states in topological crystalline insulators. Additionally, because they have a cubic structure instead of a layered structure, branched structures or strong coupling with other materials for large proximity effects are possible, which are difficult with layered Bi2Se3 and Bi2Te3. Thus, additional fundamental phenomena inaccessible in three-dimensional topological insulators can be pursued. In this review, topological crystalline insulator SnTe nanostructures will be discussed. For comparison, experimental results based on SnTe thin films will be covered. Surface state properties of topological crystalline insulators will be discussed briefly. PMID:25350386

Shen, Jie; Cha, Judy J

2014-11-01

191

Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.  

PubMed

This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (<1 mm thick) to one surface and fired under manufacturer's recommended protocol. Scanning electron microscopy (SEM) with integrated electron dispersive X-ray (EDAX) was used for microstructural and elemental analysis. EDAX, for chemical analysis and transmission electron diffraction (TED) for structural analysis were both performed in the transmission electron microscope (TEM). Additionally, in order to spatially resolve Y-rich precipitates, micro-CT scans were conducted at varying depths within the porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ. PMID:24106151

Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R

2014-04-01

192

Three Mile Island zeolite vitirification demonstration program  

SciTech Connect

The cleanup of the high-activity-level water at Three Mile Island (TMI) provides an opportunity to further develop waste management technology. Approximately 790,000 gallons of high-activity-level water at TMI's Unit-2 Nuclear Power Station will be decontaminated at the site using the submerged demineralizer system (SDS). In the SDS process, the cesium and strontium in the water are sorbed onto zeolite that is contained within metal liners. The Department of Energy has asked the Pacific Northwest Laboratory (PNL) to take a portion of the zeolite from the SDS process and demonstrate, on a production scale, that this zeolite can be vitrified using the in-can melting process. This paper is a brief overview of the TMI zeolite vitrification program. The first section discusses the formulation of a glass suitable for immobilizing SDS zeolite. The following section describes a feed system that was developed to feed zeolite to the in-can melter. It also describes the in-can melting process and the government owned facilities in which the demonstrations will take place. Finally, the schedule for completing the program activities is outlined.

Siemens, D.H.; Knowlton, D.E.; Shupe, M.W.

1981-06-01

193

Kinetics of zeolite dealumination in steam  

SciTech Connect

Zeolite dealumination is a well known phenomenon that contributes to the deactivation or activation of catalysts in several different applications. The most obvious effect is in acid catalysis where dealumination under reaction conditions removes the Broensted sites, thus deactivating the catalyst. The authors are interested in the use of cation exchanged zeolites as selective reduction catalysts for removal of NO{sub x} from exhaust streams, particularly from automotive exhaust. In this case, copper exchanged ZSM-5 has been shown to be an effective catalyst for the generic reaction of NO{sub x} with hydrocarbons. However, high temperature and steam in combustion exhaust causes dealumination and consequent migration of copper out of the zeolite structure resulting in rapid deactivation of the catalyst. Dealumination of zeolites has been reported by many authors in uncountable papers and cannot be reviewed here. However, to the authors` knowledge there are no reports on the kinetics of dealumination under varying conditions of temperature and steam. By measuring the kinetics of dealumination with different zeolites and exchange cations they expect to develop working models of the dealumination process that will allow control of zeolite deactivation. This manuscript is a description of the basic techniques used and a progress report on the very beginning of this study.

Hughes, C.D.; Labouriau, A.; Crawford, S.N.; Romero, R.; Quirin, J.; Earl, W.L.

1998-08-01

194

Properties of glass-bonded zeolite monoliths  

SciTech Connect

It has been shown that mineral waste forms can be used to immobilize waste salt generated during the pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR). Solid, leach resistant monoliths were formed by hot-pressing mixtures of salt-occluded zeolite A powders and glass frit at 990 K and 28 MPa. Additional samples have now been fabricated and tested. Normalized release rates for all elements, including iodide and chloride, were less than 1 g/m{sup 2}d in 28-day tests in deionized water and in brine at 363 K (90{degrees}C). Preliminary results indicate that these rates fall with time with both leachants and that the zeolite phase in the glass-bonded zeolite does not function as an ion exchanger. Some material properties were measured. The Poisson ratio and Young`s modulus were slightly smaller in glass-bonded zeolite than in borosilicate glass. Density depended on zeolite fraction. The glass-bonded zeolite represents a promising mineral waste form for IFR salt.

Lewis, M.A.; Fischer, D.F. [Argonne National Lab., IL (United States); Murphy, C.D. [Univ. of Cincinnati, OH (United States)

1994-05-01

195

Mechanism of Zeolite Crystallization and Thermochemical Properties of Some Synthetic Zeolites. Final Report.  

National Technical Information Service (NTIS)

During the period of 4/1/82 to 9/30/84, the Department of Energy has provided support for laboratory synthesis of zeolites, calorimetric determinations, and thermal analyses on synthetic zeolites. This Final Report to the DOE is written as 6 independent s...

J. G. Liou

1984-01-01

196

Salt-occluded zeolite waste forms: Crystal structures and transformability  

SciTech Connect

Neutron diffraction studies of salt-occluded zeolite and zeolite/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 {angstrom} diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr, Ba, Y chloride salts, with compositions representative of anticipated waste systems. Samples prepared using zeolite 4A (which contains exclusively sodium cations) as starting material are observed to transform to sodalite, a denser aluminosilicate framework structure, while those prepared using zeolite 5A (sodium and calcium ions) more readily retain the zeolite-A structure. Because the sodalite framework pores are much smaller than those of zeolite-A, clusters are smaller and more rigorously confined, with a correspondingly lower capacity for waste containment. Details of the sodalite structures resulting from transformation of zeolite-A depend upon the precise composition of the original mixture. The enhanced resistance of salt-occluded zeolites prepared from zeolite 5A to sodalite transformation is thought to be related to differences in the complex chloride clusters present in these zeolite mixtures. Data relating processing conditions to resulting zeolite composition and structure can be used in the selection of processing parameters which lead to optimal waste forms.

Richardson, J.W. Jr. [Argonne National Lab., IL (United States). Intense Pulsed Neutron Source Div.

1996-12-31

197

What Is Crystalline Silica?  

MedlinePLUS

... glass. Additionally, crystalline silica exposures occur in the maintenance, repair and replacement of refractory brick furnace linings. In the maritime industry, shipyard employees are exposed to silica primarily in abrasive blasting operations to remove paint and clean and prepare steel ...

198

The Formation of Molecular Hydrogen on Silicate Dust Analogs: The Rotational Distribution  

NASA Astrophysics Data System (ADS)

Our laboratory experiments continue to explore how the formation of molecular hydrogen is influenced by dust and how dust thereby affects hydrogen molecules adsorbed on its surface. In Sabri et al., we present the preparation of nanometer-sized silicate grain analogs via laser ablation. These analogs illustrate extremes in structure (fully crystalline or fully amorphous grains), and stoichiometry (the forsterite and fayalite end-members of the olivine family). These were inserted in FORMOLISM, an ultra-high vacuum setup where they can be cooled down to ~5 K. Atomic beams are directed at these surfaces and the formation of new molecules is studied via REMPI(2+1) spectroscopy. We explored the rotational distribution (0 <= J'' <= 5) of v'' = 0 of the ground electronic state of H2. The results of these measurements are reported here. Surprisingly, molecules formed and ejected from crystalline silicates have a cold (T rot ~ 120 K) rotational energy distribution, while for molecules formed on and ejected from amorphous silicate films, the rotational temperature is ~310 K. These results are compared to previous experiments on metallic surfaces and theoretical simulations. Solid-state surface analysis suggests that flatter grains could hinder the "cartwheel" rotation mode. A search for hot hydrogen, predicted as a result of H2 formation, hints at its production. For the first time, the rotational distribution of hydrogen molecules formed on silicate dust is reported. These results are essential to understanding the chemistry of astrophysical media containing bare dust grains.

Gavilan, L.; Lemaire, J. L.; Vidali, G.; Sabri, T.; Jæger, C.

2014-02-01

199

Pulmonary disease from occupational exposure to an artificial aluminium silicate used for cat litter  

Microsoft Academic Search

All available workers engaged in bagging an artificial crystalline aluminium silicate--the kiln-dried residue from the calcining and water extraction of alunite (a hydrated sulphate of aluminium and potassium) that is currently classified as a nuisance dust--were studied after a complaint of respiratory and systemic symptoms, including arthritis, by an employee of the factory, who showed physiological and radiographic evidence of

A W Musk; H W Greville; A E Tribe

1980-01-01

200

The asteroid albedo scale. II - Laboratory polarimetry of dark carbon-bearing silicates  

NASA Technical Reports Server (NTRS)

Laboratory reflection polarimetry is presented for eight samples of artificial, poorly crystalline magnesian silicates with varying admixtures of carbon black. The polarimetric slope-albedo law saturates for geometric albedos lower than about 0.05, and good agreement with the telescopic polarization-phase curves of C-type asteroids is found for albedos as low as 0.02. Thus the conclusion from thermal radiometry is confirmed that the C objects are very dark, darker than any known carbonaceous chondrite.

Zellner, B.; Lebertre, T.; Day, K.

1977-01-01

201

2.5 Zeolites 2.5.1 Introduction  

E-print Network

). The value of zeolite catalysis to petroleum cracking is well in excess of $200 billion (MassNanoTech 2007 of zeolites' catalytic activity that is so important to the petrochemical industry. A second consequence

202

Adsorption kinetics of silicic acid on akaganeite.  

PubMed

As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure. PMID:23538050

Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

2013-06-01

203

Alkylation of aniline with n -propyl alcohol over zeolites  

Microsoft Academic Search

The alkylation of aniline withn-propyl alcohol over ZSM-5 and Y zeolites has been studied. Ce-exchanged Y zeolites proved to be the most active for the alkylation of aniline byn-propyl alcohol. The reaction of N-propylaniline over zeolites has been investigated. N-alkylaniline decomposed over zeolites to aniline and alkene, which in turn rearrange to C-alkylanilines.n-Propyl derivatives were formed through an SN2 type

R. B. C. Pillai

1996-01-01

204

Salt-occluded zeolite waste forms: Crystal structures and transformability  

Microsoft Academic Search

Neutron diffraction studies of salt-occluded zeolite and zeolite\\/glass composite samples, simulating nuclear waste forms loaded with fission products, have revealed complex structures, with cations assuming the dual roles of charge compensation and occlusion (cluster formation). These clusters roughly fill the 6--8 â« diameter pores of the zeolites. Samples are prepared by equilibrating zeolite-A with complex molten Li, K, Cs, Sr,

J. W. Jr

1996-01-01

205

Design and fabrication of zeolite macro- and micromembranes  

NASA Astrophysics Data System (ADS)

The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

Chau, Lik Hang Joseph

2001-07-01

206

Transalkylation of toluene with trimethylbenzenes over large-pore zeolites  

Microsoft Academic Search

Zeolites Beta, mordenite and Y were evaluated for their activity in transalkylation reaction of toluene with trimethylbenzenes. Zeolite Beta was found to possess the highest conversion in toluene–trimethylbenzene transalkylation as well as a higher stability in time-on-stream compared with mordenite and zeolite Y. The effect of Si\\/Al ratio in zeolite Beta was evaluated and it was found that transalkylation activity

Andrea Krej?í; Sulaiman Al-Khattaf; Muhammad Ashraf Ali; Martina Bejblová; Ji?í ?ejka

2010-01-01

207

Cerium uptake by zeolite A synthesized from natural clinoptilolite tuffs  

Microsoft Academic Search

Summary  Natural clinoptilolite tuffs from the Semnan region in Iran was used for the synthesis of zeolite A. The tuffs and synthesized zeolites were characterized by XRD and XRF. The sorption behavior of the synthesized zeolite toward cerium was studied. Using the Lagergren’s equation, the absorption constant was calculated. The measured distribution coefficient values (Kd) indicated that cerium uptake is higher

H. Faghihian; M. K. Amini; A. R. Nezamzadeh

2005-01-01

208

Natural zeolites in environmentally friendly processes and applications  

Microsoft Academic Search

An outline of the occurrences, features and environmental uses of the main sedimentary zeolites, namely chabazite, clinoptilolite, mordenite and phillipsite, is presented. After pointing out that zeolite-bearing rocks should not be considered as substitutes for synthetic zeolites, as they are lacking of purity and constancy of composition, three major areas of environmental application are identified: soil amendment, cement manufacture and

Carmine Colella

1999-01-01

209

Ion exchange in a zeolite-molten chloride system  

Microsoft Academic Search

Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for

R. H. Woodman; C. Pereira

1997-01-01

210

PARAMAGNETIC RESONANCE ABSORPTION OF GAMMA IRRADIATED SYNTHETIC ZEOLITES  

Microsoft Academic Search

The effect of gamma irradiation of synthetic zeolites was studied. ; Sodium X and sodium Y zeolites and also decationated samples prepared from these ; were irradiated in vacuum at room temperature with doses up to 20 megaroentgens. ; Two types of EPR signals were obtained. For the sodium Y and the sodium X ; zeolite a single line signal

D. N. Stamires; J. Turkevich

1963-01-01

211

The efficiency of Jordanian natural zeolite for heavy metals removal  

Microsoft Academic Search

The capability of Jordanian natural zeolite to remove nickel from aqueous solutions was experimentally investigated using a packed bed column. The zeolite samples were obtained from Jabal AL Aritayn in the northeast of Jordan. The effects of the initial concentration of nickel (C0), the packed bed length (L) and the zeolite grain size (Dp) on the adsorption process were considered.

Yazan Taamneh; Yazan TaamnehReyad Al Dwairi

2013-01-01

212

Production of biofuel from waste cooking palm oil using nanocrystalline zeolite as catalyst: process optimization studies.  

PubMed

The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%. PMID:21924606

Taufiqurrahmi, Niken; Mohamed, Abdul Rahman; Bhatia, Subhash

2011-11-01

213

?-Crystallin as a molecular chaperone  

Microsoft Academic Search

The role of ?-crystallin as a molecular chaperone may explain how the lens stays transparent for so long. ?-Crystallin prevents the aggregation of other lens crystallins and proteins that have become unfolded by “trapping” the protein in a high molecular weight complex. It also protects enzyme activities. The substrate protein may interact while in a molten globule state. ?-Crystallin predominantly

Barry K Derham; John J Harding

1999-01-01

214

Zeolites as catalysts in oil refining.  

PubMed

Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and petrochemistry as a consequence of the large effort in research and innovation. The remarkable efficiency of oil refining is largely based on the use of zeolites as catalysts. The use of zeolites as catalysts in refining and petrochemistry has been considered as one of the major accomplishments in the chemistry of the XXth century. In this tutorial review, the introductory part describes the main features of zeolites in connection with their use as solid acids. The main body of the review describes important refining processes in which zeolites are used including light naphtha isomerization, olefin alkylation, reforming, cracking and hydrocracking. The final section contains our view on future developments in the field such as the increase in the quality of the transportation fuels and the coprocessing of increasing percentage of biofuels together with oil streams. This review is intended to provide the rudiments of zeolite science applied to refining catalysis. PMID:24671148

Primo, Ana; Garcia, Hermenegildo

2014-10-20

215

Italian zeolitized rocks of technological interest  

NASA Astrophysics Data System (ADS)

Large areas of Italian territory are covered by thick and widespread deposits of zeolite-bearing volcaniclastic products. The main zeolites are phillipsite and chabazite spread over the whole peninsula, and clinoptilolite recorded only in Sardinia. A trachytic to phonolitic glassy precursor accounts for the formation of the former zeolites characterized by low Si/Al ratios (?3.00), while clinoptilolite is related to more acidic volcanism. The genesis of most of these zeolitized deposits is linked to pyroclastic flow emplacement mechanisms characterized by quite high temperatures and by the presence of abundant fluids. The main utilization of these materials has been and still is as dimension stones in the building industry. Currently, limited amounts are also employed in animal farming (dietary supplement, pet litter and manure deodorizer) and in agriculture as soil improvement and slow-release fertilizers. New fields of application have been proposed for these products on account of their easy availability, very low cost, their high-grade zeolites (50 70%), and good technological features such as high cation exchange capacities and adsorption properties.

de'Gennaro, M.; Langella, A.

1996-09-01

216

Preparation, Processing, and Characterization of Oriented Polycrystalline Zeolite and Aluminophosphate Membranes  

NASA Astrophysics Data System (ADS)

Since the advent of zeolite membranes, speculation on their industrial applicability has been closely monitored, although widespread commercialization has been hampered by limitations in fabrication and post-synthesis processing. Economical, energy-efficient technology breakthroughs require an evaluation of a range of material candidates which show robustness and reliability. Straightforward manufacturing techniques should be devised to generate thousands of square meters of membrane area; however, this demands control of structural characteristics on the scale of nanometers. As described in this dissertation, the path forward will be forged by exploiting the intrinsic crystalline properties of zeolites or aluminophosphates for the next advancement in membrane technology. A facile method is described for the preparation of silicalite-1 (MFI zeolite type) membranes using the secondary growth technique on symmetric porous stainless steel tubes. Activation through rapid thermal processing (RTP), a lamp-based heat-treatment process used as a critical fabrication step in silicon integrated circuit manufacturing, is proven to reduce the density of non-zeolitic transport pathways which are detrimental to high-resolution molecular sieving. RTP-treated membranes are shown to have enhanced performance in the binary separation of vapor-phase isomers (p-/o-xylene), gas-phase isomers (n-/i-butane), and alcohol/water when compared to membranes activated at a much slower heating rate but otherwise similarly-prepared. The performance is discussed in the context of the market potential for industrially-attractive separations: the recovery of p-xylene from an isomeric mixture or alcohol biofuels from aqueous post-fermentation streams. Hydrothermal growth techniques for the preparation and characterization of continuous aluminophosphate (AFI zeolite type) membranes with a preferential crystallographic alignment on porous alpha-Al2O3 disc supports are demonstrated. A mechanism is proposed for flake-like crystal formation in the early stages of in-plane crystalline intergrowth between oriented columnar crystals by electric heating. It is shown that elevated temperatures induce a phase transformation to a densified aluminophosphate phase despite framework metal substitution or alternative heat-treatment conditions. Additionally, stability and membrane characteristics following in situ microwave growth using a TiO2-coated support are examined. Indications of improved quality validate the candidacy of the microwave-grown membranes with regard to the potential for carbon nanotube synthesis in the aligned one-dimensional channels for high flux, high separation factor membrane fabrication.

Stoeger, Jared Andrew

217

A Site-Isolated Iridium Diethylene Complex Supported on Highly Dealuminated Y Zeolite: Synthesis And Characterization  

SciTech Connect

Highly dealuminated Y zeolite-supported mononuclear iridium complexes with reactive ethylene ligands were synthesized by chemisorption of Ir(C{sub 2}H{sub 4}){sub 2}(C{sub 5}H{sub 7}O{sub 2}). The resultant structure and its treatment in He, CO, ethylene, and H2 were investigated with infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopies. The IR spectra show that Ir(C{sub 2}H{sub 4}){sub 2}(C{sub 5}H{sub 7}O{sub 2}) reacted readily with surface OH groups of the zeolite, leading to the removal of C{sub 5}H{sub 7}O{sub 2} ligands and the formation of supported mononuclear iridium complexes, confirmed by the lack of Ir-Ir contributions in the EXAFS spectra. The EXAFS data show that each Ir atom was bonded to four carbon atoms at an average distance of 2.10 {angstrom}, consistent with the presence of two ethylene ligands per Ir atom and in agreement with the IR spectra indicating {pi}-bonded ethylene ligands. The EXAFS data also indicate that each Ir atom was bonded to two oxygen atoms of the zeolite at a distance of 2.15 {angstrom}. The supported iridium-ethylene complex reacted with H{sub 2} to give ethane, and it also catalyzed ethylene hydrogenation at atmospheric pressure and 294 K. Treatment of the sample in CO led to the formation of Ir(CO){sub 2} complexes bonded to the zeolite. The sharpness of the V{sub CO} bands indicates a high degree of uniformity of these complexes on the support. The iridium-ethylene complex on the crystalline zeolite support is inferred to be one of the most nearly uniform supported metal complex catalysts. The results indicate that it is isostructural with a previously reported rhodium complex on the same zeolite; thus, the results are a start to a family of analogous, structurally well-defined supported metal complex catalysts.

Uzun, A.; Bhirud, V.A.; Kletnieks, P.W.; Haw, J.F.; Gates, B.C.

2009-06-04

218

Catalytic processes in the presence of zeolites of increased internal acid activity and decreased external acid activity  

SciTech Connect

A process is described for aromatizing a C[sub 2+] aliphatic hydrocarbon stream in the presence of a catalyst which comprises ZSM-5 which becomes coked and deactivated during a catalytic aromatization cycle, the improvement comprising reducing production of coke, and increasing product yield by contacting said C[sub 2+] aliphatic hydrocarbon with a zeolite catalyst, in acid form, consisting of a silicate exhibiting the X-ray diffraction pattern of ZSM-5, and recovering a product effluent which comprises benzene, toluene, and at least one xylene selected from the group consisting of o-xylene, m-xylene, and p-xylene, wherein the silicate is formed by a method consisting essentially of the steps of providing as a reactant an aluminosilicate exhibiting the X-ray diffraction pattern of an ZSM-5 wherein said reactant exhibits an alpha value which is effective to crack hydrocarbons under cracking conditions and exhibits an activity to dealkylate 1,3,5-tri-t-butylbenzene, as measured by the rate of dealkylation of 1,3,5-tri-t-butylbenzene in the presence of said reactant; treating the reactant, in hydrogen form, with a solution of nitric acid at reflux temperature or lower; and recovering said silicate; which silicate exhibits an alpha value greater than that of said reactant and a rate for dealkylation of 1,3,5-tri-t-butylbenzene which is less than that rate of dealkylation of 1,3,5-tri-t-butylbenzene by said reactant.

Rodewald, P.G.

1993-06-15

219

Molecular dynamics simulations of organically modified layered silicates  

NASA Astrophysics Data System (ADS)

Molecular dynamics (MD) simulations are used to study the static and dynamic properties of 2:1 layered silicates ion exchanged with alkyl-ammonium surfactants. These systems are in the form of oligomeric alkanes grafted by cationic groups on atomically smooth crystalline layers 10 Å thick and several microns wide. The organically modified layers self-assemble parallel to each other to form alternating, well-ordered organic/inorganic multilayers. By studying the systems at the experimentally measured layer separations, computer modeling directly provides the structure and dynamics of the intercalated surfactant molecules. The grafted-chain conformations are also expressed through the trans-gauche conformer ratios and transition frequencies which compare well with Fourier transform infrared spectroscopy (FTIR) experiments.

Hackett, E.; Manias, E.; Giannelis, E. P.

1998-05-01

220

Hydrogen Purification Using Natural Zeolite Membranes  

NASA Technical Reports Server (NTRS)

The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

DelValle, William

2003-01-01

221

Positron annihilation in zeolite 13X  

NASA Astrophysics Data System (ADS)

Results presented in previous papers on positron annihilation in zeolite 13X referred only to fully hydrated or dehydrated samples. In these investigations the dehydration process was studied based on measurements of positron lifetime spectra in zeolite 13X samples. All spectra were resolved into three or four components. Measurements show that water removal is most intensive at the beginning of pumping. For dehydration at higher temperature results suggest that the last molecules of ``zeolitic water'' are removed from the sample at a temperature of about 200 °C. It was found that independent of the stage of dehydration of the sample the intensity (I3+I4) of the two longest components in the spectrum is virtually constant (24%) and is equal to the intensity I3 of the longest component for the fully hydrated sample.

Habrowska, A. M.; Popiel, E. S.

1987-09-01

222

40 CFR 721.9513 - Modified magnesium silicate polymer (generic).  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

2012-07-01

223

40 CFR 721.9513 - Modified magnesium silicate polymer (generic).  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Modified magnesium silicate polymer (generic). 721...Substances § 721.9513 Modified magnesium silicate polymer (generic). ...substance identified generically as modified magnesium silicate polymer (PMN...

2013-07-01

224

40 CFR 721.9513 - Modified magnesium silicate polymer (generic).  

Code of Federal Regulations, 2011 CFR

... false Modified magnesium silicate polymer (generic). 721.9513 Section 721...721.9513 Modified magnesium silicate polymer (generic). (a) Chemical substance...generically as modified magnesium silicate polymer (PMN P-98-604) is subject to...

2011-07-01

225

40 CFR 721.9513 - Modified magnesium silicate polymer (generic).  

Code of Federal Regulations, 2010 CFR

... false Modified magnesium silicate polymer (generic). 721.9513 Section 721...721.9513 Modified magnesium silicate polymer (generic). (a) Chemical substance...generically as modified magnesium silicate polymer (PMN P-98-604) is subject to...

2010-07-01

226

Studies of anions sorption on natural zeolites.  

PubMed

This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

Barczyk, K; Mozgawa, W; Król, M

2014-12-10

227

The speciation of water in silicate melts  

Microsoft Academic Search

Previous models of water solubility in silicate melts generally assume essentially complete reaction of water molecules to hydroxyl groups. In this paper a new model is proposed that is based on the hypothesis that the observed concentrations of molecular water and hydroxyl groups in hydrous silicate glasses reflect those of the melts from which they were quenched. The new model

Edward Stolper

1982-01-01

228

Inorganic Plant Nutrients: Nitrogen, Phosphorus, Silicate Introduction  

E-print Network

limiting factor for phytoplankton production in the Antarctic Ocean and the North Pacific Ocean). The major important are diatoms, which may form phytoplankton blooms under conditions of sufficient silicate in the water, and silicate is often depleted after the diatom spring bloom in temperate regions. Certain

Jochem, Frank J.

229

Carbon substitution for oxygen in silicates in planetary interiors  

PubMed Central

Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiOxC4-x tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiOxC4-x tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10–100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle. PMID:24043830

Sen, Sabyasachi; Widgeon, Scarlett J.; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf

2013-01-01

230

The 8-13 micron spectra of comets and the composition of silicate grains  

NASA Technical Reports Server (NTRS)

We have analyzed the existing spectra of seven comets which show an emission feature at 7.8-13 micrometers. Most have been converted to a common calibration, taking into account the SiO feature in late-type standard stars. The spectra are compared with spectra of the Trapezium, interplanetary dust particles (IDPs), laboratory mineral samples, and small particle emission models. The emission spectra show a variety of shapes; there is no unique 'cometary silicate'. A peak at 11.20-11.25 micrometers, indicative of small crystalline olivine particles, is seen in only three comets of this sample, P/Halley, Bradfield 1987 XXIX, and Levy 1990 XX. The widths of the emission features range from 2.6 to 4.1 micrometers (FWHM). To explain the differing widths and the broad 9.8 micrometers maximum, glassy silicate particles, including both pyroxene and olivine compositions, are the most plausible candidates. Calculations of emission models confirm that small grains of glassy silicate well mixed with carbonaceous material are plausible cometary constituents. No single class of chondritic aggregate IDPs exhibits spectra closely matching the comet spectra. A mixture of IDP spectra, particularly the glass-rich aggregates, approximately matches the spectra of comets P/Halley, Levy, and Bradfield 1987 XXIX. Yet, if comets are simply a mix of IDP types, it is puzzling that the classes of IDPs are so distinct. None of the comet spectra match the spectrum of the Trapezium. Thus, the mineralogy of the cometary silicates is not the same as that of the interstellar medium. The presence of a component of crystalline silicates in comets may be evidence of mixing between high- and low-temperature regions in the solar nebula.

Hanner, Martha S.; Lynch, David K.; Russell, Ray W.

1994-01-01

231

Photocatalytic activity of undoped and Ag-doped TiO{sub 2}-supported zeolite for humic acid degradation and mineralization  

SciTech Connect

Highlights: {yields} Hybrid materials based on natural zeolite and TiO{sub 2} obtained by solid-state reaction. {yields} XRD proved the presence of anatase form of undoped and Ag-doped TiO{sub 2} onto zeolite. {yields} FT-IR spectra evidenced the presence on TiO{sub 2} bounded at the zeolite network. {yields} Ag-doped TiO{sub 2} onto zeolitic matrix exhibited an enhanced photocatalytic activity. -- Abstract: The hybrid materials based on natural zeolite and undoped and Ag-doped TiO{sub 2}, i.e., Z-Na-TiO{sub 2} and Z-Na-TiO{sub 2}-Ag, were successfully synthesized by solid-state reaction in microwave-assisted hydrothermal conditions. Undoped TiO{sub 2} and Ag-doped TiO{sub 2} nanocrystals were previously synthesized by sol-gel method. The surface characterization of undoped TiO{sub 2}/Ag-doped TiO{sub 2} and natural zeolite hybrid materials has been investigated by X-ray diffraction, DRUV-VIS spectroscopy, FT-IR spectroscopy, BET analysis, SEM microscopy and EDX analysis. The results indicated that anatase TiO{sub 2} is the dominant crystalline type as spherical form onto zeolitic matrix. The presence of Ag into Z-Na-TiO{sub 2}-Ag was confirmed by EDX analysis. The DRUV-VIS spectra showed that Z-Na-TiO{sub 2}-Ag exhibited absorption within the range of 400-500 nm in comparison with Z-Na-TiO{sub 2} catalyst. The enhanced photocatalytic activity of Z-Na-TiO{sub 2}-Ag catalyst is proved through the degradation and mineralization of humic acid under ultraviolet and visible irradiation.

Lazau, C. [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Condensed Matter Department, P. Andronescu no.1, 300254 Timisoara (Romania)] [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Condensed Matter Department, P. Andronescu no.1, 300254 Timisoara (Romania); Ratiu, C. [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Condensed Matter Department, P. Andronescu no.1, 300254 Timisoara (Romania) [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Condensed Matter Department, P. Andronescu no.1, 300254 Timisoara (Romania); National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Orha, C. [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Condensed Matter Department, P. Andronescu no.1, 300254 Timisoara (Romania)] [National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Condensed Matter Department, P. Andronescu no.1, 300254 Timisoara (Romania); Pode, R. ['Politehnica' University of Timisoara, P-ta Victoriei no.2, 300006 Timisoara (Romania)] ['Politehnica' University of Timisoara, P-ta Victoriei no.2, 300006 Timisoara (Romania); Manea, F., E-mail: florica.manea@chim.upt.ro ['Politehnica' University of Timisoara, P-ta Victoriei no.2, 300006 Timisoara (Romania)

2011-11-15

232

Liquid crystalline conducting polymers  

SciTech Connect

Recently we developed side chain liquid crystalline polyacetylene derivatives and achieved a substantial enhancement of electrical conductivity through magnetically forced alignment of the side chain of the polymer. When an electric field is employed as an alternative external force instead of the magnetic force, a ferroelectric liquid crystal should the more favorable than usual liquid crystals. This is because the former can respond more smoothly to the electric field owing to its spontaneous polarization than the latter. Here, in order to develop a novel liquid crystalline conducting polymer, we have synthesized a chiroptical liquid crystalline polyacetylene derivative. The liquid crystalline side chain of the polymer consists of a chiral alkyl moiety as a terminal group and a biphenyl moiety as a mesogenic core and a trimethylene segment as a spacer. The polymerization was carried out using a metathesis catalyst of MoCl{sub 5}-SnPh{sub 4}. Both the monomer and polymer showed the same signs in CD (circular dichroism) bands, indicating that the chirality of the monomer is maintained in the polymer. Measurements of DSC (differential scanning calorimeter) and polarizing microscope indicated that the polymer has a chiral smectic C (S{sub m} C*) phase assignable to the ferroelectric liquid crystal. Electrical and chemical properties of the polymer, including dielectric constant, electrical conductivity upon iodine doping and morphological alignment under an external force, are to be presented.

Akagi, K.; Goto, H.; Shirakawa, H. [Univ. of Tsukuba, Ibaraki (Japan)

1996-10-01

233

Silicate emission feature in the spectrum of comet Mueller 1993a  

NASA Technical Reports Server (NTRS)

An 8- to 13-micron spectrum of comet Mueller 1993a, a dynamically new comet, was acquired when the comet was at R = 2 AU. Strong, structured silicate emission is present, closely resembling that seen in Comet P/Halley at smaller R. For the first time in a new comet, the 11.2-micron peak of crystalline olivine was detected, demonstrating that crystalline olivine particles were widespread in the solar nebula. Crystalline olivine particles could have formed in the inner protosolar nebula at temperatures greater than 1200 K; extensive radial mixing would have been required to transport these grains to the region of comet formation. Either there was more radial mixing in the solar nebula than some current theories predict or the olivine grains have a presolar origin.

Hanner, Martha S.; Hackwell, John A.; Russell, Ray W.; Lynch, David K.

1994-01-01

234

A study of the alumina-silica gel adsorbent for the removal of silicic acid from geothermal water: increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid.  

PubMed

Two kinds of adsorbents (Si adsorbent and Al adsorbent) for the removal of silicic acid from geothermal water to retard the formation of silica scales were prepared using silicic acid contained in geothermal water. The Si adsorbent was prepared by evaporating geothermal water, and the Al adsorbent was prepared by evaporating geothermal water after the addition of aluminum chloride. The specific surface area of the Si adsorbent was small and it's adsorption capacity of silicic acid was low. Although the specific surface area of the Al adsorbent was also small, it was significantly increased by the adsorption of silicic acid and it's adsorption capacity was high. Based on the change in the local structure of aluminum ion by the adsorption of silicic acid, the Al adsorbent was considered to be silica particles covered with crystalline aluminum hydroxide. Moreover, it was concluded that the increase in the specific surface area of the Al adsorbent and the decrease in the zeta potential were due to the formation of an amorphous aluminosilicate with a large surface area and a negative charge (one 4-coordinated Al) by the reaction between aluminum ions and silicic acids. PMID:16290755

Yokoyama, Takushi; Ueda, Akira; Kato, Koichi; Mogi, Katsumi; Matsuo, Shorin

2002-08-01

235

Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars  

PubMed Central

Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

Smith, Joseph V.

1998-01-01

236

Magma-tectonic interaction and the eruption of silicic batholiths  

NASA Astrophysics Data System (ADS)

Due to its unfavorable rheology, magma with crystallinity exceeding about 50 vol.% and effective viscosity > 10 6 Pa s is generally perceived to stall in the Earth's crust rather than to erupt. There is, however, irrefutable evidence for colossal eruption of batholithic magma bodies and here we analyze four examples from Spain, Mexico, USA and the Central Andes. These silicic caldera-forming eruptions generated deposits characterized by i) ignimbrites containing crystal-rich pumice, ii) co-ignimbritic lag breccias and iii) the absence of initial fall-out. The field evidence is inconsistent with most caldera-forming deposits, which are underlain by initial fall-out indicating deposition from a sustained eruption column before the actual collapse sequence. In contrast, the documented examples suggest early deep-level fragmentation at the onset of eruption and repeated column collapse generating eruption volumes on the order of hundreds of cubic kilometers almost exclusively in the form of ignimbrites. These examples challenge our understanding of magma eruptability and eruption initiation processes. In this paper, we present an analysis of eruption promoters from geologic, theoretical and experimental considerations. Assessing relevant dynamics and timescales for failure of crystal-melt mush we propose a framework to explain eruption of batholithic magma bodies that primarily involves an external trigger by near-field seismicity and crustal failure. Strain rate analysis for dynamic and static stressing, chamber roof collapse and rapid decompression indicates that large "solid-like" silicic reservoirs may undergo catastrophic failure leading to deep-level fragmentation of batholithic magma at approximately 2 orders of magnitude lower strain rates than those characteristic for failure of crystal-poor magmas or pure melt. Eruption triggers can thus include either amplified pressure transients in the liquid phase during seismic shaking of a crystal-melt mush, decompression by block subsidence or a combination of both. We find that the window of opportunity for the eruption of large silicic bodies may thus extent to crystallinities beyond 50 vol.% for strain rates on the order of > 10 - 3 to 10 - 4 s - 1 .

Gottsmann, J.; Lavallée, Y.; Martí, J.; Aguirre-Díaz, G.

2009-07-01

237

Zeolite 5A Catalyzed Etherification of Diphenylmethanol  

ERIC Educational Resources Information Center

An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

2009-01-01

238

POLYMER-ZEOLITE NANOCOMPOSITE HIGH-TEMPERATURE  

E-print Network

Efficiency · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable Energy TechnologiesPOLYMER-ZEOLITE NANOCOMPOSITE HIGH-TEMPERATURE PROTON-EXCHANGE-MEMBRANE FOR FUEL CELLS Prepared For: California Energy Commission Energy Innovations Small Grant Program Prepared By: Yushan Yan University

239

The poisoning of silver zeolite by organics  

Microsoft Academic Search

Silverzeolite was exposed to various organics to measure their effect on the silver zeolite's ability to subsequently adsorb iodine. The organics examined were alkanes, alkynes, aromatics, ketones, alcohols, and halocarbons (methyl and ethyl based). The reduction in iodine removal efficiency ranged from zero to 96%. Adding additional radicals to the base organic generally had the effect of decreasing the silver

J. G. Jolley; H. G. Tompkins

1984-01-01

240

Silver clusters and chemistry in zeolites  

SciTech Connect

The spectroscopic work done on silver clusters trapped in solid noble gas matrices at low temperature has been extensively reviewed by Ozin, and Henglein has done the same for photochemical studies of colloidal silver particles in solution. This article will review the chemistry of silver in zeolite hosts, including the synthesis and structures of silver clusters. 127 refs.

Sun, T.; Seff, K. (Univ. of Hawaii, Honolulu, HI (United States). Dept. of Chemistry)

1994-06-01

241

ARSENIC SEPARATION FROM WATER USING ZEOLITES  

EPA Science Inventory

Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

242

ARSENIC SEPARATION FROM WATER USING ZEOLITES: SYMPOSIUM  

EPA Science Inventory

NRMRL-ADA-01134 Shevade, S, Ford*, R., and Puls*, R.W. "Arsenic Separation from Water Using Zeolites." In: 222nd ACS National Meeting, ACS Environmental Chemistry Division Symposia, Chicago, IL, 08/26-30/2001. 2001. 04/23/2001 This...

243

Dispersion enhanced metal/zeolite catalysts  

DOEpatents

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

1987-03-31

244

Dispersion enhanced metal/zeolite catalysts  

DOEpatents

Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

Sachtler, Wolfgang M. H. (Evanston, IL); Tzou, Ming-Shin (Evanston, IL); Jiang, Hui-Jong (Evanston, IL)

1987-01-01

245

MERCURY SEPARATION FROM POLLUTANT WATER USING ZEOLITES  

EPA Science Inventory

Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water has been examined at room temperature. Experiments have...

246

Mechanism of methanol conversion over zeolite  

Microsoft Academic Search

Details of the reaction mechanisms of conversions of methanol to various alkanes and alkenes were investigated. A discussion of the autocatalytic phenomena of the conversion of methanol over ZSM-5 zeolite was included. The temperature dependence and acidity aspects of the reaction rate were discussed. Also the use of Nafion-H and heteropolyacids as catalysts of conversion was also included. A detailed

1983-01-01

247

X-ray photoelectron study of oxygen bonding in crystalline C-S-H phases  

NASA Astrophysics Data System (ADS)

We recorded the photoelectron spectra of various crystalline calcium silicate hydrates (C-S-Hs) and have examined their O 1 s photoelectron spectra. The spectra are asymmetric, with contributions assigned primarily to bridging and non-bridging oxygen species. There is an increased contribution due to the presence of non-bonding oxygen atoms with increasing calcium:silicon ratio. Additionally, there are slight changes in theO 1s-binding energies with changes in calcium:silicon ratio. These changes are explained in terms of bonding and silicate structure.

Black, L.; Garbev, K.; Stemmermann, P.; Hallam, K. R.; Allen, G. C.

248

UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS  

EPA Science Inventory

Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

249

Crystalline titanate catalyst supports  

DOEpatents

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, R.G.; Dosch, R.G.

1993-01-05

250

Crystalline titanate catalyst supports  

DOEpatents

A series of new crystalline titanates (CT) are shown to have considerable potential as catalyst supports. For Pd supported catalyst, the catalytic activity for pyrene hydrogenation was substantially different depending on the type of CT, and one was substantially more active than Pd on hydrous titanium oxide (HTO). For 1-hexene hydrogenation the activities of the new CTs were approximately the same as for the hydrous metal oxide supports.

Anthony, Rayford G. (Bryan, TX); Dosch, Robert G. (Albuquerque, NM)

1993-01-01

251

CO2 SEPARATIONS USING ZEOLITE MEMBRANES  

SciTech Connect

Zeolite and other inorganic molecular sieve membranes have shown potential for separations based on molecular size and shape because of their small pore sized, typically less than 1 nm, and their narrow pore size distribution. The high thermal and chemical stability of these inorganic crystals make them ideal materials for use in high temperature applications such as catalytic membrane reactors. Most of the progress with zeolite membranes has been with MFI zeolites prepared on porous disks and tubes. The MFI zeolite is a medium pore size structure having nearly circular pores with diameters between .53 and .56 nm. Separation experiments through MFI membranes indicate that competitive adsorption separates light gas mixtures. Light gas selectivities are typically small, however, owing to small differences in adsorption strengths and their small sizes relative to the MFI pore opening. Furthermore, competitive adsorption does not work well at high temperature where zeolite membranes are stable and have potential application. Separation by differences in size has a greater potential to work at high temperature than competitive adsorption, but pores smaller than those in MFI zeolites are required. Therefore, some studies focused on the synthesis of a small, 8-membered-pore structures such as zeolite A (0.41-nm pore diameter) and SAPO-34, a chabazite (about .4-nm pore diameter with about 1.4 nm cages) analog. The small pore size of the zeolite A and SAPO-34 structures made the separation of smaller molecules by differences in size possible. Zeolite MFI and SAPO-34 membranes were prepared on the inside surface of porous alumina tubes by hydrothermal synthesis, and single gas and binary mixture permeances were measured to characterize the membrane's performance. A mathematical diffusion model was developed to determine the relative quantities of zeolite and non-zeolite pores in different membranes by modeling the permeation date of CO{sub 2}. This model expresses the total flux through the membrane as the sum of surface diffusion through zeolite pores and viscous flow and Knudsen diffusion through non-zeolite pores. As predicted by the model, the permeance of CO{sub 2} decrease with increasing pressure at constant pressure drop for membranes with few non-zeolite pores, but the permeance increased through viscous flow pores and was constant through pores allowing Knudsen diffusion. Membranes having more non-zeolite pores had lower CO{sub 2}/CH{sub 4} selectivities. The SAPO-34 membranes were characterized for light gas separation applications, and the separation mechanisms were identified. Single gas permeances of CO{sub 2}, N{sub 2}, and CH{sub 4} decreased with increasing kinetic diameter. For the best membrane at 300K, the He and H{sub 2} permeances were less than that of CO{sub 2}, because He, H{sub 2} and CO{sub 2} were small compared to the SAPO-34 pore, and differences in the heat of adsorption determined the permeance order. The small component permeated the fastest in CO{sub 2}/CH{sub 4}, CO{sub 2}/N{sub 2}, N{sub 2}/CH{sub 4}, H{sub 2}/CH{sub 4}, and H{sub 2}/N{sub 2} mixtures between 300 and 470 K. For H{sub 2}/CO{sub 2} mixtures, which were separated by competitive adsorption at room temperature, the larger component permeated faster below 400K. The room temperature CO{sub 2}/CH{sub 4} selectivity was 36 and decreased with temperature. The H{sub 2}/CH{sub 4} mixture selectivity was 8 and constant with temperature up to 480 K. Calcination, slow temperature cycles, and exposure to water vapor had no permanent effect on membrane performance, but temperature changes of approximately 30 K/min decreased the membrane's effectiveness. The effects of humidity on gas permeation were studied with SAPO-34 membranes of different qualities. Membranes with high CO{sub 2}/CH{sub 4} selectivities (greater than 20) were stable in water vapor under controlled conditions, but degradation was seen for some membranes. The degradation opened non-SAPO-34 pores that were larger than SAPO-34 pores as shown by the IC{sub 4}H{sub 10} permeance, C

Richard D. Noble; John L. Falconer

2001-06-30

252

The Silicate Garden Reaction in Microgravity: A Fluid Interfacial Instability  

Microsoft Academic Search

In the “silicate garden” reaction, crystals of a metal salt are placed in sodium silicate solution. The crystals become coated with a semipermeable membrane of metal silicate reaction product, from which hollow tubes of metal silicate rise convectively upward, against gravity. In the absence of gravity, and free of convective influences, the reaction might be expected to reveal more fundamental

David E. H. Jones; Ulrich Walter

1998-01-01

253

Preprint typeset using LATEX style emulateapj v. 6/22/04 THE UNUSUAL SILICATE DUST AROUND HV 2310, AN EVOLVED STAR IN THE LMC  

E-print Network

, and an extended shoulder to 11.2 µm. This structure is similar to spectra from crystalline silicate grains around evolved stars has not yet been mixed into the interstellar medium, so the study of spectra from generated by the standard online data- reduction pipeline at the Spitzer Science Center (S11.0) and follows

Sloan, Gregory C.

254

Chemical Interactions in Multimetal/Zeolite Catalysts  

SciTech Connect

This two-year project has led to a significant improvement in the fundamental understanding of the catalytic action of zeolite-supported redox catalysts. It turned out to be essential that we could combine four strategies for the preparation of catalysts containing transition metal (TM) ions in zeolite cavities: (1) ion exchange from aqueous solution; (2) chemical vapor deposition (CVD) of a volatile halide onto a zeolite in its acidic form; (3) solid state ion exchange; and (4) hydrothermal synthesis of a zeolite having TM ions in its lattice, followed by a treatment transporting these ions to ''guest positions''. Technique (2) enables us to position more TM ions into cavities than permitted by the conventional technique (1).viz one positive charge per Al centered tetrahedron in the zeolite lattice. The additional charge is compensated by ligands to the TM ions, for instance in oxo-ions such as (GaO){sup +} or dinuclear [Cu-O-Cu]{sup 2+}. While technique (3) is preferred over CVD where volatile halides are not available, technique (4) leads to rather isolated ''ex lattice'' oxo-ions. Such oxo-ions tend to be mono-nuclear, in contrast to technique (2) which preferentially creates dinuclear oxo-ions of the same TM element. A favorable element for the present research was that the PI is also actively engaged in a project on the reduction of nitrogen oxides, sponsored by EMSI program of the National Science Foundation and the US Department of Energy, Office of Science. This combination created a unique opportunity to test and analyze catalysts for the one step oxidation of benzene to phenol and compare them with catalysts for the reduction of nitrogen oxides, using hydrocarbons as the reductant. In both projects catalysts have been used which contain Fe ions or oxo-ions in the cavities the zeolite MFI, often called ZSM-5. With Fe as the TM-element and MFI as the host zeolite we found that catalysts with high Fe content, prepared by technique (2) were optimal for the De-NO{sub x} reaction, but extremely unselective for benzene oxidation to phenol. Conversely, the catalysts prepared with (4) had the highest turnover frequency for benzene oxidation, but performed very poorly for NO{sub x} reduction with so-butane. In fact the Fe concentration in the former catalysts were so low that it was necessary to design a special experimental program for the sole purpose of showing that it is really the Fe which catalyzes the benzene oxidation, not some acid center as has been proposed by other authors. For this purpose we used hydrogen sulfide to selectively poison the Fe sites, without deactivating the acidic sites. In addition we could show that the hydrothermal treatment of catalysts prepared by technique (4) is essential to transform iron ions in the zeolite lattice to ''ex lattice ions'' in guest positions. That line of the work required very careful experimentation, because a hydrothermal treatment of a zeolite containing Fe ions in its cavities can also lead to agglomeration of such ions to nano-particles of iron oxide which lowers the selectivity for the desired formation of phenol. This part of the program showed convincingly that indeed Fe is responsible for the benzene oxidation catalysis. The results and conclusion of this work, including the comparison of different catalysts, was published in a number of papers in the scientific literature, listed in the attached list. In these papers also our analysis of the reaction orders and the possible mechanism of the used test reaction are given.

Sachtler, Wolfgang M. H.

2004-04-16

255

Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni  

NASA Technical Reports Server (NTRS)

The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

Singletary, S. J.; Domanik, K.; Drake, M. J.

2005-01-01

256

Foam flotation of zeolites: Application for zinc ion removal  

SciTech Connect

In this paper the solid/liquid separation of a NaY zeolite, a known cation exchanger, was investigated in the laboratory by foam flotation from aqueous suspensions. The main parameters affecting the process in batch experiments, such as the pH of the suspension, the type of collector, the cationic collector concentration, the zeolite concentration, and the ionic strength were examined. The optimum conditions for removal (flotation) of more than 95% of the zeolite were determined. Following flotation of the zeolite in the Na form, zinc ions were chosen to serve as an application for ion exchange by the zeolite (for metal recovery), followed by foam flotation of the exchanged form of the zeolite from solution.

Zouboulis, A.I.; Zamboulis, D.; Matis, K.A. (Aristotle Univ., Thessaloniki (Greece))

1991-01-01

257

Atomic sites and stability of Cs+ captured within zeolitic nanocavities  

PubMed Central

Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

2013-01-01

258

Interaction of Microwaves with Synthetic Type A Zeolite Containing Water  

NASA Astrophysics Data System (ADS)

A synthetic honeycomb type A zeolite adsorbent was regenerated through microwave irradiation in a single-mode cavity microwave at 2.46 GHz. The regeneration mechanism was investigated by comparing the heating properties, thermogravimetric properties, and dielectric properties of the synthetic zeolite samples. The hydrated zeolite sample was easily heated to over 200 °C, although a difference in the impedance matching frequency of only 0.01 GHz sharply reduced the maximum heating and increased the regeneration time. The adsorbed water in the hydrated zeolite initially acted as a heating agent by absorbing microwave energy, because the dielectric loss factor of water is higher than that of synthetic zeolite around 2.45 GHz. From 50 to 250 °C, the zeolite itself also absorbed microwave energy.

Tanaka, Masahiro; Takayama, Sadatsugu; Sano, Saburo

2013-11-01

259

Layered zeolitic materials: an approach to designing versatile functional solids.  

PubMed

Relevant layered zeolites have been considered in this perspective article from the point of view of the synthesis methodologies, materials characterization and catalytic implications, considering the unique physico-chemical characteristics of lamellar materials. The potential of layered zeolitic precursors to generate novel lamellar accessible zeolites through swelling, intercalation, pillarization, delamination and/or exfoliation treatments is studied, showing the chemical, functional and structural versatility exhibited by layered zeolites. Recent approaches based on the assembly of zeolitic nanosheets which act as inorganic structural units through the use of dual structural directing agents, the selective modification of germanosilicates and the direct generation of lamellar hybrid organic-inorganic aluminosilicates are also considered to obtain layered solids with well-defined functionalities. The catalytic applications of the layered zeolites are also highlighted, pointing out the high accessibility and reactivity of active sites present in the lamellar framework. PMID:24457617

Díaz, Urbano; Corma, Avelino

2014-07-21

260

Silicates characterization as potential bacteriocin-carriers  

Microsoft Academic Search

Two different silicates, zeosil and expanded perlite, were characterized as potential carriers of a bacteriocin with anti-Listeria monocytogenes activity, produced by Enterococcus faecium CRL1385. Specific surface areas showed a value significantly higher for zeosil (146m2 g?1) than for perlite (0.65m2 g?1). Potential zeta measurements revealed that both silicates had negatively charged surfaces between pH 2 and 11, but zeosil presented

Carolina Ibarguren; M. Carina Audisio; E. Mónica Farfán Torres; María C. Apella

2010-01-01

261

Bis-GMA/TEGDMA Dental Composites Reinforced with Electrospun Nylon 6 Nanocomposite Nanofibers Containing Highly Aligned Fibrillar Silicate Single Crystals  

PubMed Central

The objective of this research was to study the reinforcement of electrospun nylon 6/fibrillar silicate nanocomposite nanofibers on Bis-GMA/TEGDMA dental composites. The hypothesis was that the uniform distribution of nano-scaled and highly aligned fibrillar silicate single crystals into electrospun nylon 6 nanofibers would improve the mechanical properties of the resulting nanocomposite nanofibers, and would lead to the effective reinforcement of dental composites. The nylon 6/fibrillar silicate nanocomposite nanofibers were crystalline, structurally oriented and had an average diameter of approximately 250 nm. To relatively well distribute nanofibers in dental composites, the nanofiber containing composite powders with a particle structure similar to that in interpenetration networks were prepared first, and then used to make the dental composites. The results indicated that small mass fractions (1 % and 2 %) of nanofiber impregnation improved the mechanical properties substantially, while larger mass factions (4 % and 8 %) of nanofiber impregnation resulted in less desired mechanical properties. PMID:17940586

Tian, Ming; Gao, Yi; Liu, Yi; Liao, Yiliang; Xu, Riwei; Hedin, Nyle E.; Fong, Hao

2007-01-01

262

Modified zeolites as catalysts in the Friedel-Crafts acylation  

Microsoft Academic Search

Modified zeolites were found to be active catalysts in the Friedel-Crafts acylation of anisole by acetyl chloride and acetic anhydride. The effect of two different modifications of the zeolites were tested; lanthanum-exchange and varying the SiAl ratio. For the rare-earth modified zeolites, the activity was found to be dependent on the lanthanum content, and the yield increased with the level

Kristin Gaare; Duncan Akporiaye

1996-01-01

263

Transesterification of soybean oil with zeolite and metal catalysts  

Microsoft Academic Search

Transesterification of soybean oil with methanol was carried out at 60, 120, and 150°C in the presence of a series NaX faujasite zeolite, ETS-10 zeolite, and metal catalysts. The stock zeolites were exchanged with potassium and cesium; NaX containing occluded sodium oxide (NaOx\\/NaX) and occluded sodium azide (NaOx\\/NaX*). The catalysts were calcined at 500°C prior to use in order to

Galen J. Suppes; Mohanprasad A. Dasari; Eric J. Doskocil; Pratik J. Mankidy; Michael J. Goff

2004-01-01

264

Treatment of Acid Mine Drainage Using Fly Ash Zeolite  

Microsoft Academic Search

In this paper, two Indian fly ashes (from Talcher and Ramagundam) were converted into zeolites and both the raw fly ash and\\u000a zeolite were used to treat two British acidic mine waters. The results demonstrate that fly ash zeolites are more effective\\u000a than raw fly ash for treatment of acid mine drainage. Fly ash has been found effective for removal

Bably Prasad; Robert J. G. Mortimer

2011-01-01

265

Molten-salt method for the synthesis of zeolitic materials  

Microsoft Academic Search

The molten-salt method has been applied for the zeolitization of fly ash and other mineral wastes. Fly ash was converted into zeolitic materials by a simple thermal treatment at molten states of some salt mixtures without any addition of water. Various combinations of salt mixtures were employed for the zeolitization of fly ash, using NaOH, KOH, or NH4F as mineralizer,

Man Park; Choong Lyeal Choi; Woo Taik Lim; Myung Chul Kim; Jyung Choi; Nam Ho Heo

2000-01-01

266

Molten-salt method for the synthesis of zeolitic materials  

Microsoft Academic Search

Characterization of zeolitic materials synthesized by the newly developed molten-salt method was carried out. Their physicochemical properties were investigated and compared to those of zeolitic materials prepared by the conventional hydrothermal method. The molten-salt method exhibited much less elemental loss during the zeolitization process. The product yield based on the reaction weight was about twice as high in the molten-salt

Man Park; Choong Lyeal Choi; Woo Taik Lim; Myung Chul Kim; Jyung Choi; Nam Ho Heo

2000-01-01

267

Characterization of Y zeolites using sodium-23 MASNMR  

Microsoft Academic Search

Y zeolites have engendered a great deal of interest because of their large pore structure. As a result, considerable characterization work has been performed on the silica-alumina framework of Y and other zeolites. For example, the dealumination of Y zeolite has been extensively studied using various techniques including silicon-29 NMR, aluminum-27 NMR, and STEM\\/EDX analysis. In contrast, the characterization of

L. B. Welsh; S. L. Lambert

1988-01-01

268

Large zeolites - Why and how to grow in space  

NASA Technical Reports Server (NTRS)

The growth of zeolite crystals which are considered to be the most valuable catalytic and adsorbent materials of the chemical processing industry are discussed. It is proposed to use triethanolamine as a nucleation control agent to control the time release of Al in a zeolite A solution and to increase the average and maximum crystal size by 25-50 times. Large zeolites could be utilized to make membranes for reactors/separators which will substantially increase their efficiency.

Sacco, Albert, Jr.

1991-01-01

269

Cobalt nanoparticles prepared in faujasite zeolites by borohydride reduction  

Microsoft Academic Search

Metallic cobalt nanoparticles have been prepared in the faujasite zeolite by the reduction of the Co2+-exchanged zeolite with sodium borohydride aqueous solutions. The influences of the temperature used for treating the Co2+-faujasite zeolite before reduction and the concentration of NaBH4 solution on the degree of reduction and the size of cobalt particles have been investigated. Although the treatment of the

Ye Wang; Hongli Wu; Qinghong Zhang; Qinghu Tang

2005-01-01

270

Non-Crystalline Cellulose and Production Thereof.  

National Technical Information Service (NTIS)

A non crystalline or low crystallinity cellulose. A method of making a non crystalline or low crystallinity cellulose comprising providing cellulosic material, adding an effective acid in an amount effective to at least wet the cellulosic material, mixing...

H. M. Harraz, Y. Y. Lee

2005-01-01

271

Zeolite Crystal Growth in Microgravity and on Earth  

NASA Technical Reports Server (NTRS)

The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

2003-01-01

272

Alkylation of o-toluidine with methanol over acidic zeolites  

Microsoft Academic Search

The catalytic property of H-beta zeolite in the methylation of o-toluidine was compared to that of other acidic zeolites, viz. HY, H-MOR, H-ZSM-5 and H-FER. The H-beta catalyst showed higher conversion of o-toluidine, the main product being 2,4-xylidine. The selectivity towards 2,4-dimethylaniline (2,4-xylidine) was about 69% (at 400°C) over H-beta zeolite and was selective than the other zeolites under study.

R Anand; R Maheswari; S. G Hegde; B. S Rao

2003-01-01

273

A vibrational spectroscopic study of the silicate mineral pectolite - NaCa?Si?O?(OH).  

PubMed

The mineral pectolite NaCa?Si?O?(OH) is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and in other industrial applications. Raman bands at 974 and 1026 cm(-1) are assigned to the SiO stretching vibrations of linked units of Si?O? units. Raman bands at 974 and 998 cm(-1) serve to identify Si?O? units. The broad Raman band at around 936 cm(-1) is attributed to hydroxyl deformation modes. Intense Raman band at 653 cm(-1) is assigned to OSiO bending vibration. Intense Raman bands in the 2700-3000 cm(-1) spectral range are assigned to OH stretching vibrations of the OH units in pectolite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the silicate mineral pectolite. PMID:25004896

Frost, Ray L; López, Andrés; Theiss, Frederick L; Romano, Antônio Wilson; Scholz, Ricardo

2015-01-01

274

[Crystalline polymorphism of eflucimibe].  

PubMed

The importance, in therapeutics, of the concept of bioavailability and on-going quality research in the formulation of a drug has prompted us to examine the crystalline polymorphism of eflucimibe as from the research phase. This study has been carried out by re-crystallization of the product in organic solvents having a different polarity in a variety of experimental temperature and pressure conditions, then, subsequently, by re-cooling the previously dissolved substance. The analytical methods applied to identify and then describe the polymorphic forms are thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction from synchrotron radiation (XRPD), infrared spectrometry (IR), solid-state nuclear magnetic resonance spectrometry (SSNMR) and lastly maximum solubility measurements. By means of XRPD, two polymorphic forms called A and B have been clearly identified at ambient temperature. These two crystalline forms were obtained in a reproducible way, then described by DSC, XRPD, IR and SSNMR. Differential scanning calorimetry analysis has shown for polymorphic form A two endothermic phenomena with low energy at about 35 masculine and 118 degrees C attributed by XRDP to conformational polymorphism. The complex endothermic event that extends between 75 masculine and 105 degrees C appears to correspond to successive alterations of a lamellar structure. The solid-solid transition observed at 110 degrees C is due to a change of crystalline phase, then the melting point occurring at about 130 degrees C. For form B, two changes of crystalline phase are clearly observed at about 80 masculine and 120 degrees C. The reversibility of these changes was observed by thermomicroscopy in polarized light. Form A, which is less soluble in absolute ethanol than form B, is the more stable thermodynamically in the temperature range from 25 masculine to 50 degrees C where the data have been obtained. The Van't Hoff diagram layout for each polymorphic form appears to reveal an A<-->B transition temperature in a temperature range lower than 25 degrees C. This study, undertaken as from the research phase, has enabled us to highlight the polymorphism of this new chemical entity by means of XRDP by explaining the nature of the endothermic phenomena observed by DSC, and lastly identify the thermodynamically more stable polymorphic form, thus contributing to a better knowledge of this future drug. PMID:12050596

Ribet, J P; Pena, R; Chauvet, A; Patoiseau, J F; Autin, J M; Segonds, R; Basquin, M; Autret, J M

2002-05-01

275

Computational studies of water adsorption in zeolites  

SciTech Connect

We have performed high-level ab initio calculations using Hartree-Fock (HF) theory, Moller-Plesset perturbation theory (MP2), and density-functional theory (DFT) to study the geometry and energetics of the adsorption complex involving H{sub 2}O and the Bronsted acid site in the zeolite H-ZSM-5. These calculations use aluminosilicate cluster models for the zeolite framework with as many as 28 T atoms (T=Si, Al). We included geometry optimization in the local vicinity of the acid site at the MP2 and DFT levels of theory for the smallest cluster, while in the larger clusters this was done at the HF/6-31G(d) level of theory. We have also calculated corrections for zero-point energies, extensions to higher basis sets, and higher levels of electron correlation. Results for the adsorption energy and geometry of this complex are reported and compared with previous theoretical and experimental values.

Zygmunt, S.A. [Valparaiso Univ., IN (United States); Curtiss, L.A.; Iton, L.E. [Argonne National Lab., IL (United States)

1995-05-01

276

Three Mile Island zeolite vitirification demonstration program  

Microsoft Academic Search

The cleanup of the high-activity-level water at Three Mile Island (TMI) provides an opportunity to further develop waste management technology. Approximately 790,000 gallons of high-activity-level water at TMI's Unit-2 Nuclear Power Station will be decontaminated at the site using the submerged demineralizer system (SDS). In the SDS process, the cesium and strontium in the water are sorbed onto zeolite that

D. H. Siemens; D. E. Knowlton; M. W. Shupe

1981-01-01

277

Dehydrogenation of Light Alkanes over Zeolites  

Microsoft Academic Search

The conversion of light paraffins to olefins and the secondary reactions of the unsaturated compounds were investigated on H-ZSM5 and H-Y zeolites between 733 and 823 K. Steady state- and transient response-isotope tracing studies revealed that two mechanisms of dehydrogenation are operative. The main pathway is represented by monomolecular, protolytic dehydrogenation. This reaction contributes most to steady state olefin production.

Thomas F. Narbeshuber; Axel Brait; Kulathuyier Seshan; Johannes A. Lercher

1997-01-01

278

Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.  

PubMed

A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated. PMID:16649795

Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Ei?, Mladen; Trong-On, Do; Kaliaguine, Serge

2006-05-01

279

Quantitatively probing the Al distribution in zeolites.  

PubMed

The degree of substitution of Si(4+) by Al(3+) in the oxygen-terminated tetrahedra (Al T-sites) of zeolites determines the concentration of ion-exchange and Brønsted acid sites. Because the location of the tetrahedra and the associated subtle variations in bond angles influence the acid strength, quantitative information about Al T-sites in the framework is critical to rationalize catalytic properties and to design new catalysts. A quantitative analysis is reported that uses a combination of extended X-ray absorption fine structure (EXAFS) analysis and (27)Al MAS NMR spectroscopy supported by DFT-based molecular dynamics simulations. To discriminate individual Al atoms, sets of ab initio EXAFS spectra for various T-sites are generated from DFT-based molecular dynamics simulations, allowing quantitative treatment of the EXAFS single- and multiple-photoelectron scattering processes out to 3-4 atom shells surrounding the Al absorption center. It is observed that identical zeolite types show dramatically different Al distributions. A preference of Al for T-sites that are part of one or more 4-member rings in the framework over those T-sites that are part of only 5- and 6-member rings in an HBEA150 zeolite has been determined using this analysis. PMID:24815517

Vjunov, Aleksei; Fulton, John L; Huthwelker, Thomas; Pin, Sonia; Mei, Donghai; Schenter, Gregory K; Govind, Niranjan; Camaioni, Donald M; Hu, Jian Zhi; Lercher, Johannes A

2014-06-11

280

Antimony and silicon environments in antimony silicate glasses  

SciTech Connect

Antimony silicate glasses, of general formula xSb{sub 2}O{sub 3}.(1-x)SiO{sub 2} (0.1{<=}x{<=}0.78), have been prepared by melt-quenching and their structures studied using {sup 29}Si MAS NMR spectroscopy, {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. Oxidation during melting gives rise to Sb{sup 5+} in concentrations, which increase linearly with x to give a value of {approx}10% when x=0.78. {sup 121}Sb Moessbauer spectra show Moessbauer shifts and quadrupole splittings consistent with Sb{sup 3+} in a [:SbO{sub 3}] trigonal pyramid, similar to that in crystalline Sb{sub 2}O{sub 3}. A broad band in the Raman spectrum at {approx}410 cm{sup -1} is due to the vibrations of such a unit. The dependence of the silicon Q{sup n} speciation on x can be interpreted by the formation of Sb-O-Sb links possibly to form rings of 4 [:SbO{sub 3}] units such as are found in valentinite. - Graphical abstract: Antimony silicate glasses have been shown to contain Sb{sup 3+} in [:SbO{sub 3}] trigonal pyramid units using {sup 121}Sb Moessbauer spectroscopy and Raman spectroscopy. {sup 29}Si magic-angle-spinning NMR has shown silicon Q{sup n} speciation which can be interpreted as formation of rings of 4 [:SbO{sub 3}] units such as are found in valentinite.

Mee, M.; Davies, B.C.; Orman, R.G. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Thomas, M.F. [Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); Holland, D., E-mail: d.holland@warwick.ac.u [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

2010-09-15

281

X-ray photoelectron study of oxygen bonding in crystalline C–S–H phases  

Microsoft Academic Search

We recorded the photoelectron spectra of various crystalline calcium silicate hydrates (C–S–Hs) and have examined their O 1 s photoelectron spectra. The spectra are asymmetric, with contributions assigned primarily to bridging and non-bridging oxygen species. There is an increased contribution due to the presence of non-bonding oxygen atoms with increasing calcium:silicon ratio. Additionally, there are slight changes in theO 1s-binding

L. Black; K. Garbev; P. Stemmermann; K. R. Hallam; G. C. Allen

2004-01-01

282

Chert and its sodium-silicate precursors in sodium-carbonate lakes of East Africa  

Microsoft Academic Search

Chert has formed from two sodium-silicate minerals, magadiite (NaSi7,O13(OH)3·3H2O) and kenyaite (NaSi11O20.5(OH)4·3H2O), in uppermost Pleistocene deposits of lakes Magadi and Natron in Kenya and Tanzania. The chert consists of finely crystalline quartz and characteristically forms nodules of irregular shape with white coatings having reticulate surface patterns. Similar nodules are widespread in lower and middle Pleistocene lacustrine deposits in the vicinity

Richard L. Hay

1968-01-01

283

Mineralogy Of Silicate Dust Particles For Comet 17P/Holmes By Subaru/COMICS  

NASA Astrophysics Data System (ADS)

Dust grains and icy materials in comets have been used to investigate the formation conditions of the solar system. It is considered that the existence of crystalline silicate in comets indicates the radial mixing of materials in the early solar nebula. The outburst of comet 17P/Holmes showed on late October, 2007. We carried out low-dispersion spectroscopic observations of 17P/Holmes in midinfrared region with Subaru/COMICS. We show results of our model fitting analysis by using a thermal emission model for this comet. We discuss about the mineral composition for dust grains of 17P/Holmes.

Yamaguchi, M.; Ootsubo, T.; Watanabe, J.; Honda, M.; Sakon, I.; Ishiguro, M.; Sarugaku, Y.; Kobayashi, H.; Kawakita, H.

2011-10-01

284

An Observational Test for Shock-induced Crystallization of Cometary Silicates  

NASA Technical Reports Server (NTRS)

Crystalline silicates have been observed in comets and in protostellar nebulae, and there are currently at least two explanations for their formation: thermal annealing in the inner nebula, followed by transport to the regions of cometary formation and in-situ shock processing of amorphous grains at 5 - 10 AU in the Solar Nebula. The tests suggested to date to validate these models have not yet been carried out: some of these tests require a longterm commitment to observe both the dust and gas compositions in a large number of comets. Here we suggest a simpler test.

Nuth, J. A.; Johnson, N. M.

2003-01-01

285

Formation of Silicate Grains in Circumstellar Environments: Experiment, Theory and Observations  

NASA Astrophysics Data System (ADS)

Amongst chemical reactions te{1} in the molecular universe te{2}, condensation reaction is probably the most poorly understood. The condensation of a solid from its components in the gas phase occurs in many parts of our galaxy such as stellar mass outflows, the 'terrestrial' region of protoplanetary disks and in primordial solar nebula te{3}. But how does the transition occur from molecules to intermediate clusters to macroscopic grains? The major focus of the present work is the identification of chemical condensation reaction pathways that lead to the formation of stoichiometry, composition and crystallinity of cosmic silicates from vapor phase species.

Castleman, A., Jr.; Reber, A.; Clayborne, P.; Reveles, J.; Khanna, S.; Ali, A.

286

Influence of thermal annealing and ion irradiation on zinc silicate phases in nanocomposite ZnO-SiOx thin films  

NASA Astrophysics Data System (ADS)

The formation of zinc silicate phase in nanocomposite (nc) ZnO-SiOx thin films, its dilution by ion irradiation and subsequent developments were investigated. The nc ZnO-SiOx thin films used in the study were grown using rf magnetron sputter deposition on silicon (Si) substrates. Thin films were also grown on transmission electron microscopy (TEM) grids in identical conditions. The as-deposited films on Si substrates were annealed at 750 and 900 °C in air for growth of crystalline zinc silicate phase. The as-deposited and 750 °C annealed films were irradiated with 50 MeV oxygen ions in the fluence range from 5 × 1011 to 1 × 1014 ions cm-2. The presence of zinc silicate was observed by X-ray diffraction (XRD) analysis of the annealed films and by Fourier transform infrared (FT-IR) spectroscopy measurements. XRD and FT-IR analyses of the films show increase in zinc silicate phase with annealing and dilution of zinc silicate phase with irradiation. Photoluminescence (PL) analysis of irradiated as-deposited films show change in defects of ZnO. The results are explained in terms of possible ion irradiation induced modifications in the material.

Valiveti, Venkata Siva Kumar; Singh, F.; Ojha, S.; Kanjilal, D.

2014-10-01

287

Single crystalline magnetite nanotubes.  

PubMed

We descried a method to synthesize single crystalline Fe3O4 nanotubes by wet-etching the MgO inner cores of MgO/Fe3O4 core-shell nanowires. Homogeneous Fe3O4 nanotubes with controllable length, diameter, and wall thickness have been obtained. Resistivity of the Fe3O4 nanotubes was estimated to be approximately 4 x 10-2 Omega cm at room temperature. Magnetoresistance of approximately 1% was observed at T = 77 K when a magnetic field of B = 0.7 T was applied. The synthetic strategy presented here may be extended to a variety of materials such as YBCO, PZT, and LCMO which should provide ideal candidates for fundamental studies of superconductivity, piezoelectricity, and ferromagnetism in nanoscale structures. PMID:15631421

Liu, Zuqin; Zhang, Daihua; Han, Song; Li, Chao; Lei, Bo; Lu, Weigang; Fang, Jiye; Zhou, Chongwu

2005-01-12

288

Synthesis of zeolites from coal fly ash: an overview  

Microsoft Academic Search

Coal combustion by-products production in USA and EU is estimated in around 115 million tons per year. A large portion of this production is accounted for the coal fly ash (CFA). Cement and concrete manufacturing consumes most of the CFA produced. Zeolite synthesized from CFA is a minor but interesting product, with high environmental applications. Zeolites may be easily obtained

X Querol; N Moreno; J. C Umaña; A Alastuey; E Hernández; A López-Soler; F Plana

2002-01-01

289

Transport properties of alkanes through ceramic thin zeolite MFI membranes  

Microsoft Academic Search

Polycrystalline randomly oriented defect free zeolite layers on porous ?-Al2O3 supports are prepared with a thickness of less than 5 ?m by in situ crystallisation of silicalite-1. The flux of alkanes is a function of the sorption and intracrystalline diffusion. In mixtures of strongly and weakly adsorbing gases and a high loadings of the strongly adsorbing molecule in the zeolite

Z. A. E. P. Vroon; K. Keizer; M. J. Gilde; H. Verweij; A. J. Burggraaf

1996-01-01

290

Fission product removal from molten salt using zeolite  

Microsoft Academic Search

Spent nuclear fuel (SNF) can be treated in a molten salt electrorefiner for conversion into metal and mineral waste forms for geologic disposal. The fuel is dissolved in molten chloride salt. Non-transuranic fission products in the molten salt are ion-exchanged into zeolite A, which is subsequently mixed with glass and consolidated. Zeolite was found to be effective in removing fission

C. Pereira; B. D. Babcock

1996-01-01

291

Ion exchange in a zeolite-molten chloride system  

SciTech Connect

Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

Woodman, R.H.; Pereira, C. [Argonne National Lab., IL (United States). Chemical Technology Div.

1997-07-01

292

ZEOLITE SYNTHESIS FROM PAPER SLUDGE ASH VIA ACID LEACHING  

Microsoft Academic Search

Paper sludge ash (PSA) typically has a low Si abundance and significant Ca content due to the presence of calcite fillers. Acid leaching with HCl was used to reduce the Ca content so that a zeolitic product with a high cation exchange capacity (CEC) could be synthesized. Zeolitic products were synthesized from raw ash and leached ash through reaction with

Takaaki Wajima; Yasuyuki Ikegami

2007-01-01

293

Removal of ammonium from greywater using natural zeolite  

Microsoft Academic Search

This paper focuses on the effectiveness of removing ammonium ion and the theoretical aspects of adsorption including adsorption isotherm, kinetics and thermodynamics as well as desorption–regeneration studies. Results have demonstrated that natural zeolite shows good performance with up to 97% for ammonium removal depending on contact time, zeolite loading, initial ammonium concentration and pH. The adsorption kinetics is best approximated

Nurul Widiastuti; Hongwei Wu; Ha Ming Ang; Dongke Zhang

2011-01-01

294

Radiation induced physical and chemical processes in zeolite materials  

Microsoft Academic Search

Ionic processes induced by high energy radiation in zeolites, including electron and hole trapping and related chemical reactions, are reviewed in this paper. Electronic structures of electrons localized in clusters of charge balancing cations and those solvated in zeolite confined water clusters are characterized by a combination of spectroscopic techniques such as ESR and transient UV–visible absorption. Reactivities of these

Guohong Zhang; Xinsheng Liu; J. Kerry Thomas

1997-01-01

295

A novel urea conductometric biosensor based on zeolite immobilized urease.  

PubMed

A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs) were compared with Standard Membrane Transducers (SMTs). Silicalite and zeolite Beta with Si/Al ratios 40, 50 and 60 were used to modify the conductometric electrodes and to study the biosensor responses as a function of changing zeolitic parameters. During the measurements using ZCT electrodes, there was no need for any cross-linker to immobilize urease, which allowed the direct evaluation of the effect of changing Si/Al ratio for the same type of zeolite on the biosensor responses for the first time. It was seen that silicalite and zeolite Beta added electrodes in all cases lead to increased responses with respect to SMTs. The responses obtained from ZCTs were always higher than ZMTs as well. The responses obtained from zeolite Beta modified ZMTs and ZCTs increased as a function of increasing Si/Al ratio, which might be due to the increased hydrophobicity and/or the acid strength of the medium. PMID:21807206

Kirdeciler, Salih Kaan; Soy, Esin; Oztürk, Seçkin; Kucherenko, Ivan; Soldatkin, Oleksandr; Dzyadevych, Sergei; Akata, Burcu

2011-09-15

296

Crewmember working on the mid deck Zeolite Crystal Growth experiment.  

NASA Technical Reports Server (NTRS)

View showing Payload Specialist Bonnie Dunbar, in the mid deck, conducting the Zeolite Crystal Growth (ZCG) Experiment in the mid deck stowage locker work area. View shows assembly of zeolite sample in the metal autoclave cylinders prior to insertion into the furnace.

1992-01-01

297

FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES  

EPA Science Inventory

Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

298

Zeolites in the Pine Ridge Indian Reservation, South Dakota  

USGS Publications Warehouse

Zeolites of possible commercial value occur in the Brule Formation of Oligocene age and the Sharps Formation (Harksen, 1961) of Miocene age which crop out in a wide area in the northern part of the Pine Ridge Indian Reservation. The thickness of the zeolite-bearing Interval and the extent of areas within the Interval which contain significant amounts of zeolites are far greater than was expected prior to this investigation. The shape of the zeolite-bearing Interval is tabular and the dimensions of Its exposure are roughly 10 ml x 200 mi x 150 ft (16 km x 160 km x 45 m) thick. Within the study area, there are tracts in which the zeolite resource potential is significant (see pl. 2). This report is intended to inform the Oglala Sioux Tribe of some of the most promising zeolite occurrences. Initial steps can then be taken by the Tribe toward possible development of the resources, should they wish to do so. The data contained herein identify areas of high zeolite potential, but are not adequate to establish economic value for the deposits. If development is recommended by the tribal government, we suggest that the tribal government contact companies involved in research and production of natural zeolites and provide them with the data in this report.

Raymond, William H.; Bush, Alfred L.; Gude, Arthur J., 3rd

1982-01-01

299

Synthesis of zeolite beta in fluoride media under microwave irradiation  

E-print Network

Synthesis of zeolite beta in fluoride media under microwave irradiation Dae Sung Kim a , Jong time of the material significantly, while addition of ammonium fluoride accelerated the crystallization of zeolite beta. In particular, microwave technique combined with fluoride species and seeding led to more

Kim, Ji Man

300

Selective thermal oxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2000-01-01

301

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

1999-01-01

302

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Basel, CH); Sun, Hai (Saint Charles, MO)

2001-01-01

303

Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen  

DOEpatents

A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

Frei, H.; Blatter, F.; Sun, H.

1999-06-22

304

Synthesis of A-type zeolite membrane using a plate heater and its formation mechanism  

Microsoft Academic Search

The synthesis of zeolite membrane using a plate heater is described. Attempts have been made to synthesize zeolite membrane either by the static method, which is a typical zeolite synthesis method, or by the circulated solution system. In both methods, the zeolite membrane was selectively formed on the substrate that was heated with a plate heater. Liquid phase solution, which

Satoshi Yamazaki; Kazuo Tsutsumi

2000-01-01

305

Solid state radioluminescent sources using tritium-loaded zeolites, and their proposed use as process monitors  

Microsoft Academic Search

Zeolite-based tritium lamps are a possible alternative to traditional tritium gas tube light sources. Rare earth luminescing centers may be ion-exchanged into zeolite matrices. Close proximity of tritium atoms to the rate earths can be provided by highly tritiated water sorbed within the pore structure of the zeolite aluminosilicate matrix. Zeolites are optically clear and radiation stable. Light outputs up

J. T. Gill; D. B. Hawkins; C. L. Renschler

1992-01-01

306

KARAKTERISASI KOMPOSISI KIMIA, LUAS PERMUKAAN PORI DAN SIFAT TERMAL DARI ZEOLIT BAYAH, TASIKMALAYA, DAN LAMPUNG  

Microsoft Academic Search

CHARACTERIZATION OF CHEMICAL COMPOSITION, SURFACE AREA PORE, AND THERMAL PROPERTIES OF ZEOLITES FROM BAYAH, TASIKMALAYA, AND LAMPUNG. Characterization of chemical composition, surface area, pore radius, adsorption, and thermal properties of zeolites from Bayah, Tasikmalaya, and Lampung have been performed. The purpose of the characterization is to understand the characteristics of the three zeolites since different types of zeolite will yield

Dian Anggraini; Rosika Kriswarini

2007-01-01

307

Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon.  

USGS Publications Warehouse

Zeolites and associated minerals occur in a tholeiitic basaltic pillow lava sequence. Although the zeolite assemblages are similar to those found in other major zeolite occurrences in basaltic pillow lavas, regional zoning of the zeolite assemblages is not apparent. The formation of the different assemblages is discussed.-D.F.B.

Keith, T.E.C.; Staples, L.W.

1985-01-01

308

Molybdenum Valence in Basaltic Silicate Melts  

NASA Technical Reports Server (NTRS)

The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

2010-01-01

309

Efficient Synthesis of Carbon Nanotubes over Zeolites By Thermal Chemical Vapor Deposition  

NASA Astrophysics Data System (ADS)

Properties of the influence on the zeolite as the support towards the starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) are investigated. The CNTs derived from camphor oil (C10H16O), a botanical hydrocarbon, has been found to be a promising precursor of carbon nanotubes (CNTs). Multi-wall CNTs have been grown from simple pyrolysis of camphor oil in the temperature 650 °C in argon atmosphere at normal pressure using zeolite as a supported on Fe/Ni/Mn catalyst. On the other hand, multi-wall nanotubes of uniform diameter (˜20-30 nm) could be produced with a yield as high as 90%. Structural characterizations have been done by FESEM, and FTIR analyses. Good crystallinity, high purity, and absence of amorphous carbon and metallic particles are the essential features of camphor oil-grown nanotubes; which indirectly may be cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs.

Azira, A. A.; Zainal, N. F. A.; Soga, T.; Abdullah, S.; Rusop, M.

2008-05-01

310

Ontogeny of human lens crystallins.  

PubMed

The soluble proteins from prenatal and neonatal human lenses were fractionated by gel filtration into four distinct size classes viz. high molecular weight alpha-crystallin (HM-alpha), alpha-crystallin, intermediate molecular weight (IMW) proteins and low molecular weight (LMW) proteins. Extinction coefficients of the isolated proteins were determined and used to calculate the proportions of each fraction on a weight basis. The distributions of polypeptides within each of these fractions were analyzed by SDS gel electrophoresis and isoelectric focussing, followed by densitometric scanning of the gels. HM-alpha is detectable as early as the 14th week of gestation and its proportions increase rapidly, to about 9% of the total protein in the 1 year postnatal lens. The alpha-crystallin, IMW and LMW fractions show concomitant decreases and by 1 year they represent about 34, 35 and 18%, respectively. However, the proportions of IMW and LMW proteins do not accurately reflect those of the beta- and gamma-crystallins, as is often assumed. Substantial levels of non-crystallin polypeptides were found in the IMW protein fractions, including a group of very basic polypeptides (VBP) which comprised up to one-third of this material in the youngest lenses. Moreover, in postnatal lenses beta s-crystallin accounted for almost half of the LMW proteins. These points considered, alpha-crystallin is the major protein in the neonatal lens (approximately 42%, including HM-alpha), followed by the beta-crystallin (approximately 36% at most and probably less), the gamma-crystallins (approximately 11%) and beta s-crystallin (approximately 9%). Substantial changes in the proportions of specific polypeptides were observed throughout early development. These appear to result from changes at the level of protein synthesis and from postsynthetic modification. The A:B subunit ratio of alpha-crystallin drops from about 12 to below 3 during early development. This coincides with increasing levels of various deamidated and degraded subunits. The major beta-crystallin polypeptide also undergoes rapid deamidation and evidence is presented suggesting that the gamma-crystallins are subject to similar modification. The most dramatic changes were observed in the constituents of the LMW proteins. The synthesis of gamma-crystallins virtually ceases at some time around birth. At the same time, the levels of beta s-crystallin undergo an explosive increase. These and other changes are discussed in terms of their possible functional significance. They are also related to the complex protein status found in old lenses. PMID:4065234

Thomson, J A; Augusteyn, R C

1985-03-01

311

Rheological Influence of Synthetic Zeolite on Cement Pastes  

NASA Astrophysics Data System (ADS)

Self Compacting Concrete (SCC) is characterized by specific and particular mechanical properties, often due to the addition of components, able to modify the paste rheology. Concrete properties are strongly affected by characteristics of the fresh cement paste that is the continuous phase dispersing larger aggregates. Therefore, aiming to characterize mechanical properties of final concrete is relevant to know rheological properties of the base cement paste. In this work cement pastes for SCC were prepared by using, as additive, synthetic zeolite 5A in different amounts and they were analyzed by small amplitude oscillations. Experimental results have shown a relationship between dynamic moduli and zeolite content, identifying a proper level of zeolite addition. Moreover samples containing traditional fine additives, such as silica fume and limestone, were prepared and experimental data were compared to those obtained by using zeolite. It was found that zeolite seems to give better properties to cement paste than other additives can do.

Baldino, N.; Gabriele, D.; Frontera, P.; Crea, F.; de Cindio, B.

2008-07-01

312

Mineral resource of the month: natural and synthetic zeolites  

USGS Publications Warehouse

Robert Virta, mineral commodity specialist for the U.S. Geological Survey, prepared the following information about the zeolite industry. Volcanic rocks containing natural zeolites — hydrated aluminosilicate minerals that contain alkaline and alkaline-earth metals — have been mined worldwide for more than 1,000 years for use as cements and building stone. For centuries, people thought natural zeolites occurred only in small amounts inside cavities of volcanic rock. But in the 1950s and early 1960s, large zeolite deposits were discovered in volcanic tuffs in the western United States and in marine tuffs in Italy and Japan. And since then, similar deposits have been found around the world, from Hungary to Cuba to New Zealand. The discovery of these larger deposits made commercial mining of natural zeolite possible.

Virta, R.

2008-01-01

313

Design of Composite Photocatalyst of TiO2 and Y-Zeolite for Degradation of 2-Propanol in the Gas Phase under UV and Visible Light Irradiation.  

PubMed

Hydrophobic Y-zeolite (SiO2/Al2O3 = 810) and TiO2 composite photocatalysts were designed by using two different types of TiO2 precursors, i.e., titanium ammonium oxalate and ammonium hexafluorotitanate. The porous structure, surface property and state of TiO2 were investigated by various characterization techniques. By using an ammonium hexafluorotitanate as a precursor, hydrophobic modification of the Y-zeolite surface and realizing visible light sensitivity was successfully achieved at the same time after calcination at 773 K in the air. The prepared sample still maintained the porous structure of Y-zeolite and a large surface area. Highly crystalline anatase TiO2 was also formed on the Y-zeolite surface by the role of fluorine in the precursor. The usages of ammonium hexafluorotitanate were effective for the improvement of the photocatalytic performance of the composite in the degradation of 2-propanol in the gas phase under UV and visible light (? > 420 nm) irradiation. PMID:25314607

Kamegawa, Takashi; Ishiguro, Yasushi; Kido, Ryota; Yamashita, Hiromi

2014-01-01

314

Color-control of the persistent luminescence of cadmium silicate doped with transition metals  

NASA Astrophysics Data System (ADS)

The structural and optical characterization of cadmium silicate (CdSiO3) doped with transition metals is reported. This crystalline system presents intrinsic luminescence and is usually studied as host matrix for rare earth ions. In this work, CdSiO3 was doped with Mn, Ni and Cr to produce multicolored luminescent materials. Single crystalline CdSiO3 was obtained via solid state synthesis at 1000 °C/8 h. The valence of the dopants inserted in the host matrix was determined via XANES as 3+ for Cr, 2+ for Ni and both 2+ and 3+ for Mn, according to XANES studies. The optical absorption spectra of the samples presented wide bands in the visible region that were associated with the internal transitions of the dopants. All the samples presented photoluminescent bands near 420 nm, 496 nm and 591 nm, with different relative intensities that yield characteristic luminescence colors ranging from blue to red.

Abreu, Carolina M.; Silva, Ronaldo S.; Valerio, Mário E. G.; Macedo, Zélia S.

2013-04-01

315

Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust  

NASA Technical Reports Server (NTRS)

Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

2003-01-01

316

Nanostructure of Calcium Silicate Hydrates in Cements  

NASA Astrophysics Data System (ADS)

Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure.

Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

2010-05-01

317

Nanostructure of calcium silicate hydrates in cements.  

PubMed

Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. PMID:20866975

Skinner, L B; Chae, S R; Benmore, C J; Wenk, H R; Monteiro, P J M

2010-05-14

318

Core formation in silicate bodies  

NASA Astrophysics Data System (ADS)

Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re-equilibration is also suggested by mantle siderophile abundances [13], though simple partitioning models do not capture the likely complex P,T evolution during successive giant impacts. The timescale of Martian core formation is currently uncertain (0-10 My) [14], though it is clear that Martian core formation ended before that of the Earth. [1] Stevenson, in Origin of the Earth, 1990. [2] Groebner and Kohlstedt, EPSL 2006. [3] Rubie et al., Treatise Geophys. 2007. [4] Kleine et al., GCA submitted. [5] Weiss et al., LPSC 39, 2008. [6] Keil and Wilson, EPSL 1993 [7] Wanke and Dreibus, PTRSL, 1984. [8] Agnor et al. Icarus 1999 [9] Canup and Asphaug, Nature 2001 [10] Nimmo and Agnor, EPSL 2006. [11] Rubie et al., EPSL 2003 [12] O'Brien et al, Icarus 2006 [13] Righter, AREPS 2003. [14] Nimmo and Kleine, Icarus 2007.

Nimmo, F.; O'Brien, D. P.; Kleine, T.

2008-12-01

319

Protein adsorption to hydrophobic Zeolite Y: salt effects and application to protein fractionation.  

PubMed

The binding equilibria of proteins with a hydrophobic variety of crystalline Zeolite Y is affected by salt and is a function of the type of salt and its concentration. The behaviour does not always follow the conventional pattern of increased binding at high salt concentrations and varies also for the different proteins involved. The overall process may be looked upon as a salting-in/salting-out mechanism. This material can be used as a surface for the selective adsorption of proteins and has been applied for the fractionation of ox heart homogenate in multi-stage operations. The presence of NaCl influences the protein binding, and this can be seen by monitoring the activity profile of lactate dehydrogenase. The bound protein can be reversed by treating the equilibrium mixture with low-molecular-mass poly(ethylene glycol)s. PMID:8297508

Ghose, S; Mattiasson, B

1993-12-01

320

Zeolitic Materials, Vol. 3, No. 1, December 2002, 29-35 Copyright 2002 Korean Zeolite Association 29  

E-print Network

trend until 0.1 M oxalic acid treatments. In the case of 0.5M and 1M oxalic acid treatments-Alumin > H-ZSM-5 > - Alumina, which was similar trend with the acid strength of catalysts. Zeolites are also to their solid acidity, constricted pore shape and redox property. We have found that beta zeolite exhibit

Kim, Ji Man

321

INTRACELLULAR CRYSTALLINE ERGOSTEROL IN NEUROSPORA  

Microsoft Academic Search

In the fungus Neurospora crassa, hexagonal crystalline inclusions have been observed with both the light and electron microscopes. These crystals have been enriched by differential centrifugation and found to be identical with ergosterol by the criteria of ultraviolet spectral analysis and cytochemical analysis. Observations have been made on the distribution and fine structure of the crystalline bodies in various wild

SEIZO TSUDA; E. L. TATUM

1961-01-01

322

PHYSICAL, CHEMICAL AND STRUCTURAL EVOLUTIION OF ZEOLITE-CONTAINING WASTE FORMS PRODUCED FROM METAKAOLINITE AND CALCINED SODUIM BEARING WASTE (HLW AND/OR LLW)  

SciTech Connect

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not new, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made precursors. The process under study is derived from a well known method in which metakaolin (thermally dehydroxylated kaolin a mixture of kaolinite and smaller amounts of quartz and mica that has been heated to {approx}700 C) is mixed with sodium hydroxide (NaOH) and water and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick paste and then the paste is cured under mild hydrothermal conditions (60-200 C), the mixture forms a concrete-like ceramic material made up of distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its vitreous character we have chosen to call this composite a ''hydroceramic''. Similar to zeolite powders, a hydroceramic is able to sequester cations in both lattice positions and within the channels and voids present in its tectosilicate framework structure. It can also accommodate a wide range of salt molecules (e.g., sodium nitrate) within these same openings thus rendering them insoluble. Due to its fine crystallite size and cementing character, the matrix develops significant physical strength. The obvious similarities between a hydroceramic waste form and a waste form based on solidified Portland cement grout are only superficial because their chemistries are entirely different. In addition to being vastly superior to conventional Portland cement grouts with respect to salt retention, standard radwaste leach protocols (PCT, TCLP, etc.) have shown that hydroceramics also do a better job of immobilizing the RCRA-toxic and radioactive components of ''sodium bearing wastes'' (SBWs).

Grutzeck, Michael W.

2004-06-10

323

Zeolites as new chromatographic carriers for proteins--easy recovery of proteins adsorbed on zeolites by polyethylene glycol.  

PubMed

Zeolites are able to adsorb proteins on their surface and might be suitable as a new type of chromatographic carrier material for proteins and for their conjugates (Matsui et al., Chem. Eur. J. 7 (2001) 1555-1560). Interestingly, maximum adsorption was observed at the isoelectric point (pI) of each protein. The current study was performed to investigate the desorption of proteins from the zeolites at pI. Proteins adsorbed to zeolites could be desorbed at pI by polyethylene glycol (PEG), but not by conventional eluents. The eluted proteins still retained their activities. The zeolite Na-BEA was an especially good composite for desorption by PEG. Using this method for the adsorption and desorption of proteins at pI, we succeeded in separating various proteins. The application of zeolites to biochemistry and biotechnology is also discussed. PMID:12782034

Chiku, Hiroyuki; Matsui, Masayoshi; Murakami, Shizuka; Kiyozumi, Yoshimichi; Mizukami, Fujio; Sakaguchi, Kengo

2003-07-01

324

Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane  

Microsoft Academic Search

Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of

Kumar Varoon; Xueyi Zhang; Bahman Elyassi; Damien D. Brewer; Melissa Gettel; Sandeep Kumar; J. Alex Lee; Sudeep Maheshwari; Anudha Mittal; Chun-Yi Sung; Matteo Cococcioni; Lorraine F. Francis; Alon V. McCormick; K. Andre Mkhoyan; Michael Tsapatsis

2011-01-01

325

21 CFR 182.2122 - Aluminum calcium silicate.  

Code of Federal Regulations, 2010 CFR

...silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation...substance is generally recognized as safe when used in table salt in accordance with good manufacturing...

2010-04-01

326

21 CFR 582.2122 - Aluminum calcium silicate.  

Code of Federal Regulations, 2010 CFR

...silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation...substance is generally recognized as safe when used in table salt in accordance with good manufacturing or feeding...

2010-04-01

327

Characteristics of Lead Sorption by Zeolite Minerals  

NASA Astrophysics Data System (ADS)

Lead adsorption behavior was investigated using four Zeolite minerals (clinoptilolite, analcime, phillipsite and chabazite). The used Pb2+ concentrations were 0, 0.1, 0.5, 1.0, 2.0, 3.0 and 5 µmol mL-1. Results indicated that Pb2+ sorption followed the Langmuir adsorption isotherm, but over limited concentration ranges for clinoptilolite and analcime. The bindg energy (Kd) reached, 2.400 and 0.875 g L-1 for phillipsite and chabazite, respectively. The maximum adsorption capacity for such minerals reached 208.33 and 204.08 mg g-1 with correlation coefficient (R2) reached, 0.997 and 0.995, respectively. Meanwhile, two stages for Pb2+adsorption were observed with clinoptilolite and analcime in the low and high concentrations of the applied Pb2+. Data also was applicable to the Freundlich adsorption isotherm over the used entire Pb2+ concentration ranges. The binding energy (n) reached, 1.014, 1.005, 1.001 and 1.001 g L-1 for clinoptilolite, analcime, phillipsite and chabazite, respectively. However, the b values (maximum adsorption capacity) reached 202.582, 201.651, 207.062 and 206.871 mg g-1 with correlation coefficient (R2) nearly one for all studying minerals, respectively. Desorption data indicated that most of the sorbed Pb2+ was extractedin the 1st extraction following the adsorption experiment. The ability of the used zeolite minerals to retain Pb2+ was high and there were differences between the studied minerals in sorption of Pb2+. In conclusion, data eliminated that, zeolite minerals especially, philipsite and chabazite, could be successfully used as packing material in subsurface reactive barriers intercepting ground water plumes and for fixed bed reactors designed to remove Pb2+ from industrial wastewater.

Al-Sewailem, M. S.

328

[Zeolite catalysis in conversion of cellulosics  

SciTech Connect

To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

Tsao, G.T.

1992-01-01

329

[Zeolite catalysis in conversion of cellulosics  

SciTech Connect

To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

Tsao, G.T.

1992-12-31

330

Carbon dioxide sensitivity of zeolitic imidazolate frameworks.  

PubMed

Zeolitic imidazolate frameworks of zinc, cobalt, and cadmium, including the framework ZIF-8 commercially sold as Basolite Z1200, exhibit surprising sensitivity to carbon dioxide under mild conditions. The frameworks chemically react with CO2 in the presence of moisture or liquid water to form carbonates. This effect, which has been previously not reported in metal-organic framework chemistry, provides an explanation for conflicting reports on ZIF-8 stability to water and is of outstanding significance for evaluating the potential applications of metal-organic frameworks, especially for CO2 sequestration. PMID:24889776

Mottillo, Cristina; Friš?i?, Tomislav

2014-07-14

331

Mössbauer studies of iron silicate spinel at high pressure  

NASA Astrophysics Data System (ADS)

We have measured in situ Mössbauer transmission spectra of iron silicate spinel ( ?-Fe2SiO4) in a diamond anvil cell at room temperature and pressures up to 16 GPa. The observed spectra show a doublet characteristic of the paramagnetic state. The isomer shift and quadrupole splitting at atmospheric pressure are 1.10 and 2.63 mm/s, respectively, which are smaller than those of fayalite ( ?-Fe2SiO4). Both the isomer shift and quadrupole splitting decrease linearly with pressure with slope of -0.003(1) and -0.020(1) mm/sec · GPa, respectively. This simple linear trend suggests that no electronic or polymorphic transitions occur under 16 GPa except for those due to the small and continuous changes of volume and local symmetry under pressure. On the basis of a crystalline field calculation, the negative pressure derivative of the quadrupole splitting is associated with a trend towards an ideal cubic symmetry of the oxygen sublattice.

Choe, I.; Ingalls, R.; Brown, J. M.; Sato-Sorensen, Y.

1992-11-01

332

Thermoset polymer-layered silicic acid nanocomposites  

NASA Astrophysics Data System (ADS)

Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions on the exchange sites. This new development has resulted in a greater improvement in the overall properties of thermoset polymer-clay nanocomposites. The exfoliation chemistry was extended further to other thermoset silicone polymer systems. The new polysiloxane-layered silicic acid nanocomposites were prepared with promising mechanical properties. Some fundamental chemistry and physics issues regarding nanocomposite formation were elucidated by this research work, particularly with regard to the relationship of microstructure and interfacial factors to the mechanical properties of the nanocomposites.

Wang, Zhen

333

New Laboratory-Based Optical Functions of Cosmic Abundance Glass: Comparison to “Astronomical Silicates” and Application to Post-AGB Object HD 161796  

NASA Astrophysics Data System (ADS)

Complex refractive indices (optical functions) for amorphous silicates are used to model and interpret a wide variety of astrophysical environments including H II regions, circumstellar dust around evolved stars and in disks around young stellar objects (YSOs), and active galactic nuclei (AGN). However, the most widely-used optical functions in the literature have been derived using compositionally and structurally disparate materials, and were prepared with inconsistent methodology, kludging observational data and laboratory data with different experimental methods to populate the wavelength space. Furthermore, these previous optical functions often include portions derived from astronomical observations rather than laboratory spectra. New quantitative laboratory data are available to build up wavelength coverage for amorphous silicates in a more systematic way. We present optical functions and extinction cross-sections derived from mid-UV to far-IR laboratory transmission spectra of cosmic abundance silicate glass. The advantages of using these data are that our glass sample was synthesized especially with cosmic (solar) abundances in mind and excludes iron. We compare these results to other popular optical functions used to model amorphous silicates (e.g., “astronomical” or “cosmic” silicate by Draine & Lee 1984, Draine 2003, Ossenkopf et al. 1992), both directly and in application to HD 161796, a spherically symmetric, O-rich system with a visible central star, optically thin dust shell, and radiation field intermediate to AGB and PN class targets. The new cosmic silicate optical functions have much lower UV-vis and NIR opacity than the traditionally used functions necessitating significantly more dust (1 or 2 orders of magnitude for mass) to model an object like HD 161796. Furthermore, the lower opacity has an impact on the fraction of crystalline material needed to match the observed spectrum. Previous models produced using older optical functions will underestimate the dust mass and overestimate the importance of crystalline silicates. This work is supported through NSF AST-1009544 and NASA APRA04-000-0041.

Speck, Angela; Pitman, K. M.; Hofmeister, A. M.; Whittington, A. G.

2013-06-01

334

Molecular dynamics of carbon dioxide, methane and their mixtures in a zeolite possessing two independent pore networks as revealed by computer simulations.  

PubMed

The molecular motion of methane (CH(4)) and carbon dioxide (CO(2)) sorbed in the two independent pore networks, being termed hereafter as large cavity (LC) and sinusoidal channel (SC) regions of the siliceous MWW-framework-type zeolite ITQ-1, is studied by means of atomistic computer simulation. Equilibrium molecular dynamics predicts different loading dependences for the two gases, for both the self and the collective (Maxwell-Stefan) diffusion coefficients; in particular, the transport coefficients of CH(4) go through a maximum as its loading in the zeolite increases, whereas CO(2) dynamics exhibits the decreasing trend with loading usually observed in nanoporous materials. The different loading dependence of the self-diffusivity for the two sorbates is attributed to their different probability density distribution within the supercages in the LC system of the ITQ-1 unit cell. The composition and occupancy dependence of the self-diffusivity of each component in their binary mixtures can be explained in terms of the selectivity for CO(2) sorption thermodynamics in the zeolite. The collective diffusivity loading dependence of the single and binary sorbate system is explainable on the basis of the strength of intermolecular interactions along the diffusion direction connecting the supercages by invoking the quasichemical mean field theory. PMID:19653665

Sant, Marco; Leyssale, Jean-Marc; Papadopoulos, George K; Theodorou, Doros N

2009-10-22

335

Exfoliation and Characterization of Layered Silicate Minerals: a Review  

NASA Astrophysics Data System (ADS)

Exfoliated silicate minerals have attracted great attentions because of the dramatic improvement in properties. This paper highlights the preparation of exfoliated silicate minerals, including physical, chemical, mixed physical and chemical methods. The mechanisms by which silicates are exfoliated and the important influential factors are also summarized. Finally, the instrumental techniques to characterize the exfoliated structure and exfoliation degree are presented.

Jia, Feifei; Song, Shaoxian

2014-11-01

336

Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates.  

PubMed

A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO?-HA) with ?5?wt% substituted carbonate content (sample 7.5CO?-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO?-HA. For silicate-substituted hydroxyapatite (SiO?-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ?1.1?wt% exists for synthesis of SiO?-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

Chaudhry, Aqif A; Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

2013-09-01

337

Solubility of Zinc Silicate and Zinc Ferrite in Aqueous Solution to High Temperatures  

SciTech Connect

Crystalline zinc silicate, Zn{sub 2}SiO{sub 4}, and zinc ferrite, ZnFe{sub 2}O{sub 4}, were prepared and characterized. The solubilities of these phases were measured using flow-through apparatus from 50 to 350 C in 100 C intervals over a wide range of pH. Both solid phases dissolve incongruently, presumably to form ZnO(s) and Fe{sub 2}O{sub 3}(s) (or the corresponding hydroxide phases at low temperature), respectively. The respective concentrations of zinc(II) and iron(III) matched those of ZnO(cr) and Fe{sub 2}O{sub 3}(s) ({ge}150 C) reported in the literature, whereas the corresponding Si(IV) and Zn(II) concentrations were at least an order of magnitude below the solubility limits for their pure oxide phases. Therefore, the solubility constants for zinc silicate and ferrite were determined with respect to the known solubility constants for ZnO(cr) and Fe{sub 2}O{sub 3}(s) ({ge}150 C), respectively, and the corresponding concentrations of Si(IV) and Zn(II) measured in this study. The results of independent experiments, as well as those reported in the literature provide insights into the mechanism(s) of formation of zinc silicate and ferrite in the primary circuits of nuclear reactors.

Palmer, Donald [ORNL; Anovitz, Lawrence {Larry} M [ORNL

2009-07-01

338

Grain Growth and Silicates in Dense Clouds  

NASA Astrophysics Data System (ADS)

Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well mixed. In the diffuse ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233, 321), but the scatter was large.We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

Pendleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

2006-06-01

339

Electron transfer reactions within zeolites: Radical cation from benzonorbornadiene  

SciTech Connect

Zeolites are being used as solid acid catalysts in a number of commercial processes. Occasionally zeolites are also reported to perform as electron transfer agents. Recently, we observed that radical cations of certain olefins and thiophene oligomers can be generated spontaneously within ZSM-5 zeolites. We noticed that these radical cations generated from diphenyl polyenes and thiophene oligomers were remarkably stable (at room temperature) within ZSM-5 and can be characterized spectroscopically at leisure. We have initiated a program on electron transfer processes within large pore zeolites. The basis of this approach is that once a cation radical is generated within a large pore zeolite, it will have sufficient room to undergo a molecular transformation. Our aim is to identify a condition under which electron transfer can be routinely and reliably carried out within large pore zeolites such as faujasites. To our great surprise, when benzonorbornadiene A and a number of olefins were included in divalent cation exchanged faujasites. they were transformed into products very quickly (<15 min). This observation allowed us to explore the use of zeolites as oxidants. Results of our studies on benzonorbornadiene are presented in this communication. 16 refs., 1 fig.

Pitchumani, K.; Ramamurthy, V. [Tulane Univ., New Orleans, LA (United States)] [Tulane Univ., New Orleans, LA (United States); Corbin, D.R. [The Du Pont Company, Wilmington, DE (United States)] [The Du Pont Company, Wilmington, DE (United States)

1996-08-28

340

Synthesis of zeolite phases from combustion by-products.  

PubMed

Synthesis of zeolites from combustion by-products, including fly ash, bottom ash and rice husk ash, was studied. A molar ratio of SiO2/Al2O3 of 1.5 was used for the syntheses. Refluxing and hydrothermal methods were also used for synthesis for comparison. The reaction temperatures of refluxing and hydrothermal methods were 100 degrees C and 130 degrees C, respectively. Sodalite, phillipsite-K, and zeolite P1 with analcime were obtained when fly ash, bottom ash and rice husk ash were used as starting materials, respectively. With rice husk ash as a starting material, zeolite P1 was produced. This result had advantages over previous studies as there was no prior activation required for the synthesis. The concentrations and types of alkaline used in the synthesis also determined the zeolite type. The different zeolites obtained from three systems were measured for specific surface area and pore size by using BET and Hg-porosimetry, respectively. Ammonium exchange capacities of the synthesised powders containing zeolites, sodalite, zeolite P1 and phillipsite-K were 38.5, 65.0 and 154.7 meq 100 g(-1), respectively. PMID:20421244

Pimraksa, Kedsarin; Chindaprasirt, Prinya; Setthaya, Naruemon

2010-12-01

341

Zeolite Crystal Growth (ZCG) Flight on USML-2  

NASA Technical Reports Server (NTRS)

The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

1997-01-01

342

Adsorption of Pb and Cd by amine-modified zeolite.  

PubMed

Natural zeolites, known for their excellent sorption properties towards metal cations, are widely used for the purification of wastewaters. The selectivity of clinoptilolite, a common zeolite mineral, for Pb is known to be particularly high, whereas its selectivity for Cd is often lower. Extraordinarily high sorption capacities for soft metal cations were observed in the case of thiol-functionalized silica gels and clays. In order to enhance the zeolites' sorption capacity for Cd, we treated natural heteroionic and Na-clinoptilolite in aqueous suspensions with cysteamine and propylamine solutions and investigated the sorption of Cd and Pb to amine-modified zeolite by a series of batch experiments. Stability constants for amine sorption on all zeolite samples at room temperature and 50 degrees C were obtained. Partial dimerization of cysteamine explains the enhanced sorption of this compound. In contrast, amine treatment did not enhance the adsorption capacity or selectivity of the clinoptilolite towards Cd and Pb. Instead, the amounts of adsorbed heavy metals decreased stoichometrically with increasing sorption of cysteamine and propylamine. This reduction can be explained by the blockage of channels by amine molecules and revealed that the modification of zeolites with mercaptoamines does not enhance the sorption capacity of zeolite for Cd and Pb. PMID:15996705

Wingenfelder, Ulla; Nowack, Bernd; Furrer, Gerhard; Schulin, Rainer

2005-09-01

343

Copper cation removal in an electrokinetic cell containing zeolite.  

PubMed

Zeolites are used in environmental remediation of soil or water to immobilize or remove toxic materials by cation exchange. An experiment was conducted to test the use a low electric field to direct the toxic cations towards the zeolite. An electrokinetic cell was constructed using carbon electrodes. Synthetic Linde Type A (LTA) zeolite was placed in the cell. Copper(II) chloride dissolved in water was used as a contaminant. The Cu(2+) concentration was measured for ten hours with and without an applied electric field. The removal of the Cu(2+) ions was accelerated by the applied field in the first two hours. For longer time, the electric field did not improve the removal rate of the Cu(2+) ions. The presence of zeolite and applied electric field complicates the chemistry near the cathode and causes precipitation of Cu(2+) ions as copper oxide on the surface of the zeolite. With increased electric field the zeolite farther away from the cathode had little cation exchange due to the higher drift velocity of the Cu(2+) ions. The results also show that, in the LTA Zeolite A pellets, the cation exchange of Cu is limited to a shell of several tens of micrometers. PMID:21109348

Elsayed-Ali, Omar H; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E

2011-01-30

344

Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.  

PubMed

Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100?g/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ?50?g/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the MFI-50 nanoparticles was found to accumulate over a longer period of time as compared to MFI-100 nanoparticles. The study therefore points towards the capability of the non-cytotoxic zeolite nanoparticles to induce oxidative stress resulting in short-term altered cellular metabolism up-regulation and genomic instability. Although the damage was found to be short-lived, its persistence over longer durations, or stabilization cannot be neglected. Further studies are in progress to yield a better understanding of the mechanisms for oxidative stress and resulting cascade of events leading to genetic damage in the human lung alveolar epithelial cells following exposure to zeolite nanoparticles of different sizes. PMID:23103338

Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

2012-12-17

345

Liquid Crystalline Organic Conductors: Studies in Crystalline and Mesomorphic Phase  

Microsoft Academic Search

The present results concern a liquid crystalline organic conductor: DIPSAr4–TCNQ. The ac conductivity was measured for the first time in the mesophase and indicates the actual possibility of obtaining organic conductors with mesomorphic behavior.

V. Gionis; H. Strzelecka; M. Veber; R. Kormann; L. Zuppiroli

1986-01-01

346

Progress in understanding the structure and thermodynamics of calcium silicate hydrates  

SciTech Connect

A program has been designed to support the prediction of cement degradation and the chemistry of water in contact with cement, over extended periods of time (e.g., 10,000 y). This multidisciplinary experimental and computer modeling investigation is intended to characterize the structural and thermodynamic properties of crystalline phases found in cement at elevated temperature. Many of these crystalline phases my be hydrated. The hydration state of these phases must be known to the interpret experimentally obtained thermodynamic data, to evaluate the stability of hydrated phases and to estimate long-term water availability, such as would be required for prediction of the radioactive-waste repository`s lifetime. The parts of the program associated with assessing and predicting dehydration/ rehydration behavior are described in this paper. (1) identification of phases present in standardized grout mixtures exposed to elevated temperatures; (2) mechanistic and thermodynamic analysis of the hydration/ dehydration behavior of hydrated calcium silicates as a function of temperature, pressure, and relative humidity; and (3) measurements of thermodynamic data for hydrated calcium silicates.

Meike, A.; Bruton, C.J.; Viani, B.E. [Lawrence Livermore National Lab., CA (United States); Onofrei, M. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Nuclear Research Establishment

1994-02-01

347

Internal surface modification of zeolite MFI particles and membranes for gas separation  

NASA Astrophysics Data System (ADS)

Zeolites are a well-known class of crystalline oxide materials with tunable compositions and nanoporous structures, and have been used extensively in catalysis, adsorption, and ion exchange. The zeolite MFI is one of the well-studied zeolites because it has a pore size and structure suitable for separation or chemical conversion of many industrially important molecules. I synthesized MFI membranes with [h0h] out-of-plane orientation on ?-alumina supports. The membranes were modified by the same procedures as used for MFI particles and with 1-butanol, 3-amino-1-propanol, 2-[(2-aminoethyl)amino]ethanol, and benzenemethanol. The existence of functional groups in the pores of the zeolite was confirmed by PA-FTIR measurements. Permeation measurements of H2, N2, CO2, CH 4, and SF6, were performed at room temperature before and after modification. Permeation of n-butane, and i-butane were measured before and after modification with 1-butanol. For all of the studied gases, gas permeances decreased by 1-2 orders of magnitude compared to bare MFI membranes for modified membranes. This is a strong indication that the organic species in the MFI framework are interacting with or blocking the gas molecule transport through the MFI pores. The CO2/CH 4 permeation selectivity was close to the Knudsen selectivity (0.6) for the membranes before modification. CO2/CH4 selectivity increased for MFI/benzenemethanol modified membrane (1.0), whereas it decreased for the MFI/2-[(2-aminoethyl)amino]ethanol modified membrane (0.5). MFI/benzenemethanol crystals were shown to have a highest sorption capacity for CH4, whereas, MFI/2-[(2-aminoethyl)amino]ethanol crystals were shown to have a highest sorption capacity for CO2 over all other studied molecules Higher sorption of CH4 in MFI/benzenemethanol and higher sorption of CO2 in MFI/2-[(2-aminoethyl)amino]ethanol and their strong binding to the modified membrane are likely the reasons for observing higher and lower CO2/CH4 permeation selectivity respectively, compared to bare MFI membrane. A further detailed fundamental study of the CO2 adsorption mechanism in modified zeolites is necessary to gain a better understating of the adsorption and permeation behavior of such materials. For the organic molecules with only one functional group (1-butanol, benzenemethanol, and 1-propaneamine), physical adsorption was found - as intuitively expected - to be the only observed mode of attachment of CO2 to the modified zeolite material. Even in the case of MFI modified with 1,3-diaminopropane, only physical adsorption is seen. This is explained by the isolated nature of the amine groups in the material, due to which only a single amine group can interact with a CO2 molecule. On the other hand, chemisorbed CO2 species are clearly observed on bare MFI, and on MFI modified with 3-amino-1-propanol or 2-[(2-aminoethyl)amino]ethanol. Specifically, these are carbonate-like species that arise from the chemisorption of CO2 to the silanol group in bare MFI and the alcohol groups of the modifying molecule. The possibility of significant contributions from external surface silanol groups in adsorbing CO2 chemisorbed species was ruled out by a comparative examination of the FTIR spectra of 10 ?m and 900 nm MFI particles modified with 2-[(2-aminoethyl)amino]ethanol. (Abstract shortened by UMI.).

Kassaee, Mohamad H.

348

Catalytic pyrolysis using UZM-44 aluminosilicate zeolite  

DOEpatents

A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

Nicholas, Christopher P; Boldingh, Edwin P

2013-12-17

349

Method of preparing sodalite from chloride salt occluded zeolite A  

SciTech Connect

A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistance sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1,000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

Lewis, M.A.; Pereira, C.

1995-12-31

350

Method of preparing sodalite from chloride salt occluded zeolite  

DOEpatents

A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistant sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

Lewis, M.A.; Pereira, C.

1997-03-18

351

TEM studies of zeolites and ordered mesoporous materials.  

PubMed

In the present manuscript we have reviewed recent results on transmission electron microscopy of beam sensitive materials such as zeolites and ordered mesoporous materials. The results of the investigation of the fine structure of different zeolite types as MFI, ITQ-7 and the presence of mixture of phases are shown. In addition, the incorporation of metals within the zeolitic framework and their different applications as precursors for metal nanowire growth are also described. The combination of HRTEM together with electron crystallography for solving new ordered mesoporous silica and associated analytical techniques shows the strength of electron microscopy for a full characterization of such materials. PMID:21227705

Diaz, Isabel; Mayoral, Alvaro

2011-07-01

352

Zeolite crystal growth in space - What has been learned  

NASA Technical Reports Server (NTRS)

Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

1993-01-01

353

Mineralogy of amphiboles and 1:1 layer silicates  

SciTech Connect

This article reviews briefly the ways in which mineralogists and crystal chemist represent complex silicate structures: the basic nomenclature for amphiboles, and the 1:1 layer silicates; the geological occurrences of these minerals; their crystal structures and defect structures; the various morphologies, or habits, of amphibole and 1:1 layer silicate crystals; and the potentially active surface sites and dissolution kinetics of such particles. Also included is a discussion of how 1:1 layer silicates, amphiboles, and other chain silicates related to amphiboles are identified in the laboratory. 225 refs., 28 figs.

Veblen, D.R. [Johns Hopkins Univ., Baltimore, MD (United States); Wylie, A.G. [Univ. of Maryland, College Park, MD (United States)

1993-12-31

354

The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers  

SciTech Connect

The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

Oh, Jae Eun [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Monteiro, Paulo J.M., E-mail: monteiro@berkeley.ed [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Jun, Ssang Sun [Global Leading Offshore Plant Education Center, Korea Maritime University, Busan, 606-791 (Korea, Republic of); Choi, Sejin [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States); Clark, Simon M. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 20015 (United States); Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720 (United States)

2010-02-15

355

The nanostructure of calcium silicate hydrate  

NASA Astrophysics Data System (ADS)

The nanostructure of C-S-H, the principle binding phase of hydrated cements in concrete, is examined through classical and spectroscopic methods such as solubility, 29Si MAS NMR, inelastic neutron scattering (INS), and small-angle neutron scattering (SANS). A more comprehensive understanding of the nanostructure is proposed. The central finding of this thesis is that variations in Ca/Si ratio, silicate structure, and Ca-OH content of C-S-H are systematically related to previously undiscovered variations in solubility in the CaO-SiO2-H 2O system at room temperature. These relationships show how C-S-H resembles disordered forms of the calcium silicate hydrate minerals 1.4-nm tobermorite [Ca5Si6O16(OH)2·8H 2O] and jennite [Ca9(Si6O18)(OH) 6·8H2O]. For example, in solids lacking Ca-OH groups, the structure resembles a purely tobermorite-like structure, which, when equilibrated in aqueous solutions saturated in Ca(OH)2, has a Ca/Si ratio of 1.5 and a minimum mean silicate chain length of 2; with increasing Ca-OH contents, the structure becomes increasingly jennite-like while showing higher Ca/Si ratios and higher mean chain lengths at saturation in Ca(OH)2. These relationships appear to reconcile the broad variations in the literature. 29Si NMR on concrete specimens aged 43--96 years show that the mean silicate chain length of C-S-H gel ultimately converges to a value of 5. With supporting evidence from chemical analysis and from high Ca-OH contents measured by INS, it is concluded that C-S-H gel formed in Ca3SiO5 pastes eventually equilibrates to a purely jennite-like structure. A Ca/Si ratio of 1.2 in C-S-H gel marks the composition at which Ca-OH groups are eliminated (or introduced) and below which spontaneous silicate polymerization occurs. Leaching studies on cement pastes show that when C-S-H is decalcified below Ca/Si ˜ 1.2, the induced silicate polymerization occurring in situ leads to macroscopic polymerization shrinkage. Cement pastes blended with high contents of mineral additions may be more susceptible to this mechanism. SANS measurements on leached Ca3SiO5 and cement pastes show dramatic variations in surface area with Ca/Si ratio. These variations are attributed to transformations between low- and high-density morphologies of C-S-H.

Chen, Jeffrey J.

356

Interaction between zeolites and cluster compounds. Part 2.?Thermal decomposition of iron pentacarbonyl on zeolites  

Microsoft Academic Search

Thermal decomposition in a thermobalance of Fe(CO), adsorbed on alkali-metal, hydrogen-Y, dealuminated Y, L and omega zeolites proceeds stepwise via slow decarbonylation at low and high temperatures, separated by a fast endothermic reaction. Average CO\\/Fe ratios have been determined after each step. From i.r. results the former intermediates are assigned to species bearing bridging CO, whereas reaction products with CO\\/Fe

Thomas Bein; Peter A. Jacobs

1984-01-01

357

Dry plasma processing for industrial crystalline silicon solar cell production  

NASA Astrophysics Data System (ADS)

This paper gives an overview on the standard crystalline silicon solar cell manufacturing processes typically applied in industry. Main focus has been put on plasma processes which can replace existing, mainly wet chemical processes within the standard process flow. Finally, additional plasma processes are presented which are suited for higher-efficient solar cells, i.e. for the “passivated emitter and rear cell” concept (PERC) or the “heterojunction with intrinsic thin layer” approach (HIT). Plasma processes for the deposition of thin dielectric or semiconducting layers for surface passivation, emitter deposition or anti-reflective coating purposes are presented. Plasma etching processes for the removal of phosphorus silicate glass or parasitic emitters, for wafer cleaning and masked and mask-free surface texturisation are discussed.

Hofmann, M.; Rentsch, J.; Preu, R.

2010-10-01

358

Adsorption of trichlorophenol on zeolite and adsorbent regeneration with ozone.  

PubMed

A FAU-type zeolite was studied as an adsorbent to remove 2,4,6-trichlorophenol (TCP), a frequently detected recalcitrant pollutant in water bodies. Both adsorption isotherm and kinetics were studied with TCP concentrations from 10 to 100mg/L. It was observed that TCP was effectively adsorbed onto the zeolite with a high adsorption capacity and a high kinetic rate. Freundlich model and pseudo-second-order kinetics were successfully applied to describe the experimental data. The influence of solution pH was also studied. Furthermore, ozone was applied to regenerate the loaded zeolite. It was found that an effective adsorption of TCP was kept for at least 8 cycles of adsorption and regeneration. The ozonation also increased the BET specific surface of zeolite by over 60% and consequently enhanced the adsorption capacity. PMID:24632370

Zhang, Yongjun; Mancke, Raoul Georg; Sabelfeld, Marina; Geißen, Sven-Uwe

2014-04-30

359

Characterization of a zeolite membrane for catalytic membrane reactor application  

SciTech Connect

This paper describes the morphological and transport properties of a composite zeolite (silicalite) - alumina membrane. Some advantages obtained in combining the membrane with a conventional fixed-bed catalyst are also reported.

Giroir-Fendler, A.; Peureux, J.; Mozzanega, H.; Dalmon, J.A. [Institut de Recherches sur la Catalyse, Villeurbanne (France)

1996-12-31

360

Comparative study of the removal of coke from protonic zeolites  

SciTech Connect

The transformation of methanol was carried out at 400{degrees}C on four protonic zeolites: USHY (framework Si/Al ratio equal to 5), HZSM5 (Si/Al = 45), two mordenites HMOR (Si/Al = 7.5) and HMORDA (Si/Al = 80) prepared by dealumination of HMOR through hydrothermal and acid treatments. The composition of coke determined through the method developed in the authors` laboratory depended slightly on the zeolite. The amount of coke removed for the zeolites through oxidative treatment was determined as function of the temperature and for various coke contents. The rate of coke removal depended slightly on the coke content and on the coke composition by very much on the zeolite. In particular the coke of HMORDA and of HZSM5 was eliminated at high temperature only.

Gnep, N.S.; Roger, P.; Magnoux, P.; Guisnet, M. [Laboratoire de Catalyse en Chimie Organique, Poitiers (France)

1993-12-31

361

Investigation of Zeolite Nucleation and Growth Using NMR Spectroscopy  

E-print Network

Zeolite nucleation and growth is a complex problem that has been widely investigated but still not completely understood. However, a full understanding of this process is required in order to develop predictive models for the rational design...

Rivas Cardona, Alejandra

2012-02-14

362

Anionic Emulsion-Mediated Synthesis of Zeolite Beta  

NASA Astrophysics Data System (ADS)

Well-crystallized zeolite beta is first synthesized in the anionic emulsion systems of cyclohexane/sodium dodecylbenzenesulfonate(SDBS)/pentanol/zeolite synthesis mixture. Beta materials are then characterized by XRD, SEM, and N2-adsorption techniques. Compared to beta samples grown using the same synthesis mixture in the absence of the anionic emulsion, the as-synthesized beta presents uniform and well-defined larger crystals. Interestingly, N2-adsorption results show that such beta sample possesses both ordered mesopores at 3.9 nm and macropores centered at 60.5 nm. These pores combined with the intricate micropores of the Beta crystal comprise the hierarchical porosity. The hierarchical pore-structured zeolite beta may have potential catalysis application in reactions involving large molecules. Additionally, control experiments are also performed to ascertain the effects of the individual emulsion components. Further synthesis study finds the transformation of zeolite beta to ZSM-5 through increasing oil contents, crystallization temperature and time.

Jin, Chao; Zhang, Ying; Gao, Wei; Cui, Lishan

363

Controlled release of preservatives using dealuminated zeolite Y.  

PubMed

This study demonstrates that dealuminated zeolite Y can act as a depot after adsorption of phenol derived preservatives. Upon suspension of zeolite loaded with the preservative m-cresol, equilibrium was quickly reached between free and adsorbed m-cresol. The equilibrium concentration of m-cresol was below 1 mM; however, it was enough to kill bacteria such as Escherichia coli and Staphylococcus aureus under metabolically active conditions. Killing of bacteria was not obtained under non-proliferating conditions and m-cresol was only released from the zeolite upon bacterial activity. Together, these results demonstrate an interesting potential use of dealuminated zeolite Y containing adsorbed preservatives for preventing microbial growth in numerous applications in industry and clinical setting. PMID:17599464

Eriksson, Håkan

2008-04-24

364

Dealumination of HZSM-5 zeolites. I. Calcination and hydrothermal treatment  

SciTech Connect

The effect of calcination and hydrothermal treatments on the structure and properties of HZSM-5 zeolites with a range of aluminum contents has been investigated. Characterization of the treated zeolites was undertaken with solid-waste NMR ({sup 27}Al and {sup 29}Si), infrared, nitrogen and water adsorption, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, chemical analysis, and {sup 129}Xe NMR spectroscopy. Both calcination and hydrothermal treatment were found to cause dealumination of the zeolite lattice and formation of extralattice aluminum species of low symmetry which remain within the pores of the zeolite. HZSM-5 with low aluminum content was found to be more resistant to dealumination by either method and the degree of dealumination was greater when steam was present in the treatment. {sup 129}Xe NMR was found to be a useful probe for the presence of extralattice aluminum in the pores of lattice dealuminated HZSM-5. 35 refs., 9 figs., 3 tabs.

Campbell, S.M. [Louisana State Univ., Shreveport, LA (United States)] [Louisana State Univ., Shreveport, LA (United States); [Univ. of Auckland (New Zealand); Bibby, D.M.; Meinhold, R.H. [Industrial Research Ltd., Petone (New Zealand)] [and others] [Industrial Research Ltd., Petone (New Zealand); and others

1996-06-01

365

Xenon NMR studies of dynamics and exchange in zeolites  

SciTech Connect

We have found, despite earlier reports to the contrary, that for many microporous solids with one-dimensional channels (ZSM-12, ALPO-5, VPI-5, SSZ-24) the chemical shift has an anisotropic component. For ALPO-11, a detailed model has been developed which accounts for the loading-dependent chemical shift in terms of intraparticle exchange of statistical distributions of xenon atoms with 0, 1 or 2 nearest neighbors. A similar model can be applied to ZSM-12 up to moderate loadings. At higher loading levels 2D exchange methods show that interparticle exchange occurs as well. The same approach was used to study interparticle exchange in X and Y zeolite mixtures, exchange amongst zeolite clusters of up to 8 xenon atoms in the supercages of AgA zeolite, and main channel - side pocket exchange in mordenite. The parameters derived are directly relevant to the understanding of sorption and diffusion processes in zeolites.

Moudrakovski, I.L.; Ratcliffe, C.I.; Ripmeester, J.A. [Steacie Institute for Molecular Sciences, Ottawa, Ontario (Canada)

1996-10-01

366

Hydration and dehydration of Zeolitic Tuff from Yucca Mountain, Nevada  

NASA Astrophysics Data System (ADS)

Naturally occurring zeolites expand and contract when hydrated or dehydrated. In tuffaceous rock composed largely of such zeolites, the entire rock may swell or contract significantly as the rock becomes saturated or dries out. If such rock is constrained, significant stresses may develop as a result of hydration or dehydration. We present experimental results that substantiate this. In a zeolitized, non-welded tuff from Yucca Mountain, NV, rock permeability governs the swelling rate since the major constituent, clinoptilolite, hydrates as fast as it can be exposed to water. At Yucca Mountain, where a nuclear waste repository is proposed, strata of welded, devitrified tuff overlie non-welded, zeolitic tuff. Should the hydration state of the units change significantly over the repository lifetime, additional stresses on the same order of magnitude as now exist may develop.

Kranz, R. L.; Bish, D. L.; Blacic, J. D.

1989-10-01

367

The efficiency of Jordanian natural zeolite for heavy metals removal  

NASA Astrophysics Data System (ADS)

The capability of Jordanian natural zeolite to remove nickel from aqueous solutions was experimentally investigated using a packed bed column. The zeolite samples were obtained from Jabal AL Aritayn in the northeast of Jordan. The effects of the initial concentration of nickel ( C 0), the packed bed length ( L) and the zeolite grain size ( D p) on the adsorption process were considered. The finding indicated that these parameters named had a significant effect on the removal of nickel by the Jordanian zeolite. The characteristic breakthrough curves of the adsorption process were measured. The Klinkenberg model was adopted to explain the kinetic behavior of the adsorption phenomena, and we attempted to fit the packed bed experimental data to the breakthrough curve. The effective diffusivity was estimated and used to predict breakthrough curves under other adsorption conditions.

Taamneh, Yazan; Al Dwairi, Reyad

2013-03-01

368

Review and Bibliography on Rock Solubility and Zeolite Minerals.  

National Technical Information Service (NTIS)

A bibliography was prepared and literature reviewed on the solubility of rock and rock-forming minerals, with emphasis on laboratory methods for solubility studies and the solubility of zeolites and calcium carbonate. As solubility is dependent on many va...

G. W. DePuy

1968-01-01

369

Tailored Nanocomposites of Polypropylene with Layered Silicates  

SciTech Connect

The melt rheological properties of layered silicate nanocomposites with maleic anhydride (MA) functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the MA functionalized PP based nanocomposites exhibit solid-like linear viscoelastic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized PP based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interactions in MA functionalized nanocomposites. Further, the transient shear stress of the MA functionalized nanocomposites in start-up of steady shear is a function of the shear strain alone, and the steady shear response is consistent with that of non-Brownian systems. The weak dependence of the steady first normal stress difference on the steady shear stress suggests that the polymer chain mediated silicate network contributes to such unique flow behavior.

Xu, L.; Nakajima, H; Manias, E; Krishnamoorti, R

2009-01-01

370

Corrosion behavior of organically modified silicates coatings  

Microsoft Academic Search

Purpose – The purpose of this paper is to develop hybrid organic-inorganic silica-based nanocomposite films, by sol-gel method, for corrosion protection of AA2024 alloy. Also, cerium nitrate corrosion inhibitor is introduced into the optimized coating in the next step of the investigations in order to study the improvement in the corrosion protection properties of the organically modified silicate (Ormosil) films.

Sohrab Sanjabi

2011-01-01

371

Conductimetric determination of decomposition of silicate melts  

NASA Technical Reports Server (NTRS)

A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

Kroeger, C.; Lieck, K.

1986-01-01

372

Environmentally friendly, nano lithium silicate anticorrosive coatings  

Microsoft Academic Search

The aim of this study was to develop environmentally friendly, nano-structured inorganic coatings suitable for the protection of metal substrates. The formulation variables included (i) two binders based on lithium silicate of 7.5\\/1.0 silica\\/alkali molar ratio (one of them a commercial colloidal solution, and the other a laboratory-prepared nanosolution), (ii) eight pigment compositions based on two spherical microzinc alone (D

Guadalupe Canosa; Paula V. Alfieri; Carlos A. Giudice

373

Structure of D[sub 2] in zeolite  

Microsoft Academic Search

We have measured the structure of D[sub 2] adsorbed in zeolite 13[ital X] at temperatures in the range 5.5 to 80 K at a variety of fillings. We find that the D[sub 2] molecules adsorb into well-defined adsorbtion sites in the zeolite structure. Two distinct adsorbtion sites, with binding energies on the order of 40 and 80 K, have been

M. P. Fang; P. E. Sokol; Y. Wang

1994-01-01

374

Mathematical modeling of fixed-bed oxidative regeneration of zeolite  

Microsoft Academic Search

1.The formation of a steady-state combustion front has been demonstrated in the fixed-bed oxidative regeneration of zeolite.2.Process conditions have been investigated in relation to their effects on the basic characteristics of the process, i.e., the average coke combustion rate and the maximum temperature rise in the zeolite. This work has demonstrated the important role of these characteristics in selecting optimal

V. I. Nazarok; O. I. Gaponenko; A. S. Shmelev; K. I. Patrilyak; P. N. Galich

1975-01-01

375

Performance of Silver Zeolite in a Radioiodine Monitor  

Microsoft Academic Search

Measurement were made of the interaction of 8Kr, 133Xe, CH3I (131I) and I2 (131I) with various silver zeolites and activated charcoals under varying relative humidities and temperatures. Results show silver zeolite has significantly less interaction with noble gases and high adsorption efficiencies for CH3I making it superior to charcoal for airborne radioiodine monitoring. The penetration of airborne iodine activity into

G. Y. SooHoo; Chien-chang Lin; R. M. Norris; C. D. Wilkinson

1975-01-01

376

Molecular sieve zeolite technology - the first twenty-five years  

Microsoft Academic Search

ABSTRACT In twenty—five years molecular sieve zeolites have substantially impacted adsorption and catalytic process technology throughout the chemical,process,industries;,provided timely solutions to energy,and environmental,problems;,and grown,to over,a hundred,million,dollar industry,worldwide.,The evolution,in zeolite materials with improved or novel properties has strongly influenced the expansion of their,applications, and provided new flexibility in the design of products and processes.

Edith M. Flanigen

1980-01-01

377

Zeolites in the Cascade Range of northern Oregon  

Microsoft Academic Search

Twenty-three zeolite minerals were identified during secondary mineralogy studies of late Tertiary volcanic rock outcrop samples and\\/or late Tertiary to Quaternary geothermal drill-hole specimens in three areas of the Oregon Cascade Range (near Mount Hood, the Breiten bush-Austin Hot Springs area, and Newberry volcano). The Neogene to Holocene volcanic rocks contain euhedral to subhedral zeolite crystals in open spaces of

1997-01-01

378

Origin of strong acidity in lanthanum-exchanged zeolites  

E-print Network

of this research was to determine the factors which give rise to strong acidity in zeolites. There is a linear relation between catalytic activity and zeolite framework aluminum number in the range of' 0 to 32 aluminum atoms per unit cell, whereas at higher... amounts of framework aluminum the activity decreases. This relationship is in agreement with a theoretical model of framework aluminum distribution and acidity, in which protons associated with isolated aluminum atoms are assigned a higher acidity...

Carvajal Freese, Ralf R.

2012-06-07

379

Chromophore-bearing zeolite materials as precursors of colored ceramics  

Microsoft Academic Search

This work investigates the possibility to obtain colored ceramics by firing compacts of the synthetic zeolite A, pre-loaded with chromophore metal cations, and gives also a preliminary evaluation of their technical properties. Natural zeolite-bearing materials, i.e., clinoptilolite- and phillipsite-rich tuffs, which naturally contain chromofore agents, such as iron oxides and hydroxides, have also been considered as ceramic precursors. The results

B. Liguori; A. Cassese; C. Colella

2005-01-01

380

Metal Oxide/Zeolite Combination Absorbs H2S  

NASA Technical Reports Server (NTRS)

Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

Voecks, Gerald E.; Sharma, Pramod K.

1989-01-01

381

Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station  

NASA Technical Reports Server (NTRS)

Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

2003-01-01

382

Premixed calcium silicate cement for endodontic applications  

PubMed Central

Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and amount of calcium sulfate (added to control the setting time) were screened using a statistical model. In the second part of the study, the liquid-to-powder ratio was optimized for cements containing three different amounts of radiopacifier. Finally, the effect of using glycerol rather than water was evaluated in terms of radiopacity. The setting time was found to increase with the amount of radiopacifier when the liquid-to-powder ratio was fixed. This was likely due to the higher density of the radiopacifier in comparison to the calcium silicate, which gave a higher liquid-to-powder ratio in terms of volume. Using glycerol rather than water to mix the cements led to a decrease in radiopacity of the cement. In conclusion, we were able to produce premixed calcium silicate cements with acceptable properties for use in endodontic applications. PMID:23507729

Persson, Cecilia; Engqvist, Hakan

2011-01-01

383

Surface acoustic wave technique for the characterization of porous properties of microporous silicate thin films  

NASA Astrophysics Data System (ADS)

Features of gas adsorption onto sol-gel derived microporous silicate thin films, for characterization of porous properties, are detailed using a surface acoustic wave (SAW) technique. Mass uptake and film effective modulus changes calculated from the SAW data are investigated in detail. The effects of stress and surface tension on the SAW sensor are calculated and found to be negligible in these experiments. Transient behavior recorded during nitrogen adsorption at 77 K is discussed in the context of mass uptake and effective modulus contributions. The time constant associated with the effective modulus calculation is consistent with that of diffusivity of nitrogen into a 5A zeolite. Further calculations indicate that the transient behavior is not due to thermal effects. A unique dual sensor SAW experiment to decouple the mass and effective modulus contributions to the frequency response was performed in conjunction with a Silicon beam-bending experiment. The beam-bending experiment results in a calculation of stress induced during adsorption of methanol on a microporous silicate thin film. The decoupled mass and effective modulus calculated from the SAW data have similar shaped isotherms, and are quite different from that of the stress developed in the Silicon beam. The total effective modulus change calculated from the SAW data is consistent with that calculated using Gassmann's equation. The SAW system developed for this work included unique electronics and customized hardware which is suitable for work under vacuum and at temperatures from 77K to 473K. This unique setup is suitable for running thin film samples on a Micromeritics ASAP 2000 Gas Adsorption unit in automatic mode. This setup is also general enough to be compatible with a custom gas adsorption unit and the beam bending apparatus, both using standard vacuum assemblies.

Hietala, Susan Leslie

1997-12-01

384

Photochemistry without protons. Radical cation chemistry in zeolites  

SciTech Connect

The interconversion of the C{sub 7}H{sub 8} molecular framework, especially norbornadiene (NBD) and quadricyclane (Q), has been considered for photochemical energy storage. Actually, very little was known about the details of these carbon-skeleton transformations, and only one radical cation species (NBD{sup +}{center_dot}) was characterized. The authors have undertaken a thorough study of these systems using zeolite matrices. They have shown that zeolites have exceptional properties, allowing unprecedented control of chemical reactivity. In the attached scheme, they outline some of the species they were able to characterize. The crucial aspect of the zeolite matrix is that one can tune the matrix-radical cation interaction by varying the matrix polarity. The ZSM-5 zeolites of identical structure with different Si/Al ratio are ideally suited for such study. Without discussing all the transformations, the authors point that several processes, such as the reverse Diels-Alder reaction are known to occur by involvement of highly excited states. Such reactions in zeolites means that sites in the zeolite matrix are able to stabilize high electronic states of ions, significantly lowering the potential energy barrier for such reactions. Thus, they are able to thermally drive otherwise photodriven reactions.

Trifunac, A.D.; Barnabas, M.V.

1994-06-01

385

Moderate-temperature zeolitic alteration in a cooling pyroclastic deposit  

USGS Publications Warehouse

The locally zeolitized Topopah Spring Member of the Paintbrush Tuff (13 Myr.), Yucca Mountain, Nevada, U.S.A., is part of a thick sequence of zeolitized pyroclastic units. Most of the zeolitized units are nonwelded tuffs that were altered during low-temperature diagenesis, but the distribution and textural setting of zeolite (heulandite-clinoptilolite) and smectite in the densely welded Topopah Spring tuff suggest that these hydrous minerals formed while the tuff was still cooling after pyroclastic emplacement and welding. The hydrous minerals are concentrated within a transition zone between devitrified tuff in the central part of the unit and underlying vitrophyre. Movement of liquid and convected heat along fractures from the devitrified tuff to the ritrophyre caused local devitrification and hydrous mineral crystallization. Oxygen isotope geothermometry of cogenetic quartz confirms the nondiagenetic moderate temperature origin of the hydrous minerals at temperatures of ??? 40-100??C, assuming a meteoric water source. The Topopah Spring tuff is under consideration for emplacement of a high-level nuclear waste repository. The natural rock alteration of the cooling pyroclastic deposit may be a good natural analog for repository-induced hydrothermal alteration. As a result of repository thermal loading, temperatures in the Topopah Spring vitrophyre may rise sufficiently to duplicate the inferred temperatures of natural zeolitic alteration. Heated water moving downward from the repository into the vitrophyre may contribute to new zeolitic alteration. ?? 1989.

Levy, S. S.; O'Neil, J. R.

1989-01-01

386

Solvent Evaporation Assisted Preparation of Oriented Nanocrystalline Mesoporous MFI Zeolites  

SciTech Connect

A solvent evaporation route to produce hierarchically porous zeolites with an oriented MFI nanocrystalline structure has been developed, and the method is scalable and productive. In this method, hexadecyltrimethoxysilane is added to an ethanol solution containing zeolitic precursors. A hard gel is formed during the evaporation process. Subsequent hydrothermal treatments produce the hierarchically porous zeolite. High resolution transmission electron microscopy (HRTEM) studies suggest that misoriented zeolite nuclei are produced in the very early stages of the hydrothermal treatment, but further reactions lead to single crystal-like aggregates composed of intergrowth nanocrystals with a mean interparticle pore diameter of 12 nm. All Al atoms exist in tetrahedral sites, as confirmed by 27Al magic angle spinning nuclear magnetic resonance (MAS NMR). Variable temperature hyperpolarized (HP) 129Xe NMR spectroscopy suggest a fast molecular diffusion process from the interconnection between micro- and mesopores. Catalytic conversion of acetone to the isobutene reactions show comparable (with respect to conventional zeolites) selectivity to isobutene. However, hierarchically porous zeolites display enhanced activity and durability because of the more accessible acidic sites in the hierarchically porous structures.

Zhu, Kake; Sun, Junming; Liu, Jun; Wang, Li Q.; Wan, Haiying; Hu, Jian Z.; Wang, Yong; Peden, Charles HF; Nie, Zimin

2011-07-01

387

Silicate release from glass for pharmaceutical preparations.  

PubMed

Glass is made of polymeric silica and other minor components, which are necessary for turning the silica into a material more easily moldable and resistant to temperature changes. Glass containers for pharmaceutical usage are classified according to their resistance to a chemical attack, a test carried out in the presence of water and heat. The test is designed to show the released alkalinity, a variable dependent on the amount of sodium oxide, one of the minor components added to the glass mass. In this work, the release of silica from glass by action of constituents from pharmaceutical formulations was investigated. The study included products used in large volumes and usually stored in glass containers. Solutions of amino acids, electrolytes, glucose, oligoelements and others such as heparin and sodium bicarbonate were individually stored in glass containers and heated at 121 degrees C for 30min, as in the water attack test. The test was also carried out only with water, where the pH varied from 2 to 12. The released silicate was measured either by photometry or atomic absorption spectrometry, depending on the nature of the sample. The results showed that silicate is released during the heating cycle even if the contact is with pure water only. The pH exerts a considerable influence on the release, being that the higher the pH, the higher the silica dissolved. An elevated pH, however, is not the only factor responsible for silica dissolution. While in the solutions of NaCl, KCl, Mg Cl2 and ZnSO4 and in most of the amino acids, the concentration of silicate was as high as in pure water (0.1-1.0mg Si/L). In the solutions of sodium acetate, bicarbonate and gluconate, its concentration was much higher, over 30mg Si/L. These results were confirmed by the analysis of commercial products, where in solutions of amino acids the level of silicate ranged from 0.14 to 0.19mg Si/L. On the other hand, calcium gluconate, sodium bicarbonate and potassium phosphate presented silicate levels from 1 to 4mg/L. Although silica is not considered a toxic substance for humans, it is necessary to be aware of its presence in solutions for parenteral nutrition due to the direct introduction into the bloodstream and the large volume usually administrated, even to pre-term infants. PMID:18272302

Bohrer, Denise; Bortoluzzi, Fabiana; Nascimento, Paulo Cícero; Carvalho, Leandro Machado; Ramirez, Adrian Gustavo

2008-05-01

388

Solution properties of ?-crystallins: hydration of fish and mammal ?-crystallins.  

PubMed

Lens ? crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. ?-crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected ?-crystallins from mammals (human ?D and mouse ?S) and fish (zebrafish ?M2b and ?M7). The thermodynamic water binding coefficient B? could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure-based hydrodynamic boundary element modeling. While the amount of tightly bound water of human ?D was consistent with that of average proteins, the water binding of mouse ?S was found to be relatively low. ?M2b and ?M7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. ?M crystallins have a very high methionine content, in some species up to 15%. Structure-based modeling of hydration in ?M7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species. PMID:24282025

Zhao, Huaying; Chen, Yingwei; Rezabkova, Lenka; Wu, Zhengrong; Wistow, Graeme; Schuck, Peter

2014-01-01

389

Pyrolysis of scrap tyres with zeolite USY.  

PubMed

A zeolite catalyst of ultrastable Y-type (USY) was investigated in the research of two staged pyrolysis-catalysis of scrap tyres. Scrap tyres were pyrolysed in a fixed bed reactor and the evolved pyrolysis gases were passed through a secondary catalytic reactor. The main objective of this paper was to investigate the effect of zeolite USY on the yield of products and the composition of derived oil. The influences of several parameters such as pyrolysis temperature, catalytic temperature, catalyst/tyre ratio, heating rate, etc. on the yield of the derived oil, char and gas were investigated. It showed that the increase of catalytic temperature and catalyst/tyre ratio resulted in high yield of gas at the expense of the oil yield. For example, when the catalyst/tyre ratio increased from 0.25 to 1.0, the yield of gas increased from 30.5 to 49.9 wt.%, and the oil yield decreased nearly two-fold from 31.6 to 12.7 wt.%. The concentration of light naphtha (boiling point < 160 degrees C) was also investigated in this study. And the high catalyst/tyre ratio favored to increase the concentration of light naphtha (< 160 degrees C) in oil. In order to study the composition of derived oil, a distilled fraction (< 280 degrees C), which was 92.5 wt.% of the oil obtained from catalytic pyrolysis of scrap tyre at a pyrolysis temperature, catalytic temperature and catalyst/tyre ratio of 500, 400 degrees C and 0.5, respectively, was analyzed with gas chromatography/mass spectrometry (GC/MS). The distillate was found to contain 1.23 wt.% benzene, 9.35 wt.% toluene, 3.68 wt.% ethylbenzene, 12.64 wt.% xylenes, 1.81 wt.% limonene and 13.89 wt.% PAHs, etc., where the single ring aromatics represented a significant potential use as chemicals. PMID:16704900

Shen, Boxiong; Wu, Chunfei; Wang, Rui; Guo, Binbin; Liang, Cai

2006-09-21

390

Vibrational spectroscopy of the ring structures in silicates and siloxanes  

NASA Astrophysics Data System (ADS)

In the presented paper an attempt to build a structural model for crystal silicates on the basis of selected siloxane systems has been proposed. Siloxanes and silicates are different chemical compounds arranged as molecular or ionic crystals, respectively. Siloxane group (Si-O bond) is their common feature. It is suggested that as the proportion of the Si-O to Si-C bonds in the siloxane structure grows they become more similar to silicates. In the investigations siloxanes with -CH 3 as a terminal group and selected silicates have been chosen as model compounds. Vibrational spectroscopy has been used as an investigation tool. For the selected siloxane molecules infrared spectra have been calculated (HF/6-31G(d) method) and compared with the experimental ones of siloxanes and silicates. It has been found that the spectra corresponding to siloxanes and silicates of similar structures agree fairly well in spite of different character of alkyl group present in siloxanes from that of metal cations in silicates. Based on the spectra similarities visual analysis of siloxanes normal vibrations has been applied to identify the bands in the spectra of silicates. Accuracy of such band identification in the spectra of silicates grows with the increase in the SiO 4 tetrahedra connectedeness. It becomes possible from structures composed of secondary tetrahedra (Q2) but similarities are significant starting from the structures with tertiary (Q3) tetrahedra which makes it possible to distinguish them as a separate group of molecular silicates.

Handke, Miros?aw; Jastrz?bski, Witold

2004-10-01

391

Synthesis of core-shell structured zeolite-A@mesoporous silica composites for butyraldehyde adsorption.  

PubMed

A simple sol-gel process is followed to construct a thin layer of mesoporous silica shell core-shell structure on micrometer sized and nanometer sized zeolite A (micro-zeolite A@SiO2 and nano-zeolite A@SiO2 respectively). Further thickness of the silica shells has been tuned from 20 to 50 nm while the zeolite A particle size changes from nanometer to micrometer. Pores of the silica shells arranged orderly on the crystal-faces of zeolite-A cores. Typically, adsorption amount of the butyraldehyde towards these core-shell composite materials is investigated well and is verified to be almost double than that of the pristine zeolite A. Interestingly the nano-zeolite A core containing core-shell composite absorbs maximum butyraldehyde (314 mg/g) compared to the micro-zeolite A (266 mg/g), even if the mesoporous shell thickness of the nano-zeolite A@SiO2 composites is less (20 nm) than that of micro-zeolite A@SiO2 (50 nm). Both of these values are significantly larger than the pristine zeolite A (nano-zeolite A; 151 mg/g and micro-zeolite A; 146 mg/g). PMID:24910060

Yu, Haijun; Lv, Yingying; Ma, Kuoyan; Wang, Changguo; Xue, Zhaoteng; Zhao, Yujuan; Deng, Yonghui; Dai, Ya; Zhao, Dongyuan

2014-08-15

392

Rotationally Molded Liquid Crystalline Polymers  

NASA Technical Reports Server (NTRS)

Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

2002-01-01

393

Hierarchical mesoporous zeolites: direct self-assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation.  

PubMed

By kinetic control over the zeolite seed formation, we report the direct fabrication of hierarchical mesoporous zeolites using hexadecyl trimethyl ammonium bromide (CTAB) as the soft template in a conventional solution route. Nanometer-sized, subnanocrystal-type zeolite seeds with a high degree of polymerization are essential to prevent the formation of a separate amorphous mesoporous phase and the phase separation between the mesophase and zeolite crystals in the presence of CTAB and a certain amount of ethanol. The mechanisms for the formation of hierarchically porous zeolites in the solution process, including the effect of mother liquid aging, formation of subnanocrystal zeolite seeds and their self-assembly effect with CTAB, and the role of ethanol are proposed and discussed in detail. The prepared mesoporous ZSM-5 zeolite showed much higher catalytic activity than conventional counterparts for aldol condensations involving large molecules, especially in the synthesis of vesidryl. PMID:22084015

Zhu, Yan; Hua, Zile; Zhou, Jian; Wang, Lijun; Zhao, Jinjin; Gong, Yun; Wu, Wei; Ruan, Meiling; Shi, Jianlin

2011-12-16

394

An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones  

NASA Astrophysics Data System (ADS)

Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

Dolph, Brittany Helen

395

Methane dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen: A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes  

SciTech Connect

The interaction between Mo species and a conventionally microsized and particularly nanosized HZSM-5 support was studied by high-resolution multinuclear solid-state NMR techniques. As proved by {sup 27}Al and {sup 29}Si MAS as well as CP/MAS NMR investigations, this interaction was so strong that the framework aluminum of both microsized and nanosized HZSM-5 zeolites could be extracted. With increasing Mo loading, more nonframework aluminum, resonance at ca. 30 ppm, appeared in the {sup 27}Al MAS NMR spectrum of the Mo-loaded nanosized HZSM-5 catalyst. Meanwhile, this strong interaction led to the formation of more new Al{sub 2}(MoO{sub 4}){sub 3} crystallines on the nanosized HZSM-5 support than on the microsized HZSM-5 support. The appearance of Al{sub 2}(MoO{sub 4}){sub 3} crystallines resulted in fewer active catalysts for the methane dehydro-aromatization. The results of {sup 1}H MAS NMR using perfluorotributyl amine as a probe molecule demonstrated that Mo species preferentially reacted with the silanols and nonframework AlOH on the external surface of microsized and nanosized HZSM-5 zeolites. In addition, impregnated Mo species remained predominantly on the external surface of the nanosized HZSM-5 zeolite, although there was a possibility that they might migrate into the lattice channels of the microsized HZSM-5 zeolite. The migration of some Mo species into the zeolite channels might be beneficial for the conversion of methane to aromatics in the absence of oxygen.

Zhang, W.; Ma, D.; Han, X.; Liu, X.; Bao, X.; Guo, X.; Wang, X.

1999-12-10

396

Near-infrared quantum cutting in Ce3+, Er3+, and Yb3+ doped yttrium silicate powders prepared by combustion synthesis  

Microsoft Academic Search

Yttrium silicate (YS) powders doped with Ce3+, Er3+, and Yb3+ were prepared by combustion synthesis. The material was investigated for use as energy downconverters to reduce thermalization losses in crystalline Si solar cells. The powders were excited by UV light (355 nm), and near-infrared emission around 1 ?m was observed corresponding to a quantum cutting (QC) effect. The QC process

Nikifor Rakov; Glauco S. Maciel

2011-01-01

397

Crystalline 'Genes' in Metallic Liquids  

E-print Network

The underlying structural order that transcends the liquid, glass and crystalline states is identified using an efficient genetic algorithm (GA). GA identifies the most common energetically favorable packing motif in crystalline structures close to the alloy's Al-10 at.% Sm composition. These motifs are in turn compared to the observed packing motifs in the actual liquid structures using a cluster-alignment method which reveals the average topology. Conventional descriptions of the short-range order, such as Voronoi tessellation, are too rigid in their analysis of the configurational poly-types when describing the chemical and topological ordering during transition from undercooled metallic liquids to crystalline phases or glass. Our approach here brings new insight into describing mesoscopic order-disorder transitions in condensed matter physics.

Sun, Yang; Ye, Zhuo; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I; Ott, Ryan T; Kramer, M J; Ho, Kai-Ming

2014-01-01

398

Strontium complexation in aqueous solutions and silicate glasses: Insights from high energy-resolution fluorescence detection X-ray spectroscopy and ab-initio modeling  

NASA Astrophysics Data System (ADS)

Although fluid-melt partitioning of trace elements like Sr, Ba, La, and Y is known to be strongly influenced by the fluid and melt chemical composition, their speciation in silicate-saturated fluids is studied insufficiently at high temperatures and pressures. Here, high energy-resolution fluorescence detection-X-ray absorption spectroscopy (HERFD-XAS) has been applied to investigate the local environment of strontium in crystalline model compounds, silicate glasses, and aqueous solutions. Acquisition of Sr K-edge HERFD-XAS spectra of aqueous solutions of SrCl2 and Sr(OH)2, and three aqueous fluids with dissolved silicate components was done in situ at temperatures to 780 °C and pressures to ?800 MPa using hydrothermal diamond-anvil cells. Experiments were complemented by theoretical spectroscopy calculations using the finite difference method near edge structure (FDMNES) code. This approach was validated for a number of crystalline model compounds. For the silicate glasses and aqueous solutions (SrCl2 and Sr(OH)2), small clusters were examined. Either symmetric or distorted SrO6 clusters were found to describe Sr complexation in peraluminous or peralkaline glasses. However, small ‘static’ clusters seem not to be fully suited to account for the dynamically changing atomic arrangements in aqueous solutions at high temperature. Therefore, ab-initio molecular dynamics simulations were performed and used as input for modeling of X-ray absorption spectra. Analyses of these simulations indicated [SrCl(H2O)6]+ and Sr(OH)2(H2O)4 as the most likely complexes in the chloride and hydroxide solutions, respectively. Analysis of the spectra of the silicate-rich fluids shows that both melt and fluid composition strongly influence Sr complexation. For the silicate-rich fluids, formation of Sr-Cl complexes occurs at low (Na + K)/Cl and (Si + Al)/(Na + K) ratios in the fluid, whereas Sr hydroxide and possibly silicate complexes (similar to those in the silicate glass) are favored at higher ratios. Our X-ray spectroscopic results offer an explanation for the dependence of fluid-melt partitioning of Sr on melt composition measured in previous ex situ studies, and highlight the importance of components other than chloride (silicate and aluminosilicate) in controlling metal speciation in fluid-melt systems at high temperatures and pressures.

Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina; Jahn, Sandro

2014-10-01

399

Thermo-Rheological Feedbacks in Silicic Lavas and Ignimbrites  

NASA Astrophysics Data System (ADS)

The rheology of lava is highly dependent on temperature, both directly (via non-Arrhenian temperature dependence of melt viscosity) and indirectly (via increasing crystal content). Rheology feeds back to temperature, because rapidly sheared melts can undergo viscous heating (heat production = viscosity × [strain rate]2), and rapid disequilibrium crystallization can cause heating due to latent heat release (?Hxt). The heat budget of partially crystalline lava balances these gains with conductive losses controlled by thermal diffusivity (D) and conductivity (k = D?CP, where ? is density and CP is heat capacity). We measured the apparent viscosity of several crystalline dacitic lavas from Santiaguito, Guatemala and Bezymianny, Kamchatka. At conditions appropriate to lava flows (shear stress ~0.1 to 0.4 MPa, strain rate ~10-8 to 10-5s-1), apparent viscosity is best modeled as a power-law with no yield strength. Viscosity of the flow core, at ~850°C, is estimated ~5×1010 Pa.s. There is no evidence for significant crystallization during flow emplacement at Santiaguito, but viscous heating may be significant ongoing heat source within these flows (~100Wm-3 if most shearing is restricted to a ~1m wide zone), enabling highly viscous lava to travel long distances (~4 km in ~2 yrs for Santiaguito). Extremely high-grade, lava-like welded ignimbrites are deposited by many of the largest explosive eruptions in Earth history with volumes typically ranging between 10 to 1000 km3 and volcanic explosivity indices of 8 to 9. The lava-like and rheomorphic Grey's Landing ignimbrite, Idaho, provides abundant field evidence supporting the upward-migration of a transient, 1 - 2 m thick, sub-horizontal ductile shear zone at the interface between the pyroclastic density current and deposit, through which all of the deposit passed. We test the syn-depositional shear zone model through a combination of rheological experiments and thermo-mechanical modeling. Our results demonstrate that syn-depositional welding and ductile flow is achievable within a very restricted field of likely time-temperature-strain space where rapid (seconds - minutes) high-strain deformation (?1000%) is favored by higher emplacement temperatures (?850°C). The field of ductile deformation is broadened significantly by accounting for strain-heating in the thermo-mechanical model; a sustained increase up to 250°C is possible within the shear zone. Short-lived but very powerful (?1MWm-3) strain-heating within rheomorphic ignimbrites can explain the unusually long run-out distances and low aspect rations of many large-volume (?10 km3) silicic lavas.

Whittington, A. G.; Robert, G.; Andrews, G. D.; Avard, G.; Romine, W. L.; Ye, J.

2012-12-01

400

BTX abatement using Chilean natural zeolite: the role of Brønsted acid sites.  

PubMed

In wastewater treatment facilities, air quality is not only affected by conventional unpleasant odour compounds; toxic volatile organic compounds (VOCs) are also found. In this study, the adsorptive capacity of Chilean natural zeolite toward VOC removal was evaluated. Moreover, the influence of zeolite chemical surface properties on VOC elimination was also investigated. Three modified zeolite samples were prepared from a natural Chilean zeolite (53% clinoptilolite, 40% mordenite and 7% quartz). Natural and modified zeolite samples were characterised by nitrogen adsorption at 77 K, elemental analyses and X-ray fluorescence (XRF). Chemical modifications of natural zeolite showed the important role of Brønsted acid sites on the abatement of VOCs. The presence of humidity has a negative effect on zeolite adsorption capacity. Natural zeolites could be an interesting option for benzene, toluene and xylene vapour emission abatement. PMID:22907462

Alejandro, S; Valdés, H; Manero, M-H; Zaror, C A

2012-01-01

401

Novel granular materials with microcrystalline active surfaces: waste water treatment applications of zeolite/vermiculite composites.  

PubMed

The application of zeolites as adsorbents for waste water management is limited by the facts that only synthetic zeolites have sufficient capacity and only natural zeolites can be manufactured in practical sizes for application, i.e. synthetic zeolites have too small a grain size to be used and natural zeolites have low adsorption capacities. This study seeks to resolve this problem by the manufacture of synthetic zeolites upon an expanded lamella matrix (vermiculite). The synthesized composite was tested to show whether it combined the useful properties of both natural and synthetic zeolites. The study compared: hydraulic conductivity, adsorption capacity and rate of attainment of equilibrium of the synthetic composite in comparison to both a natural and a synthetic zeolite. The results demonstrate that the vermiculite-based composite shows the same hydraulic properties as a natural clinoptilolite with similar grain size (2-5mm), however, the rate of adsorption and maximum coverage were improved by a factor of 4. PMID:17360021

Johnson, Christopher D; Worrall, Fred

2007-05-01

402

Single crystalline mesoporous silicon nanowires  

SciTech Connect

Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

2009-08-04

403

Structural studies on bovine ?-crystallin  

PubMed Central

The amino acid sequences around the cysteine residues in the lens protein, ?-crystallin, were studied. Fraction II of the ?-crystallin from calf lens (Björk, 1964) was used. The protein was oxidized with performic acid and then hydrolysed with trypsin. Six peptides containing cysteic acid were isolated. One of the peptides contained three residues of cysteic acid and the others contained one residue of cysteic acid. We conclude that there are eight unique residues of cysteic acid in the oxidized protein. Amino acid analysis suggests that there are also eight residues of cysteic acid in the molecule, which thus contains only one polypeptide chain. PMID:5165918

Croft, L. R.; Waley, S. G.

1971-01-01

404

Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties.  

PubMed

Interest in microporous materials has risen in recent years, as they offer a confined environment that is optimal to enhance chemical reactions. Calcium silicate hydrate (C-S-H) gel, the main component of cement, presents a layered structure with sub-nanometer-size disordered pores filled with water and cations. The size of the pores and the hydrophilicity of the environment make C-S-H gel an excellent system to study the possibility of confined water reactions. To investigate it, we have performed molecular dynamics simulations using the ReaxFF force field. The results show that water does dissociate to form hydroxyl groups. We have analyzed the water dissociation mechanism, as well as the changes in the structure and water affinity of the C-S-H matrix and water polarization, comparing the results with the behavior of water in a defective zeolite. Finally, we establish a relationship between water dissociation in C-S-H gel and the increase of hardness due to a transformation from a two- to a three-dimensional structure. PMID:22239553

Manzano, Hegoi; Moeini, Sina; Marinelli, Francis; van Duin, Adri C T; Ulm, Franz-Josef; Pellenq, Roland J-M

2012-02-01

405

Confined Water Dissociation in Microporous Defective Silicates: Mechanism, Dipole Distribution, and Impact on Substrate Properties.  

SciTech Connect

Interest in microporous materials has risen in recent years, as they offer a confined environment that is optimal to enhance chemical reactions. Calcium silicate hydrate (C-S-H) gel, the main component of cement, presents a layered structure with sub-nanometer-size disordered pores filled with water and cations. The size of the pores and the hydrophilicity of the environment make C-S-H gel an excellent system to study the possibility of confined water reactions. To investigate it, we have performed molecular dynamics simulations using the ReaxFF force field. The results show that water does dissociate to form hydroxyl groups. We have analyzed the water dissociation mechanism, as well as the changes in the structure and water affinity of the C-S-H matrix and water polarization, comparing the results with the behavior of water in a defective zeolite. Finally, we establish a relationship between water dissociation in C-S-H gel and the increase of hardness due to a transformation from a two- to a three-dimensional structure.

Manzano, Hegoi [Massachusetts Institute of Technology (MIT); Moeini, Sina [Massachusetts Institute of Technology (MIT); Marinelli, Francis [International Institute for Fusion Science-Universite de Provence; Van Duin, Adri C. T. [Pennsylvania State University, University Park, PA; Ulm, Franz-Josef [Massachusetts Institute of Technology (MIT); Pellenq, Roland J. M. [Centre National de la Recherche Scientifique and Marseille Universite

2012-01-01

406

Removal of heavy metals from mine waters by natural zeolites.  

PubMed

In this study, we investigated the removal of Fe, Pb, Cd, and Zn from synthetic mine waters by a natural zeolite. The emphasis was given to the zeolite's behavior toward a few cations in competition with each other. Pb was removed efficiently from neutral as well as from acidic solutions, whereas the uptake of Zn and Cd decreased with low pH and high iron concentrations. With increasing Ca concentrations in solution, elimination of Zn and Cd became poorer while removal of Pb remained virtually unchanged. The zeolite was stable in acidic solutions. Disintegration was only observed below pH 2.0. Forward- and back-titration of synthetic acidic mine water were carried out in the presence and absence of zeolite to simulate the effects of a pH increase by addition of neutralizing agents and a re-acidification which can be caused by subsequent mixing with acidic water. The pH increase during neutralization causes precipitation of hydrous ferric oxides and decreased dissolved metal concentrations. Zeolite addition further diminished Pb concentrations but did not have an effect on Zn and Cd concentrations in solution. During re-acidification of the solution, remobilization of Pb was weaker in the presence than in the absence of zeolite. No substantial differences were observed for Fe, Cd, and Zn immobilization. The immobilization of the metals during pH increase and the subsequent remobilization caused by re-acidification can be well described by a geochemical equilibrium speciation model that accounts for metal complexation at hydrous ferric oxides, for ion exchange on the zeolite surfaces, as well as for dissolution and precipitation processes. PMID:16047799

Wingenfelder, Ulla; Hansen, Carsten; Furrer, Gerhard; Schulin, Rainer

2005-06-15

407

Lithium metaborate flux in silicate analysis  

USGS Publications Warehouse

Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

Ingamells, C.O.

1970-01-01

408

Evaporation Induced Isothermal Crystallization of Silicate Melt  

NASA Astrophysics Data System (ADS)

In order to investigate and role of evaporation and crystallization kinetics for silicate melt, isothermal vacuum experiments were carried out in the system MgO-SiO2. Due to successive evaporation, melt crystallized olivine at a fixed temperature. The evaporation rates and bulk chemical composition of residues varied with time, and reached a steady state. The pressure-composition phase diagram for the system at a fixed temperature well explains the experimental results. The results suggest a possibility of isothermal formation of chondrules (and some CAIs) at low pressures where evaporation takes place continuously.

Nagahara, H.

1996-03-01

409

MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content  

SciTech Connect

Lithium zinc silicate glasses of composition (mol%): 17.5Li{sub 2}O-(72-x)SiO{sub 2}-xZnO-5.1Na{sub 2}O-1.3P{sub 2}O{sub 5}-4.1B{sub 2}O{sub 3}, 5.5{<=}x{<=}17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. {sup 29}Si and {sup 31}P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q{sup 2}, Q{sup 3} and Q{sup 4} sites are identified from {sup 29}Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q{sup 3} and Q{sup 4} resonances for low ZnO content indicates the occurrence of phase separation. From {sup 31}P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-(Q{sup 0}) and pyro-phosphate (Q{sup 1}) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), lithium zinc ortho-silicate (Li{sub 3}Zn{sub 0.5}SiO{sub 4}), tridymite (SiO{sub 2}) and cristobalite (SiO{sub 2}) were identified as major silicate crystalline phases. Using {sup 29}Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, {sup 31}P spectra unambiguously revealed the presence of crystalline Li{sub 3}PO{sub 4} and (Na,Li){sub 3}PO{sub 4} in the glass-ceramics. - Graphical abstract: {sup 29}Si and {sup 31}P MAS-NMR analyses were carried out on multi-component Li{sub 2}O-SiO{sub 2}-ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses and glass-ceramics developed for sealing application. Structural data are reported, including phase separation process and quantification of amorphous and crystalline phases.

Goswami, Madhumita [UCCS-Unite de Catalyse et Chimie du Solide, UMR CNRS 8181, Ecole Nationale Superieure de Chimie de Lille, Universite des Sciences et Technologies de Lille, BP 108, 59652 Villeneuve d'Ascq Cedex (France); Kothiyal, Govind P. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Montagne, Lionel [UCCS-Unite de Catalyse et Chimie du Solide, UMR CNRS 8181, Ecole Nationale Superieure de Chimie de Lille, Universite des Sciences et Technologies de Lille, BP 108, 59652 Villeneuve d'Ascq Cedex (France)], E-mail: lionel.montagne@univ-lille1.fr; Delevoye, Laurent [UCCS-Unite de Catalyse et Chimie du Solide, UMR CNRS 8181, Ecole Nationale Superieure de Chimie de Lille, Universite des Sciences et Technologies de Lille, BP 108, 59652 Villeneuve d'Ascq Cedex (France)

2008-02-15

410

Polycrystalline MFI zeolite membranes: xylene pervaporation and its implication on membrane microstructure  

Microsoft Academic Search

This paper reports experimental results on pervaporation of pure xylene isomers and their binary mixtures through ?-alumina-supported zeolite MFI membranes. The membranes were permeable for all xylene isomers. Intensive fouling of the zeolite membrane was observed during the pervaporation experiments due to strong interaction of xylene molecules with the zeolite pores via ?-complexation. The pervaporation flux of pure xylene isomers

Karsten Wegner; Junhang Dong; Y. S Lin

1999-01-01

411

Friedel–Crafts acylation of aromatics and heteroaromatics by beta zeolite  

Microsoft Academic Search

Friedel–Crafts acylation of aromatic compounds such as anisole, 2-methoxynaphthalene, veratrole, isobutylbenzene and aromatic heterocycle compounds such as pyrrole, furan, thiophene, benzothiophene with different acid anhydrides is carried out in the batch mode with different forms of beta zeolite. The micronized beta zeolite shows manifold activity over normal zeolite in acylation reactions of aromatics.

Mannepalli Lakshmi Kantam; Kalluri Venkata Sri Ranganath; Mutyala Sateesh; Kota Balaji Shiva Kumar; Boyapati Manoranjan Choudary

2005-01-01

412

Oxygen transport in zeolite Y measured by quenching of encapsulated tris(bipyridyl)ruthenium  

E-print Network

reserved. Keywords: Oxygen sensor; Zeolite diffusion; Zeolite confinement 1. Introduction The microporousOxygen transport in zeolite Y measured by quenching of encapsulated tris(bpy)2þ 3 ) by oxygen. Oxygen saturated solutions of Ru(bpy)2þ 3 typically show about 70% quenching (I0=I

Dutta, Prabir K.

413

Synthesis and characterization of MCM-49/ZSM-35 composite zeolites in the hexamethyleneimine and cyclohexamine system  

E-print Network

Composite zeolites, especially micro/microporous composites [1­8] and micro/mesoporous composites [9Synthesis and characterization of MCM-49/ZSM-35 composite zeolites in the hexamethyleneimine ZSM-35 Composite zeolite Hexamethyleneimine Cyclohexamine a b s t r a c t A novel route for synthesis

Bao, Xinhe

414

DOI: 10.1002/anie.200702628 Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined  

E-print Network

Zeolites DOI: 10.1002/anie.200702628 Aluminum Siting in Silicon-Rich Zeolite Frameworks: A Combined High-Resolution 27 Al NMR Spectroscopy and Quantum Mechanics/Molecular Mechanics Study of ZSM-5- graphic position of aluminum in zeolite frameworks governs the location of the active sites, which in turn

Sklenak, Stepan

415

Zeolites in catalysis. (Latest citations from the EI Compendex plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning the preparation, properties, and activity of zeolites used as catalysts in chemical reactions and chemical apparatus. Topics include catalytic cracking, reduction, processing, and various catalytic effects of zeolites and zeolite-containing compounds for a wide variety of applications. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-08-01

416

Exploration of molecular sieve zeolites for the cooling of building with solar energy  

Microsoft Academic Search

The usefulness of molecular sieve zeolites for solar sorption heating and cooling has been investigated. Two different approaches have been used, one in which the temperature of the zeolite is uniform, the other in which a temperature gradient is established across the zeolite. With one-square-foot test panels using the uniform temperature approach, overall engineering efficiencies as high as 75% for

D. I. Tchernev

1977-01-01

417

Penentuan kapasiti dan jenis pencerapan Zeolit asli terhadap bahan pencelup sintetik  

Microsoft Academic Search

Abstrak. Zeolit yang dikenali sebagai penapis molekul mempunyai sifat keliangan dan luas permukaan tinggi telah digunakan sebagai bahan penjerap untuk menjerap bahan pencelup daripada air sisa berwarna. Zeolit mordenit asli yang berasal dari Indonesia telah diubahsuai kepada bentuk yang bersifat bes dan dikaji sifat penjerapannya terhadap bahan pencelup sintetik bes kuning 11. Seterusnya, jenis penjerapan sampel zeolit terhadap bahan pencelup

Chai Mee Kin; Asiah Hussain; Pengajian Sains; Jalan Kajang-Puchong

418

Extrusion of zeolites: Properties of catalysts with a novel aluminium phosphate sintermatrix  

Microsoft Academic Search

A novel type of mechanically strong zeolite extrudates is introduced, in which the zeolite crystals, here ZSM-5, are embedded in a sintermatrix of aluminium phosphate with the crystal structure of tridymite. The pore size distribution in the matrix can be tailored through both, the choice of the size of the embedded particles and their amount in the extrudates. At zeolite

Jens Freiding; Florina-Corina Patcas; Bettina Kraushaar-Czarnetzki

2007-01-01

419

MINERALOGY AND PETROGRAPHY OF NEW OCCURENCES DEPOSITS OF THE ZEOLITIC TUFF IN NORTHEAST JORDAN  

Microsoft Academic Search

The occurrences deposits of the zeolitic tuff were studied in four areas through detailed geological mapping at a scale 1:50.000 in northeast Jordan and through exploration project. These deposits covered large areas and characterized by rich content, lateral and vertical homogenous distribution of the zeolite minerals. The zeolites are an abundant constituent in these deposits, which form more than 50%

K. Tarawneh

420

Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.  

ERIC Educational Resources Information Center

Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

Smoot, Alison L.; Lindquist, David A.

1997-01-01

421

ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER  

EPA Science Inventory

Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

422

Toward a Database of Hypothetical Zeolite Structures David J. Earl, and Michael W. Deem*,  

E-print Network

Toward a Database of Hypothetical Zeolite Structures David J. Earl, and Michael W. Deem the sampling. We discuss construction of a database of hypothetical zeolite frameworks with this approach and discuss how the database may be used to search for new zeolite structures with specific material

Earl, David J.

423

Silicate globules in kyanite from grospydites of the Zagadochnaya kimberlite pipe, Yakutia: The problem of the origin  

NASA Astrophysics Data System (ADS)

The results of complex study of silicate globules and ?-quartz paramorphs after coesite in kyanite from grospydites from the Zagadochnaya kimberlite pipe, Yakutia, using optical and scanning electron spectroscopy, electron and ion microprobes, LA ICP MS and Raman spectroscopy, are presented. The existence of radial fractures diverging from silicate globules into the matrix (kyanite) attests to the fact that the content of the globules is extremely condensed. A zonal structure is usually typical for globules: a coat and a core, which can be explicitly distinguished under the electron microscope, can be differentiated in them. Compositionally, the coat of the globule corresponds to potassium feldspar (wt %: 66.4 SiO2; 16.9 Al2O3; 0.4 FeO; 0.1 CaO; 0.2 Na2O; 14.7 K2O). The globules were also detected in which along with K, a high content of Na and Ca was also ascertained in the silicate coat. The globule coat is considerably enriched with Ba, La, Ce, Nb, and a number of other noncompatible elements as compared with xenolith minerals. The water content in globules is ˜0.6 wt %. As compared with the host mineral (kyanite), the core part of the globules is also enriched with Co, Ni, Zn, and Cu; their content in kyanite is negligibly low. The entire data collection attests to the fact that the formation of silicate globules could have been caused by interaction of the conservated fluid and/or water-silicate melt with the host mineral and crystalline inclusions of clinopyroxene and garnet with decreasing pressure during the transportation of grospydite xenoliths by the kimberlite melt to the Earth's surface.

Tomilenko, A. A.; Kovyazin, S. V.; Pokhilenko, L. N.; Sobolev, N. V.

2011-01-01

424

Evaluation of drug release kinetics and physico-chemical characteristics of metronidazole floating beads based on calcium silicate and gas-forming agents.  

PubMed

In the present investigation metronidazole-loaded alginate beads consisting of calcium silicate as a porous carrier or NaHCO(3) as a gas-forming agent were prepared for local eradication of Helicobacter Pylori. Gelation method was used for preparation of conventional sodium alginate beads. Drug entrapment efficiency, drug loading, floating properties, drug release, crystallinity and release kinetic as well as morphology of the prepared beads were assessed. The silicate based beads showed slower release pattern, compared to the gas-forming beads due to network structure strengthening effect of the calcium silicate. Furthermore, the gas-forming-based beads had shorter initial buoyancy lag time, owing to the fact that the NaHCO(3) produced larger pores than those of silicate treated ones. Drug entrapment efficiency ranged between 61.7 and 93.1% for the prepared formulations. The maximum value of drug loading for gas-forming and silicate-based beads were 66.64% and 34.97%, respectively. Kinetically, release pattern of metronidazole in simulated gastric fluid from the beads fitted best to Reciprocal powered time, Weibull and log-probability models with the respect overall mean percentage error values of 4.50, 5.30 and 7.76. By and large, these systems can float in the gastric condition and control the drug release from the beads. PMID:19694496

Javadzadeh, Yousef; Hamedeyazdan, Sanaz; Adibkia, Khosro; Kiafar, Farhad; Zarrintan, Mohammad Hosein; Barzegar-Jalali, Mohammad

2010-01-01

425

[Adsorption of phenol chemicals by surfactant-modified zeolites].  

PubMed

Two kinds of zeolites were prepared from fly ash and modified by surfactant subsequently. Surfactant-modified zeolites were studied for adsorption of phenol chemicals (phenol, p-chlorphenol, bisphenol A). It showed that the adsorption affinity of zeolite to phenol chemicals was significantly improved after surfactant modification. The adsorption isotherms of phenol chemicals were well fitted by the Langmuir isotherm. For the two surfactant-surfactant modified zeolites, the maximum adsorption amounts of phenol, p-chlorphenol, and bisphenol A calculated from the Langmuir equation were 37.7, 52.36, 90.9 mg x g(-1) and 10.7, 22.83, 56.8 mg x g(-1), respectively. When pH values of solutions were higher than the pK(a) values of phenol chemicals, the removal efficiencies were getting higher with the increase of pH values. The octanol/water partition coefficient (K(ow)) was also found to be an important factor affecting adsorption of phenol chemicals by the modified zeolites. Higher K(ow) value, which means the greater hydrophobicity of the chemicals, resulted in a higher removal. PMID:23379165

Xie, Jie; Wang, Zhe; Wu, De-Yi; Li, Chun-Jie

2012-12-01

426

Risk assessment for the transportation of radioactive zeolite liners  

SciTech Connect

The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: /sup 90/Sr = 3000 Ci, /sup 134/Cs = 7000 Ci, /sup 137/Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public.

Not Available

1982-01-01

427

Copper removal using bio-inspired polydopamine coated natural zeolites.  

PubMed

Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base. PMID:24731937

Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

2014-05-30