Science.gov

Sample records for crystallization phenomena accion

  1. Accions

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin; Nilles, Hans Peter; Ramos-Sánchez, Saúl; Vaudrevange, Patrick K. S.

    2009-05-01

    Axion fields provide the most elegant solution to the strong CP problem. In string compactifications it is difficult to obtain an axion whose decay constant is consistent with current cosmological bounds. We examine this question in theories with accidental U(1) symmetries that appear as low energy remnants of discrete symmetries. We refer to the axion-like particles from the spontaneous breakdown of these symmetries as accions. In such systems, the accion decay constant depends on the vacuum configuration and can be lowered to fit the bounds. Furthermore, we find that such accions with consistent decay constant can be embedded in special vacua of Z6-II orbifold models with realistic features.

  2. Crystallization phenomena in slags

    NASA Astrophysics Data System (ADS)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  3. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS states contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as such to the geometry at the Planck scale. In the second part, we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multicentered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  4. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2010-02-01

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS state contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as to the geometry at the Planck scale.In the second part we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multi-centered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  5. Protein Crystallization: Specific Phenomena and General Insights on Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1998-01-01

    Experimental and simulation studies of the nucleation and growth kinetics of proteins have revealed phenomena that are specific for macromolecular crystallization, and others that provide a more detailed understanding of solution crystallization in general. The more specific phenomena, which include metastable liquid-liquid phase separations and gelation prior to solid nucleation, are due to the small ratio of the intermolecular interaction-range to the size of molecules involved. The apparently more generally applicable mechanisms include the cascade-like formation of macrosteps, as an intrinsic morphological instability that roots in the coupled bulk transport and nonlinear interface kinetics in systems with mixed growth rate control. Analyses of this nonlinear response provide (a) criteria for the choice of bulk transport conditions to minimize structural defect formation, and (b) indications that the "slow" protein crystallization kinetics stems from the mutual retardation of growth steps.

  6. Certain relativistic phenomena in crystal optics

    NASA Astrophysics Data System (ADS)

    Chee-Seng, Lim

    1980-01-01

    Relativistic unsteady phenomena are established for a crystalline medium with unaligned sets of permittivity and permeability principal axes, but incorporating a compounded uniaxiality about some nonprincipal direction. All effects originate from a suddenly activated, arbitrarily oriented, maintained line current conducted with a finite velocity v. Integral representations studied in another paper (Chee-Seng) are applied. The original coordinate system is subjected to a series of rotational and translational, scaled and unscaled transformations. No specific coordinate frame is strictly adhered to. Instead, it is often expedient and advantageous to exploit several reference frames simultaneously in the course of the analysis and interpretations. The electric field is directly related to a net scalar field Δ involving another scalar Ψ and its complement Ψ¯ which can be deduced from Ψ; Ψ and Ψ¯ are associated with two expanding, inclined ellipsoidal wavefronts ξ and ξ¯; these are cocentered at the current origin and touch each other twice along the uniaxis. Elsewhere, ξ leads ξ¯. For a source current faster than ξ:vt ∈ extξ, Ψ≢0 within a finite but growing ''ice-cream cone'' domain, its nontrivial composition being χ-1/2 inside ξ and 2χ-1/2 inside part of a tangent cone from the advancing current edge vt to, and terminating at, ξ; the function χ vanishes along such a tangent cone. Alternatively, for a source current slower than ξ:vt∈ intξ, if vt is avoided, χ≳0 everywhere, while Ψ=χ-1/2 inside ξ but vanishes identically outside ξ. However, the crucial scalar field Δ depends on three separate current-velocity regimes. Over a slow regime: vt∈ intξ¯, Δ is nontrivial inside ξ wherein it is discontinuous across ξ¯. Over an intermediate regime: vt ∈ intξ extξ¯, Δ takes four distinct forms on 12 adjacent domains bounded by ξ, ξ¯ and a double-conical tangent surface linking vt to ξ¯. But for a fast regime: vt∈ ext

  7. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals. PMID:26406659

  8. Thin Film Mediated Phase Change Phenomena: Crystallization, Evaporation and Wetting

    NASA Technical Reports Server (NTRS)

    Wettlaufer, John S.

    1998-01-01

    We focus on two distinct materials science problems that arise in two distinct microgravity environments: In space and within the space of a polymeric network. In the former environment, we consider a near eutectic alloy film in contact with its vapor which, when evaporating on earth, will experience compositionally induced buoyancy driven convection. The latter will significantly influence the morphology of the crystallized end member. In the absence of gravity, the morphology will be dominated by molecular diffusion and Marangoni driven viscous flow, and we study these phenomena theoretically and experimentally. The second microgravity environment exists in liquids, gels, and other soft materials where the small mass of individual molecules makes the effect of gravity negligible next to the relatively strong forces of intermolecular collisions. In such materials, an essential question concerns how to relate the molecular dynamics to the bulk rheological behavior. Here, we observe experimentally the diffusive motion of a single molecule in a single polymer filament, embedded within a polymer network and find anomalous diffusive behavior.

  9. Surface Phenomena and Parameters of Crystal Growth: Simple Basics

    SciTech Connect

    Chernov, A. A.

    2010-07-22

    Basic concepts of crystal growth and their practical use to semi-quantitatively estimate growth processes are explained: surface energy and free energy, driving force of crystallization, atomically rough vs smooth interface structure and the corresponding normal vs layer-by-layer growth modes, application of the activated complex concept to derive kinetic coefficient characterizing crystal growth rate at a given driving force. The Reader is supposed to be familiar with general physics and chemistry. No specific knowledge in crystal growth is required.

  10. Physical phenomena related to crystal growth in the space environment

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1973-01-01

    The mechanism of crystal growth which may be affected by the space environment was studied. Conclusions as to the relative technical and scientific advantages of crystal growth in space over earth bound growth, without regard to economic advantage, were deduced. It was concluded that the crucibleless technique will most directly demonstrate the unique effects of the greatly reduced gravity in the space environment. Several experiments, including crucibleless crystal growth using solar energy and determination of diffusion coefficients of common dopants in liquid silicon were recommended.

  11. Interphase and capillary phenomena in crystal growth and melting processes

    NASA Astrophysics Data System (ADS)

    Naidich, Yu. V.; Grigorenko, N. F.; Perevertailo, V. M.

    1981-05-01

    The wettability of different faces of a number of single crystals (thymol, diphenylamine, dibenzyl, salol, benxophenone, sodium thiosulphate, germanium) by their own melt in the course of their growth was studied using various methods (bubble method, sessile drop method, by the melt meniscus shape). The wettability of the crystals by the own melt is incomplete, the wetting angle differs from zero and is dissimilar for different faces (wettability anisotropy). The highest values of the wetting angles are displayed by the faces having the greatest reticular density. For thynol crystals, the kinetics of face growth has been studied simultaneously with investigating the wettability. The gtowth of close-packed faces featuring the largest wetting angles has been found to be governed by a tangential mechanism. The process of melting of different faces of the above single crystals has been studied by means of microfilming (including that in vacuum at a high temperature). It has been ascertained that the crystal-melt transition at the closest-packed faces proceeds by layers. The liquid phase resulting from layer destruction forms droplets wetting the face with a wetting angle to that in crystal growth. The observed melting mechanism has been termed a "droplayered" one.

  12. Modeling of convection phenomena in Bridgman-Stockbarger crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Eraslan, A. H.; Sheu, J. Z.

    1985-01-01

    Thermal convection phenomena in a vertically oriented Bridgman-Stockbarger apparatus were modeled by computer simulations for different gravity conditions, ranging from earth conditions to extremely low gravity, approximate space conditions. The modeling results were obtained by the application of a state-of-the art, transient, multi-dimensional, completely densimetrically coupled, discrete-element computational model which was specifically developed for the simulation of flow, temperature, and species concentration conditions in two-phase (solid-liquid) systems. The computational model was applied to the simulation of the flow and the thermal conditions associated with the convection phenomena in a modified Germanium-Silicon charge enclosed in a stationary fused-silica ampoule. The results clearly indicated that the gravitational field strength influences the characteristics of the coherent vortical flow patterns, interface shape and position, maximum melt velocity, and interfacial normal temperature gradient.

  13. Observations of dynamic stall phenomena using liquid crystal coatings

    NASA Astrophysics Data System (ADS)

    Reda, Daniel C.

    1991-02-01

    Novel, shear stress-sensitive/temperature-insensitive liquid crystal coatings have been applied to the surface of an oscillating airfoil in order to ascertain the unsteady fluid physics associated with the dynamic-stall process. Surface microtufts and laser sheet/smoke-particle flow visualization were used to compare the liquid-crystal results. Boundary-layer transition and turbulent separation locations were measured as a function of geometric angle of attack. The results obtained are compared with Eppler (1980) aerodynamic design code predictions.

  14. Observations of dynamic stall phenomena using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1991-01-01

    Novel, shear stress-sensitive/temperature-insensitive liquid crystal coatings have been applied to the surface of an oscillating airfoil in order to ascertain the unsteady fluid physics associated with the dynamic-stall process. Surface microtufts and laser sheet/smoke-particle flow visualization were used to compare the liquid-crystal results. Boundary-layer transition and turbulent separation locations were measured as a function of geometric angle of attack. The results obtained are compared with Eppler (1980) aerodynamic design code predictions.

  15. Protein Crystals Grow Purer in Space: Physics of Phenomena

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.

    2000-01-01

    This presentation will summarize the quantitative experimental and theoretical results obtained by B.R. Thomas, P.G. Vekilov, D.C. Carter, A.M. Holmes, W.K. Widierow and the Author, the team with expertise in physics, biochemistry, crystallography and engineering. Impurities inhomogeneously trapped by a growing crystal - e.g., producing sectorial structure and/or striations - may induce macroscopic internal stress in it if an impurity molecule has slightly (less than 10%) different shape or volume than the regular one(s) they replace. We tested for the first time plasticity and measured Young modulus E of the triclinic, not cross-linked lysozyme by triple point bending technique. Triclinic lysozyme crystals are purely elastic with E similar or equal to 1/5 (raised dot) 10 (exp 9) partial derivative yn/sq cm. The strength limit, sigma (sub c) similar or equal to 10 (exp -3)E similar or equal to Epsilon (sub c), where sigma (sub c) and epsilon (sub c) are critical stress and strain, respectively. Scaling E and sigma (sub c) with the lattice spacing suggests similar binding stiffness in inorganic and biomolecular crystals. The inhomogeneous internal stress may be resolved in these brittle crystals either by cracking or by creation of misoriented mosaic blocks during, not after growth. If each impurity molecule induces in the lattice elementary strain epsilon (sub 0) similar or equal to 3 (raised dot) 10 (exp -2) (this is maximal elementary strain that can arise at the supersaturation DELTA mu/kT similar or equal to 2 and macroscopic molecular concentration difference between subsequent macrolayers or growth sectors is partial derivativeC similar or equal to 5 (raised dot) 10 (exp -3), the internal strain epsilon similar or equal to epsilon (sub 0) partial derivative C similar or equal to 10 (exp -4). Mosaic misorientation resolving such strain is approximately 30 arcsec. Tenfold increase of impurity concentration may cause cracking. Estimates of stress in an isometric

  16. Complex Multicolor Tilings and Critical Phenomena in Tetraphilic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zeng, Xiangbing; Kieffer, Robert; Glettner, Benjamin; Nürnberger, Constance; Liu, Feng; Pelz, Karsten; Prehm, Marko; Baumeister, Ute; Hahn, Harald; Lang, Heinrich; Gehring, Gillian A.; Weber, Christa H. M.; Hobbs, Jamie K.; Tschierske, Carsten; Ungar, Goran

    2011-03-01

    T-shaped molecules with a rod-like aromatic core and a flexible side chain form liquid crystal honeycombs with aromatic cell walls and a cell interior filled with the side chains. Here, we show how the addition of a second chain, incompatible with the first (X-shaped molecules), can form honeycombs with highly complex tiling patterns, with cells of up to five different compositions (“colors”) and polygonal shapes. The complexity is caused by the inability of the side chains to separate cleanly because of geometric frustration. Furthermore, a thermoreversible transition was observed between a multicolor (phase-separated) and a single-color (mixed) honeycomb phase. This is analogous to the Curie transition in simple and frustrated ferro- and antiferromagnets; here spin flips are replaced by 180° reorientations of the molecules.

  17. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process

  18. The influence of a small amount of maleic acid on crystal deposition phenomena of methacrylic acid in melt crystallization

    NASA Astrophysics Data System (ADS)

    Hino, Tomomichi; Kato, Shinpei; Takiyama, Hiroshi

    2013-06-01

    Crystal deposition phenomena were investigated in the suspension melt crystallization of an organic acid. Methacrylic acid was used as the target substance, a certain amount of methanol was used as the solvent, and the effect of a small amount of maleic acid by-produced in methacrylic acid synthesis was focused on. Batch crystallizations were carried out on a laboratory scale using various concentrations of maleic acid. In the presence of maleic acid, a certain deviation from equilibrium of the pure binary system was observed in the final composition of mother liquor. Moreover, nevertheless the final temperature in the crystallizer was same, the amount of crystal deposition in the presence of maleic acid was smaller than in the absence of maleic acid. It was suggested that the final amount of crystal deposition decreased in the presence of maleic acid. Additionally, it was observed that the obtained crystal size was smaller in the presence of maleic acid. Hence, a simplified kinetic analysis of crystal deposition rates was carried out to make the effect of maleic acid clear. Consequently, it was suggested that the cause of the above-mentioned phenomena was the existence of the maleic acid concentration dependent pseudo-liquidus line.

  19. Crystal Ice Formation of Solution and Its Removal Phenomena From Cooled Solid Surface

    NASA Astrophysics Data System (ADS)

    Hirata, Tetsuo; Ishikawa, Masaaki; Nagasaka, Kouji

    Experimental studies for freezing phenomena of ethylene glycol solution on cooled plate have been performed. A polyvinyl chloride as well as an acrylic resin plates are used for the cooled plates. It is found that the crystal ice formed at the cooled plate is removed from the plate due to buoyancy force acting the crystal ice. It means that ice formation on a cooled plate without deposit ice layer is possible by the present method. It is shown that the cooled plate surface is under cooled about 1.0~1.5 degree below the freezing temperature of the solution during the crystal ice formation and its removal phenomena. The degree of under cooled temperature is unaffected by the cooling temperature of the plate. For higher concentration of solution, it is found that the number of the removed crystal ice per unit time is increased and the volume of each removed ice is decreased.

  20. Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    This article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g. oligopeptides and proteins) and transition metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double-layers, acid-base interactions, and hydrogen bonding can have on the interfacial ordering of LCs. The opportunity to create chemically-responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC- aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behaviour of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) confinement of LCs leads to unanticipated size

  1. Transport phenomena near the interface of a Czochralski-grown crystal

    SciTech Connect

    Balasubramaniam, R.; Ostrach, S.

    1987-01-01

    In the Czochralski method, crystals are grown by controlled withdrawal of a seed crystal that is initially touched to the free surface of the melt. Transport phenomena within the melt are important as they affect the quality of the crystal. Momentum, energy and mass transfer have been considered in the vicinity of the crystal, viz., in the meniscus below the crystal. Driving forces due to buoyancy, crystal rotation and thermocapillary effects have been included. Estimation of the non-dimensional parameters involved reveals that the surface-tension gradient and crystal rotation are important for the growth of silicon crystals. For pure thermocapillary flow with large Peclet number and small Prandtl number, an integral method has been used with the boundary-layer equations to determine the temperature, axial velocity, and concentration distributions in the meniscus region. The results show that in the ideal case when the energy transfer is one dimensional, the thermocapilliary flow causes the temperature and concentration distributions in the meniscus to be two-dimensional, which causes the interface to be curved and the solute to be segregated non-uniformly over the cross-section of the crystal. With the interface assumed to be initially flat, a corrected, curved shape which protrudes into the melt has been obtained for the interface.

  2. Simulation of Transport Phenomena in Aluminum Nitride Single-Crystal Growth

    SciTech Connect

    de Almeida, VF

    2002-05-16

    The goal of this project is to apply advanced computer-aided modeling techniques for simulating coupled radiation transfer present in the bulk growth of aluminum nitride (AlN) single-crystals. Producing and marketing high-quality single-crystals of AlN is currently the focus of Crystal IS, Inc., which is engaged in building a new generation of substrates for electronic and optical-electronic devices. Modeling and simulation of this company's proprietary innovative processing of AlN can substantially improve the understanding of physical phenomena, assist design, and reduce the cost and time of research activities. This collaborative work supported the goals of Crystal IS, Inc. in process scale-up and fundamental analysis with promising computational tools.

  3. Numerical simulation on the dynamics of photoinduced cooperative phenomena in molecular crystals

    NASA Astrophysics Data System (ADS)

    Ishida, Kunio; Nasu, Keiichiro

    2009-09-01

    We develop a new simulation method to study the dynamics of initial nucleation processes of photoinduced structural change of molecular crystals. In order to describe the nonadiabatic transition in each molecule, we employ a model of localized electrons coupled with a fully quantized phonon mode, and the time-dependent Schrödinger equation for the model is numerically solved. By applying a mean-field approximation in solving the Schrödinger equation, the calculation method is quite efficient on parallel computing systems. We show that coherently driven molecular distortion plays an important role in the successive conversion of electronic states which leads to photoinduced cooperative phenomena.

  4. Symmetry-dependency of anticrossing phenomena in slab-type photonic crystals.

    PubMed

    Barth, Carlo; Burger, Sven; Becker, Christiane

    2016-05-16

    The optical properties of photonic crystals (PhCs) are strongly affected by their spatial symmetry characteristics. We observe anticrossing phenomena for large-area slab-type silicon PhCs sandwiched between a glass substrate and air. If a glass superstrate plus an index-matching fluid is added, thus establishing a mirror symmetry in z-direction, the anticrossing disappears. These characteristics are analyzed numerically using a finite-element Maxwell solver, and experimentally using large area samples made by nanoimprint lithography. We further discuss the findings by symmetry considerations. PMID:27409914

  5. Coarsening Dynamics of Inclusions and Thermocapillary Phenomena in Smectic Liquid Crystal Bubbles

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Maclennan, Joseph; Glaser, Matthew; Clark, Noel; Trittel, Torsten; Eremin, Alexey; Stannarius, Ralf; Tin, Padetha; Hall, Nancy

    The Observation and Analysis of Smectic Islands in Space (OASIS) project comprises a series of experiments that probe interfacial and hydrodynamic behavior of thin spherical-bubbles of smectic liquid crystal in microgravity. Smectic films are the thinnest known stable condensed phase structures, making them ideal for studies of two-dimensional (2D) coarsening dynamics and thermocapillary phenomena in microgravity. The OASIS flight hardware was launched on SpaceX-6 in April 2015 and experiments were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We will describe the behavior of collective island dynamics on the bubbles, including temperature gradient-induced themomigration, and the diffusion and coalescence-driven coarsening dynamics of island emulsions in microgravity. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  6. Convection phenomena during the growth of sodium chlorate crystals from solution

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Shlichta, P. J.; Wilcox, W. R.; Lefever, R. A.

    1979-01-01

    The paper examines convection phenomena during the growth of sodium chlorate crystals from solution. Schlieren observations of sodium chlorate crystals suspended in supersaturated solutions showed that with increase in supersaturation or crystal size, the boundary layer on the side faces was stable while the top boundary layer and emerging plume changed from stable to partially oscillatory. The transition was a function of the Grashof number, Gr sub top, and the crystal height. Gr sub top correlated with plume width, number of streamlines, eddy density, and plume velocity, but the oscillation period correlated with the weight increase growth rate. The mass transfer rate, the linear growth rate, and growth of vertical and horizontal faces are discussed, and an estimate of boundary layer flow vs growth rate for near-critical stable convection indicated that growth of side faces depleted over half of the excess solute in the boundary layer. Impulse energies greatly in excess of the threshold value caused transient separation of the boundary layer on the top face, and plume wavering due to background-induced fluid motion was observed only at the lowest supersaturations.

  7. Apparatus to study crystal channeling and volume reflection phenomena at the SPS H8 beamline

    SciTech Connect

    Scandale, Walter; Efthymiopoulos, Ilias; Still, Dean A.; Carnera, Alberto; De Salvador, Davide; Della Mea, Gianantonio; Milan, Riccardo; Vomiero, Alberto; Baricordi, Stefano; Chiozzi, Stefano; Dalpiaz, Pietro; Damiani, Chiara; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto

    2008-02-15

    A high performance apparatus has been designed and built by the H8-RD22 collaboration for the study of channeling and volume reflection phenomena in the interaction of 400 GeV/c protons with bent silicon crystals, during the 2006 data taking in the external beamline H8 of the CERN SPS. High-quality silicon short crystals were bent by either anticlastic or quasimosaic effects. Alignment with the highly parallel (8 {mu}rad divergence) proton beam was guaranteed through a submicroradian goniometric system equipped with both rotational and translational stages. Particle tracking was possible by a series of silicon microstrip detectors with high-resolution and a parallel plate gas chamber, triggered by various scintillating detectors located along the beamline. Experimental observation of volume reflection with 400 GeV/c protons proved true with a deflection angle of (10.4{+-}0.5) {mu}rad with respect to the unperturbed beam, with a silicon crystal whose (111) planes were parallel to the beam.

  8. Colloidal crystals and water: Perspectives on liquid-solid nanoscale phenomena in wet particulate media.

    PubMed

    Gallego-Gómez, Francisco; Morales-Flórez, Víctor; Morales, Miguel; Blanco, Alvaro; López, Cefe

    2016-08-01

    Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media. PMID:27231015

  9. Theoretical study of production of unique glasses in space. [kinetic relationships describing nucleation and crystallization phenomena

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Sievert, J. L.

    1975-01-01

    The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.

  10. Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal

    NASA Astrophysics Data System (ADS)

    Duan, Zhiyao; Zhong, Jun; Wang, Guofeng

    2010-09-01

    We investigated the surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal using density functional theory (DFT) calculation (with no configuration sampling) and Monte Carlo (MC) simulation method (employing modified embedded atom method potentials and with extensive configuration sampling). Our DFT study suggested that the off-stoichiometric effect (specifically, a Pt concentration higher than 75 at. %) accounted for the experimentally observed Pt segregation to the outermost layer of the Pt3Ti (111). Our MC simulations predicted that in a Pt3Ti (111) sample with a Pt concentration slightly above 75 at. %, Pt atoms would segregate to the surface to form a pure Pt outermost layer, while the ordered Pt3Ti crystal structure would be maintained in the second layer and below. Moreover, our DFT calculations revealed that the d-band center of the Pt-segregated Pt3Ti (111) surface would downshift by 0.21 eV as compared to that of a pure Pt (111) surface. As a result, O adsorption energy on the Pt-segregated Pt3Ti (111) surface was found to be at least 0.16 eV weaker than that on the pure Pt (111) surface. Thus, we theoretically modeled the geometric and electronic structures of the Pt-segregated Pt3Ti (111) surface and further suggested that the Pt surface segregation could lead to enhanced catalytic activity for oxygen reduction reactions on Pt3Ti alloy catalysts.

  11. Acoustic multimode interference and self-imaging phenomena realized in multimodal phononic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Liu, Nianhua; Wang, Tongbiao; Liao, Qinghua

    2015-09-01

    We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented.

  12. Electro-optic phenomena in nematic liquid crystals studied experimentally and by Monte-Carlo simulations

    SciTech Connect

    Komorowska, K.; Pawlik, G.; Mitus, A. C.; Miniewicz, A.

    2001-08-15

    In this article we compare results of experiments on light self-diffraction in nematic liquid crystal panels with corresponding results of the Monte-Carlo simulations of a two-dimensional nematic liquid crystal model in the presence of a spatially modulated electric field. In the simulations molecular interactions were described by the Lebwohl--Lasher Hamiltonian. The results obtained on the diffraction efficiency and spatial and temporal behavior of refractive index changes in nematic liquid crystal are satisfactorily reproduced by Monte-Carlo simulations. We discuss the complementarity of both methods in studying and designing systems for optical information processing using liquid crystals. {copyright} 2001 American Institute of Physics.

  13. Photoinduced reorientation phenomena in dyed liquid crystals: recent steps toward a complete understanding of the underlying mechanism

    NASA Astrophysics Data System (ADS)

    Marrucci, Lorenzo

    2002-12-01

    A survey of recent results of experiments aimed at understanding the basic mechanism of the photoinduced reorientation phenomena in dye-doped liquid crystals is presented. In particular, I shall focus on experiments based on the isotopic substitution of hydrogen atoms with deuterium in dye molecules, which have shown an unexpected enhancement of the photoinduced reorientation effect by a factor two. The isotopic substitution also changes the dye excited state lifetime and orientational diffusion times. These results are in good agreement with the model proposed for the effect, and confirm the hypothesis that the active photoexcited state in the photoinduced reorientation phenomena is simply the first-excited singlet electronic state of dye molecules.

  14. Growth phenomena in the surface layer and step generation from the edges of faceted crystals

    SciTech Connect

    Carman, L; Smolsky, I; Zaitseva, N P

    1999-07-29

    The mechanism of growth step generation from the edges of faceted crystals obtained from experimental results with KDP crystals is described. It shows that growth from the crystal edges is initiated by the deviation of the edges from their crystallographic orientation and formation of incomplete shapes of singular facets. The conditions for formation of the incomplete faceted shapes during dislocation growth are considered. It is shown that the process of step generation from the edges is determined by the mutual positions of the vicinal slopes on the adjacent faces.

  15. Diffraction phenomena in spontaneous and stimulated radiation by relativistic particles in crystals (Review)

    SciTech Connect

    Baryshevsky, V.G.; Dubovskaya, I.Ya.

    1991-12-01

    This report discusses: the dispersion characteristics of parametric x-ray radiation (PXR) and diffraction radiation of oscillator; cooperative effects in x-radiation by charged particles in crystals; and diffraction x-radiation by relativistic oscillator.

  16. Peak effect phenomena, surface superconductivity and paramagnetic Meissner effect in a spherical single crystal of niobium

    NASA Astrophysics Data System (ADS)

    Das, Pradip; Tomy, C. V.; Takeya, H.; Ramakrishnan, S.; Grover, A. K.

    2009-03-01

    We have explored the vortex phase diagram in a spherical single crystal of niobium (Tc ~ 9.3 K) via isothermal and temperature dependent dc magnetization and ac-susceptibility measurements. The crystal has extremely weak pinning that can be inferred from the reversibility of M - H loops below Tc. However, one can visualize the peak effect (PE) feature in the isothermal M - H loops up to T = 8 K. The PE is also prominent in isothermal ac-susceptibility data for H > 750 Oe. An interesting observation in the present study is the prominent fingerprints of surface superconductivity, starting just above the collapse of pinning at the peak position of the PE and ending at the surface critical field (Hc3). We have also observed the paramagnetic Meissner effect in field-cooled magnetization data recorded at relatively large fields in this crystal. A vortex phase diagram is constructed by marking the peak positions of the PE (Hp), the upper critical field (Hc2) and the surface critical field (Hc3). Unlike a previous report which shows the existence of a multi-critical point in the phase diagram of a Nb crystal, where Hp, Hc2 and Hc3 lines meet, we do not observe a multi-critical point in our weak pinning crystal.

  17. Mujeres en accion: design and baseline data.

    PubMed

    Keller, Colleen; Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G

    2011-10-01

    The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women. PMID:21298400

  18. Mujeres en Accion: Design and Baseline Data

    PubMed Central

    Fleury, Julie; Perez, Adriana; Belyea, Michael; Castro, Felipe G.

    2015-01-01

    The majority of programs designed to promote physical activity in older Hispanic women includes few innovative theory-based interventions that address cultural relevant strategies. The purpose of this report is to describe the design and baseline data for Mujeres en Accion, a physical activity intervention to increase regular physical activity, and cardiovascular health outcomes among older Hispanic women. Mujeres en Accion [Women in Action for Health], a 12 month randomized controlled trial to evaluate the effectiveness of a social support physical activity intervention in midlife and older Hispanic women. This study tests an innovative intervention, Mujeres en Accion, and includes the use of a theory-driven approach to intervention, explores social support as a theoretical mediating variable, use of a Promotora model and a Community Advisory group to incorporate cultural and social approaches and resources, and use of objective measures of physical activity in Hispanic women. PMID:21298400

  19. Universal critical phenomena of the cloud --> crystal phase transition in the Paul trap: Powerlaws

    NASA Astrophysics Data System (ADS)

    Weiss, Daniel; Nam, Yunseong; Blümel, Reinhold

    N charged particles, simultaneously stored in a radio-frequency (rf) Paul trap, exhibit deterministic heating. Depending on the damping (γ) imparted to the system, these particles can exist in multiple phases, the most commonly found being the cloud and crystal phases. With a small γ, the particles exhibit gas-like behavior, where the heating and cooling equilibrate and a stable cloud results. For larger γ, the damping overcomes the heating and the particles are forced into the crystalline state. We explore the cloud --> crystal transition as a critical phenomenon. We find that the transition occurs at a critical value γc of the damping constant γ. We find that as a function of N, γc scales approximately like an iterated log law. We also present a universal power law, τm ~(γ -γc) - β , γ >γc , β > 0 , independent of both N and the Paul trap parameter a, depending only on the Paul trap parameter q, that describes the number of cycles necessary for the system to crystallize as a function of γ -γc .

  20. Structural Properties, Order-Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms.

    PubMed

    Braun, Doris E; Nartowski, Karol P; Khimyak, Yaroslav Z; Morris, Kenneth R; Byrn, Stephen R; Griesser, Ulrich J

    2016-03-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order-disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  1. Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms

    PubMed Central

    2016-01-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order–disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  2. Influence of thermal phenomena on crystal reattachment during dewetted Bridgman growth

    NASA Astrophysics Data System (ADS)

    Stelian, Camen; Yeckel, Andrew; Derby, Jeffrey J.

    2009-04-01

    A finite-element model that accounts for details of the melt meniscus, the solid-liquid interface, and heat transfer is applied to a model system representing dewetted Bridgman growth. A new mechanism involving the thermal field and the meniscus position is proposed to explain crystal reattachment during dewetted Bridgman growth method. Crystal reattachment after an initial dewetted growth is posited to proceed via a melt cooling phenomenon that occurs when the melting-point isotherm advances above the melt meniscus position. Conditions to maintain detached growth are achieved when the solidification isotherm falls below the meniscus during the whole growth process. Model results show that these conditions are difficult to meet under typical melt-ampoule wetting angles and gas pressures in a simple, constant-gradient furnace. More promising conditions to promote and maintain dewetted growth are predicted for multi-zone furnace profiles. The results are consistent with prior experiments and point to the importance of optimizing the thermal conditions for successful dewetted growth.

  3. Nonlinear phenomena in all solid photonic crystal fibers with nanostructured core

    NASA Astrophysics Data System (ADS)

    Pniewski, Jacek; Kasztelanic, Rafal; Pysz, Dariusz; Stepień, Ryszard; Buczynski, Ryszard

    2012-01-01

    To achieve high non-linearity in photonic crystal fibers a high nonlinear coefficient of the glass is required accompanied by high coupling efficiency and flat dispersion profile of the fiber with the specific zero dispersion wavelength. In this paper, we present a deterministic method that allow step-by-step design of photonic crystal fibers with desired zero dispersion wavelength, modality and coupling efficiency due to sequential engineering of geometrical parameters of microstructured fibers with nanostructured cores. The fiber consists of inclusions of low refractive index material, embedded in a host glass of higher refractive index, where a single central micro-rod is omitted. In its place an additional nano-inclusion is located of a given diameter. The choice of the glass determines the nonlinear coefficient of the fiber and fabrication possibilities as well. Zero dispersion wavelength is varied by the change of the lattice constant of the cladding. High filling factor in the cladding leads to a large number of propagating high order modes, which can be selectively cut off, when the filling factor of the outer part of the cladding is reduced. The diameter of the nano-inclusion in the core is responsible for the fundamental mode area, which influences directly the coupling efficiency. Several designed structures were modeled numerically and developed to confirm the design method.

  4. Optomechanical and crystallization phenomena visualized with 4D electron microscopy: interfacial carbon nanotubes on silicon nitride.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2010-05-12

    With ultrafast electron microscopy (UEM), we report observation of the nanoscopic crystallization of amorphous silicon nitride, and the ultrashort optomechanical motion of the crystalline silicon nitride at the interface of an adhering carbon nanotube network. The in situ static crystallization of the silicon nitride occurs only in the presence of an adhering nanotube network, thus indicating their mediating role in reaching temperatures close to 1000 degrees C when exposed to a train of laser pulses. Under such condition, 4D visualization of the optomechanical motion of the specimen was followed by quantifying the change in diffraction contrast of crystalline silicon nitride, to which the nanotube network is bonded. The direction of the motion was established from a tilt series correlating the change in displacement with both the tilt angle and the response time. Correlation of nanoscopic motion with the picosecond atomic-scale dynamics suggests that electronic processes initiated in the nanotubes are responsible for the initial ultrafast optomechanical motion. The time scales accessible to UEM are 12 orders of magnitude shorter than those traditionally used to study the optomechanical motion of carbon nanotube networks, thus allowing for distinctions between the different electronic and thermal mechanisms to be made. PMID:20377202

  5. Temperature-dependent ordering phenomena in single crystals of germanium antimony tellurides

    SciTech Connect

    Urban, Philipp; Schneider, Matthias N.; Oeckler, Oliver

    2015-07-15

    The temperature-dependent behavior of quenched single-crystalline (GeTe){sub n}Sb{sub 2}Te{sub 3} (n~2.8, n~5 and n~11) was investigated by semiquantitative modeling of diffuse X-ray scattering. The structure at room temperature exhibits trigonal twin domains, each comprising a stacking-disordered sequence of distorted rocksalt-type slabs with variable thicknesses. Ge and Sb share the cation position and vacancies are partially ordered in defect layers (van der Waals gaps) between the slabs. The average structure determined with resonant diffraction data corresponds to a rocksalt-type structure whose cation position is split along the stacking direction. Upon heating, cation ordering leads to a metastable superstructure of the rocksalt type at ~400 °C, which transforms to a rocksalt-type high-temperature phase with randomly distributed cations and vacancies at ~500 °C; this structure was also refined using resonant diffraction. Cooling at high or intermediate rates does not yield the long-range ordered phase, but directly leads to the twinned disordered phase. - Graphical abstract: Development of the diffraction patterns of (GeTe){sub ~11}Sb{sub 2}Te{sub 3} upon heating; the insets symbolically sketch the real structure at the corresponding temperatures. - Highlights: • The structure of disordered (GeTe){sub n}Sb{sub 2}Te{sub 3} is described as a function of temperature. • Structural changes are tracked by modeling diffuse X-ray scattering. • Quenched crystals exhibit distorted NaCl-type slabs with different thicknesses. • Vacancy ordering upon heating leads to a metastable superstructure of the NaCl type. • Further heating leads to an undistorted disordered NaCl-type high-temperature phase.

  6. Effects of wetting and anchoring on capillary phenomena in a confined liquid crystal.

    PubMed

    De Las Heras, D; Velasco, E; Mederos, L

    2004-03-01

    A fluid of hard spherocylinders of length-to-breadth ratio L/D=5 confined between two identical planar, parallel walls--forming a pore of slit geometry--has been studied using a version of the Onsager density-functional theory. The walls impose an exclusion boundary condition over the particle's centers of mass, while at the same time favoring a particular anchoring at the walls, either parallel or perpendicular to the substrate. We observe the occurrence of a capillary transition, i.e., a phase transition associated with the formation of a nematic film inside the pore at a chemical potential different from micro(b)-the chemical potential at the bulk isotropic-nematic transition. This transition terminates at an Ising-type surface critical point. In line with previous studies based on the macroscopic Kelvin equation and the mesoscopic Landau-de Gennes approach, our microscopic model indicates that the capillary transition is greatly affected by the wetting and anchoring properties of the semi-infinite system, i.e., when the fluid is in contact with a single wall or, equivalently, the walls are at a very large distance. Specifically, in a situation where the walls are preferentially wetted by the nematic phase in the semi-infinite system, one has the standard scenario with the capillary transition taking place at chemical potentials less than micro(b) (capillary nematization transition or capillary ordering transition). By contrast, if the walls tend to orientationally disorder the fluid, the capillary transition may occur at chemical potentials larger than micro(b), in what may be called a capillary isotropization transition or capillary disordering transition. Moreover, the anchoring transition that occurs in the semi-infinite system may affect very decisively the confinement properties of the liquid crystal and the capillary transitions may become considerably more complicated. PMID:15267357

  7. Crack growth phenomena in micro-machined single crystal silicon and design implications for micro electro mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Alissa Mirella

    The creation of micron-sized mechanisms using semiconductor processing technology is known collectively as MEMS, or Micro Electro Mechanical Systems. Many MEMS devices, such as accelerometers and switches, have mechanical structures fabricated from single crystal silicon, a brittle material. The reliability and longevity of these devices depends on minimizing the probability of fracture, and therefore requires a thorough understanding of crack growth phenomena in silicon. In this study, a special micro-machined fracture specimen, the compression-loaded double cantilever beam, was developed to study fracture phenomena in single crystal silicon on a size scale relevant to MEMS. The decreasing stress intensity geometry of this sample provided stable, controllable crack propagation in test sections as thin as 100 mum. Several common MEMS fabrication methods (plasma and chemical etch) were used to achieve a range of surface finishes. A 650 A thick titanium crack gage was used to directly measure crack extension as a function of time using the potential drop technique. High speed (100 MHz) data acquisition techniques were employed to capture fracture events on the sub-microsecond time scale. The stability of the sample design and the micron-scale resolution of the crack gage facilitated investigation into the existence of a stress corrosion effect in silicon. No evidence of sub-critical crack growth due to exposure to humid air was found in carefully controlled tests lasting up to 24 hours. Rapid crack propagation velocities (>1 km/s) during quasi-static loading were recorded using high speed data acquisition techniques. Unique evidence was found of reflected stress waves causing multiple, momentary arrests during rapid fracture events. These measurements, along with atomic force microscope scans of the fracture surfaces, offer new insight into the kinetics of the fracture process in silicon. Over 100 micro-machined samples were fractured in this research. Weibull

  8. Noise-induced resonance-like phenomena in InP crystals embedded in fluctuating electric fields

    NASA Astrophysics Data System (ADS)

    Persano Adorno, D.; Pizzolato, N.; Spagnolo, B.

    2016-05-01

    We explore and discuss the complex electron dynamics inside a low-doped n-type InP bulk embedded in a sub-THz electric field, fluctuating for the superimposition of an external source of Gaussian correlated noise. The results presented in this study derive from numerical simulations obtained by means of a multi-valley Monte Carlo approach to simulate the nonlinear transport of electrons inside the semiconductor crystal. The electronic noise characteristics are statistically investigated by calculating the correlation function of the velocity fluctuations, its spectral density and the integrated spectral density, i.e. the total noise power, for different values of both amplitude and frequency of the driving oscillating electric field and for different correlation times of the field fluctuations. Our results show that the nonlinear response of electrons is strongly affected by the field fluctuations. In particular, crucially depending on the relationship between the correlation times of the external Gaussian noise and the timescales of complex phenomena involved in the electron dynamical behavior: (i) electrons self-organize among different valleys, giving rise to intrinsic noise suppression; (ii) this cooperative behavior causes the appearance of a resonance-like phenomenon in the noise spectra.

  9. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption. PMID:25215842

  10. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity

    NASA Astrophysics Data System (ADS)

    Merkel, A.; Tournat, V.; Gusev, V.

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  11. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  12. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  13. Observations of dynamic stall phenomena on an oscillating airfoil with shear-stress-sensitive liquid crystal coatings

    SciTech Connect

    Reda, D.C.

    1989-01-01

    Oscillating airfoil experiments were conducted using shear-stress- sensitive/temperature-insensitive liquid crystal coatings in order to investigate unsteady fluid physics associated with the dynamic-stall process. Laser-light-sheet/smoke-particle flow visualization and surface-mounted micro-tufts were also employed to complement the liquid crystal technique. Experiments were conducted under incompressible flow conditions at a freestream Reynolds number (based on chord) of {approximately}10{sup 6}. Angle-of-attack oscillations of {plus minus}19{degree} about 0{degree}, at several discrete frequencies, were used to induce the unsteady flows. Boundary layer transition and turbulent separation locations were seen to undergo extensive and rapid movements with changing angle of attack, particularly on the airfoil lee surface. Progression of turbulent separation to the immediate vicinity of the leading edge was observed (via the liquid crystal technique) to result in large-scale, high-frequency fluctuations in the surface shear stress distribution. Comparisons of transition and turbulent separation measurements with Eppler code predictions indicated that the empirically-based viscous flow modeling used in this design tool requires updates. 19 refs., 8 figs., 1 tab.

  14. Anatase-TiO2 Nanomaterials: Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena

    SciTech Connect

    Fernandez-Garcia,M.; Wang, X.; Belver, C.; Hanson, J.; Rodriguez, J.

    2007-01-01

    Nanoparticulated TiO{sub 2} materials with anatase structure were synthesized by using a microemulsion method. Three different syntheses with varying surfactant-to-water molar ratio ({omega}) were used to obtain amorphous solid precipitates at room temperature. The structural characteristics of these solid precursors were studied by using X-ray absorption structure (X-ray absorption near-edge structure and extended X-ray absorption fine structure) and Raman spectroscopies, which showed that all lack 3D (tridimensional) order but contain a different degree of 2D-confined connectivity. While heating such solid precursors under dry air, marked differences appeared in the phase behavior; the onset temperature for anatase crystallization increases ca. 150 {sup o}C while the {omega} parameter decreases and only one of the samples shows the anatase-to-rutile transformation below 900 {sup o}C. In all cases, the crystallization of the anatase structure does not follow a traditional nucleation and growth mechanism and its analysis using the Avrami formalism gives conclusive evidence of a surface nucleation-dominated process. This appears as a distinctive feature of anatase-TiO{sub 2} nanomaterials, far from the corresponding behavior of microsized or bulk materials. After nucleation, the grain growth of anatase nanoparticles was found to follow the kinetic equation D{sup 2}-D{sub 0}{sup 2} = k{sub 0} exp(-E{sub a}/RT), where the activation energy is a function of several structural properties of the solid materials mainly related to the hydration characteristics of the surface layer. A combined in situ X-ray diffraction/Raman/infrared study aimed to unveil the physical basis of the phase behavior and to interpret key variables allowing control of the crystallization mechanism and morphological properties, particularly primary particle size, in the nanometer regime.

  15. Diffusion phenomena and crystallization path during the growth of LFZ Bi-Sr-Ca-Cu-O superconducting fibres

    NASA Astrophysics Data System (ADS)

    Costa, F. M.; Silva, R. F.; Vieira, J. M.

    2001-11-01

    The laser floating zone technique is used to grow highly textured fibres in the Bi-Sr-Ca-Cu-O superconducting system. Composition profiles along the fibre axis show a strong segregation of Bi to the molten zone, this region being depleted of Ca. Maximum and minimum values of the effective distribution coefficients (k) of cations are determined, the extreme values of segregation being kCa = 1.64 and kBi = 0.60. The dependence of k on the pulling rate R allowed the calculation of the equilibrium distribution coefficients k0 of the elements and of the average diffusion coefficients DBi = 1.2×10-10 m2 s-1, DSr = 2.7×10-10 m2 s-1 and DCa = 12.8×10-10 m2 s-1 in the Cu-rich melt. The approximate length of the diffusion layer δ is 21 µm. The crystallization path is represented in the composition tetrahedron of Bi2O3-SrO-CaO-CuO. Liquid immiscibility is observed. The non-superconducting (Sr0.3Ca0.7)CuO2 (`1/1') phase, with dendritic morphology, is the first phase to solidify. The superconducting matrix is the result of an early nucleation of `4413' intergrowth on the surface of `1/1' dendrites followed by the side-by-side crystallization of the `4413' and `2212' phases from a peritetic-type reaction.

  16. An Experiment in Radiophonic Education: Accion Cultural Popular.

    ERIC Educational Resources Information Center

    Masoner, Liliana Muhlmann de; And Others

    1982-01-01

    Describes the findings of a Florida State University evaluation of Colombia's Accion Cultural Popular (ACPO) program for nonformal adult education. ACPO promotes rural development and literacy through educational radio broadcasts which are linked to local monitors, textbooks, a weekly newspaper, and other support services. (AM)

  17. Mujeres Unidas en Accion: A Popular Education Process.

    ERIC Educational Resources Information Center

    Young, Eva; Padilla, Mariwilda

    1990-01-01

    Describes the development and structure of Mujeres Unidas en Accion, Inc., a nonprofit community-based agency in Dorchester, Massachusetts, that offers educational programs to low-income Latina women, and looks closely at one of its educational components, the Spanish program. (Author/JOW)

  18. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  19. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  20. NONLINEAR OPTICAL PHENOMENA: Stimulated Raman scattering of picosecond pulses in SrMoO4 and Ca3(VO4)2 crystals

    NASA Astrophysics Data System (ADS)

    Zverev, Petr G.; Karasik, Aleksandr Ya; Basiev, Tasoltan T.; Ivleva, Lyudmila I.; Osiko, Vyacheslav V.

    2003-04-01

    An express technique is proposed for the study of stimulated Raman scattering (SRS) in crystals excited by long trains of picosecond pulses. SRS was studied in several crystals excited by 15-ps pulses from an Nd3+:CLNGG disordered garnet laser. SRS in SrMoO4 and Ca3(VO4)2 crystals was obtained and investigated for the first time, and compared with SRS in popular SRS-active BaWO4 and KGd(WO4)2 crystals.

  1. Solution‐crystallization and related phenomena in 9,9‐dialkyl‐fluorene polymers. II. Influence of side‐chain structure

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N.; Smith, Paul

    2015-01-01

    ABSTRACT Solution‐crystallization is studied for two polyfluorene polymers possessing different side‐chain structures. Thermal analysis and temperature‐dependent optical spectroscopy are used to clarify the nature of the crystallization process, while X‐ray diffraction and scanning electron microscopy reveal important differences in the resulting microstructures. It is shown that the planar‐zigzag chain conformation termed the β‐phase, which is observed for certain linear‐side‐chain polyfluorenes, is necessary for the formation of so‐called polymer‐solvent compounds for these polymers. Introduction of alternating fluorene repeat units with branched side‐chains prevents formation of the β‐phase conformation and results in non‐solvated, i.e. melt‐crystallization‐type, polymer crystals. Unlike non‐solvated polymer crystals, for which the chain conformation is stabilized by its incorporation into a crystalline lattice, the β‐phase conformation is stabilized by complexation with solvent molecules and, therefore, its formation does not require specific inter‐chain interactions. The presented results clarify the fundamental differences between the β‐phase and other conformational/crystalline forms of polyfluorenes. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1492–1506

  2. Phenomena and mechanisms of mixed crystal formation in solutions I. General concept on the example of the system KHC 8H 4O 4-RbHC 8H 4O 4-H 2O

    NASA Astrophysics Data System (ADS)

    Glikin, A. E.; Kovalev, S. I.; Rudneva, E. B.; Kryuchkova, L. Yu; Voloshin, A. E.

    2003-07-01

    A comprehensive study of crystal morphology and imperfections in the isomorphic series potassium acid phthalate-rubidium acid phthalate (KAP-RbAP) in aqueous solutions was conducted using a general model of the processes of mixed crystal formation in solutions discussed earlier by the authors on experimental and theoretical basis. The system was chosen as a model to interpret basic processes. The utilization of both substances as well as their solid solutions was taken into account. Interaction between RbAP or KAP crystals and aqueous solutions saturated with either KAP or RbAP or both, in ratios varying from 10 to 90 wt% (the step was about 10 wt%), has been studied. All the processes were observed in situ and ex situ by optical microscopy and X-ray topography (Lang method). Solubilities of KAP and RbAP mixtures in water were determined and compositions of corresponding solid solutions were estimated for the isotherms 29°C and 39°C. These indicated a considerable convex curvature in concentration Schreinemakers diagrams. The main peculiarity of crystals is their having heteroepitaxial porous or uniform textures, which occur due to the secondary volume deficit or excess at the exchange reaction between a crystal and solution. In turn, the primary/secondary volume ratio depends on the solubilities of the components in the system (unconnected with the molar volumes of the substances) determined directly from Schreinemakers diagrams. The convexity of the KAP-RbAP solubility isotherms displays specific crystal formation in this system compared with features of Co-Ni Tutton salts whose isotherms have small curvatures. Firstly, this appeared as a shift from volume-deficit replacement toward volume-excess replacement. This resulted in non-uniform heteroepitaxial textures and sharp slowing down of the process at an intermediate stage. Phenomena occurring in such peculiar systems and interactions between the crystals and solutions of intermediate compositions have not

  3. NONLINEAR OPTICAL PHENOMENA: Generation of UV radiation in a lithium tetraborate crystal by walk-off compensated Type I sum-frequency mixing

    NASA Astrophysics Data System (ADS)

    Bhar, G. C.; Kumbhakar, P.; Chaudhary, A. K.

    2002-04-01

    Ultraviolet radiation is generated in two lithium tetraborate (Li2B4O7 or LB4) crystals by Type I walk-off compensated sum-frequency mixing (SFM) of the commonly available Nd:YAG laser radiation and radiation from a dye laser pumped by the second harmonic of the same YAG laser. In the walk-off compensated configuration, an enhancement in the conversion efficiency by a factor of 3.8 relative to the single pass generation is realised.

  4. Solution-Crystallization and Related Phenomena in 9,9-Dialkyl-Fluorene Polymers. I. Crystalline Polymer-Solvent Compound Formation for Poly(9,9-dioctylfluorene)

    PubMed Central

    Perevedentsev, Aleksandr; Stavrinou, Paul N; Bradley, Donal D C; Smith, Paul

    2015-01-01

    Polymer-solvent compound formation, occurring via co-crystallization of polymer chains and selected small-molecular species, is demonstrated for the conjugated polymer poly(9,9-dioctylfluorene) (PFO) and a range of organic solvents. The resulting crystallization and gelation processes in PFO solutions are studied by differential scanning calorimetry, with X-ray diffraction providing additional information on the resulting microstructure. It is shown that PFO-solvent compounds comprise an ultra-regular molecular-level arrangement of the semiconducting polymer host and small-molecular solvent guest. Crystals form following adoption of the planar-zigzag β-phase chain conformation, which, due to its geometry, creates periodic cavities that accommodate the ordered inclusion of solvent molecules of matching volume. The findings are formalized in terms of nonequilibrium temperature–composition phase diagrams. The potential applications of these compounds and the new functionalities that they might enable are also discussed. © 2015 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1481–1491 PMID:26435576

  5. Solid-state flow, mechanical alloying, and melt-related phenomena for [001] single-crystal tungsten ballistic rod penetrators interacting with steel targets

    NASA Astrophysics Data System (ADS)

    Pizana, Carlos

    This research program consists of a detailed microstructural investigation of in-target, single-crystal [001], clad (with Inconel 718) and unclad, W long-rod, ballistic penetrators. The rods were shot into rolled homogeneous armor (RHA) steel targets approximately 76 mm in thickness at impact velocities ranging from 1100 m/s to 1350 m/s. A comprehensive microstructural overview of the penetration process was obtained from this investigation. Solid-state flow/erosion, solid-state target/rod mixing as well as influencing factors such as strain rate, penetration performance, cladding interference and the interaction between target and projectile were emphasized. Some of the microstructural features observed, including deformation twins, cleaving, adiabatic shear bands and DRX support an overall solid-state penetration process. Furthermore they provide for a unifying perspective for the applicability of the hydrodynamic paradigm (DOP ≈ l∘rp/rt ) and earlier mechanistic erosion approaches. DRX and grain growth within adiabatic shear bands observed at specific high strain/strain-rate zones within the rods suggest that the projectile erodes by means of these microstructures in a solid-state form. This erosion process contributes to the performance of the rod by either allowing optimum flow of rod material which would increase penetration depth, or by maximizing rod material consumption which would reduce it. Since flow and/or erosion are also necessary in the target for perforation to occur, it is not surprising that the erosion process in the target was observed to mirror the one in the projectile. That is both target and projectile developed erosion zones with DRX facilitating the extreme deformation via dense overlapping shear band formation. Mechanical alloying and/or mixing of the target (steel) and rod (W, or W-Inconel 718) was also observed and investigated. Selective etching techniques as well as energy-dispersive x-ray mapping revealed unambiguous evidence of

  6. Pequenitos en Accion. Edgewood ISD Model Program for 3-Year-Olds Replication Manual.

    ERIC Educational Resources Information Center

    Partnership for Hope, Inc., San Antonio, TX.

    This guide describes "Pequenitos en Accion" (Small Children in Action), the Edgewood (Texas) Independent School District (ISD) early childhood intervention program for Spanish-speaking 3-year-old preschool children. The program is an innovative early childhood education model involving educational programming, collaboration and integration with…

  7. BECA (Bilingual Education Centro de Accion) Program Handbook for Student Teachers and Supervisory Personnel.

    ERIC Educational Resources Information Center

    Reyes, Maria; And Others

    This manual is a reference guide for both student teachers and supervisory personnel involved with the Texas Woman's University Bilingual Education "Centro de Accion" (BECA) Program. The BECA program includes the following components in addition to the fulltime BECA undergraduate program: para-professional training program, graduate programs for…

  8. Accion Cultural Popular. [Summary Working Documents on ACPO's Conceptual Framework and Activities].

    ERIC Educational Resources Information Center

    Bernal, Hernando; And Others

    Three papers are included in this document designed to provide English language information about characteristics and activities of Accion Cultural Popular (ACPO) a private, nonprofit organization concerned with improving the quality of life of rural populations and promoting rural development through mass media education programs. "Pioneer…

  9. First principles study of the diffusional phenomena across the clean and Re-doped γ-Ni/γ’-Ni3Al interface of Ni-based single crystal superalloy

    NASA Astrophysics Data System (ADS)

    Min, Sun; Chong-Yu, Wang

    2016-06-01

    Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys. We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ’ phases along the direction perpendicular to the interface. The diffusion mechanisms and the expressions of the diffusion coefficients are presented. The vacancy formation energies, the migration energies, and the activation energies for the diffusing Ni and Al atoms are estimated, and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3–7 (002) layers. The local density-of-states profiles of atoms in each (002) layer in the γ and γ’ phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior. Project supported by National Basic Research Program of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).

  10. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  11. Properties and Crystallization Phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F Glass–Ceramics Via Twofold Internal Crystallization

    PubMed Central

    Rampf, Markus; Dittmer, Marc; Ritzberger, Christian; Schweiger, Marcel; Höland, Wolfram

    2015-01-01

    The combination of specific mechanical, esthetic, and chemical properties is decisive for the application of materials in prosthodontics. Controlled twofold crystallization provides a powerful tool to produce special property combinations for glass–ceramic materials. The present study outlines the potential of precipitating Ca5(PO4)3F as well as Sr5(PO4)3F as minor crystal phases in Li2Si2O5 glass–ceramics. Base glasses with different contents of CaO/SrO, P2O5, and F− were prepared within the glasses of the SiO2–Li2O–K2O–CaO/SrO–Al2O3–P2O5–F system. Preliminary studies of nucleation by means of XRD and scanning electron microscopy (SEM) of the nucleated base glasses revealed X-ray amorphous phase separation phenomena. Qualitative and quantitative crystal phase analyses after crystallization were conducted using XRD in combination with Rietveld refinement. As a main result, a direct proportional relationship between the content of apatite-forming components in the base glasses and the content of apatite in the glass–ceramics was established. The microstructures of the glass–ceramics were investigated using SEM. Microstructural and mechanical properties were found to be dominated by Li2Si2O5 crystals and quite independent of the content of the apatite present in the glass–ceramics. Biaxial strengths of up to 540 MPa were detected. Ca5(PO4)3F and Sr5(PO4)3F influence the translucency of the glass–ceramics and, hence, help to precisely tailor the properties of Li2Si2O5 glass–ceramics. The authors conclude that the twofold crystallization of Li2Si2O5–Ca5(PO4)3F or Li2Si2O5–Sr5(PO4)3F glass–ceramics involves independent solid-state reactions, which can be controlled via the chemical composition of the base glasses. The influence of the minor apatite phase on the optical properties helps to achieve new combinations of features of the glass–ceramics and, hence, displays new potential for dental applications. PMID:26389112

  12. Accion solidaria. A Venezuelan NGO confronts the Herculean task of providing drug access.

    PubMed

    Dougherty, S

    1997-05-01

    Venezuela does not currently recognize AIDS as a major public health problem, therefore, it does not fund AIDS services. It is estimated by the World Health Organization that Venezuela may have up to 250,000 HIV-infected citizens. Accion Solidaria (Action for Solidarity) is currently acting as a buyer's club, and as a source of medications from charitable groups in the United States such as the United Against AIDS International, for people living with HIV. Accion Solidaria is an entirely voluntary organization that receives monthly contributions from 41 people, just barely enough to purchase medications for 10 HIV-infected people. These efforts have been hindered by successive devaluations of Venezuelan currency. PMID:11364337

  13. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  14. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  15. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  16. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  17. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  18. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  19. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  20. Modeling Defect-Induced Phenomena

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija M.; Rashkeev, Sergey N.

    Elucidation of dissociation mechanisms, energy localization, and transfer phenomena in the course of explosive decomposition of energetic materials (EMs) are central for understanding, controlling, and enhancing the performance of these materials as fuels, propellants, and explosives. Quality of energetic materials is often judged using two main parameters: sensitivity to detonation and its performance. Low sensitivity is desired to make the material relatively stable to external stimuli, i.e., controllable and able of triggering rapid dissociation only when needed and not accidentally. Performance, on the other hand, is to be high to provide larger heat of the explosive reaction. These parameters do not necessarily correlate with each other and depend on many variables such as molecular and crystalline structures, history of samples, the particle size, crystal hardness and orientation, external stimuli, aging, storage conditions, and others. Mechanisms governing performance are fairly well understood whereas mechanisms of sensitivity are poorly known and need to be much more extensively studied. It is widely accepted though that the thermal decomposition reactions of the materials play a significant role in their sensitivity to mechanical stimuli and their explosive properties [1].

  1. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  2. Phenomena Associated with EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.; Fisher, Richard R. (Technical Monitor)

    2002-01-01

    We discuss phenomena associated with 'EIT Wave' transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to infer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  3. Phenomena Associated With EIT Waves

    NASA Technical Reports Server (NTRS)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  4. Kinetically controlled phenomena in dynamic combinatorial libraries.

    PubMed

    Ji, Qing; Lirag, Rio Carlo; Miljanić, Ognjen Š

    2014-03-21

    Dynamic combinatorial libraries (DCLs) are collections of structurally related compounds that can interconvert through reversible chemical reaction(s). Such reversibility endows DCLs with adaptability to external stimuli, as rapid interconversion allows quick expression of those DCL components which best respond to the disturbing stimulus. This Tutorial Review focuses on the kinetically controlled phenomena that occur within DCLs. Specifically, it will describe dynamic chiral resolution of DCLs, their self-sorting under the influence of irreversible chemical and physical stimuli, and the autocatalytic behaviours within DCLs which can result in self-replicating systems. A brief discussion of precipitation-induced phenomena will follow and the review will conclude with the presentation of covalent organic frameworks (COFs)-porous materials whose synthesis critically depends on the fine tuning of the crystal growth and error correction rates within large DCLs. PMID:24445841

  5. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  6. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  7. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  8. NASA research Program: The roles of fluid motion and other transport phenomena in the morphology of materials

    NASA Technical Reports Server (NTRS)

    Saville, D. A.

    1988-01-01

    The influence of transport phenomena on the morphology of crystalline materials was investigated. Two problems were studied: the effects of convection on the crystallization of pure materials, and the crystallization of proteins from solution.

  9. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  10. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  11. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  12. Deposits from Creams Containing 20% (w/w) Urea and Suppression of Crystallization (Part 3): Novel Analytical Methods Based on Raman Spectroscopy for the Characterization of Deposits and Deposition Phenomena of Creams Containing 20% (w/w) Urea.

    PubMed

    Goto, Norio; Morita, Yutaka; Terada, Katsuhide

    2016-01-01

    In drug formulations for external application, variations in the state of pharmaceutical agents within the base formulation may affect the transfer of agents to the skin. Here, we use Raman spectroscopic methods to acquire more detailed information on the state of the active pharmaceutical ingredients within an externally applied formulation. The combination of wide-field Raman spectroscopy with an experimental method in which drug formulations are applied to glass surfaces provided a new method for characterizing the state of pharmaceutical agents within drug formulations. Here, we demonstrate the usefulness of this new method, called application to glass-wide-field Raman spectroscopy (AG-WRS). In addition to allowing rapid and easy wide-field observations, the use of WRS allows Raman imaging in a manner that is insensitive to variations in the thickness of the formulations applied to sample slides. We consider two types of urea-compound creams with different crystal deposition rates, using AG-WRS to characterize the post-application time-evolving state of deposited crystals. Differences in the base pharmaceutical produce different spectra for the deposits, indicating that the deposits differ in composition and structure. In addition, we use microscopic laser Raman measurements to demonstrate that the process of crystal formulation differs significantly for formulations with different compositions. Our results demonstrate that the combination of AG-WRS with existing analytical techniques such as powder X-ray diffraction or thermal analysis yields more detailed and timely post-application information on the state of pharmaceuticals in external application. We believe this will be a valuable analytical tool for future studies related to the development of external application. PMID:27477647

  13. Studies of Novel Quantum Phenomena in Ruthenates

    SciTech Connect

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  14. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  15. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  16. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along

  17. Competing dynamics of vitrification and crystal coarsening

    NASA Astrophysics Data System (ADS)

    Chandler, David

    2015-03-01

    Materials undergoing glass transitions are often materials that can also crystalize. The qualities of the solid that forms depend upon the system's dynamics and experimentalist's protocols. This lecture describes some of the associated phenomena, including competition between crystal nucleation and structural relaxation, transient domains and dynamic heterogeneity, grain boundaries and polycrystallinity. A stochastic model from which all of these phenomena emerge will be presented.

  18. Misconceptions of Emergent Semiconductor Phenomena

    NASA Astrophysics Data System (ADS)

    Nelson, Katherine G.

    The semiconductor field of Photovoltaics (PV) has experienced tremendous growth, requiring curricula to consider ways to promote student success. One major barrier to success students may face when learning PV is the development of misconceptions. The purpose of this work was to determine the presence and prevalence of misconceptions students may have for three PV semiconductor phenomena; Diffusion, Drift and Excitation. These phenomena are emergent, a class of phenomena that have certain characteristics. In emergent phenomena, the individual entities in the phenomena interact and aggregate to form a self-organizing pattern that can be observed at a higher level. Learners develop a different type of misconception for these phenomena, an emergent misconception. Participants (N=41) completed a written protocol. The pilot study utilized half of these protocols (n = 20) to determine the presence of both general and emergent misconceptions for the three phenomena. Once the presence of both general and emergent misconceptions was confirmed, all protocols (N=41) were analyzed to determine the presence and prevalence of general and emergent misconceptions, and to note any relationships among these misconceptions (full study). Through written protocol analysis of participants' responses, numerous codes emerged from the data for both general and emergent misconceptions. General and emergent misconceptions were found in 80% and 55% of participants' responses, respectively. General misconceptions indicated limited understandings of chemical bonding, electricity and magnetism, energy, and the nature of science. Participants also described the phenomena using teleological, predictable, and causal traits, indicating participants had misconceptions regarding the emergent aspects of the phenomena. For both general and emergent misconceptions, relationships were observed between similar misconceptions within and across the three phenomena, and differences in misconceptions were

  19. Critical velocity phenomena and the LTP. [Lunar Transient Phenomena

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    When the relative velocity between magnetized plasma and neutral gas exceeds a critical value, the gas-plasma interaction is dominated by collective phenomena which rapidly excite and ionize the neutrals. The interaction of the solar wind with a large cloud (between 10 to the 24th and 10 to the 28th power neutrals) vented from the moon should be of this type. Line radiation from such an interaction can yield an apparent lunar surface brightness rivaling reflected sunlight levels over small areas, if the kinetic-energy flow density of the gas is sufficiently high. The aberrated solar-wind flow past the moon would enhance the visibility of such interactions near the lunar sunrise terminator, supporting the statistical studies which indicate that the 'Lunar Transient Phenomena' (anomalous optical phenomena on the moon) are significantly correlated with the position of the terminator on the lunar surface.

  20. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  1. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  2. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  3. Undergraduates' understanding of cardiovascular phenomena.

    PubMed

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed. PMID:12031940

  4. Current program to investigate phenomena in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Oran, William A.

    1986-01-01

    Current NASA Microgravity Science and Applications Division Shuttle and terrestrial experiments to acquire basic data for space-based materials processing activities are summarized. The research is carried out to increase the understanding and to improve ground-based and space-based processing, to enhance the understanding of basic physical phenomena, and to characterize the forces which effect low-gravity processing. The main areas of research are crystal growth, metallic alloy solidification, bioseparation processes, blood rheology, containerless processing, and studies of combustion processes, chemical and transport phenomena, cloud microphysics and fluid behavior and surface phenomena in microgravity. Specific experiments, which exemplify the research goals and were performed on KC-135 flights along Keplerian trajectories and on Shuttle missions, are described.

  5. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  6. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  7. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  8. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  9. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  10. Visualization of solidification front phenomena

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.

    1993-01-01

    Directional solidification experiments have been utilized throughout the Materials Processing in Space Program to provide an experimental platform which minimizes variables in solidification experiments. Because of the wide-spread use of this experimental technique in space-based research, it has become apparent that a better understanding of all the phenomena occurring during solidification can be better understood if direct visualization of the solidification interface were possible.

  11. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  12. Correlated randomness and switching phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  13. Phenomena and Diosignes of Aratous

    NASA Astrophysics Data System (ADS)

    Avgoloupis, S. I.

    2013-01-01

    Aratous (305-240B.C.) was a singular intellectual, writer and poet which engage himself to compose a very interesting astronomical poet, using the "Dactylous sixstage' style, the formal style of the ancient Greek Epic poetry. This astronomic poem of Aratous "Phenomena and Diosignes" became very favorite reading during the Alexandrine, the Romman and the Byzandin eras as well and had received many praises from significant poets and particularly from Hipparchous and from Theonas from Alexandria, an astronomer of 4rth century A.C.(in Greeks)

  14. Thermophysical parameters of the LBO crystal

    SciTech Connect

    Grechin, Sergei G; Zuev, A V; Fokin, A S; Kokh, Aleksandr E; Moiseev, N V; Popov, Petr A; Sidorov, Aleksei A

    2010-08-27

    The thermophysical parameters (linear thermal expansion coefficients, thermal conductivities, and heat capacity) of the lithium triborate (LBO) crystal are measured and compared with previously published data. (nonlinear-optics phenomena)

  15. High-Field Phenomena of Qubits.

    PubMed

    van Tol, Johan; Morley, G W; Takahashi, S; McCamey, D R; Boehme, C; Zvanut, M E

    2009-12-01

    Electron and nuclear spins are very promising candidates to serve as quantum bits (qubits) for proposed quantum computers, as the spin degrees of freedom are relatively isolated from their surroundings and can be coherently manipulated, e.g., through pulsed electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR). For solid-state spin systems, impurities in crystals based on carbon and silicon in various forms have been suggested as qubits, and very long relaxation rates have been observed in such systems. We have investigated a variety of these systems at high magnetic fields in our multifrequency pulsed EPR/ENDOR (electron nuclear double resonance) spectrometer. A high magnetic field leads to large electron spin polarizations at helium temperatures, giving rise to various phenomena that are of interest with respect to quantum computing. For example, it allows the initialization of both the electron spin as well as hyperfine-coupled nuclear spins in a well-defined state by combining millimeter and radio-frequency radiation. It can increase the T(2) relaxation times by eliminating decoherence due to dipolar interaction and lead to new mechanisms for the coherent electrical readout of electron spins. We will show some examples of these and other effects in Si:P, SiC:N and nitrogen-related centers in diamond. PMID:19946596

  16. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  17. Nonstationary Phenomena in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Pogorelov, N. V.; Borovikov, S. N.; Ebert, R. W.; Heerikhuisen, J.; Kim, T. K.; Kryukov, I.; Richardson, J. D.; Suess, S. T.; Zank, G. P.

    2012-12-01

    As Voyagers (V1 and V2) are approaching the heliopause (HP), they keep delivering important information about the solar wind (SW) behavior which sometimes appears to be substantially different at V1 and V2 locations. We argue that the observed differences may be attributed to SW variations. In particular, negative values of the radial velocity component derived from V1 observations may be due to the presence of time-dependent magnetic barriers formed due to the slow/fast wind interactions in the vicinity of solar cycle minima. The inner heliosheath is the venue of wave interaction, MHD instabilities, and turbulence. We further investigate these phenomena in the HP vicinity using a new, based on the Ulysses observations, solar cycle model. We show that some puzzling observational data, such as the difference in the heliocentric distances at which V1 and V2 crossed the termination shock, may be attributed to time-dependent effects. We also use other time-dependent sets of observational boundary conditions, e.g., interplanetary scintillation and OMNI data. Phenomena affecting the stability and shape of the HP are also discussed in the context of our time-dependent simulations. The satisfaction of the 2-3 kHz radio emission criteria beyond the HP is analyzed. Numerical results are validated by their comparison with observational data.

  18. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  19. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  20. Memory effect in the adsorption phenomena of neutral particles

    NASA Astrophysics Data System (ADS)

    Zola, R. S.; Lenzi, E. K.; Evangelista, L. R.; Barbero, G.

    2007-04-01

    The adsorption-desorption phenomenon of neutral particles dissolved in an isotropic fluid is investigated by using a nonsingular kernel in the kinetic equation at the limiting surfaces. To account for the relevance of a memory effect, three types of kernels in the kinetic equation are considered. Similar kernels have been used to investigate nonexponential relaxation including several contexts such as dielectric relaxation, diffusion-controlled relaxation in liquids, liquid crystals, and amorphous polymers. A suitable choice for a temporal kernel can account for the relative importance of physisorption or chemisorption, according to the time scale governing the adsorption phenomena, and can be the key mechanism to understand the specific roles of both processes. By using a general procedure, the time evolution of the density of particles is determined in closed analytical form. The analysis is relevant in the description of the adsorption phenomena in general.

  1. Purcell effect and Lamb shift as interference phenomena

    NASA Astrophysics Data System (ADS)

    Rybin, Mikhail V.; Mingaleev, Sergei F.; Limonov, Mikhail F.; Kivshar, Yuri S.

    2016-02-01

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line.

  2. Purcell effect and Lamb shift as interference phenomena.

    PubMed

    Rybin, Mikhail V; Mingaleev, Sergei F; Limonov, Mikhail F; Kivshar, Yuri S

    2016-01-01

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line. PMID:26860195

  3. Purcell effect and Lamb shift as interference phenomena

    PubMed Central

    Rybin, Mikhail V.; Mingaleev, Sergei F.; Limonov, Mikhail F.; Kivshar, Yuri S.

    2016-01-01

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line. PMID:26860195

  4. Interpolating function and Stokes phenomena

    NASA Astrophysics Data System (ADS)

    Honda, Masazumi; Jatkar, Dileep P.

    2015-11-01

    When we have two expansions of physical quantity around two different points in parameter space, we can usually construct a family of functions, which interpolates the both expansions. In this paper we study analytic structures of such interpolating functions and discuss their physical implications. We propose that the analytic structures of the interpolating functions provide information on analytic property and Stokes phenomena of the physical quantity, which we approximate by the interpolating functions. We explicitly check our proposal for partition functions of zero-dimensional φ4 theory and Sine-Gordon model. In the zero dimensional Sine-Gordon model, we compare our result with a recent result from resurgence analysis. We also comment on construction of interpolating function in Borel plane.

  5. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin

  6. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  7. Entanglement and boundary critical phenomena

    SciTech Connect

    Zhou Huanqiang; Barthel, Thomas; Schollwoeck, Ulrich; Fjaerestad, John Ove

    2006-11-15

    We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S{sub {alpha}}, which includes the von Neumann entropy ({alpha}{yields}1) and the single-copy entanglement ({alpha}{yields}{infinity}) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.

  8. Unidentified phenomena - Unusual plasma behavior?

    NASA Astrophysics Data System (ADS)

    Avakian, S. V.; Kovalenok, V. V.

    1992-06-01

    The paper describes observations of a phenomenon belonging to the UFO category and the possible causes of these events. Special attention is given to an event which occurred during the night of September 19-20, 1974, when a huge 'star' was observed over Pertrozavodsk (Russia), consisting of a bright-white luminous center, emitting beams of light, and a less bright light-blue shell. The star gradually formed a cometlike object with a tail consisting of beams of light and started to descend. It is suggested that this event was related to cosmic disturbances caused by an occurrence of unusually strong solar flares. Other examples are presented that relate unusual phenomena observed in space to the occurrence of strong magnetic turbulence events.

  9. Wetting phenomena on rough substrates

    NASA Astrophysics Data System (ADS)

    Li, Hao; Kardar, Mehran

    1990-10-01

    We consider wetting phenomena in the vicinity of rough substrates. The quenched random geometry of the substrate is assumed to be a self-affine fractal with a roughness exponent of ζS. Asymptotic critical properties on approaching complete and critical wetting transitions are studied by combining the replica method with scaling and renormalization-group arguments. We find new critical behavior, controlled by a zero-temperature fixed point, when ζS exceeds the thermal roughness exponent of the emerging wetting layer. The possibility of an effective dimensional reduction due to randomness is considered. In two dimensions a number of exact results are obtained by using a many-body transfer-matrix technique.

  10. Critical phenomena in magnetic nanowires.

    PubMed

    Kamalakar, M Venkata; Raychaudhuri, A K

    2009-09-01

    In this paper we report the first experimental study of critical phenomena in case of magnetic nanowires of nickel near the ferromagnetic-paramagnetic transition from the electrical transport properties. Nickel nanowire arrays, prepared by potentiostatic electrodeposition of nickel inside pores of nanoporous anodic alumina template were well characterized by X-ray Diffraction, Transmission electron microscopy and Energy dispersive Spectroscopy. Precise electrical resistance measurement of the nanowire arrays of wire diameter 20 nm have been done in the temperature range between 300 K to 700 K. We see a drop in the Curie temperature as observed from the resistivity anomaly. We analyzed the resistance data near the critical region and extracted the critical exponent alpha directly from the resistance. We observed a decrease in the critical part of the resistivity including a decrease in the magnitude of the critical exponent alpha and severe modification in the correction to scaling. PMID:19928208

  11. In-vessel phenomena -- CORA

    SciTech Connect

    Ott, L.J.; van Rij, W.I.

    1991-01-01

    Experiment-specific models have been employed since 1986 by Oak Ridge National Laboratory (ORNL) severe accident analysis programs for the purpose of boiling water reactor experimental planning and optimum interpretation of experimental results. The large integral tests performed to date, which start from an initial undamaged core state, have involved significantly different-from-prototypic boundary and experimental conditions because of either normal facility limitations or specific experimental constraints. These experiments (ACRR: DF-4, NRU: FLHT-6, and CORA) were designed to obtain specific phenomenological information such as the degradation and interaction of prototypic components and the effects on melt progression of control-blade materials and channel boxes. Applications of ORNL models specific to the KfK CORA-16 and CORA-17 experiments are discussed and significant findings from the experimental analyses such as the following are presented: applicability of available Zircaloy oxidation kinetics correlations; influence of cladding strain on Zircaloy oxidation; influence of spacer grids on the structural heatup; and the impact of treating the gaseous coolant as a gray interacting medium. The experiment-specific models supplement and support the systems-level accident analysis codes. They allow the analyst to accurately quantify the observed experimental phenomena and to compensate for the effect of known uncertainties. They provide a basis for the efficient development of new models for phenomena that are currently not modeled (such as material interactions). They can provide validated phenomenological models (from the results of the experiments) as candidates for incorporation in the systems-level whole-core'' codes.

  12. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  13. Surface energies of elemental crystals.

    PubMed

    Tran, Richard; Xu, Zihan; Radhakrishnan, Balachandran; Winston, Donald; Sun, Wenhao; Persson, Kristin A; Ong, Shyue Ping

    2016-01-01

    The surface energy is a fundamental property of the different facets of a crystal that is crucial to the understanding of various phenomena like surface segregation, roughening, catalytic activity, and the crystal's equilibrium shape. Such surface phenomena are especially important at the nanoscale, where the large surface area to volume ratios lead to properties that are significantly different from the bulk. In this work, we present the largest database of calculated surface energies for elemental crystals to date. This database contains the surface energies of more than 100 polymorphs of about 70 elements, up to a maximum Miller index of two and three for non-cubic and cubic crystals, respectively. Well-known reconstruction schemes are also accounted for. The database is systematically improvable and has been rigorously validated against previous experimental and computational data where available. We will describe the methodology used in constructing the database, and how it can be accessed for further studies and design of materials. PMID:27622853

  14. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the

  15. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  16. Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Barker, Timothy; Farber, Ryan; Ahrendts, Gary

    2014-06-01

    Transient Lunar Phenomena (TLP’s) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP research is characterized by the inability to substantiate, reproduce, and verify findings. Our current research includes the analysis of lunar images taken with two Santa Barbara Instrument Group (SBIG) ST8-E CCD cameras mounted on two 0.36m Celestron telescopes. On one telescope, we are using a sodium filter, and on the other an H-alpha filter, imaging approximately one-third of the lunar surface. We are focusing on two regions: Hyginus and Ina. Ina is of particular interest because it shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006). A total of over 50,000 images have been obtained over approximately 35 nights and visually analyzed to search for changes. As of March, 2014, no evidence of TLPs has been found. We are currently developing a Matlab program to do image analysis to detect TLPs that might not be apparent by visual inspection alone.

  17. Precursor films in wetting phenomena.

    PubMed

    Popescu, M N; Oshanin, G; Dietrich, S; Cazabat, A-M

    2012-06-20

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. PMID:22627067

  18. Bleed Hole Flow Phenomena Studied

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Boundary-layer bleed is an invaluable tool for controlling the airflow in supersonic aircraft engine inlets. Incoming air is decelerated to subsonic speeds prior to entering the compressor via a series of oblique shocks. The low momentum flow in the boundary layer interacts with these shocks, growing in thickness and, under some conditions, leading to flow separation. To remedy this, bleed holes are strategically located to remove mass from the boundary layer, reducing its thickness and helping to maintain uniform flow to the compressor. The bleed requirements for any inlet design are unique and must be validated by extensive wind tunnel testing to optimize performance and efficiency. To accelerate this process and reduce cost, researchers at the NASA Lewis Research Center initiated an experimental program to study the flow phenomena associated with bleed holes. Knowledge of these flow properties will be incorporated into computational fluid dynamics (CFD) models that will aid engine inlet designers in optimizing bleed configurations before any hardware is fabricated. This ongoing investigation is currently examining two hole geometries, 90 and 20 (both with 5-mm diameters), and various flow features.

  19. Review - Axial compressor stall phenomena

    NASA Technical Reports Server (NTRS)

    Greitzer, E. M.

    1980-01-01

    Stall in compressors can be associated with the initiation of several types of fluid dynamic instabilities. These instabilities and the different phenomena, surge and rotating stall, which result from them, are discussed in this paper. Assessment is made of the various methods of predicting the onset of compressor and/or compression system instability, such as empirical correlations, linearized stability analyses, and numerical unsteady flow calculation procedures. Factors which affect the compressor stall point, in particular inlet flow distortion, are reviewed, and the techniques which are used to predict the loss in stall margin due to these factors are described. The influence of rotor casing treatment (grooves) on increasing compressor flow range is examined. Compressor and compression system behavior subsequent to the onset of stall is surveyed, with particular reference to the problem of engine recovery from a stalled condition. The distinction between surge and rotating stall is emphasized because of the very different consequences on recoverability. The structure of the compressor flow field during rotating stall is examined, and the prediction of compressor performance in rotating stall, including stall/unstall hysteresis, is described.

  20. WESF natural phenomena hazards survey

    SciTech Connect

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  1. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  2. Analytics of crystal growth in space

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Chang, C. E.; Shlichta, P. J.; Chen, P. S.; Kim, C. K.

    1974-01-01

    Two crystal growth processes considered for spacelab experiments were studied to anticipate and understand phenomena not ordinarily encountered on earth. Computer calculations were performed on transport processes in floating zone melting and on growth of a crystal from solution in a spacecraft environment. Experiments intended to simulate solution growth at micro accelerations were performed.

  3. Intrinsic interfacial phenomena in manganite heterostructures

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Walker, F. J.; Ahn, C. H.; Ismail-Beigi, S.

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  4. Electromagnetic phenomena and hysteresis losses in superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, T.

    Hysteresis losses in superconductors are caused by irreversible motion of fluxoids. This motion is, in most cases, described by the critical state model. In this article, various electromagnetic phenomena due to flux pinning effects are reviewed and explanations of these phenomena are given using the critical state model. The phenomena which cannot be well described by the present model, such as reversible fluxoid motion and the longitudinal field effect, are also introduced.

  5. Nonepileptic motor phenomena in the neonate

    PubMed Central

    Huntsman, Richard James; Lowry, Noel John; Sankaran, Koravangattu

    2008-01-01

    The newborn infant is prone to clinical motor phenomena that are not epileptic in nature. These include tremors, jitteriness, various forms of myoclonus and brainstem release phenomena. They are frequently misdiagnosed as seizures, resulting in unnecessary investigations and treatment with anticonvulsants, which have potentially harmful side effects. Unfortunately, there is a paucity of literature about many of these phenomena in the newborn, and some of the major textbooks refer to these events as nonepileptic seizures, leading to further confusion for the practitioner. The present paper aims to review these phenomena with special emphasis on differentiating them from epileptic seizures, and offers information on treatment and prognosis wherever possible. PMID:19436521

  6. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  7. Phenomena resulting from hypergolic contact

    NASA Astrophysics Data System (ADS)

    Forness, Jordan M.

    Understanding hypergolic ignition is critical for the safe and successful operation of hypergolic engines. The complex coupling of physical and chemical processes during hypergolic ignition complicates analysis of the event. Presently, hypergolic ignition models cannot simulate liquid contact and mixing or liquid-phase chemical reactions, and rely on experimental results for validation. In some cases, chemical kinetics of hypergolic propellants and fluid dynamics of droplet collisions couple to produce unexpected phenomena. This research investigates contact between droplets and pools of liquid hypergolic propellants under various conditions in order to investigate these liquid-phase reactions and categorize the resulting interaction. During this experiment, 142 drop tests were performed to investigate phenomena associated with hypergolic contact of various propellants. A drop of fuel impacted a semi-ellipsoidal pool of oxidizer at varying impact velocities and impact geometries. The temperature, pressure, ambient atmosphere, and propellant quality were all controlled during the experiment, as these factors have been shown to influence hypergolic ignition delay. Three distinct types of impacts were identified: explosions, bounces, and splashes. The impact type was found to depend on the impact Weber number and impact angle. Splashes occurred above a critical Weber number of 250, regardless of impact angle. Explosions occurred for Weber numbers less than 250, and for impact angles less than seven degrees. If the impact angle was greater than seven degrees then the test resulted in a bounce. Literature related to explosions induced by hypergolic contact was reviewed. Explosions were observed to occur inconsistently, a feature that has never been addressed. Literature related to non-reactive splashing, bouncing, and coalescence was reviewed for insight into the explosion phenomenon. I propose that the dependence of impact angle on the transition between explosion and

  8. Numerical Studies of Phase Transition Phenomena in Microgravity

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This work was aimed at developing and applying a new methodology for the efficient and accurate computation of problems involving several phases of matter. In particular, solidification processes typically involve melt/solid and sometimes melt//gas interfaces, whose location and shape is unknown a priori. This class of problems is called the free or moving boundary problem, and the numerical approaches for its solution to date are inaccurate, inefficient, and can not be readily extended to multi-dimensions or to time dependent phenomenon. Ongoing research on crystal growth at NASA and other institutions falls into the category of free boundary problems. It is exactly the accurate determination of the process dynamics and the shape and location of the interface between the phases which is responsible for the ultimate chemical segregation and the mechanical properties in the solid. This work developed the Triad Field Formalism approach for the computation of general multi-dimensional and time dependent free boundary problems. The particular subject addressed is solidification phenomena. All the relevant boundary conditions on the developing interface were exactly resolved. Several computer programs were developed during the course of this research, enabling us to determine for the first time the interplay among the various fields operating in tandem to produce the phenomena observed during solidification processes in weld pools and during crystal growth.

  9. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  10. Fluctuation theory of critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Martynov, G. A.

    2016-07-01

    It is assumed that critical phenomena are generated by density wave fluctuations carrying a certain kinetic energy. It is noted that all coupling equations for critical indices are obtained within the context of this hypothesis. Critical indices are evaluated for 15 liquids more accurately than when using the current theory of critical phenomena.

  11. X-ray Microscopic Characterization of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.

  12. Dispersion of the temperature-noncritical frequency conversion and birefringence in biaxial optical crystals

    SciTech Connect

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2004-05-31

    Dispersion of the temperature-noncritical frequency conversion (phase matching) and birefringence in biaxial crystals is considered. The possibility of simultaneous realisation of these processes during SHG in a KTP crystal is discussed. (nonlinear optical phenomena)

  13. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  14. Stress and phase transformation phenomena in oxide films

    SciTech Connect

    Exarhos, G.J.; Hess, N.J.

    1992-04-01

    In situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution- deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO{sub 2}) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm{sup +3}:Y{sub 3}Al{sub 5}O{sub 12}) or transition metal (Cr{sup +3}:Al{sub 2}O{sub 3}) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.

  15. Perspective: Emergent magnetic phenomena at interfaces

    SciTech Connect

    Suzuki, Yuri

    2015-06-01

    The discovery of emergent magnetic phenomena is of fundamental and technological interest. This perspective highlights recent promising examples of emergent ferromagnetism at complex oxide interfaces in the context of spin based electronics.

  16. Canister storage building natural phenomena design loads

    SciTech Connect

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site.

  17. Analysis of nuclear reactor instability phenomena

    SciTech Connect

    Lahey, R.T. Jr.

    1993-01-01

    The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

  18. Collective Phenomena in Macroscopic Systems

    NASA Astrophysics Data System (ADS)

    Bertin, G.; Pozzoli, R.; Romé, M.; Sreenivasan, K. R.

    2007-08-01

    for high and low B plasmas / E. Tassi, P. J. Morrison and D. Grasso -- Non locality of collective effects related to dynamical friction in elliptical galaxies / S.E. Arena and G. Bertin -- Evolution of a satellite dragged in by dynamical friction towards the center of a galaxy / S.E. Arena, G. Bertin and T. Liseykina -- Investigation of free decaying turbulence in a trapped pure electron plasma / G. Bettega ... [et al.] -- Structures of charge sheaths and transition layers in ion sources / M. Cavenago -- Generation of plasma perturbations under collisionless interaction of super-Alfvenic flows / G. Dudnikova, T. Liseykina and K. Vshivkov -- Program package for 3D Pic model of plasma fiber / P. Kulhanek and D. Bren -- A Stochastic approach to generalized quantum dynamics with collective long-range forces / A. Lavagno -- Filling of Electrostatic Plasma Lens for Ion-Beam-Focusing by electrons against direction of electric field due to non-linear vortex behavior / V. Maslov -- Thermal barrier formation for plasma electrons and ions in kind of connected solitary dip and hump of electric potential near ECR points in cylindrical trap / V. Maslov ... [et al.] -- Excitation of solitary wake-field by relativistic electron bunch and laser pulse / V. Maslov, A. Egorov and I. Onishchenko -- Enhancement of ion beam charge states by electron vortices in a plasma optical device / V. Maslov, A. Goncharov and I. Brown -- Wake-field mechanism of ion quasi-crystal formation in nonequilibrium dusty plasmas of technological devices / V. Maslov ... [et al.] -- Spiral perturbation in separator for extraction of heavy drops from plasma flow / V. Maslov ... [et al.] -- Fractional relaxation equation from AC universality in disordered solids / A. V. Milovanov, K. Rypdal and J. J. Rasmussen -- Vortices in two-dimensional rotating bose-Einstein condensates / T. Rindler-Daller -- Studying instability of 3D collisionless systems on Stochastic trajectories / V. N. Snytnikov and E. A. Kuksheva

  19. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  20. Critical phenomena of emergent monopoles in a chiral magnet

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Xiao; Nagaosa, Naoto

    A three-dimensional cubic Skyrmion crystal in the bulk, which is simultaneously a lattice of monopole-antimonopole pairs predicted theoretically, has been recently identified experimentally in MnGe. Adopting appropriate temperature Green's function technique for optical conductivity and devising a solvable phonon-magnon interaction, we systematically developed the theory of coupling spin-waves to both itinerant electrons and mechanical degrees of freedom in this chiral magnet, describing the latest experimental observations including anomalies and critical phenomena in magnetotransport and magnetoelasticity, which are identified as hallmarks of fluctuations of the emergent monopolar fields upon the nontrivial monopole dynamics and especially a topological phase transition signifying strong correlation. As a whole, they speak for a crucial role played by the monopole defects and hence the real-space spin topology in this material.

  1. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms

  2. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  3. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  4. Investigating the students' understanding of surface phenomena

    NASA Astrophysics Data System (ADS)

    Hamed, Kastro Mohamad

    1999-11-01

    This study investigated students' understanding of surface phenomena. The main purpose for conducting this research endeavor was to understand how students think about a complex topic about which they have little direct or formal instruction. The motivation for focusing on surface phenomena stemmed from an interest in integrating research and education. Despite the importance of surfaces and interfaces in research laboratories, in technological applications, and in everyday experiences, no previous systematic effort was done on pedagogy related to surface phenomena. The design of this research project was qualitative, exploratory, based on a Piagetian semi-structured clinical piloted interview, focused on obtaining a longitudinal view of the intended sample. The sampling was purposeful and the sample consisted of forty-four undergraduate students at Kansas State University. The student participants were enrolled in physics classes that spanned a wide academic spectrum. The data were analyzed qualitatively. The main themes that emerged from the analysis were: (a) students used analogies when confronted with novel situations, (b) students mixed descriptions and explanations, (c) students used the same explanation for several phenomena, (d) students manifested difficulties transferring the meaning of vocabulary across discipline boundaries, (e) in addition to the introductory chemistry classes, students used everyday experiences and job-related experiences as sources of knowledge, and (f) students' inquisitiveness and eagerness to investigate and discuss novel phenomena seemed to peak about the time students were enrolled in second year physics classes.

  5. The making of extraordinary psychological phenomena.

    PubMed

    Lamont, Peter

    2012-01-01

    This article considers the extraordinary phenomena that have been central to unorthodox areas of psychological knowledge. It shows how even the agreed facts relating to mesmerism, spiritualism, psychical research, and parapsychology have been framed as evidence both for and against the reality of the phenomena. It argues that these disputes can be seen as a means through which beliefs have been formulated and maintained in the face of potentially challenging evidence. It also shows how these disputes appealed to different forms of expertise, and that both sides appealed to belief in various ways as part of the ongoing dispute about both the facts and expertise. Finally, it shows how, when a formal Psychology of paranormal belief emerged in the twentieth century, it took two different forms, each reflecting one side of the ongoing dispute about the reality of the phenomena. PMID:25363382

  6. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  7. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  8. Modeling of fundamental phenomena in welds

    SciTech Connect

    Zacharia, T.; Vitek, J.M.; Goldak, J.A.; DebRoy, T.A.; Rappaz, M.; Bhadeshia, H.K.D.H.

    1993-12-31

    Recent advances in the mathematical modeling of fundamental phenomena in welds are summarized. State-of-the-art mathematical models, advances in computational techniques, emerging high-performance computers, and experimental validation techniques have provided significant insight into the fundamental factors that control the development of the weldment. The current status and scientific issues in the areas of heat and fluid flow in welds, heat source metal interaction, solidification microstructure, and phase transformations are assessed. Future research areas of major importance for understanding the fundamental phenomena in weld behavior are identified.

  9. Incorporating interfacial phenomena in solidification models

    NASA Technical Reports Server (NTRS)

    Beckermann, Christoph; Wang, Chao Yang

    1994-01-01

    A general methodology is available for the incorporation of microscopic interfacial phenomena in macroscopic solidification models that include diffusion and convection. The method is derived from a formal averaging procedure and a multiphase approach, and relies on the presence of interfacial integrals in the macroscopic transport equations. In a wider engineering context, these techniques are not new, but their application in the analysis and modeling of solidification processes has largely been overlooked. This article describes the techniques and demonstrates their utility in two examples in which microscopic interfacial phenomena are of great importance.

  10. Optical properties of contrail-induced cirrus: discussion of unusual halo phenomena.

    PubMed

    Sussmann, R

    1997-06-20

    Photographs of a 120 degrees parhelion and a 22 degrees parhelion within persistent contrails are presented. These phenomena result from hexagonal plate-shaped ice crystals oriented horizontally with diameters between 300 mum and 2 mm. From our observations and reinvestigation of previous reports, we conclude that a subset of the population in persistent contrails can consist of highly regular, oriented, hexagonal plates or columns comparable to the most regular crystals in natural cirrus clouds. This is explained by measured ambient humidities below the formation conditions of natural cirrus. The resulting strong azimuthal variability of the scattering phase function impacts the radiative transfer through persistent contrails. PMID:18253447

  11. Investigation of microgravity effects on solidification phenomena of selected materials

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Hansen, Patricia A.

    1992-01-01

    A Get Away Special (GAS) experiment payload to investigate microgravity effects on solidification phenomena of selected experimental samples has been designed for flight. It is intended that the first flight of the assembly will (1) study the p-n junction characteristics for advancing semiconductor device applications, (2) study the effects of gravity-driven convection on the growth of HgCd crystals, (3) compare the textures of the sample which crystallizes in microgravity with those found in chondrite meteorites, and (4) modify glass optical characteristics through divalent oxygen exchange. The space flight experiment consists of many small furnaces. While the experiment payload is in the low gravity environment of orbital flight, the payload controller will sequentially activate the furnaces to heat samples to their melt state and then allow cooling to resolidification in a controlled fashion. The materials processed in the microgravity environment of space will be compared to the same materials processed on earth in a one-gravity environment. This paper discusses the design of all subassemblies (furnance, electronics, and power systems) in the experiment. A complete description of the experimental materials is also presented.

  12. Monomial Crystals and Partition Crystals

    NASA Astrophysics Data System (ADS)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  13. Spin Circuit Representation for Spin Pumping Phenomena

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal; Datta, Supriyo

    2015-03-01

    There has been enormous progress in the field of spintronics and nanomagnetics in recent years with the discovery of many new materials and phenomena and it remains a formidable challenge to integrate these phenomena into functional devices and evaluate their potential. To facilitate this process a modular approach has been proposed whereby different phenomena are represented by spin circuit components. Unlike ordinary circuit components, these spin circuit components are characterized by 4-component voltages and currents (one for charge and three for spin). In this talk we will (1) present a spin circuit representation for spin pumping phenomena, (2) combine it with a spin circuit representation for the spin Hall effect to show that it reproduces established results obtained earlier by other means, and finally (3) use it to propose a possible method for enhancing the spin pumping efficiency by an order of magnitude through the addition of a spin sink layer. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  14. Phylogeny of Aging and Related Phenoptotic Phenomena.

    PubMed

    Libertini, G

    2015-12-01

    The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds. PMID:26638678

  15. Simple Phenomena, Slow Motion, Surprising Physics

    ERIC Educational Resources Information Center

    Koupil, Jan; Vicha, Vladimir

    2011-01-01

    This article describes a few simple experiments that are worthwhile for slow motion recording and analysis either because of interesting phenomena that can be seen only when slowed down significantly or because of the ability to do precise time measurements. The experiments described in this article are quite commonly done in Czech schools. All…

  16. MIXING PHENOMENA IN INDUSTRIAL FUME AFTERBURNER SYSTEMS

    EPA Science Inventory

    The report reviews the physical-mixing phenomena involved in the reactions that occur in afterburners or fume incinerators. It considers mixing in after-burners from three points of view. It first covers typical designs of afterburner components that are involved in the mixing ph...

  17. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  18. Geophysical phenomena classification by artificial neural networks

    SciTech Connect

    Gough, M.P.; Bruckner, J.R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  19. Solar Phenomena Associated with "EIT Waves"

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  20. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  1. Atmospheric phenomena before and during sunset

    NASA Astrophysics Data System (ADS)

    Menat, M.

    The atmospheric transmittance and the astronomical refraction for low-elevation trajectories are discussed and quantitatively developed. The results are used to describe and calculate some of the fascinating atmospheric phenomena occurring shortly before and during sunset, such as the diminishing apparent luminance of the sun, its shape during sunset, and the green flash.

  2. A 'Phenomena Laboratory' for Physics Students.

    ERIC Educational Resources Information Center

    Houlden, M. A.; And Others

    1983-01-01

    Describes a laboratory designed to give students practical experiences with experimental phenomena discussed in lectures, focusing on laboratory organization and typical experiment. In addition to a list of experiments, three exercises are discussed: fluorescence/laser, ferromagnetic domains, and thermal population (which uses PET computer…

  3. Temporal Phenomena in the Korean Conjunctive Constructions

    ERIC Educational Resources Information Center

    Kim, Dongmin

    2015-01-01

    The goal of this study is to characterize the temporal phenomena in the Korean conjunctive constructions. These constructions consist of three components: a verbal stem, a clause medial temporal suffix, and a clause terminal suffix. This study focuses on both the temporality of the terminal connective suffixes and the grammatical meanings of the…

  4. Intervention in Biological Phenomena via Feedback Linearization.

    PubMed

    Fnaiech, Mohamed Amine; Nounou, Hazem; Nounou, Mohamed; Datta, Aniruddha

    2012-01-01

    The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique. PMID:23209459

  5. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  6. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  7. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  8. An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization

    ERIC Educational Resources Information Center

    Louhi­-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry

    2015-01-01

    The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…

  9. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed. PMID:26792536

  10. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike. PMID:17842831

  11. Living liquid crystals.

    PubMed

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D; Aranson, Igor S

    2014-01-28

    Collective motion of self-propelled organisms or synthetic particles, often termed "active fluid," has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter--living liquid crystals (LLCs)--that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  12. Living liquid crystals

    PubMed Central

    Zhou, Shuang; Sokolov, Andrey; Lavrentovich, Oleg D.; Aranson, Igor S.

    2014-01-01

    Collective motion of self-propelled organisms or synthetic particles, often termed “active fluid,” has attracted enormous attention in the broad scientific community because of its fundamentally nonequilibrium nature. Energy input and interactions among the moving units and the medium lead to complex dynamics. Here, we introduce a class of active matter––living liquid crystals (LLCs)––that combines living swimming bacteria with a lyotropic liquid crystal. The physical properties of LLCs can be controlled by the amount of oxygen available to bacteria, by concentration of ingredients, or by temperature. Our studies reveal a wealth of intriguing dynamic phenomena, caused by the coupling between the activity-triggered flow and long-range orientational order of the medium. Among these are (i) nonlinear trajectories of bacterial motion guided by nonuniform director, (ii) local melting of the liquid crystal caused by the bacteria-produced shear flows, (iii) activity-triggered transition from a nonflowing uniform state into a flowing one-dimensional periodic pattern and its evolution into a turbulent array of topological defects, and (iv) birefringence-enabled visualization of microflow generated by the nanometers-thick bacterial flagella. Unlike their isotropic counterpart, the LLCs show collective dynamic effects at very low volume fraction of bacteria, on the order of 0.2%. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications. PMID:24474746

  13. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  14. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Chang, H.

    2004-01-01

    We predict a variety of photonic coherence phenomena in passive and active coupled ring resonators. Specifically, the effective dispersive and absorptive steady-state response of coupled resonators is derived, and used to determine the conditions for coupled-resonator-induced transparency and absorption, lasing without gain, and cooperative cavity emission. These effects rely on coherent photon trapping, in direct analogy with coherent population trapping phenomena in atomic systems. We also demonstrate that the coupled-mode equations are formally identical to the two-level atom Schrodinger equation in the rotating-wave approximation, and use this result for the analysis of coupled-resonator photon dynamics. Notably, because these effects are predicted directly from coupled-mode theory, they are not unique to atoms, but rather are fundamental to systems of coherently coupled resonators.

  15. Study of non-equilibrium transport phenomena

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1987-01-01

    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  16. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  17. A review of impulsive phase phenomena

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    A brief review is given of impulsive phase phenomena in support of the models used to compute the energies of the different components of the flares under study. The observational characteristics of the impulsive phase are discussed as well as the evidence for multi-thermal or non-thermal phenomena. The significance of time delays between hard X-rays and microwaves is discussed in terms of electron beams and Alfven waves, two-step acceleration, and secondary bursts at large distances from the primary source. Observations indicating the occurrence of chromospheric evaporation, coronal explosions, and thermal conduction fronts are reviewed briefly, followed by the gamma ray and neutron results. Finally, a preferred flare scenario and energy source are presented involving the interactions in a complex of magnetic loops with the consequent reconnection and electron acceleration.

  18. Natural phenomena hazards site characterization criteria

    SciTech Connect

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  19. Coronal Mass Ejections (CMEs) and Associated Phenomena

    NASA Astrophysics Data System (ADS)

    Manoharan, P. K.

    2008-10-01

    The Sun is the most powerful radio waves emitting object in the sky. The first documented recognition of the reception of radio waves from the Sun was made in 1942 by Hey.15 Since then solar radio observations, from ground-based and space-based instruments, have played a major role in understanding the physics of the Sun and fundamental physical processes of the solar radio emitting phenomena...

  20. Coherent topological phenomena in protein folding.

    PubMed

    Bohr, H; Brunak, S; Bohr, J

    1997-01-01

    A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long-range excitations, 'wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force. PMID:9218961

  1. Particle Modelling of Fluid Phenomena in Three -

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Mohsen

    A new, numerical approach is developed to simulate fluid phenomena by means of molecular type behavior. First, consider the large number of molecules to be approximated by a smaller number of aggregates called particles. Then, let the particles interact with each other according to a classical molecular type force vec F whose magnitude F is given (Hirchfelder, Curtiss and Bird (1954)) by: F = rm -{Gover r^{p}} + {Hover r^{q}}, in which G, H, p, q, are positive constants and r is the distance between two particles. The acceleration of each particle is related to the force by the Newtonian dynamical equations vec F = m vec a. Displacement, velocity, and acceleration of each particle are then approximated by the "Leap Frog" formulas. The CRAY X-MP/24 is used to solve numerically the resulting large system of nonlinear, ordinary differential equations. We then study fluid phenomena in the following order. Part 1. Generation of particle fluids in a cylindrical region. Part 2. Verification of basic fluid properties. Part 3. Simulation of surface motion. In this part, we simulate three phenomena, which can be observed physically, by dropping a small object into a container filled with liquid. First, there is a backdrop. Then, a wave will be generated and going outward from the point of entry of the object into the container. Last, a reaction which can be recorded only with a high speed camera (Trefethen (1972)) is that very small drops of the container fluid may actually pinch off from the backdrop. Part 4. Simulation of surface tension. This phenomena can be observed by performing the following experiment. A small needle placed gently upon a water surface will not be sunk but will be supported by the molecular forces in the liquid surface. The molecules in the surface are depressed slightly in the process.

  2. Nonlinear phenomena in plasma physics and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sagdeev, R. Z.

    Advances in the theory of nonlinear phenomena are discussed in individual chapters contributed by Soviet physicists. Topics examined include vortices in plasma and hydrodynamics, oscillations and bifurcations in reversible systems, regular and chaotic dynamics of particles in a magnetic field, and renormalization-group theory and Kolmogorov-Arnold-Moser theory. Consideration is given to nonlinear problems of the turbulent dynamo, strong turbulence and topological solitons, self-oscillations in chemical systems, and autowaves in biologically active media.

  3. Tunable caustic phenomena in electron wavefields.

    PubMed

    Tavabi, Amir Hossein; Migunov, Vadim; Dwyer, Christian; Dunin-Borkowski, Rafal E; Pozzi, Giulio

    2015-10-01

    Novel caustic phenomena, which contain fold, butterfly and elliptic umbilic catastrophes, are observed in defocused images of two approximately collinear oppositely biased metallic tips in a transmission electron microscope. The observed patterns depend sensitively on defocus, on the applied voltage between the tips and on their separation and lateral offset. Their main features are interpreted on the basis of a projected electrostatic potential model for the electron-optical phase shift. PMID:26069930

  4. Seismoelectric Phenomena in Fluid-Saturated Sediments

    SciTech Connect

    Block, G I; Harris, J G

    2005-04-22

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.

  5. Physical mechanism of membrane osmotic phenomena

    SciTech Connect

    Guell, D.C.; Brenner, H.

    1996-09-01

    The microscale, physicomechanical cause of osmosis and osmotic pressure in systems involving permeable and semipermeable membranes is not well understood, and no fully satisfactory mechanism has been offered to explain these phenomena. A general theory, albeit limited to dilute systems of inert, noninteracting solute particles, is presented which demonstrates that short-range forces exerted by the membrane on the dispersed solute particles constitute the origin of osmotic phenomena. At equilibrium, the greater total force exerted by the membrane on those solute particles present in the reservoir containing the more concentrated of the two solutions bathing the membrane is balanced by a macroscopically observable pressure difference between the two reservoirs. The latter constitutes the so-called osmotic pressure difference. Under nonequilibrium conditions, the membrane-solute force is transmitted to the solvent, thus driving the convective flow of solvent observed macroscopically as osmosis. While elements of these ideas have been proposed previously in various forms, the general demonstration offered here of the physicomechanical source of osmotic phenomena is novel. Beyond the purely academic interest that exists in establishing a mechanical understanding of osmotic pressure, the analysis lays the foundation underlying a quantitative theory of osmosis in dilute, nonequilibrium systems outlined in a companion paper.

  6. Stability and restoration phenomena in competitive systems

    NASA Astrophysics Data System (ADS)

    Uechi, Lisa; Akutsu, Tatsuya

    2013-10-01

    A conservation law along with stability, recovering phenomena, and characteristic patterns of a nonlinear dynamical system have been studied and applied to physical, biological, and ecological systems. In our previous study, we proposed a system of symmetric 2n-dimensional conserved nonlinear differential equations. In this paper, competitive systems described by a 2-dimensional nonlinear dynamical (ND) model with external perturbations are applied to population cycles and recovering phenomena of systems from microbes to mammals. The famous 10-year cycle of population density of Canadian lynx and snowshoe hare is numerically analyzed. We find that a nonlinear dynamical system with a conservation law is stable and generates a characteristic rhythm (cycle) of population density, which we call the standard rhythm of a nonlinear dynamical system. The stability and restoration phenomena are strongly related to a conservation law and the balance of a system. The standard rhythm of population density is a manifestation of the survival of the fittest to the balance of a nonlinear dynamical system.

  7. An interpretation of passive containment cooling phenomena

    SciTech Connect

    Chung, Bum-Jin; Kang, Chang-Sun,

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  8. Further investigations of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1988-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are described. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricoshet and penetration damage phenomena in a multi-sheet structure as functions of the geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is shown that, in general, the most damaging ricochet debris particle is approximately 0.25 cm (0.10 in) in diameter and travels at the speed of approximately 2.1 km/sec (6,890 ft/sec). The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.

  9. Search for collective phenomena in hadron interactions

    SciTech Connect

    Kokoulina, E. S. Nikitin, V. A. Petukhov, Y. P.; Karpov, A. V. Kutov, A. Ya.

    2010-12-15

    New results of the search for collective phenomena have been obtained and analyzed in the present report. The experimental studies are carried out on U-70 accelerator of IHEP in Protvino. It is suggested that these phenomena can be discovered at the energy range of 50-70 GeV in the extreme multiplicity region since the high-density matter can form in this very region. The collective behavior of secondary particles is considered to manifest itself in the Bose-Einstein condensation of pions, Vavilov-Cherenkov gluon radiation, excess of soft-photon yield, and other unique phenomena. The perceptible peak in the angular distribution has been revealed. It was interpreted as the gluon radiation and so the parton matter refraction index was determined. The new software was designed for the track reconstruction based on Kalman Filter technique. This algorithm allows one to estimate more precisely the track parameters (especially momentum). The search for Bose-Einstein condensation can be continued by using the selected events with the multiplicity of more than eight charged particles. The gluon dominance model predictions have shown good agreement with the multiplicity distribution at high multiplicity and confirmed the guark-gluon medium formation under these conditions.

  10. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  11. Study of interfacial phenomena for bio/chemical sensing applications

    NASA Astrophysics Data System (ADS)

    Min, Hwall

    This work presents the fundamental study of biological and chemical interfacial phenomena and (bio)chemical sensing applications using high frequency resonator arrays. To realize a versatile (bio)chemical sensing system for the fundamental study as well as their practical applications, the following three distinct components were studied and developed: i) detection platforms with high sensitivity, ii) novel innovative sensing materials with high selectivity, iii) analytical model for data interpretation. 8-pixel micromachined quartz crystal resonator (muQCR) arrays with a fundamental resonance frequency of 60 ¡V 90 MHz have been used to provide a reliable detection platform with high sensitivity. Room temperature ionic liquid (RTIL) has been explored and integrated into the sensing system as a smart chemical sensing material. The use of nanoporous gold (np-Au) enables the combination of the resonator and surface-enhanced Raman spectroscopy for both quantitative and qualitative measurement. A statistical model for the characterization of resonator behavior to study the protein adsorption kinetics is developed by random sequential adsorption (RSA) approach with the integration of an effective surface depletion theory. The investigation of the adsorption kinetics of blood proteins is reported as the fundamental study of biological phenomena using the proposed sensing system. The aim of this work is to study different aspects of protein adsorption and kinetics of adsorption process with blood proteins on different surfaces. We specifically focus on surface depletion effect in conjunction with the RSA model to explain the observed adsorption isotherm characteristics. A number of case studies on protein adsorption conducted using the proposed sensing system has been discussed. Effort is specifically made to understand adsorption kinetics, and the effect of surface on the adsorption process as well as the properties of the adsorbed protein layer. The second half of the

  12. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  13. Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Wright, John D.

    1995-02-01

    This book describes the chemical and physical structure of molecular crystals, their optical and electronic properties, and the reactions between neighboring molecules in crystals. In the second edition, the author has taken into account research that has undergone extremely rapid development since the first edition was published in 1987. For instance, he gives extensive coverage to the applications of molecular materials in high-technology devices (e.g. optical communications, laser printers, photocopiers, liquid crystal displays, solar cells, and more). There is also an entirely new chapter on the recently discovered Buckminsterfullerene carbon molecule (C60) and organic non-linear optic materials.

  14. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  15. Simulating physical phenomena with a quantum computer

    NASA Astrophysics Data System (ADS)

    Ortiz, Gerardo

    2003-03-01

    In a keynote speech at MIT in 1981 Richard Feynman raised some provocative questions in connection to the exact simulation of physical systems using a special device named a ``quantum computer'' (QC). At the time it was known that deterministic simulations of quantum phenomena in classical computers required a number of resources that scaled exponentially with the number of degrees of freedom, and also that the probabilistic simulation of certain quantum problems were limited by the so-called sign or phase problem, a problem believed to be of exponential complexity. Such a QC was intended to mimick physical processes exactly the same as Nature. Certainly, remarks coming from such an influential figure generated widespread interest in these ideas, and today after 21 years there are still some open questions. What kind of physical phenomena can be simulated with a QC?, How?, and What are its limitations? Addressing and attempting to answer these questions is what this talk is about. Definitively, the goal of physics simulation using controllable quantum systems (``physics imitation'') is to exploit quantum laws to advantage, and thus accomplish efficient imitation. Fundamental is the connection between a quantum computational model and a physical system by transformations of operator algebras. This concept is a necessary one because in Quantum Mechanics each physical system is naturally associated with a language of operators and thus can be considered as a possible model of quantum computation. The remarkable result is that an arbitrary physical system is naturally simulatable by another physical system (or QC) whenever a ``dictionary'' between the two operator algebras exists. I will explain these concepts and address some of Feynman's concerns regarding the simulation of fermionic systems. Finally, I will illustrate the main ideas by imitating simple physical phenomena borrowed from condensed matter physics using quantum algorithms, and present experimental

  16. BWR core melt progression phenomena: Experimental analyses

    SciTech Connect

    Ott, L.J.

    1992-06-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component.

  17. BWR core melt progression phenomena: Experimental analyses

    SciTech Connect

    Ott, L.J.

    1992-01-01

    In the BWR Core Melt in Progression Phenomena Program, experimental results concerning severe fuel damage and core melt progression in BWR core geometry are used to evaluate existing models of the governing phenomena. These include control blade eutectic liquefaction and the subsequent relocation and attack on the channel box structure; oxidation heating and hydrogen generation; Zircaloy melting and relocation; and the continuing oxidation of zirconium with metallic blockage formation. Integral data have been obtained from the BWR DF-4 experiment in the ACRR and from BWR tests in the German CORA exreactor fuel-damage test facility. Additional integral data will be obtained from new CORA BWR test, the full-length FLHT-6 BWR test in the NRU test reactor, and the new program of exreactor experiments at Sandia National Laboratories (SNL) on metallic melt relocation and blockage formation. an essential part of this activity is interpretation and use of the results of the BWR tests. The Oak Ridge National Laboratory (ORNL) has developed experiment-specific models for analysis of the BWR experiments; to date, these models have permitted far more precise analyses of the conditions in these experiments than has previously been available. These analyses have provided a basis for more accurate interpretation of the phenomena that the experiments are intended to investigate. The results of posttest analyses of BWR experiments are discussed and significant findings from these analyses are explained. The ORNL control blade/canister models with materials interaction, relocation and blockage models are currently being implemented in SCDAP/RELAP5 as an optional structural component.

  18. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  19. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  20. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  1. Electronic phenomena in adsorption and catalysis

    SciTech Connect

    Kiselev, V.F.; Krylov, O.V.

    1987-01-01

    This book is the second of a three-volume treatment prepared by a physicist and a chemist, who took a common standpoint in considering the close relationship between the electronic processes taking place on the semiconductor-dielectric interface on the one hand, and the adsorptive and catalytic phenomena on the other. This volume brings together, and generalizes, a vast bulk of knowledge on the nature of surface and interface states, on the mechanism of surface electronic processes in semiconductors, as well as considers ways of controlling these processes. In addition, the authors discuss plausible mechanisms of elementary acts in surface charging during adsorption and catalysis.

  2. Phenomena and Parameters Important to Burnup Credit

    SciTech Connect

    Parks, C.V.

    2001-01-10

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given.

  3. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  4. Paramagnetic Meissner effect and related dynamical phenomena

    NASA Astrophysics Data System (ADS)

    Li, Mai Suan

    2003-03-01

    The hallmark of superconductivity is the diamagnetic response to external magnetic field. In striking contrast to this behavior, a paramagnetic response or paramagnetic Meissner effect was observed in ceramic high- Tc and in conventional superconductors. The present review is given on this interesting effect and related phenomena. We begin with a detailed discussion of experimental results on the paramagnetic Meissner effect in both granular and conventional superconductors. There are two main mechanisms leading to the paramagnetic response: the so-called d-wave and the flux compression. In the first scenario, the Josephson critical current between two d-wave superconductors becomes negative or equivalently one has a π junction. The paramagnetic signal occurs due to the nonzero spontaneous supercurrent circulating in a loop consisting of odd number of π junctions. In addition to the d-wave mechanism we present the flux compression mechanism for the paramagnetic Meissner effect. The compression may be due to either an inhomogeneous superconducting transition or flux trap inside the giant vortex state. The flux trapping which acts like a total nonzero spontaneous magnetic moment causes the paramagnetic signal. The anisotropic pairing scenario is believed to be valid for granular materials while the flux trap one can be applied to both conventional and high- Tc superconductors. The study of different phenomena by a three-dimensional lattice model of randomly distributed π Josephson junctions with finite self-inductance occupies the main part of our review. By simulations one can show that the chiral glass phase in which chiralities are frozen in time and in space may occur in granular superconductors possessing d-wave pairing symmetry. Experimental attempts on the search for the chiral glass phase are analysed. Experiments on dynamical phenomena such as AC susceptibility, compensation effect, anomalous microwave absorption, aging effect, AC resistivity and

  5. General unifying features of controlled quantum phenomena

    SciTech Connect

    Pechen, Alexander; Brif, Constantin; Wu, Rebing; Chakrabarti, Raj; Rabitz, Herschel

    2010-09-15

    Many proposals have been put forth for controlling quantum phenomena, including open-loop, adaptive feedback, and real-time feedback control. Each of these approaches has been viewed as operationally, and even physically, distinct from the others. This work shows that all such scenarios inherently share the same fundamental control features residing in the topology of the landscape relating the target physical observable to the applied controls. This unified foundation may provide a basis for development of hybrid control schemes that would combine the advantages of the existing approaches to achieve the best overall performance.

  6. Observations of cometary plasma wave phenomena

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Coroniti, F. V.; Kennel, C. F.; Gurnett, D. A.; Ip, W.-H.; Smith, E. J.

    1986-01-01

    The ICE plasma wave investigation utilized very long electric antennas (100 m tip-to-tip) and a very high sensitivity magnetic search coil to obtain significant local information on plasma physics phenomena occurring in the distant pickup regions of Comet Giacobini-Zinner and Comet Halley; and information on the processes that developed in the coma and tail of Giacobini-Zinner. The ICE plasma wave measurements associated with both comet encounters are summarized, and high sensitivity ICE observations are related to corresponding measurements from the other Halley spacecraft.

  7. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  8. On periodicity of solar wind phenomena

    NASA Technical Reports Server (NTRS)

    Verma, V. K.; Joshi, G. C.

    1995-01-01

    We have investigated the rate of occurrence of solar wind phenomena observed between 1972-1984 using power spectrum analysis. The data have been taken from the high speed solar wind (HSSW) streams catalogue published by Mavromichalaki et al. (1988). The power spectrum analysis of HSSW events indicate that HSSW stream events have a periodicity of 9 days. This periodicity of HSSW events is 1/3 of the 27 days period of coronal holes which are the major source of solar wind events. In our opinion the 9 days period may be the energy build up time to produce the HSSW stream events.

  9. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  10. Monte Carlo analysis of magnetic aftereffect phenomena

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Stancu, Alexandru

    2006-04-01

    Magnetic aftereffect phenomena are analyzed by using the Monte Carlo technique. This technique has the advantage that it can be applied to any model of hysteresis. It is shown that a log t-type dependence of the magnetization can be qualitatively predicted even in the framework of hysteresis models with local history, such as the Jiles-Atherton model. These models are computationally much more efficient than the models with global history such as the Preisach model. Numerical results related to the decay of the magnetization as of function of time, as well as to the viscosity coefficient, are presented.

  11. Study on Heat Transfer Phenomena of Inorganic Hydrate Thermal Energy Storage Capsule while the Capsule is Heated and Cooled Periodically

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Okawa, Seiji; Shintani, Tadafumi

    Purpose of this sturdy is to clarify the heat transfer phenomena of inorganic hydrate thermal energy storage capsule in a case of heating and cooling the capsule periodically. When the inorganic hydrate is absorbing and discharging heat periodically,heat transfer phenomena is dominated not only by thermal conduction but also by heat absorbed during melting of crystal, heat discharged during forming of crystal nuclei, crystal growth and so on. It also depends upon the highest temperature whether it is higher than the saturation temperature or not. Those phenomena can be observed in a capsule at the same time in different locations. In this report, analytical method to solve such a complex system is introduced. Gelled Glauber Salt is used as PCM. The highest and the lowest temperature of the outer surface of the capsule and rate of changing of the temperature are set to a certain value, and the experiment was carried out. The parameters used in the analysis was obtained to fit with the experimental results. Then, experiments and analysis were carried out under various conditions determined by changing the setting temperature or its cycle. The analytical results and the experimental results agreed well with each other. Hence, the adequancy of the analytical method and the heat transfer phenomena were clarified.

  12. Cloning polymer single crystals through self-seeding

    NASA Astrophysics Data System (ADS)

    Xu, Jianjun; Ma, Yu; Hu, Wenbing; Rehahn, Matthias; Reiter, Günter

    2009-04-01

    In general, when a crystal is molten, all molecules forget about their mutual correlations and long-range order is lost. Thus, a regrown crystal does not inherit any features from an initially present crystal. Such is true for materials exhibiting a well-defined melting point. However, polymer crystallites have a wide range of melting temperatures, enabling paradoxical phenomena such as the coexistence of melting and crystallization. Here, we report a self-seeding technique that enables the generation of arrays of orientation-correlated polymer crystals of uniform size and shape (`clones') with their orientation inherited from an initial single crystal. Moreover, the number density and locations of these cloned crystals can to some extent be predetermined through the thermal history of the starting crystal. We attribute this unique behaviour of polymers to the coexistence of variable fold lengths in metastable crystalline lamellae, typical for ordering of complex chain-like molecules.

  13. Quantum Phenomena Tested By Neutron Interferometry

    SciTech Connect

    Rauch, Helmut

    2005-02-15

    Entanglement of two photons, or atoms is a complementary situation to a double slit situation of a single photon, neutron or atom. With neutrons single particle interference phenomena can be observed and the 'entanglement of degrees of freedom', i.e. contextuality can be verified. In this respect, neutrons are proper tools for testing quantum mechanics because they are massive, they couple to electromagnetic fields due to their magnetic moment and they are subject to all basic interactions, and they are sensitive to topological effects, as well. Related experiments will be discussed. Deterministic and stochastic partial absorption experiments can be described by Bell-type inequalities. Recent neutron interferometry experiments based on postselection methods renewed the discussion about quantum nonlocality and the quantum measuring process. It has been shown that interference phenomena can be revived even when the overall interference pattern has lost its contrast. This indicates a persisting coupling in phase space even in cases of spatially separated Schroedinger cat-like situations. These states are extremely fragile and sensitive against any kind of fluctuations and other decoherence processes. More complete quantum experiments also show that a complete retrieval of quantum states behind an interaction volume becomes impossible in principle.

  14. Effects of electrostatic correlations on electrokinetic phenomena.

    PubMed

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  15. Auroral Phenomena in Brown Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Pineda, J. Sebastian; Hallinan, Gregg

    2016-01-01

    Since the unexpected discovery of radio emission from brown dwarfs some 15 years ago, investigations into the nature of this emission have revealed that, despite their cool and neutral atmospheres, brown dwarfs harbor strong kG magnetic fields, but unlike the warmer stellar objects, they generate highly circularly polarized auroral radio emission, like the giant planets of the Solar System. Our recent results from Keck LRIS monitoring of the brown dwarf LSR1835+32 definitively confirm this picture by connecting the auroral radio emission to spectroscopic variability at optical wavelengths as coherent manifestations of strong large-scale magnetospheric auroral current systems. I present some of the results of my dissertation work to understand the nature brown dwarf auroral phenomena. My efforts include a survey of Late L dwarfs and T dwarfs, looking for auroral Hα emission and a concurrent survey looking for the auroral emission of H3+ from brown dwarfs with radio pulse detections. I discuss the potential connection of this auroral activity to brown dwarf weather phenomena and how brown dwarf aurorae may differ from the analogous emission of the magnetized giant planets in the Solar System.

  16. Animal network phenomena: insights from triadic games

    NASA Astrophysics Data System (ADS)

    Mesterton-Gibbons, Mike; Sherratt, Tom N.

    Games of animal conflict in networks rely heavily on computer simulation because analysis is difficult, the degree of difficulty increasing sharply with the size of the network. For this reason, virtually the entire analytical literature on evolutionary game theory has assumed either dyadic interaction or a high degree of symmetry, or both. Yet we cannot rely exclusively on computer simulation in the study of any complex system. So the study of triadic interactions has an important role to play, because triads are both the simplest groups in which asymmetric network phenomena can be studied and the groups beyond dyads in which analysis of population games is most likely to be tractable, especially when allowing for intrinsic variation. Here we demonstrate how such analyses can illuminate a variety of behavioral phenomena within networks, including coalition formation, eavesdropping (the strategic observation of contests between neighbors) and victory displays (which are performed by the winners of contests but not by the losers). In particular, we show that eavesdropping acts to lower aggression thresholds compared to games without it, and that victory displays to bystanders will be most intense when there is little difference in payoff between dominating an opponent and not subordinating.

  17. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  18. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of

  19. Useful microscopic concepts for high pressure phenomena

    NASA Astrophysics Data System (ADS)

    Recio, J.; Menéndez, J.; Álvarez-Uría, Ruth; Marqués, Miriam; Ouahrani, Tarik; Baonza, Valentín

    2013-06-01

    A better understanding of the macroscopic behavior of crystalline solids under pressure can be achieved introducing microscopic concepts as the local compressibility (κi = -1/V∂V/∂p ) and the local pressure (pi = -∂E/∂Vi ). Both are derived from topological analysis of crystalline electron densities. This formalism allows for a partition of the unit cell volume (V) into disjoint atomic-like regions such that V = ∑iVi , i runs over all different atomic constituents. Using this topological partition, the compressibility of the crystal is recovered: κ = ∑iVi/Vκi . Although local pressures are not additive, their reciprocals are: 1/p = ∑i1/pi , where p is the thermodynamic pressure. This fact leads to the interpretation of the atomic constituents of crystals as parallel mechanical resistors when pressure is applied. Consequently, atomic-like mechanical resistances and mechanical conductances can be defined. After extensive first principles calculations, computed results of these local properties reveal systematic trends for crystal families under pressure, as we illustrate for II-VI binary semiconductors and oxide spinels. Funded by Spanish MINECO and MICINN through CSD2007-00045 and CTQ2012-38599 projects.

  20. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  1. Topological Spintronics: Materials, Phenomena and Devices

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2015-03-01

    The two-dimensional surface states of three-dimensional topological insulators such as Bi2Se3and(Bi,Sb)2Te3 possess a spin texture that can potentially be exploited for spintronics applications. We provide a perspective on the emergence of ``topological spintronics,'' demonstrating how this spin texture can be engineered using either quantum tunneling between surfaces or by breaking time-reversal symmetry. We then discuss recent experiments that show striking spintronic phenomena useful for proof-of-concept devices, including a spin-orbit torque of record efficiency at room temperature and an electrically-gated ``giant anisotropic magnetoresistance'' at low temperature. This work was carried out in collaboration with A. Richardella, S.-Y. Xu, M. Neupane, A. Mellnik, A. Kandala, J. S. Lee, D. M. Zhang, M. Z. Hasan and D. C. Ralph. We acknowledge funding from the DARPA Meso program, ONR and C-SPIN (under sponsorship of MARCO and DARPA).

  2. Transient Phenomena: Opportunities for New Discoveries

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (γ-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from γ-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  3. Transient Phenomena: Opportunities for New Discoveries

    NASA Technical Reports Server (NTRS)

    Lazio, T. Joseph W.

    2010-01-01

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (gamma-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from gamma-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  4. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  5. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  6. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  7. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  8. Teaching wave phenomena via biophysical applications

    NASA Astrophysics Data System (ADS)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  9. Critical and resonance phenomena in neural networks

    NASA Astrophysics Data System (ADS)

    Goltsev, A. V.; Lopes, M. A.; Lee, K.-E.; Mendes, J. F. F.

    2013-01-01

    Brain rhythms contribute to every aspect of brain function. Here, we study critical and resonance phenomena that precede the emergence of brain rhythms. Using an analytical approach and simulations of a cortical circuit model of neural networks with stochastic neurons in the presence of noise, we show that spontaneous appearance of network oscillations occurs as a dynamical (non-equilibrium) phase transition at a critical point determined by the noise level, network structure, the balance between excitatory and inhibitory neurons, and other parameters. We find that the relaxation time of neural activity to a steady state, response to periodic stimuli at the frequency of the oscillations, amplitude of damped oscillations, and stochastic fluctuations of neural activity are dramatically increased when approaching the critical point of the transition.

  10. Equatorial phenomena in neutral thermospheric composition.

    NASA Technical Reports Server (NTRS)

    Reber, C. A.; Hedin, A. E.; Chandra, S.

    1973-01-01

    Several interesting phenomena relating to the equatorial ionosphere have been observed in the data from the OGO-6 mass spectrometer. The diurnal variations during equinox at an altitude of 450 km show the N2 and O densities peaking near 1500 hr while He peaks near 1000 hr. The latitudinal variation in N2 during the day is very similar to the F-region electron density exhibiting the well known features of the ionospheric anomaly. During periods of intense geomagnetic disturbance (e.g. the large storm of 8 March 1970), the low latitude thermospheric temperature increases on the order of 50-150 K, while at mid latitudes, increases of more than 1000 K are observed.

  11. Hadronic and nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-06-01

    Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.

  12. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  13. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  14. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  15. Threshold Phenomena in a Throbbing Complex Plasma

    SciTech Connect

    Mikikian, Maxime; Coueedel, Lenaiec; Cavarroc, Marjorie; Tessier, Yves; Boufendi, Laiefa

    2010-08-13

    In complex plasmas, the trapped dust particle cloud is often characterized by a central dust-free region ('void'). The void induces a spatial inhomogeneity of the dust particle distribution and is at the origin of many intricate unstable phenomena. One type of this kind of behavior is the so-called heartbeat instability consisting of successive contractions and expansions of the void. This instability is characterized by a strong nonlinear dynamics which can reveal the occurrence of incomplete sequences corresponding to failed contractions. Experimental results based on high-speed imaging are presented for the first time and underline this threshold effect in both the dust cloud motion and the evolution of the plasma light emission.

  16. Novel nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  17. Single event phenomena: Testing and prediction

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.

    1992-01-01

    Highly integrated microelectronic devices are often used to increase the performance of satellite systems while reducing the system power dissipation, size, and weight. However, these devices are usually more susceptible to radiation than less integrated devices. In particular, the problem of sensitivity to single event upset and latchup is greatly increased as the integration level is increased. Therefore, a method for accurately evaluating the susceptibility of new devices to single event phenomena is critical to qualifying new components for use in space systems. This evaluation includes testing devices for upset or latchup and extrapolating the results of these tests to the orbital environment. Current methods for testing devices for single event effects are reviewed, and methods for upset rate prediction, including a new technique based on Monte Carlo simulation, are presented.

  18. Liquid Crystals

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  19. Meteorological phenomena in Western classical orchestral music

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  20. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    SciTech Connect

    Crotts, Arlin P. S.

    2009-05-20

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: {approx}50% of reports originate from near Aristarchus, {approx}16% from Plato, {approx}6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that {approx}80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  1. BPS States, Crystals, and Matrices

    DOE PAGESBeta

    Sułkowski, Piotr

    2011-01-01

    We review free fermion, melting crystal, and matrix model representations of wall-crossing phenomena on local, toric Calabi-Yau manifolds. We consider both unrefined and refined BPS counting of closed BPS states involving D2- and D0-branes bound to a D6-brane, as well as open BPS states involving open D2-branes ending on an additional D4-brane. Appropriate limit of these constructions provides, among the others, matrix model representation of refined and unrefined topological string amplitudes.

  2. Investigaccion-accion en la sala de clases sobre las creencias de la cultura de la ciencia de un grupo de estudiantes universitarios y su relacion reciproca con el aprendizaje de las ciencias biologicas

    NASA Astrophysics Data System (ADS)

    Cordova-Santiago, Lizzette Astrid

    La investigacion---accion que se llevo a cabo en la sala de clases tenia como punto de partida las creencias de la cultura de la ciencia de un grupo de estudiantes universitarios para luego examinar sus implicaciones en el proceso de aprendizaje de las Ciencias Biologicas. ¿Que se supone que hagan las creencias en relacion con el aprendizaje? ¿En que consiste incorporar este aspecto a la practica educativa universitaria? Utilizando el modelo de Kemmis y McTaggart (1987) la investigacion-accion se planteo como un proceso dinamico en cuatro momentos en espiral constituidos por la planificacion, la accion, la observacion y la reflexion. Cada una de las fases tuvo una intencion retrospectiva y prospectiva formando una espiral de autorreflexion del conocimiento y la accion. Se llevaron a cabo audio grabaciones en clases y analisis de documentos. Ademas, la profesora-investigadora hizo un portafolio para reflexionar sobre las creencias de la cultura de la ciencia que tienen los estudiantes y las creencias del aprendizaje que tiene la profesora y sobre como la comprension de estos elementos ayudo a mejorar su practica educativa a traves del tiempo. Los resultados obtenidos apuntan a que las creencias de la cultura de la ciencia que tiene el grupo de estudiantes son diversas. Ellos si creen que la ciencia tiene una cultura la cual describieron como: complicada y desconocida que evoluciona constantemente, que es un conjunto de metodos, que es altamente tecnologica, que resuelve problemas de salud, ayuda a interpretar la realidad del mundo que los rodea y su origen y que existen unas intersecciones entre la ciencia y el poder. Sobre las creencias del proceso de aprendizaje de la profesora-investigadora, estas senalan que el modelaje de actores, la vision de la academia que tiene ella asi como la participacion y negociacion entre todos los involucrados en el proceso educativo, son factores que inciden en el proceso de aprendizaje.

  3. The study of single crystals for space processing and the effect of zero gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1975-01-01

    A study was undertaken to analyze different growth techniques affected by a space environment. Literature on crystal growth from melt, vapor phase and float zone was reviewed and the physical phenomena important for crystal growth in zero-gravity environment was analyzed. Recommendations for potential areas of crystal growth feasible for space missions are presented and a bibliography of articles in the area of crystal growth in general is listed.

  4. Experimental studies of cascade phenomena in metals

    SciTech Connect

    Jenkins, M.L.; Kirk, M.A.; Phythian, W.J.

    1992-06-01

    We review recent ion-irradiation experiments which have been performed to investigate the collapse of displacement cascades to dislocation loops in a range of metals and alloys. Many of the results including the dependencies of the collapse probabilities on irradiation temperature, and ion dose, energy and mass, can be explained within the framework of a thermal spike/cascade melting model which has been suggested by computer molecular dynamics simulations. Other aspects, such as the dependence of collapse propabilities on the crystal structure and the effects of alloying and impurities, are less well understood.

  5. Visualization of atomic-scale phenomena in superconductors: application to FeSe

    SciTech Connect

    Choubey, Peayush; Berlijn, Tom; Kreisel, Andreas; Cao, Chao; Hirschfeld, Peter J.

    2014-10-31

    Here we propose a simple method of calculating inhomogeneous, atomic-scale phenomena in superconductors which makes use of the wave function information traditionally discarded in the construction of tight-binding models used in the Bogoliubov-de Gennes equations. The method uses symmetry- based first principles Wannier functions to visualize the effects of superconducting pairing on the distribution of electronic states over atoms within a crystal unit cell. Local symmetries lower than the global lattice symmetry can thus be exhibited as well, rendering theoretical comparisons with scanning tunneling spectroscopy data much more useful. As a simple example, we discuss the geometric dimer states observed near defects in superconducting FeSe.

  6. Interfacial phenomena in gas hydrate systems.

    PubMed

    Aman, Zachary M; Koh, Carolyn A

    2016-03-21

    Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries. PMID:26781172

  7. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  8. Comparing Crystals

    ERIC Educational Resources Information Center

    Sharp, Janet; Hoiberg, Karen; Chumbley, Scott

    2003-01-01

    This standard lesson on identifying salt and sugar crystals expands into an opportunity for students to develop their observation, questioning, and modeling skills. Although sugar and salt may look similar, students discovered that they looked very different under a magnifying glass and behaved differently when dissolved in water. In addition,…

  9. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  10. Black Holes Admitting Strong Resonant Phenomena

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Kotrlová, A.; G. Török

    2008-12-01

    High-frequency twin peak quasiperiodic oscillations (QPOs) are observed in four microquasars, i.e., Galactic black hole binary systems, with frequency ratio very close to 3:2. In the microquasar GRS 1915+105 the structure of QPOs exhibits additional frequencies and more than two frequencies are observed in the Galaxy nuclei Sgr A* or in some extragalactic sources (NGC 4051, MCG-6-30-15 and NGC 5408 X-1). The observed QPOs can be explained by a variety of the orbital resonance model versions assuming resonance of oscillations with the Keplerian frequency νK or the vertical epicyclic frequency νθ, and the radial epicyclic frequency νr, or some combinations of these frequencies. Generally, different resonances could arise at different radii of an accretion disk. However, we have shown that for special values of dimensionless black hole spin a strong resonant phenomena could occur when different resonances can be excited at the same radius, as cooperative phenomena between the resonances may work in such situations. The special values of a are determined for triple frequency ratio sets νK:νθ:νr=s:t:u with s,t,u being small integers. The most promising example of such a special situation arises for black holes with extraordinary resonant spin a=0.983 at the radius r=2.395 M, where νK:νθ:νr=3:2:1. We also predict that when combinations of the orbital frequencies are allowed, QPOs with four frequency ratio set 4:3:2:1 could be observed in the field of black holes with a=0.866,0.882 and 0.962. Assuming the extraordinary resonant spin a=0.983 in Sgr A*, its QPOs with observed frequency ratio ≍3:2:1 imply the black hole mass in the interval 4.3×106 Msolar< M< 5.4×106 Msolar, in agreement with estimates given by other, independent, observations.

  11. Pathways toward understanding Macroscopic Quantum Phenomena

    NASA Astrophysics Data System (ADS)

    Hu, B. L.; Subaşi, Y.

    2013-06-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  12. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  13. Polar Phenomena in Outer Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Orton, G.; Fletcher, L.; Yanamandra-Fisher, P.; Leyrat, C.; Greathouse, T.; Parrish, P.; Encrenaz, T.; Simon-Miller, A.

    2008-12-01

    Infrared observations of the polar regions of the outer planets have revealed similarities to the Earth's atmosphere and some new phenomena. The most dominant force which is apparent in time-dependent studies of the poles is seasonal radiative forcing, which was detected in Saturn's stratosphere as early as 1973. For Saturn, Uranus and Neptune, planets with substantial obliquities, the seasonally dependent changes are predictable and can be used to constrain abundances of optically active gases and the rate of restoration by stratospheric circulation. In the case of Neptune, recent evidence shows that the heating is sufficient to allow a "leak" from the reservoir of methane in the deep atmosphere into the polar stratosphere. New thermal images of Uranus show that the winter pole of Uranus which has only recently emerged fully from darkness is colder than when it was in the middle of winter when Voyager 2 visited, confirming the substantial seasonal phase delay associated with radiative heating and cooling models. Even Jupiter with its 3-degree obliquity shows clear evidence for seasonal forcing of temperatures in the upper troposphere and stratosphere. The second most prominent characteristic of the resolvable polar temperature fields in Jupiter and Saturn is the formation of polar vortices. Jupiter's polar vortices are cold, similar to those detected in the terrestrial planets; they have sharp equatorward boundaries which are characterized by Rossby waves which rotate at the speed of the local zonal wind flow and are coincident with the similarly irregular boundaries of a polar haze, also known as "polar hoods". The cold vortex at Saturn's northern winter pole is muted, but Saturn also has a unique "warm polar vortex" in the south (late summer) pole which shows no apparent wave structure. Saturn's warm polar vortex has no counterpart in the Earth's atmosphere, where summer radiative warming simply dissipates the cold winter vortex. Saturn also possesses

  14. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  15. Neutron detection with single crystal organic scintillators

    NASA Astrophysics Data System (ADS)

    Zaitseva, Natalia P.; Newby, Jason; Hamel, Sebastien; Carman, Leslie; Faust, Michelle; Lordi, Vincenzo; Cherepy, Nerine J.; Stoeffl, Wolfgang; Payne, Stephen A.

    2009-08-01

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10- diphenylanthracene and diphenylacetylene.

  16. Crystal growth in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L. (Inventor); Reiss, Donald A. (Inventor); Lehoczky, Sandor L. (Inventor)

    1992-01-01

    Gravitational phenomena, including convection, sedimentation, and interactions of materials with their containers all affect the crystal growth process. If they are not taken into consideration they can have adverse effects on the quantity and quality of crystals produced. As a practical matter, convection, and sedimentation can be completely eliminated only under conditions of low gravity attained during orbital flight. There is, then, an advantage to effecting crystallization in space. In the absence of convection in a microgravity environment cooling proceeds by thermal diffusion from the walls to the center of the solution chamber. This renders control of nucleation difficult. Accordingly, there is a need for a new improved nucleation process in space. Crystals are nucleated by creating a small localized region of high relative supersaturation in a host solution at a lower degree of supersaturation.

  17. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The crystal growth, device processing and device related properties and phenomena of GaAs are investigated. Our GaAs research evolves about these key thrust areas. The overall program combines: (1) studies of crystal growth on novel approaches to engineering of semiconductor materials (i.e., GaAs and related compounds); (2) investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; (3) investigation of electronic properties and phenomena controlling device applications and device performance. The ground based program is developed which would insure successful experimentation with and eventually processing of GaAs in a near zero gravity environment.

  18. Rheological Properties and Transfer Phenomena of Nanofluids

    NASA Astrophysics Data System (ADS)

    Jung, Kang-min; Kim, Sung Hyun

    2008-07-01

    This study focused on the synthesis of stable nanofluids and investigation of their rhelogical properties and transfer phenomena. Nanofluids of diamond/ethylene glycol, alumina/transformer oil and silica/water were made to use in this study. Rheological properties of diamond nanofluids were determined at constant temperature (25 °C) using a viscometer. For the convective heat transfer experiment, alumina nanofluid passed through the plate heat exchanger. CO2 absorption experiment was conducted in a bubble type absorber containing silica nanofluid. Diamond nanofluid showed non-Newtonian behaviors under a steady-shear flow except the case of very low concentration of solid nanoparticles. The heat transfer coefficient of alumina nanofluid was higher than that of base fluid. One possible reason is that concentration of nanoparticles at the wall side is higher than that of microparticles. Silica nanofluid showed that both average CO2 absorption rate and total absorption amount enhanced than those of base fluid. The stably suspended nanoparticles create a mesh-like structure. That structure arrangement cracks the gas bubble and increases the surface area.

  19. Transition phenomena in unstably stratified turbulent flows.

    PubMed

    Bukai, M; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I; Sapir-Katiraie, I

    2011-03-01

    We study experimentally and theoretically the transition phenomena caused by external forcing from Rayleigh-Bénard convection with large-scale circulation (LSC) to the limiting regime of unstably stratified turbulent flow without LSC, where the temperature field behaves like a passive scalar. In the experiments we use the Rayleigh-Bénard apparatus with an additional source of turbulence produced by two oscillating grids located near the sidewalls of the chamber. When the frequency of the grid oscillations is larger than 2 Hz, the LSC in turbulent convection is destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. However, in all regimes of the unstably stratified turbulent flow the ratio [(ℓ{x}∇{x}T)²+(ℓ{y}∇{y}T)² + (ℓ{z}∇{z}T)²]/<θ²> varies slightly (even in the range of parameters where the behavior of the temperature field is different from that of the passive scalar). Here ℓ{i} are the integral scales of turbulence along the x,y,z directions, and T and θ are the mean and fluctuating parts of the fluid temperature. At all frequencies of the grid oscillations we have detected long-term nonlinear oscillations of the mean temperature. The theoretical predictions based on the budget equations for turbulent kinetic energy, turbulent temperature fluctuations, and turbulent heat flux, are in agreement with the experimental results. PMID:21517582

  20. Efferent feedback can explain many hearing phenomena

    NASA Astrophysics Data System (ADS)

    Holmes, W. Harvey; Flax, Matthew R.

    2015-12-01

    The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).

  1. The Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Doorn, Jarrel; Eaton, M.; Ahrendts, G.; Barker, T.

    2011-05-01

    Transient Lunar Phenomena (TLP's) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP activity has a higher number of reports, though unsubstantiated, in specific areas of the Moon such as the Aristarchus plateau. Our current research includes the division of lunar images taken through multiple filters using a Santa-Barbara Instrument Group (SBIG) ST8-E CCD camera mounted on a 0.45m Centurion telescope. We are also taking spectra of regions such as Aristarchus and the crater Ina, which shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006) using an SBIG DSS-7 spectrometer mounted on a 0.30m Schmidt-Cassegrain optical tube assembly on a Software Bisque Paramount drive system. Future research will include infrared imaging of the lunar surface. We are grateful for the support provided by the NASA Rhode Island Space Grant Consortium and the National Geographic Society.

  2. Viscous theory of surface noise interaction phenomena

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1980-01-01

    A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.

  3. Two-Stage Modelling Of Random Phenomena

    NASA Astrophysics Data System (ADS)

    Barańska, Anna

    2015-12-01

    The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.

  4. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  5. Phantom black holes and critical phenomena

    SciTech Connect

    Azreg-Aïnou, Mustapha; Marques, Glauber T.

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  6. Quantification of statistical phenomena in turbulent dispersions

    NASA Astrophysics Data System (ADS)

    Yates, Matthew; Hann, David; Hewakandamby, Buddhika

    2015-11-01

    Understanding of turbulent dispersions is of great importance for environmental and industrial applications. This includes developing a greater understanding of particle movement in atmospheric flows, and providing data that can be used to validate CFD models aimed at producing more accurate simulations of dispersed turbulent flows, aiding design of many industrial components. Statistical phenomena in turbulent dispersions were investigated using Particle Image Velocimetry. Experiments were carried out in a two dimensional channel over a Reynolds number range of 10000-30000, using water and 500 micron hydrogel particles. Particles were injected at the channel entrance, and dispersion properties were characterised at different distances downstream from the injection point. Probability density functions were compiled for the velocity components of the hydrogels for differing flow conditions. Higher order PDFs were constructed to investigate the behaviour of particle pairs. Dispersed phase data was also used to investigate the mechanics of collisions between hydrogel particles, allowing for calculation of the co-efficient of restitution. PIV algorithms were used to create velocity maps for the continuous phase for varying dispersed phase fractions. Thanks to support of Chevron grant as part of TMF consortium.

  7. Cooperative phenomena in strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Farkašovský, Pavol

    2010-10-01

    In this review we present results of our theoretical study of cooperative phenomena in strongly correlated electron systems obtained within various generalizations of the Falicov-Kimball model. The primary goal of this study was to identify crucial interactions that lead to the stabilization of the specific cooperative phenomenon, and then try to elaborate its comprehensive microscopic description. The main attention is devoted to a discussion of valence and metal-insulator transitions, formation of charge and spin ordering, electronic ferroelectricity, itinerant ferromagmetism and mechanisms leading to their stabilization. Among the major mechanisms we examine the effect of local and nonlocal Coulomb interaction between localized and itinerant electrons, local and nonlocal hybridization, long-range and correlated hopping of itinerant electrons and spin-dependent interaction between localized and itinerant electrons, both for zero and nonzero temperatures, as well as for doped and undoped systems. Finally, the relevance of resultant solutions for a description of rare-earth and transition-metal compounds is discussed.

  8. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  9. Further shock tunnel studies of scramjet phenomena

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.

    1986-01-01

    Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.

  10. Ultrashort Phenomena in Biochemistry and Biological Signaling

    NASA Astrophysics Data System (ADS)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  11. Impact phenomena in fluidized granular matter

    NASA Astrophysics Data System (ADS)

    Mayor, Patrick; Katsuragi, Hiroaki; Durian, Douglas

    2009-03-01

    Projectiles dropped into granular media form a crater and come to rest in a particular way that has been actively investigated in numerous studies. These impact phenomena illustrate how particulate materials respond to externally applied forces. Several recent experiments have focused on the penetration of projectiles impacting granular materials at relatively low speeds, and measured the dynamics of the impact process, yielding force laws accounting for the observations. We present results showing how granular impacts are affected when the load on the grains is modified using a vertical gas flow. Balls or cylinders are dropped into a dry, noncohesive granular medium and we measure the penetration depth when gas is flown upward (thus unloading the contacts) or downward (loading the contacts). We observe that the frictional drag decreases linearly with the flow rate, and vanishes completely once the system is fluidized. Different projectile geometries allow us to separate the effect of normal and tangential frictional forces. We also consider the case of objects that are lowered quasistatically into the granular medium and measure the net vertical force exerted by the granular system on the objects at each immersion depth. We then discuss how this resistance force compares with the forces observed in actual impacts experiments.

  12. Dynamical magnetoelectric phenomena of multiferroic skyrmions.

    PubMed

    Mochizuki, Masahito; Seki, Shinichiro

    2015-12-23

    Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin-orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime. PMID:26624202

  13. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  14. Surface photovoltage phenomena: theory, experiment, and applications

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Shapira, Yoram

    1999-12-01

    The theoretical concepts, experimental tools, and applications of surface photovoltage (SPV) techniques are reviewed in detail. The theoretical discussion is divided into two sections. The first reviews the electrical properties of semiconductor surfaces and the second discusses SPV phenomena. Next, the most common tools for SPV measurements and their relative advantages and disadvantages are reviewed. These include the Kelvin probe and the use of MIS structures, as well as other less used techniques. Recent novel high-spatial-resolution SPV measurement techniques are also presented. Applications include surface photovoltage spectroscopy (SPS) which is a very effective tool for gap state spectroscopy. An in-depth review of quantitative analyses, which permit the extraction of various important surface and bulk parameters, follows. These analyses include: carrier diffusion length; surface band bending, charge, and dipole; surface and bulk recombination rates; surface state distribution and properties; distinction between surface and bulk states; spectroscopy of thin films, heterostructures and quantum structures; and construction of band diagrams. Finally, concluding remarks are given.

  15. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  16. Emergent phenomena in manganites under spatial confinement

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Z. Ward, T.; F. Yin, L.

    2013-01-01

    It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high-Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom—charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS “electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.

  17. Numerical analysis and modeling of atmospheric phenomena

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.

    1994-01-01

    For the past 22 years Grant NGR 22-009-727 has been supporting research in the Center for Meteorology and Physical Oceanography (and its predecessors) in a wide variety of diagnostic and modeling studies of atmospheric and ocean phenomena. Professor Jule Charney was the initial Principal Investigator. Professor Peter Stone joined him as co-Principal Investigator in 1975 and became the sole Principal Investigator in 1981. During its lifetime the Grant has supported in whole or in part 11 Master's theses, 14 Ph.D. theses, and 45 papers published in refereed scientific journals. All of these theses and papers (with bibliographic references) are listed below. All but one of the theses were used to fulfill the requirements for MIT (Massachusetts Institute of Technology) degrees and are available from the MIT libraries. The one exception is F. Chen's Ph.D. thesis which was for a Harvard degree and is available from the Harvard libraries. In addition to the work described in the citations listed below, the Grant has supported Research Assistant Amy Solomon during the past two years to carry out a study of how baroclinic adjustment is affected by vertical resolution, vertical temperature structure, and dissipation. Ms. Solomon plans to use this project for her Ph.D. thesis. Support for this project will continue under NASA Grant NAG 5-2490, 'The Factors Controlling Poleward Heat Transport in Climate Models.'

  18. Some novel phenomena at high density

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan Scott

    Astrophysical environments probe matter in ways impossible on Earth. In particular, matter in compact objects are extraordinarily dense. In this thesis we discuss two phenomena that may occur at high density. First, we study toroidal topological solitons called vortons, which can occur in the kaon-condensed color-flavor-locked phase of high-density quark matter, a candidate phase for the core of some neutron stars. We show that vortons have a large radius compared to their thickness if their electrical charge is on the order of 104 times the fundamental charge. We show that shielding of electric fields by electrons dramatically reduces the size of a vorton. Second, we study an unusual phase of degenerate electrons and nonrelativistic Bose-condensed helium nuclei that may exist in helium white dwarfs. We show that this phase supports a previously-unknown gapless mode, known as the half-sound, that radically alters the material's specific heat, and can annihilate into neutrinos. We provide evidence that this neutrino radiation is negligible compared to the star's surface photoemission.

  19. Ion effects on ionospheric electron resonance phenomena

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1974-01-01

    Ion effects are often observed on topside-sounder stimulated electron plasma wave phenomena. A commonly observed effect is a spur, appearing after a time delay corresponding to the proton gyro period, attached to the low frequency side of an electron plasma resonance. The spurs are often observed on the resonances at the electron plasma frequency f sub N, the harmonics nf sub H of the electron cyclotron frequency f sub H (n = 2, 3, 4, ...), and occasionally on the upper hybrid frequency. The spurs on the f sub N resonance are usually quite small unless the f sub N resonance overlaps with an nf sub H resonance; very large spurs are observed during such overlap conditions. Proton spurs are only observed on the nf sub H resonances when the electron plasma waves associated with these resonances are susceptible to the Harris instability and when the electromagnetic z wave can be initiated by the sounderpulse. This instability is the result of a sounder stimulated anisotropic electron velocity distribution. The observations suggest that energy is fed into the nf sub H longitudinal plasma wave from the z wave via wave-mode coupling. The magnitude of the nf sub H spurs for large n is much greater than for small n.

  20. The Role of Family Phenomena in Posttraumatic Stress in Youth

    PubMed Central

    Deatrick, Janet A.

    2010-01-01

    Topic Youth face trauma that can cause posttraumatic stress (PTS). Purpose 1). To identify the family phenomena used in youth PTS research; and 2). Critically examine the research findings regarding the relationship between family phenomena and youth PTS. Sources Systematic literature review in PsycInfo, PILOTS, CINAHL, and MEDLINE. Twenty-six empirical articles met inclusion criteria. Conclusion Measurement of family phenomena included family functioning, support, environment, expressiveness, relationships, cohesion, communication, satisfaction, life events related to family, parental style of influence, and parental bonding. Few studies gave clear conceptualization of family or family phenomena. Empirical findings from the 26 studies indicate inconsistent empirical relationships between family phenomena and youth PTS, though a majority of the prospective studies support a relationship between family phenomena and youth PTS. Future directions for leadership by psychiatric nurses in this area of research and practice are recommended. PMID:21344778

  1. Natural phenomena hazards, Hanford Site, south central Washington

    SciTech Connect

    Tallman, A.M.

    1996-04-16

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads.

  2. Surfactants and interfacial phenomena, 2nd Ed

    SciTech Connect

    Rosen

    1989-01-01

    The second edition of this monograph on surfactants has been updated to reflect recent advances in our knowledge of theory and practices. New applications run the gamut from microelectronics and magnetic recording, to biotechnology and nonconventional energy conversion. There is a new chapter on the interactions between surfactants. New sections have been added, and original sections expanded, on such topics as ultralow liquid-liquid interfacial tension; microemulsions, miniemulsions, and multiple emulsions; liquid crystal formation; hydrotropy; and steric forces in the stabilization of dispersions. There is also new material on lime soap dispersing agents; fabric softeners, adsorption and wetting of solid surfaces, both equilibrium and none-equilibrium; the relationship between adsorption and micellation in aqueous solutions and its effect on surface tension reduction; and factors determining micellar structure and shape.

  3. Power-law behavior in social and economical phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keizo; Miyazima, Sasuke

    2004-12-01

    We have already found power-law behavior in various phenomena such as high-tax payer, population distribution, name distribution, passenger number at stations, student number in a university from high schools, and so on. We can explain why these phenomena show such interesting behaviors by doing simulations based on adequate models. We have come to the conclusion that there are fractal structures underlying those phenomena.

  4. Threshold Phenomena in Atomic Inner Shells

    NASA Astrophysics Data System (ADS)

    Wang, Honghong

    1995-01-01

    Two types of atomic inner-shell threshold phenomena are studied: (1) atomic inner-shell radiationless resonant Raman scattering (RRRS) as a function of excitation energy, and (2) the onset of Cu Coster-Kronig (CK) transitions due to extraatomic relaxation, as a function of cluster size. (1). The K-L_{2,3}L _{2,3} and L_{2,3 }-VV Auger spectra of P in InP were measured in the vicinity of the P K-shell ionization threshold as well as at high excess energies. The evolution of the P K-L_{2,3 }L_{2,3} ^1D Auger spectrum from the radiationless resonant Raman scattering regime into the normal Auger transition regime in InP is found to be in accordance with time-independent resonant scattering theory of inner-shell threshold phenomena. The measured RRRS intensity reveals a quasi-bound state in the bulk-sensitive P K absorption spectrum. The origins of deviations of the RRRS energy from linear dispersion are examined in terms of the finite incident-photon-energy distribution and multiple resonances. Both our measurements and semiclassical calculations show that the post-collision interaction effect is relatively small. The measured P K-L_{2,3}L_{2,3} intensities and P 1s lifetime width are found to be in good agreement with atomic calculations, revealing the predominantly atomic character of P inner-shell transitions in InP. The evolution of P L_{2,3 }-VV Auger transitions in InP is found to be sensitive to the excitation energy at the P 1s threshold; the P K-L_{2,3}L_{2,3 } Raman resonance causes changes in the L _{2,3}-VV diagram-transition line shape as well as intensity enhancement of all L _{2,3}-VV features. Applying the Cini-Sawatzky model to the line shape reveals a 0.3-eV change in the local effective Coulomb interaction U _{eff} near the resonance. The difference in the line shapes between the satellite and diagram transitions indicates a change of the local density of states in the valence band in the presence of a spectator 2p hole. The single- and double-2p

  5. Polymer crystallization in thin films: morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Albert, Julie

    Polymer crystallization has been studied both computationally and experimentally for decades, elucidating many of the mysteries surrounding crystallization kinetics and thermodynamics. However, many unanswered questions remain pertaining to the relationships between crystallization phenomena and material properties needed for specific applications that range from drug delivery and tissue engineering to optical devices and mechanically robust membranes. One of the especially interesting facets of polymer crystallization is the behavior observed when these long chain molecules are spatially confined in thin and ultrathin films. Confined geometry leads to chain configurations, and therefore thermal, mechanical, and optical properties, sometimes far removed from reported bulk values. This project aims to study the phenomena exhibited by linear semi-crystalline polymers in thin films as well as the way in which blending with homopolymers, block copolymers, and novel polymer chain architectures affect morphology, biodegradation, optical, thermal, and mechanical properties.

  6. Crystal growth of device quality GaAs in space

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1983-01-01

    GaAs device technology has recently reached a new phase of rapid advancement, made possible by the improvement of the quality of GaAs bulk crystals. At the same time, the transition to the next generation of GaAs integrated circuits and optoelectronic systems for commercial and government applications hinges on new quantum steps in three interrelated areas: crystal growth, device processing and device-related properties and phenomena. Special emphasis is placed on the establishment of quantitative relationships among crystal growth parameters-material properties-electronic properties and device applications. The overall program combines studies of crystal growth on novel approaches to engineering of semiconductor material (i.e., GaAs and related compounds); investigation and correlation of materials properties and electronic characteristics on a macro- and microscale; and investigation of electronic properties and phenomena controlling device applications and device performance.

  7. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  8. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  9. Dynamical phenomena: implications for extreme event attribution

    NASA Astrophysics Data System (ADS)

    Mitchell, Dann; Davini, Paolo; Harvey, Ben; Massey, Neil; Haustein, Karsten; Woollings, Tim; Jones, Richard; Otto, Fredi; Guillod, Benoit; Sparrow, Sarah; Wallom, David; Allen, Myles

    2016-04-01

    Atmospheric modes of variability relevant for extreme temperature and precipitation events are evaluated in models currently being used for extreme event attribution. A multi-thousand initial condition ensemble of the global circulation model HadAM3P is compared with both the multi-model ensemble from the Coupled Model Inter-comparison Project, Phase 5 (CMIP-5) and the CMIP-5 atmosphere-only counterparts (AMIP-5). The analysis focuses on mid Northern Latitudes (primarily Europe) during winter, and is compared with ERA-Interim reanalysis. The tri-modal Atlantic Eddy-driven jet distribution is remarkably well captured in HadAM3P, but not so in CMIP-5 or AMIP-5. The well known underestimation of blocking in the Atlantic region is apparent in CMIP-5 and AMIP-5, and to a lesser extent in HadAM3P. Pacific blocking features are well produced in all modeling initiatives. Blocking duration is generally biased towards models reproducing too many short-lived events. Associated storm tracks are too zonal over the Atlantic in the CMIP-5 ensemble, but well simulated in HadAM3P with the exception of being too weak over Western Europe. In all cases, the CMIP-5 and AMIP-5 performances were almost identical, suggesting that the atmospheric modes considered here are not strongly coupled to SSTs, and perhaps other model characteristics such as resolution are more important. It is recommended that only models capable of producing the necessary dynamical phenomena be used for event attribution analyses.

  10. Programmed death phenomena: from organelle to organism.

    PubMed

    Skulachev, Vladimir P

    2002-04-01

    Programmed death phenomena appear to be inherent not only in living cells (apoptosis), but also in subcellular organelles (e.g., self-elimination of mitochondria, called mitoptosis), organs (organoptosis), and even whole organisms (phenoptosis). In all these cases, the "Samurai law of biology"--it is better to die than to be wrong--seems to be operative. The operation of this law helps complicated living systems avoid the risk of ruin when a system of lower hierarchic position makes a significant mistake. Thus, mitoptosis purifies a cell from damaged and hence unwanted mitochondria; apoptosis purifies a tissue from unwanted cells; and phenoptosis purifies a community from unwanted individuals. Defense against reactive oxygen species (ROS) is probably one of the primary evolutionary functions of programmed death mechanisms. So far, it seems that ROS play a key role in the mito-, apo-, organo-, and phenoptoses, which is consistent with Harman's theory of aging. Here a concept is described that tries to unite Weismann's hypothesis of aging as an adaptive programmed death mechanism and the generally accepted alternative point of view that considers aging as an inevitable result of accumulation in an organism of occasional injuries. It is suggested that injury accumulation is monitored by a system(s) actuating a phenoptotic death program when the number of injuries reaches some critical level. The system(s) in question are organized in such a way that the lethal case appears to be a result of phenoptosis long before the occasional injuries make impossible the functioning of the organism. It is stressed that for humans these cruel regulations look like an atavism that, if overcome, might dramatically prolong the human life span. PMID:11976198

  11. Crystallization Physics in Biomacromolecular Systems

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2003-01-01

    The crystals are built of molecules of protein, nucleic acid and their complexes, like viruses, approx. 5x10(exp 3)+ 3x10(exp 6) Da in weight and 2 + 20 nm in effective diameter. This size strongly exceeds action range of molecular forces and makes a big difference with inorganic crystals. Intermolecular contacts form patches on the biomacromolecular surface. Each patch may occupy only a small percent of the whole surface and vary from polymorph to polymorph of the same protein. Thus, under different conditions (pH, solution chemistry, temperature, any area on the macromolecular surface may form a contact. The crystal Young moduli, E approx. equals 0.1 + 0.5 GPa are more than 10 times lower than that of inorganics and the biomolecules themselves. Water within biocrystals (30-70%) is unable to flow unless typical deformation time is longer than approx. 10(exp -5)s. This explains the discrepancy between light scattering and static measurements of E. Nucleation and Growth requires typically concentrations exceeding the equilibrium ones up to 100 times - because of the new size scale results in 10 - 10(exp 3) times lower kinetic coefficients than that needed for inorganic solution growth. All phenomena observed in the latter occur with protein crystallization and are even better studied by AFM. Crystals are typically facetted. Among unexpected findings of general significance are - net molecular exchange flux at kinks is much lower than that expected from supersaturation, steps with low (< approx. 10(exp -2)) kink density at steps follow Gibbs-Thomson law only at very low supersaturations, step segment growth rate may be independent of step energy. Crystal perfection is a must of biocrystallization to achieve the major goal to find 3-D atomic structure of biomacromolecules by x-ray diffraction. Poor diffraction resolution (> 3Angstrom) makes crystallization a bottleneck for structural biology. All defects typical of small molecule crystals are found in biocrystals, but

  12. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  13. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    PubMed

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. PMID:22088441

  14. Glassy dislocation dynamics in colloidal dimer crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon

    2012-02-01

    Dislocation mobility is central to both the mechanical response and the relaxation mechanisms of crystalline materials. Recent experiments have explored the role of novel particle anisotropies in affecting the rules of defect motion in crystals. ``Peanut-shaped'' colloidal dimer particles consisting of two connected spherical lobes form densely packed crystals in 2D. In these ``degenerate crystals,'' the particle lobes occupy triangular lattice sites while the particle axes are randomly oriented among the three crystalline directions. One consequence of the random orientations of the dimers is that dislocation glide is severely limited by certain particle arrangements in the degenerate crystals. Using optical tweezers to manipulate single lobe-sized spherical intruder particles, we locally deform the crystal, creating defects. During subsequent relaxation, the dislocations formed during the deformation leave the crystal grain, either via annihilation with other dislocations or by moving to a grain boundary. Interestingly, in large crystalline grains this dislocation relaxation occurs through a two-stage process reminiscent of slow relaxations in glassy systems, suggesting the novel concept that glassy phenomena may be introduced to certain kinds of colloidal crystals via simple anisotropic constituents.

  15. Droplet hydrodynamics during lysozyme protein crystallization.

    PubMed

    Pradhan, T; Asfer, M; Panigrahi, P K

    2012-11-01

    Various experimental studies in zero gravity have been reported in the literature for generation of superior quality crystals due to the importance of convective transport on protein crystal quality. However, limited experimental and numerical studies are available in the literature for a complete characterization of transport phenomena during the protein crystal growth process. The present investigation reports experimental results on convective motion inside the droplet during protein crystallization by the vapor diffusion method. Lysozyme crystals are grown using a sitting drop method and micro-particle image velocimetry is used for investigating the detailed hydrodynamics inside the droplet. Dynamic evolution of the flow field for the complete crystal growth process, i.e., during the prenucleation, nucleation, and postnucleation stage, is reported. Various flow transitions are observed during the complete cycle of the protein crystal growth process. Significant Marangoni convection is observed during the prenucleation period followed by buoyancy-driven convection during the postnucleation period. The Marangoni convection flow patterns observed during the prenucleation stage match those of evaporating droplets. The postnucleation convection patterns are similar to those of ethanol-water mixture evaporation with high ethanol concentration. PMID:23214788

  16. Precrystallisation fluctuation phenomena in homopolymer melts.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Fairclough, J. P. A.; Terrill, N. J.; Young, R. J.; Towns-Andrews, E.; Komanschek, B. U.

    1997-03-01

    In order to separate nucleation from growth, two types of experiments have been performed on polypropylene, polyethylene, polyethylene oxide and polyethylene terepthalate. Rapid crystallisations were studied by melt extrusion of a tape. The extrusion of tape is a steady-state process where the distance down the spin-line is directly proportional to the crystallisation time. This allowed long data collection times (minutes) for very short crystallisation times. Prior to the development of crystallinity, well resolved, oriented small-angle patterns could be collected with length scales (50-200Åand intensities that grew down the spin-line. The orientation of the patterns was caused by the coupling of the density fluctuations with the elongational flow-field. Slow crystallisations with long induction times have been studied by simultaneous SAXS and WAXS. Clear development of small angle scattering, due to the density fluctuations, with a characteristic length scale of ≈ 100Åwas observed prior to the presence of crystals identified by wide-angle scattering. The growth of these fluctuations is analysed in terms of Cahn Hilliard kinetics. We could estimate the both the dominant length scale and the effective diffusion coefficient and by conducting experiments at a series of temperature we could find the stability limit.

  17. Oscillatory phenomena in solar and stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Bloomfield, David Shaun

    This thesis presents varying studies into the nature of intensity oscillations observed both on the Sun and two active cool stars. The first part concentrates on the detection of correlated oscillations occuring between differing heights in the solar atmosphere above quiet-Sun magnetic network bright points (NBPs), interpreted as signatures of energy propagation. This is achieved through correlating in time the wavelet power spectra of lightcurves from images obtained in several optical wavelengths. In four of the eleven NBPs studied, evidence is found for upwardly-propagating, low-frequency waves (1.4 mHz, 2.1 mHz) in the lower chromosphere, decreasing in oscillatory power with the onset, or increase in power, of higher-frequency waves (2.9 mHz, 4.0 mHz) within the upper chromosphere. Moving higher into the atmosphere two of the four cases of higher frequency waves also show a decrease in power. These observational detections are interpreted as transverse-mode magnetohydrodynamic (MHD) waves undergoing non-linear mode coupling to longitudinal-modes at double the frequency, which shock or otherwise dissipate in the high chromosphere. Evidence is also found for additional upward- and downward- directed waves within all the NBPs studied. The extension of wavelet power techniques into the analysis of phase difference and phase coherence is also presented, utilising UV intensities obtained from above a weak solar network element. The problems associated with the quantification of phase coherence values are outlined and a comparison of two differing methods is carried out. Changes observed in the evolution of phase difference between oscillations detected in the UV emission of the temperature minimum and low transition region are shown to be due to the alteration of the underlying magnetic topology, occuring when same polarity flux emerges nearby. The final part of this thesis concerns the differing situation of intensity variations during energetic flare phenomena on

  18. Fibre Optic Temperature Sensors Using Fluorescent Phenomena.

    NASA Astrophysics Data System (ADS)

    Selli, Raman Kumar

    Available from UMI in association with The British Library. A number of fibre optic sensors based on fluorescent phenomena using low cost electronic and optical filtering techniques, for temperature sensing applications are described and discussed. The initial device developed uses the absorption edge change of an optical glass to monitor changes in temperature with a second wavelength reference channel being generated from a fluorescent material, neodymium doped in glass. This device demonstrates the working of the self-referencing principle in a practical device tested over the temperature range of -60^circ C to 200^circC. This initial device was improved by incorporating a microprocessor and by modifying the processing electronic circuitry. An alternative probe was constructed which used a second fibre placed along-side the addressing fibre in contrast to the original device where the fibre is placed at the opposite end of the addressing fibre. A device based on the same principle but with different absorption glasses and a different fluorescent medium, crystalline ruby, was also examined. This device operated at a lower wavelength region compared to the infra -red working region of the first device. This work illustrated the need to make an appropriate choice of sensor absorption glass so that the cheaper indicator type LEDs, which operated at lower wavelengths, may be used. Ruby is a fluorescent material which is characterized by each emission wavelength having its own temperature characteristics. The integrated energy output over the complete emission spectrum is independent of temperature. This provided a means of generating a reference from the complete spectrum while a small frequency band gave a temperature dependent output. This characteristic of ruby was used to develop a temperature measuring device. A final system which utilises the temperature dependent decay-time emission properties of crystalline ruby was developed. In this case the ruby was

  19. Saving the Phenomena in Medieval Astronomy

    NASA Astrophysics Data System (ADS)

    Seeskin, K.

    2011-06-01

    Aristotle's theory of motion is based on two principles: (1) all motion to either from the midpoint of the Earth, toward it, or around it, and (2) circular motion must proceed around an immovable point. On this view, the heavenly bodies are individual points of light carried around by a series of concentric spheres rotating at a constant pace around the midpoint of the Earth. But even in Aristotle's day, it was known that this theory had a great deal of difficulty accounting for planetary motion. Ptolemy's alternative was to introduce epicycles and eccentric orbits, thus denying Aristotle's view of natural motion. There was no doubt that Ptolemy's predictions were far better than Aristotle's. But for the medievals, Aristotle's theory made better intuitive sense. Moreover, Ptolemy's theory raised the question of how one sphere could pass through another. What to do? The solution of Moses Maimonides (1138-1204) was to say that it is not the job of the astronomer to tell us how things actually are but merely to propose a series of hypotheses that allow us to explain the relevant data. This view had obvious theological implications. If astronomy could explain planetary motion in an acceptable way, there was reason to believe that the order or structure of the heavens is what it is by necessity. This suggests that God did not exercise any degree of choice in making it that way. But if astronomy cannot explain planetary motion, the most reasonable explanation is that we are dealing with contingent phenomena rather than necessary ones. If there is contingency, there is reason to think God did exercise a degree of choice in making the heavens the way they are. A God who exercises choice is much closer to the God of Scripture. Although Galileo changed all of this, and paved the way for a vastly different view of astronomy, the answer to one set of questions raises a whole different set. In short, the heavenly motion still poses ultimate questions about God, existence, and

  20. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  1. Focusing concave lens using photonic crystals with magnetic materials.

    PubMed

    Yang, Shieh-Yueh; Hong, Chin-Yih; Yang, Hong-Chang

    2006-04-01

    The guided modes lying in the upper gap-edge band in the photonic band structure of photonic crystals have negative values of refractive index. This feature generates many interesting optical phenomena, and some spectacular photonic devices such as focusing slabs have been developed. We report the design of a photonic-crystal, planoconcave lens for focusing incident parallel light, and theoretically analyze the chromatic aberrations for TM and TE modes. In addition to dielectric photonic crystals, the chromatic aberration of a magnetic photonic-crystal planoconcave lens was investigated because the magnetic permeability may also contribute to the periodic index contrast in photonic crystals, especially at long wavelengths. A significant difference was found in the chromatic aberration for a TM mode propagating in a dielectric than in a magnetic photonic-crystal planoconcave lens. PMID:16604781

  2. Conceptual Framework to Enable Early Warning of Relevant Phenomena (Emerging Phenomena and Big Data)

    SciTech Connect

    Schlicher, Bob G; Abercrombie, Robert K; Hively, Lee M

    2013-01-01

    Graphs are commonly used to represent natural and man-made dynamic systems such as food webs, economic and social networks, gene regulation, and the internet. We describe a conceptual framework to enable early warning of relevant phenomena that is based on an artificial time-based, evolving network graph that can give rise to one or more recognizable structures. We propose to quantify the dynamics using the method of delays through Takens Theorem to produce another graph we call the Phase Graph. The Phase Graph enables us to quantify changes of the system that form a topology in phase space. Our proposed method is unique because it is based on dynamic system analysis that incorporates Takens Theorem, Graph Theory, and Franzosi-Pettini (F-P) theorem about topology and phase transitions. The F-P Theorem states that the necessary condition for phase transition is a change in the topology. By detecting a change in the topology that we represent as a set of M-order Phase Graphs, we conclude a corresponding change in the phase of the system. The onset of this phase change enables early warning of emerging relevant phenomena.

  3. Crystallization of sodium chloride from a concentrated calcium chloride-potassium chloride-sodium chloride solution in a CMSMPR crystallizer: Observation of crystal size distribution and model validation

    NASA Astrophysics Data System (ADS)

    Choi, Byung Sang

    Compared to overwhelming technical data available in other advanced technologies, knowledge about particle technology, especially in particle synthesis from a solution, is still poor due to the lack of available equipment to study crystallization phenomena in a crystallizer. Recent technical advances in particle size measurement such as Coulter counter and laser light scattering have made in/ex situ study of some of particle synthesis, i.e., growth, attrition, and aggregation, possible with simple systems. Even with these advancements in measurement technology, to grasp fully the crystallization phenomena requires further theoretical and technical advances in understanding such particle synthesis mechanisms. Therefore, it is the motive of this work to establish the general processing parameters and to produce rigorous experimental data with reliable performance and characterization that rigorously account for the crystallization phenomena of nucleation, growth, aggregation, and breakage including their variations with time and space in a controlled continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer. This dissertation reports the results and achievements in the following areas: (1) experimental programs to support the development and validation of the phenomenological models and generation of laboratory data for the purpose of testing, refining, and validating the crystallization process, (2) development of laboratory well-mixed crystallizer system and experimental protocols to generate crystal size distribution (CSD) data, (3) the effects of feed solution concentration, crystallization temperature, feed flow rate, and mixing speed, as well as different types of mixers resulting in the evolution of CSDs with time from a concentrated brine solution, (4) with statistically designed experiments the effects of processing variables on the resultant particle structure and CSD at steady state were quantified and related to each of those operating

  4. Electromagnetic emission memory phenomena related to LiF ionic crystal deformation

    NASA Astrophysics Data System (ADS)

    Mavromatou, C.; Tombras, G. S.; Ninos, D.; Hadjicontis, V.

    2008-04-01

    During the uniaxial compression of LiF ionic monocrystals, acoustic and electromagnetic emissions (EME) are detected. We observed that when the compression is performed in successive loading, unloading cycles and these emissions are being monitored, no new emissions will occur unless the maximum stress of the previous cycle is exceeded, meaning that the material presents memory characteristics. This is observed not only for the acoustic emission (AE), which is the well known Kaiser effect, but for the EME as well. In other words, the material appears to memorize and reveal the previously maximum stress it suffered while being deformed. The importance of an electromagnetic memory feature of a material can be related to various applications in material science, especially when the detection of AE is not feasible or gives false alert. Such cases may very well be earthquakes' predictive indications, monitoring of mines' stability, imminent landslides, etc.

  5. Phase transitions and reentrant phenomena in liquid crystals having both rigid and flexible intramolecular joints

    NASA Astrophysics Data System (ADS)

    Pyżuk, W.; Górecka, E.; Mieczkowski, J.; Przedmojski, J.

    1992-07-01

    Two series of liquid-crystalline compounds having three phenyl rings separated by flexible spacer —CH(CH{3})CH{2}—COO— and by rigid azo and azoxy group, were studied by DSC, optical and X-ray methods. For esters of dl-3-(4^{prime}-nitro)-phenylbutyric acid with 4^{prime}-alkoxy-phenylazo-phenol-4 having dodecyloxy or longer terminal chains, as well as for related azoxy compounds, a narrow (even below 5 K) reentrant or inverted nematic phase appearing between partly bilayer and monolayer smectics A was observed. For higher homologues of the azoxy series additional smectic phases appear, leading to the occurrence of new multicritical points, e.g. the critical end point Ad Cd N^re. On each of the lines, which separate nematic from smectic A phases, transitions are of weakly first or second-order and more than one tricritical point can occur. On the A{1} N/A{1} N^re line, a simple N A{1} tricritical point is observed at T_NI/T_AN = 0.834. The presence of further critical points depends on the components of the binary system involved. Four of the azoxy compounds studied undergo a second order phase transition between partly bilayer smectics, Ad and Cd. Such a transition is accompanied by a jumb in the specific heat, varying linearly with the length of the molecular tails. Various temperature dependences of the layer spacing in the Ad phase are observed for subsequent homologues from the azoxy series. Plusieurs cristaux liquides composés de trois groupements phényl séparés par un groupement —CH(CH{3})CH{2}—COO—, ainsi que par des groupements azo et azoxy, ont été examinés par AED, méthodes optiques et par rayons X. Pour des esters de l'acide dl-3-(4^{prime}-nitro)phénylbutyrique et de 4^{prime}-alkoxy-phénylazo-phénol-4 ayant comme terminaison une chaîne dodecyloxy ou bien plus longue, ainsi que pour des composés azoxy relatif, on observe (même au-dessous de 5 K) une étroite phase nématique réentrante ou inverse entre les phases smectiques : monocouche et partiellement bicouche. Pour des homologues plus longs dans la série des composés azoxy, on a constaté l'existence d'autres phases smectiques ce qui implique l'apparition, sur les diagrammes des phases, de nouveau points multicritiques, par exemple le point Ad Cd N^re. Sur chaque ligne séparant les phases smectiques A de la phase nématique les transitions sont faiblement du premier ordre ou du deuxième ordre ce qui mène dans certain cas à plus qu'un point tricritique. Sur la ligne A{1} N/A{1} N^re on observe à T_NI/T_AN = 0,834 un simple point tricritique N A{1} — l'apparition des autres dépend du choix des constituants du système binaire. Dans le cas de quatre composés azoxy on a constaté une transition du deuxième ordre entre les phases smectiques partiellement bicouches, Ad et Cd. La transition est accompagnée d'un brusque changement de la chaleur spécifique qui varie linéairement avec la longueur de la queue de la molécule. Pour des homologues suivants de la série des composés azoxy on observe différentes dépendances en température de la distance entre les couches de la phase Ad.

  6. The role of mass transport in protein crystallization.

    PubMed

    García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso

    2016-02-01

    Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments. PMID:26841759

  7. Nonlinear resonant phenomena in multilevel quantum systems

    NASA Astrophysics Data System (ADS)

    Hicke, Christian

    We study nonlinear resonant phenomena in two-level and multilevel quantum systems. Our results are of importance for applications in the areas of quantum control, quantum computation, and quantum measurement. We present a method to perform fault-tolerant single-qubit gate operations using Landau-Zener tunneling. In a single Landau-Zoner pulse, the qubit transition frequency is varied in time so that it passes through the frequency of a radiation field. We show that a simple three-pulse sequence allows eliminating errors in the gate up to the third order in errors in the qubit energies or the radiation frequency. We study the nonlinear transverse response of a spin S > 1/2 with easy-axis anisotropy. The coherent transverse response displays sharp dips or peaks when the modulation frequency is adiabatically swept through multiphoton resonance. The effect is a consequence of a certain conformal property of the spin dynamics in a magnetic field for the anisotropy energy ∝ S2z . The occurrence of the dips or peaks is determined by the spin state. Their shape strongly depends on the modulation amplitude. Higher-order anisotropy breaks the symmetry, leading to sharp steps in the transverse response as function of frequency. The results bear on the dynamics of molecular magnets in a static magnetic field. We show that a modulated large-spin system has special symmetry. In the presence of dissipation it leads to characteristic nonlinear effects. They include abrupt switching between transverse magnetization branches with varying modulating field without hysteresis and a specific pattern of switching in the presence of multistability and hysteresis. Along with steady forced vibrations the transverse spin components can display transient vibrations at a combination of the Larmor frequency and a slower frequency determined by the anisotropy energy. The analysis is based on a microscopic theory that takes into account relaxation mechanisms important for single

  8. Mixed burden softening and melting phenomena

    NASA Astrophysics Data System (ADS)

    Kaushik, Pallav

    The blast furnace (BF) will remain the major iron producing unit for the foreseeable future. The cohesive zone, where ferrous materials soften and melt, affects the productivity of the BF. This research was focused on expanding the current understanding of the mechanism of softening and melting of the ferrous materials. The other objective of this project was to examine the potential use of direct reduced iron (DRI) and hot briquetted iron (HBI) as the BF burden. The materials used in this study were DRI, HBI, lump iron ore and pellets. A wide variety of experimental procedures were employed to completely understand the process phenomena. The softening and melting (SM) experiments were conducted under load and X-Ray fluoroscopy was used to visualize the process. The results of these experiments were conducive in determining a suitable mechanism of softening and melting of the burden. For single burdens of DRI and HBI, softening occurred when metal began to melt. For mixed burdens of DRI and pellets/lump ore, the initial deformation was not affected by DRI; however DRI dominated as the temperature increased and melting occurred only when DRI melted. Melt dripping was observed at temperatures close to meltdown. A FactSage slag model was used to obtain the evolution of liquid with temperature. It was compared with the bed shrinkage which indicated that the most likely reason of the softening of the burden is the deformation of solid, phases, especially iron. The bulk SM experiments were interrupted at temperatures of interest and samples were examined for the morphological changes. These experiments were instrumental in studying the burden interaction at different stages during softening and melting of the burden. In addition, in separate experiments (without load), the melting structure of DRI/HBI samples was studied. The results of these experiments were expanded to include viscosity, surface energy and deformation rate calculations which were helpful in

  9. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  10. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  11. Crystal optical studies of lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Kushnir, O. S.; Burak, Y. V.; Bevz, O. A.; Polovinko, I. I.

    1999-10-01

    Using the HAUP-type universal polarimeter and the Senarmont technique, detailed crystal optical studies of Li2B4O7, lithium tetraborate, are carried out. It is shown that the optical indicatrix rotation and the optical activity are absent from the crystal, in accordance with symmetry considerations. Measurements of optical birefringence reveal the existence of a regular staircase-like temperature behaviour in the whole range under investigation (290-480 K), a hysteresis character of the birefringence under cycling temperature and a pronounced thermooptical memory effect. The origins of the above phenomena are analysed, in particular the possible influence of the pyroelectric effect and systematic errors of the optical equipment. A conclusion is drawn that the main features of the birefringence are well explained by an incommensurately modulated super-structure which is at present a matter of debate. The peculiarities of the optical properties of lithium tetraborate are compared with those of incommensurate crystals known from the literature.

  12. Phonon heat conduction in layered anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Minnich, A. J.

    2015-02-01

    The thermal properties of anisotropic crystals are of both fundamental and practical interest, but transport phenomena in anisotropic materials such as graphite remain poorly understood because solutions of the Boltzmann equation often assume isotropy. Here, we extend an analytic solution of the transient, frequency-dependent Boltzmann equation to highly anisotropic solids and examine its predictions for graphite. We show that this simple model predicts key results, such as long c -axis phonon mean free paths and a negative correlation of cross-plane thermal conductivity with in-plane group velocity, that were previously observed with computationally expensive molecular-dynamics simulations. Further, using our analytic solution, we demonstrate a method to reconstruct the anisotropic mean free path spectrum of crystals with arbitrary dispersion relations without any prior knowledge of their harmonic or anharmonic properties using observations of quasiballistic heat conduction. These results provide a useful analytic framework to understand thermal transport in anisotropic crystals.

  13. Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S. (Editor); West, Robert A. (Editor); Rahe, Jurgen (Editor); Pereyda, Margarita

    1989-01-01

    The current state of knowledge of dynamic processes in the Jovian system is assessed and summaries are provided of both theoretical and observational foundations upon which future research might be based. There are three sections: satellite phenomena and rings; magnetospheric phenomena, Io's torus, and aurorae; and atmospheric phenomena. Each chapter discusses time dependent theoretical framework for understanding and interpreting what is observed; others describe the evidence and nature of observed changes or their absence. A few chapters provide historical perspective and attempt to present a comprehensive synthesis of the current state of knowledge.

  14. Analytical investigation of critical phenomena in MHD power generators

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed. The performance of a NASA specified 500 MW(th) flow train is analyzed. Critical phenomena analyzed include: Hall voltage overshoots; optimal load schedules; parametric dependence of the electrode voltage drops; boundary layer behavior; near electrode phenomena with finite electrode segmentation; current distribution in the end regions; scale up rules; optimum Mach number distribution; and the effects of alternative cross sectional shapes.

  15. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  16. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  17. Ribbon Crystals

    PubMed Central

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet–Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order. PMID:24098360

  18. Microscopic kinetic model for polymer crystal growth

    NASA Astrophysics Data System (ADS)

    Hu, Wenbing

    2011-03-01

    Linear crystal growth rates characterize the net result of competition between growth and melting at the liquid-solid interfaces. The rate equation for polymer crystal growth can be derived with a barrier term for crystal growth and with a driving force term of excess lamellar thickness, provided that growth and melting share the same rate-determining steps at the growth front. Such an ansatz can be verified by the kinetic symmetry between growth and melting around the melting point of lamellar crystals, as made in our recent dynamic Monte Carlo simulations. The profile of the growth/melting front appears as wedge-shaped, with the free energy barrier for intramolecular secondary crystal nucleation at its top, and with the driving force gained via instant thickening at its bottom. Such a scenario explains unique phenomena on polymer crystal growth, such as chain folding, regime transitions, molecular segregation of polydisperse polymers, self-poisoning with integer-number chain-folding of short chains, and colligative growth rates of binary mixtures of two chain lengths. Financial support from NNSFC No. 20825415 and NBRPC No. 2011CB606100 is acknowledged.

  19. Second harmonic generation from the 'centrosymmetric' crystals.

    PubMed

    Nalla, Venkatram; Medishetty, Raghavender; Wang, Yue; Bai, Zhaozhi; Sun, Handong; Wei, Ji; Vittal, Jagadese J

    2015-05-01

    Second harmonic generation (SHG) is a well known non-linear optical phenomena which can be observed only in non-centrosymmetric crystals due to non-zero hyperpolarizability. In the current work we observed SHG from a Zn(II) complex which was originally thought to have crystallized in the centrosymmetric space group C2/c. This has been attributed to the unequal antiparallel packing of the metal complexes in the non-symmetric space group Cc or residual non-centrosymmetry in C2/c giving rise to polarizability leading to strong SHG. The enhancement of SHG by UV light has been attributed to the increase in non-centrosymmetry and hence polarity of packing due to strain induced in the crystals. The SHG signals measured from these crystals were as large as potassium dihydrogen phosphate crystals, KH2PO4 (KDP), and showed temperature dependence. The highest SHG efficiency was observed at 50 K. The SHG phenomenon was observed at broad wavelengths ranging from visible to below-red in these crystals. PMID:25995840

  20. Large-Scale Numerical Modeling of Melt and Solution Crystal Growth

    NASA Astrophysics Data System (ADS)

    Derby, Jeffrey J.; Chelikowsky, James R.; Sinno, Talid; Dai, Bing; Kwon, Yong-Il; Lun, Lisa; Pandy, Arun; Yeckel, Andrew

    2007-06-01

    We present an overview of mathematical models and their large-scale numerical solution for simulating different phenomena and scales in melt and solution crystal growth. Samples of both classical analyses and state-of-the-art computations are presented. It is argued that the fundamental multi-scale nature of crystal growth precludes any one approach for modeling, rather successful crystal growth modeling relies on an artful blend of rigor and practicality.

  1. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  2. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  3. Probing Cytological and Reproductive Phenomena by Means of Bryophytes.

    ERIC Educational Resources Information Center

    Newton, M. E.

    1985-01-01

    Describes procedures (recommended for both secondary and college levels) to study mitosis, Giemsa C-banding, reproductive phenomena (including alternation of generations), and phototropism in mosses and liverworts. (JN)

  4. INVESTIGATION INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. ine pore diffusers were obtained from five municipal wastewate...

  5. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  6. Analysis of nuclear reactor instability phenomena. Progress report

    SciTech Connect

    Lahey, R.T. Jr.

    1993-03-01

    The phenomena known as density-wave instability often occurs in phase change systems, such as boiling water nuclear reactors (BWRS). Our current understanding of density-wave oscillations is in fairly good shape for linear phenomena (eg, the onset of instabilities) but is not very advanced for non-linear phenomena [Lahey and Podowski, 1989]. In particular, limit cycle and chaotic instability modes are not well understood in boiling systems such as current and advanced generation BWRs (eg, SBWR). In particular, the SBWR relies on natural circulation and is thus inherently prone to problems with density-wave instabilities. The purpose of this research is to develop a quantitative understanding of nonlinear nuclear-coupled density-wave instability phenomena in BWRS. This research builds on the work of Achard et al [1985] and Clausse et al [1991] who showed, respectively, that Hopf bifurcations and chaotic oscillations may occur in boiling systems.

  7. Unusual radio and plasma wave phenomena observed in March 1991

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    During the intense solar flare activity in March 1991 a number of unusual radio emission and Langmuir wave phenomena were observed by the radio and plasma wave (URAP) experiment on the Ulysses spacecraft. These phenomena were associated with unusual conditions in the interplanetary medium (IPM) presumably resulting from intense solar activity. Some of these URAP observations cannot be explained by mechanisms usually attributed to interplanetary (IP) radio emissions and Langmuir wave activity and require other interpretations.

  8. Department of Energy Natural Phenomena Hazards Mitigation Program

    SciTech Connect

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  9. Classification of Transient Phenomena in Distribution System using wavelet Transform

    NASA Astrophysics Data System (ADS)

    Sedighi, Alireza

    2014-05-01

    An efficient procedure for classification of transient phenomena in distribution systems is proposed in this paper. The proposed method has been applied to classify some transient phenomena such as inrush current, load switching, capacitor switching and single phase to ground fault. The new scheme is based on wavelet transform algorithm. All of the events for feature extraction and test are simulated using Electro Magnetic Transient Program (EMTP). Results show high accuracy of proposed method.

  10. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Spivak, B. Z.; Andreev, A. V.

    2016-02-01

    We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons, whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasiclassical description of electron transport phenomena related to the chiral anomaly.

  11. Deep Inelastic Scattering and Related Phenomena

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.; Nigro, A.

    1997-03-01

    Inelastic Scattering * Instantons and Forward Jets at HERA * Forward Jets at HERA and at the Tevatron * Distinguishing the DGLAP and BFKL Evolutions with Transverse Momentum Spectra * The Properties of Hadrons in Neutrino-Neon Interactions * Transverse Energy Flow Distributions in Deep Inelastic Scattering at HERA * WORKING GROUP 5: Polarized Structure Functions * A New Measurement of the Spin Dependent Structure Functions gp1 and gd1 * Spin Asymmetry in Muon-deuteron Deep Inelastic Scattering on a Transversely Polarized Target * Polarization of Valence and Light Sea Quarks in the Nucleon * Results from SLAC * Inclusive Spin-Dependent DIS from the Nucleon with HERMES * Semi-Inclusive Data from HERMES * Future Measurements of the g1 Spin Structure function with Polarized e - p Collisions and Determination of Δg * A Future Measurement of ΔG at CERN * The Polarized Two-Loop Splitting Functions * Polarized Parton Distributions from a Global NLO-QCD Analysis * Polarized Partons at Next-to-leading Order * Small-x Behaviour of the Structure Function g1 * On Small-x Resummations for the Evolution of Unpolarized and Polarized Non-Singlet and singlet Structure Functions * Parton Model Prediction for g2 * On the Twist-2 Contributions to Polarized Structure Functions and New Sum Rules * Some Aspects of the Polarized Structure Functions * Inclusive Production of Hadrons in l↑p↑ → h↑X and Spin Measurements * Polarized Structure Functions and QPMSR * Polarization Phenomena and Photon Dissociation in Deep-Inelastic Lepton-Nucleon Scattering * Prospects for Measuring Δg from Jets at HERA with Polarized Protons * On the Q2 Dependence of Asymmetry A1 * WORKING GROUP 6: Special Theoretical Topics * Coherence and Final States in DIS at Small x * Unitarity and Saturation in the Dipole Formulation * Radiative Corrections to the Leading log(1/x) Approximation for Structure Functions * Effective Action Approach for Small-x Physics in QCD * Unitarization of BFKL Pomeron * The Role of the

  12. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  13. [Non-epileptic motor paroxysmal phenomena in wakefulness in childhood].

    PubMed

    Ruggieri, Víctor L; Arberas, Claudia L

    2013-09-01

    Paroxysmal events in childhood are a challenge for pediatric neurologists, given its highly heterogeneous clinical manifestations, often difficult to distinguish between phenomena of epileptic seizure or not. The non-epileptic paroxysmal episodes are neurological phenomena, with motor, sensory symptoms, and/or sensory impairments, with or without involvement of consciousness, epileptic phenomena unrelated, so no electroencephalographic correlative expression between or during episodes. From the clinical point of view can be classified into four groups: motor phenomena, syncope, migraine (and associated conditions) and acute psychiatric symptoms. In this paper we analyze paroxysmal motor phenomena in awake children, dividing them according to their clinical manifestations: extrapyramidal episodes (paroxysmal kinesiogenic, non kinesiogenic and not related to exercise dyskinesias, Dopa responsive dystonia) and similar symptoms of dystonia (Sandifer syndrome); manifestations of startle (hyperekplexia); episodic eye and head movements (benign paroxysmal tonic upward gaze nistagmus deviation); episodic ataxia (familial episodic ataxias, paroxysmal benign vertigo); stereotyped and phenomena of self-gratification; and myoclonic events (benign myoclonus of early infancy). The detection of these syndromes will, in many cases, allow an adequate genetic counseling, initiate a specific treatment and avoid unnecessary additional studies. Molecular studies have demonstrated a real relationship between epileptic and non-epileptic basis of many of these entities and surely the identification of the molecular basis and understanding of the pathophysiological mechanisms in many of them allow us, in the near future will benefit our patients. PMID:23897137

  14. Light flash phenomena induced by HzE particles

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.

    1980-01-01

    Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described.

  15. A systems-analytical approach to macro-evolutionary phenomena.

    PubMed

    Riedl, R

    1977-12-01

    Two sets of evolutionary phenomena find no explanation through current theory. For the static phenomena (such as homology, homonomy, systematic weight, and "Type") there is no causal base, although these principles are responsible for all phenomena of predictable order in the living world. The dynamic phenomena (such as homodynamy, coadaptation, parallel evolution, orthogenesis, Cartesian transformation, typostrophy, hetermorphosis, systemic mutation, and spontaneous atavism) have no causal explanation, although they are responsible for all directed phenomena in macroevolution. These phenomena share one unifying principle which can be explained by a system theory of evolution based on, but extending, the current synthetic theory. This system theory envisages feedback conditions between genotype and phenotype by which the chances of successful adaptation increase if the genetic units, by insertion of superimposed genes, copy the functional dependencies of those phene structures for which they code. This positive feedback of the adaptive speed (or probability) within a single adaptive direction is compensated by negative feedback in most of the alternative directions. The negative feedback operates as selection not be environmental but by systemic conditions developed by the organization of the organism. The consequences are an imitatively organized system of gene interractions, the rehabilitation of classical systematics, the reality of the "natural system," and, in general, the resolution of the contradiction between neodarwinists and their critics, between reductionists and holists, between "a priori" and "a posteriori" views, between idealism and materialism, and between the notions of freedom and of purpose in evolution. PMID:343152

  16. Fast response liquid crystal devices

    NASA Astrophysics Data System (ADS)

    Wu, Yung-Hsun

    LC-based VOA. In Chapter 7, we report a new device called axially-symmetric sheared polymer network liquid crystals (AS-SPNLC) and use it as LC devices. Through analyzing the structure of this axially-symmetric SPNLC, we construct a 3-D model to explain the observed phenomena. An axially-symmetric sheared polymer network liquid crystal has several attractive features: (1) it is polarization independent, (2) it has gradient phase change, and (3) its response time is fast. It can be used for polarization converter and divergent LC lens. In addition, a new method for simultaneously measuring the phase retardation and optic axis of a compensation film is demonstrated using an axially-symmetric sheared polymer network liquid crystal. By overlaying a tested compensation film with a calibrated SPNLC cell between crossed polarizers, the optic axis and phase retardation value of the compensation film can be determined. This simple technique can be used for simultaneously measuring the optic axis and phase retardations of both A- and C-plates. These compensation films have been used extensively in wide-view LCD industry. Therefore, this method will make an important impact to the LCD industry.

  17. Computer simulations of liquid crystals

    NASA Astrophysics Data System (ADS)

    Smondyrev, Alexander M.

    Liquid crystal physics is an exciting interdisciplinary field of research with important practical applications. Their complexity and the presence of strong translational and orientational fluctuations require a computational approach, especially in the studies of nonequlibrium phenomena. In this dissertation we present the results of computer simulation studies of liquid crystals using the molecular dynamics technique. We employed the Gay-Berne phenomenological model of liquid crystals to describe the interaction between the molecules. Both equilibrium and non-equilibrium phenomena were studied. In the first case we studied the flow properties of the liquid crystal system in equilibrium as well as the dynamics of the director. We measured the viscosities of the Gay-Berne model in the nematic and isotropic phases. The temperature-dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment. The director motion was found to be ballistic at short times and diffusive at longer times. The second class of problems we focused on is the properties of the system which was rapidly quenched to very low temperatures from the nematic phase. We find a glass transition to a metastable phase with nematic order and frozen translational and orientational degrees of freedom. For fast quench rates the local structure is nematic-like, while for slower quench rates smectic order is present as well. Finally, we considered a system in the isotropic phase which is then cooled to temperatures below the isotropic-nematic transition temperature. We expect topological defects to play a central role in the subsequent equilibration of the system. To identify and study these defects we require a simulation of a system with several thousand particles. We present the results of large

  18. Visualization of atomic-scale phenomena in superconductors: application to FeSe

    DOE PAGESBeta

    Choubey, Peayush; Berlijn, Tom; Kreisel, Andreas; Cao, Chao; Hirschfeld, Peter J.

    2014-10-31

    Here we propose a simple method of calculating inhomogeneous, atomic-scale phenomena in superconductors which makes use of the wave function information traditionally discarded in the construction of tight-binding models used in the Bogoliubov-de Gennes equations. The method uses symmetry- based first principles Wannier functions to visualize the effects of superconducting pairing on the distribution of electronic states over atoms within a crystal unit cell. Local symmetries lower than the global lattice symmetry can thus be exhibited as well, rendering theoretical comparisons with scanning tunneling spectroscopy data much more useful. As a simple example, we discuss the geometric dimer states observedmore » near defects in superconducting FeSe.« less

  19. Generation of negative pressures and spallation phenomena in diamond exposed to a picosecond laser pulse

    SciTech Connect

    Abrosimov, S A; Bazhulin, A P; Bol'shakov, A P; Konov, V I; Krasyuk, I K; Pashinin, P P; Ral'chenko, V G; Semenov, A Yu; Sovyk, D N; Stuchebryukhov, I A; Khomich, A A; Fortov, V E; Khishchenko, K V

    2014-06-30

    The spallation phenomena in poly- and single-crystal synthetic diamonds have been experimentally investigated. A shockwave impact on a target was implemented using a 70-ps laser pulse in the Kamerton-T facility. The ablation pressure of 0.66 TPa on the front target surface was formed by pulsed radiation of a neodymium phosphate glass laser (second harmonic λ = 0.527 mm, pulse energy 2.5 J) with an intensity as high as 2 × 10{sup 13} W cm{sup -2}. The maximum diamond spall strength σ* ≈ 16.5 GPa is found to be 24% of the theoretical ultimate strength. Raman scattering data indicate that a small amount of crystalline diamond in the spallation region on the rear side of the target is graphitised. (extreme light fields and their applications)

  20. Gloss Phenomena and Image Analysis of Atomic Force Microscopy in Molecular and Cell Biology

    PubMed Central

    Zhu, Jie; Sabharwal, Tanya; Guo, Lianhong; Kalyanasundaram, Aruna; Wang, Guodong

    2010-01-01

    Summary Proper sample preparation, scan setup, data collection and image analysis are key factors in successful atomic force microscopy which can avoid gloss phenomena effectively from unreasonable manipulations or instrumental defaults. Fresh cleaved mica and newly treated glass cover were checked firstly as the substrates for all of the sample preparation for atomic force microscopy. Then, crystals contamination from buffer were studied separately or combined with several biologic samples, and the influence of scanner, scan mode and cantilever to data collection were also discussed intensively using molecular and cellular samples. At last, images treatment and analysis with off-line software had been focused on standard and biologic samples, and artificial glosses were highly considered for their high probability in occurring. PMID:19191267

  1. Crystal Growth Using MEPHISTO

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    1999-01-01

    The shuttle flight experiment "In Situ Monitoring of Crystal Growth Using MEPHISTO" was accomplished during STS-87 as part of the fourth flight of the United States Microgravity Payload (USMP-4), which was flown from November 19 to December 5, 1997. The data returned from that flight are just now beginning to yield quantitative results. This project is an international collaboration: the furnace system known as MEPHISTO was built in France by CNES (French National Space Agency) and CEA (French Atomic Energy Commission); the principal investigator, Prof. Reza Abbaschian, is from the University of Florida at Gainesville; and numerical and analytical modeling support includes collaborators from the University of New South Wales, Australia, the University of Wisconsin at Milwaukee, the National Institute of Standards and Technology, and the NASA Lewis Research Center. MEPHISTO is a French acronym that translates into English as Materials for the Study of Interesting Phenomena of Solidification on Earth and in Orbit. Since this was the fourth flight of the MEPHISTO furnace, the experiment is referred to as MEPHISTO-4. MEPHISTO-4 was a directional solidification experiment that studied the liquid-to-solid transformation of bismuth alloyed with tin. Directional solidification is a freezing technique common to the processing of the electronic materials used in integrated circuits and detectors, such as silicon and germanium. When liquids are frozen on Earth, they must be cooled. The cooling causes stirring because of density variations in the liquid. This stirring, known as natural convection, influences the quality of the resulting solid. During freezing, regions of high and low concentrations of tin are created. This introduces another important phenomenon: diffusion, or the movement by molecular action of matter from regions of high concentration to regions of lower concentration. In MEPHISTO-4, it is tin that diffuses from the high-concentration region in front of the

  2. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  3. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  4. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  5. Comprehending emergent systems phenomena through direct-manipulation animation

    NASA Astrophysics Data System (ADS)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  6. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    NASA Astrophysics Data System (ADS)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  7. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  8. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  9. Model for Interpreting Surface Crystallization Using Quartz Crystal Microbalance: Theory and Experiments.

    PubMed

    Lapidot, Tomer; Sedransk Campbell, Kyra L; Heng, Jerry Y Y

    2016-05-01

    Surface crystallization of calcium sulfate was investigated using a dissipation crystal quartz microbalance (QCM-D) together with microscopy to understand the mechanical property changes occurring during the growth process. The use of optical microscopy and SEM revealed that needle-shaped crystals grow as clusters on the QCM sensor's surface, not in uniform layers. As crystallization growth progressed, QCM-D revealed inversions between negative and positive frequency shifts. This behavior, a function of the growth of crystals in clusters, is not adequately predicted by existing models. As such, a new mass-to-frequency conversion model is proposed herein to explain the observed frequency inversions. This model is derived from a lumped element approach with point-contact loading and Mason equivalent circuit theory. Critically, the physical phenomena occurring form the basis of the model, particularly addressing the three sources of impedance. When a crystal nucleates and grows, its inertial impedance is considered along with a Kelvin-Voigt link with a hydration layer. A comparison between the proposed model and experimental data, of both frequency and dissipation data for the first four harmonics, shows good agreement for the supersaturations (S = C/C*) of S = 3.75, S = 3.48, and S = 3.22. Additionally, significant improvements over existing models for the case of surface crystallization are observed. The proposed model was therefore able to explain that frequency inversions are caused by a shift from inertia-dominated to elastic-dominated impedance, occurring as a result of crystal growth. Using the nucleation induction time and nucleation rates, determined with imaging, an additional understanding of the crystals' mechanical properties (stiffness and dampening) was obtained. PMID:27077999

  10. Condensed Matter in Ultrafast and Superstrong Fields: Attosecond Phenomena

    NASA Astrophysics Data System (ADS)

    Stockman, Mark

    We present our latest results for a new class of phenomena in condensed matter optics when a strong optical field 1-3 V/Å changes a solid within optical cycle. Such a pulse drives ampere-scale currents in dielectrics and adiabatically controls their properties, including optical absorption and reflection, extreme UV absorption, and generation of high harmonics in a non-perturbative manner on a 100-as temporal scale. Applied to a metal, such a pulse causes an instantaneous and, potentially, reversible change from the metallic to semimetallic properties. We will also discuss our latest theoretical results on graphene that in a strong ultrashort pulse field exhibits unique behavior. New phenomena are predicted for buckled two-dimensional solids, silicene and germanine. These are fastest phenomena in optics unfolding within half period of light. They offer potential for petahertz-bandwidth signal processing, generation of high harmonics on a nanometer spatial scale, etc.

  11. The Center for Natural Phenomena Engineering (CNPE), 1990--1991

    SciTech Connect

    1992-07-01

    The Center for Natural Phenomena Engineering (CNPE) was established to provide a natural phenomena (NP) engineering oversight role within Martin Marietta Energy Systems, Inc. (MMES). In this oversight role CNPE`s goals are to provide coordination and direction of activities related to earthquake and other natural phenomena engineering, including development of hazard definition, development of design criteria, conducting new facility design, development and conducting of testing, performance of analysis and vulnerability studies, development of analysis methodology, and provision of support for preparation of safety analysis reports for the five MMES sites. In conducting these activities it is CNPE`s goal to implement the elements of Total Quality Management (TQM) in a cost-effective manner, providing its customers with a quality product. This report describes 1990--1991 activities.

  12. Diffusion phenomena of cells and biomolecules in microfluidic devices

    PubMed Central

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-01-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules. PMID:26180576

  13. Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report

    SciTech Connect

    Mark Holbrook

    2007-07-01

    Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

  14. Direct observation of thitherto unobservable quantum phenomena by using electrons

    PubMed Central

    Tonomura, Akira

    2005-01-01

    Fundamental aspects of quantum mechanics, which were discussed only theoretically as “thought experiments” in the 1920s and 1930s, have begun to frequently show up in nanoscopic regions owing to recent rapid progress in advanced technologies. Quantum phenomena were once regarded as the ultimate factors limiting further miniaturization trends of microstructured electronic devices, but now they have begun to be actively used as the principles for new devices such as quantum computers. To directly observe what had been unobservable quantum phenomena, we have tried to develop bright and monochromatic electron beams for the last 35 years. Every time the brightness of an electron beam improved, fundamental experiments in quantum mechanics became possible, and quantum phenomena became observable by using the wave nature of electrons. PMID:16150719

  15. Group process and group phenomena on the Internet.

    PubMed

    Weinberg, H

    2001-07-01

    This article identifies group processes and group phenomena in discussion lists on the Internet and examines the differences and similarities with the processes in small and large groups. Group dynamics and phenomena, such as boundaries, cohesion, transference, scapegoating, and the leader's role are addressed. Large group features, such as alienation, vulnerability, and the vast amount of issues discussed in parallel are described. There are similarities between the discussion list and small groups on issues of cohesion and group norms, and in the psychological mechanisms of transference and scapegoating. There are differences regarding the contract, boundaries, leaving the group, and extra-group socialization. Although many of the phenomena described resemble a large group, a discussion list on the Internet maintains the illusion of being a small group and frequently acts like one. While a virtual therapy group would be somewhat different from a real group, it could nonetheless be useful. PMID:11447785

  16. Conference on electrical insulation and dielectric phenomena (Annual Report)

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers discussed at the Annual Report, 1985 Conference on Dielectric Phenomena and Electrical Insulation. The topics covered at the conference were: a study of streamer initiation in liquid hydrocarbons; simulation and verification of transient EHD motion, effects of hydrostatic pressure on the prebreakdown phenomena in dielectric liquids; measurements of surface changes on the barrier and their effects on the oil gap breakdown; space change and ionic conduction in transformer oil; high voltage engineering in space; design of solid insulation systems; and future of high voltage transmission. This description provides only a partial list of the contents.

  17. RELAP5-3D code validation for RBMK phenomena

    SciTech Connect

    Fisher, J.E.

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  18. RELAP5-3D Code Validation for RBMK Phenomena

    SciTech Connect

    Fisher, James Ebberly

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  19. Quantum Simulator for Transport Phenomena in Fluid Flows

    PubMed Central

    Mezzacapo, A.; Sanz, M.; Lamata, L.; Egusquiza, I. L.; Succi, S.; Solano, E.

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968

  20. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  1. Fundamental investigation of duct/ESP phenomena. Final report

    SciTech Connect

    Brown, C.A.; Durham, M.D.; Sowa, W.A.; Himes, R.M.; Mahaffey, W.A.

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  2. Radioactive γ/β tracer to explore dangerous technogenic phenomena

    NASA Astrophysics Data System (ADS)

    Nagorsky, P. M.; Yakovleva, V. S.; Makarov, E. O.; Firstov, P. P.; Kondratyeva, A. G.; Stepanenko, A. A.

    2016-06-01

    A radioactive γ/β tracer to explore dangerous technogenic phenomena has been proposed: the ratio of the measured flux density of β- and γ-radiations in the surface layer of the atmosphere. The time dependence analysis of the ratio of β- and γ-pulse count rate has been carried out. A significant increase of the γ/β ratio was recorded under the cyclone passing through Japan (Fukushima) to Kamchatka. The proposed γ/β tracer can be a very sensitive indicator of nonstationary processes related to hazardous natural and technogenic phenomena.

  3. Efficient Attosecond Phenomena in the Relativistic {lambda}3 Regime

    SciTech Connect

    Naumova, Natalia; Mourou, Gerard; Nees, John

    2006-04-07

    Particle-in-cell simulations of relativistically strong laser pulses interacting with overdense plasma targets predict that coherent motion of electrons leads to the efficient generation of strong attosecond electromagnetic pulses and dense attosecond electron bunches. The optimal conditions for these attosecond phenomena are achieved in the {lambda}3 regime, when few-cycle laser pulses are focused to a wavelength-limited spot, producing maximal intensity and maximal gradients with a given energy. The natural synchronism of these attosecond phenomena should enable a kind of relativistic attosecond optoelectronics.

  4. Quantum Simulator for Transport Phenomena in Fluid Flows.

    PubMed

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968

  5. Multidimensional optics and dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Tang, Shouping

    2007-12-01

    In this dissertation, we present an alternative description of multidimensional optics in liquid crystals and uniaxial media, and a systematical investigation on the dynamic properties of twist nematic devices and ECB devices including flow. We also present our investigation on the backflow and dynamic properties of nematic liquid crystals in modulated electric fields. Based on the understanding to backflow and dynamics of liquid crystals, the dynamics of colloidal particles dispersed in nematic liquid crystals and the flow-induced dynamic optical crosstalk between pixels in nematic liquid crystal devices are also studied. The alternative description of multidimensional optics combines the geometrical optics approximation (GOA) with the beam propagation method (BPM). The general treatment of this approach is developed both theoretically and numerically. The investigation on the dynamic properties of twist nematic devices and ECB devices with consideration of backflow is done experimentally, theoretically and numerically. The calculation results are compared with the experimental results, and the optical responses due to backflow are discussed in detail. The investigation on the backflow and dynamic properties of a nematic liquid crystal in modulated electric fields includes director, flow and the shift of liquid crystal fluid. Especially, an important phenomenon, reverseswitching, is shown in this investigation. The dynamics of colloidal particles dispersed in a nematic cela is studied experimentally and by computer simulation. The polarity of director distortions determines the direction of lift force, and the backflow is responsible for the horizontal translational motion. The optical crosstalk between pixels demonstrates the significance of switching-induce flow in pixilated devices. The electrical switching of a pixel in a twisted nematic device can induce an optical response in neighboring pixels. These phenomena are studied in detail, both experimentally and

  6. Crystallization And Phase Separation In Fluoride Glasses

    NASA Astrophysics Data System (ADS)

    Boehm, L.; Chung, K.-H.; Crichton, S. N.; Moynihan, C. T.

    1987-01-01

    We report here two studies relevant to these phenomena. Phase separation was unambiguously shown to occur in a ZrF4-based glass containing a small amount of PbF2 and prepared under a chloride-containing reactive atmosphere. Partial replacement of ZrF4 by HfF4 in a ZBLAN glass appears to improve the resistance to crystallization. The reason for this improvement seems to be a change in the crystalline phases and compositions first appearing on reheating.

  7. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  8. Photoelectric phenomena in the Cu (Al, In)/p-CuIn{sub 3}Se{sub 5} Schottky barriers

    SciTech Connect

    Bodnar', I. V. Rud, V. Yu. Rud', Yu. V.

    2007-01-15

    Structures are formed on the p-CuIn{sub 3}Se{sub 5} crystals and photoelectric phenomena in the Cu/p-CuIn{sub 3}Se{sub 5}, Al/p-CuIn{sub 3}Se{sub 5}, and In/p-CuIn{sub 3}Se{sub 5} Schottky barriers are studied. The spectra of quantum efficiency for photoconversion in new structures were obtained for the first time. The characteristics of the interband transitions are discussed, and the CuIn{sub 3}Se{sub 5} band gap is determined. It is concluded that CuIn{sub 3}Se{sub 5} crystals can be used in the fabrication of high-efficiency broadband photoconverters of optical radiation.

  9. Binary Liquid Phase Separation and Critical Phenomena in a Protein/Water Solution

    NASA Astrophysics Data System (ADS)

    Thomson, John A.; Schurtenberger, Peter; Thurston, George M.; Benedek, George B.

    1987-10-01

    We have investigated the phase diagram of aqueous solutions of the bovine lens protein γ II-crystallin. For temperatures T < Tc = 278.5 K, we find that these solutions exhibit a reversible coexistence between two isotropic liquid phases differing in protein concentration. The dilute and concentrated branches of the coexistence curve were characterized, consistently, both by measurements of the two coexisting concentrations, c(T), and by measuring the cloud temperatures for various initial concentrations. We estimate that the critical concentration, cc, is 244 mg of protein per ml solution. The coexistence curve is well represented by |(c - cc)/cc| = 5.2sqrt{(Tc-T)/Tc}. Using the temperature dependence of the scattered light intensity along isochores parallel to the critical isochore, we estimated the location of the spinodal line and found it to have the form |(c - cc)/cc| = 3.0 root{}of{}(Tc - T)/Tc. The ration of the widths of the coexistence curve and the spinodal line, (5.2/3.0), is close to the mean-field value sqrt{3}. We have also observed the growth of large crystals of γ II-crystallin in some of these aqueous solutions and have made preliminary observations as to the factors that promote or delay the onset of crystallization. These findings suggest that selected protein/water systems can serve as excellent model systems for the study of phase transitions and critical phenomena.

  10. CRYSTAL COLLIMATION AT RHIC.

    SciTech Connect

    FLILLER,III, R.P.; DREES,A.; GASSNER,D.; HAMMONS,L.; MCINTYRE,G.; PEGGS,S.; TRBOJEVIC,D.; BIRYUKOV,V.; CHESNKOV,Y.; TEREKHOV,V.

    2002-06-02

    For the year 2001 run, a bent crystal was installed in the yellow ring of the Relativistic Heavy Ion Collider (RHIC). The crystal forms the first stage of a two stage collimation system. By aligning the crystal to the beam, halo particles are channeled through the crystal and deflected into a copper scraper. The purpose is to reduce beam halo with greater efficiency than with a scraper alone. In this paper we present the first results from the use of the crystal collimator. We compare the crystal performance under various conditions, such as different particle species, and beta functions.

  11. Super-crystals in composite ferroelectrics

    PubMed Central

    Pierangeli, D.; Ferraro, M.; Di Mei, F.; Di Domenico, G.; de Oliveira, C. E. M.; Agranat, A. J.; DelRe, E.

    2016-01-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium–lithium–tantalate–niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies. PMID:26907725

  12. Super-crystals in composite ferroelectrics.

    PubMed

    Pierangeli, D; Ferraro, M; Di Mei, F; Di Domenico, G; de Oliveira, C E M; Agranat, A J; DelRe, E

    2016-01-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium-lithium-tantalate-niobate with micrometric lattice constant, 10(4) times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies. PMID:26907725

  13. Super-crystals in composite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pierangeli, D.; Ferraro, M.; di Mei, F.; di Domenico, G.; de Oliveira, C. E. M.; Agranat, A. J.; Delre, E.

    2016-02-01

    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium-lithium-tantalate-niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies.

  14. Monodisperse cluster crystals: Classical and quantum dynamics.

    PubMed

    Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Cinti, Fabio; Lechner, Wolfgang; Pupillo, Guido

    2015-11-01

    We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic statistics. PMID:26651695

  15. Binding Phenomena within a Reductionist Theory of Grammatical Dependencies

    ERIC Educational Resources Information Center

    Drummond, Alex

    2011-01-01

    This thesis investigates the implications of binding phenomena for the development of a reductionist theory of grammatical dependencies. The starting point is the analysis of binding and control in Hornstein (2001, 2009). A number of revisions are made to this framework in order to develop a simpler and empirically more successful account of…

  16. Linguistic Studies on English Pronominalization: Syntactic, Discourse and Pragmatic Phenomena.

    ERIC Educational Resources Information Center

    Barnitz, John G.

    To integrate many of the theoretical linguistic studies examining pronoun reference, this paper focuses on tracing the shift from purely transformational syntactic studies of intrasentential phenomena to the wider orientations of discourse and pragmatic studies. The first section describes the classic studies of pronominalization within the…

  17. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat. PMID:23949247

  18. The Discovery of Transient Phenomena by NASA's K2 Mission

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.

    2016-01-01

    The NASA K2 space mission is photometrically monitoring fields along the ecliptic to achieve a variety of science goals. These goals involve time variable observations of Solar System objects, extrasolar planets, star clusters, supernovae, and more. Because K2 observes each of its fields for just ~80 days, it has a finite baseline over which to acquire observations of photometrically varying astrophysical objects. Thanks to their extended baseline of observations, wide-field ground-based photometric and spectroscopic surveys that have been monitoring the sky for years can provide robust constraints on transiting planets, supernova events, or other transient phenomena that have been newly identified in K2 data. I will discuss the opportunities for synergistic activities between the K2 space mission and such long-running ground-based surveys as HATNet, KELT, SuperWASP, and APOGEE that will maximize the scientific output from these surveys. In particular, I will present results from a search for transient phenomena in K2 data and will use ground-based survey data to aid the characterization of these phenomena. Examples of these phenomena include single planetary transit events and stars with long-duration dimmings caused by an eclipse of a protoplanetary disk. I will also discuss the benefits that upcoming surveys like the NASA Transiting Exoplanet Survey Satellite (TESS) mission and the Large Synoptic Survey Telescope (LSST) will gain from long-term ground-based surveys.

  19. A Curriculum Framework Based on Archetypal Phenomena and Technologies.

    ERIC Educational Resources Information Center

    Zubrowski, Bernie

    2002-01-01

    Presents an alternative paradigm of curriculum development based on the theory of situated cognition. This approach starts with context rather than concept, gives greater weight to students' interpretative frameworks, and provides for a more holistic development. Presents a grade 1-8 framework that uses archetypal phenomena and technologies as the…

  20. New Phenomena in NC Field Theory and Emergent Spacetime Geometry

    SciTech Connect

    Ydri, Badis

    2010-10-31

    We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar {phi}{sup 4} field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at {theta} = 0 there must exist a novel fixed point at {theta} = {infinity} corresponding to the quartic hermitian matrix model.

  1. Large-scale phenomena, chapter 3, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.

  2. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  3. Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation

    ERIC Educational Resources Information Center

    McDonald, K.

    1973-01-01

    Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional…

  4. New Phenomena in NC Field Theory and Emergent Spacetime Geometry

    NASA Astrophysics Data System (ADS)

    Ydri, Badis

    2010-10-01

    We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar φ4 field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at θ = 0 there must exist a novel fixed point at θ = ∞ corresponding to the quartic hermitian matrix model.

  5. Eighty phenomena about the self: representation, evaluation, regulation, and change

    PubMed Central

    Thagard, Paul; Wood, Joanne V.

    2015-01-01

    We propose a new approach for examining self-related aspects and phenomena. The approach includes (1) a taxonomy and (2) an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation). The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation). The changing self is less time-limited than the effecting self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development). Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular). We illustrate our approach by focusing on seven self-related phenomena. PMID:25870574

  6. The Assessment of Object Relations Phenomena in Borderline Personality Disorder.

    ERIC Educational Resources Information Center

    Gustafson, Eric Wayne

    Recent attempts to empirically validate psychoanalytic theory and its contemporary object relational constructs have turned to measuring the concepts with a variety of recently developed assessment scales. This paper reviews the 27 research studies which utilize instruments designed to assess object relations phenomena in subjects diagnosed with…

  7. Recent LEP2 results on searches for new phenomena

    SciTech Connect

    Pan Yibin

    1998-05-29

    Recent results of searches for supersymmetric particles, Higgs bosons, and other new phenomena at LEP2 are summarized. These results are based on data and analyses from the four LEP experiments: ALEPH, DELPHI, L3, and OPAL. The data were collected during the summer and fall of 1996 with center-of-mass energies of 161 and 172 GeV.

  8. The Effects of Globalization Phenomena on Educational Concepts

    ERIC Educational Resources Information Center

    Schrottner, Barbara Theresia

    2010-01-01

    It is becoming more and more apparent that globalization processes represent, theoretically as well as practically, a challenge for educational sciences and therefore, it must be addressed within the sphere of education. Accordingly, educational conceptions have to adapt to globalization phenomena and focus more on alternative and innovative…

  9. Unipolar arcing phenomena observed in laboratory and nature

    SciTech Connect

    Sanduloviciu, M.

    1995-12-31

    Unipolar arcing phenomena observed as coherent {open_quotes}plasma{close_quotes} balls operating on a surface of constant potential are explained in the frame of a new already proposed self-organisation mechanism considered at the origin of the formation and stability of extended coherent structures observed in plasma devices.

  10. Beyond a Dichotomic Approach, the Case of Colour Phenomena

    ERIC Educational Resources Information Center

    Viennot, L.; de Hosson, C.

    2012-01-01

    This research documents the aims and the impact of a teaching experiment concerning colour phenomena. This teaching experiment is designed in order to make students consider not only the spectral composition of light but also its intensity, and to consider the absorption of light by a pigment as relative, instead of as total or zero. Eight…

  11. Liquid-crystal materials find a new order in biomedical applications

    NASA Astrophysics Data System (ADS)

    Woltman, Scott J.; Jay, Gregory D.; Crawford, Gregory P.

    2007-12-01

    With the maturation of the information display field, liquid-crystal materials research is undergoing a modern-day renaissance. Devices and configurations based on liquid-crystal materials are being developed for spectroscopy, imaging and microscopy, leading to new techniques for optically probing biological systems. Biosensors fabricated with liquid-crystal materials can allow label-free observations of biological phenomena. Liquid-crystal polymers are starting to be used in biomimicking colour-producing structures, lenses and muscle-like actuators. New areas of application in the realms of biology and medicine are stimulating innovation in basic and applied research into these materials.

  12. Spontaneous and stimulated Raman scattering in ZnWO{sub 4} crystals

    SciTech Connect

    Basiev, Tasoltan T; Karasik, Aleksandr Ya; Sobol, A A; Chunaev, D S; Shukshin, V E

    2011-04-30

    Spontaneous and stimulated Raman scattering (SRS) are studied in ZnWO{sub 4} crystals with a wolframite structure. The polarised Raman scattering spectra corresponding to all the six independent Raman tensor components are measured. The frequencies of the complete set of vibrational modes are identified. The threshold pump energies for SRS in ZnWO{sub 4} and KGd(WO{sub 4}){sub 2} crystals are measured upon excitation by picosecond 1047-nm pulses of a Nd:YLF laser. The SRS gains for ZnWO{sub 4} crystals are determined based on the measured thresholds and spectroscopic parameters of the crystals. (nonlinear optics phenomena)

  13. EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi

    2011-09-01

    This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can

  14. Resistive switching phenomena: A review of statistical physics approaches

    SciTech Connect

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor in determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.

  15. Resistive switching phenomena: A review of statistical physics approaches

    DOE PAGESBeta

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  16. Seasonality of alcohol-related phenomena in Estonia

    NASA Astrophysics Data System (ADS)

    Silm, Siiri; Ahas, Rein

    2005-03-01

    We studied alcohol consumption and its consequences as a seasonal phenomenon in Estonia and analysed the social and environmental factors that may cause its seasonal rhythm. There are two important questions when researching the seasonality of human activities: (1) whether it is caused by natural or social factors, and (2) whether the impact of the factors is direct or indirect. Often the seasonality of social phenomena is caused by social factors, but the triggering mechanisms are related to environmental factors like temperature, precipitation, and radiation via the circannual calendar. The indicators of alcohol consumption in the current paper are grouped as: (1) pre-consumption phenomena, i.e. production, tax and excise, sales (beer, wine and vodka are analysed separately), and (2) post-consumption phenomena, i.e. alcohol-related crime and traffic accidents and the number of people detained in lockups and admitted to alcohol treatment clinics. In addition, seasonal variability in the amount of alcohol advertising has been studied, and a survey has been carried out among 87 students of Tartu University. The analysis shows that different phenomena related to alcohol have a clear seasonal rhythm in Estonia. The peak period of phenomena related to beer is in the summer, from June to August and the low point is during the first months of the year. Beer consumption correlates well with air temperature. The consumption of vodka increases sharply at the end of the year and in June; the production of vodka does not have a significant correlation with negative temperatures. The consumption of wine increases during summer and in December. The consequences of alcohol consumption, expressed as the rate of traffic accidents or the frequency of medical treatment, also show seasonal variability. Seasonal variability of alcohol consumption in Estonia is influenced by natural factors (temperature, humidity, etc.) and by social factors (celebrations, vacations, etc.). However

  17. Solution Growth of Crystals in Zero-Gravity

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Kroes, R. L.

    1985-01-01

    In a low-g environment, buoyancy driven convection effects in solution crystal growth are greatly reduced and, thus, one can study diffusion mass transport which in 1-g is masked by convective phenomena. Crystals of triglycine sulfate (TGS) will be grown aboard the Spacelab 3 mission, using a specially developed Fluids Experiments System (FES). The objectives of the experiment are: (1) to develop a technique for solution crystal growth in a low-g environment, (2) to characterize the growth environment provided by an orbiting spacecraft and to determine the influence of the environment on the growth behavior, and (3) to determine how gravity in a low-gravity environment influences the properties of a resulting TGS crystal. Single crystals of TGS have been grown using conventional low-temperature solution crystal growth method and the growth process has been extensively characterized. Various physical properties of TGS solution have been measured. Also, a unique technique of growing solution growth crystals by extracting heat at a programmed rate from the crystal through a semi-insulating sting has been developed and tested in 1-g environment.

  18. Molecular Dynamics Simulations of Spinodal-Assisted Polymer Crystallization

    SciTech Connect

    Gee, R H; Lacevic, N M; Fried, L

    2005-07-08

    Large scale molecular dynamics simulations of bulk melts of polar (poly(vinylidene fluoride) (pVDF)) polymers are utilized to study chain conformation and ordering prior to crystallization under cooling. While the late stages of polymer crystallization have been studied in great detail, recent theoretical and experimental evidence indicates that there are important phenomena occurring in the early stages of polymer crystallization that are not understood to the same degree. When the polymer melt is quenched from a temperature above the melting temperature to the crystallization temperature, crystallization does not occur instantaneously. This initial interval without crystalline order is characterized as an induction period. It has been thought of as a nucleation period in the classical theories of polymer crystallization, but recent experiments, computer simulations, and theoretical work suggest that the initial period in polymer crystallization is assisted by a spinodal decomposition type mechanism. In this study we have achieved physically realistic length scales to study early stages of polymer ordering, and show that spinodal-assisted ordering prior to crystallization is operative in polar polymers suggesting general applicability of this process.

  19. Bringing Together Computational and Experimental Capabilities at the Crystal Scale

    SciTech Connect

    Barton, N R; Bernier, J V; Edmiston, J K

    2009-07-23

    Many phenomena of interest occur at the scale of crystals or are controlled be events happening at the crystalline scale. Examples include allotropic phase transformations in metals and pore collapse in energetic crystals. The research community is increasingly able to make detailed experimental observations at the crystalline scale and to inform crystal scale models using lower length scale computational tools. In situ diffraction techniques are pushing toward finer spatial and temporal resolution. Molecular and dislocation dynamics calculations are now able to directly inform mechanisms at the crystalline scale. Taken together, these factors give crystal based continuum models the ability to rationalize experimental observations, investigate competition among physical processes, and, when appropriately formulated and calibrated, predict behaviors. We will present an overview of current efforts, with emphasis on recent work investigating phase transformations and twinning in metals.

  20. Stability of amorphous pharmaceutical solids: crystal growth mechanisms and effect of polymer additives.

    PubMed

    Sun, Ye; Zhu, Lei; Wu, Tian; Cai, Ting; Gunn, Erica M; Yu, Lian

    2012-09-01

    We review recent progress toward understanding and enhancing the stability of amorphous pharmaceutical solids against crystallization. As organic liquids are cooled to become glasses, fast modes of crystal growth can emerge. One such growth mode, the glass-to-crystal or GC mode, occurs in the bulk, and another exists at the free surface, both leading to crystal growth much faster than predicted by theories that assume diffusion defines the kinetic barrier of crystallization. These phenomena have received different explanations, and we propose that GC growth is a solid-state transformation enabled by local mobility in glasses and that fast surface crystal growth is facilitated by surface molecular mobility. In the second part, we review recent findings concerning the effect of polymer additives on crystallization in organic glasses. Low-concentration polymer additives can strongly inhibit crystal growth in the bulk of organic glasses, while having weaker effect on surface crystal growth. Ultra-thin polymer coatings can inhibit surface crystallization. Recent work has shown the importance of molecular weight for crystallization inhibitors of organic glasses, besides "direct intermolecular interactions" such as hydrogen bonding. Relative to polyvinylpyrrolidone, the VP dimer is far less effective in inhibiting crystal growth in amorphous nifedipine. Further work is suggested for better understanding of crystallization of amorphous organic solids and the prediction of their stability. PMID:22434258

  1. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  2. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  3. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  4. Apparatus for mounting crystal

    DOEpatents

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  5. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  6. Total immersion crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Crystals of wide band gap materials are produced by positioning a holder receiving a seed crystal at the interface between a body of molten wide band gap material and an overlying layer of temperature-controlled, encapsulating liquid. The temperature of the layer decreases from the crystallization temperature of the crystal at the interface with the melt to a substantially lower temperature at which formation of crystal defects does not occur, suitably a temperature of 200 to 600 C. After initiation of crystal growth, the leading edge of the crystal is pulled through the layer until the leading edge of the crystal enters the ambient gas headspace which may also be temperature controlled. The length of the column of liquid encapsulant may exceed the length of the crystal such that the leading edge and trailing edge of the crystal are both simultaneously with the column of the crystal. The crystal can be pulled vertically by means of a pulling-rotation assembly or horizontally by means of a low-angle withdrawal mechanism.

  7. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  8. Food Crystalization and Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  9. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  10. Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena.

    PubMed

    Elliott, Brent; Joyce, Eileen; Shorvon, Simon

    2009-08-01

    The purpose of this paper and its pair is to provide a comprehensive review, from the different perspectives of neurology and neuropsychiatry, of the phenomenology and mechanisms of hallucinatory experience in epilepsy. We emphasise the clinical and electrophysiological features, and make comparisons with the primary psychoses. In this paper, we consider definitions and elementary hallucinatory phenomena. Regarding definition, there is a clearly divergent evolution in meaning of the terms delusion, illusion and hallucination in the separate traditions of neurology and psychiatry. Psychiatry makes clear distinctions between the terms and has focussed on the empirical use of descriptive psychopathology in order to delineate the various psychiatric syndromes, including those in epilepsy. These distinctions in psychiatry have stood the test of time and are useful in clinical descriptive terms, but do not help to understand the basic mechanisms. The focus of neurology has been to regard delusions, illusions and hallucinations in epilepsy as a result of localised or network based neuronal epileptic activity that can be investigated especially using intracranial stereoelectroencephalography (SEEG). The neurological approach leads to a more synoptical definition of 'hallucination' than in psychiatry and to the conclusion that there is little point in differentiating hallucination from illusion or delusion in view of the overlap in the physiological bases of the phenomena. The semiologically derived differentiation of these terms in psychiatry is not supported by similarly discrete electrophysiological signatures. However, as discussed in the second paper, some psychotic states are associated with similar electrophysiological changes. The wide range of hallucinatory symptoms occurring during epileptic seizures recorded during intracranial SEEG and brain stimulation are reviewed here, including: experiential and interpretive phenomena, affective symptoms, as well as auditory

  11. Multipoint observations of plasma phenomena made in space by Cluster

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Escoubet, P.; Hwang, K.-Joo; Wendel, D. E.; Viñas, A.-F.; Fung, S. F.; Perri, S.; Servidio, S.; Pickett, J. S.; Parks, G. K.; Sahraoui, F.; Gurgiolo, C.; Matthaeus, W.; Weygand, J. M.

    2015-06-01

    Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005 Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005 Sur. Geophys. 26, 307-339, Paschmann et al. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series

  12. Oscillatory reactions on single crystal surfaces

    NASA Astrophysics Data System (ADS)

    Imbihl, R.

    1993-12-01

    Heterogeneous catalytic reactions exhibit under certain conditions kinetic oscillations which have been investigated both with polycrystalline materials and with single crystal surfaces as catalysts. The present paper reviews single-crystal experiments conducted under isothermal, low pressure conditions ( p < 10 -3 mbar). Two different reaction systems have been investigated: catalytic CO oxidation on various Pt and Pd orientations and catalytic NO reduction on Pt(100) using CO, H 2, or NH 3 as the reducing agent. The different reaction systems exhibit a wide variety of interesting phenomena which are well-known in nonlinear dynamics, for example, such as spatiotemporal pattern formation, the existence of Turing structures and the appearance of deterministic chaos, and chemical turbulence. The mechanistic steps leading to the observed phenomena have been investigated and appropriate mathematical models have been formulated and analyzed using bifurcation theory. The driving force for the rate oscillations has been shown to result from structural changes of the substrate in the case of catalytic CO oxidation on Pt surfaces, subsurface oxygen formation in the case of catalytic CO oxidation on Pd surfaces, and in the chemical reaction network described by a vacancy model in the case of the NO reduction reactions.

  13. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  14. Crystallography of icosahedral crystals

    NASA Astrophysics Data System (ADS)

    Bak, P.

    The crystallography of icosahedral crystals is constructed. The actual three-dimensional crystal is represented by a three-dimensional cut in a regular six-dimensional periodic crystal with symmetry described by a six-dimensional space group, and the positions of atoms correspond to an arrangement of hypersurface segments. The resulting crystal cannot in general be viewed as a space-filling arrangemment of a small number of different Penrose tiles. The intensities of Bragg spots are given directly as the intensities of Bragg spots of the six-dimensional crystal.

  15. Role of point defects in optical damage of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Scripsick, Michael P.; Edwards, Gary J.

    1993-07-01

    We have initiated a program at West Virginia University to establish the properties of point defects that are relevant to the optical damage phenomena in KTP, BBO, and LBO crystals. Defects have been characterized using optical absorption, electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and luminescence techniques. Among the defects which have been observed are impurity ions (iron, platinum, hydrogen, etc.), trapped hole centers, and trapped electron centers.

  16. Autoscopic phenomena and one's own body representation in dreams.

    PubMed

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation. PMID:21316265

  17. A universal mechanism of extreme events and critical phenomena

    PubMed Central

    Wu, J. H.; Jia, Q.

    2016-01-01

    The occurrence of extreme events and critical phenomena is of importance because they can have inquisitive scientific impact and profound socio-economic consequences. Here we show a universal mechanism describing extreme events along with critical phenomena and derive a general expression of the probability distribution without concerning the physical details of individual events or critical properties. The general probability distribution unifies most important distributions in the field and demonstrates improved performance. The shape and symmetry of the general distribution is determined by the parameters of the fluctuations. Our work sheds judicious insights into the dynamical processes of complex systems with practical significance and provides a general approach of studying extreme and critical episodes in a combined and multidisciplinary scheme. PMID:26880219

  18. Phenomena associated with magma expansion into a drift

    SciTech Connect

    Gaffney, E. S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  19. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  20. Autoscopic phenomena: case report and review of literature

    PubMed Central

    2011-01-01

    Background Autoscopic phenomena are psychic illusory visual experiences consisting of the perception of the image of one's own body or face within space, either from an internal point of view, as in a mirror or from an external point of view. Descriptions based on phenomenological criteria distinguish six types of autoscopic experiences: autoscopic hallucination, he-autoscopy or heautoscopic proper, feeling of a presence, out of body experience, negative and inner forms of autoscopy. Methods and results We report a case of a patient with he-autoscopic seizures. EEG recordings during the autoscopic experience showed a right parietal epileptic focus. This finding confirms the involvement of the temporo-parietal junction in the abnormal body perception during autoscopic phenomena. We discuss and review previous literature on the topic, as different localization of cortical areas are reported suggesting that out of body experience is generated in the right hemisphere while he-autoscopy involves left hemisphere structures. PMID:21219608

  1. Video detection and analysis techniques of transient astronomical phenomena

    NASA Technical Reports Server (NTRS)

    Clifton, K. S.; Reese, R., Jr.; Davis, C. W.

    1979-01-01

    Low-light-level television systems have been utilized to gain information on meteors, aurorae, and other faint, transient astronomical phenomena. Such phenomena change not only their position as a function of time, but also their photometric and spectral characteristics in as little as 1/60 second, thus requiring unique methods of analysis. Data observed with television systems and recorded on video tape have been analyzed with a system utilizing both analog and digital techniques. Both off-the-shelf equipment and inhouse developments are used to isolate sequences of moving images and to store them in a form suitable for photometric and spectral reduction. Current emphasis of the analysis effort is directed at the measurement of the first-order emission lines of meteor spectra, the results of which will yield important compositional information concerning the nature of the impinging meteoroid.

  2. Stochastic Car-Following Model for Explaining Nonlinear Traffic Phenomena

    NASA Astrophysics Data System (ADS)

    Meng, Jianping; Song, Tao; Dong, Liyun; Dai, Shiqiang

    There is a common time parameter for representing the sensitivity or the lag (response) time of drivers in many car-following models. In the viewpoint of traffic psychology, this parameter could be considered as the perception-response time (PRT). Generally, this parameter is set to be a constant in previous models. However, PRT is actually not a constant but a random variable described by the lognormal distribution. Thus the probability can be naturally introduced into car-following models by recovering the probability of PRT. For demonstrating this idea, a specific stochastic model is constructed based on the optimal velocity model. By conducting simulations under periodic boundary conditions, it is found that some important traffic phenomena, such as the hysteresis and phantom traffic jams phenomena, can be reproduced more realistically. Especially, an interesting experimental feature of traffic jams, i.e., two moving jams propagating in parallel with constant speed stably and sustainably, is successfully captured by the present model.

  3. A Brief Survey of Activity Phenomena in Cosmic Objects

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2016-06-01

    An attempt is done to unify the variety of physical active phenomena observed in various cosmic objects belonging to the all hierarchical levels. The dark energy carrier is suggested to interact with the baryonic matter and provide the activity energy through the injection from "the main reservoir". The concept that the Hubble flow is not possible for non-cosmological shorter scales where the baryonic objects are believed to be gravitationally bound is considered in a few words to show that it is a simple extrapolation of the a priori hypothesis on the formation of cosmic objects. Some observational facts are pointed to show that expansion phenomena at shorter scales could be explained using the Hubble law only. The physical consequences of dark energy exchange with the atomic nuclei and "gravitationally bound" objects are considered.

  4. Scaling relations and multicritical phenomena from functional renormalization.

    PubMed

    Boettcher, Igor

    2015-06-01

    We investigate multicritical phenomena in O(N)+O(M) models by means of nonperturbative renormalization group equations. This constitutes an elementary building block for the study of competing orders in a variety of physical systems. To identify possible multicritical points in phase diagrams with two ordered phases, we compute the stability of isotropic and decoupled fixed point solutions from scaling potentials of single-field models. We verify the validity of Aharony's scaling relation within the scale-dependent derivative expansion of the effective average action. We discuss implications for the analysis of multicritical phenomena with truncated flow equations. These findings are an important step towards studies of competing orders and multicritical quantum phase transitions within the framework of functional renormalization. PMID:26172666

  5. Transport Phenomena in Liquid Phase Diffusion Growth of Silicon Germanium

    NASA Astrophysics Data System (ADS)

    Armour, Neil Alexander

    Silicon Germanium, SiGe, is an important emerging semiconductor material. In order to optimize growth techniques for SiGe production, such as Liquid Phase Diffusion, LPD, or Melt Replenishment Czochralski, a good understanding of the transport phenomena in the melt is required. In the context of the Liquid Phase Diffusion growth technique, the transport phenomena of silicon in a silicon-germanium melt has been explored. Experiments isolating the dissolution and transport of silicon into a germanium melt have been conducted under a variety of flow conditions. Preliminary modeling of these experiments has also been conducted and agreement with experiments has been shown. In addition, full LPD experiments have also been conducted under varying flow conditions. Altered flow conditions were achieved through the application of a variety of magnetic fields. Through the experimental and modeling work better understanding of the transport mechanisms at work in a silicon-germanium melt has been achieved.

  6. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  7. ESM of Ionic and Electrochemical Phenomena on the Nanoscale

    SciTech Connect

    Kalinin, Sergei V; Kumar, Amit; Balke, Nina; McCorkle, Morgan L; Guo, Senli; Arruda, Thomas M; Jesse, Stephen

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

  8. Bubble Phenomena caused by High Repetitive Plasmas in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Masahiro; Oikawa, Takuma; Fue, Masatoshi; Ogata, Ryoma; Takaki, Koich; Akiyama, Hidenori; Iwate Univ Team; Kumamoto Univ Collaboration

    2015-09-01

    Streamer discharges in water were generated by a pulsed power generator. The streamer shape changed depending on pulse repetition rate. Streamer discharges at 500 pulses per second (pps) resulted in a ball shape. Under this formation, small bubbles gather near the electrode tip. Our aims are the analysis and discussion of the bubble phenomena caused by high repetitive plasmas produced in water. Pulsed power with a maximum output of 1 J/pulse was applied to an electrode of 0.8 mm in diameter covered by an insulator of 2 mm thickness. The electrode was inserted into tap water with conductivity of 170 uS/cm. The polarity was positive. Phenomena, in which the resulting gas bubbles oscillate and gather, were found to have an important role in producing ball shape streamer discharges.

  9. A review of anode phenomena in vacuum arces

    SciTech Connect

    Miller, H.C.

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 88 refs., 6 figs., 8 tabs.

  10. Reducing spurious flow in simulations of electrokinetic phenomena

    NASA Astrophysics Data System (ADS)

    Rempfer, Georg; Davies, Gary B.; Holm, Christian; de Graaf, Joost

    2016-07-01

    Electrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in nanocapillaries, and electrophoresis of charged macromolecules. Numerical simulations are an important tool to investigate these electrokinetic phenomena, but are often plagued by spurious fluxes and spurious flows that can easily exceed physical fluxes and flows. Here, we present a method that reduces one of these spurious currents, spurious flow, by several orders of magnitude. We demonstrate the effectiveness and generality of our method for both the electrokinetic lattice-Boltzmann and finite-element-method based algorithms by simulating a charged sphere in an electrolyte solution and flow through a nanopore. We also show that previous attempts to suppress these spurious currents introduce other sources of error.

  11. Nonlinear dynamic phenomena in the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Edighoffer, H. H.; Park, K. C.

    1981-01-01

    The development of an analysis for examining the nonlinear dynamic phenomena arising in the space shuttle orbiter tile/pad thermal protection system is presented. The tile/pad system consists of ceramic tiles bonded to the aluminum skin of the orbiter through a thin nylon felt pad. The pads are a soft nonlinear material which permits large strains and displays both hysteretic and nonlinear viscous damping. Application of the analysis to a square tile subjected to transverse sinusoidal motion of the orbiter skin is presented and the following nonlinear dynamic phenomena are considered: highly distorted wave forms, amplitude-dependent resonant frequencies which initially decrease and then increase with increasing amplitude of motion, magnification of substrate motion which is higher than would be expected in a similarly highly damped linear system, and classical parametric resonance instability.

  12. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  13. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  14. Tank Pressure Control Experiment/thermal Phenomena (TPCE/TP)

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Knoll, R. H.

    1992-01-01

    The 'Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP)' is a reflight of the tank pressure control experiment (TPCE), flown on STS-43 in a standard Get-Away Special (GAS) container in August 1991. The TPCE obtained extensive video and digital data of the jet induced mixing process in a partially filled tank in low gravity environments. It also provided limited data on the thermal processes involved. The primary objective of the reflight of TPCE is to investigate experimentally the phenomena of liquid superheating and pool nucleate boiling at very low heat fluxes in a long duration low gravity environment. The findings of this experiment will be of direct relevance to space based subcritical cryogenic fluid system design and operation. Experiment hardware and results from the first TPCE are described in outline and graphic form.

  15. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  16. The function of nonlinear phenomena in meerkat alarm calls.

    PubMed

    Townsend, Simon W; Manser, Marta B

    2011-02-23

    Nonlinear vocal phenomena are a ubiquitous feature of human and non-human animal vocalizations. Although we understand how these complex acoustic intrusions are generated, it is not clear whether they function adaptively for the animals producing them. One explanation is that nonlinearities make calls more unpredictable, increasing behavioural responses and ultimately reducing the chances of habituation to these call types. Meerkats (Suricata suricatta) exhibit nonlinear subharmonics in their predator alarm calls. We specifically tested the 'unpredictability hypothesis' by playing back naturally occurring nonlinear and linear medium-urgency alarm call bouts. Results indicate that subjects responded more strongly and foraged less after hearing nonlinear alarm calls. We argue that these findings support the unpredictability hypothesis and suggest this is the first study in animals or humans to show that nonlinear vocal phenomena function adaptively. PMID:20659926

  17. Musical obsessions: a comprehensive review of neglected clinical phenomena.

    PubMed

    Taylor, Steven; McKay, Dean; Miguel, Euripedes C; De Mathis, Maria Alice; Andrade, Chittaranjan; Ahuja, Niraj; Sookman, Debbie; Kwon, Jun Soo; Huh, Min Jung; Riemann, Bradley C; Cottraux, Jean; O'Connor, Kieron; Hale, Lisa R; Abramowitz, Jonathan S; Fontenelle, Leonardo F; Storch, Eric A

    2014-08-01

    Intrusive musical imagery (IMI) consists of involuntarily recalled, short, looping fragments of melodies. Musical obsessions are distressing, impairing forms of IMI that merit investigation in their own right and, more generally, research into these phenomena may broaden our understanding of obsessive-compulsive disorder (OCD), which is phenomenologically and etiologically heterogeneous. We present the first comprehensive review of musical obsessions, based on the largest set of case descriptions ever assembled (N=96). Characteristics of musical obsessions are described and compared with normal IMI, musical hallucinations, and visual obsessional imagery. Assessment, differential diagnosis, comorbidity, etiologic hypotheses, and treatments are described. Musical obsessions may be under-diagnosed because they are not adequately assessed by current measures of OCD. Musical obsessions have been misdiagnosed as psychotic phenomena, which has led to ineffective treatment. Accurate diagnosis is important for appropriate treatment. Musical obsessions may respond to treatments that are not recommended for prototypic OCD symptoms. PMID:24997394

  18. Observation of microwave superfluid phenomena of multiple phase magnetic fluid

    NASA Astrophysics Data System (ADS)

    Kono, Kazuhito; Kono, Buhei

    2015-05-01

    We observe superfluid phenomena by microwaves irradiation to multiple phase magnetic fluid in room temperature or room pressure. Ferromagnetism transformation of diamagnetic or paramagnetic particles in multiple phase magnetic fluid containing constant rate of ferromagnetic particles, diamagnetic or paramagnetic particles mixing organic polyphenol and irradiation of microwaves is, observed by superexchange interaction. Superfluid phenomena are observed by irradiation of microwaves to aforementioned multiple phase of magnetic fluid containing ferromagnetism transformed diamagnetic or paramagnetic particles with ferromagnetic particles. Mixing semiconductor pigments amplifying superfluid energy by photosensitivity is observed. Visible light LED selecting wavelength is irradiated to superfluid condition of aforementioned multiple phase magnetic fluid thus magnetic field and energy of superfluid is enhanced by light quantum amplification effect.

  19. Highly bent (110) Ge crystals for efficient steering of ultrarelativistic beams

    SciTech Connect

    De Salvador, D.; Maggioni, G.; Carturan, S.; Bazzan, M.; Argiolas, N.; Carnera, A.; Dalla Palma, M.; Della Mea, G.; Bagli, E.; Mazzolari, A.; Bandiera, L.; Guidi, V.; Lietti, D.; Berra, A.; Guffanti, G.; Prest, M.; Vallazza, E.

    2013-10-21

    Thanks to the effective electrostatic potential generated by the ordered atomic structure, bent crystals can efficiently deflect ultra relativistic charged beams by means of planar and axial channeling phenomena as well as of the recently discovered volume reflection effect. Most of the experimental knowledge about these phenomena has been gathered with Si crystals, but it has been recently demonstrated that the steering performance can be improved by using high quality Ge materials which have a larger atomic number. In this paper, we investigate channeling and volume reflection of 400 GeV protons from (110) lattice planes in highly bent Ge strips crystals. Both production and characterization of the strips are presented. Herein, the experimental results on deflection are compared with theoretical predictions, with previous published data and with the expected performances of Si crystals in similar experimental conditions.

  20. General theory of Taylor dispersion phenomena. Part 3. Surface transport

    SciTech Connect

    Dill, L.H.; Brenner, H.

    1982-01-01

    An asymptotic theory of Brownian tracer particle transport phenomena within a bulk fluid, as augmented by surface transport, is presented in the context of generalized Taylor dispersion theory. The analysis expands upon prior work, which was limited to transport wholly within a continuous phase, so as to now include surface adsorption, diffusion, and convection of the tracer along a continuous surface bounding the continuous fluid phase.

  1. First experimental observation of generalized synchronization phenomena in microwave oscillators.

    PubMed

    Dmitriev, Boris S; Hramov, Alexander E; Koronovskii, Alexey A; Starodubov, Andrey V; Trubetskov, Dmitriy I; Zharkov, Yurii D

    2009-02-20

    In this Letter, we report for the first time on the experimental observation of the generalized synchronization regime in the microwave electronic systems, namely, in the multicavity klystron generators. A new approach devoted to the generalized synchronization detection has been developed. The experimental observations are in the excellent agreement with the results of numerical simulation. The observed phenomena gives a strong potential for new applications requiring microwave chaotic signals. PMID:19257673

  2. Search for Higgs and new phenomena at colliders

    SciTech Connect

    Lammel, Stephan; /Fermilab

    2006-01-01

    The present status of searches for the Higgs boson(s) and new phenomena is reviewed. The focus is on analyses and results from the current runs of the HERA and Tevatron experiments. The LEP experiments have released their final combined MSSM Higgs results for this conference. Also included are results from sensitivity studies of the LHC experiments and lepton flavor violating searches from the B factories, KEKB and PEP-II.

  3. Prediction of fading phenomena in land-satellite communication links

    NASA Astrophysics Data System (ADS)

    Blaunstein, N.; Cohen, Y.; Hayakawa, M.

    2010-12-01

    This paper addresses the problem of prediction of probability of successful radio communication of any mobile or stationary subscriber located in areas of service such as complex urban environments characterized by nonline-of-sight propagation conditions, which limit GPS, Low Earth Orbit, and Medium Earth Orbit services in land-satellite communications. It presents a self-consistent physical-statistical approach for predicting fading phenomena usually occurring in land-satellite communication links caused by influence of the terrain features on radio signal propagation from the ground-based to the satellite antenna. This approach combines (1) the statistical description of the buildings array located on the rough terrain and the buildings' overlay profile, based on special probabilistic distributions of built-up terrain parameters, and (2) the theoretical description of propagation phenomena, taking into account multiple scattering, reflection, and diffraction mechanisms. A new technique is proposed for predicting the probability of fading phenomena occurring in land-satellite links using the so-called stochastic multiparametric model. Results of theoretical predictions are compared with those obtained from the "pure statistical" Lutz model and physical-statistical Saunders-Evans model, and then with experimental data obtained for different European cities. Obtained results show that the proposed stochastic approach can be used as a good predictor of fading phenomena in land-satellite communication links for different satellite constellation scenarios and elevations of satellites during their movement surrounding the Earth, with respect to the ground-based antenna for different land environments: rural, mixed residential, suburban, and urban.

  4. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  5. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  6. Resource letter PPPP-1: Physical principles of physiological phenomena

    NASA Astrophysics Data System (ADS)

    Hoop, Bernard

    1987-03-01

    This Resource Letter provides a guide to the literature involving physical principles in physiology. References have been selected to provide resource information on physiology and related life sciences for physicists who wish to introduce material on the physical foundations of physiological phenomena in an introductory or intermediate physics course. The letters E, I, or A after an item indicate elementary, intermediate, or advanced physical or mathematical formalism. An asterisk (*) indicates those articles to be included in an accompanying Reprint Book.

  7. On the dynamics of the Ising model of cooperative phenomena.

    PubMed

    Montroll, E W

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  8. On the Dynamics of the Ising Model of Cooperative Phenomena

    NASA Astrophysics Data System (ADS)

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions.

  9. On the dynamics of the Ising model of cooperative phenomena

    PubMed Central

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  10. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    NASA Astrophysics Data System (ADS)

    Garcia, David; Stickland, Matthew; Liśkiewicz, Grzegorz

    2015-09-01

    Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs) by means of Singular Spectrum Analysis (SSA). Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  11. Draft tube flow phenomena across the bulb turbine hill chart

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  12. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  13. Seismically-induced sloshing phenomena in LMFBR reactor tanks

    SciTech Connect

    Ma, D.C.; Liu, W.K.; Gvildys, J.; Chang, Y.W.

    1982-01-01

    A coupled fluid-structure interaction solution procedure for analyzing seismically-induced sloshing phenomena in fluid-tank systems is presented. Both rigid and flexible tanks are considered. Surface-wave effects are also included. Results demonstrate that tank flexibility could affect the free surface-wave amplitude and the sloshing pressuare if the natural frequency of the fluid-structure system is below 5 Hz. Furthermore, the presence of higher sloshing modes do enhance the post-earthquake sloshing response.

  14. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  15. Investigations of pre-breakdown phenomena: streamer discharges

    NASA Astrophysics Data System (ADS)

    Arrayás, Manuel; Trueba, José L.

    2005-07-01

    Physical principles of electrical breakdown are reviewed in this article. The phenomena of streamer formation and spontaneous branching are studied in terms of a fluid description based on kinetic theory. Particular attention is paid to a minimal model which is suitable for non-attaching gases. The evidence that anode directed fronts can branch due to a Laplacian instability is shown. Finally an electric shielding factor is introduced which allows us to extend previous results to curved geometries.

  16. The role of spinning electrons in paramagnetic phenomena

    NASA Technical Reports Server (NTRS)

    Bose, D. M.

    1986-01-01

    An attempt is made to explain paramagnetic phenomena without assuming the orientation of a molecule or ion in a magnetic field. Only the spin angular momentum is assumed to be responsible. A derivative of the Gurie-Langevin law and the magnetic moments of ions are given as a function of the number of electrons in an inner, incomplete shell. An explanation of Gerlach's experiments with iron and nickel vapors is attempted. An explanation of magnetomechanical experiments with ferromagne elements is given.

  17. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  18. Structure for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  19. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  20. Didactic Model--Bridging a Concept with Phenomena

    ERIC Educational Resources Information Center

    Shternberg, Beba; Yerushalmy, Michal

    2004-01-01

    The article focuses on a specific method of constructing the concept of function. The core of this method is a didactic model that plays two roles together--on the one hand a role of a model of the concept of function and on the other hand a role of a model of physical phenomena that functions can represent. This synergy of modeling situations and…

  1. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  2. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  3. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems. PMID:26581391

  4. Crystallization of PTP Domains.

    PubMed

    Levy, Colin; Adams, James; Tabernero, Lydia

    2016-01-01

    Protein crystallography is the most powerful method to obtain atomic resolution information on the three-dimensional structure of proteins. An essential step towards determining the crystallographic structure of a protein is to produce good quality crystals from a concentrated sample of purified protein. These crystals are then used to obtain X-ray diffraction data necessary to determine the 3D structure by direct phasing or molecular replacement if the model of a homologous protein is available. Here, we describe the main approaches and techniques to obtain suitable crystals for X-ray diffraction. We include tools and guidance on how to evaluate and design the protein construct, how to prepare Se-methionine derivatized protein, how to assess the stability and quality of the sample, and how to crystallize and prepare crystals for diffraction experiments. While general strategies for protein crystallization are summarized, specific examples of the application of these strategies to the crystallization of PTP domains are discussed. PMID:27514806

  5. 8th International symposium on transport phenomena in combustion

    SciTech Connect

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  6. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  7. Complex (dusty) plasmas-kinetic studies of strong coupling phenomena

    SciTech Connect

    Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.

    2012-05-15

    'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics of strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  8. Dusty Plasmas - Kinetic Studies of Strong Coupling Phenomena

    NASA Astrophysics Data System (ADS)

    Morfill, Gregor

    2011-10-01

    ``Dusty plasmas'' can be found almost everywhere - in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere and in the laboratory. In astrophysical plasmas the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory there is great interest in industrial processes (e.g. etching, vapor deposition) and at the fundamental physics level - the main topic here - the study of strong coupling phenomena. Here the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and pace, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many particle systems including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10-12 to 10-9 g) precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.

  9. Computer modelling of nanoscale diffusion phenomena at epitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, M.; Ranguelov, B.

    2014-05-01

    The present study outlines an important area in the application of computer modelling to interface phenomena. Being relevant to the fundamental physical problem of competing atomic interactions in systems with reduced dimensionality, these phenomena attract special academic attention. On the other hand, from a technological point of view, detailed knowledge of the fine atomic structure of surfaces and interfaces correlates with a large number of practical problems in materials science. Typical examples are formation of nanoscale surface patterns, two-dimensional superlattices, atomic intermixing at an epitaxial interface, atomic transport phenomena, structure and stability of quantum wires on surfaces. We discuss here a variety of diffusion mechanisms that control surface-confined atomic exchange, formation of alloyed atomic stripes and islands, relaxation of pure and alloyed atomic terraces, diffusion of clusters and their stability in an external field. The computational model refines important details of diffusion of adatoms and clusters accounting for the energy barriers at specific atomic sites: smooth domains, terraces, steps and kinks. The diffusion kinetics, integrity and decomposition of atomic islands in an external field are considered in detail and assigned to specific energy regions depending on the cluster stability in mass transport processes. The presented ensemble of diffusion scenarios opens a way for nanoscale surface design towards regular atomic interface patterns with exotic physical features.

  10. Some common problems in the numerical modeling of impact phenomena

    NASA Astrophysics Data System (ADS)

    Zukas, J. A.

    1993-02-01

    In 1972, in the preface of his book Impact Strength of Materials, W. Johnson noted that most engineers in the U.S.A. and U.K. graduate without familiarity with impact phenomena, save possibly rigid body impacts. Since the publication of Johnson's book, a wealth of material has appeared in print on impact phenomena spanning the velocity spectrum. There are a large number of books, conference proceedings, short courses, and even a journal devoted to impact problems. Yet the problem noted by Johnson persists. It is particularly evident when looking at computational results of impact problems. The most frequently occurring errors are the use of a computer model inappropriate to the problem, inability to recognize numerical instabilities and attributing these to physical phenomena, improper choice of computational grid, selection of an inappropriate material model or, more likely, the use of material data for a given model generated at strain rates inappropriate to the problem at hand. Most of these can be readily avoided by gaining familiarity with the basic concepts of wave propagation in solids, particularly with reference to the effect of boundaries and material interfaces, attention to the concept of strain rate and a rudimentary familiarity with the approximations involved in transforming a set of coupled nonlinear partial differential equations to a much larger set of algebraic equations. After a brief review of fundamentals, this paper addresses problems common to numerical simulation of high and low velocity impact, to illustrate these concepts.

  11. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  12. Reentrant phase transitions from depletion: colloidal crystals to flocculation

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Laderman, Bezia; Sacanna, Stefano; Chaikin, Paul

    2014-03-01

    Conventional depletion is supposed to be temperature independent. However, we find that many typical colloid-depletion systems show remarkable phenomena as temperature is varied. 1 μm polystyrene spheres in water are known to form colloidal crystals when PEO is added as a depletant. When this system is heated the crystal melts at a first critical temperature T1 ~ 60 C , and then at higher temperature T2 ~ 70 C the colloids flocculate. We argue that a weak temperature-dependent interaction between polymer and colloid is responsible for the observed phenomena: crystals form when the colloid-polymer interaction is repulsive, flocculation occurs when the interaction is attractive, and melting occurs in between when both phases are frustrated. The melted phase occurs due to an unexpected cancelation when combining both entropic and enthalpic attractions. We propose a simple statistical model to map out the observed transitions and fill the theoretical gap between the two established scenarios for colloid-polymer systems, namely depletion and flocculation. We have seen the same temperature dependent phenomena for TPM, PS and silica spheres with PEO and dextran as depletants. Our discovery provides a fundamental understanding of the polymer-colloid system and opens new possibilities for colloidal self-assembly and temperature-controlled viscoelastic materials.

  13. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    NASA Astrophysics Data System (ADS)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  14. Simulation of the temperature distribution in crystals grown by Czochralski method

    NASA Technical Reports Server (NTRS)

    Dudokovic, M. P.; Ramachandran, P. A.

    1985-01-01

    Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.

  15. Generation of sub-100-fs Stokes pulses upon SRS in a barium nitrate crystal

    SciTech Connect

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2010-10-15

    72-fs pulses are generated at the first Stokes component frequency upon stimulated Raman scattering in a barium nitrate crystal for the radiation of the Ti{sup 3+}:Al{sub 2}O{sub 3} laser with the pulse duration of 50 fs. The energy efficiency of conversion is 20%. The barium nitrate crystal was optically pumped by two consecutive orthogonally polarised chirped pulses with the following time compression of the Stokes radiation pulse. (nonlinear optical phenomena)

  16. Growth of single crystals by vapor transport in zero-gravity environment, ground-based experiments

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1978-01-01

    Mass and heat transfer phenomena associated with the growth of single crystals by chemical vapor transport reactions were investigated. In this technique, a gaseous transport agent reacts with the solid source material to form exclusively gaseous products. The gas phase species migrate from the source to the condensation zone of the closed reaction ampoule where the reverse reaction occurs with formation of single crystals. The necessary concentration gradient is achieved by means of a temperature gradient.

  17. Modeling and bulk crystal growth processes: What is to be learned?

    NASA Astrophysics Data System (ADS)

    Derby, Jeffrey J.

    2010-07-01

    Modeling is an important tool to better understand crystal growth. This assertion is discussed via examples of classical models that have proven to be enlightening. The discussion continues with a brief primer on the mathematical governing equations of continuum and interfacial phenomena important in crystal growth processes and several techniques that can be applied to these equations for analysis, including scaling and numerical methods. Finally, some examples of modeling a melt growth system are presented to illustrate modern applications.

  18. Change in the refractive index of a photorefractive crystal during formation of a spatially screened soliton

    SciTech Connect

    Assel'born, Sergei A; Kundikova, Nataliya D; Novikov, Igor' V

    2010-02-28

    A change in the refractive index of a photorefractive barium-sodium niobate crystal in an alternating electric field during the propagation of intensity-modulated coherent radiation in it is studied. It is shown experimentally that a change in the refractive index in the soliton regime in a photorefractive crystal with a small nonlocal response is independent of the external-field amplitude and intensity-modulation depth. (nonlinear-optics phenomena)

  19. Crystallization and crystal properties of squid rhodopsin

    SciTech Connect

    Murakami, Midori; Kitahara, Rei; Gotoh, Toshiaki; Kouyama, Tsutomu

    2007-06-01

    Truncated rhodopsin from the retina of the squid Todarodes pacificus was extracted and crystallized by the sitting-drop vapour-diffusion method. Hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. Rhodopsin, a photoreceptor membrane protein in the retina, is a prototypical member of the G-protein-coupled receptor family. In this study, rhodopsin from the retina of the squid Todarodes pacificus was treated with V8 protease to remove the C-terminal extension. Truncated rhodopsin was selectively extracted from the microvillar membranes using alkyl glucoside in the presence of zinc ions and was then crystallized by the sitting-drop vapour-diffusion method. Of the various crystals obtained, hexagonal crystals grown in the presence of octylglucoside and ammonium sulfate diffracted to 2.8 Å resolution. The diffraction data suggested that the crystal belongs to space group P6{sub 2}, with unit-cell parameters a = b = 122.1, c = 158.6 Å. Preliminary crystallographic analysis, together with linear dichroism results, suggested that the rhodopsin dimers are packed in such a manner that their transmembrane helices are aligned nearly parallel to the c axis.

  20. Laser radiation frequency doubling in a single-crystal fibre based on a stoichiometric LiNbO{sub 3} crystal

    SciTech Connect

    Kashin, V V; Nikolaev, D A; Rusanov, S Ya; Tsvetkov, V B

    2015-01-31

    We demonstrate the employment of single-crystal optical fibres based on lithium niobate for doubling the laser radiation frequency. The measured characteristics of the fibre confirm its high quality and spatial homogeneity. Parameters of the frequency doublers for neodymium laser radiation (λ = 1 mm) based on fibre and bulk single crystals are compared. Single crystals are grown by the method of laser-heated pedestal growing with heating by radiation of a CO{sub 2} laser (LHPG-method). (nonlinear optical phenomena)