Science.gov

Sample records for cs-137 pela alga

  1. Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch Culture Systems

    SciTech Connect

    Watts, J.R.

    2003-02-18

    Since routine monitoring data show that blue-green algae concentrate radioactivity from water by factors as great as 10,000, this study was initiated to investigate the uptake and retention patterns of specific radionuclides by the dominant genera of blue-green algae in the reactor effluents. Plectonema purpureum was selected for this study.

  2. Potential value of Cs-137 capsules

    SciTech Connect

    Bloomster, C.H.; Brown, D.R.; Bruno, G.A.; Hazelton, R.F.; Hendrickson, P.L.; Lezberg, A.J.; Tingey, G.L.; Wilfert, G.L.

    1985-04-01

    We determined the value of Cs-137 compared to Co-60 as a source for the irradiation of fruit (apples and cherries), pork and medical supplies. Cs-137, in the WESF capsule form, had a value of approximately $0.40/Ci as a substitute for Co-60 priced at approximately $1.00/Ci. The comparison was based on the available curies emitted from the surface of each capsule. We developed preliminary designs for fourteen irradiation facilities; seven were based on Co-60 and seven were based on Cs-137. These designs provided the basis for estimating capital and operating costs which, in turn, provided the basis for determining the value of Cs-137 relative to Co-60 in these applications. We evaluated the effect of the size of the irradiation facility on the value of Cs-137. The cost of irradiation is low compared to the value of the product. Irradiation of apples for disinfestation costs $.01 to .02 per pound. Irradiation for trichina-safe pork costs $.02 per pound. Irradiation of medical supplies for sterilization costs $.07 to .12 per pound. The cost of the irradiation source, either Co-60 or Cs-137, contributed only a minor amount to the total cost of irradiation, about 5% for the fruit and hog cases and about 20% for the medical supply cases. We analyzed the sensitivity of the irradiation costs and Cs-137 value to several key assumptions.

  3. Cs-137 and Sr-90 level in diary products

    NASA Astrophysics Data System (ADS)

    Petukhov, V. L.; Gorb, T. S.; Petukhov, I. V.; Dukhanov, Yu. A.; Sevryuk, I. Z.; Patrashkov, S. A.; Korotkevich, O. S.

    2003-05-01

    About 70% of radioactive substances fell on the territory of the Byelorussia Republic after the Chernobyl Atom Power Station Disaster. Cs-137 and Sr-90 accumulation dynamics was studied in milk of the cows from the highest polluted Braginsky area. 408 milk samples of Black and White cows were investigated. In 1995 average Cs-137 and Sr-90 levels were 61.00 and 3.73 Bk/dm^3 respectively. Cs-137 and Sr-90 levels exceeded Byelorussia Republic upperlimits RDU 96 in 10 and 50% of milk samples respectively. After 5 years (by 2000) Cs-137 and Sr-90 levels had become almost 3 and 2 times less (21.70 Bk/dm^3 and 1.72 Bk/dm^3 respectively). Cs-137 and Sr-90 levels exceeded RDU 96 in 1.5 and 5.5% of milk samples respectively. In the same periods Cs-137 and Sr-90 levels were 7 and 2 times higher than the similar indexes in the relatively clean Novosibirsk area. Thus, radioactive element levels in milk of Black and White cows of the Byelorussia Republic decreased significantly for the past years.

  4. The Transfer of Dissolved Cs-137 from Soil to Plants

    SciTech Connect

    Prorok, V.V.; Melnichenko, L.Yu.; Mason, C.F.V.; Ageyev, V.A.; Ostashko, V.V.

    2006-07-01

    Rapidly maturing plants were grown simultaneously at the same experimental sites under natural conditions at the Chernobyl Exclusion Zone. Roots of the plants were side by side in the soil. During two seasons we selected samples of the plants and of the soils several times every season. Content of Cs-137 in the plant and in the soil solution extracted from the samples of soils was measured. Results of measurements of the samples show that, for the experimental site, Cs-137 content in the plant varies with date of the sample selection. The plant:soil solution Cs-137 concentration ratio depends strongly on the date of selection and also on the type of soil. After analysis of the data we conclude that Cs-137 plant uptake is approximately proportional to the content of dissolved Cs-137 in the soil per unit of volume, and the plant:soil solution Cs-137 concentration ratio for the soil is approximately proportional to the soil moisture. (authors)

  5. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  6. Transport of Cs-137 from Boreal Biomass Burning in Summer of 2010

    NASA Astrophysics Data System (ADS)

    Strode, S. A.; Ott, L. E.; Nielsen, J. E.; Pawson, S.

    2010-12-01

    The summer of 2010 was a severe fire season in western Russia. Wildfires were detected in the Bryansk region, raising concerns that radionuclide contamination from the Chernobyl accident could be resuspended in the atmosphere. We simulate the transport of passive and particulate tracers of biomass burning from this region using the GEOS5 GOCART model driven by assimilated meteorology. Biomass burning emissions are based on MODIS fire detections. We validate the model against aerosol optical depth from MODIS. Using a range of estimates for Cs-137 emissions during wildfires, we estimate the downwind concentration and deposition of Cs-137 based on the emission ratios of Cs-137 to the simulated tracers. We discuss the sensitivity of our results to the location of the fires and the fraction of Cs-137 resuspended.

  7. Systematical Investigations of Cs - 137 Concentration in Soils in Bansko - Razlog Region

    SciTech Connect

    Kostov, L. K.; Mladenov, Ml. I.; Protochristov, Ch. N.; Stoyanov, Ch. P.; Kobilarov, R. G.; Kostova, L. G.

    2007-04-23

    Systematical investigations of Cs-137 concentration in soil in Bansko - Razlog region have been performed for the first time on a total area of about 40 km2. By means of high-resolution gamma-ray spectroscopy the radio-nuclide content of soil samples has been determined. The Cs-137 deposition density following the Chernobyl accident has been estimated and compared with results obtained in other countries. The additional dose rate caused by this fallout has been estimated, too.

  8. Measurement of Weak Gamma Rays from Cs-137 in Shelf Fungi

    NASA Astrophysics Data System (ADS)

    Miura, Kohji; Takagi, Kazuo; Abe, Toshimi; Suehiro, Teruo

    1994-03-01

    Weak gamma rays from Cs-137 in shelf fungi have been measured. Shelf fungi possess annual-ring structures and this made it possible to obtain an annual variation of the radioactive intensity by measuring gamma rays from each annual ring of the sample. Gamma rays from Cs-137 were especially strong in the newest parts of the samples, i.e. the parts of shelf fungi grown in the year 1992 when the samples were gathered. This shows that the part of the most rapid growing largely collects Cs-137. The intensities of K-40 were also measured, but were found to be markedly weak. This is the most distinctive feature as compared with other fungi. The annual variation of intensities as was found for Cs-137 was not clearly observed in the case of K-40. Shelf fungi have been customarily used as a medicine usually by drinking a decoction. The intensity of gamma rays from Cs-137 was measured for the filtered liquid obtained by decocting shelf fungi in boiled water. Certain amount of Cs-137 contaminations was found to be present in the liquid.

  9. Spatial heterogeneity of Cs-137 soil contamination at the landscape scale of the Bryansk Region (Russia)

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander; Sokolov, Anton; Linnik, Vitaly

    2016-04-01

    The passage of the Chernobyl plume over the Bryansk region (Russia) in the end of April 1986 led to the deposition of radionuclides on the ground by wet and dry deposition processes. According to the results of the Cs-137 air gamma survey (AGS, grid size: 100 m x100 m), which was conducted in summer 1993, it was shown that the processes of Cs-137 lateral migration took place due to nearly a fourfold increase of Cs-137 in the lower slope as compared to the upper part of the slope during a seven-year period after the Chernobyl accident. The variability patterns of Cs-137 could be described by a stochastic or a deterministic function of the measurement location. The patterns variations could be associated with the nonlinear response of many interacting variables within the landscape system. In the test area located at a distance of about 280 km from the Chernobyl Nuclear Power Plant Cs-137 surface activity typically ranges from below 7 kBq/m2 to approximately 50-60 kBq/m2 reflecting the combination of deposition due to global fallout from the atmospheric testing of nuclear weapons, and the relatively low levels of Chernobyl deposition to the area. To model the Cs-137 distribution depending on complex landscape attributes the following information layers were used: 1) the soil map at the scale of 1:50,000; 2) SRTM elevation data acquired from the Global Land Cover Facility at a 3 arc second resolution. Fundamental difficulties in distributed erosion modelling arise from the natural complexity of landscape systems and Cs-137 spatial heterogeneity. The SRTM DEM of the test site has a grid size about 90 m, which is not sufficient for distributed hydrological modelling at the landscape scale. The scaling problem arises because of the mismatch between SRTM DEM pixel dimensions and the size of erosion network (width about 10-50 m) that concentrates Cs-137 run-off from the overlying slopes and watershed areas. To build a hydrologically correct local drain direction (LDD) with

  10. Distribution Of Cs-137 In The Plant Tufts Of The Big Smolyan Lake (The Rhodope Mountain)

    SciTech Connect

    Srentz, A. K.; Hristov, Hr. G.; Kirin, D. A.

    2007-04-23

    Samples from the sedimentary layers and plant tufts in the Big Smolyan lake were taken as a solution for tracing the vertical distribution of Cs-137. The measurements were taken by a precise gamma ray spectrometer. The specific and surface activity was calculated.

  11. A clay permeable reactive barrier to remove Cs-137 from groundwater: Column experiments.

    PubMed

    De Pourcq, K; Ayora, C; García-Gutiérrez, M; Missana, T; Carrera, J

    2015-11-01

    Clay minerals are reputed sorbents for Cs-137 and can be used as a low-permeability material to prevent groundwater flow. Therefore, clay barriers are employed to seal Cs-137 polluted areas and nuclear waste repositories. This work is motivated by cases where groundwater flow cannot be impeded. A permeable and reactive barrier to retain Cs-137 was tested. The trapping mechanism is based on the sorption of cesium on illite-containing clay. The permeability of the reactive material is provided by mixing clay on a matrix of wood shavings. Column tests combined with reactive transport modeling were performed to check both reactivity and permeability. Hydraulic conductivity of the mixture (10(-4) m/s) was sufficient to ensure an adequate hydraulic performance of an eventual barrier excavated in most aquifers. A number of column experiments confirmed Cs retention under different flow rates and inflow solutions. A 1D reactive transport model based on a cation-exchange mechanism was built. It was calibrated with batch experiments for high concentrations of NH4+ and K+ (the main competitors of Cs in the exchange positions). The model predicted satisfactorily the results of the column experiments. Once validated, it was used to investigate the performance and duration of a 2 m thick barrier under different scenarios (flow, clay content, Cs-137 and K concentration). PMID:26197347

  12. Tests of Cs-137 removal from DWPF samples prior to analysis

    SciTech Connect

    Dewberry, R.A.; Coleman, C.J.

    1994-11-10

    The Defense Waste Processing Facility (DWPF) will be used to encapsulate high-level radioactive waste into borosilicate glass at the Savannah River Site. To ensure that the process streams will be blended in the right proportions to produce durable glass, process control analyses will be performed in a laboratory in the DWPF. The high radioactivity of DWPF samples will require that sample preparation, including dissolution and dilution of samples, be performed in shielded cells. However the final analyses will be made with instruments and spectrometers contained in unshielded fume hoods. The primary radiation concern is the exposure to y-rays from the decay of Cs-137 after samples are removed from the shielded cells. Since there are several methods available for removing Cs-137 from samples, investigations were made into removing Cs-137 from DWPF samples prior to analysis in order to reduce worker exposure. Results are presented of the efficiency of various Cs-137 removal techniques and the effects of these techniques on analytical precision and accuracy.

  13. Estimation of SX Farm Vadose Zone CS-137 Inventories from Geostatistical Analysis of Drywell and Soil Core Data

    SciTech Connect

    KNEPP, A.J.

    2000-06-02

    This report provides an estimation of the Cs-137 inventories in the soil under the SX Tank Farm based on measurements obtained from drywell and soil cores. The Cs-137 inventories are estimated separately for distinct volumes of soil associated etc.

  14. Cs-137 K-39 Distribution and Cycling in some Forest Ecosystems 25 Years after the Chernobyl Accident

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey; Kasatskiy, Andrey

    2014-05-01

    Many radioecological research conducted in forest ecosystems after the Chernobyl Accident suggest that Cs-137 distribution in the forest stand and tree components changes with the time. Downward Cs-137 fluxes were shown to prevail during first several years after the accident. It was supposed that with the course of time, the parameters of Cs-137 migration and cycling in the forests would be similar to the corresponding parameters of K-39 that is a chemical analog of Cs-137. However, our later studies showed that in the forest ecosystems on chernozem and grey forest soils (Tula Oblast of Russian Federation, 400-500 km from the ChNPP), annual return of Cs-137 to the soil with litterfall still increased its root uptake by a factor of 2-5, while the K-39 cycle was in steady state. It suggests that Cs-137 cycling parameters in these ecosystems is different from the potassium cycling even a while after the fallout. In 2008-2013 a similar study was conducted in pine and birch forests located some 100 km from the ChNPP, in Bryans Oblast of Russian Federation where the composition and physico-chemical properties of the initial fallout were similar to that in the 30-km zone of exclusion. In 2008, Cs-137 deposition in the pine and birch ecosystems was 11000 and 6000 Kbq/m2, respectively. Cs-137 content in different tree parts varied from 4 to 38 Kbq/kg, and in the pine forest decreased in the following rank: yang needles > internal bark > twigs (under 1 cm in diameter) > external bark > large brunches (over 1 cm in diameter) > wood. In the birch forest, the Cs-137 content in the tree parts decreased in the following rank: leaves > twigs > internal bark > large branches> external bark > wood. The K-39 content in the tree parts varies from 0.01% to 1 % and is ranked as above, i.e. similar to Cs-137. The average coefficient of correlation between K-39 and Cs-137 in the tree components is 0.85, at P=0.95. In the investigated ecosystems, the total mass (activity) of potassium and

  15. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    DOE PAGESBeta

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement withmore » values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.« less

  16. (135)Cs/(137)Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications.

    PubMed

    Snow, Mathew S; Snyder, Darin C

    2016-01-01

    (135)Cs/(137)Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the (135)Cs/(137)Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product (135)Cs/(137)Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated (135)Cs/(137)Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show (135)Cs/(137)Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. The differences in (135)Cs/(137)Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that (135)Cs/(137)Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe. PMID:26540258

  17. Radioactive Cs-137 discharge from Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, S.; Onda, Y.; Tsujimura, M.; Sakakibara, K.; Konuma, R.

    2015-12-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, Cs-137 concentration of dissolved water, suspended sediment and coarse organic matter such as leaf and branch were monitored. Discharge amount of stream water, suspended sediment and coarse organic matter were measured to investigate the discharge amount of radiocesium and composition of radiocesium discharge form through the headwater stream. Observation were conducted at stream site in four headwater catchments in Yamakiya district, located ~35 km north west of FDNPP from June 2011 (suspended sediment and coarse organic matter: August 2012) to December 2014.The Cs-137 concentration of dissolved water was around 1Bq/l at June 2011. Then declined to 0.1 Bq/l at December 2011. And in December 2014, it declined to 0.01 Bq/l order. Declining trend of Cs-137 concentration in dissolved water was expressed in double exponential model. Also temporary increase was observed in dissolved Cs-137 during the rainfall event. The Cs-137 concentration of suspended sediment and coarse organic matter were 170-49000 Bq/kg and 350-14000 Bq/kg respectably. The Cs-137 concentration of suspended sediment showed good correlation with average deposition density of catchment. The effect of decontamination works appeared in declining of Cs-137 concentration in suspended sediment. Contribution rate of Cs-137 discharge by suspended sediment was 96-99% during a year. Total annual Cs-137 discharge from the catchment were 0.02-0.3% of the deposition.

  18. Spatial Distribution Of Cs-137 In Surface Soils On Some Central Rhodopes Regions

    NASA Astrophysics Data System (ADS)

    Hristov, Hr. G.; Srentz, A. K.; Balabanov, N. P.

    2007-04-01

    The subject of investigation are soils from region around village Kiselchovo, town Smolyan, villages Narechen, Bachkovo, Laki, Kosovo, Dobralak, Central Rhodopes region. The samples have been collected from natural soils at a depth of 0-10 cm. The samples have been analyzed for the content of technogenical radionuclide Cs-137. The measurements were taken by precise gamma ray spectrometer. Based on the conducted research an inference can be made that there are radioactive contamination (up to 30 times over the background level).

  19. Spatial Distribution Of Cs-137 In Surface Soils On Some Central Rhodopes Regions

    SciTech Connect

    Hristov, Hr. G.; Srentz, A. K.; Balabanov, N. P.

    2007-04-23

    The subject of investigation are soils from region around village Kiselchovo, town Smolyan, villages Narechen, Bachkovo, Laki, Kosovo, Dobralak, Central Rhodopes region. The samples have been collected from natural soils at a depth of 0-10 cm. The samples have been analyzed for the content of technogenical radionuclide Cs-137. The measurements were taken by precise gamma ray spectrometer. Based on the conducted research an inference can be made that there are radioactive contamination (up to 30 times over the background level)

  20. Inline Monitors for Measuring Cs-137 in the SRS Caustic Side Solvent Extraction Process

    SciTech Connect

    Casella, V

    2006-04-24

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, a portion of dissolved saltcake waste will be processed through a Modular CSSX Unit (MCU). The MCU employs the CSSX process, a continuous process that uses a novel solvent to extract cesium from waste and concentrate it in dilute nitric acid. Of primary concern is Cs-137 which makes the solution highly radioactive. Since the MCU does not have the capacity to wait for sample results while continuing to operate, the Waste Acceptance Strategy is to perform inline analyses. Gamma-ray monitors are used to: measure the Cs-137 concentration in the decontaminated salt solution (DSS) before entering the DSS Hold Tank; measure the Cs-137 concentration in the strip effluent (SE) before entering the SE Hold Tank; and verify proper operation of the solvent extraction system by verifying material balance within the process. Since this gamma ray monitoring system application is unique, specially designed shielding was developed and software was written and acceptance tested by Savannah River National Laboratory (SRNL) personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System. This paper presents the design, fabrication and implementation of this monitoring system.

  1. SUPPLEMENTARY COMPARISON: Final report on COOMET.RI(II)-S2.Cs-137 (319/RU/04): Comparison measurements of radionuclide volume sources (Cs-137)

    NASA Astrophysics Data System (ADS)

    Korostin, S.; Hernandez, T.; Oropesa, P.; Arnold, D.; Evseev, V.; Ivanukovich, A.; Milevskiy, V.; Svec, A.; Lapenas, A.; Andonova, V.; Steiner, V.

    2010-01-01

    Measurements of the Cs-137 specific activity in artificial volume material of water density were performed in nine laboratories with the HPGe spectrometry technique. Analysis of the gamma radiation absorption in the measured material and in the most important substances for environmental monitoring (food, water, biological materials, soils) confirmed Compton scattering as the main mechanism of interaction. The list of CMCs supported by the comparison is suggested in the report of this comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by COOMET, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  2. Decomposition of tetraphenylborate precipitates used to isolate Cs-137 from Savannah River Site high-level waste

    SciTech Connect

    Ferrara, D.M.; Bibler, N.E.; Ha, B.C.

    1993-03-01

    This paper presents results of the radioactive demonstration of the Precipitate Hydrolysis Process (PHP) that will be performed in the Defense Waste Processing Facility (DWPF) at the Savannah River Site. The PHP destroys the tetraphenylborate precipitate that is used at SRS to isolate Cs-137 from caustic High-Level Waste (HLW) supernates. This process is necessary to decrease the amount of organic compounds going to the melter in the DWPF. Actual radioactive precipitate containing Cs-137 was used for this demonstration.

  3. APPLICATION OF BAYESIAN AND GEOSTATISTICAL MODELING TO THE ENVIRONMENTAL MONITORING OF CS-137 AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Kara G. Eby

    2010-08-01

    At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model that predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.

  4. Long-term trends of plot-scale Cs-137 wash-off from various land uses in Fukushima

    NASA Astrophysics Data System (ADS)

    Wakiyama, Yoshifumi; Onda, Yuichi; Yoshimura, Kazuya; Nakamura, Noriko; Manome, Ryo

    2016-04-01

    Understanding plot-scale Cs-137 wash-off is indispensable for predicting Cs-137 fate. However, there are only a few numbers of long-term observations and hence lack of information on temporal trends of Cs-137 wash-off leaves uncertainties on future predictions. This study shows approximately three years' observation results of plot-scale Cs-137 wash-off from various land uses after the accident of Fukushima Dai-ichi Nuclear Power Plant. Erosion plots were established in 2011 and 2013 on two uncultivated farmlands (FL-A1, FL-B1), two cultivated farmlands (FL-A2, FL-B2), three grasslands (GL-A, GL-B, GL-C) and one Japanese cedar forest (JCdF) in Kawamata town. Each erosion plot consisted of eroding surface with length of 22.13 m and width of 5 m, surface water monitoring apparatus at the outlet of eroding surface and sediment traps. Sediment traps were connected with pipes in series and it enabled us to collect deposited sediments and suspended sediments separately. Eroded sediments as well as the data of rainfall and vegetation cover were collected almost every two weeks. Collected deposited and suspended sediment were dried, weighed and measured with HPGe type gamma detectors for Cs-137 concentrations. Standardized Cs-137 concentration, Sc (m2/kg), was calculated by dividing Cs-137 concentration by initial Cs-137 deposition. Annual soil loss ranged from 0.04 to 75 t/ha/year and the largest was from FL-A2 followed by FL-B2, FL-A1, FL-B1, GL-A, GL-B, JCdF and then GL-C. Soil erosion rate were positively correlated with mean values of vegetation cover on undisturbed soils, whereas high erosion rate were found on cultivated farmlands compared with even with similar vegetation cover to uncultivated farmlands. Concentrations of Cs-137 in eroded sediments ranged from the order of 103 to 105 Bq/kg and basically depended on the initial Cs-137 deposition. Sediment amount weighted mean values Sc ranged from 0.0062 to 0.084 m2/kg and the largest was from JCdF followed by FL-B1

  5. Multiscale structure of Cs-137 soil contamination on the Bryansk Region (Russia) due to the accident at the Chernobyl NPP

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Sokolov, Alexander

    2013-04-01

    The Cs-137 contamination of the Bryansk Region occurred in the period from April 27 to May 10 into several stages. The complicated character of the soil radionuclide contamination on the Bryansk Region is caused by different nature of the radioactive fallout: dry and wet. Thus, in a number of cases Cs-137 soil pollution is directly connected with the rain intensity, which is well known, have multifractal nature. In some parts of contaminated territory the overlay of different types of fallout was observed. The radioactive contamination of the landscape is a result from nonlinear interplay of geophysical factors which intervene over a large range of scale. As a result of the fallout Cs-137 pattern can be described as a multifractal. Consequently, fields of contamination observed have an extreme spatial variability, frequently cited "hot spots" or "leopard's skin. As an estimate of background radiation levels, we relied on a dataset of air-gamma-survey of the Bryansk Region, carried out by SSC AEROGEOFIZIKA in the summer of 1993. This dataset includes geo-positioned data of Cs-137 deposition in a grid of 100x100 m with values range from 3 to 11*104 kBq/m2. Airborne gamma survey gave the smoothed values of the Cs-137 density of contamination in comparison with the data, obtained directly as a result of soil sampling. However, even in this case in the east part of the Bryansk test site we can observed the"hot spots" (by size several hundred meters) as natural phenomenon. The article presents the results of the geostatistical and multifractal analysis of the Cs-137 contamination. Scaling analysis was conducted to investigate the linkages between the spatial variability of soil Cs-137 contamination and some landscape characteristics.

  6. KEY COMPARISON: Measurement of activity concentration of radionuclide Cs-137 in a solution (COOMET Project no 386/RU/06)

    NASA Astrophysics Data System (ADS)

    Kharitonov, I. A.; Zanevsky, A. V.; Milevski, V.; Ivaniukovich, A.; Oropesa Verdecia, P.; Moreno León, Y.; Svec, A.

    2008-01-01

    A COOMET.RI(II)-K2.Cs-137 comparison of the measurement of a standardized solution of Cs-137 has enabled three national metrology institutes in the COOMET to demonstrate their traceability to the SI. The results of the comparison will be used to evaluate degrees of equivalence for these institutes through the measurements of the linking laboratory in the key comparison BIPM.RI(II)-K1.Cs-137. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section II, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  7. Analysis of time series of Cs-137 concentration in sewage sludge at Fukushima City

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Mack, Majvor; Shikano, Yudai; Yokoo, Yoshiyuki

    2015-04-01

    Daily routine radioisotope measurements of sewage sludge at the sewage plant of Fukushima City starting in 2011 have provided a detailed data set for the isotopes Cs-137, Cs-134 and I-131. The long-term trend for the Cs isotopes is comparable to data sets from Central Europe caused by the Chernobyl emissions in 1986 - the average Cs-137 concentration decreases faster in the first year (T1/2 < 1 yr) and slower in later years (T1/2 > 1 yr). Absolute values at Fukushima City are comparably low (mostly below 1 kBq/kg dry mass), due to the existence of separate wastewater and rainwater sewer systems, with only a small portion of rainwater and erosion products reaching the purification plant. Cs-134 data decay faster due to the shorter radioactive half-life. I-131 appears even years after the NPP releases and is assumed to originate from the common medical usage of the isotope for thyroid treatment. Short-term Cs data show a clear dependence on rainfall: each significant rainfall event causes a concentration increase in sludge of up to a factor of ten. Therefore the time series exhibits high short-term variability. Here we attempt to numerically analyse the detailed Cs-137 data set, using two separate approaches: The first method tries to connect parameters like the local surface deposition density, surface types (sealed/unsealed), rainfall statistics, rainfall-induced erosion rate, leakage rate from rainwater to wastewater sewer, transport time in the sewer and residence time in the purification plant for a basically physical approach. As not all parameters are known, values have to be assumed or can be extracted in the course of the fitting process. The second approach is purely heuristic, based on a water surface runoff and transport model. Whilst there is no ad-hoc physical meaning in the extracted parameters, they can possibly be interpreted as such when compared with physical modeling results. The combination of both methods is expected to give a deeper insight

  8. A study of Cs-137 spatial distribution in soil thin sections by digital autoradiography

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Dogadkin, Nikolay; Shiryaev, Andrey; Kolotov, Vladimir; Turkov, Victor

    2013-04-01

    Recent studies have proved autoradiography to have high potential in detection of radiation in particles including geological objects [1-3]. We applied digital autoradiography based on usage of image plates to study Cs-137 microdistribution in thin sections of the podzolic sandy soil typical for the Chernobyl remote impact zone 25 years after the accident. The zone is noted for contamination of the so-called condensation type where the contribution of the "hot" fuel particles has been comparatively low. The initial 137Cs contamination level of the study plot approximated 40 Ci/km2. According to the soil core data twenty five years after the accident the main portion of cesium radioisotopes is still concentrated in the 10-20 cm thick surface layer. Thin sections have been prepared from the top 0-10 cm soil layer of the soil profile located on the shoulder of the relatively steep northern slope of the forested hill formed on the Iput river terrace ca 20 km to the east of the town of Novozybkov, Bryansk region. Undisturbed soil sample was impregnated with epoxy resin, then dissected in vertical triplicates and polished to obtain open surface. Autoradiography of the thin sections has clearly shown different patterns of Cs-137 distribution related to its concentration in organic material and on the surface of soil particles. High sensitivity and resolution of the applied technique enables to reveal concentration and dispersion zones on microscale level. Soil micro-morphology has shown to be helpful in deciphering soil components and properties responsible for Cs-137 retention in the soil top layer. References 1. Mihoko Hareyama, Noriyoshi Tsuchiya, Masahiro Takebe and Tadashi Chida. Two-dimensional measurement of natural radioactivity of granitic rocks by photostimulated luminescence technique Geochemical Journal, 2000, 34, 1- 9. 2. Zeissler C. J., R. M. Lindstrom, J. P. McKinley. Radioactive particle analysis by digital autoradiography. Journal of Radioanalytical and

  9. DEVELOPMENT OF DEPOSIT DETECTION SYSTEM IN PIPELINES OF THE STEELWORKS USING CS-137 GAMMA-RAY

    SciTech Connect

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-02-28

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

  10. Development of Deposit Detection System in Pipelines of the Steelworks Using CS-137 Gamma-Ray

    NASA Astrophysics Data System (ADS)

    Song, Won-Joon; Lee, Seung-Hee; Jeong, Hee-Dong

    2008-02-01

    The deposit is built up in the pipeline of the steelworks by the chemical reaction among COG (coke oven gas), BFG (blast furnace gas), moisture, and steel in the high temperature environment and obstructs the smooth gas flow. In this study a gamma-ray system is developed to detect the deposit accumulated in pipelines and calculate the accumulation rate with respect to the cross section area of pipes. Cs-137 is used as the gamma-ray source and the system is designed to apply to pipes of various diameters. This system also includes the DB for storage and display of the measurement results so that it can be used for the efficient management of the pipelines.

  11. TUNGSTEN SHIELDS FOR CS-137 INLINE MONITORS IN THE CAUSTIC SIDE SOLVENT EXTRACTION PROCESS

    SciTech Connect

    Casella, V; Mark Hogue, M; Javier Reyes-Jimenez, J; Paul Filpus-Luyckx, P; Timothy Riley, T; Fred Ogden, F; Donald Pak, D

    2007-05-10

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). The CSSX process is a continuous process that uses a novel solvent to extract cesium from highly radioactive waste and concentrate it in dilute nitric acid. In-line analyses are performed with gamma-ray monitors to measure the C-137 concentration in the decontaminated salt solution (DSS) and in the strip effluent (SE). Sodium iodide (NaI) monitors are used to measure the Cs-137 concentration before the DSS Hold Tank, while Geiger-Mueller (GM) monitors are used for Cs-137 measurements before the SE hold tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to provide the needed reduction of the process background radiation at the detector positions. A one-inch tungsten cylindrical shield reduced the background radiation by a factor of fifty that was adequate for the GM detectors, while a three-and-one-half-inch tungsten cylindrical shield was required for the NaI detectors. Testing of the NaI shield was performed at the SRS Instrument Calibration Facility. Based on this testing, the as-built shield is predicted to be able to detect the MCU DSS stream at concentrations above 0.003 Ci/gal under the ''worst case'' field conditions with a MCU feed solution of 1.1 Ci/gal and all of the process tanks completely full. This paper discusses the design, fabrication, testing and implementation of the tungsten shields in the MCU facility.

  12. Transfer of Cs-137 from grass and wilted grass silage to milk of dairy cows.

    PubMed

    Vreman, K; van der Struijs, T D; van den Hoek, J; Berende, P L; Goedhart, P W

    1989-09-01

    Deposition of radiocaesium from the Chernobyl reactor accident on the Netherlands made it possible to collect contaminated fresh grass and first cut wilted grass silage. These contaminated roughages were used in transfer experiments with lactating dairy cows to determine transfer coefficients and half-lives for Cs-137 in milk. The experimental design was based on three consecutive periods: a preliminary period to determine the background concentration of the isotope in milk, a contamination period to determine the magnitude of accumulation and finally a depletion period to measure the rate at which the activity concentration of Cs-137 in milk declined after continuous feeding. The average transfer coefficient (Fmilk) for cows fed on contaminated dried grass under steady-state conditions was 0.002 d/kg and for cows fed on slightly contaminated second cut fresh grass 0.006 d/kg. The highest transfer coefficients were obtained for cows fed on contaminated grass silage for 119 days, which also included the dry period of about two months. For the first five days after calving the Fmilk values varied from 0.0066 to 0.0091 d/kg. There were no significant differences in transfer coefficients between cows in early lactation (third month of lactation), cows in late lactation (the last month of the lactation period) and cows fed on both contaminated grass silage and uncontaminated maize silage simultaneously. Half-life values for the rate of decline of the isotope in milk during the depletion period were estimated on the basis of a mathematical model with two exponential components. These components were characterized by half-lives of 0.5 to 3.5 days and 10 to 46 days. PMID:2814441

  13. Design, Development and Operational Experience of Demonstration Facility for Cs-137 Source Pencil Production at Trombay - 13283

    SciTech Connect

    Patil, S.B.; Srivastava, P.; Mishra, S.K.; Khan, S.S.; Nair, K.N.S.

    2013-07-01

    Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of its longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)

  14. Non-destructive measurements of cosmogenic Al-26, natural K-40 and fallout Cs-137 in Antarctic meteorites

    NASA Astrophysics Data System (ADS)

    Komura, K.; Tsukamoto, M.; Sakanoue, M.

    1982-12-01

    Non-destructive gamma-ray measurements have been made to determine cosmogenic Al-26, natural K-40 and fallout Cs-137 activities in 15 Antarctic meteorites (14 from Yamato Mountains and 1 from Allan Hills). The Al-26 activities range from 72 to 29 dpm/kg. If it is assumed that the saturation activity of Al-26 in chondrites is 60, about 1/3 of the measured meteorites show the contents close to this value; however, the rest show lower values. A simple graphical method was applied to estimate the exposure and terrestrial ages based on Al-26 and Mn-53 data, and these ages are compared with exposure ages obtained by Ne-21 measurements. The results are generally consistent with the Ne-21 data. It must be noted that the Antarctic meteorites are highly contaminated with fallout Cs-137 derived from nuclear test explosions.

  15. Cs-137 in milk, vegetation, soil, and water near the former Soviet Union's Semipalatinsk Nuclear Test Site.

    PubMed

    Kakimov, Aitbek; Yessimbekov, Zhanibek; Kakimova, Zhainagul; Bepeyeva, Aigerim; Stuart, Marilyne

    2016-03-01

    The present study was carried out to evaluate Cs-137 activity concentration in soil, water, vegetation, and cow's milk at 10 locations within three regions (Abai, Ayaguz, and Urdzhar) to the southeast of the Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan. Cs-137 activity concentrations, determined using a pure Ge gamma-ray spectrometer, showed that, all samples collected did not exceed the National maximum allowable limits of 10,000 Bq/kg for soil, 100 Bq/kg for cow's milk, 74 Bq/kg for vegetation, and 11 Bq/kg for water. Cs-137 is, therefore, not considered a health hazard in these regions. The highest levels of contamination were found in the Abai region, where the highest activity concentration of Cs-137 was 18.0 ± 1.0 Bq/kg in soil, 7.60 ± 0.31 Bq/kg in cow's milk, 4.00 ± 0.14 Bq/kg in the vegetation, and 3.00 ± 0.24 Bq/kg in water. The lowest levels were measured within the Urdzhar region, where 4.00 ± 0.14 Bq/kg was found in the soil, 0.30 ± 0.02 Bq/kg in the cow's milk, 1.00 ± 0.03 Bq/kg in the vegetation, and 0.20 ± 0.02 Bq/kg in the water. PMID:26549709

  16. (135)Cs/(137)Cs isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident.

    PubMed

    Zheng, Jian; Tagami, Keiko; Bu, Wenting; Uchida, Shigeo; Watanabe, Yoshito; Kubota, Yoshihisa; Fuma, Shoichi; Ihara, Sadao

    2014-05-20

    Since the Fukushima Daiichi nuclear power plant (FDNPP) accident in 2011, intensive studies of the distribution of released fission products, in particular (134)Cs and (137)Cs, in the environment have been conducted. However, the release sources, that is, the damaged reactors or the spent fuel pools, have not been identified, which resulted in great variation in the estimated amounts of (137)Cs released. Here, we investigated heavily contaminated environmental samples (litter, lichen, and soil) collected from Fukushima forests for the long-lived (135)Cs (half-life of 2 × 10(6) years), which is usually difficult to measure using decay-counting techniques. Using a newly developed triple-quadrupole inductively coupled plasma tandem mass spectrometry method, we analyzed the (135)Cs/(137)Cs isotopic ratio of the FDNPP-released radiocesium in environmental samples. We demonstrated that radiocesium was mainly released from the Unit 2 reactor. Considering the fact that the widely used tracer for the released Fukushima accident-sourced radiocesium in the environment, the (134)Cs/(137)Cs activity ratio, will become unavailable in the near future because of the short half-life of (134)Cs (2.06 years), the (135)Cs/(137)Cs isotopic ratio can be considered as a new tracer for source identification and long-term estimation of the mobility of released radiocesium in the environment. PMID:24779957

  17. Decommissioning of a nuclear power plant: determination of site-specific sorption coefficients for Co-60 and Cs-137.

    PubMed

    Delakowitz, B; Meinrath, G

    1998-01-01

    Assessment of radiological risks in strategies for decommissioning of nuclear installations have to consider not only technical concepts such as cutting and decontamination techniques but, even more important, requirements for input of reliable information on the hydrological situation and retardation capabilities of relevant radionuclides specific to the respective decommissioning operation. In this paper we describe appropriate methods for obtaining site-specific sorption data and present results achieved from a case study performed as a commercial contractual work preliminary to the planned decommissioning of a nuclear power plant. A detailed mineralogical study of the sediment used in our sorption experiment highlights the necessity of a thorough sample homogenization and characterization. Batch experiments using radiotracer techniques for the determination of site-specific sorption coefficients show significant retardation for Co-60 and Cs-137 after only 2 h of equilibration between the preconditioned groundwater and sediment. Sorption is more effective in the groundwater of a deeper aquifer containing a higher amount of colloidal clay (illite) particles < 0.63 micron. The Co-60 radiotracer is more completely sorbed than the Cs-137 radiotracer. Equilibration of radionuclide distribution is slow, particularly for Co-60. Presence of EDTA reduces sorption of Co-60 efficiently while Cs-137 sorption remains unaffected. PMID:10089594

  18. Identification of Reprocessed Depleted Uranium in Contaminated Sediments From Cs-137 Activity Measurements

    NASA Astrophysics Data System (ADS)

    Arnason, J. G.; Bopp, R. F.

    2006-05-01

    Measurements of U series isotopes and fission products can be used to distinguish the relative contributions of natural and anthropogenic sources in U-contaminated sites. Anthropogenic sources include enriched uranium, depleted uranium (DU) byproduct from ore enrichment, and DU byproduct from spent fuel reprocessing. From 1958 to 1984 the National Lead industries plant in Colonie, New York, USA, emitted more than four metric tons of uranium as microscopic uranium oxide aerosols within a 1 km radius of the plant. Previous studies of a 3-m-long sediment core from Patroon Reservoir, located 1 km downstream of the plant, indicate that between 1.8 and 1.0 m depth, U concentrations are more than 100 times natural background and consist of 25 to 95 percent depleted uranium based on alpha spectroscopy. We measured 18 samples by gamma spectroscopy to better constrain the chronology of the core. Cesium-137 shows two activity peaks, one at approximately 2.0 m and another, broader peak between 1.5 and 1.0 m depth. The lower peak corresponds to the global fallout maximum of the mid 1960's and indicates a 5.5-6 cm/yr sedimentation rate that is consistent with the excess Pb-210 profile. In contrast, the upper Cs-137 peak corresponds to the interval containing DU, and suggests that there is a DU component derived from spent nuclear fuel. This hypothesis is consistent with a published report of U-236 detected in DU particles collected in air filters 15 km away at the Knolls Atomic Power Lab during the time of plant operation. It can be further tested through high resolution isotopic measurements of U-236 in the sediments themselves. Depleted uranium derived from spent fuel and containing U-236 will have higher total activity than DU derived from U ore and, as a result, could represent a greater hazard in the environment.

  19. Soil-plant transfer of Cs-137 and Sr-90 in digestate amended agricultural soils- a lysimeter scale experiment

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Berns, Anne E.; Pütz, Thomas; Burauel, Peter; Vereecken, Harry; Zoriy, Myroslav; Flucht, Reinhold; Opitz, Thorsten; Hofmann, Diana

    2014-05-01

    Radiocesium and radiostrontium are among the most problematic soil contaminants following nuclear fallout due to their long half-lives and high fission yields. Their chemical resemblance to potassium, ammonium and calcium facilitates their plant uptake and thus enhances their chance to reach humans through the food-chain dramatically. The plant uptake of both radionuclides is affected by the type of soil, the amount of organic matter and the concentration of competitive ions. In the present lysimeter scale experiment, soil-plant transfer of Cs-137 and Sr-90 was investigated in an agricultural silty soil amended with digestate, a residue from a biogas plant. The liquid fraction of the digestate, liquor, was used to have higher nutrient competition. Digestate application was done in accordance with the field practice with an application rate of 34 Mg/ha and mixing it in top 5 cm soil, yielding a final concentration of 38 g digestate/Kg soil. The top 5 cm soil of the non-amended reference soil was also submitted to the same mixing procedure to account for the physical disturbance of the top soil layer. Six months after the amendment of the soil, the soil contamination was done with water-soluble chloride salts of both radionuclides, resulting in a contamination density of 66 MBq/m2 for Cs-137 and 18 MBq/m2 for Sr-90 in separate experiments. Our results show that digestate application led to a detectable difference in soil-plant transfer of the investigated radionuclides, effect was more pronounced for Cs-137. A clear difference was observed in plant uptake of different plants. Pest plants displayed higher uptake of both radionuclides compared to wheat. Furthermore, lower activity values were recorded in ears compared to stems for both radionuclides.

  20. Developing a Treatment Planning Software Based on TG-43U1 Formalism for Cs-137 LDR Brachytherapy

    PubMed Central

    Sina, Sedigheh; Faghihi, Reza; Soleimani Meigooni, Ali; Siavashpour, Zahra; Mosleh-Shirazi, Mohammad Amin

    2013-01-01

    Background The old Treatment Planning Systems (TPSs) used for intracavitary brachytherapy with Cs-137 Selectron source utilize traditional dose calculation methods, considering each source as a point source. Using such methods introduces significant errors in dose estimation. As of 1995, TG-43 is used as the main dose calculation formalism in treatment TPSs. Objectives The purpose of this study is to design and establish a treatment planning software for Cs-137 Solectron brachytherapy source, based on TG-43U1 formalism by applying the effects of the applicator and dummy spacers. Materials and Methods Two softwares used for treatment planning of Cs-137 sources in Iran (STPS and PLATO), are based on old formalisms. The purpose of this work is to establish and develop a TPS for Selectron source based on TG-43 formalism. In this planning system, the dosimetry parameters of each pellet in different places inside applicators were obtained by MCNP4c code. Then the dose distribution around every combination of active and inactive pellets was obtained by summing the doses. The accuracy of this algorithm was checked by comparing its results for special combination of active and inactive pellets with MC simulations. Finally, the uncertainty of old dose calculation formalism was investigated by comparing the results of STPS and PLATO softwares with those obtained by the new algorithm. Results For a typical arrangement of 10 active pellets in the applicator, the percentage difference between doses obtained by the new algorithm at 1cm distance from the tip of the applicator and those obtained by old formalisms is about 30%, while the difference between the results of MCNP and the new algorithm is less than 5%. Conclusions According to the results, the old dosimetry formalisms, overestimate the dose especially towards the applicator’s tip. While the TG-43U1 based software perform the calculations more accurately. PMID:24578840

  1. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-01

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs. PMID:25004359

  2. Stochastic modeling of the migration of Cs-137 in the soil considering a power law tailing in space

    NASA Astrophysics Data System (ADS)

    Oka, Hiroki; Hatano, Yuko

    2016-04-01

    We develop a theoretical model to reproduce the measured data of Cs-137 in the soil due to the Fukushima Daiichi NPP accident. In our past study, we derived the analytic solution under the generalized Robin boundary condition (Oka-Yamamoto solution). This is a generalization of the He-Walling solution (1996). We compared our solution with the Fukushima soil data of for 3 years after the accident and found that the concentration of Cs-137 has a discrepancy from our solution, specifically in a deep part because the depth profiles have a power law tailing. Therefore, we improved our model in the following aspect. When Cs particle (or Cs solution) migrate in the soil, the diffusion coefficient should be the results of many processes in the soil. These processes include the effect of various materials which constitute the soil (clay, litter, sand), or the variations of pore size in the soil. Hence we regard the diffusion coefficient as the stochastic variable, we derive the model. Specifically, we consider the solution of ADE to be the conditional probability C(x,t|D) in terms of the diffusion coefficient D and calculate C(x,t)=∫_(0~∞) C(x,t|D)*f(D)*dD, where f(D) is the probability density function of D. This model has a power law tailing in space like the space-fractional ADE.

  3. Monte Carlo dosimetric characterization of the Cs-137 selectron/LDR source: evaluation of applicator attenuation and superposition approximation effects.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F; Puchades, V; Casal, E

    2004-03-01

    The purpose of this study is to calculate the dose rate distribution for the Amersham Cs-137 pellet source used in brachytherapy with the Selectron low-dose-rate remote afterloading system in gynaecological applications using the Monte Carlo code GEANT4. The absolute dose rate distribution for the pellet source was obtained and presented as a one-dimensional absolute dose rate table as well as in the Task Group 43 dose-calculation formalism. In this study, excellent agreement was found between the point source theoretical model using fitted polynomial values and Monte Carlo calculations of the dose rate distribution for the pellet source. A comparison study was also made between the dose rate distribution obtained from a complete Monte Carlo simulation (Cs-137 pellet sources + remote afterloading system plastic guide tube + gynaecological applicator) and that calculated by applying the superposition principle to Monte Carlo data of the individual pellet sources. The data were obtained for a portion of uterine tandem of typical train source configurations. Significant differences with a strong dependence on polar angle have been found that must be kept in mind for clinical dosimetry. PMID:15070245

  4. Estimation of Cs-137 hillslope patterns of Polesje landscapes using geo-information modeling techniques (on example of the Bryansk region)

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Nenko, Kristina; Sokolov, Alexander; Saveliev, Anatoly

    2015-04-01

    In the result of Chernobyl disaster on 26 April 1986 many regions of Ukraine, Belarus and Russia were contaminated by radionuclides. Vast areas of farmlands and woodlands were contaminated in Russia. The deposited radionuclides continue to cause concern about the possible contamination of food (in particular, mushrooms and berries). But the radioactive materials are also an ideal marker for understanding of hillslope processes in natural and seminatural landscapes. Model area chosen for the research (Opolje landscapes located in the central part of the Bryansk region) is characterized by relatively low levels of Cs-137 contamination. It just 4-33 times higher than global fallout which was equal 1,75 kBq/m2 in 1986 . According the results of air gamma survey (grid size: 100 m x100 m), which was done in 1993, it was explicitly to identify that the processes of Cs-137 lateral migration took place due to nearly fourfold increase of Cs-137 in the lower slope in comparison with the surface of the watershed during a seven-year period after Chernobyl accident. Erosion processes which define Cs-137 pattern in the lowest part of hillslope depend upon such parameters as slope, hillslope forms, vegetation, land use and the roads, which intersect a streamline. GIS-modeling of Cs-137 was carried out in SAGA software. The spatial modeling resolution was equal 100x100 m according the air-gamma data. SRTM data was resampled to a grid 100x100 m. Erosion rates were the highest on the slope of southern exposure. There the processes of lateral migration are more intensive and observed within the entire slope. The main contribution in receipt of Cs-137 to floodplain on the northern slopes comes only from the lower part of the slope and gullies and ravines network. We have used geo-information modeling techniques and some kind of interpolation and statistical models to predict or understand forming of Cs-137 spatial patterns and trends in soil erosion. To study the role of some

  5. Quantifying sediment retention by restored wetlands using fallout radionuclide tracer technology (Cs-137 and Be-7): The River Odense, Denmark

    NASA Astrophysics Data System (ADS)

    Kronvang, Brian; Hoffmann, Carl Christian; Taylor, Alex; Blake, William

    2013-04-01

    River restoration projects that allow temporary inundations of the floodplain are important for increasing the water storage potential of the landscape which can decrease flood risk to vulnerable downstream urban areas. During inundation, coarse and fine fluvial sediments are deposited on the floodplain leading to reduced organic matter and nutrient flux downstream. In this context, information on sediment accretion rates by floodplain units is required to inform restoration decisions. Sediment traps are widely used to determine contemporary accretion rates in floodplain units but there are questions about the representativeness and resolution of data. Here, we have tested the application of radionuclide tracer technology (Cs-137 and Be-7) for use in Danish river and floodplain monitoring for longer and shorter term quantification of sediment accretion rates. Prior to the wet season, a network of AstroTurf mats was placed along three transects in the study zone of the Odense floodplain. Suspended sediment traps were installed in the channel and samples were collected during period of floodplain inundation to characterise the FRN activity concentrations in deposited material. Following a series of major inundation events, shallow (3 cm) sediment cores were collected to determine Be-7 inventory relative to a non-inundated reference site. Deeper cores (30 cm) were collected, including a section core, to quantify Cs-137 inventories on the floodplain relative to a reference site. All materials were analysed for particle size and a separation experiment was undertaken to characterise the relationship between particle size and FRN concentration. Cs-137 based accretion rates were in accord with long-term direct monitoring and provided a useful context for the contemporary extreme event data. Comparison of Be-7 based accretion estimates to Astro Turf mat deposition indicated that the Be-7 approach offers to provide high resolution retrospective accretion rate data for

  6. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    (135)Cs/(137)Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure (135)Cs, there were no (135)Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited (135)Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of (134)Cs, (135)Cs, and (137)Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the (134)Cs/(137)Cs activity ratio (1.033 ± 0.006) and (135)Cs/(137)Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace (135)Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%-52.6%. The obtained (135)Cs/(137)Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  7. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    PubMed Central

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-01-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future. PMID:27052481

  8. 135Cs activity and 135Cs/137Cs atom ratio in environmental samples before and after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Yang, Guosheng; Tazoe, Hirofumi; Yamada, Masatoshi

    2016-04-01

    135Cs/137Cs is a potential tracer for radiocesium source identification. However, due to the challenge to measure 135Cs, there were no 135Cs data available for Japanese environmental samples before the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. It was only 3 years after the accident that limited 135Cs values could be measured in heavily contaminated environmental samples. In the present study, activities of 134Cs, 135Cs, and 137Cs, along with their ratios in 67 soil and plant samples heavily and lightly contaminated by the FDNPP accident were measured by combining γ spectrometry with ICP-MS/MS. The arithmetic means of the 134Cs/137Cs activity ratio (1.033 ± 0.006) and 135Cs/137Cs atom ratio (0.334 ± 0.005) (decay corrected to March 11, 2011), from old leaves of plants collected immediately after the FDNPP accident, were confirmed to represent the FDNPP derived radiocesium signature. Subsequently, for the first time, trace 135Cs amounts before the FDNPP accident were deduced according to the contribution of global and FDNPP accident-derived fallout. Apart from two soil samples with a tiny global fallout contribution, contributions of global fallout radiocesium in other soil samples were observed to be 0.338%–52.6%. The obtained 135Cs/137Cs database will be useful for its application as a geochemical tracer in the future.

  9. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    NASA Astrophysics Data System (ADS)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the

  10. Measurement of dissolved Cs-137 in stream water, soil water and groundwater at Headwater Forested Catchment in Fukushima after Fukushima Dai-ichi Nuclear Power Plant Accident

    NASA Astrophysics Data System (ADS)

    Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Sakakibara, Koichi; Konuma, Ryohei; Sato, Yutaro

    2016-04-01

    Radiocesium migration from headwater forested catchment is important perception as output from the forest which is also input to the subsequent various land use and downstream rivers after Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. In this study, dissolved Cs-137 concentration of stream water, soil water and groundwater were measured. Observations were conducted at headwater catchment in Yamakiya district, located 35 km northwest of FDNPP from April 2014 to November 2015. Stream water discharge was monitored and stream water samples were taken at main channel and sub channel. Stream water discharge was monitored by combination of parshallflume and v-notch weir. Stream water was sampled manually at steady state condition in 3-4 month interval and also intense few hours interval sampling were conducted during rainfall events using automated water sampler. Around the sub channel, it is found that there is a regularly saturated area at the bottom of the slope, temporary saturated area which saturate during the rainy season in summer and regularly dry area. 6 interval cameras were installed to monitor the changing situation of saturated area. Suction lysimeters were installed at three areas (regularly saturated area, temporary saturated area and dry area) for sampling soil water in depth of 0.1 m and 0.3 m. Boreholes were installed at three points along the sub channel. Three boreholes with depth of 3 m, 5 m and 10 m were installed at temporary saturated area, 20 m upstream of sub channel weir. Another three boreholes with depth of 3 m, 5 m and 10 m were installed at dry area, 40 m upstream of sub channel weir. And a borehole with depth of 20 m was installed at ridge of sub catchment, 52 m upstream of sub channel weir. Groundwater was sampled by electrically powered pump and groundwater level was monitored. Also suction-free lysimeter was installed at temporary saturated area for sampling the near surface subsurface water. Soil water samples were collected

  11. Technical note: Monte Carlo derivation of TG-43 dosimetric parameters for radiation therapy resources and 3M Cs-137 sources.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F; Casal, E; Cases, R; Agramunt, S

    2005-08-01

    In clinical brachytherapy dosimetry, a detailed dose rate distribution of the radioactive source in water is needed in order to plan for quality treatment. Two Cs-137 sources are considered in this study; the Radiation Therapy Resources 67-800 source (Radiation Therapy Resources Inc., Valencia, CA) and the 3M model 6500/6D6C source. A complete dosimetric dataset for both sources has been obtained by means of the Monte Carlo GEANT4 code. Dose rate distributions are presented in two different ways; following the TG43 formalism and in a 2D rectangular dose rate table. This 2D dose rate table is helpful for the TPS quality control and is fully consistent with the TG43 dose calculation formalism. In this work, several improvements to the previously published data for these sources have been included: the source asymmetries were taken explicitly into account in the MC calculations, TG43 data were derived directly from MC calculations, the data radial range was increased, the angular grid in the anisotropy function was increased, and TG43 data is now consistent with the along and away dose rate table as recommended by the TG43 update. PMID:16193775

  12. Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources

    SciTech Connect

    Perez-Calatayud, J.; Granero, D.; Casal, E.; Ballester, F.; Puchades, V.

    2005-01-01

    In this study, complete dosimetric datasets for the CSM2 and CSM3 Cs-137 sources were obtained using the Monte Carlo GEANT4 code. The application of this calculation method was experimentally validated with thermoluminescent dosimetry (TLD). Functions and parameters following the TG43 formalism are presented: the dose rate constant, the radial dose functional, and the anisotropy function. In addition, to aid the quality control process on treatment planning systems, a two-dimensional (2D) rectangular dose rate table (the traditional along-away table), coherent with the TG43 dose calculation formalism, is given. The data given in this study complement existing information for both sources on the following aspects: (i) the source asymmetries were considered explicitly in the Monte Carlo calculations, (ii) TG43 data were derived directly from Monte Carlo calculations, (iii) the radial range of the different tables was increased as well as the angular resolution in the anisotropy function, including angles close to the longitudinal source axis. The CSM2 source TG-43 data of Liu et al. [Med. Phys. 31, 477-483 (2004)] are not consistent with the Williamson 2D along-away data [Int. J. Radiat. Oncol., Biol., Phys. 15, 227-237 (1988)] at distances closer than approximately 2 cm from the source. The data presented here for this source are consistent with this 2D along-away table, and are suitable for use in clinical practice.

  13. Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources.

    PubMed

    Pérez-Calatayud, J; Granero, D; Casal, E; Ballester, F; Puchades, V

    2005-01-01

    In this study, complete dosimetric datasets for the CSM2 and CSM3 Cs-137 sources were obtained using the Monte Carlo GEANT4 code. The application of this calculation method was experimentally validated with thermoluminescent dosimetry (TLD). Functions and parameters following the TG43 formalism are presented: the dose rate constant, the radial dose functional, and the anisotropy function. In addition, to aid the quality control process on treatment planning systems, a two-dimensional (2D) rectangular dose rate table (the traditional along-away table), coherent with the TG43 dose calculation formalism, is given. The data given in this study complement existing information for both sources on the following aspects: (i) the source asymmetries were considered explicitly in the Monte Carlo calculations, (ii) TG43 data were derived directly from Monte Carlo calculations, (iii) the radial range of the different tables was increased as well as the angular resolution in the anisotropy function, including angles close to the longitudinal source axis. The CSM2 source TG-43 data of Liu et al. [Med. Phys. 31, 477-483 (2004)] are not consistent with the Williamson 2D along-away data [Int. J. Radiat. Oncol., Biol., Phys. 15, 227-237 (1988)] at distances closer than approximately 2 cm from the source. The data presented here for this source are consistent with this 2D along-away table, and are suitable for use in clinical practice. PMID:15719951

  14. Technical note: Monte Carlo derivation of TG-43 dosimetric parameters for radiation therapy resources and 3M Cs-137 sources

    SciTech Connect

    Perez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Cases, R.; Agramunt, S.

    2005-08-15

    In clinical brachytherapy dosimetry, a detailed dose rate distribution of the radioactive source in water is needed in order to plan for quality treatment. Two Cs-137 sources are considered in this study; the Radiation Therapy Resources 67-800 source (Radiation Therapy Resources Inc., Valencia, CA) and the 3M model 6500/6D6C source. A complete dosimetric dataset for both sources has been obtained by means of the Monte Carlo GEANT4 code. Dose rate distributions are presented in two different ways; following the TG43 formalism and in a 2D rectangular dose rate table. This 2D dose rate table is helpful for the TPS quality control and is fully consistent with the TG43 dose calculation formalism. In this work, several improvements to the previously published data for these sources have been included: the source asymmetries were taken explicitly into account in the MC calculations, TG43 data were derived directly from MC calculations, the data radial range was increased, the angular grid in the anisotropy function was increased, and TG43 data is now consistent with the along and away dose rate table as recommended by the TG43 update.

  15. Use of Quantity Indicators for Forecasting of Biogeochemical Behavior Sr-90 and Cs-137 in the Conditions of the Combined Pollution of Soils

    NASA Astrophysics Data System (ADS)

    Lavrentyeva, G. V.; Geshel, I. V.

    2012-04-01

    From huge number of the radionuclides generated by anthropogenous activity the major value the group of biologically active radionuclides has. First of all, it Sr-90 and Cs-137 which play an important role in various radiological situations. In researches on studying of laws of behavior in environment Sr -90 and Cs-137 the basic attention was given to studying of influence of their chemical analogs Ca and K, instead of stable isotopes Sr and Cs. However, even low concentration of stable isotopes Sr and Cs in soil can influence on biogeochemical behavior of radionuclides. Objects of research: dernovo-podsolic soil, summer barley of grade, stable and radioactive isotopes Sr, Cs. Schemes of experiments provided entering of 8 doses stable Cs and Sr in the range from 0 to 500-750 mg/kg of air-dry weight of soil and 50 kBq of radionuclides on each frequency. Absorption of radionuclides by plants will be defined by two parametres of transport. The first - factor of transition (TF), which characterises level of regulation of process of carrying over of a radionuclide from soil in plants and depends on distribution of an element between the firm and liquid phase, distribution defined in the factor (Kd). The second parametre - factor of concentrating (CF) which characterises biological level of regulation of this process. The increase in quantity of stable Sr in soil leads to an active desorption Sr-90 in a soil solution on all frequency. Kd of Cs-137 on the general background of which decrease in values some increase in factor in the range of 120-225 mg of Cs/kg of soil is observed. Received Kd of radionuclides will well be co-ordinated with the revealed functional dependences between concentration Cs and Sr in soil and specific activity Cs-137 and Sr-90 in a soil solution. Comparison CF of two radionuclides shows that plants absorb Sr-90 from a soil solution actively, than Cs-137. Thus values CF of Sr-90 in the investigated interval of concentration of a stable isotope are

  16. Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident

    PubMed Central

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-01-01

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12–21, 2011 were identified individually by analyzing the combination of measured 134Cs/137Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of 134Cs/137Cs are different in reactor units owing to fuel burnup differences, the 134Cs/137Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2. PMID:27546490

  17. Utilization of (134)Cs/(137)Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident.

    PubMed

    Chino, Masamichi; Terada, Hiroaki; Nagai, Haruyasu; Katata, Genki; Mikami, Satoshi; Torii, Tatsuo; Saito, Kimiaki; Nishizawa, Yukiyasu

    2016-01-01

    The Fukushima Daiichi nuclear power reactor units that generated large amounts of airborne discharges during the period of March 12-21, 2011 were identified individually by analyzing the combination of measured (134)Cs/(137)Cs depositions on ground surfaces and atmospheric transport and deposition simulations. Because the values of (134)Cs/(137)Cs are different in reactor units owing to fuel burnup differences, the (134)Cs/(137)Cs ratio measured in the environment was used to determine which reactor unit ultimately contaminated a specific area. Atmospheric dispersion model simulations were used for predicting specific areas contaminated by each dominant release. Finally, by comparing the results from both sources, the specific reactor units that yielded the most dominant atmospheric release quantities could be determined. The major source reactor units were Unit 1 in the afternoon of March 12, 2011, Unit 2 during the period from the late night of March 14 to the morning of March 15, 2011. These results corresponded to those assumed in our previous source term estimation studies. Furthermore, new findings suggested that the major source reactors from the evening of March 15, 2011 were Units 2 and 3 and that the dominant source reactor on March 20, 2011 temporally changed from Unit 3 to Unit 2. PMID:27546490

  18. Pre-assessment of dose rates of (134)Cs, (137)Cs, and (60)Co for marine biota from discharge of Haiyang Nuclear Power Plant, China.

    PubMed

    Li, Jingjing; Liu, Senlin; Zhang, Yongxing; Chen, Ling; Yan, Yuan; Cheng, Weiya; Lou, Hailin; Zhang, Yongbao

    2015-09-01

    Haiyang Nuclear Power Plant to be built in China was selected as a case for the dose pre-assessment for marine biota in this study. The concentrations of Cs and Co in organisms (turbot, yellow croaker, swimming crab, abalone, sea cucumber, and sea lettuce), seawater, and bottom sediment sampled on-site were measured by neutron activation analysis, and the site-specific transfer parameters (concentration ratios and distribution coefficients) of Cs and Co were calculated. (134)Cs, (137)Cs, and (60)Co activity concentrations in the organisms and the sediment at the site were calculated with the site-specific transfer parameters and the anticipated activity concentrations in the liquid effluent of the nuclear power plant. The ERICA tool was used to estimate the dose rates of (134)Cs, (137)Cs, and (60)Co to the selected organisms based on the biological models developed. The total dose rates of (134)Cs, (137)Cs, and (60)Co to the six organisms were all <0.001 μGy h(-1). PMID:26005771

  19. Estimation of total released amount of Cs-137 and Cs-134 derived from TEPCO-FNPP1 accident into the North Pacific Ocean by using optimal interpolation analysis

    NASA Astrophysics Data System (ADS)

    Inomata, Yayoi; Aoyama, Michio; Tsubono, Takaki; Tsumune, Daisuke; Hirose, Katsumi

    2015-04-01

    The oceanic distribution of Cs-137 and Cs-134 released from the Tokyo Electric Power Company-Fukushima Daiichi Nuclear Power Plant (TEPCO-FNPP1) accident were investigated by using the optimal interpolation (OI) analysis. The two domains (open ocean, >141.5°E; coastal region near the TEPCO-FNPP1, <141.5°E) were set to the OI analysis. During the period from end of March to early of April 2011, extremely high activities of Cs-137 and Cs-134 in seawater were concentrated along the coast near the TEPCO-FNPP1. The high activities area spread to the region of 165°E with a latitudinal center of 40°N in the western North Pacific Ocean. Atmospheric deposition is also cause to high activities in the region between 180° and 130° W in the North Pacific Ocean. The total inventory of FNPP1-released Cs-134 in the North Pacific Ocean is estimated to be 15.2±1.8 PBq. In these, about half (8.3±1.8 PBq) of the total released Cs-134 amount existed in the coastal region near the TEPCO-FNPP1. It appeared that the total OICs134 inventory, which is defined as a total Cs-134 inventory in the coastal area near the TEPCO-FNPP1, is controlled by direct release, atmospheric deposition, and coastal current system. Leak of stagnant water induced by heavy rainfall would also cause the increase of the total OICs134 inventory. After the direct discharge of the contaminated water ceased on 6 April, 2011, the total OICs134 inventory exponentially with a half-time of 4.2±0.5 days and became to about 2.0±0.4 PBq at the middle of May 2011. Considering that the Cs-134/Cs-137 activity ratios for the FNPP1 accident were very close to one (0.99±0.03) and extremely uniform during the first month, the total amount of Cs-137 released by the TEPCO-FNPP1 accident reached to 20% of a current North Pacific inventory (60 PBq, Aoyama et al., 2012) of bomb-derived Cs-137 injected in the 1950s and early 1960s.

  20. Bioaccumulation of the artificial Cs-137 and the natural radionuclides Th-234, Ra-226, and K-40 in the fruit bodies of Basidiomycetes in Greece.

    PubMed

    Kioupi, Vasiliki; Florou, Heleny; Kapsanaki-Gotsi, Evangelia; Gonou-Zagou, Zacharoula

    2016-01-01

    The bioaccumulation of artificial Cs-137 and natural radionuclides Th-234, Ra-226, and K-40 by Basidiomycetes of several species is studied and evaluated in relation to their substratum soils. For this reason, 32 fungal samples, representing 30 species of Basidiomycetes, were collected along with their substratum soil samples, from six selected sampling areas in Greece. The fungal fruit bodies and the soil samples were properly treated and the activity concentrations of the studied radionuclides were measured by gamma spectroscopy. The measured radioactivity levels ranged as follows: Cs-137 from <0.1 to 87.2 ± 0.4 Bq kg(-1) fresh weight (F.W.), Th-234 from <0.5 ± 0.9 to 28.3 ± 25.5 Bq kg(-1) F.W., Ra-226 from <0.3 to 1.0 ± 0.5 Bq kg(-1) F.W., and K-40 from 56.4 ± 3.0 to 759.0 ± 28.3 Bq kg(-1) F.W. The analysis of the results supported that the bioaccumulation of the studied natural radionuclides and Cs-137 is dependent on the species and the functional group of the fungi. Fungi were found to accumulate Th-234 and not U-238. What is more, potential bioindicators for each radionuclide among the 32 species studied could be suggested for each habitat, based on their estimated concentration ratios (CRs). The calculation of the CRs' mean values for each radionuclide revealed a rank in decreasing order for all the species studied. PMID:26330322

  1. Distribution of the 134Cs/137Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Torii, T.; Nishizawa, Y.

    2015-12-01

    Many radioactive substances were released by the Fukushima Daiichi nuclear power plant accident occurred on March 11, 2011 in the atmosphere. A lot of short half-life nuclides which are 131I, 132Te (132I) and 133I, etc., in addition to longer half-lived nuclides such as 134Cs and 137Cs. The estimated release amount of these nuclides from the reactor 1st to 3rd unit is reported, but it's found to be quite different in the short half-lived nuclides by the reactor units. Because the radioactivity ratio of 134Cs and 137Cs was slight different between the reactor units, it can be considered that the valuable source is obtained by the measurement of 134Cs/137Cs ratio in the environment around the Fukushima Daiichi nuclear power station at the present stage when the nuclides with short half-lives had already decayed. We have measured high-resolution gamma-ray spectrum using an unmanned helicopter equipped with LaBr3(Ce) detector in a 3-km range from the power station which was near to the release source of the radioactive cesium. Because the LaBr3(Ce) detector has high resolution of gamma rays, the discrimination of many nuclides is possible. In addition, there is extremely much number of the data provided by the distribution measurement with the unmanned helicopter. Because a new map was illustrated by the analysis of the 134Cs/137Cs ratio, we report the outline.

  2. Calculations of volatilities of Hg, NH{sub 3}, and Cs-137 in the F/H Effluent Treatment Facility evaporator system

    SciTech Connect

    Wallace, R.M.; Bibler, J.P.

    1985-12-20

    An evaporator will be used in the F/H Effluent Treatment Facility (F/H ETF) to reduce the volume of effluent dispensed to Upper Three Runs Creek and to concentrate solutions from three sources in the F/H ETF before sending that waste to Saltstone. The evaporator will be fed by backwash from the filters in the filtration unit, the concentrate stream from reverse osmosis, and the solutions used in regeneration of ion exchange columns. These streams will contain small amounts of Hg, NH{sub 3}, and Cs-137. Data is readily available concerning the entrainment of these chemicals in evaporator overheads during an evaporation process. No data has yet been generated to predict their behavior due exclusively to their volatility, however. This document describes calculations that have been made concerning the volatility of Hg, NH{sub 3}, and Cs-137 compounds in the F/H ETF evaporator based on expected concentrations, temperatures, and flow rates in that facility.

  3. Regular patterns of Cs-137 distribution in natural conjugated elementary landscapes as a result of a balanced surface and depth water migration

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2016-04-01

    Distribution of artificial radionuclides in the environment has long been used successfully for revealing migration pathways of their stable analogues. Migration of water in natural conjugated elementary landscapes characterizing the system of top-slope-resulting depression, has a specific structure and the radionuclide tracer is inevitably reflecting it by specific sorption and exchange processes. Other important issues are the concentration levels and the difference in characteristic time of chemical element dispersion. Modern biosphere has acquired its sustainable structure within a long period of time and is formed by basic macroelements allowing the water soluble portion of elements functioning as activators of chemical exchange. Water migration is controlled by gravitation, climate and relief while fixation depends upon the parameters of surfaces and chemical composition. The resulting structure depends on specificity and duration of the process. The long-term redistribution of chemical elements in terrestrial environment has led to a distinct geochemical structure of conjugated landscapes with a specific geometry of redistribution and accumulation of chemical elements. Migration of the newly born anthropogenic radionuclides followed natural pathways in biosphere. The initial deposition of the Chernobyl's radionuclides within the elementary landscape-geochemical system was even by condition of aerial deposition. But further exchange process is controlled by the strength of fixation and migration ability of the carriers. Therefore patterns of spatial distribution of artificial radionuclides in natural landscapes are considerably different as compared to those of the long-term forming the basic structure of chemical fields in biosphere. Our monitoring of Cs-137 radial and lateral distribution in the test plots characterizing natural undisturbed conjugated elementary landscapes performed in the period from 2005 until now has revealed a stable and specifically

  4. Relevance and use of the Ag-110m: Cs-137 activity ratio for tracking the dispersion of radioactive sediment within Fukushima coastal catchments

    NASA Astrophysics Data System (ADS)

    Lepage, Hugo; Evrard, Olivier; Onda, Yuichi; Chartin, Caroline; Lefèvre, Irène; Bonté, Philippe; Ayrault, Sophie

    2014-05-01

    Large quantities of fallout radionuclides emitted during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident were deposited on Japanese soils, thereby leading to the formation of a 3000 km² contamination plume. Because they are strongly sorbed by fine particles, those radionuclides are likely to be redistributed by hydrosedimentary processes across catchments. As Ag-110m: Cs-137 activity ratio showed a variation in soils across the main plume, we investigated the behaviour of Silver-110 metastable (Ag-110m) and compared it to the one of the more documented radiocesium (Cs-137) to check whether this ratio may be used to track the dispersion of contaminated sediment. We analysed soil and sediment drape deposits (i.e., mud drapes deposited on channel bed sand in rivers) collected in Nov 2011, April 2012, Nov 2012 and May 2013 within coastal catchments draining the main radioactive pollution plume of Fukushima Prefecture (Japan). Several field experiments were also conducted to document radiosilver behaviour in the terrestrial environment. Results show a similar and low mobility for both elements in soils and a strong affinity with the clay fraction. Measurements conducted on sediment sequences accumulated in reservoirs tend to confirm a comparable migration and deposition of both radionuclides even after their redistribution due to erosion and deposition processes. Use of a simple mixing model based on Ag-110m: Cs-137 activity ratio values in both soil and sediment demonstrated the strong reactivity of catchments to the succession of summer typhoons and spring snowmelt. We identified a two stage sediment export cycle with (1) a partial export of contaminated sediment from inland mountain ranges - exposed initially to the highest radionuclide fallout - to the coastal plains in summer and autumn after the occurrence of violent typhoons, and (2) an amplification of the sediment flush during the spring snowmelt. Our results suggest that this contamination export

  5. The Natural Enrichment of Stable Cesium in Weathered Micaceous Materials at the Savannah River Site, SC, and Its Implications for Cs-137 Sorption

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, L. K.; Elliott, W.; Perdrial, N.; Wampler, M.; Krogstad, E. J.; Bargar, J.

    2011-12-01

    The Savannah River Site (SRS) on the Atlantic Coastal Plain in southwestern South Carolina is the focus of an extensive remediation project. The radioactive nuclide Cs-137 is a well-known, long-lived fission product of which large amounts have been produced, stored, and handled in US Department of Energy facilities over the past half century. Documenting the mobility of Cs-137 and its sorption by geologic materials is essential to predict long-term behavior of Cs-137 migrating from contaminated sites such as the SRS. Three uncontaminated (Cs-137 free) soil cores collected from the SRS which were used to study the uptake of Cs and other alkali metals by the SRS soils. Each core presents unique soil forming processes: Core 1-"Fuquay," a thick soil with developed horizons formed on a nearly level plateau in the Upland soil region of SRS, Core 2-"FQTRS," a young soil formed on the SRS Tobacco Road Sand, and Core 3-"FQQAL," an azonal soil formed on quaternary alluvium deposits. Stable Cs is significantly enriched with respect to K in all three soil cores and more so in Core 1 and Core 2 (Fuquay and FQTRS) relative to Core 3 (FQQAL, azonal soil). This enrichment is suspected to affect the soils' ability to sorb and retain radiocesium in contaminated areas at SRS. The enrichment may be explained by variations in the mineralogy among the cores. To test that hypothesis, each section of the cores were examined for (1) mineralogical characterization of the clay fraction, (2) natural cesium concentration, and (3) variations of the clay content. Characterization and quantification of the mineralogy of the cores revealed that significant amounts of Al-hydroxy interlayered vermiculite (HIV), with as much as 27% of 14 Å phase quantified in the clay fraction of the Fuquay core. The other minerals in the clay fraction of the Fuquay core are kaolinite and quartz, with trace amounts of gibbsite. The same minerals are present in Cores 2 and 3 along with small amounts of illite, with

  6. Modelling and Monte Carlo organ dose calculations for workers walking on ground contaminated with Cs-137 and Co-60 gamma sources

    PubMed Central

    Han, Bin; Zhang, Juying; Na, Yong Hum; Caracappa, Peter F.; Xu, X. George

    2010-01-01

    A pair of walking phantoms was developed from deformable mesh phantoms to represent individuals walking on contaminated ground. The Monte Carlo N-particle extended version code was used to calculate organ doses from ground contamination scenarios involving parallel and isotropic planar sources of Cs-137 and Co-60 with concentrations of 30 kBqm−2. For the parallel plane source case, the organ doses were up to 78 % greater for walking phantoms than those for the standing phantoms. The dose difference is because the widely open legs during walking provide less shielding to several organs, especially the kidneys, ovaries and liver, from parallel sources. The effective doses of the walking phantoms were on average 15 % higher than the standing phantoms. On the other hand, when isotropic planar sources were considered, no significant dose difference was observed. This study demonstrated the feasibility of using deformable phantoms to represent realistic postures for organ dose calculations in environmental dosimetry studies. PMID:20663852

  7. Use of radiometric (Cs-137, Pb-210), geomorphic, and stratigraphic techniques to date recent oxbow sediments in the Rio Puerco drainage Grants uranium region, New Mexico

    SciTech Connect

    Popp, C.J.; Dehn, M. ); Hawley, J.W.; Love, D.W. )

    1988-06-01

    In the absence of historic geochemical baseline data for the Grants uranium region, environmental changes resulting from uranium mine-mill activities can be determined only by indirect methods. A methodology for determining the age of recent sediments in streams draining the region has been established based on combined geomorphic, stratigraphic, and radiometric dating techniques. Because clay-rich sediments retain possible radionuclides and heavy metals derived from mineralization and mined sources, sample sites which contain fine-grained deposits that both predate and postdate mine-mill activity were located in abandoned-channel segments (oxbows) of major streams draining the eastern Grants uranium region. Aerial photographs (and derivative maps) taken between 1935 and 1971 provided the historical and geomorphic documentation of approximate dates of oxbow formation and ages of alluvial fills in the abandoned-channel segments. Pits were dug at these oxbow sites to determine stratigraphy and composition of the deposits. Samples collected from pit walls and auger holes below the pits were subjected to radiometric analysis by gamma ray spectrometry for the artificial radionuclide Cs-137 and the natural radionuclide Pb-210 as well as other U-238 and Th-232 daughters. Because of the dynamic nature of the system, absolute dating with Cs-137 was not possible but samples could be dated as either pre- or post-1950. The 1950 date is important because it marked the beginning of the uranium exploitation in the region. The Pb-210 dating was not possible because background Pb-210 was very high relative to fallout Pb-210.

  8. Sediment fingerprinting by using the Ag-110m: Cs-137 ratio along the main rivers draining the Fukushima radioactive pollution plume

    NASA Astrophysics Data System (ADS)

    Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Patin, Jeremy; Lefèvre, Irène; Ayrault, Sophie; Lepage, Hugo; Bonté, Philippe

    2013-04-01

    During the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, large quantities of radionuclides were released into the environment between 12 and 19 March 2011. Even though about 80% of these emissions were transported offshore and out over the Pacific Ocean, 20% were deposited as wet and dry deposits on soils of Fukushima Prefecture on 15-16 March. In particular, 6.4 PBq of Cs-137 were modeled to have deposited on Japanese soils over a distance of 70 km to the northwest of the Fukushima Dai-ichi nuclear power plant. As most radionuclides are strongly sorbed by fine particles, and their mineralogical clay and organic matter fractions, they are likely to be redistributed within the landscape in association with soil and sediment particles transported by erosion processes and runoff. Based on a spatial analysis of the gamma-emitting radionuclides present in the environment respectively eight and thirteen months after the accident, we aim to provide a radioactive tracer to investigate the temporal evolution of the contaminant dispersion across Fukushima Prefecture. For this purpose, sediments were collected along rivers draining the main contamination plume in Fukushima Prefecture (i.e, Rivers Kutchibuto, Mano, Nitta and Ota) in November 2011 and April 2012.These campaigns directly followed the main hydro-sedimentary events that occurred in this region, i.e., the typhoon season (July and September-October) and the snowmelt (March 2012). The river sediment activities in gamma-emitting radionuclides were then compared to the initial activities measured in soils provided by the Japanese Ministry of Education, Culture, Sport, Science and Technology (MEXT). The initial fallout patterns in 110mAg appeared to differ from those of the main contamination plume defined mainly by radiocaesium fallout (i.e., Cs-134+137). The Ag-110m:Cs-137 ratio was then used to trace the spatial origin of contaminated sediment collected in rivers. Sediments collected within the coastal

  9. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.

    2004-12-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.

  10. Cs-137 geochronology, epithermal neutron activation analysis, and principal component analysis of heavy metals pollution of the Black Sea anoxic continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Cristache, C.; Oaie, G.; Culicov, O. A.; Frontasyeva, M. V.

    2009-04-01

    Anthropogenic Cs-137 Gamma-ray Spectroscopy assay (GrSA) performed at the National Institute of Research and Development for Physics and Nuclear Engineering - Bucharest (Romania) in correlation with Epithermal Neutrons Activation Analysis (ENAA) performed at the Joint Institute of Nuclear Researches - Dubna (Russia) were used to investigate a 50 cm core containing unconsolidated sediments collected at a depth of 600 m off Romanian town of Constantza, located in the anoxic zone of the Black Sea Continental Shelf. A digital radiography showed the presence of about 265 distinct laminae, 1 to 3 mm thick, a fact attesting a stationary sedimentary process, completely free of bioturbation. After being radiographed, the core was sliced into 45 segments whose thickness gradually increased from 0.5 to 5 cm, such that the minimum thickness corresponded to the upper part of the core. From each segment two aliquots of about 0.5 g and 50 g were extracted for subsequent ENAA and Cs-137 GrSA. The Cs-137 vertical profile evidenced two maxima, one of them was very sharp and localized at a depth of 1 cm and the other very broad, almost undistinguished at about 8 cm depth, the first one being attributed to 1986 Chernobyl accident. Based on these date, we have estimated a sedimentation ratio of about 0.5 mm/year, value taken as reference for further assessment of recent pollution history. By means of ENAA we have determined the vertical content of five presumed pollutants, e.i. Zn, As, Br, Sn and Sb and of Sc, as natural, nonpolluting element. In the first case, all five elements presented a more or less similar vertical profile consisting of an almost exponential decrease for the first 10 cm below sediment surface followed by a plateau until the core base, i.e. 50 cm below surface, dependency better described by the equation: c(z) = c0 [1+k exp (-z/Z)] (1) where: where c(z) represents the concentration vertical profile; z represents depth (in absolute value); c0 represents the plateau

  11. Hourly atmospheric concentrations of Cs-134 and Cs-137 at monitoring stations for suspended particulate matter in and south of Fukushima after the Fukushima Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2013-04-01

    No data has been found of continuous monitoring of radioactive materials in the atmosphere in Fukushima area after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident on March 11, 2011, although it greatly contributes to accurate evaluation of the internal exposure dose, to reconstruction of emission time series of released radionuclides, and to validation of numerical simulations by atmospheric transport models. Then, we have challenged to retrieve the radioactivity in atmospheric aerosols collected every hour on a filter tape of Suspended Particulate Matter (SPM) monitoring system with beta ray attenuation method used at air pollution monitoring stations in east Japan. A test measurement for hourly atmospheric concentrations of Cs-134 and Cs-137 was successfully performed with a Ge detector for the used filter tapes during March 15-23, 2011, at three stations in Fukushima City 60 km northwest of the FD1NPP and four stations in southwest Ibaraki prefecture more than 150 km southwest of the FD1NPP. The data in Fukushima City revealed high Cs-137 concentrations of 10-30 Bq m-3 from the evening of March 15 to the early morning of March 16, when a large amount of radioactive materials was simultaneously deposited on the land surface by precipitation according to the measurement of radiation dose rate. Higher Cs-137 concentrations of 10-50 Bq m-3 were also found from the afternoon of March 20 to the morning of March 21, and which could not be detected by the radiation dose rate due to no precipitation. In contrast, much higher concentrations with the maximum of 320 Bq m-3 in southwest Ibaraki than in Fukushima City were found on the morning of March 15 and 21 under strong temperature inversion near the surface. The polluted air masses with high radioactive materials were passed away within a few hours as a plume in southwest Ibaraki, while the high Cs-137 concentrations lasted for 10-16 hours in Fukushima City where the polluted air masses after their transport

  12. 137Cs activities and 135Cs/137Cs isotopic ratios from soils at Idaho National Laboratory: a case study for contaminant source attribution in the vicinity of nuclear facilities.

    PubMed

    Snow, Mathew S; Snyder, Darin C; Clark, Sue B; Kelley, Morgan; Delmore, James E

    2015-03-01

    Radiometric and mass spectrometric analyses of Cs contamination in the environment can reveal the location of Cs emission sources, release mechanisms, modes of transport, prediction of future contamination migration, and attribution of contamination to specific generator(s) and/or process(es). The Subsurface Disposal Area (SDA) at Idaho National Laboratory (INL) represents a complicated case study for demonstrating the current capabilities and limitations to environmental Cs analyses. (137)Cs distribution patterns, (135)Cs/(137)Cs isotope ratios, known Cs chemistry at this site, and historical records enable narrowing the list of possible emission sources and release events to a single source and event, with the SDA identified as the emission source and flood transport of material from within Pit 9 and Trench 48 as the primary release event. These data combined allow refining the possible number of waste generators from dozens to a single generator, with INL on-site research and reactor programs identified as the most likely waste generator. A discussion on the ultimate limitations to the information that (135)Cs/(137)Cs ratios alone can provide is presented and includes (1) uncertainties in the exact date of the fission event and (2) possibility of mixing between different Cs source terms (including nuclear weapons fallout and a source of interest). PMID:25633972

  13. On the usability of frequency distributions and source attribution of Cs-137 detections encountered in the IMS radio-nuclide network for radionuclide event screening and climate change monitoring

    NASA Astrophysics Data System (ADS)

    Becker, A.; Wotawa, G.; Zähringer, M.

    2009-04-01

    Under the provisions of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), airborne radioactivity is measured by means of high purity Germanium gamma ray detectors deployed in a global monitoring network. Almost 60 of the scheduled 80 stations have been put in provisional operations by the end of 2008. Each station daily sends the 24 hour samples' spectroscopic data to the Vienna based Provisional Technical Secretariat (PTS) of the CTBT Organization (CTBTO) for review for treaty-relevant nuclides. Cs-137 is one of these relevant isotopes. Its typical minimum detectable concentration is in the order of a few Bq/m3. However, this isotope is also known to occur in atmospheric trace concentrations, due to known non CTBT relevant processes and sources related to, for example, the re-suspension of cesium from historic nuclear tests and/or the Chernobyl reactor disaster, temporarily enhanced by bio-mass burning (Wotawa et al. 2006). Properly attributed cesium detections can be used as a proxy to detect Aeolian dust events (Igarashi et al, 2001) that potentially carry cesium from all aforementioned sources but are also known to play an important role for the radiative forcing in the atmosphere (shadow effect), at the surface (albedo) and the carbon dioxide cycle when interacting with oceanic phytoplankton (Mikami and Shi, 2005). In this context this paper provides a systematic attribution of recent Cs-137 detections in the PTS monitoring network in order to Characterize those stations which are regularly affected by Cs-137 Provide input for procedures that distinguish CTBT relevant detection from other sources (event screening) Explore on the capability of certain stations to use their Cs-137 detections as a proxy to detect aeolian dust events and to flag the belonging filters to be relevant for further investigations in this field (-> EGU-2009 Session CL16/AS4.6/GM10.1: Aeolian dust: initiator, player, and recorder of environmental change). References Igarashi, Y., M

  14. Risk-Based Remediation Approach for Cs-137 Contaminated Sediment/Soils at the Savannah River Site (SRS) Lower Three Runs Tail (U) - 13348 - SRNS-RP-2012-00546

    SciTech Connect

    Freeman, Candice; Bergren, Christopher; Blas, Susan; Kupar, James

    2013-07-01

    Lower Three Runs is a large blackwater stream that runs through the eastern and southern portion of the Savannah River Site. The Lower Three Runs watershed includes two SRS facility areas: P Area (P Reactor) and R Area (R Reactor) that provided effluent discharges to Lower Three Runs. During reactor operations, effluent discharges were well above natural (pre-industrial) or present day stream discharges. The watershed contains a 2,500-acre mainstream impoundment (PAR Pond), several smaller pre-cooler ponds, and a canal system that connects the pre-cooler ponds and discharges surface water to PAR Pond. From the PAR Pond dam, Lower Three Runs flows approximately 36 kilometers braiding through bottom-land/flood-plain forests before it enters the Savannah River. About eight kilometers downstream from the PAR Pond dam, the SRS boundary narrows (termed the Lower Three Runs tail) providing a limited buffer of DOE property for the Lower Three Runs stream and associated flood-plain. Previous screening characterization efforts revealed Cs-137 contamination in the sediment/soils of the flood-plain. As a part of the American Recovery and Reinvestment Act stimulus package, a comprehensive characterization effort was executed on the sediment/soils of the Lower Three Runs tail flood-plain providing a comprehensive look at the contaminant signature of the area. As a follow-up to that characterization, a regulatory decision Core Team, comprised of members of the South Carolina Department of Health and Environmental Control, Environmental Protection Agency - Region IV, and DOE, conducted negotiations on a risk-based approach to address the level of contamination found in the tail flood-plain as an early action that provided a long-term solution to exposure scenarios. For evaluation purposes, the adolescent trespasser was selected as the most likely human receptor for the Lower Three Runs tail portion because of the natural attractiveness of the area for recreational activities (i

  15. Simultaneous determination of radiocesium ((135)Cs, (137)Cs) and plutonium ((239)Pu, (240)Pu) isotopes in river suspended particles by ICP-MS/MS and SF-ICP-MS.

    PubMed

    Cao, Liguo; Zheng, Jian; Tsukada, Hirofumi; Pan, Shaoming; Wang, Zhongtang; Tagami, Keiko; Uchida, Shigeo

    2016-10-01

    Due to radioisotope releases in the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, long-term monitoring of radiocesium ((135)Cs and (137)Cs) and Pu isotopes ((239)Pu and (240)Pu) in river suspended particles is necessary to study the transport and fate of these long-lived radioisotopes in the land-ocean system. However, it is expensive and technically difficult to collect samples of suspended particles from river and ocean. Thus, simultaneous determination of multi-radionuclides remains as a challenging topic. In this study, for the first time, we report an analytical method for simultaneous determination of radiocesium and Pu isotopes in suspended particles with small sample size (1-2g). Radiocesium and Pu were sequentially pre-concentrated using ammonium molybdophosphate and ferric hydroxide co-precipitation, respectively. After the two-stage ion-exchange chromatography separation from the matrix elements, radiocesium and Pu isotopes were finally determined by ICP-MS/MS and SF-ICP-MS, respectively. The interfering elements of U ((238)U(1)H(+) and (238)U(2)H(+) for (239)Pu and (240)Pu, respectively) and Ba ((135)Ba(+) and (137)Ba(+) for (135)Cs and (137)Cs, respectively) were sufficiently removed with the decontamination factors of 1-8×10(6) and 1×10(4), respectively, with the developed method. Soil reference materials were utilized for method validation, and the obtained (135)Cs/(137)Cs and (240)Pu/(239)Pu atom ratios, and (239+240)Pu activities showed a good agreement with the certified/information values. In addition, the developed method was applied to analyze radiocesium and Pu in the suspended particles of land water samples collected from Fukushima Prefecture after the FDNPP accident. The (135)Cs/(137)Cs atom ratios (0.329-0.391) and (137)Cs activities (23.4-152Bq/g) suggested radiocesium contamination of the suspended particles mainly originated from the accident-released radioactive contaminates, while similar Pu contamination of suspended

  16. The Study of Algae

    ERIC Educational Resources Information Center

    Rushforth, Samuel R.

    1977-01-01

    Included in this introduction to the study of algae are drawings of commonly encountered freshwater algae, a summary of the importance of algae, descriptions of the seven major groups of algae, and techniques for collection and study of algae. (CS)

  17. Determining the turnover time of mercury-contaminated fine-grained sediment in the gravel bed of the South River, Virginia using Pb-210, Be-7 and Cs-137

    NASA Astrophysics Data System (ADS)

    Pomraning, S. N.; Pizzuto, J. E.; Jurk, D.

    2010-12-01

    Fine-grained sediment and associated contaminants mediate important geochemical cycles in the hyporheic zone of gravel-bed rivers, but the turnover time of fine particles in these environments has rarely been measured. We analyzed the activities of Pb-210, Cs-137 and Be-7 in samples from four cores obtained on November 2, 2009 from a representative section of the bed composed of a mixture of sand, pebbles, and cobbles. The median grain size is 25.5 mm, the 84th percentile grain diameter is 57.8 mm, and 5.7% of the bed is composed of sediment smaller than 2 mm (sand sized or smaller sediment). The cores were sampled at five centimeter depth increments and each sample was sieved to extract the silt- and clay-sized particles. After freeze-drying the samples, equivalent depth intervals from all the cores were combined to yield a spatially averaged sample with depth intervals of 0-5 cm, 5-10 cm, 10-15 cm, 15-20 cm and 20-25 cm. Radionuclide activities were measured using a Canberra low energy germanium detector (model GL2020R). Activities of Pb-210 at the time of deposition were estimated from suspended sediment samples collected during a high flow event (recurrence interval 0.24 years) that occurred on November 13, 2009. At a depth of 2.5 cm, the Pb-210 dating indicates that the silt-clay fine fraction of the hyporheic zone is 21.3 years old; fine sediment at a depth of 17.5 cm is 29.3 years old. Assuming that the time-averaged bed elevation has not changed over time, and that sediment at depth is periodically removed by scour and subsequently replaced by fill, methods of reservoir theory suggest that the turnover time of silt- and clay-sized particles in the hyporheic zone is about two years. Because deep scour events are apparently relatively rare, approximately 21 years are required to rework 90% of the bed. These results have important implications for contaminant remediation. Even if all ongoing sources of mercury to the South River are removed, several decades

  18. Blue-green algae

    MedlinePlus

    ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)Blue-green algae might slow blood clotting. Taking blue-green algae along with medications that ...

  19. Magnetic separation of algae

    DOEpatents

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  20. [Harmful algae and health].

    PubMed

    Kankaanpää, Harri T

    2011-01-01

    Harmful algae are a worldwide problem. Phycotoxins is a general term for toxic compounds produced by harmful species of the phytoplankton. This review deals with the occurrence of harmful algae and phycotoxins in the Baltic Sea and other domestic waters, the ways of getting exposed to them, and their effects. Advice on how to avoid the exposure is provided. PMID:21834336

  1. Algae Derived Biofuel

    SciTech Connect

    Jahan, Kauser

    2015-03-31

    One of the most promising fuel alternatives is algae biodiesel. Algae reproduce quickly, produce oils more efficiently than crop plants, and require relatively few nutrients for growth. These nutrients can potentially be derived from inexpensive waste sources such as flue gas and wastewater, providing a mutual benefit of helping to mitigate carbon dioxide waste. Algae can also be grown on land unsuitable for agricultural purposes, eliminating competition with food sources. This project focused on cultivating select algae species under various environmental conditions to optimize oil yield. Membrane studies were also conducted to transfer carbon di-oxide more efficiently. An LCA study was also conducted to investigate the energy intensive steps in algae cultivation.

  2. Cs-137 concentration in reindeer and its fodder plants.

    PubMed

    Rissanen, K; Rahola, T

    1989-09-01

    Radionuclides, especially the long-lived 137Cs (physical half-life 30 years), are accumulated efficiently in the northern, subarctic, lichen-reindeer-man foodchain. Until the Chernobyl accident the fallout nuclides studied originated from nuclear weapons tests. After this accident some fresh fallout was deposited in Finnish Lapland. Lichens grow very slowly and collect nutrients very efficiently from air, rain and snow. During winter the basic fodder plants for reindeer are lichens and some winter-green plants, shrubs and dry leaves. During the bare-ground season, the reindeer eat various grasses, herbs and leaves etc. Lichens constitute 30-50 per cent of the entire vegetable mass consumed by the reindeer in a year. The highest 137Cs-concentration 2500 Bq/kg dry weight was found in lichen in the middle of the 1960s. In 1985 the concentration had decreased to about 240 Bq/kg dry weight. After the Chernobyl accident the 137Cs-concentration in lichen varied from 200 to 2000 Bq/kg dry weight in Finnish Lapland. In reindeer fodder plant samples collected in the 1980s before the Chernobyl accident the 137Cs-concentration varied from 5 to 970 Bq/kg dry weight. The highest 137Cs-concentration in reindeer meat, about 2500 Bq/kg fresh weight, was found in 1965 and thereafter decreased to about 300 Bq/kg fresh weight in the winter before the Chernobyl accident. After the accident the mean 137Cs-concentration in reindeer meat from the 1986-87 slaughtering period was 720 Bq/kg fresh weight and in 1987-88, 630 Bq/kg fresh weight. PMID:2814447

  3. DOSE TO CURIE DETERMINATION FOR CONTAINERS WITH MEASURABLE CS-137

    SciTech Connect

    RATHBUN LA; ANDERSON JD; SWAN RJ

    2010-12-03

    The Next Generation Retrieval (NGR) project will retrieve suspect transuranic (TRU) waste containers from Trenches 17 and 27 in the 218-E-12B (12B) burial ground. The trenches were in operation from May 1970 through October 1972. A portion of the retrieved containers that will require shipment to and acceptance at a treatment, storage, and disposal (TSD) facility and the containers will be either remote-handled (RH) and/or contact-handled (CH). The method discussed in this document will be used for the RH and some of the CH containers to determine the radionuclide inventory. Waste disposition (shipment and TSD acceptance) requires that the radioactive content be characterized for each container. Source-term estimates using high resolution, shielded, gamma-ray scan assay techniques cannot be performed on a number of RH and other containers with high dose rates from {sup 137}Cs-{sup 137m}Ba. This document provides the method to quantify the radioactive inventory of fission product gamma emitters within the containers based on the surface dose rate measurements taken in the field with hand-held survey instruments.

  4. Plasmodesmata of brown algae.

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Motomura, Taizo

    2015-01-01

    Plasmodesmata (PD) are intercellular connections in plants which play roles in various developmental processes. They are also found in brown algae, a group of eukaryotes possessing complex multicellularity, as well as green plants. Recently, we conducted an ultrastructural study of PD in several species of brown algae. PD in brown algae are commonly straight plasma membrane-lined channels with a diameter of 10-20 nm and they lack desmotubule in contrast to green plants. Moreover, branched PD could not be observed in brown algae. In the brown alga, Dictyota dichotoma, PD are produced during cytokinesis through the formation of their precursor structures (pre-plasmodesmata, PPD). Clustering of PD in a structure termed "pit field" was recognized in several species having a complex multicellular thallus structure but not in those having uniseriate filamentous or multiseriate one. The pit fields might control cell-to-cell communication and contribute to the establishment of the complex multicellular thallus. In this review, we discuss fundamental morphological aspects of brown algal PD and present questions that remain open. PMID:25516500

  5. Clocks in algae.

    PubMed

    Noordally, Zeenat B; Millar, Andrew J

    2015-01-20

    As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods. PMID:25379817

  6. Arsoniumphospholipid in algae*

    PubMed Central

    Cooney, Robert V.; Mumma, R. O.; Benson, A. A.

    1978-01-01

    A novel phospholipid containing arsenic was formed by all marine algae cultured in [74As]arsenate. Components of the labeled algal extracts readily separated by two-dimensional paper radiochromatography. Base-catalyzed deacylation of the major lipid yielded a phosphodiester identical to one of the two major water-soluble compounds. Acid or enzymic hydrolysis of the phosphodiester produced a product identified as trimethylarsoniumalactic acid. The structure of the phospholipid therefore is O-phosphatidyltrimethylarsoniumlactic acid. Detoxication of arsenate by marine algae leads to accumulation of the arsoniumphospholipid as a major reservoir for arsenic. Its degradation to trimethylarsoniumbetaine, dimethylarsinic acid, methanearsonic acid, and arsenate in marine food chains and its metabolism in human beings are of considerable interest. Images PMID:16592562

  7. Genomics of Volvocine Algae

    PubMed Central

    Umen, James G.; Olson, Bradley J.S.C.

    2015-01-01

    Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics. PMID:25883411

  8. Miocene Coralline algae

    SciTech Connect

    Bosence, D.W.J.

    1988-01-01

    The coralline algae (Order Corallinales) were sedimentologically and ecologically important during the Miocene, a period when they were particularly abundant. The many poorly described and illustrated species and the lack of quantitative data in coralline thalli make specific determinations particularly difficult, but some species are well known and widespread in the Tethyan area. The sedimentologic importance of the Miocene coralline algae is reflected in the abundance of in-situ coralline buildups, rhodoliths, and coralline debris facies at Malta and Spain; similar sequences are known throughout the Tethyan Miocene. In-situ buildups vary from leafy crustose biostromes to walled reefs with dense coralline crusts and branches. Growth forms are apparently related to hydraulic energy. Rhodoliths vary from leafy, crustose, and open-branched forms in muddy sediments to dense, crustose, and radial-branching forms in coarse grainstones. Rhodolith form and internal structure correlate closely with hydraulic energy. Coralline genera are conservative and, as such, are useful in paleoenvironmental analysis. Of particular interest are the restricted depth ranges of recent coralline genera. More research is needed on the sedimentology, paleoecology, and systematics of the Cenozoic corallines, as they have particular value in paleoenvironmental analysis.

  9. Cellular Auxin Transport in Algae

    PubMed Central

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491

  10. Cellular Auxin Transport in Algae.

    PubMed

    Zhang, Suyun; van Duijn, Bert

    2014-01-01

    The phytohormone auxin is one of the main directors of plant growth and development. In higher plants, auxin is generated in apical plant parts and transported from cell-to-cell in a polar fashion. Auxin is present in all plant phyla, and the existence of polar auxin transport (PAT) is well established in land plants. Algae are a group of relatively simple, autotrophic, photosynthetic organisms that share many features with land plants. In particular, Charophyceae (a taxon of green algae) are closest ancestors of land plants. In the study of auxin function, transport and its evolution, the algae form an interesting research target. Recently, proof for polar auxin transport in Chara species was published and auxin related research in algae gained more attention. In this review we discuss auxin transport in algae with respect to land plants and suggest directions for future studies. PMID:27135491

  11. Ecology of Harmful Algae

    NASA Astrophysics Data System (ADS)

    Roelke, Daniel L.

    2007-07-01

    Edna Graneli and Jefferson T. Turner, Editors;Ecological Studies Series, Vol. 189; Springer; ISBN 3540322094; 413 pp.; 2006; $195 Harmful algal blooms (HABs) affect commercially and recreationally important species, human health, and ecosystem functioning. Hallmark events are the visually stunning blooms where waters are discolored and filled with ichthyotoxin-producing algae that lead to large fish kills. Of most concern, however, are HABs that pose a threat to human health. For example, some phycotoxins bioaccumulate in the guts and tissues of commercially and recreationally important species that when consumed by humans, may result in nausea, paralysis, memory loss, and even death. In addition to the deleterious impacts of phycotoxins, HABs can be problematic in other ways. For example, the decay of blooms often leads to low dissolved oxygen in subsurface waters. Blooms also reduce light penetration into the water column. Both processes disrupt ecosystems and in some cases have completely destroyed benthic communities.

  12. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  13. [From algae to "functional foods"].

    PubMed

    Vadalà, M; Palmieri, B

    2015-01-01

    In the recent years, a growing interest for nutraceutical algae (tablets, capsules, drops) has been developed, due to their effective health benefits, as a potential alternative to the classic drugs. This review explores the use of cyanobacterium Spirulina, the microalgae Chlorella, Dunaliella, Haematococcus, and the macroalgae Klamath, Ascophyllum, Lithothamnion, Chondrus, Hundaria, Glacilaria, Laminaria, Asparagopsis, Eisenia, Sargassum as nutraceuticals and dietary supplements, in terms of production, nutritional components and evidence-based health benefits. Thus, our specific goals are: 1) Overview of the algae species currently used in nutraceuticals; 2) Description of their characteristics, action mechanisms, and possible side effects; 3) Perspective of specific algae clinical investigations development. PMID:26378764

  14. Transgenic algae engineered for higher performance

    DOEpatents

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  15. Photosynthesis and photorespiration in algae.

    PubMed

    Lloyd, N D; Canvin, D T; Culver, D A

    1977-05-01

    The CO(2) exchange of several species of fresh water and marine algae was measured in the laboratory to determine whether photorespiration occurs in these organisms. The algae were positioned as thin layers on filter paper and the CO(2) exchange determined in an open gas exchange system. In either 21 or 1% O(2) there was little difference between (14)CO(2) and (12)CO(2) uptake. Apparent photosynthesis was the same in 2, 21, or 50% O(2). The compensation points of all algae were less than 10 mul 1(-1). CO(2) or (14)CO(2) evolution into CO(2)-free air in the light was always less than the corresponding evolution in darkness. These observations are inconsistent with the proposal that photorespiration exists in these algae. PMID:16659972

  16. Algae fuel clean electricity generation

    SciTech Connect

    O'Sullivan, D.

    1993-02-08

    The paper describes plans for a 600-kW pilot generating unit, fueled by diesel and Chlorella, a green alga commonly seen growing on the surface of ponds. The plant contains Biocoil units in which Chlorella are grown using the liquid effluents from sewage treatment plants and dissolved carbon dioxide from exhaust gases from the combustion unit. The algae are partially dried and fed into the combustor where diesel fuel is used to maintain ignition. Diesel fuel is also used for start-up and as a backup fuel for seasonal shifts that affect the algae growing conditions. Since the algae use the carbon dioxide emitted during the combustion process, the process will not contribute to global warming.

  17. Cambrian calcareous algae and bacteria

    NASA Astrophysics Data System (ADS)

    Luchinina, Veronica A.; Terleev, A. A.

    2003-01-01

    Individual calcareous algae were known in Riphean. Their mass distribution is connected to the beginning of Cambrian. Despite of a long history of study, the nature of this group long time remained not clear. The new unique finds of algae from East Sayan region have shown, that primary carbonate thallus disappeared in the process of fossilization, and after it the calcareous cover formed by association of bacteria and cyanobacteria only.

  18. Measurement of photorespiration in algae.

    PubMed

    Birmingham, B C; Coleman, J R; Colman, B

    1982-01-01

    The rates of true and apparent photosynthesis of two unicellular green algae, one diatom and four blue-green algae were measured in buffer at pH 8.0 at subsaturating concentrations of dissolved inorganic carbon (13-27 micromolar). Initial rates of depletion from the medium of inorganic carbon and (14)C activity caused by the algae in a closed system were measured by gas chromatography and by liquid scintillation counting, respectively. The rate of photorespiration was calculated as the difference between the rates of apparent and true photosynthesis. The three eucaryotic algae and two blue-green algae had photorespiratory rates of 10 to 28% that of true photosynthesis at air levels of O(2). Reduction of the O(2) level to 2% caused a 52 to 91% reduction in photorespiratory rate. Two other blue-green algae displayed low photorespiratory rates, 2.4 to 6.2% that of true photosynthesis at air levels of O(2), and reduction of the O(2) concentration had no effect on these rates. PMID:16662171

  19. Gas Exchange of Algae

    PubMed Central

    Ammann, Elizabeth C. B.; Lynch, Victoria H.

    1965-01-01

    Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260

  20. Microscopic Gardens: A Close Look at Algae.

    ERIC Educational Resources Information Center

    Foote, Mary Ann

    1983-01-01

    Describes classroom activities using algae, including demonstration of eutrophication, examination of mating strains, and activities with Euglena. Includes on algal morphology/physiology, types of algae, and field sources for collecting these organisms. (JN)

  1. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  2. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  3. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1121 Red algae. (a) Red algae are seaweeds of the species Gloiopeltis furcata, Porphyra...

  4. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1120 Brown algae. (a) Brown algae are seaweeds of the species Analipus japonicus, Eisenia...

  5. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  6. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  7. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  8. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  9. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  10. 21 CFR 184.1120 - Brown algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Brown algae. 184.1120 Section 184.1120 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1120 Brown algae. (a) Brown algae are seaweeds of the species...

  11. 21 CFR 184.1121 - Red algae.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Red algae. 184.1121 Section 184.1121 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1121 Red algae. (a) Red algae are seaweeds of the species...

  12. Algae. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Niskern, Diana, Comp.

    The plants and plantlike organisms informally grouped together as algae show great diversity of form and size and occur in a wide variety of habitats. These extremely important photosynthesizers are also economically significant. For example, some species contaminate water supplies; others provide food for aquatic animals and for man; still others…

  13. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  14. Measurements of photorespiration in some microscopic algae.

    PubMed

    Cheng, K H; Colman, B

    1974-09-01

    The rate of photorespiration in three green algae and four blue-green algae was determined by the measurement of the rate of loss of photosynthetically fixed (14)CO2 in light in CO2-free air at 25°. In all algae studied, CO2 evolution in light was considerably less than that in the dark, except for Chlamydomonas reinhardii which released slightly more CO2 in the light. Raising the temperature to 35° had little effect on the ratio of light to dark (14)CO2 release. Blue-green algae showed the lowest photorespiration rate of the algae studied. PMID:24458883

  15. The remote sensing of algae

    NASA Technical Reports Server (NTRS)

    Thorne, J. F.

    1977-01-01

    State agencies need rapid, synoptic and inexpensive methods for lake assessment to comply with the 1972 Amendments to the Federal Water Pollution Control Act. Low altitude aerial photography may be useful in providing information on algal type and quantity. Photography must be calibrated properly to remove sources of error including airlight, surface reflectance and scene-to-scene illumination differences. A 550-nm narrow wavelength band black and white photographic exposure provided a better correlation to algal biomass than either red or infrared photographic exposure. Of all the biomass parameters tested, depth-integrated chlorophyll a concentration correlated best to remote sensing data. Laboratory-measured reflectance of selected algae indicate that different taxonomic classes of algae may be discriminated on the basis of their reflectance spectra.

  16. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature. PMID:24845347

  17. Parasites in algae mass culture

    PubMed Central

    Carney, Laura T.; Lane, Todd W.

    2014-01-01

    Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry. PMID:24936200

  18. Bioaccumulation of nickel by algae

    SciTech Connect

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  19. Biodegradable PELA block copolymers: in vitro degradation and tissue reaction.

    PubMed

    Younes, H; Nataf, P R; Cohn, D; Appelbaum, Y J; Pizov, G; Uretzky, G

    1988-01-01

    Degradation of, and tissue reaction elicited by a series of polyethylene oxide (PEO)/polylactic acid (PLA) PELA block copolymers were studied in vitro and in vivo. In particular, the effect of pH, temperature and enzymatic activity was addressed. The mass loss was faster, the more basic the media, while, expectedly, PELA copolymers degraded faster with the higher temperature. The addition of an enzyme (carboxylic ester hydrolase) had no effect. The degradation process strongly affected the mechanical properties of the materials under investigation, the elongation at break dropping drastically after two days of degradation. After seven days, only gross observation of the extensively degraded samples was possible. The in vivo studies compared the tissue reaction elicited by various PELA copolymers to that evoked by PLA. Evaluation of tissue reaction observed with a PELA sample after sterilization with gamma radiation showed acute inflammation with considerable dispersion of the material, 12 days after implantation. The granulomatous reaction observed with PELA copolymers after ethylene oxide sterilization was identical to the reaction observed with PLA. PMID:3064826

  20. Red algae and their use in papermaking.

    PubMed

    Seo, Yung-Bum; Lee, Youn-Woo; Lee, Chun-Han; You, Hack-Chul

    2010-04-01

    Gelidialian red algae, that contain rhizoidal filaments, except the family Gelidiellaceae were processed to make bleached pulps, which can be used as raw materials for papermaking. Red algae consist of rhizoidal filaments, cortical cells usually reddish in color, and medullary cells filled with mucilaginous carbohydrates. Red algae pulp consists of mostly rhizoidal filaments. Red algae pulp of high brightness can be produced by extracting mucilaginous carbohydrates after heating the algae in an aqueous medium and subsequently treating the extracted with bleaching chemicals. In this study, we prepared paper samples from bleached pulps obtained from two red algae species (Gelidium amansii and Gelidium corneum) and compared their properties to those of bleached wood chemical pulps. PMID:20022488

  1. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  2. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  3. Take a Dip! Culturing Algae Is Easy.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1983-01-01

    Describes laboratory activities using algae as the organisms of choice. These include examination of typical algal cells, demonstration of alternation of generations, sexual reproduction in Oedogonium, demonstration of phototaxis, effect of nitrate concentration on Ankistrodesmus, and study of competition between two algae in the same environment.…

  4. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  5. Nutritional And Taste Characteristics Of Algae

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1992-01-01

    Report describes investigation of chemical composition of blue-green algae Synechococcus 6311, as well as preparation of protein isolate from green alga Scenedesmus obliquus and incorporation into variety of food products evaluated for taste. Part of program to investigate growth of microalgae aboard spacecraft for use as food.

  6. Effect of Dead Algae on Soil Permeability

    SciTech Connect

    Harvey, R.S.

    2003-02-21

    Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

  7. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  8. Response of lymphoid organs to low dose rate Cf-252, Cs-137 and acute Co-60

    SciTech Connect

    Feola, J.; Maruyama, Y.; Magura, C.; Hwang, H.N.

    1986-01-01

    RBE of low dose rate (LDR) /sup 252/Cf radiation was studied for thymus using weight loss compared to unirradiated controls. These were compared against LDR /sup 137/Cs and acute /sup 60/Co effects. For thymus, biexponential dose response curves were noted for acute /sup 60/Co and LDR /sup 137/Cs irradiations. No dose rate effect was noted with /sup 137/Cs. D/sub 37/ for the first component D/sub 1/ was 109 cGy and for the second D/sub 2/ was 624 cGy for /sup 60/Co. Relative biological effectiveness (RBE) is a complex endpoint and was different for the low dose (sensitive) and high dose (resistant) responses and for /sup 252/Cf. RBE/sub n/ of the sensitive portion was 1.7 and for overall was 4.0. Spleen response was also determined for the 3 radiations. Biexponential dose-response curves were also observed for resting spleen to acute /sup 60/Co and LDR /sup 137/Cs radiation. D/sub 1/ = 285 cGy and D/sub 2/ = 1538 cGy for acute /sup 60/Co; D/sub 1/ = 205 cGy for /sup 137/Cs and indicated a dose rate effect = 1.04 for /sup 137/Cs. The LDR /sup 137/Cs was 1.3x more effective than acute /sup 60/Co for the sensitive response; it was 1.9 x greater for the resistant response. However, the response to /sup 252/Cf vs. /sup 137/Cs for the spleen indicated that there was a greater sensitivity to dose rate than to LET. RBE/sub n/ for /sup 252/Cf vs. /sup 137/Cs was 1.0. Stimulation of spleen growth after injection of Corynebacterium parvum allowed study of radiation effects of proliferating spleen cells at day 10. Acute /sup 60/Co and LDR /sup 137/Cs ..gamma..-rays had reduced effects compared to LDR /sup 252/Cf radiation and RBE was 4.0 vs. LDR /sup 137/Cs. RBE in lymphoid organs thus depended on organ, on assay and on resting/proliferating status.

  9. Establishment of air kerma reference standard for low dose rate Cs-137 brachytherapy sources.

    PubMed

    Sharma, Sunil Dutt; Kumar, Sudhir; Srinivasan, P; Chourasiya, G

    2011-01-01

    A guarded cylindrical graphite ionization chamber of nominal volume 1000 cm3 was designed and fabricated for use as a reference standard for low-dose rate 137Cs brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin's general cavity theory, as well as by the Monte Carlo simulation and validated experimentally using Amersham CDCS-J-type 137Cs reference source. In the analytical method, the N(K) was calculated for 662 keV gamma rays of 137Cs brachytherapy source. In the Monte Carlo method, the geometry of the measurement setup and physics-related input data of the 137Cs source and the surrounding material were simulated using the Monte Carlo N-Particle code. The photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficient. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber, and the N(K) was determined. The analytical and Monte Carlo values of N(K) of the cylindrical graphite ionization chamber for 137Cs brachytherapy source are in agreement within 1.07%. The deviation of analytical and Monte Carlo values from experimental values of N(K) is 0.36% and 0.72%, respectively. This agreement validates the analytical value, and establishes this chamber as a reference standard for RAKR or AKS measurement of 137Cs brachytherapy sources. PMID:22089009

  10. A new design of Delclos dome cylinders using standard Cs-137 sources

    SciTech Connect

    Sharma, S.C.; Bhandare, N. )

    1991-07-01

    Surface dose rates around the currently-marketed Delclos uterine-vaginal afterloading dome (hemispherical) cylinders were calculated and measured for linear standard 3M cesium tube sources. Measurements were carried out using thin thermoluminescent lithium fluoride Chips on the surface of the cylinder and calculations at the same points were generated using a treatment planning computer. Wide surface dose variations were found for 2 to 3.5 cm diameter cylinders, but relatively small variation for 4 to 4.5 cm diameter cylinders. Attempting to achieve a uniform dose distribution around the entire dome surface of the cylinder, we have developed a new ellipsoidal design for the dome component that better conforms to the shape of the isodoses arising from the distal-most source. Thermoluminescent dosimetry indicates that the surface doses for the newly constructed cylinders are quite uniform, with variation within {plus minus} 5%. The effect on surface dose is discussed when the ellipsoidal dome cylinder in combination with vaginal cylinders is used and multiple sources are laid end to end to treat the added areas of the vaginal wall.

  11. Patterns of Cs-137 and Sr-90 distribution in conjugated landscape systems

    NASA Astrophysics Data System (ADS)

    Korobova, E.

    2012-04-01

    The main goal of the study was to reveal spatial patterns of 137Cs and 90Sr distribution in soils and plants of conjugated landscapes and to use 137Cs as a tracer for natural migration and accumulation processes in the environment. The studies were based on presumptions that: 1) the environment consisted of interrelated bio- and geochemical fields of hierarchical structure depending on the level and age of factors responsible for spatial distribution of chemical elements; 2)distribution of technogenic radionuclides in natural landscapes depended upon the location and type of the initial source and radionuclide involvement in natural pathways controlled by the state and mobility of the typomorphic elements and water migration. Case studies were undertaken in areas subjected to contamination after the Chernobyl accident and in the estuary zones of the Yenisey and Pechora rivers. First observations in the Chernobyl remote zone in 1987-1989 demonstrated relation between the dose rate, 137Cs, 134Cs, 144Ce, 106Ru, 125Sb in soil cover and the location of the measured plot in landscape toposequence. Later study of 137Cs and 90Sr concentration and speciation confirmed different patterns of their distribution dependent upon the radioisotope, soil features and vegetation cover corresponding to the local landscape and landuse structure. Certain patterns in distribution and migration of 137Cs and 90Sr in soils and local food chain were followed in private farms situated in different landscape position [1]. Detailed study of 137Cs activity in forested site with a pronounced relief 20 and 25 years after the Chernobyl accident showed its stable polycentric structure in soils, mosses and litter which was sensitive to meso- and micro-relief features [2]. Radionuclide contamination of the lower Yenisey and Pechora studied along meridian landscape transects proved both areas be subjected to global 137Cs pollution while the Yenisey floodplain received additional regional contamination transported by the river [3]. Local zones of enhanced 137Cs accumulation in soil samples and some plant species were found in island systems, and the Yenisey upper delta island in particular. Hydromica identified in samples was considered significant for 137Cs accumulation in floodplain soils. The distinct tendency of secondary redistribution of the global 137Cs fallout in soils due to wind and water transport and subsequent accumulation, 137Cs accumulation in topsoil and slightly over the permafrost table were characteristic for both catchments. Therefore 137Cs proved to be an effective isotope tracer for studying and mapping technogenic contamination and the recent processes of water and particulate mass transport on the global, regional and local scales. Obtained results may be useful for monitoring, eco-geochemical evaluation and regionalizing of the areas contaminated by artificial radionuclides. 1. Korobova E.M., Ermakov A., Linnik V., 1998. Applied Geochemistry 13, .7, 803-814. 2. E.M. Korobova, S.L. Romanov, 2009. Chemometrics and Intelligent Laboratory Systems 99, 1-8. 3. E.M. Korobova, N.G. Ukraintseva, V.V. Surkov, J.E. Brown, W. Standring and A.P. Borisov, 2009. Eds: Mattia N. Gallo, Marco N. Ferrari. River Pollution Research Progress. Nova Science Publishers, Inc. N-Y, 91-156.

  12. [Modeling of Cs-137 vertical soil transfer by a tree root system].

    PubMed

    Bulgakov, A A; Konoplev, A V

    2002-01-01

    A model of 137Cs vertical soil transport by a tree root system is presented. As distinct from other models the radionuclide root uptake is described as a reversible process and depth distribution of roots is given as a function of time. The model was used for prediction of 137Cs release from a surface disposal site located in a territory with conditions similar to that in the Chernobyl NPP exclusion zone. Prediction indicates that during several decades 137Cs transport from the waste layer by the root system of pine can lead to significant contamination of the soil surface due to needles fallout and, probably, ionic leakage from roots. PMID:12449825

  13. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    SciTech Connect

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurement at very low femtogram levels using this method in a ground water matrix is also demonstrated.

  14. Statistical analysis of content of Cs-137 in soils in Bansko-Razlog region

    SciTech Connect

    Kobilarov, R. G.

    2014-11-18

    Statistical analysis of the data set consisting of the activity concentrations of {sup 137}Cs in soils in Bansko–Razlog region is carried out in order to establish the dependence of the deposition and the migration of {sup 137}Cs on the soil type. The descriptive statistics and the test of normality show that the data set have not normal distribution. Positively skewed distribution and possible outlying values of the activity of {sup 137}Cs in soils were observed. After reduction of the effects of outliers, the data set is divided into two parts, depending on the soil type. Test of normality of the two new data sets shows that they have a normal distribution. Ordinary kriging technique is used to characterize the spatial distribution of the activity of {sup 137}Cs over an area covering 40 km{sup 2} (whole Razlog valley). The result (a map of the spatial distribution of the activity concentration of {sup 137}Cs) can be used as a reference point for future studies on the assessment of radiological risk to the population and the erosion of soils in the study area.

  15. The effect of Cs-137 short-range spatial variability on soil after the Chernobyl disaster

    NASA Astrophysics Data System (ADS)

    Martynenko, Vladimir; Vakulovsky, Sergey; Linnik, Vitaly

    2014-05-01

    After the Chernobyl accident of 1986, large areas of Russia were contaminated by 137Cs. Post-depositional redistribution of 137Cs fallout across the land surface resulting from mechanical, physical, chemical, and biological processes operating in the soil system and the grain size selectivity associated with soil erosion and sediment transport processes. Therefore of uppermost importance are data on evaluating 137Cs variability at short distances, obtained at the early period after the accident. Measurements of 137Cs deposit at the territory of Russia exposed to radioactive contamination were mainly conducted with the help of air-gamma survey, and were verified by soil sampling on test plots with size 10x10 m with control soil sampling using "envelope" method of fivefold soil sampling (1 sampling at the centre and 4 along the edges of the plot under study). Presented here are evaluation data of 137Cs contamination, obtained in the Bryansk, Yaroslav and Rostov regions in 1991. Test plots were selected at the distance of 50-100 m away from a road on matted areas with undisturbed soil structure. Test routes of sampling were made perpendicularly to directions crossing basic traces of radioactive contamination. Sampling measurements were carried out at Canberra and Ortec gamma spectrometers. Each of the 5 samples of the "envelope" was measured separately, soil mixing was not applied. 137Cs value for the Bryansk Region varied from 2,6 kBq/m2 to 2294 kBq/m2, at the territories of the Yaroslav and Rostov regions 137Cs value varied from 0,44 kBq/m2 to 5,1 kBq/m2 and 0,56 kBq/m2 to 22,2 kBq/m2, respectively. Statistical analysis of 137Cs deposit at different plots is a solid argumentation in favour of nonuniform distribution in various landscapes and at a different distance from the Chernobyl NPP. Such nonuniformity of 137Cs soil contamination in the limits of 10 m of the plot is most likely to be related to initial aerosol contamination nonuniformity at the moment of deposition.

  16. TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source

    SciTech Connect

    Meigooni, Ali S.; Wright, Clarissa; Koona, Rafiq A.; Awan, Shahid B.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2009-10-15

    Purpose: Brachytherapy treatment has been a cornerstone for management of various cancer sites, particularly for the treatment of gynecological malignancies. In low dose rate brachytherapy treatments, {sup 137}Cs sources have been used for several decades. A new {sup 137}Cs source design has been introduced (model 67-6520, source B3-561) by Isotope Products Laboratories (IPL) for clinical application. The goal of the present work is to implement the TG-43 U1 protocol in the characterization of the aforementioned {sup 137}Cs source. Methods: The dosimetric characteristics of the IPL {sup 137}Cs source are measured using LiF thermoluminescent dosimeters in a Solid Water phantom material and calculated using Monte Carlo simulations with the GEANT4 code in Solid Water and liquid water. The dose rate constant, radial dose function, and two-dimensional anisotropy function of this source model were obtained following the TG-43 U1 recommendations. In addition, the primary and scatter dose separation (PSS) formalism that could be used in convolution/superposition methods to calculate dose distributions around brachytherapy sources in heterogeneous media was studied. Results: The measured and calculated dose rate constants of the IPL {sup 137}Cs source in Solid Water were found to be 0.930({+-}7.3%) and 0.928({+-}2.6%) cGy h{sup -1} U{sup -1}, respectively. The agreement between these two methods was within our experimental uncertainties. The Monte Carlo calculated value in liquid water of the dose rate constant was {Lambda}=0.948({+-}2.6%) cGy h{sup -1} U{sup -1}. Similarly, the agreement between measured and calculated radial dose functions and the anisotropy functions was found to be within {+-}5%. In addition, the tabulated data that are required to characterize the source using the PSS formalism were derived. Conclusions: In this article the complete dosimetry of the newly designed {sup 137}Cs IPL source following the AAPM TG-43 U1 dosimetric protocol and the PSS formalism is provided.

  17. Simulating sediment and Cs 137 transfer and deposition in dams of Fukushima prefecture

    NASA Astrophysics Data System (ADS)

    Kitamura, Akihiro; Yamaguchi, Masaaki; Sato, Haruo; Yui, Mikazu

    2014-05-01

    Sediment and cesium 137 discharged into dams and reservoirs and accumulated onto dam and reservoir beds in eastern Fukushima prefecture after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident are simulated by a simple and fast simulation model which we developed by utilizing the universal soil loss equation and the geographical information system. Modeling of soil erosion, transport and deposition, and cesium 137 dispersion were implemented to simulate cesium 137 transport and its future distribution based on the 100m-size grid system. Raster based calculation protocols are formulated using ModelBuider function included in ArcEditor of version 10.0. We applied this model to various dams and reservoirs of eastern Fukushima prefecture and simulated results are compared with some of the measurement data that have been achieved thus far since the FDNPP accident. In the present calculations, we assumed the amount of water into a dam or reservoir is equivalent to the amount of water out from the dam or reservoir. Any operational controls that may have taken in each dam or reservoir are ignored. Annual soil loss from each dam basin, annual soil inflow into each dam, annual soil deposition in each dam, and annual soil discharge from each dam are simulated. Concentrations of radio-cesium 137 in the deposited sediments for the Ogaki dam and Ogi dam, for examples, were calculated and compared with rough estimates of the corresponding values based on the field survey results, and reasonable agreement was observed. Also, the annual soil deposition on the Ogi dam bed is simulated and again compared with rough estimate of the corresponding value based on the field survey, and the order of magnitude was matched. Furthermore, we simulated the effect of decontamination in Ogaki dam basin as an example and it was shown that an intensive decontamination for particular land use area could effectively decrease the discharged amount of radioactive cesium.

  18. State of Fukushima nuclear fuel debris tracked by Cs137 in cooling water.

    PubMed

    Grambow, B; Mostafavi, M

    2014-11-01

    It is still difficult to assess the risk originating from the radioactivity inventory remaining in the damaged Fukushima nuclear reactors. Here we show that cooling water analyses provide a means to assess source terms for potential future releases. Until now already about 34% of the inventories of (137)Cs of three reactors has been released into water. We found that the release rate of (137)Cs has been constant for 2 years at about 1.8% of the inventory per year indicating ongoing dissolution of the fuel debris. Compared to laboratory studies on spent nuclear fuel behavior in water, (137)Cs release rates are on the higher end, caused by the strong radiation field and oxidant production by water radiolysis and by impacts of accessible grain boundaries. It is concluded that radionuclide analyses in cooling water allow tracking of the conditions of the damaged fuel and the associated risks. PMID:25245528

  19. Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490

    SciTech Connect

    Hasan, M.A.; Selim, Y.T.; El-Zakla, T.

    2013-07-01

    Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasing the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)

  20. Flocculation of model algae under shear.

    SciTech Connect

    Pierce, Flint; Lechman, Jeremy B.

    2010-11-01

    We present results of molecular dynamics simulations of the flocculation of model algae particles under shear. We study the evolution of the cluster size distribution as well as the steady-state distribution as a function of shear rates and algae interaction parameters. Algal interactions are modeled through a DLVO-type potential, a combination of a HS colloid potential (Everaers) and a yukawa/colloid electrostatic potential. The effect of hydrodynamic interactions on aggregation is explored. Cluster strucuture is determined from the algae-algae radial distribution function as well as the structure factor. DLVO parameters including size, salt concentration, surface potential, initial volume fraction, etc. are varied to model different species of algae under a variety of environmental conditions.

  1. Composting of waste algae: a review.

    PubMed

    Han, Wei; Clarke, William; Pratt, Steven

    2014-07-01

    Although composting has been successfully used at pilot scale to manage waste algae removed from eutrophied water environments and the compost product applied as a fertiliser, clear guidelines are not available for full scale algae composting. The review reports on the application of composting to stabilize waste algae, which to date has mainly been macro-algae, and identifies the peculiarities of algae as a composting feedstock, these being: relatively low carbon to nitrogen (C/N) ratio, which can result in nitrogen loss as NH3 and even N2O; high moisture content and low porosity, which together make aeration challenging; potentially high salinity, which can have adverse consequence for composting; and potentially have high metals and toxin content, which can affect application of the product as a fertiliser. To overcome the challenges that these peculiarities impose co-compost materials can be employed. PMID:24602833

  2. Streptophyte algae and the origin of embryophytes

    PubMed Central

    Becker, Burkhard; Marin, Birger

    2009-01-01

    Background Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae. Recent Progress Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants. Conclusions The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater

  3. Algae biodiesel - a feasibility report

    PubMed Central

    2012-01-01

    Background Algae biofuels have been studied numerous times including the Aquatic Species program in 1978 in the U.S., smaller laboratory research projects and private programs. Results Using Molina Grima 2003 and Department of Energy figures, captial costs and operating costs of the closed systems and open systems were estimated. Cost per gallon of conservative estimates yielded $1,292.05 and $114.94 for closed and open ponds respectively. Contingency scenarios were generated in which cost per gallon of closed system biofuels would reach $17.54 under the generous conditions of 60% yield, 50% reduction in the capital costs and 50% hexane recovery. Price per gallon of open system produced fuel could reach $1.94 under generous assumptions of 30% yield and $0.2/kg CO2. Conclusions Current subsidies could allow biodiesel to be produced economically under the generous conditions specified by the model. PMID:22540986

  4. Algae Biofuel in the Nigerian Energy Context

    NASA Astrophysics Data System (ADS)

    Elegbede, Isa; Guerrero, Cinthya

    2016-05-01

    The issue of energy consumption is one of the issues that have significantly become recognized as an important topic of global discourse. Fossil fuels production reportedly experiencing a gradual depletion in the oil-producing nations of the world. Most studies have relatively focused on biofuel development and adoption, however, the awareness of a prospect in the commercial cultivation of algae having potential to create economic boost in Nigeria, inspired this research. This study aims at exploring the potential of the commercialization of a different but commonly found organism, algae, in Nigeria. Here, parameters such as; water quality, light, carbon, average temperature required for the growth of algae, and additional beneficial nutrients found in algae were analysed. A comparative cum qualitative review of analysis was used as the study made use of empirical findings on the work as well as the author's deductions. The research explored the cultivation of algae with the two major seasonal differences (i.e. rainy and dry) in Nigeria as a backdrop. The results indicated that there was no significant difference in the contribution of algae and other sources of biofuels as a necessity for bioenergy in Nigeria. However, for an effective sustainability of this prospect, adequate measures need to be put in place in form of funding, provision of an economically-enabling environment for the cultivation process as well as proper healthcare service in the face of possible health hazard from technological processes. Further studies can seek to expand on the potential of cultivating algae in the Harmattan season.

  5. Method and apparatus for processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  6. Errors When Extracting Oil from Algae

    NASA Astrophysics Data System (ADS)

    Murphy, E.; Treat, R.; Ichiuji, T.

    2014-12-01

    Oil is in popular demand, but the worldwide amount of oil is decreasing and prices for it are steadily increasing. Leading scientists have been working to find a solution of attaining oil in an economically and environmentally friendly way. Researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) have determined that "a small mixture of algae and water can be turned into crude oil in less than an hour" (Sheehan, Duhahay, Benemann, Poessler). There are various ways of growing the algae, such as closed loop and open loop methods, as well as processes of extracting oil, such as hydrothermal liquefaction and the hexane-solvent method. Our objective was to grow the algae (C. reinhardtii) and extract oil from it using NaOH and HCl, because we had easy access to those specific chemicals. After two trials of attempted algae growth, we discovered that a bacteria was killing off the algae. This led us to further contemplation on how this dead algae and bacteria are affecting our environment, and the organisms within it. Eutrophication occurs when excess nutrients stimulate rapid growth of algae in an aquatic environment. This can clog waterways and create algal blooms in blue-green algae, as well as neurotoxic red tide phytoplankton. These microscopic algae die upon consumption of the nutrients in water and are degraded by bacteria. The bacteria respires and creates an acidic environment with the spontaneous conversion of carbon dioxide to carbonic acid in water. This process of degradation is exactly what occurred in our 250 mL flask. When the phytoplankton attacked our algae, it created a hypoxic environment, which eliminated any remaining amounts of oxygen, carbon dioxide, and nutrients in the water, resulting in a miniature dead zone. These dead zones can occur almost anywhere where there are algae and bacteria, such as the ocean, and make it extremely difficult for any organism to survive. This experiment helped us realize the

  7. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  8. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  9. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  10. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture...

  11. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  12. Pyogenic Flexor Tenosynovitis Caused by Shewanella algae.

    PubMed

    Fluke, Erin C; Carayannopoulos, Nikoletta L; Lindsey, Ronald W

    2016-07-01

    Pyogenic flexor tenosynovitis is an orthopedic emergency most commonly caused by Staphylococcus aureus and streptococci and occasionally, when associated with water exposure, Mycobacterium marinum. Shewanella algae, a gram-negative bacillus found in warm saltwater environments, has infrequently been reported to cause serious soft tissue infections and necrosis. In this case, S. algae caused complicated flexor tenosynovitis requiring open surgical irrigation and debridement. Flexor tenosynovitis caused by S. algae rapidly presented with all 4 Kanavel cardinal signs as well as subcutaneous purulence, ischemia, and necrosis, thus meeting the requirements for Pang et al group III classification of worst prognosis. Because of its rarity and virulence, S. algae should always be considered in cases of flexor tenosynovitis associated with traumatic water exposure to treat and minimize morbidity appropriately. PMID:27206398

  13. 2011 Biomass Program Platform Peer Review: Algae

    SciTech Connect

    Yang, Joyce

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Algae Platform Review meeting.

  14. The Alga Ochromonas danica Produces Bromosulfolipids.

    PubMed

    White, Alexander R; Duggan, Brendan M; Tsai, Shiou-Chuan; Vanderwal, Christopher D

    2016-03-01

    Many halogenases interchangeably incorporate chlorine and bromine into organic molecules. On the basis of an unsubstantiated report that the alga Ochromonas danica, a prodigious producer of chlorosulfolipids, was able to produce bromosulfolipids, we have investigated the promiscuity of its halogenases toward bromine incorporation. We have found that bromosulfolipids are produced with the exact positional and stereochemical selectivity as in the chlorosulfolipid danicalipin A when this alga is grown under modified conditions containing excess bromide ion. PMID:26889956

  15. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-03

    We consider a general framework to predict the development of harmful algal blooms (HABs) in a lake driven by uncertain parameters. To quantify the concentration uncertainty of those algae groups via their joint probabilistic density function (PDF), we explore an approach based on the Fokker-Planck equation. Our result is presented in an example where abundant nutrients contribute to the proliferation of cyanobacteria and other minor algae groups.

  16. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  17. Biogas production experimental research using algae.

    PubMed

    Baltrėnas, Pranas; Misevičius, Antonas

    2015-01-01

    The current study is on the the use of macro-algae as feedstock for biogas production. Three types of macro-algae, Cladophora glomerata (CG), Chara fragilis (CF), and Spirogyra neglecta (SN), were chosen for this research. The experimental studies on biogas production were carried out with these algae in a batch bioreactor. In the bioreactor was maintained 35 ± 1°C temperature. The results showed that the most appropriate macro-algae for biogas production are Spirogyra neglecta (SN) and Cladophora glomerata (CG). The average amount of biogas obtained from the processing of SN - 0.23 m(3)/m(3)d, CG - 0.20 m(3)/m(3)d, and CF - 0.12 m(3)/m(3)d. Considering the concentration of methane obtained during the processing of SN and CG, which after eight days and until the end of the experiment exceeded 60%, it can be claimed that biogas produced using these algae is valuable. When processing CF, the concentration of methane reached the level of 50% only by the final day of the experiment, which indicates that this alga is less suitable for biogas production. PMID:25859392

  18. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  19. Inhibition of mast cells by algae.

    PubMed

    Price, Joseph A; Sanny, Charles; Shevlin, Dennis

    2002-01-01

    There is a history of use of algae as foods and as food additives, or nutraceuticals. Although algae are a safe component of human foods and animal feeds, the effects of the algae other than as a source of protein are not clear. We examined the prevalence of an antiinflammatory activity in selected algae using, as an assay system, the inhibition of histamine release from mast cells. Methanolic extracts of eleven algae were examined for activity to inhibit the release of histamine from mast cells in vitro. This activity was found widely among the samples tested. The activities of these extracts were not uniformly stable in acid methanol. Selected extracts studied further did not separate with the use of size-exclusion filtration filters. LH-20 chromatography suggested at least two main elution areas of activity of the Chlorella extract. In summary, we saw wide phylogenetic dispersion of mast cell inhibition activity, suggesting that this antiinflammatory property is common in algae. This effect was apparently due to multiple activities within the algal extracts. PMID:12639395

  20. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  1. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  2. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  3. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature. PMID:16414751

  4. Controlled regular locomotion of algae cell microrobots.

    PubMed

    Xie, Shuangxi; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2016-06-01

    Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications. PMID:27206511

  5. Biological toxicity of lanthanide elements on algae.

    PubMed

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. PMID:20547408

  6. Turning Algae into Energy in New Mexico

    SciTech Connect

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  7. Turning Algae into Energy in New Mexico

    ScienceCinema

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  8. Genome of the red alga Porphyridium purpureum.

    PubMed

    Bhattacharya, Debashish; Price, Dana C; Chan, Cheong Xin; Qiu, Huan; Rose, Nicholas; Ball, Steven; Weber, Andreas P M; Arias, Maria Cecilia; Henrissat, Bernard; Coutinho, Pedro M; Krishnan, Anagha; Zäuner, Simone; Morath, Shannon; Hilliou, Frédérique; Egizi, Andrea; Perrineau, Marie-Mathilde; Yoon, Hwan Su

    2013-01-01

    The limited knowledge we have about red algal genomes comes from the highly specialized extremophiles, Cyanidiophyceae. Here, we describe the first genome sequence from a mesophilic, unicellular red alga, Porphyridium purpureum. The 8,355 predicted genes in P. purpureum, hundreds of which are likely to be implicated in a history of horizontal gene transfer, reside in a genome of 19.7 Mbp with 235 spliceosomal introns. Analysis of light-harvesting complex proteins reveals a nuclear-encoded phycobiliprotein in the alga. We uncover a complex set of carbohydrate-active enzymes, identify the genes required for the methylerythritol phosphate pathway of isoprenoid biosynthesis, and find evidence of sexual reproduction. Analysis of the compact, function-rich genome of P. purpureum suggests that ancestral lineages of red algae acted as mediators of horizontal gene transfer between prokaryotes and photosynthetic eukaryotes, thereby significantly enriching genomes across the tree of photosynthetic life. PMID:23770768

  9. Algae control problems and practices workshop

    SciTech Connect

    Pryfogle, P.A.; Ghio, G.

    1996-09-01

    Western water resources are continuously facing increased demand from industry and the public. Consequently, many of these resources are required to perform multiple tasks as they cycle through the ecosystem. Many plants and animals depend upon these resources for growth. Algae are one group of plants associated with nutrient and energy cycles in many aquatic ecosystems. Although most freshwater algae are microscopic in size, they are capable of dominating and proliferating to the extent that the value of the water resource for both industrial and domestic needs is compromised. There is a great diversity of aquatic environments and systems in which algae may be found, and there are many varieties of treatment and control techniques available to reduce the impacts of excessive growth. This workshop was organized to exchange information about these control problems and practices.

  10. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    NASA Astrophysics Data System (ADS)

    Guo, P.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T.

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd 3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores ( <10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  11. Harvesting of algae by froth flotation.

    PubMed

    LEVIN, G V; CLENDENNING, J R; GIBOR, A; BOGAR, F D

    1962-03-01

    A highly efficient froth flotation procedure has been developed for harvesting algae from dilute suspensions. The method does not depend upon the addition of flotants. Harvesting is carried out in a long column containing the feed solution which is aerated from below. A stable column of foam is produced and harvested from a side arm near the top of the column. The cell concentration of the harvest is a function of pH, aeration rate, aerator porosity, feed concentration, and height of foam in the harvesting column. The economic aspects of this process seem favorable for mass harvesting of algae for food or other purposes. PMID:14464557

  12. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  13. Photodegradation of Norfloxacin in aqueous solution containing algae.

    PubMed

    Zhang, Junwei; Fu, Dafang; Wu, Jilong

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W, lambda(max) = 365 nm) was investigated. Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algae-water systems. The photodegradation rate of Norfloxacin increased with increasing algae concentration, and was greatly influenced by the temperature and pH of solution. Meanwhile, the cooperation action of algae and Fe(III), and the ultrasound were beneficial to photodegradation of Norfloxacin. The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae. In addition, we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae. This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae, for providing a new method to deal with antibiotics pollution. PMID:22894111

  14. An Overview of Algae Biofuel Production and Potential Environmental Impact

    EPA Science Inventory

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  15. [Accumulation of polycyclic arenes in Baltic Sea algae].

    PubMed

    Veldre, I A; Itra, A R; Paal'me, L P; Kukk, Kh A

    1985-01-01

    The paper presents data on the level of benzo(a)pyrene (BP) and some other polycyclic arenes in alga and phanerogam specimens from different gulfs of the Baltic Sea. Algae were shown to absorb BP from sea water. The mean concentration of BP in sea water was under 0.004 microgram/1, while in algae it ranged 0.1-21.2 micrograms/kg dry weight. Algae accumulate BP to a higher degree than phanerogams. The highest concentrations of BP were found in algae Enteromorpha while the lowest ones in Furcellaria. In annual green algae, BP level was higher in autumn, i. e. at the end of vegetation period, than in spring. Brown algae Fucus vesiculosus is recommended for monitoring polycyclic arene pollution in the area from Vormsi Island to Käsmu and green algae Cladophora or Enteromorpha in the eastern part of the Finnish Gulf. PMID:4060672

  16. ALGAE BLOOMS AND PHOSPHORUS LOADING IN LAKE LOWELL, IDAHO

    EPA Science Inventory

    Algae blooms limit recreational use of Lake Lowell, ID (17050114) by reducing water clarity and esthetic qualities. Under bloom conditions, algae have a negative impact on the reservoir fishery because of periodic oxygen depletion associated with respiration and decomposition. ...

  17. WASP7 BENTHIC ALGAE - MODEL THEORY AND USER'S GUIDE

    EPA Science Inventory

    The standard WASP7 eutrophication module includes nitrogen and phosphorus cycling, dissolved oxygen-organic matter interactions, and phytoplankton kinetics. In many shallow streams and rivers, however, the attached algae (benthic algae, or periphyton, attached to submerged substr...

  18. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  19. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  20. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  1. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  2. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  3. 21 CFR 73.185 - Haematococcus algae meal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Haematococcus algae meal. 73.185 Section 73.185... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.185 Haematococcus algae meal. (a) Identity. (1) The color additive haematococcus algae meal consists of the comminuted and dried cells of the...

  4. Fucoidans — sulfated polysaccharides of brown algae

    NASA Astrophysics Data System (ADS)

    Usov, Anatolii I.; Bilan, M. I.

    2009-08-01

    The methods of isolation of fucoidans and determination of their chemical structures are reviewed. The fucoidans represent sulfated polysaccharides of brown algae, the composition of which varies from simple fucan sulfates to complex heteropolysaccharides. The currently known structures of such biopolymers are presented. A variety of the biological activities of fucoidans is briefly summarised.

  5. Potential of mass algae production in Kuwait

    SciTech Connect

    Prokop, A.; Fekri, M.

    1984-11-01

    The rationale for efficient light absorption by algae at a production unit is given and design details of an intensive thin-layer technology outdoor (2.11m/sup 2/) unit are presented. Data on productivity under extreme conditions were collected. Maximum productivity data are close to those reported in the literature for similar geographic areas.

  6. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  7. OPTIMAL COST CONTROL STRATEGIES FOR ATTACHED ALGAE

    EPA Science Inventory

    This paper presents a cost-benefit analysis for alternative programs intended for the control of the nuisance growth of an attached alga (Cladophora). Such analyses require that changes in water quality be quantitatively related to the cost of implementation for specific manageme...

  8. Spirulina: The Alga That Can End Malnutrition.

    ERIC Educational Resources Information Center

    Fox, Ripley D.

    1985-01-01

    One approach to eliminating malnutrition worldwide is to grow spirulina in recycled village wastes. Spirulina is a blue-green alga and a natural concentrated food. Spirulina can give poor villages a nutritional food supplement they can grow themselves and can reduce infectious disease at the same time. (Author/RM)

  9. Structurally Distinct Cation Channelrhodopsins from Cryptophyte Algae.

    PubMed

    Govorunova, Elena G; Sineshchekov, Oleg A; Spudich, John L

    2016-06-01

    Microbial rhodopsins are remarkable for the diversity of their functional mechanisms based on the same protein scaffold. A class of rhodopsins from cryptophyte algae show close sequence homology with haloarchaeal rhodopsin proton pumps rather than with previously known channelrhodopsins from chlorophyte (green) algae. In particular, both aspartate residues that occupy the positions of the chromophore Schiff base proton acceptor and donor, a hallmark of rhodopsin proton pumps, are conserved in these cryptophyte proteins. We expressed the corresponding polynucleotides in human embryonic kidney (HEK293) cells and studied electrogenic properties of the encoded proteins with whole-cell patch-clamp recording. Despite their lack of residues characteristic of the chlorophyte cation channels, these proteins are cation-conducting channelrhodopsins that carry out light-gated passive transport of Na(+) and H(+). These findings show that channel function in rhodopsins has evolved via multiple routes. PMID:27233115

  10. Phycobilisomes in Blue-Green Algae

    PubMed Central

    Wildman, Ruth B.; Bowen, C. C.

    1974-01-01

    Fifteen species of freshwater blue-green algae, including unicellular, filamentous, and colonial forms, were subjected to a variety of fixatives, fixation conditions, and stains for comparison of the preservation of phycobilisomes. Absorption spectra of the corresponding in vivo and released photosynthetic pigments, in 10 of the species that were maintained in culture, demonstrated the presence of phycocyanin in all 10 species and phycoerythrin in only 2 of them. Spectroscope and electron microscope evidence was obtained for localization of phycobiliproteins in phycobilisomes of Nostoc muscorum. Phycobilisomes were observed in all species examined in situ, strenghening the hypothesis that phycobilisomes are common to all phycobiliprotein-containing photosynthetic blue-green algae. Images PMID:4204443

  11. Toxicity of chlorinated benzenes to marine algae

    NASA Astrophysics Data System (ADS)

    Ma, Yan-Jun; Wang, Xiu-Lin; Yu, Wei-Jun; Zhang, Li-Jun; Sun, Han-Zhang

    1997-12-01

    Growth of Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis and Phaeodactylum tricornutum exposed to monochlorobenzene (MCB), 1,2-dichlorobenzene (1,2-DCB), 1, 2, 3, 4-tetrachlorobenzene (1, 2, 3, 4-TeCB) and pentachlorobenzene (PeCB) was tested. Tests of 72 h- EC 50 values showed that the toxicity ranged in the order: MCB<1,2-DCB<1,2,3,4-TeCBalgae was almost in the order: Pyramidomonas sp. < Platymonas subcordiformis < Nannochloropsis oculata < Chlorella marine < Phaeodactylum tricomutum. Study of the QSAR (Quantitative Structure-Activity Relationship) between K OW and toxicity of CBs to marine algae showed good relationships between -log EC 50 and log K OW.

  12. Bioconcentration of tetrachlorobenzene in marine algae

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Lin; Ma, Yan-Jun; Cheng, Gang; Yu, Wei-Jun; Zhang, Li-Jun

    1997-09-01

    Bioconcentration of tetrachlorobenzene (TeCB) in Chlorella marine, Nannochloropsis oculata, Pyramidomonas sp., Platymonas subcordiformis, and Phaeodactylum tricornutum; and toxicity of TeCB to the marine algae were tested. Values of bioconcentration potential parameters, including uptake rate constant k 1, elimination rate constant k 2 and bioconcentration factor BCF, were obtained not only from the time course of TeCB uptake by the marine algae by using a bioconcentration model, but also from the acute toxicity test data for percent inhibition PI(%)˜exposure concentration of TeCB-time by using a combined bioconcentration and probability model. The results showed good relationship between k 1(TOXIC) and k 1(UPTAKE) and k 2(TOXIC), k 2(UPTAKE), and BCF D(IOXIC) and BCF D(UPTAKE). Especially, the values of BCF D(TOXIC) were well consistent with those of BCF D(UPTAKE).

  13. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  14. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  15. Algae-Derived Dietary Ingredients Nourish Animals

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the 1980s, Columbia, Maryland-based Martek Biosciences Corporation worked with Ames Research Center to pioneer the use of microalgae as a source of essential omega-3 fatty acids, work that led the company to develop its highly successful Formulaid product. Now the Nutritional Products Division of Royal DSM, the company also manufactures DHAgold, a nutritional supplement for pets, livestock and farm-raised fish that uses algae to deliver docosahexaenoic acid (DHA).

  16. Algae as Reservoirs for Coral Pathogens

    PubMed Central

    Sweet, Michael J.; Bythell, John C.; Nugues, Maggy M.

    2013-01-01

    Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS) in the Indo-Pacific and Yellow Band Disease (YBD) in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively). Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is most likely a

  17. Prokaryotic algae associated with Australian proterozoic stromatolites.

    NASA Technical Reports Server (NTRS)

    Licari, G. R.; Cloud, P.

    1972-01-01

    The most favorable sites in which to study the associations between stromatolites and the algae responsible for them are places where a variety of stromatolites of possibly early diagenetic or primary silica occupy a layer of substantial thickness of little metamorphosed ancient sediments. One such place is in northwestern Queensland, Australia. Five cases of association between stromatolites and blue-green algal nannofossils were observed within a 100-m sequence of carbonate rocks in that area.

  18. Sequestration of CO2 by halotolerant algae

    PubMed Central

    2014-01-01

    The potential of halotolerant algae isolated from natural resources was used to study CO2 fixation and algal lipid production. Biological fixation of CO2 in photobioreactor in presence of salinity is exploited. The CO2 concentration 1060 ppm gave the highest biomass yield (700 mg dry wt/l), the highest total lipid content (10.33%) with 80% of CO2 removal. PMID:24847439

  19. Dermatitis from purified sea algae toxin (debromoaplysiatoxin).

    PubMed

    Solomon, A E; Stoughton, R B

    1978-09-01

    Cutaneous inflammation was induced by debromoaplysiatoxin, a purified toxin extracted from Lyngbya majuscula Gomont. This alga causes a seaweed dermatitis that occurs in persons who have swum off the coast of Oahu in Hawaii. By topical application, the toxin was found to produce an irritant pustular folliculitis in humans and to cause a severe cutaneous inflammatory reaction in the rabbit and in hairless mice. PMID:686747

  20. Environmental life cycle comparison of algae to other bioenergy feedstocks.

    PubMed

    Clarens, Andres F; Resurreccion, Eleazer P; White, Mark A; Colosi, Lisa M

    2010-03-01

    Algae are an attractive source of biomass energy since they do not compete with food crops and have higher energy yields per area than terrestrial crops. In spite of these advantages, algae cultivation has not yet been compared with conventional crops from a life cycle perspective. In this work, the impacts associated with algae production were determined using a stochastic life cycle model and compared with switchgrass, canola, and corn farming. The results indicate that these conventional crops have lower environmental impacts than algae in energy use, greenhouse gas emissions, and water regardless of cultivation location. Only in total land use and eutrophication potential do algae perform favorably. The large environmental footprint of algae cultivation is driven predominantly by upstream impacts, such as the demand for CO(2) and fertilizer. To reduce these impacts, flue gas and, to a greater extent, wastewater could be used to offset most of the environmental burdens associated with algae. To demonstrate the benefits of algae production coupled with wastewater treatment, the model was expanded to include three different municipal wastewater effluents as sources of nitrogen and phosphorus. Each provided a significant reduction in the burdens of algae cultivation, and the use of source-separated urine was found to make algae more environmentally beneficial than the terrestrial crops. PMID:20085253

  1. Electro-coagulation-flotation process for algae removal.

    PubMed

    Gao, Shanshan; Yang, Jixian; Tian, Jiayu; Ma, Fang; Tu, Gang; Du, Maoan

    2010-05-15

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density=1 mA/cm(2), pH=4-7, water temperature=18-36 degrees C, algae density=0.55 x 10(9)-1.55 x 10(9) cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m(3). The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view. PMID:20042280

  2. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  3. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae. PMID:26905655

  4. [Pharmacology and toxicology of Spirulina alga].

    PubMed

    Chamorro, G; Salazar, M; Favila, L; Bourges, H

    1996-01-01

    Spirulina, a unicellular filamentous blue-green alga has been consumed by man since ancient times in Mexico and central Africa. It is currently grown in many countries by synthetic methods. Initially the interest in Spirulina was on its nutritive value: it was found almost equal to other plant proteins. More recently, some preclinical testing suggests it has several therapeutic properties such as hypocholesterolemic, immunological, antiviral and antimutagenic. This has led to more detailed evaluations such as nucleic acid content and presence of toxic metals, biogenic toxins and organic chemicals: they have shown absence or presence at tolerable levels according to the recommendations of international regulatory agencies. In animal experiments for acute, subchronic and chronic toxicity, reproduction, mutagenicity, and teratogenicity the algae did not cause body or organ toxicity. In all instances, the Spirulina administered to the animals were at much higher amounts than those expected for human consumption. On the other hand there is scant information of the effects of the algae in humans. This area needs more research. PMID:9005517

  5. Heterotrimeric G-proteins in green algae

    PubMed Central

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1–1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions. PMID:24614119

  6. Hydrogenases in green algae: do they save the algae's life and solve our energy problems?

    PubMed

    Happe, Thomas; Hemschemeier, Anja; Winkler, Martin; Kaminski, Annette

    2002-06-01

    Green algae are the only known eukaryotes with both oxygenic photosynthesis and a hydrogen metabolism. Recent physiological and genetic discoveries indicate a close connection between these metabolic pathways. The anaerobically inducible hydA genes of algae encode a special type of highly active [Fe]-hydrogenase. Electrons from reducing equivalents generated during fermentation enter the photosynthetic electron transport chain via the plastoquinone pool. They are transferred to the hydrogenase by photosystem I and ferredoxin. Thus, the [Fe]-hydrogenase is an electron 'valve' that enables the algae to survive under anaerobic conditions. During sulfur deprivation, illuminated algal cultures evolve large quantities of hydrogen gas, and this promises to be an alternative future energy source. PMID:12049920

  7. Removal of Pb(2+) by biomass of marine algae.

    PubMed

    Hamdy, A A

    2000-10-01

    New biosorbent material derived from ubiquitous marine algae has been examined in packed-bed flow for Pb(2+) removal through sorption columns. Mixed biomass of marine algae has been used, consisting of representative species of the following algae: Ulva lactuca (green algae), Jania rubens (red algae), and Sargassum asperifolium (brown algae). A mixture of these three species showed a promising removal capacity for Pb(2+) from aqueous solution. Lead uptake up to 281.8 mg/g dry algal mixture was observed. Equilibrium was achieved after 120 min. No significant effect of changing the flow rate on the removal capacity was noticed. It was found that Langmuir model expresses the system at pH 4. Mineral acids exhibited good elution properties (a mean of 93%) for recovery of sorbed biomass ions as compared with the tested alkalies (about 60%). PMID:10977889

  8. Exploring the potential of algae/bacteria interactions.

    PubMed

    Kouzuma, Atsushi; Watanabe, Kazuya

    2015-06-01

    Algae are primary producers in aquatic ecosystems, where heterotrophic bacteria grow on organics produced by algae and recycle nutrients. Ecological studies have identified the co-occurrence of particular species of algae and bacteria, suggesting the presence of their specific interactions. Algae/bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. Studies have examined how these interactions shape aquatic communities and influence geochemical cycles in the natural environment. In parallel, efforts have been made to exploit algae for biotechnology processes, such as water treatment and bioenergy production, where bacteria influence algal activities in various ways. We suggest that better understanding of mechanisms underlying algae/bacteria interactions will facilitate the development of more efficient and/or as-yet-unexploited biotechnology processes. PMID:25744715

  9. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, Elias

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  10. Method for producing hydrogen and oxygen by use of algae

    DOEpatents

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  11. Algae to Bio-Crude in Less Than 60 Minutes

    ScienceCinema

    Elliott, Doug

    2014-06-02

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  12. Algae to Bio-Crude in Less Than 60 Minutes

    SciTech Connect

    Elliott, Doug

    2013-12-17

    Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.

  13. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  14. Method and apparatus for iterative lysis and extraction of algae

    SciTech Connect

    Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.

    2015-12-01

    A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.

  15. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in

  16. Exploring the potential of using algae in cosmetics.

    PubMed

    Wang, Hui-Min David; Chen, Ching-Chun; Huynh, Pauline; Chang, Jo-Shu

    2015-05-01

    The applications of microalgae in cosmetic products have recently received more attention in the treatment of skin problems, such as aging, tanning and pigment disorders. There are also potential uses in the areas of anti-aging, skin-whitening, and pigmentation reduction products. While algae species have already been used in some cosmetic formulations, such as moisturizing and thickening agents, algae remain largely untapped as an asset in this industry due to an apparent lack of utility as a primary active ingredient. This review article focuses on integrating studies on algae pertinent to skin health and beauty, with the purpose of identifying serviceable algae functions in practical cosmetic uses. PMID:25537136

  17. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  18. Algae Bioreactor Using Submerged Enclosures with Semi-Permeable Membranes

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D (Inventor); Gormly, Sherwin J (Inventor); Embaye, Tsegereda N (Inventor); Delzeit, Lance D (Inventor); Flynn, Michael T (Inventor); Liggett, Travis A (Inventor); Buckwalter, Patrick W (Inventor); Baertsch, Robert (Inventor)

    2013-01-01

    Methods for producing hydrocarbons, including oil, by processing algae and/or other micro-organisms in an aquatic environment. Flexible bags (e.g., plastic) with CO.sub.2/O.sub.2 exchange membranes, suspended at a controllable depth in a first liquid (e.g., seawater), receive a second liquid (e.g., liquid effluent from a "dead zone") containing seeds for algae growth. The algae are cultivated and harvested in the bags, after most of the second liquid is removed by forward osmosis through liquid exchange membranes. The algae are removed and processed, and the bags are cleaned and reused.

  19. Inorganic carbon acquisition in some synurophyte algae.

    PubMed

    Bhatti, Shabana; Colman, Brian

    2008-05-01

    Some characteristics of photosynthesis of three synurophyte algae, Synura petersenii, Synura uvella and Tessellaria volvocina were investigated to determine the mechanism of inorganic carbon (C(i)) uptake. All three species were found to have no external carbonic anhydrase, no capacity for direct bicarbonate uptake and a low whole-cell affinity for C(i). The internal pH of S. petersenii determined using (14)C-benzoic acid and [2-(14)C]-5,5-dimethyloxazolidine-2,4-dione was pH 7.0-7.5, over an external pH range of 5.0-7.5. Thus, the pH difference between the cell interior of S. petersenii and the external medium was large enough, over the alga's growth range, to allow the accumulation of C(i) by the diffusive uptake of CO(2). Monitoring O(2) evolution and CO(2) uptake by suspensions of S. petersenii at pH 7.0 by mass spectrometry did not indicate a rapid uptake of CO(2), and the final CO(2) compensation concentration reached was 24 +/- 0.7 microM. Furthermore, when the cells were darkened, a brief burst of CO(2) occurred before a steady rate of dark respiration was established, suggesting a loss of CO(2) by photorespiration. An examination of the kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in homogenates of cells of S. petersenii, S. uvella and Mallomonas papillosa showed that values of the K(m) (CO(2)) were 28.4, 41.8 and 18.2 microM, respectively. These species lack the characteristics of cells with a CO(2)-concentrating mechanism because the cell affinity for C(i) appears to be determined by the relatively high CO(2) affinity of the Rubisco of these algae. PMID:18298411

  20. A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, one of the most prominent renewable alternative fuels, can be derived from a variety of sources including vegetable oils, animal fats and used cooking oils as well as alternative sources such as algae. While issues such as land-use change, food vs. fuel, feedstock availability, and produc...

  1. Pheromones in marine algae: A technical approach

    NASA Astrophysics Data System (ADS)

    Gassmann, G.; Müller, D. G.; Fritz, P.

    1995-03-01

    It is now well known that many marine organisms use low-molecular volatile substances as signals, in order to coordinate activities between different individuals. The study of such pheromones requires the isolation and enrichment of the secretions from undisturbed living cells or organisms over extended periods of time. The Grob-Hersch extraction device, which we describe here, avoids adverse factors for the biological materials such as strong water currents, rising gas bubbles or chemical solvents. Furthermore, the formation of sea-water spray is greatly reduced. The application of this technique for the isolation of pheromones of marine algae and animals is described.

  2. Effect of petroleum hydrocarbons on algae

    SciTech Connect

    Bhadauria, S. ); Sengar, R.M.S. ); Mittal, S.; Bhattacharjee, S. )

    1992-01-01

    Algal species (65) were isolated from oil refinery effluent. Twenty-five of these species were cultured in Benecke's medium in a growth chamber, along with controls. Retardation in algal growth, inhibition in algal photosynthesis, and discoloration was observed in petroleum enriched medium. Few forms, viz. Cyclotella sp., Cosmarium sp., and Merismopedia sp. could not survive. The lag phase lengthened by several days and slope of exponential phase was also depressed. Chlamydomonas sp., Scenedesmus sp., Ankistrodesmus sp., Nitzschia sp. and Navicula sp. were comparatively susceptible to petroleum. Depression in carbon fixation, cell numbers, and total dry algal mass was noticeable, showing toxicity to both diatoms and green algae.

  3. Factors affecting spore germination in algae - review.

    PubMed

    Agrawal, S C

    2009-01-01

    This review surveys whatever little is known on the influence of different environmental factors like light, temperature, nutrients, chemicals (such as plant hormones, vitamins, etc.), pH of the medium, biotic factors (such as algal extracellular substances, algal concentration, bacterial extracellular products, animal grazing and animal extracellular products), water movement, water stress, antibiotics, UV light, X-rays, gamma-rays, and pollution on the spore germination in algae. The work done on the dormancy of algal spores and on the role of vegetative cells in tolerating environmental stress is also incorporated. PMID:19826917

  4. Algae Biofuels Co-Location Assessment Tool

    Energy Science and Technology Software Center (ESTSC)

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with themore » requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.« less

  5. Respiratory Chain of Colorless Algae II. Cyanophyta

    PubMed Central

    Webster, D. A.; Hackett, D. P.

    1966-01-01

    Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome. Images PMID:5932404

  6. Viruses and viruslike particles of eukaryotic algae.

    PubMed Central

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, their genomes are similar to but larger (greater than 300 kbp) than that of poxviruses, and their infection process resembles that of bacteriophages. Some of the viruses have DNAs with low levels of methylated bases, whereas others have DNAs with high concentrations of 5-methylcytosine and N6-methyladenine. Virus-encoded DNA methyltransferases are associated with the methylation and are accompanied by virus-encoded DNA site-specific (restriction) endonucleases. Some of these enzymes have sequence specificities identical to those of known bacterial enzymes, and others have previously unrecognized specificities. A separate rod-shaped RNA-containing algal virus has structural and nucleotide sequence affinities to higher plant viruses. Quite recently, viruses have been associated with rapid changes in marine algal populations. In the next decade we envision the discovery of new algal viruses, clarification of their role in various ecosystems, discovery of commercially useful genes in these viruses, and exploitation of algal virus genetic elements in plant and algal biotechnology. Images PMID:1779928

  7. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppm (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppm NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppm NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx 4.2 was not appreciably affected by 15.0 ppm of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  8. Effects of nitrogen dioxide on algae

    SciTech Connect

    Wodzinski, R.S.; Alexander, M.

    1980-01-01

    Photosynthetic activity of Anabaena flos-aquae in a soil suspension at an initial pH of 4.9 was almost totally eliminated after 3 days of exposure to 5.0 ppM (..mu..l/liter) NO/sub 2/, at which time the pH had fallen to 3.9. In contrast, A. flos-aquae in soil suspensions at an initial pH of 6.0 was not inhibited after 3 days by 5.0 ppM NO/sub 2/, but the activity was reduced by half in the presence of 15.0 ppM NO/sub 2/; the pH was 6.5 and 5.8, respectively, in the NO/sub 2/-treated samples on day 3. Photosynthesis by the green algae Chlamydomonas reinhardtii and Ankistrodesmus falcatus in soil suspensions at an initial pH of approx. 4.2 was not appreciably affected by 15.0 ppM of NO/sub 2/ after 3 days, at which time the pH had fallen below 4.0. The high levels of NO/sub 2/ and low pH values required for toxicity suggest that blue-green and green algae probably will not be affected directly by NO/sub 2/ in polluted air.

  9. Algae Biofuels Co-Location Assessment Tool

    SciTech Connect

    2013-09-18

    ABCLAT was built to help any model user with spatially explicit Nitrogen, Phosphorous, and Carbon Dioxide nutrient flux information, and solar resource information evaluate algal cultivation potential. Initial applications of this modeling framework include Algae Biofuels Co-Location Assessment Tool Canada and Australia. The Canadian application was copyrighted November 29th 2011 as the Algae Biofuels Co-Location Assessment Tool for Canada. This copyright assertion is for the general framework from which any country or region with the requisite data could create a regionally specific application. The ABCLAT model framework developed by SNL looks at the growth potential in a given region as a function of available nutrients from wastewater and other sources, carbon dioxide from power plants, available solar potential, and if available, land cover and use information. The model framework evaluates the biomass potential, fixed carbon dioxide, potential algal biocrude and required land area for nutrient sources. ABCLAT is built with an object-oriented software program that can provide an easy to use interface for exploring questions related to aigal biomass production.

  10. Video micrography of algae photomovement and vectorial method of biomonitoring

    NASA Astrophysics Data System (ADS)

    Posudin, Yuri I.; Massjuk, N. P.; Lilitskaya, G. G.

    1996-01-01

    The simultaneous recording of several photomovement parameters of algae as test-functions during biomonitoring is proposed. Green alga Dunaliella viridis Teod. was used as the test- object for the estimation of different heavy metals. The quantitative changes of photomovement parameters as a criterion of toxicity were determined by means of the vectorial method of biomonitoring.

  11. Comments on the Manuscript, "Biodiesel Production from Freshwater Algae"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recent publication (Vijayaragahavan, K.; Hemanathan, K., Biodiesel from freshwater algae, Energy Fuels, 2009, 23(11):5448-5453) on fuel production from algae is evaluated. It is discussed herein that the fuel discussed in that paper is not biodiesel, rather it probably consists of hydrocarbons. ...

  12. Plants as Bio-monitor Agents: Foliar Deposition of Be-7, Pb-210, K-40 and Cs-137

    SciTech Connect

    Freitas, Antonio Carlos de; Brito, Lavinia C.; Tanizaki, Kenny F.; Lima, Rafaela; Paschoa, Anselmo S.; Franco, Marcia

    2008-08-07

    Leaves of Eremanthus crotonoides, Allagoptera arenaria, Byrsonima sericea, Tibouchina sp, Tocoyena bullata and Clusia hilariana were collected under the same climatic in an area of restinga in the Northeast of the State of Rio de Janeiro, Brazil. The activity concentrations of selected radionuclides in the leaves samples were determined. The results obtained have shown a high concentration of {sup 7}Be and {sup 40}K in E. crotonoides, {sup 210}Pb in T. bullata and {sup 137}Cs in Tibouchina sp. The high activity concentration of {sup 7}Be in E. crotonoides can be explained by the presence of trichomes in the leaves. E. crotonoides and T. bullata reveal high foliar deposition of {sup 7}Be and {sup 210}Pb, respectively, thus these species can be used as bio-monitors to evaluate the concentration and dispersion of radionuclides in environmental studies.

  13. Impact of the vaginal applicator and dummy pellets on the dosimetry parameters of Cs-137 brachytherapy source.

    PubMed

    Sina, Sedigheh; Faghihi, Reza; Meigooni, Ali S; Mehdizadeh, Simin; Mosleh Shirazi, M Amin; Zehtabian, Mehdi

    2011-01-01

    In this study, dose rate distribution around a spherical 137Cs pellet source, from a low-dose-rate (LDR) Selectron remote afterloading system used in gynecological brachytherapy, has been determined using experimental and Monte Carlo simulation techniques. Monte Carlo simulations were performed using MCNP4C code, for a single pellet source in water medium and Plexiglas, and measurements were performed in Plexiglas phantom material using LiF TLD chips. Absolute dose rate distribution and the dosimetric parameters, such as dose rate constant, radial dose functions, and anisotropy functions, were obtained for a single pellet source. In order to investigate the effect of the applicator and surrounding pellets on dosimetric parameters of the source, the simulations were repeated for six different arrangements with a single active source and five non-active pellets inside central metallic tubing of a vaginal cylindrical applicator. In commercial treatment planning systems (TPS), the attenuation effects of the applicator and inactive spacers on total dose are neglected. The results indicate that this effect could lead to overestimation of the calculated F(r,θ), by up to 7% along the longitudinal axis of the applicator, especially beyond the applicator tip. According to the results obtained in this study, in a real situation in treatment of patients using cylindrical vaginal applicator and using several active pellets, there will be a large discrepancy between the result of superposition and Monte Carlo simulations. PMID:21844861

  14. Use of charcoals and broiler litter biochar for removal of radioactive cesium (Cs-134 plus Cs-137) from contaminated water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  15. Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall

    SciTech Connect

    Murphy, J.M.; Mason, C.F.V.; Boak, J.M.; Longmire, P.A.

    1996-04-01

    Technical Area-21 (TA-21) of Los Alamos National Laboratory (LANL) is on a mesa bordered by two canyons DP Canyon and Los Alamos (LA) Canyon. DP Canyon is a small semiarid watershed with a well defined channel system where the stream flow is ephemeral. TA-21 has had a complex history of waste disposal as research to determine the chemical and metallurgical properties of nuclear materials occurred here from 1945-1978. Due to these operations, the TA-21 mesa top and bordering canyons have been monitored and characterized by the LANL Environmental Restoration Program. Results identify radionuclide values at outfall. 21-011 (k) which exceed Screening Action Levels, and points along DP Canyon which exceed regional background levels. The radiocontaminants considered in this study are strontium-90, cesium-137, and plutonium-239. This research examines sediment transport and speciation of radionuclide contaminant migration from a source term named SWMU 21-011 (k) down DP Canyon. Three dimensional surface plots of data from 1977-1994 are used to portray the transport and redistribution of radioactive contaminants in an alluvial stream channel. An overall decrease in contamination concentration since 1983 has been observed which could be due to more stringent laboratory controls and also to the removal of main plutonium processing laboratories to another site.

  16. Algae Farming in Low Earth Orbit: Past Present and Future

    NASA Astrophysics Data System (ADS)

    Morrison, N.

    Algal strains used as a production engine represent a novel example of living mechanical systems with tremendous potential for applications in space. Algae use photosynthesis to create lipids, glycerin, and biomass, with different strains of algae producing different oils. Algae can be grown to produce many types of oils, with low, medium or long hydrocarbon chain lengths. This article examines the history of algae research, as well as its value to astronauts as both a food supplement and as an oxygen production and carbon sequester engine. Consideration is given to ways algae is currently being used and tested in space, followed by a look forward envisioning dynamic living technological systems that can help to sustain our race as we travel the void between stars.

  17. Cryoalgotox: Use of cryopreserved alga in a semistatic microplate test

    SciTech Connect

    Benhra, A.; Radetski, C.M.; Ferard, J.F.

    1997-03-01

    Use of cryopreserved alga Selenastrum capricornutum has been evaluated as a simple and cost-efficient procedure in a new semistatic algal ecotoxicity test. Experiments have been conducted to compare performance criteria of this method, named Cryoalgotox, versus the classic microplate test using fresh algae. Cryoalgotox 72-h 50% effective concentrations (EC50s) determined with Cd{sup 2+}, Cu{sup 2+}, Cr{sup 6+}, and atrazine were more sensitive, repeatable (low coefficients of variation), and reproducible (low time effect) than the results obtained with the classical microplate tests. The effect of storage time at {minus}80 C on the sensitivity of the algae was assessed using cadmium as a toxic reference; it was shown that algae stored at {minus}80 C over a 3-month period gave comparable toxicity results to those found with fresh algae.

  18. Comparative Studies on Plastoquinones. IV. Plastoquinones in Algae

    PubMed Central

    Sun, Elena; Barr, Rita; Crane, F. L.

    1968-01-01

    Plastoquinones A and C have been found in all classes of algae, including representatives of greens, yellow-greens, blue-greens, reds, browns and the flagellate, Euglena. Plastoquinone C from red and brown algae can be separated into 6 different types. An additional plastoquinone C has been found in Gigartina and Rhydomela. From chromatographic evidence this may be equivalent to plastoquinone Co, a C type with a hydroxyl group on the first isoprene unit of the terpenoid sidechain of this substituted benzo-quinone. The ubiquinone, vitamin K and α-tocopherylquinone content of several algae is also reported. The presence of plastoquinone A in all green plants and many algae indicates that it may be a functional element in photosynthesis. Our study shows that plastoquinone C is more regularly present in algae than has been previously shown. PMID:16656993

  19. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter. PMID:12868282

  20. Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation.

    PubMed

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Ma, Yiwei; Chen, Paul; Zheng, Hongli; Doan, Yen T T; Liu, Hui; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Ruan, Roger

    2016-02-01

    This study demonstrated that the limiting factor to algae growth on dairy wastewater was the ammonia nitrogen deficiency. Dairy wastewaters were mixed with a slaughterhouse wastewater that has much higher ammonia nitrogen content. The results showed the mixing wastewaters improved the nutrient profiles and biomass yield at low cost. Algae grown on mixed wastewaters contained high protein (55.98-66.91%) and oil content (19.10-20.81%) and can be exploited to produce animal feed and biofuel. Furthermore, algae grown on mixed wastewater significantly reduced nutrient contents remained in the wastewater after treatment. By mitigating limiting factor to algae growth on dairy wastewaters, the key issue of low biomass yield of algae grown on dairy wastewaters was resolved and the wastewater nutrient removal efficiency was significantly improved by this study. PMID:26623940

  1. Chloroplast Phylogenomic Inference of Green Algae Relationships

    PubMed Central

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-01-01

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences. PMID:26846729

  2. An algae-covered alligator rests warily

    NASA Technical Reports Server (NTRS)

    2000-01-01

    An algae-covered alligator keeps a wary eye open as it rests in one of the ponds at Kennedy Space Center. American alligators feed and rest in the water, and lay their eggs in dens they dig into the banks. The young alligators spend their first several weeks in these dens. The Center shares a boundary with the Merritt Island National Wildlife Refuge, which encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  3. Swimming like algae: biomimetic soft artificial cilia.

    PubMed

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  4. Random flow induced by swimming algae

    NASA Astrophysics Data System (ADS)

    Kantsler, Vasily; Rushkin, Ilia; Goldstein, Raymond

    2010-11-01

    In this work we studied the random flow induced in a fluid by the motion of a dilute suspension of the swimming algae Volvox carteri. The fluid velocity in the suspension is a superposition of the flow fields set up by the individual organisms, which in turn have multipole contributions that decay as inverse powers of distance from the organism. Here we show that the conditions under which the central limit theorem guarantees a Gaussian probability distribution function of velocity fluctuations are satisfied when the leading force singularity is a Stokeslet. Deviations from Gaussianity are shown to arise from near-field effects. Comparison is made with the statistical properties of abiotic sedimenting suspensions. The experimental results are supplemented by extensive numerical studies.

  5. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  6. Swimming like algae: biomimetic soft artificial cilia

    PubMed Central

    Sareh, Sina; Rossiter, Jonathan; Conn, Andrew; Drescher, Knut; Goldstein, Raymond E.

    2013-01-01

    Cilia are used effectively in a wide variety of biological systems from fluid transport to thrust generation. Here, we present the design and implementation of artificial cilia, based on a biomimetic planar actuator using soft-smart materials. This actuator is modelled on the cilia movement of the alga Volvox, and represents the cilium as a piecewise constant-curvature robotic actuator that enables the subsequent direct translation of natural articulation into a multi-segment ionic polymer metal composite actuator. It is demonstrated how the combination of optimal segmentation pattern and biologically derived per-segment driving signals reproduce natural ciliary motion. The amenability of the artificial cilia to scaling is also demonstrated through the comparison of the Reynolds number achieved with that of natural cilia. PMID:23097503

  7. PelA Deacetylase Activity Is Required for Pel Polysaccharide Synthesis in Pseudomonas aeruginosa

    PubMed Central

    Colvin, Kelly M.; Alnabelseya, Noor; Baker, Perrin; Whitney, John C.

    2013-01-01

    The Pel polysaccharide serves as an intercellular adhesin for the formation and maintenance of biofilms in the opportunistic pathogen Pseudomonas aeruginosa. Pel biosynthesis requires the products of a seven-gene operon, pelA-pelG, all of which are necessary for Pel-dependent biofilm formation and Pel-related phenotypes. One of the genes, pelA, encodes a protein with a predicted polysaccharide deacetylase domain. In this work, the role of the putative deacetylase domain in Pel production was examined. We first established that purified recombinant PelA hydrolyzed the pseudosubstrate p-nitrophenyl acetate in vitro, and site-specific mutations of predicted deacetylase active-site residues reduced activity greater than 10-fold. Additionally, these mutants were deficient in Pel-dependent biofilm formation and wrinkly colony morphology in vivo. Subcellular fractionation experiments demonstrate that PelA localizes to both the membrane and periplasmic fractions. Finally, antiserum against the Pel polysaccharide was generated, and PelA deacetylase mutants do not produce Pel-reactive material. Taken together, these results suggest that the deacetylase activity of PelA is important for the production of the Pel polysaccharide. PMID:23504011

  8. Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae

    SciTech Connect

    Lohr M.; Schwender J.; Polle, J. E. W.

    2012-04-01

    Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.

  9. Photophysiology and cellular composition of sea ice algae

    SciTech Connect

    Lizotte, M.P.

    1989-01-01

    The productivity of sea ice algae depends on their physiological capabilities and the environmental conditions within various microhabitats. Pack ice is the dominant form of sea ice, but the photosynthetic activity of associated algae has rarely been studied. Biomass and photosynthetic rates of ice algae of the Weddell-Scotia Sea were investigated during autumn and winter, the period when ice cover grows from its minimum to maximum. Biomass-specific photosynthetic rates typically ranged from 0.3 to 3.0 {mu}g C {center dot} {mu}g chl{sup {minus}1} {center dot} h{sup {minus}1} higher than land-fast ice algae but similar to Antarctic phytoplankton. Primary production in the pack ice during winter may be minor compared to annual phytoplankton production, but could represent a vital seasonal contribution to the Antarctic ecosystem. Nutrient supply may limit the productivity of ice algae. In McMurdo Sound, congelation ice algae appeared to be more nutrient deficient than underlying platelet ice algae based on: lower nitrogen:carbon, chlorophyll:carbon, and protein:carbohydrate; and {sup 14}C-photosynthate distribution to proteins and phospholipids was lower, while distribution to polysaccharides and neutral lipids was higher. Depletion of nitrate led to decreased nitrogen:carbon, chlorophyll:carbon, protein:carbohydrate, and {sup 14}C-photosynthate to proteins. Studied were conducted during the spring bloom; therefore, nutrient limitation may only apply to dense ice algal communities. Growth limiting conditions may be alleviated when algae are released into seawater during the seasonal recession of the ice cover. To continue growth, algae must adapt to the variable light field encountered in a mixed water column. Photoadaptation was studied in surface ice communities and in bottom ice communities.

  10. Activated chemical defenses suppress herbivory on freshwater red algae.

    PubMed

    Goodman, Keri M; Hay, Mark E

    2013-04-01

    The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30-60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3-20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant-herbivore interactions and their evolution. PMID:23011851

  11. Photobiological hydrogen production with switchable photosystem-II designer algae

    DOEpatents

    Lee, James Weifu

    2014-02-18

    A process for enhanced photobiological H.sub.2 production using transgenic alga. The process includes inducing exogenous genes in a transgenic alga by manipulating selected environmental factors. In one embodiment inducing production of an exogenous gene uncouples H.sub.2 production from existing mechanisms that would downregulate H.sub.2 production in the absence of the exogenous gene. In other embodiments inducing an exogenous gene triggers a cascade of metabolic changes that increase H.sub.2 production. In some embodiments the transgenic alga are rendered non-regenerative by inducing exogenous transgenes for proton channel polypeptides that are targeted to specific algal membranes.

  12. 21 CFR 73.275 - Dried algae meal.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Uses and restrictions. The color additive dried algae meal may be safely used in chicken feed in... color of chicken skin and eggs. (2) The quantity of the color additive incorporated in the feed is...

  13. The plastid genome of the red alga Laurencia.

    PubMed

    Verbruggen, Heroen; Costa, Joana F

    2015-06-01

    We present the 174,935 nt long plastid genome of the red alga Laurencia sp. JFC0032. It is the third plastid genome characterized for the largest order of red algae (Ceramiales). The circular-mapping plastid genome is small compared to most florideophyte red algae, and our comparisons show a trend toward smaller plastid genome sizes in the family Rhodomelaceae, independent from a similar trend in Cyanidiophyceae. The Laurencia genome is densely packed with 200 annotated protein-coding genes (188 widely conserved, 3 open reading frames shared with other red algae and 9 hypothetical coding regions). It has 29 tRNAs, a single-copy ribosomal RNA cistron, a tmRNA, and the RNase P RNA. PMID:26986672

  14. Harmful algae blooms removal from fresh water with modified vermiculite.

    PubMed

    Miao, Chunguang; Tang, Yi; Zhang, Hong; Wu, Zhengyan; Wang, Xiangqin

    2014-01-01

    Vermiculite and vermiculite modified with hydrochloric acid were investigated to evaluate their flocculation efficiencies in freshwater containing harmful algae blooms (HABs) (Microcystis aeruginosa). Scanning electron microscope, Fourier transform infrared spectroscopy, X-ray diffraction, converted fluorescence microscope, plasma-atomic emission spectrometry, and Zetasizer were used to study the flocculation mechanism of modified vermiculite. It was found that the vermiculite modified with hydrochloric acid could coagulate algae cells through charge neutralization, chemical bridging, and netting effect. The experimental results show that the efficiency of flocculation can be notably improved by modified vermiculite. Ninety-eight per cent of algae cells in algae solution could be removed within 10 min after the addition ofmodified vermiculite clay. The method that removal of HABs with modified vermiculite is economical with high efficiency, and more research is needed to assess their ecological impacts before using in practical application. PMID:24600873

  15. CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE

    EPA Science Inventory

    Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...

  16. EXTRACTION OF SUGARS FROM ALGAE FOR DIRECT CONVERSION TO BUTANOL

    EPA Science Inventory

    We will have a complete full scale design at the end of this project including algae growth and butanol production. Further, the group will have a working prototype for display at the National Mall.

  17. Colourful Cultures: Classroom Experiments with the Unicellular Alga Haematococcus pluvialis.

    ERIC Educational Resources Information Center

    Delpech, Roger

    2001-01-01

    Describes an investigation into the photosynthetic potential of the different developmental stages of the green unicellular alga Haematococcus pluvialis. Reviews the biotechnological applications of astaxanthin, the red pigment which can be extracted from Haematococcus pluvialis. (Author/MM)

  18. [Parameter determination of algae growth based on ecological tank experiment].

    PubMed

    Pang, Yong; Ding, Ling; Gao, Guang

    2005-05-01

    A dynamic simulation experiment of algae in an ecological tank was performed at the Taihu Laboratory for Lake Ecosystem Research. During the experiment, water from Taihu Lake was infused into the ecological tank and samples were taken continually to observe algae growth under varying conditions, such as temperature, sunlight and nutrients. Based on the experiment, an algae growth model, considering nitrogen and phosphorus cycle, was developed by using the advanced PHREEQC model. After that, a detailed calibration and validation of parameters in the model were done on the basis of experimental results. The least square method was used to determine the optimal set of parameters. The calculated values of algae and nutrient concentrations show fairly satisfying fittness with measured data. PMID:16124474

  19. ENDOTOXINS, ALGAE AND 'LIMULUS' AMOEBOCYTE LYSATE TEST IN DRINKING WATER

    EPA Science Inventory

    Field and laboratory studies were conducted to determine the distribution of algae and bacteria, and investigate sources of endotoxins (lipopolysaccharides) in drinking water. The field survey was performed on five drinking water systems located in Allegheny County, Pennsylvania ...

  20. Application of synthetic biology in cyanobacteria and algae

    PubMed Central

    Wang, Bo; Wang, Jiangxin; Zhang, Weiwen; Meldrum, Deirdre R.

    2012-01-01

    Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed. PMID:23049529

  1. ALGAE AND CRUSTACEANS AS INDICATORS OF BIOACTIVITY OF INDUSTRIAL WASTES

    EPA Science Inventory

    Freshwater (Selenastrum capricornutum) and estuarine (Skeketonema costatum) algae were exposed to liquid wastes from 10 industrial sites in laboratory bioassays. All wastes affected algal growth either by stimulation or by stimulation at low concentrations and inhibition at high ...

  2. Algae Reefs in Shark Bay, Western Australia, Australia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Numerous algae reefs are seen in Shark Bay, Western Australia, Australia (26.0S, 113.5E) especially in the southern portions of the bay. The south end is more saline because tidal flow in and out of the bay is restricted by sediment deposited at the north and central end of the bay opposite the mouth of the Wooramel River. This extremely arid region produces little sediment runoff so that the waters are very clear, saline and rich in algae.

  3. Photobiological hydrogen production in green algae and photosynthetic bacteria

    SciTech Connect

    Greenbaum, E.

    1986-01-01

    We have shown that, under appropriate physiological conditions, certain freshwater and marine green algae are capable of splitting water to molecular hydrogen and oxygen in a sustained steady-state reaction. In these algae, the gaseous-fuel-producing reaction can be driven by light throughout the visible portion of the solar emission spectrum, including the long wavelength (red) 700-nm region. No external energy sources are required.

  4. Algae culture for cattle feed and water purification. Final report

    SciTech Connect

    Varani, F.T.; Schellenbach, S.; Veatch, M.; Grover, P.; Benemann, J.

    1980-05-16

    The feasibility of algae growth on centrate from anaerobic digester effluent and the refeed of both effluent solids and the algae to feedlot cattle were investigated. The digester was operated with dirt feedlot manure. The study serves as a supplement for the work to design a utility sized digester for the City of Lamar to convert local feedlot manure into a fuel gas. The biogas produced would power the electrical generation plant already in service. Previous studies have established techniques of digester operation and the nutritional value for effluent solids as fed to cattle. The inclusion of a single-strain of algae, Chlorella pyrenidosa in the process was evaluated here for its capability (1) to be grown in both open and closed ponds of the discharge water from the solids separation part of the process, (2) to purify the discharge water, and (3) to act as a growth stimulant for cattle feed consumption and conversion when fed at a rate of 6 grams per head per day. Although it was found that the algae could be cultured and grown on the discharge water in the laboratory, the study was unable to show that algae could accomplish the other objectives successfully. However, the study yielded supplementary information useful to the overall process design of the utility plant. This was (1) measurement of undried digester solids fed to cattle in a silage finishing ration (without algae) at an economic value of $74.99 per dry ton based on nutritional qualities, (2) development of a centrate treatment system to decolorize and disinfect centrate to allow optimum algae growth, and (3) information on ionic and mass balances for the digestion system. It is the recommendation of this study that algae not be used in the process in the Lamar bioconversion plant.

  5. Study on algae removal by immobilized biosystem on sponge

    NASA Astrophysics Data System (ADS)

    Pei, Haiyan; Hu, Wenrong

    2006-10-01

    In this study, sponges were used to immobilize domesticated sludge microbes in a limited space, forming an immobilized biosystem capable of algae and microcystins removal. The removal effects on algae, microcystins and UV260 of this biosystem and the mechanism of algae removal were studied. The results showed that active sludge from sewage treatment plants was able to remove algae from a eutrophic lake’s water after 7 d of domestication. The removal efficiency for algae, organic matter and microcystins increased when the domesticated sludge was immobilized on sponges. When the hydraulic retention time (HRT) was 5h, the removal rates of algae, microcystins and UV260 were 90%, 94.17% and 84%, respectively. The immobilized biosystem consisted mostly of bacteria, the Ciliata and Sarcodina protozoans and the Rotifer metazoans. Algal decomposition by zoogloea bacteria and preying by microcreatures were the two main modes of algal removal, which occurred in two steps: first, absorption by the zoogloea; second, decomposition by the zoogloea bacteria and the predacity of the microcreatures.

  6. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae.

    PubMed

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-12-21

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  7. Feeding preferences of mesograzers on aquacultured Gracilaria and sympatric algae

    PubMed Central

    Cruz-Rivera, Edwin; Friedlander, Michael

    2011-01-01

    While large grazers can often be excluded effectively from algal aquaculture operations, smaller herbivores such as small crustaceans and gastropods may be more difficult to control. The susceptibility of three Gracilaria species to herbivores was evaluated in multiple-choice experiments with the amphipod Ampithoe ramondi and the crab Acanthonyx lunulatus. Both mesograzers are common along the Mediterranean coast of Israel. When given a choice, the amphipod preferred to consume Gracilaria lemaneiformis significantly more than either G. conferta or G. cornea. The crab, however, consumed equivalent amounts of G. lemaneiformis and G. conferta, but did not consume G. cornea. Organic content of these algae, an important feeding cue for some mesograzers, could not account for these differences. We further assessed the susceptibility of a candidate species for aquaculture, G. lemaneiformis, against local algae, including common epiphytes. When given a choice of four algae, amphipods preferred the green alga Ulva lactuca over Jania rubens. However, consumption of U. lactuca was equivalent to those of G. lemaneiformis and Padina pavonica. In contrast, the crab showed a marked and significant preference for G. lemaneiformis above any of the other three algae offered. Our results suggest that G. cornea is more resistant to herbivory from common mesograzers and that, contrary to expectations, mixed cultures or epiphyte growth on G. lemaneiformis cannot reduce damage to this commercially appealing alga if small herbivores are capable of recruiting into culture ponds. Mixed cultures may be beneficial when culturing other Gracilaria species. PMID:22711945

  8. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  9. Modelling the effect of fluctuating herbicide concentrations on algae growth.

    PubMed

    Copin, Pierre-Jean; Coutu, Sylvain; Chèvre, Nathalie

    2015-03-01

    Herbicide concentrations fluctuate widely in watercourses after crop applications and rain events. The level of concentrations in pulses can exceed the water chronic quality criteria. In the present study, we proposed modelling the effects of successive pulse exposure on algae. The deterministic model proposed is based on two parameters: (i) the typical growth rate of the algae, obtained by monitoring growth rates of several successive batch cultures in growth media, characterizing both the growth of the control and during the recovery periods; (ii) the growth rate of the algae exposed to pulses, determined from a dose-response curve obtained with a standard toxicity test. We focused on the herbicide isoproturon and on the freshwater alga Scenedesmus vacuolatus, and we validated the model prediction based on effect measured during five sequential pulse exposures in laboratory. The comparison between the laboratory and the modelled effects illustrated that the results yielded were consistent, making the model suitable for effect prediction of the herbicide photosystem II inhibitor isoproturon on the alga S. vacuolatus. More generally, modelling showed that both pulse duration and level of concentration play a crucial role. The application of the model to a real case demonstrated that both the highest peaks and the low peaks with a long duration affect principally the cell density inhibition of the alga S. vacuolatus. It is therefore essential to detect these characteristic pulses when monitoring of herbicide concentrations are conducted in rivers. PMID:25499055

  10. Extraction of mercury from ground-water using immobilized algae

    SciTech Connect

    Barkley, N.P.

    1991-01-01

    Bio-recovery Systems Inc., conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency's (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to absorb mercury from contaminated groundwater in laboratory studies and pilot-scale field tests. Algae biomass was incorporated in a permeable polymeric matrix. The product, AlgaSORB, packed into absorption columns, exhibited excellent flow characteristics, and functioned as a 'biological' ion exchange resin. A sequence of eleven laboratory tests demonstrated the ability of the product to absorb mercury from groundwater that contained high levels of total dissolved solids and hard water components. However, use of a single AlgaSORB preparation yielded non-repeatable results with samples collected at different times of the year. The strategy of extracting the groundwater through two columns containing different times of the year. The strategy of extracting the groundwater through two columns containing different preparations of AlgaSORB was developed and proved successful in laboratory and pilot-scale field tests. Field test results indicate that AlgaSORB could be economically competitive with ion exchange resins for removal of mercury, with the advantage that hardness and other dissolved solids do not appear to compete with heavy metals for binding capacity. (Copyright (c) 1991--Air and Waste Management Association.)

  11. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  12. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  13. Microfluidic one-way streets for algae

    NASA Astrophysics Data System (ADS)

    Dunkel, Jorn; Kantsler, Vasily; Polin, Marco; Goldstein, Raymond E.

    2012-02-01

    Controlling locomotion and transport of microorganisms is a key challenge in the development of future biotechnological applications. Here, we demonstrate the use of optimized microfluidic ratchets to rectify the mean swimming direction in suspensions of the unicellular green alga Chlamydomonas reinhardtii, which is a promising candidate for the photosynthetic production of hydrogen. To assess the potential of microfluidic barriers for the manipulation of algal swimming, we studied first the scattering of individual C. reinhardtii from solid boundaries. High-speed imaging reveals the surprising result that these quasi-spherical ``puller''-type microswimmers primarily interact with surfaces via direct flagellar contact, whereas hydrodynamic effects play a subordinate role. A minimal theoretical model, based on run-and-turn motion and the experimentally measured surface-scattering law, predicts the existence of optimal wedge-shaped ratchets that maximize rectification of initially uniform suspensions. We confirm this prediction in experimental measurements with different geometries. Since the mechano-elastic properties of eukaryotic flagella are conserved across many genera, we expect that our results and methods are applicable to a broad class of biflagellate microorganisms.

  14. Comparative transcriptome analysis of four prymnesiophyte algae.

    PubMed

    Koid, Amy E; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C; Caron, David A; Heidelberg, Karla B

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  15. Comparative Transcriptome Analysis of Four Prymnesiophyte Algae

    PubMed Central

    Koid, Amy E.; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C.; Caron, David A.; Heidelberg, Karla B.

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists. PMID:24926657

  16. Is the Future Really in Algae?

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan

    2011-01-01

    Having just emerged from the warmest decade on record and watching as the oceans acidify, global resources peak, the world's population continues to climb, and nearly half of all known species face extinction by the end of the century. We stand on the threshold of one of the most important transition in human history-the transition from hunting-and-gathering our energy to cultivating sustainable, carbon-neutral, environmentally-friendly energy supplies. Can we "cultivate" enerm without competing with agriculture for land, freshwater, or fertilizer? Can we develop an "ecology of technology" that optimizes our use of limited resources? Is human activity compatible with improved conditions in the world's oceans? Will our ingenuity prevail in time to make a difference for our children and the children of all species? With support from NASA ARMD and the California Energy Commission, a group of dedicated scientists and engineers are working on a project called OMEGA (Offshore Membrane Enclosures for Growing Algae), to provide practical answers to these critical questions and to leave a legacy of hope for the oceans and for the future.

  17. Toxicity of haloacetic acids to freshwater algae.

    PubMed

    Roberts, Jayne F; van Egmond, Roger; Price, Oliver R

    2010-01-01

    Haloacetic acids (HAA), such as trichloroacetic acid (TCA), are commonly occurring by-products from disinfection and bleaching processes using sodium hypochlorite. Currently, the lowest no observed effect concentration (NOEC) for TCA is reported to be 8.7microgL(-1), which was derived from a toxicity study conducted in 1981 on Chlorella pyrenoidosa. The purity of the test material was not documented and it is unknown if other halogenated impurities or co-formulants were present. However, this NOEC is used to derive a predicted no effect concentration, which is used in various regulatory risk assessments. We present a range of algal toxicity studies conducted on five different algal species and two HAAs and observed no toxicity of TCA to C. pyrenoidosa at 115mgL(-1). The most sensitive species to TCA (NOEC, 3mgL(-1)) were Pseudokirchneriella subcapitata and Scenedesmus subspicatus, demonstrating that the toxicity of TCA to algae is over two orders of magnitude less sensitive than previously reported. PMID:19828197

  18. Two-step evolution of endosymbiosis between hydra and algae.

    PubMed

    Ishikawa, Masakazu; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-10-01

    In the Hydra vulgaris group, only 2 of the 25 strains in the collection of the National Institute of Genetics in Japan currently show endosymbiosis with green algae. However, whether the other non-symbiotic strains also have the potential to harbor algae remains unknown. The endosymbiotic potential of non-symbiotic strains that can harbor algae may have been acquired before or during divergence of the strains. With the aim of understanding the evolutionary process of endosymbiosis in the H. vulgaris group, we examined the endosymbiotic potential of non-symbiotic strains of the H. vulgaris group by artificially introducing endosymbiotic algae. We found that 12 of the 23 non-symbiotic strains were able to harbor the algae until reaching the grand-offspring through the asexual reproduction by budding. Moreover, a phylogenetic analysis of mitochondrial genome sequences showed that all the strains with endosymbiotic potential grouped into a single cluster (cluster γ). This cluster contained two strains (J7 and J10) that currently harbor algae; however, these strains were not the closest relatives. These results suggest that evolution of endosymbiosis occurred in two steps; first, endosymbiotic potential was gained once in the ancestor of the cluster γ lineage; second, strains J7 and J10 obtained algae independently after the divergence of the strains. By demonstrating the evolution of the endosymbiotic potential in non-symbiotic H. vulgaris group strains, we have clearly distinguished two evolutionary steps. The step-by-step evolutionary process provides significant insight into the evolution of endosymbiosis in cnidarians. PMID:27404042

  19. [Toxicity of Coptis chinensis Rhizome Extracts to Green Algae].

    PubMed

    Chen, Ya-nan; Yuan, Ling

    2015-05-01

    Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of.fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0.00 (CK), 0.088 (Tl), 0.44 (T2) and 1.76 mg · L(-1) (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general, Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems. PMID:26314112

  20. [Comparison of histone-like proteins from blue-green algae with ribosomal basic proteins of alga and wheat germ histones].

    PubMed

    Gofshteĭn, L V; Iurina, N P; Romashkin, V I; Oparin, A I

    1975-01-01

    Histone-like proteins was found in blue-green alga Anacystis nidulans, which has no nucleus. F2b2, F2a2, F2a1 fractions were found in histone-like algae proteins and no fraction F1. Content of basic amino acids (arginine being prevailing in algae protein) is quite identical in histone-like algae proteins and in wheat germs histones, while the content of acid amino acids is considerably higher in algae. The presence in procaryotic cells of basic proteins similar in a number of properties to histones of higher organisms suggests that these proteins are evolutionary precursors of eucaryotic histones. PMID:813782

  1. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    SciTech Connect

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  2. Anti-Phytopathogenic Activities of Macro-Algae Extracts

    PubMed Central

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  3. Sustainability of algae derived biodiesel: a mass balance approach.

    PubMed

    Pfromm, Peter H; Amanor-Boadu, Vincent; Nelson, Richard

    2011-01-01

    A rigorous chemical engineering mass balance/unit operations approach is applied here to bio-diesel from algae mass culture. An equivalent of 50,000,000 gallons per year (0.006002 m3/s) of petroleum-based Number 2 fuel oil (US, diesel for compression-ignition engines, about 0.1% of annual US consumption) from oleaginous algae is the target. Methyl algaeate and ethyl algaeate diesel can according to this analysis conceptually be produced largely in a technologically sustainable way albeit at a lower available diesel yield. About 11 square miles of algae ponds would be needed with optimistic assumptions of 50 g biomass yield per day and m2 pond area. CO2 to foster algae growth should be supplied from a sustainable source such as a biomass-based ethanol production. Reliance on fossil-based CO2 from power plants or fertilizer production renders algae diesel non-sustainable in the long term. PMID:20933402

  4. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus. PMID:26679972

  5. Anti-phytopathogenic activities of macro-algae extracts.

    PubMed

    Jiménez, Edra; Dorta, Fernando; Medina, Cristian; Ramírez, Alberto; Ramírez, Ingrid; Peña-Cortés, Hugo

    2011-01-01

    Aqueous and ethanolic extracts obtained from nine Chilean marine macro-algae collected at different seasons were examined in vitro and in vivo for properties that reduce the growth of plant pathogens or decrease the injury severity of plant foliar tissues following pathogen infection. Particular crude aqueous or organic extracts showed effects on the growth of pathogenic bacteria whereas others displayed important effects against pathogenic fungi or viruses, either by inhibiting fungal mycelia growth or by reducing the disease symptoms in leaves caused by pathogen challenge. Organic extracts obtained from the brown-alga Lessonia trabeculata inhibited bacterial growth and reduced both the number and size of the necrotic lesion in tomato leaves following infection with Botrytis cinerea. Aqueous and ethanolic extracts from the red-alga Gracillaria chilensis prevent the growth of Phytophthora cinnamomi, showing a response which depends on doses and collecting-time. Similarly, aqueous and ethanolic extracts from the brown-alga Durvillaea antarctica were able to diminish the damage caused by tobacco mosaic virus (TMV) in tobacco leaves, and the aqueous procedure is, in addition, more effective and seasonally independent. These results suggest that macro-algae contain compounds with different chemical properties which could be considered for controlling specific plant pathogens. PMID:21673886

  6. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  7. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  8. Influence of algae on photolysis rates of chemicals in water

    SciTech Connect

    Zepp, R.G.; Schlotzhauer, P.F.

    1983-08-01

    Sunlight-induced algal transformations of 22 nonionic organic chemicals were studied in order to provide kinetic results and equations concerning the influence of algae on the behavior of pollutants in freshwater environments. Screening studies indicated that green and blue-green algae, at concentrations of 1-10 mg of chlorophyll a/L, accelerate photoreaction of certain polycylic aromatic hydrocarbons, organophosphorus compounds, and anilines in water. The rate of change in aniline concentration, (P), in the aniline-Chlamydomonas photoreaction can be described by the following expression: rate = A(1 + B/(P))-1. At low substrate concentrations, the reaction rate is first order with respect to both algae and substrate concentration. Methyl parathion and parathion photoreacted 390 times more rapidly when sorbed by algae than in distilled water, and aniline and m-toluidine reacted over 12000 times faster, indicating that light-induced algal transformations of certain pollutants may be significant. Other results indicated that reaction rates are unaffected by heat-killing the algae. 27 references

  9. Application of algae-biosensor for environmental monitoring.

    PubMed

    Umar, Lazuardi; Alexander, Frank A; Wiest, Joachim

    2015-08-01

    Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab (IMOLA) is presented. This measurement used two IMOLA systems for measurement and reference simultaneously to verify changes due to pollution inside the measurement system. The IMOLA includes light emitting diodes to stimulate photosynthesis of the living algae immobilized on a biochip containing a dissolved oxygen microsensor. A fluid system is used to transport algae culture medium in a stop and go mode; 600s ON, 300s OFF, while the oxygen concentration of the water probe is measured. When the pump stops, the increase in dissolved oxygen concentration due to photosynthesis is detected. In case of a pollutant being transported toward the algae, this can be detected by monitoring the photosynthetic activity. Monitoring pollution is shown by adding emulsion of 0,5mL of Indonesian crude palm oil and 10mL algae medium to the water probe in the biosensor. PMID:26737928

  10. Algae-bacteria interactions: Evolution, ecology and emerging applications.

    PubMed

    Ramanan, Rishiram; Kim, Byung-Hyuk; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2016-01-01

    Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications. PMID:26657897

  11. Mg-lattice associations in red coralline algae

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons ( L. glaciale & P. calcareum) and thallus areas ( P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  12. Mg-lattice associations in red coralline algae

    NASA Astrophysics Data System (ADS)

    Kamenos, N. A.; Cusack, M.,; Huthwelker, T.; Lagarde, P.; Scheibling, R. E.

    2009-04-01

    Recent investigations have shown red coralline algae to record ambient temperature in their calcite skeletons. Temperature recorded by variation in Mg concentrations within algal growth bands has sub-annual resolution and high accuracy. The conversion of Mg concentration to temperature is based on the assumption of Ca replacement by Mg within the algal calcite skeleton at higher temperatures. While Mg-temperature relationships in coralline algae have been calibrated for some species, the location of Mg within the calcite lattice remains unknown. Critically, if Mg is not a lattice component but associated with organic components this could lead to erroneous temperature records. Before coralline algae are used in large scale climate reconstructions it is therefore important to determine the location of Mg. Synchrotron Mg-X-ray absorbance near edge structure (XANES) indicates that Mg is associated with the calcite lattice in Lithothamnion glaciale (contemporary free-living, contemporary encrusting and sub-fossil free-living) and Phymatolithon calcareum (contemporary free-living) coralline algae. Mg is deposited within the calcite lattice in all seasons (L. glaciale & P. calcareum) and thallus areas (P. calcareum). These results suggest L. glaciale and P. calcareum are robust Mg-palaeotemperature proxies. We suggest that similar confirmation be obtained for Mg associations in other species of red coralline algae aiding our understanding of their role in climate reconstruction at large spatial scales.

  13. Benefits of using algae as natural sources of functional ingredients.

    PubMed

    Ibañez, Elena; Cifuentes, Alejandro

    2013-03-15

    Algae have been suggested as a potential source of bioactive compounds to be used in the food and pharmaceutical industries. With the strong development of functional foods as a method to improve or maintain health, the exploration of new compounds with real health effects is now an intense field of research. The potential use of algae as source of functional food ingredients, such as lipids, proteins, polysaccharides, phenolics, carotenoids, etc., is presented, together with the different possibilities of improving valuable metabolites production either using the tools and the knowledge provided by marine biotechnology or improving the different factors involved in the production on a large scale of such metabolites. The bio-refinery concept is also presented as a way to improve the efficient use of algae biomass while favouring process sustainability. PMID:23339029

  14. Importance of algae as a potential source of biofuel.

    PubMed

    Singh, A K; Singh, M P

    2014-01-01

    Algae have a great potential source of biofuels and also have unique importance to reduce gaseous emissions, greenhouse gases, climatic changes, global warming receding of glaciers, rising sea levels and loss of biodiversity. The microalgae, like Scenedesmus obliquus, Neochloris oleabundans, Nannochloropsis sp., Chlorella emersonii, and Dunaliella tertiolecta have high oil content. Among the known algae, Scenedesmus obliquus is one of the most potential sources for biodiesel as it has adequate fatty acid (linolenic acid) and other polyunsaturated fatty acids. Bio—ethanol is already in the market of United States of America and Europe as an additive in gasoline. Bio—hydrogen is the cleanest biofuel and extensive efforts are going on to bring it to market at economical price. This review highlights recent development and progress in the field of algae as a potential source of biofuel. PMID:25535720

  15. [Immunostimulating activity of the lipopolysaccharides of blue-green algae].

    PubMed

    Besednova, N N; Smolina, T P; Mikheĭskaia, L V; Ovodova, R G

    1979-12-01

    The whole cells of blue-gree algae and lipopolysaccharides isolated from these cells were shown to stimulate the production of macro-(mainly) and microglobulin antibodies in rabbits. The macro- and microphage indices in rabbits increased significantly after the injection of LPS isolated from blue-green algae 24--48 hours before infecting the animals with a virulent Y. pseudotuberculosis strain. Besides, the inhibiting action of this strain on the migration of phagocytes to the site of infection was abolished immediately after the injection. The use of the indirect hemagglutination test allowed to prove the absence of close antigenic interrelations between blue-green algae and the following organisms: Spirulina platensis, Microcystis aeruginosa, Phormidium africanum and P. uncinatum. PMID:117655

  16. Extremophilic micro-algae and their potential contribution in biotechnology.

    PubMed

    Varshney, Prachi; Mikulic, Paulina; Vonshak, Avigad; Beardall, John; Wangikar, Pramod P

    2015-05-01

    Micro-algae have potential as sustainable sources of energy and products and alternative mode of agriculture. However, their mass cultivation is challenging due to low survival under harsh outdoor conditions and competition from other, undesired, species. Extremophilic micro-algae have a role to play by virtue of their ability to grow under acidic or alkaline pH, high temperature, light, CO2 level and metal concentration. In this review, we provide several examples of potential biotechnological applications of extremophilic micro-algae and the ranges of tolerated extremes. We also discuss the adaptive mechanisms of tolerance to these extremes. Analysis of phylogenetic relationship of the reported extremophiles suggests certain groups of the Kingdom Protista to be more tolerant to extremophilic conditions than other taxa. While extremophilic microalgae are beginning to be explored, much needs to be done in terms of the physiology, molecular biology, metabolic engineering and outdoor cultivation trials before their true potential is realized. PMID:25443670

  17. Algae from the arid southwestern United States: an annotated bibliography

    SciTech Connect

    Thomas, W.H.; Gaines, S.R.

    1983-06-01

    Desert algae are attractive biomass producers for capturing solar energy through photosynthesis of organic matter. They are probably capable of higher yields and efficiencies of light utilization than higher plants, and are already adapted to extremes of sunlight intensity, salinity and temperature such as are found in the desert. This report consists of an annotated bibliography of the literature on algae from the arid southwestern United States. It was prepared in anticipation of efforts to isolate desert algae and study their yields in the laboratory. These steps are necessary prior to setting up outdoor algal culture ponds. Desert areas are attractive for such applications because land, sunlight, and, to some extent, water resources are abundant there. References are sorted by state.

  18. Designer proton-channel transgenic algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  19. Preparation of 4-arm star PELA and its encapsulation of rotavirus for drug delivery.

    PubMed

    Qingcong, Li; Xiaoxia, Pan; Hongli, Li; Minglong, Yuan

    2015-08-01

    A relatively high molecular weight of 4-arm star PELA was obtained by ring-opening polymerization of l-lactic acid O-carboxyanhydride with 4-arm-PEG in the presence of DMAP as an initiator. The results via(1)H NMR and (13)C NMR show that the end of the star PELA chain is a hydroxyl group and the central core is a PEG group. Rotavirus (strain SA11) was incorporated into 4-arm star PELA microspheres formulated by the water in oil in water emulsification solvent extraction method. The microspheres produced were spherical, and the mean diameter was 1.34 μm with a narrow size distribution. The drug release profile displayed a low burst release effect of 1.8% on the first day and a sustained release of antigen over 100 days. After the immunization of mice, the microsphere-entrapped RV elicited improved and long-lasting IgA and IgG antibody response in serum detected by ELISA in comparison to the free RV antigen. This study shows that 4-arm-PEG is an effective initiator for the ring-opening polymerization of Lac-OCA by DMAP as an initiator and that the resulting polymer is useful as a delivery system for the rotavirus vaccine. PMID:26073940

  20. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  1. Aragonitic Pennsylvanian phylloid algae from New Mexico: The missing link

    SciTech Connect

    Kirkland, B.L.; Moore, C.H. Jr. ); Dickson, J.A.D. )

    1991-03-01

    Remarkably well-preserved codiacean algae (Eugonophyllum and Anchicodium) retaining original aragonite are present in the Virgilian Holder Formation, Sacramento Mountains, south-central New Mexico. The algae are preserved in a 20-cm-thick packstone between two thick (> 5m) shale beds. Aragonite is preserved as a felt-like mesh of needles in the algal skeletons, in the shell fragments of molluscs, in the walls of sponges, and in botryoidal and isopachous marine cements. The aragonite is confirmed by X-ray diffraction, by visual inspection of pristine aragonite needles with SEM, and by a high content of Sr as revealed by microprobe analysis. The average Sr content of the algae (9,091 ppm, n = 21) is comparable to modern codiaceans. Preservation of internal structure in Eugonophyllum was previously unknown. The medullary (interior) region of the Eugonophyllum thallus is composed of an aragonite felt punctuated by small (20 {mu}m diameter), parallel utricles. As in modern codiaceans, the utricles in the cortical (exterior) region of the thallus increase in diameter and their bulbous tips coalesce to form the outer cortex of the plant. This occurrence provides a key piece of evidence in support of hypotheses concerning the nature and origin of phylloid algal bioherms. Because the internal structure of most fossil phylloid algae is replaced by sparry mosaic calcite, taxonomic classification has been difficult even at the fundamental level of division (phylum). The authors discovery confirms that at least some ancient phylloid algae resembled the modern green algae Halimeda or Udotea, and lends credibility to the suggestion that ancient phylloid algal mounds are analogous to modern Halimeda mounds of the South Pacific.

  2. Algae Biofuels Co-Location Assessment Tool for Canada

    SciTech Connect

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  3. Smallest algae thrive as the Arctic Ocean freshens.

    PubMed

    Li, William K W; McLaughlin, Fiona A; Lovejoy, Connie; Carmack, Eddy C

    2009-10-23

    As climate changes and the upper Arctic Ocean receives more heat and fresh water, it becomes more difficult for mixing processes to deliver nutrients from depth to the surface for phytoplankton growth. Competitive advantage will presumably accrue to small cells because they are more effective in acquiring nutrients and less susceptible to gravitational settling than large cells. Since 2004, we have discerned an increase in the smallest algae and bacteria along with a concomitant decrease in somewhat larger algae. If this trend toward a community of smaller cells is sustained, it may lead to reduced biological production at higher trophic levels. PMID:19900890

  4. Heavy metals in marine algae of the Kuwait coast

    SciTech Connect

    Buo-Olayan, A.H.; Subrahmanyam, M.N.V.

    1996-12-31

    Marine algae are considered as important primary producers in the coastal region. Several marine algal species are being considered as raw material for various economically important products and this has resulted in their increasing demand. Marine algal species also have been suggested to be the indicators of pollution. Keeping in view the importance of marine algal species for direct or indirect human and cattle consumption, it is necessary to monitor the bioaccumulation of certain elements in these species. This study was aimed at establishing the concentration levels of trace metals in marine algae of the Kuwait coast. 26 refs., 1 fig., 3 tabs.

  5. Algae as promising organisms for environment and health

    PubMed Central

    2011-01-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  6. Algae Biofuels Co-Location Assessment Tool for Canada

    Energy Science and Technology Software Center (ESTSC)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated betweenmore » points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.« less

  7. Algae as promising organisms for environment and health.

    PubMed

    Shalaby, Emad A

    2011-09-01

    Algae, like other plants, produce a variety of remarkable compounds collectively referred to as secondary metabolites. They are synthesized by these organisms at the end of the growth phase and/or due to metabolic alterations induced by environmental stress conditions. Carotenoids, phenolic compounds, phycobiliprotein pigments, polysaccharides and unsaturated fatty acids are same of the algal natural products, which were reported to have variable biological activities, including antioxidant activity, anticancer activity, antimicroabial activity against bacteria-virus-algae-fungi, organic fertilizer and bioremediation potentials. PMID:21862867

  8. Chemical composition of the green alga Codium Divaricatum Holmes.

    PubMed

    He, Zhizhou; Zhang, Anjiang; Ding, Lisheng; Lei, Xinxiang; Sun, Jianzhang; Zhang, Lixue

    2010-12-01

    A new sterol, 24-R-stigmasta-4,25-diene-3β,6β-diol (1), along with three known compounds (2-3), was isolated from the green alga Codium divaricatum Holmes, a traditional Chinese medicine, which is efficacious against cancer. All structures were determined by spectroscopic methods and comparison with related known compounds. Single-crystal X-ray crystallography allowed us to confirm the structure of 1. To our knowledge, the compound 1 is reported as the first from natural source, and compounds 2, 4 have not been isolated from green algae before. PMID:20655992

  9. Value of crops: Quantity, quality and cost price. [algae as a nutritional supplement

    NASA Technical Reports Server (NTRS)

    Meyer, C.

    1979-01-01

    Possibilities of using algae as a nutritional supplement are examined. The nutritional value and protein content of spirulines of blue algae are discussed. A cost analysis of growing them artificially is presented.

  10. [Effectiveness and characteristics of treating algae-laden raw water by stocking silver carp].

    PubMed

    Fan, Zhen-Qiang; Cui, Fu-Yi; Ma, Hua; He, Wen-Jie; Yin, Pei-Jun

    2008-03-01

    To reduce the negative effect of algae on conventional water treatment, a full-scale research of removing algae from algae-laden raw water by stocking filter-feeding silver carp was processed. After the pretreatment in a presedimentation tank with silver carp, the concentration of phytoplankton, the biomass of cyanobacteria and Microsystis flos-aquae in algae-laden raw water with Microsystis flos-aquae its dominant species decreased 61.8%, 76.1% and 78.2% respectively. This effective decrease of algae load on conventional process created favorable conditions for water treatment. Analysis indicates that food habit of silver carp and algae size are two causes of different removal efficiency between cyanobacteria and green algae. The results show that biomanipulation of silver carp is applicable for treating algae-laden raw water in which colonial cyanobacteria is dominant. PMID:18649519

  11. CLOSING THE CARBON LOOP: GROWING ALGAE USING SUSTAINABLE CO2 FROM BIO-WASTE

    EPA Science Inventory

    Record oil prices, poor air quality, and the threat of global warming have resulted in renewed interest in micro algae for its great potential as a biofuels feedstock. However, research is predominantly focused on growing algae with coal flue gas, and extracting the algae oils...

  12. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE WATER

    EPA Science Inventory

    Algae are an important quality component in water bodies. They are photosynthesizing organisms and are the foundation of most aquatic food webs; however, some algae (e.g. blue-green algae) can produce algal toxins. The presence of algal toxins in water bodies has important ...

  13. Where Have All the Algae Gone, or, How Many Kingdoms Are There?

    ERIC Educational Resources Information Center

    Blackwell, Will H.; Powell, Martha J.

    1995-01-01

    Examined 10 introductory college-level, general biology survey textbooks for the coverage of algae to assess the efficacy of coverage. Describes a proposal of seven kingdoms and discusses the disposition of algae among five of these kingdoms. Contends that textbooks should highlight the concept of algae across the five kingdoms. Contains 59…

  14. Relationship between carbohydrate movement and the symbiosis in lichens with green algae.

    PubMed

    Hill, D J; Ahmadjian, V

    1972-09-01

    When isolated in pure culture, four genera of lichen algae were able to produce the polyol which is known to move from the alga to the fungus in lichens with these algae. This conclusion corrects earlier suggestions that the mobile polyol is only formed by the alga in the lichen thallus. Stichococcus produced sorbitol and it is therefore suggested that, in lichens with this alga, sorbitol moves between the symbionts. Hyalococcus and Stichococcus had a similar pattern of incorporation of H(14)CO 3 (-) in the light, suggesting a close relationship between these algae which are only separated now on morphological grounds.The pattern of incorporation of H(14)CO 3 (-) in the light into Cladonia cristatella and its alga (Trebouxia erici) in culture indicates that in the cultured algae more (14)C was incorporated into ethanol insoluble substances and lipids and less into ribitol than in the lichen. The pattern in a joint culture of the alga and the fungus of C. cristatella was approximately intermediate between that of the lichen and the alga. However, only a small amount of (14)C fixed by the alga reached the fungus in the joint culture, and it is therefore suggested that the presence of the fungus without morphological differentiation into a lichen thallus is not sufficient to promote the alga to release carbohydrate. PMID:24481561

  15. Spectral shifting by dyes to enhance algae growth.

    PubMed

    Prokop, A; Quinn, M F; Fekri, M; Murad, M; Ahmed, S A

    1984-11-01

    The photosynthetic growth action spectrum of a green alga at three bands of visible light (blue, orange, and red) at fixed quanta input and under light-limiting conditions was measured in a batch cultivation system. Quantum efficiencies (biomass dry weight increment per quanta absorbed) were better in the yellow-red region than in the blue region. Results served as a basis for the design and optimization of a dye system that would shift the energy of solar radiation to the required wavelength range by absorbing ultraviolet to blue radiation and emitting in the yellow-red, thus enhancing algae growth. Direct incorporation of dyes into the growth medium, although theoretically expected to enhance growth, in fact resulted in dye decomposition, toxicity to algae and consequently in growth inhibition. Indirect application of dyes in a double tubular reactor (algae inside and dye solution outside) demonstrated growth enhancement for certain dyes with high quantum yields and stability, which had suitable absorption/emission spectra for artificial light sources used. The maximum indirect growth enhancement was obtained using rhodamine 6G at a concentration of 3x10(-5)M with tungsten filament lamp sources. PMID:18551655

  16. Decreased abundance of crustose coralline algae due to ocean acidification

    USGS Publications Warehouse

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  17. Biodegradation of phenols by the alga Ochromonas danica.

    PubMed Central

    Semple, K T; Cain, R B

    1996-01-01

    The eukaryotic alga Ochromonas danica, a nutritionally versatile, mixotrophic chrysophyte, grew on phenol as the sole carbon source in axenic culture and removed the phenol carbon from the growth medium. Respirometric studies confirmed that the enzymes involved in phenol catabolism were inducible and that the alga oxidized phenol; the amount of oxygen consumed per mole of oxidized substrate was approximately 65% of the theoretical value. [U-14C]phenol was completely mineralized, with 65% of the 14C label appearing as 14CO2, approximately 15% remaining in the aqueous medium, and the rest accounted for in the biomass. Analysis of the biomass showed that 14C label had been incorporated into the protein, nucleic acid, and lipid fractions; phenol carbon is thus unequivocally assimilated by the alga. Phenol-grown cultures of O. danica converted phenols to the corresponding catechols, which were further metabolized by the meta-cleavage pathway. This surprising result was rigorously confirmed by taking the working stock culture through a variety of procedures to check that it was axenic and repeating the experiments with algal extracts. This is, as far as is known, the first definitive identification of the meta-cleavage pathway for aromatic ring degradation in a eukaryotic alga, though its incidence in other eukaryotes has been (infrequently) suggested. PMID:8919787

  18. Expression and assembly of a fully active antibody in algae

    NASA Astrophysics Data System (ADS)

    Mayfield, Stephen P.; Franklin, Scott E.; Lerner, Richard A.

    2003-01-01

    Although combinatorial antibody libraries have solved the problem of access to large immunological repertoires, efficient production of these complex molecules remains a problem. Here we demonstrate the efficient expression of a unique large single-chain (lsc) antibody in the chloroplast of the unicellular, green alga, Chlamydomonas reinhardtii. We achieved high levels of protein accumulation by synthesizing the lsc gene in chloroplast codon bias and by driving expression of the chimeric gene using either of two C. reinhardtii chloroplast promoters and 5' and 3' RNA elements. This lsc antibody, directed against glycoprotein D of the herpes simplex virus, is produced in a soluble form by the alga and assembles into higher order complexes in vivo. Aside from dimerization by disulfide bond formation, the antibody undergoes no detectable posttranslational modification. We further demonstrate that accumulation of the antibody can be modulated by the specific growth regime used to culture the alga, and by the choice of 5' and 3' elements used to drive expression of the antibody gene. These results demonstrate the utility of alga as an expression platform for recombinant proteins, and describe a new type of single chain antibody containing the entire heavy chain protein, including the Fc domain.

  19. Controlled artificial upwelling in a fjord to combat toxic algae

    NASA Astrophysics Data System (ADS)

    McClimans, T. A.; Hansen, A. H.; Fredheim, A.; Lien, E.; Reitan, K. I.

    2003-04-01

    During the summer, primary production in the surface layers of some fjords depletes the nutrients to the degree that some arts of toxic algae dominate the flora. We describe an experiment employing a bubble curtain to lift significant amounts of nutrient-rich seawater to the light zone and provide an environment in which useful algae can survive. The motivation for the experiment is to provide a local region in which mussels can be cleansed from the effects of toxic algae. Three 100-m long, perforated pipes were suspended at 40 m depth in the Arnafjord, a side arm of the Sognefjord. Large amounts of compressed air were supplied during a period of three weeks. The deeper water mixed with the surface water and flowed from the mixing region at 5 to 15 m depth. Within a few days, the mixture of nutrient-rich water covered most of the inner portion of Arnafjord. Within 10 days, the plankton samples showed that the artificial upwelling produced the desired type of algae and excluded the toxic blooms that were occurring outside the manipulated fjord arm. The project (DETOX) is supported by the Norwegian ministries of Fisheries, Agriculture and Public Administration.

  20. Ecological assessments with algae: a review and synthesis.

    PubMed

    Stevenson, Jan

    2014-06-01

    Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site-specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional-scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management. PMID:26988318

  1. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems. PMID:23876487

  2. Basis for the Resistance of Several Algae to Microbial Decomposition

    PubMed Central

    Gunnison, Douglas; Alexander, Martin

    1975-01-01

    The basis for the resistance of certain algae to microbial decomposition in natural waters was investigated using Pediastrum duplex, Staurastrum sp., and Fischerella muscicola as test organisms. Enzyme preparations previously found to convert susceptible algae into spheroplasts had no such effect on the resistant species, although glucose and galacturonic acid were released from P. duplex walls. Little protein or lipid but considerable carbohydrate was found in the walls of the refractory organisms, but resistance was not correlated with the presence of a unique sugar monomer. A substance present in Staurastrum sp. walls was characterized as lignin or lignin-like on the basis of its extraction characteristics, infrared spectrum, pyrolysis pattern, and content of an aromatic building block. Sporopollenin was found in P. duplex, and cellulose in Staurastrum sp. Cell walls of the algae were fractionated, and the fractions least susceptible to microbial degradation were the sporopollenin of P. duplex, the polyaromatic component of Staurastrum sp., and two F. muscicola fractions containing several sugar monomers. The sporopollenin content of P. duplex, the content of lignin or a related constituent of Staurastrum sp., and the resistance of the algae to microbial attack increased with age. It is suggested that resistance results from the presence of sporopollenin in P. duplex, a lignin-like material in Staurastrum sp., and possibly heteropolysaccharides in F. muscicola. PMID:808166

  3. THE OCCURRENCE OF HORMESIS IN PLANTS AND ALGAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper evaluated the frequency, magnitude and dose/concentration range of hormesis in four species: The aquatic plant Lemna minor, the micro-algae Pseudokirchneriella subcapitata and the two terrestrial plants Tripleurospermum inodorum and Stellaria media exposed to nine herbicides and one fung...

  4. Effect of sonication frequency on the disruption of algae.

    PubMed

    Kurokawa, Masaki; King, Patrick M; Wu, Xiaoge; Joyce, Eadaoin M; Mason, Timothy J; Yamamoto, Ken

    2016-07-01

    In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell's mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption. PMID:26964936

  5. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%). PMID:11014298

  6. Settlement of marine periphytic algae in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Nayar, S.; Goh, B. P. L.; Chou, L. M.

    2005-08-01

    This note describes settlement studies of marine periphytic algae on glass substrata in a tropical estuary in Singapore. The rates of production in terms of 14C radiotracer uptake, biomass in terms of chlorophyll a, community structure and cell abundance were measured from the settled periphytic algae at various depths in the water column and compared with the prevailing hydrographical conditions. Relatively higher periphytic algal settlement was observed at 1 m depth, even though it was not statistically different from other depths. Diatoms such as Skeletonema costatum and Thalassiosira rotula dominated the assemblage, together with the marine cyanobacteria Synechococcus sp. The three settlement parameters viz., periphytic algal production, chlorophyll a and cell counts showed significant differences between the days of settlement, with no significant differences observed for different depths. The periphytic algal community in this study comprised 30 microalgal species, dominated by diatoms (78%), followed by cyanobacteria (19% - primarily Synechococcus sp.), green flagellates (1%), dinoflagellates (1%) and other forms accounting for the remaining 1% of the total cell counts. Correlation studies and principal component analysis (PCA) revealed significant influence of silicate concentrations in the water column with the settlement of periphytic algae in this estuary. Though photoinhibited at the surface, photosynthetically available radiation did not seem to influence the overall settlement of periphytic algae. Diatoms and Synechococcus in the periphytic algal community were influenced by water temperature, PAR, pH and dissolved oxygen as seen in the PCA plots.

  7. A review of heavy metal adsorption by marine algae

    NASA Astrophysics Data System (ADS)

    Jin-Fen, Pan; Rong-Gen, Lin; Li, Ma

    2000-09-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  8. Antibiotic activity of lectins from marine algae against marine vibrios.

    PubMed

    Liao, W-R; Lin, J-Y; Shieh, W-Y; Jeng, W-L; Huang, R

    2003-07-01

    Saline and aqueous ethanol extracts of marine algae and the lectins from two red algal species were assayed for their antibiotic activity against marine vibrios. Experimental studies were also carried out on the influence of environmental factors on such activity, using batch cultures. The results indicated that many of the saline extracts of the algal species were active and that the activity was selective against those vibrios assayed. The algal extracts were active against Vibrio pelagius and the fish pathogen V. vulnificus, but inactive against V. neresis. Algal lectins from Eucheuma serra (ESA) and Galaxaura marginata (GMA) strongly inhibited V. vulnificus but were inactive against the other two vibrios. The antibacterial activity of algal extracts was inhibited by pretreatment with various sugars and glycoprotein. Extracts of the two red algae, E. serra and Pterocladia capillacea, in saline and aqueous ethanol, inhibited markedly the growth rate of V. vulnificus at very low concentrations. Culture results indicated that metabolites active against V. vulnificus were invariably produced in P. capillacea over a wide range of temperature, light intensity, and nutritional conditions. Enhanced antibacterial activity occurred when P. capillacea was grown under higher irradiance, severe nutrient stress and moderate temperature (20 degrees C), reflecting the specific antibiotic characteristics of this alga. The strong antibiotic activity of lectins towards fish pathogenic bacteria reveals one of the important roles played by algal lectins, as well as the potential high economic value of those marine algae assayed for aquaculture and for biomedical purposes. PMID:12884128

  9. INFLUENCE OF ALGAE ON PHOTOLYSIS RATES OF CHEMICALS IN WATER

    EPA Science Inventory

    Sunlight-induced algal transformations of 22 nonionic organic chemicals were studied in order to provide kinetic results and equations concerning the influence of algae on the behavior of pollutants in freshwater environments. Screening studies indicated that green and blue-green...

  10. ASPECTS OF PHOSPHATE UTILIZATION BY BLUE-GREEN ALGAE

    EPA Science Inventory

    The effects of various external phosphate concentrations on physiological and cytological aspects of Plectonema boryanum have been studied. P. boryanum was found to tolerate a wide range of phosphate concentrations, from 1 to 1000 mg of phosphate per liter. Growth of the alga in ...

  11. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis

    PubMed Central

    Paasch, Amber E.; Graham, Linda E.; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  12. Switchable photosystem-II designer algae for photobiological hydrogen production

    DOEpatents

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  13. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  14. Survey of Hydrogenase Activity in Algae: Final Report

    SciTech Connect

    Brand, J. J.

    1982-04-01

    The capacity for hydrogen gas production was examined in nearly 100 strains of Eukaryotic algae. Each strain was assessed for rate of H2 production in darkness, at compensating light intensity and at saturating Tight intensity. Maximum H2 yield on illumination and sensitivity to molecular oxygen were also measured.

  15. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae. PMID:24369344

  16. BIOCONCENTRATION OF A HEXACHLOROBIPHENYL IN GREAT LAKES PLANKTONIC ALGAE

    EPA Science Inventory

    The bioconcentration of 2,4,5,2',4',5'-hexachlorobiphenyl (HCB) was examined in the Great Lakes algae Fragilaria crotonensis, Ankistrodesmus falcatus, and Microcystis sp. The bioconcentration factors varied from species to species, whether they were expressed in terms of cell num...

  17. Effect of tetramethyl lead on freshwater green algae.

    PubMed

    Silverberg, B A; Wong, P T; Chau, Y K

    1977-01-01

    The toxicity of tetramethyl lead (Me4Pb) towards freshwater algae was studied by bubbling biologically generated Me4Pb from one flask containing 5 mg of Pb 1-1 as Me3PbOAc into the culture medium in another flask where a test alga Scenedesmus quadricauda was grown. As Me4Pb is not soluble in water and is volatile, the exposure of an alga to this lead compound was only momentary. It was estimated that less than 0.5 mg of Pb(Me4Pb) had passed through the culture medium. The primary productivity and cell growth (determined by dry weight), however, decreased by 85% and 32% respectively, as compared with the controls without exposure to Me4Pb. Furthermore, cells exposed to Me4Pb tended to clump together and striking alterations in cell fine-structure were observed. An electron microscopic analysis by an energy dispersive spectrometer revealed that Pb ions had penetrated the cell and were deposited within concretion bodies. Similar results were obtained with the green algae Ankistrodesmus falcatus and Chlorella pyrenoidosa. PMID:869587

  18. Complete Chloroplast Genome Sequence of Phagomixotrophic Green Alga Cymbomonas tetramitiformis.

    PubMed

    Satjarak, Anchittha; Paasch, Amber E; Graham, Linda E; Kim, Eunsoo

    2016-01-01

    We report here the complete chloroplast genome sequence of Cymbomonas tetramitiformis strain PLY262, which is a prasinophycean green alga that retains a phagomixotrophic mode of nutrition. The genome is 84,524 bp in length, with a G+C content of 37%, and contains 3 rRNAs, 26 tRNAs, and 76 protein-coding genes. PMID:27313295

  19. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand. PMID:17721788

  20. Effects of sequentially released BMP-2 and BMP-7 from PELA microcapsule-based scaffolds on the bone regeneration

    PubMed Central

    Li, Xialin; Yi, Weihong; Jin, Anmin; Duan, Yang; Min, Shaoxiong

    2015-01-01

    Osteoinductive biomaterials are helpful for the therapy of large bone defects and provide an alternative to autogenous bone and allografts. Recently, multiple growth factors are delivered to mimic the natural process of bone healing in the bone tissue engineering. Herein, we investigated the effects of sequential released bone morphogenetic protein-2 (BMP-2) and bone morphogenetic protein-7 (BMP-7) from polylactide-poly (ethylene glycol)-polylactide (PELA) microcapsule-based scaffolds on the bone regeneration. Through improving the double emulsion/solvent evaporation technique, BMP-7 was encapsulated in PELA microcapsules, to the surface of which BMP-2 was attached. Then, the scaffold (BMP-2/PELA/BMP-7) was fused by these microcapsules with dichloromethane vapor method. In vitro, it sequentially delivered bioactive BMP-2 and BMP-7 and partially imitated the profile of BMPs expression during the fracture healing. To determine the bioactivity of released BMP-2 and BMP-7, alkaline phosphatase (AKP) activity was analyzed in MC3T3-E1 cells. When compared with simple BMP-2 plus BMP-7group and pure PELA group, the AKP activity in BMP-2/PELA/BMP-7 group significantly increased. MTT assay indicated the BMP-loaded PELA scaffold had no adverse effects on cell activity. In addition, the effects of BMP-loaded scaffolds were also investigated in a rat femoral defect model by micro-computed tomographic (mCT) and histological examination. At 4 and 8 weeks post-implantation, BMP-2/PELA/BMP-7 significantly promoted osteogenesis as compared to other groups. The scaffold underwent gradual degradation and replacement by new bones at 8 weeks. Our findings suggest that the sequential release of BMP-2 and BMP-7from PELA microcapsule-based scaffolds is promising for the therapy of bone defects. PMID:26396672

  1. Studies on the hormonal relationships of algae in pure culture : I. The effect of indole-3-acetic acid on the growth of blue-green and green algae.

    PubMed

    Ahmad, M R; Winter, A

    1968-09-01

    Indole-3-acetic acid (IAA) stimulated the growth (increase in dry weight) of the blue-green algae Anacystis nidulans, Chlorogloea fritschii, Phormidium foveolarum, Nostoc muscorum, Anabaena cylindrica, and Tolypothrix tenuis and the green algae Chlorella pyrenoidosa, Ankistrodesmus falcatus and Scenedesmus obliquus growing under as sterile conditions as possible. The optimum concentration varied from species to species; in the blue-green algae it ranged from 10(-5) to 10(-9) M and in the green algae it was 10(-3) M. These results are discussed in the light of present studies in this field. PMID:24522736

  2. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.

    PubMed

    Deng, Lin; Wang, Hongli; Deng, Nansheng

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (lambda = 365 nm, 250 W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0 mg L(-1) and initial algae concentration ranged from ABS(algae) (the absorbency of algae) = 0.025 to ABS(algae) = 0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250 W metal halide lamps was V0 = kC(0)(0.1718)A(algae)(0.5235) (C0 was initial concentration of Cr(VI); A(algae) was initial concentration of algae) under the condition of pH 4. PMID:16839665

  3. Recovery of dilute metal ions by biosorption on river algae and its component

    SciTech Connect

    Fujita, Toyohisa; Kogita, Hiroki; Mamiya, Mitsuo; Yen, W.T.

    1995-12-31

    Green algae taken from an acidic mine drainage and blue-green algae take from an alkaline hot spring stream were collected and tested for their ability to recover or remove dilute metal ions. Experimental results demonstrated that unwashed blue-green algae and washed green algae effectively adsorbed base metals ions and eluted the at pH 1. It was also found that washed and dried algae adsorbed precious metal ions more effectively than unwashed algae. For example, the washed and dried blue-green algae was capable of adsorbing 0.31 kg of gold pre kg of algae. The gold from tetrachloroaurate solution which was adsorbed on washed blue-green algae was found to change to a metallic state following initial metal binding. In the case of a dilute gold complex solution leached with thiourea, only a small amount of gold could be captured by algae. Further experiments were conducted on components of the algae, such as alginic acid, agar, cellulose and chitin and mixtures of these components, in order to determine their contribution to metal adsorption characteristics. However, a mixture of these two components demonstrated both good adsorption and desorption characteristics indicating an interaction between the individual components.

  4. A New Noncalcified Dasycladalean Alga from the Silurian of Wisconsin

    USGS Publications Warehouse

    LoDuca, S.T.; Kluessendorf, Joanne; Mikulic, Donald G.

    2003-01-01

    Noncalcified thalli, consisting of a narrow main axis with numerous branched hairlike laterals in whorls and a subapical array of undivided clavate laterals, from the Silurian (Llandovery) Brandon Bridge Formation of southeastern Wisconsin, constitute the basis for a new genus and species of dasycladalean alga, Heterocladus waukeshaensis. A relationship within the family Triploporellaceae is indicated by the whorled arrangement of the laterals and the absence of gametophores on mature specimens. A compilation of occurrence data suggests that noncalcified dasyclads, as a whole, were more abundant and diverse during the Ordovician and Silurian than at any other time in their history. The heterocladous thallus architecture of this alga adds to a wide range of morphological variation documented among Ordovician and Silurian dasyclads, the sum of which indicates that Dasycladales underwent a significant evolutionary radiation during the early Paleozoic.

  5. Determination of aliphatic hydrocarbons in the alga Himanthalia elongata.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2004-02-01

    The algae considered new foods according to Regulation CE 258/97 need a guarantee of their healthfulness before being in the European market. In this work ten samples of the brown alga Himanthalia elongata have been analyzed with the aim of verifying the absence of aliphatic hydrocarbons, due to the ability of the macroalgae to capture lipophilic organic compounds of the marine water coming from accidental or continuous leaks of raw oil and refined products, which happen each year with the growth of the industrialization and the demand of energy. The fat of the samples were Soxhlet extracted using hexane:dichloromethane (1:1) for 7h. The organic fractions were purified using silica microcolumns. The identification and quantification of the aliphatic hydrocarbons have been carried out using gas chromatography (GC) with flame ionization detector (FID). The total hydrocarbon content was between 14.8 and 40.2 microg g(-1) dry weight. PMID:14759670

  6. Hydrostatic factors affect the gravity responses of algae and roots

    NASA Technical Reports Server (NTRS)

    Staves, Mark P.; Wayne, Randy; Leopold, A. C.

    1991-01-01

    The hypothesis of Wayne et al. (1990) that plant cells perceive gravity by sensing a pressure differential between the top and the bottom of the cell was tested by subjecting rice roots and cells of Caracean algae to external solutions of various densities. It was found that increasing the density of the external medium had a profound effect on the polar ratio (PR, the ratio between velocities of the downwardly and upwardly streaming cytoplasm) of the Caracean algae cells. When these cells were placed in solutions of denser compound, the PR decreased to less than 1, as the density of the external medium became higher than that of the cell; thus, the normal gravity-induced polarity was reversed, indicating that the osmotic pressure of the medium affects the cell's ability to respond to gravity. In rice roots, an increase of the density of the solution inhibited the rate of gravitropism. These results agree with predictions of a hydrostatic model for graviperception.

  7. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  8. Antiallergic benefit of marine algae in medicinal foods.

    PubMed

    Kim, Se-Kwon; Vo, Thanh-Sang; Ngo, Dai-Hung

    2011-01-01

    The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the past two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control, or even cure these disorders with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is essential to isolate novel antiallergic therapeutics from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This contribution focuses on antiallergic agents derived from marine algae and presents an overview of their potential application in medicinal foods for the treatment of allergic disorders. PMID:22054954

  9. Bioremoval of toxic elements with aquatic plants and algae

    SciTech Connect

    Wang, T.C.; Ramesh, G.; Weissman, J.C.; Varadarajan, R.; Benemann, J.R.

    1995-12-31

    Aquatic plants were screened to evaluate their ability to adsorb dissolved metals. The plants screened included those that are naturally immobilized (attached algae and rooted plants) and those that could be easily separated from suspension (filamentous microalgae, macroalgae, and floating plants). Two plants were observed to have high adsorption capabilities for cadmium (Cd) and zinc (Zn) removal: one blue green filamentous alga of the genus Phormidium and one aquatic rooted plant, water milfoil (Myriophyllum spicatum). These plants could also reduce the residual metal concentration to 0.1 mg/L or less. Both plants also exhibited high specific adsorption for other metals (Pb, Ni, and Cu) both individually and in combination. Metal concentrations were analyzed with an atomic absorption spectrophotometer (AAS).

  10. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  11. Biosorption of lead and nickel by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B. . Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  12. Green Algae as Model Organisms for Biological Fluid Dynamics*

    PubMed Central

    Goldstein, Raymond E.

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068

  13. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms.

    PubMed

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. PMID:27054497

  14. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms

    PubMed Central

    Teeling, Hanno; Fuchs, Bernhard M; Bennke, Christin M; Krüger, Karen; Chafee, Meghan; Kappelmann, Lennart; Reintjes, Greta; Waldmann, Jost; Quast, Christian; Glöckner, Frank Oliver; Lucas, Judith; Wichels, Antje; Gerdts, Gunnar; Wiltshire, Karen H; Amann, Rudolf I

    2016-01-01

    A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. We investigated such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. Dense sampling and high-resolution taxonomic analyses allowed the detection of recurring patterns down to the genus level. Metagenome analyses also revealed recurrent patterns at the functional level, in particular with respect to algal polysaccharide degradation genes. We, therefore, hypothesize that even though there is substantial inter-annual variation between spring phytoplankton blooms, the accompanying succession of bacterial clades is largely governed by deterministic principles such as substrate-induced forcing. DOI: http://dx.doi.org/10.7554/eLife.11888.001 PMID:27054497

  15. A preliminary study on automated freshwater algae recognition and classification system

    PubMed Central

    2012-01-01

    Background Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment. This study was carried out to develop a computer-based image processing technique to automatically detect, recognize, and identify algae genera from the divisions Bacillariophyta, Chlorophyta and Cyanobacteria in Putrajaya Lake. Literature shows that most automated analyses and identification of algae images were limited to only one type of algae. Automated identification system for tropical freshwater algae is even non-existent and this study is partly to fill this gap. Results The development of the automated freshwater algae detection system involved image preprocessing, segmentation, feature extraction and classification by using Artificial neural networks (ANN). Image preprocessing was used to improve contrast and remove noise. Image segmentation using canny edge detection algorithm was then carried out on binary image to detect the algae and its boundaries. Feature extraction process was applied to extract specific feature parameters from algae image to obtain some shape and texture features of selected algae such as shape, area, perimeter, minor and major axes, and finally Fourier spectrum with principal component analysis (PCA) was applied to extract some of algae feature texture. Artificial neural network (ANN) is used to classify algae images based on the extracted features. Feed-forward multilayer perceptron network was initialized with back propagation error algorithm, and trained with extracted database features of algae image samples. System's accuracy rate was obtained by comparing the results between the manual and automated classifying methods. The developed system was able to identify 93 images of selected freshwater algae genera from a total of 100 tested images which yielded accuracy rate of 93%. Conclusions This study

  16. Evidence of ancient genome reduction in red algae (Rhodophyta).

    PubMed

    Qiu, Huan; Price, Dana C; Yang, Eun Chan; Yoon, Hwan Su; Bhattacharya, Debashish

    2015-08-01

    Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle. PMID:26986787

  17. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  18. Cytotoxic sterols from the formosan brown alga Turbinaria ornata.

    PubMed

    Sheu, J H; Wang, G H; Sung, P J; Chiu, Y H; Duh, C Y

    1997-12-01

    Two hydroperoxysterols 24-hydroperoxy-24-vinyl-cholesterol (1) and 29-hydroperoxystigmasta-5,24(28)-dien-3beta-ol (2), and fucosterol (3) were isolated from the brown alga Turbinaria ornata (Sargassaceae). Hydroperoxide 2 is a new natural compound and was converted into 29-hydroxystigmasta-5,24 (28)-dien-3beta-ol (4) by reaction with LAH. Sterols 1, 2, and 4 exhibited cytotoxicity against various cancer cell lines. PMID:17252381

  19. Mathematical simulation of photophobic responses in blue-green algae

    SciTech Connect

    Hader, D.P.; Burkart, U.

    1982-01-01

    A computer model is described to simulate photophobic reversal of blue-green algae. The model is based on electrical potential changes within the cells, which are treated as separate compartments. The updating of potentials is accomplished through iterative calculation of recurrence equations, permitting easy programming for computer calculation. The influence of a number of conditions on photophobic reversal has been studied, and the predictions of the model have been verified by experiments with the living organisms.

  20. Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium).

    PubMed

    Hagedorn, M; Carter, V L; Leong, J C; Kleinhans, F W

    2010-04-01

    Coral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained. The focus of this paper was to understand some of the cryo-physiology of the endosymbiotic algae, Symbiodinium, living within three species of Hawaiian coral, Fungia scutaria, Porites compressa and Pocillopora damicornis in Kaneohe Bay, Hawaii. Although cryopreservation of algae is common, the successful cryopreservation of these important coral endosymbionts is not common, and these species are often maintained in live serial cultures within stock centers worldwide. Freshly-extracted Symbiodinium were exposed to cryobiologically appropriate physiological stresses and their viability assessed with a Pulse Amplitude Fluorometer. Stresses included sensitivity to chilling temperatures, osmotic stress, and toxic effects of various concentrations and types of cryoprotectants (i.e., dimethyl sulfoxide, propylene glycol, glycerol and methanol). To determine the water and cryoprotectant permeabilities of Symbiodinium, uptake of radio-labeled glycerol and heavy water (D(2)O) were measured. The three different Symbiodinium subtypes studied demonstrated remarkable similarities in their morphology, sensitivity to cryoprotectants and permeability characteristics; however, they differed greatly in their sensitivity to hypo- and hyposmotic challenges and sensitivity to chilling, suggesting that standard slow freezing cryopreservation may not work well for all Symbiodinium. An appendix describes our H(2)O:D(2)O water exchange experiments and compares the diffusionally determined permeability with the two parameter model osmotic permeability. PMID:19857482

  1. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  2. Algae (Microcystis and Scenedesmus) absorption spectra and its application on Chlorophyll a retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei

    2013-12-01

    Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.

  3. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  4. Viruses of symbiotic Chlorella-like algae isolated from Paramecium bursaria and Hydra viridis

    PubMed Central

    Van Etten, James L.; Meints, Russel H.; Kuczmarski, Daniel; Burbank, Dwight E.; Lee, Kit

    1982-01-01

    We previously reported that isolation of symbiotic Chlorella-like algae from the Florida strain of Hydra viridis induced replication of a virus (designated HVCV-1) in the algae. We now report that isolation of symbiotic Chlorella-like algae from four other sources of green hydra and one source of the protozoan Paramecium bursaria also induced virus synthesis. Algae from one of these hydra contained a virus identical to HVCV-1 (based on its rate of sedimentation, buoyant density, reaction to HVCV-1 antiserum, and DNA restriction fragments) whereas algae from the other three hydra contained another similar, but distinct, virus (designated HVCV-2). The virus from the paramecium algae (designated PBCV-1) was distinct from both HVCV-1 and HVCV-2. The symbiotic algae in the hydra could also be distinguished ultrastructurally. Chloroplasts of both algae that produced HVCV-1 lacked a pyrenoid whereas chloroplasts of the other three symbiotic algae contained pyrenoids. Since all symbiotic eukaryotic algae we have examined have had virus, a potential viral role in symbiosis is suggested. Images PMID:16593198

  5. The effects of graphene oxide on green algae Raphidocelis subcapitata.

    PubMed

    Nogueira, P F M; Nakabayashi, D; Zucolotto, V

    2015-09-01

    Graphene represents a new class of nanomaterials that has attracted great interest due to its unique electrical, thermal, and mechanical properties. Once disposed in the environment, graphene can interact with biological systems and is expected to exhibit toxicological effects. The ecotoxicity of graphene and its derivatives, viz.: graphene oxide (GO) depends on their physicochemical properties, including purity, diameter, length, surface charge, functionalization and aggregation state. In this study we evaluated the effects of graphene oxide (GO) on green algae Raphidocelis subcapitata. The algae were exposed to different concentrations of GO pre-equilibrated for 24h with oligotrophic freshwater medium (20ml) during incubation in a growth chamber under controlled conditions: 120μEm(-2)s(-1) illumination; 12:12h light dark cycle and constant temperature of 22±2°C. Algal growth was monitored daily for 96h by direct cell counting. Reactive oxygen species level (ROS), membrane damage (cell viability) and autofluorescence (chl-a fluorescence) were evaluated using fluorescent staining and further analyzed by flow cytometry. The toxic effects from GO, as observed in algal density and autofluorescence, started at concentrations from 20 and 10μgmL(-1), respectively. Such toxicity is probably the result of ROS generation and membrane damage (cell viability). The shading effect caused by GO agglomeration in culture medium may also contribute to reduce algal density. The results reported here provide knowledge regarding the GO toxicity on green algae, contributing to a better understanding of its environmental behavior and impacts. PMID:26204245

  6. Microwave-enhanced pyrolysis of natural algae from water blooms.

    PubMed

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. PMID:27128164

  7. Measurement of Carbon Dioxide Compensation Points of Freshwater Algae 1

    PubMed Central

    Birmingham, Brendan C.; Colman, Brian

    1979-01-01

    A technique is described for the measurement of total dissolved inorganic carbon by acid release as CO2 followed by its conversion to methane and detection by flame ionization in a modified gas chromatograph. This method was used to determine the dissolved inorganic carbon concentration reached at compensation point when algae were allowed to photosynthesize in a closed system in a buffer at known pH, and the CO2 compensation point was calculated from this concentration. The CO2 compensation points of 16 freshwater algae were measured at acid and alkaline pH in air-saturated medium: at acid pH the CO2 compensation points ranged from 4.8 to 41.5 microliters per liter while at alkaline pH they ranged from 0.2 to 7.2 microliters per liter. Removal of O2 from the medium caused a slight lowering of compensation point at acid pH but had little effect at alkaline pH. These low, O2-insensitive compensation points are characteristic of C4 plants. It is suggested that these low CO2 compensation points are maintained by an active bicarbonate uptake by algae especially at alkaline pH. PMID:16661077

  8. Metabolic engineering of higher plants and algae for isoprenoid production.

    PubMed

    Kempinski, Chase; Jiang, Zuodong; Bell, Stephen; Chappell, Joe

    2015-01-01

    Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering. PMID:25636485

  9. Unveiling privacy: advances in microtomography of coralline algae.

    PubMed

    Torrano-Silva, Beatriz N; Ferreira, Simone Gomes; Oliveira, Mariana C

    2015-05-01

    Marine calcareous algae are widespread in oceans of the world and known for their calcified cell walls and the generation of rhodolith beds that turn sandy bottoms into a complex structured ecosystem with high biodiversity. Rhodoliths are unattached, branching, crustose benthic marine red algae; they provide habitat for a rich variety of marine invertebrates. The resultant excavation is relevant to sediment production, while is common that the fragments or the whole specimens result in vast fossil deposits formed by rich material that can be "mined" for biological and geological data. Accordingly, microtomography (μCT) may enable a detailed investigation of biological and geological signatures preserved within the rhodolith structure in a non-destructive approach that is especially relevant when analyzing herbaria collections or rare samples. Therefore, we prepared coralline algae samples and submitted them to a range of capabilities provided by the SkyScan1176 micro-CT scanner, including reconstruction, virtual slicing, and pinpointing biological and geological signatures. To this end, polychaetes and mollusk shells, or their excavations, coral nucleation, sediment deposits and conceptacles were all observed. Although a similar technique has been applied previously to samples of living rhodoliths in Brazil, we show, for the first time, its successful application to fossil rhodoliths. We also provide a detailed working protocol and discuss the advantages and limitations of the microtomography within the rhodoliths. PMID:25777060

  10. Extraction, Purification, and NMR Analysis of Terpenes from Brown Algae.

    PubMed

    Gaysinski, Marc; Ortalo-Magné, Annick; Thomas, Olivier P; Culioli, Gérald

    2015-01-01

    Algal terpenes constitute a wide and well-documented group of marine natural products with structures differing from their terrestrial plant biosynthetic analogues. Amongst macroalgae, brown seaweeds are considered as one of the richest source of biologically and ecologically relevant terpenoids. These metabolites, mostly encountered in algae of the class Phaeophyceae, are mainly diterpenes and meroditerpenes (metabolites of mixed biogenesis characterized by a toluquinol or a toluquinone nucleus linked to a diterpene moiety).In this chapter, we describe analytical processes commonly employed for the isolation and structural characterization of the main terpenoid constituents obtained from organic extracts of brown algae. The successive steps include (1) extraction of lipidic content from algal samples; (2) purification of terpenes by column chromatography and semi-preparative high-performance liquid chromatography; and (3) structure elucidation of the isolated terpenes by means of 1D and 2D nuclear magnetic resonance (NMR). More precisely, we propose a representative methodology which allows the isolation and structural determination of the monocyclic meroditerpene methoxybifurcarenone (MBFC) from the Mediterranean brown alga Cystoseira amentacea var. stricta. This methodology has a large field of applications and can then be extended to terpenes isolated from other species of the family Sargassaceae. PMID:26108508

  11. Uptake and distribution of technetium in several marine algae

    SciTech Connect

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  12. Phycobilisome Heterogeneity in the Red Alga Porphyra umbilicalis1

    PubMed Central

    Algarra, Patricia; Thomas, Jean-Claude; Mousseau, Anne

    1990-01-01

    Phycobilisomes were isolated from Rhodophyceae brought from the field (Porphyra umbilicalis) or grown in culture under laboratory conditions (Antithamnion glanduliferum). In P. umbilicalis two kinds of well-coupled (ellipsoidal and hemidiscoidal) phycobilisomes were detected, in contrast to A. glanduliferum cultured algae in which only one kind of well-coupled, ellipsoidaltype phycobilisome appeared. The new phycobilisome-type particle detected in P. umbilicalis is characterized by an impoverishment in R-phycoerythrin and by sedimentation at lower density. The comparison between both phycobilisomes of P. umbilicalis allows determination of the presence of one colorless linker polypeptide (30 kilodaltons) associated with R-phycocyanin and allophycocyanin and two (40 and 38 kilodaltons) associated to R-phycoerythrin. The percentage of linker polypeptides associated with this pigment is low in the new phycobilisome-like particle detected. This suggests that part of the R-phycoerythrin is less strongly bound to the phycobilisome than the other pigments. This feature could probably explain the existence of two kinds of phycobilisomes as intermediary steps of phycobilisome organization in algae exposed to rapid changes in environmental factors. In contrast, algae growing in culture and adapted to specific conditions do not present intermediary organization steps. Polypeptide composition and identification are given for this phycobilisome-like particle. Images Figure 4 Figure 5 PMID:16667317

  13. Multicellularity in green algae: upsizing in a walled complex

    PubMed Central

    Domozych, David S.; Domozych, Catherine E.

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes,” uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  14. Distribution of periphytic algae in wetlands (Palm swamps, Cerrado), Brazil.

    PubMed

    Dunck, B; Nogueira, I S; Felisberto, S A

    2013-05-01

    The distribution of periphytic algae communities depends on various factors such as type of substrate, level of disturbance, nutrient availability and light. According to the prediction that impacts of anthropogenic activity provide changes in environmental characteristics, making impacted Palm swamps related to environmental changes such as deforestation and higher loads of nutrients via allochthonous, the hypothesis tested was: impacted Palm swamps have higher richness, density, biomass and biovolume of epiphytic algae. We evaluated the distribution and structure of epiphytic algae communities in 23 Palm swamps of Goiás State under different environmental impacts. The community structure attributes here analyzed were composition, richness, density, biomass and biovolume. This study revealed the importance of the environment on the distribution and structuration of algal communities, relating the higher values of richness, biomass and biovolume with impacted environments. Acidic waters and high concentration of silica were important factors in this study. Altogether 200 taxa were identified, and the zygnemaphycea was the group most representative in richness and biovolume, whereas the diatoms, in density of studied epiphyton. Impacted Palm swamps in agricultural area presented two indicator species, Gomphonema lagenula Kützing and Oedogonium sp, both related to mesotrophic to eutrophic conditions for total nitrogen concentrations of these environments. PMID:23917560

  15. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  16. Treatment efficacy of algae-based sewage treatment plants.

    PubMed

    Mahapatra, Durga Madhab; Chanakya, H N; Ramachandra, T V

    2013-09-01

    Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates. PMID:23404546

  17. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  18. Complete Plastid Genome Sequence of the Brown Alga Undaria pinnatifida

    PubMed Central

    Liu, Tao; Wang, Guoliang; Chi, Shan; Liu, Cui; Wang, Haiyang

    2015-01-01

    In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome. PMID:26426800

  19. Toxic effects of decomposing red algae on littoral organisms

    NASA Astrophysics Data System (ADS)

    Eklund, Britta; Svensson, Andreas P.; Jonsson, Conny; Malm, Torleif

    2005-03-01

    Large masses of filamentous red algae of the genera Polysiphonia, Rhodomela, and Ceramium are regularly washed up on beaches of the central Baltic Sea. As the algal masses start to decay, red coloured effluents leak into the water, and this tinge may be traced several hundred meters off shore. In this study, possible toxic effects of these effluents were tested on littoral organisms from different trophic levels. Effects on fertilisation, germination and juvenile survival of the brown seaweed Fucus vesiculosus were investigated, and mortality tests were performed on the crustaceans Artemia salina and Idotea baltica, as well as on larvae and adults of the fish Pomatoschistus microps. Fucus vesiculosus was the most sensitive species of the tested organisms to the red algal extract. The survival of F. vesiculosus recruits was reduced with 50% (LC50) when exposed to a concentration corresponding to 1.7 g l -1 dw red algae. The lethal concentration for I. baltica, A. salina and P. microps were approximately ten times higher. The toxicity to A. salina was reduced if the algal extract was left to decompose during two weeks but the decline in toxicity was not affected by different light or temperature conditions. This study indicates that the filamentous red algae in the central Baltic Sea may produce and release compounds with negative effects on the littoral ecosystem. The effects may be particularly serious for the key species F. vesiculosus, which reproduce in autumn when filamentous red algal blooms are most severe.

  20. Sulfated phenolic acids from Dasycladales siphonous green algae.

    PubMed

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense. PMID:26188914

  1. Multicellularity in green algae: upsizing in a walled complex.

    PubMed

    Domozych, David S; Domozych, Catherine E

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In "ulvophytes," uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell's signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  2. Origins of multicellular complexity: Volvox and the volvocine algae.

    PubMed

    Herron, Matthew D

    2016-03-01

    The collection of evolutionary transformations known as the 'major transitions' or 'transitions in individuality' resulted in changes in the units of evolution and in the hierarchical structure of cellular life. Volvox and related algae have become an important model system for the major transition from unicellular to multicellular life, which touches on several fundamental questions in evolutionary biology. The Third International Volvox Conference was held at the University of Cambridge in August 2015 to discuss recent advances in the biology and evolution of this group of algae. Here, I highlight the benefits of integrating phylogenetic comparative methods and experimental evolution with detailed studies of developmental genetics in a model system with substantial genetic and genomic resources. I summarize recent research on Volvox and its relatives and comment on its implications for the genomic changes underlying major evolutionary transitions, evolution and development of complex traits, evolution of sex and sexes, evolution of cellular differentiation and the biophysics of motility. Finally, I outline challenges and suggest future directions for research into the biology and evolution of the volvocine algae. PMID:26822195

  3. Photosynthetic responses and accumulation of mesotrione in two freshwater algae.

    PubMed

    Ni, Yan; Lai, Jinhu; Wan, Jinbao; Chen, Lianshui

    2014-01-01

    Mesotrione is a herbicide used for killing annual grasses and broad-leaved weeds in maize. A recent investigation has shown that mesotrione has been detected as an organic contaminant in aquatic environments and may have a negative impact on aquatic organisms. To evaluate the eco-toxicity of mesotrione to algae, experiments focusing on photosynthetic responses and mesotrione accumulation in Microcystis sp. and Scenedesmus quadricauda were carried out. Both algae treated with mesotrione at 0.05-10 mg L(-1) for 7 days reduced the photosynthetic capacity. The fluorescence of chlorophyll a, the maximal PSII activity (Fv/Fm), and the parameters (Ik, α and ETRmax) of rapid light curves (RLCs) in both algae were decreased under mesotrione exposure. The 96 h EC50 values for mesotrione on S. quadricauda and Microcystis sp. were 4.41 and 6.19 mg L(-1), respectively. The latter shows more tolerance to mesotrione. Mesotrione was shown to be readily accumulated by both species. Such uptake of mesotrione led to the rapid removal of mesotrione from the medium. Overall, this study represents the initial comprehensive analyses of Microcystis sp. and S. quadricauda in adaptation to the mesotrione contaminated aquatic ecosystems. PMID:25059419

  4. Towards tradable permits for filamentous green algae pollution.

    PubMed

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. PMID:27155255

  5. Multi-centennial reconstruction of Aleutian climate from coralline algae

    NASA Astrophysics Data System (ADS)

    Williams, B.; Halfar, J.; DeLong, K. L.; Smith, E.; Steneck, R.; Lebednik, P.; Jacob, D. E.; Fietzke, J.; Moore, K.

    2015-12-01

    Long-lived encrusting coralline algae yield robust reconstructions of mid-to-high latitude environmental change from their annually-banded high-magnesium calcite skeleton. The magnesium to calcium ratio measured in their skeleton reflects ambient seawater temperature at the time of formation. Thus, reconstructions from these algae are important to understanding the role of natural modes of climate variability versus that of external carbon dioxide in controlling climate in data sparse regions such as the northern North Pacific Ocean/southern Bering Sea. Here, we reconstruct regional seawater temperature from the skeletons of nine algae specimens from two islands in the Aleutian Archipelago. We find that seawater temperature increased ~1.4°C degrees over the past 350 years. The detrended seawater reconstruction correlates with storminess because storms moving across the North Pacific Ocean bring warmer water to the archipelago. Comparison of the algal seawater temperature reconstruction with instrumental and terrestrial proxy reconstructions reveals that atmospheric teleconnections to North America via the North Pacific storm tracks are not robust before the 20th century. This indicates that North Pacific climate processes inferred from the instrumental records should be cautiously extrapolated when describing earlier non-analogous climates or future climate change.

  6. Controlling harmful algae blooms using aluminum-modified clay.

    PubMed

    Liu, Yang; Cao, Xihua; Yu, Zhiming; Song, Xiuxian; Qiu, Lixia

    2016-02-15

    The performances of aluminum chloride modified clay (AC-MC), aluminum sulfate modified clay (AS-MC) and polyaluminum chloride modified clay (PAC-MC) in the removal of Aureococcus anophagefferens were compared, and the potential mechanisms were analyzed according to the dispersion medium, suspension pH and clay surface charges. The results showed that AC-MC and AS-MC had better efficiencies in removing A.anophagefferens than PAC-MC. The removal mechanisms of the three modified clays varied. At optimal coagulation conditions, the hydrolysates of AC and AS were mainly monomers, and they transformed into Al(OH)3(am) upon their addition to algae culture, with the primary mechanism being sweep flocculation. The PAC mainly hydrolyzed to the polyaluminum compounds, which remained stable when added to the algae culture, and the flocculation mainly occurred through polyaluminum compounds. The suspension pH significantly influenced the aluminum hydrolysate and affected the flocculation between the modified clay and algae cells. PMID:26763322

  7. Sludge-grown algae for culturing aquatic organisms: Part II. Sludge-grown algae as feeds for aquatic organisms

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Hung, K. M.; Chiu, S. T.

    1996-05-01

    This project investigated the feasibility of using sewage sludge to culture microalgae ( Chlorella-HKBU) and their subsequent usage as feeds for rearing different organisms. Part II of the project evaluated the results of applying the sludge-grown algae to feed Oreochromis mossambicus (fish), Macrobrachium hainenese (shrimp), and Moina macrocopa (cladocera). In general, the yields of the cultivated organisms were unsatisfactory when they were fed the sludge-grown algae directly. The body weights of O. mossambicus and M. macrocopa dropped 21% and 37%, respectively, although there was a slight increase (4.4%) in M. hainenese. However, when feeding the algal-fed cladocerans to fish and shrimp, the body weights of the fish and shrimp were increased 7% and 11% accordingly. Protein contents of the cultivated organisms were comparable to the control diet, although they contained a rather high amount of heavy metals. When comparing absolute heavy metal contents in the cultivated organisms, the following order was observed: alga > cladocera > shrimp, fish > sludge extracts. Bioelimination of heavy metals may account for the decreasing heavy metal concentrations in higher trophic organisms.

  8. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment.

    PubMed

    Peng, Shanshan; Colosi, Lisa M

    2016-01-01

    Water resource recovery facilities (WRRFs) are asked to improve both energy efficiency and nutrient removal efficacy. Integration of algaculture offers several potential synergies that could address these goals, including an opportunity to leverage anaerobic digestion at WRRFs. In this study, bench-scale experiments are used to measure methane yield during co-digestion of Scenedesmus dimorphus or mixed WRRF-grown algae with WRRF biosolids. The results indicate that normalized methane yield decreases with increasing algae content in a manner than can be reasonably well fit using linear regression (R(2) = 67%). It is thus possible to predict methane yield for any mixture of algae and biosolids based on the methane yield of the biosolids alone. Using revised methane yields, the energy return on investment of a typical WRRF increases from 0.53 (without algae) to 0.66 (with algae). Thus, algae-based wastewater treatment may hold promise for improving WRRF energy efficiency without compromising effluent quality. PMID:26803024

  9. Endozoic algae in shelled gastropods — a new symbiotic association in coral reefs?

    NASA Astrophysics Data System (ADS)

    Berner, T.; Wishkovsky, A.; Dubinsky, Z.

    1986-10-01

    Live algae were found in the hepatopancreas and gonads of the Red Sea snail Strombus tricornis. These organs are constantly concealed within the upper whorls of the snail's shell. Light penetration was 5 15% of the incident light reaching the shell. Pigment analysis indicated the presence of chlorophyll a, c and peridinin, a composition resembling the Dinoflagellata. Chlorophyll a concentration in the algae was 1.18±0.36 pg chl/cell. 14C assimilation of isolated algae incubated in the light exceeded that of dark controls, demonstrating the photosynthetic activity of the endozoic algae.

  10. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  11. How-to-Do-It: Diatoms: The Ignored Alga in High School Biology.

    ERIC Educational Resources Information Center

    Hungerford, James J.

    1988-01-01

    Provides historical background, descriptions, uses and basis for identification of diatoms. Explains collection, dry-mount cleaning, and preparation procedures of the algae. Cites additional resources. (RT)

  12. Biosorption of heavy metal ions to brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1998-10-01

    A fundamental study of the application of brown algae to the aqueous-phase separation of toxic heavy metals was carried out. The biosorption characteristics of cadmium and lead ions were determined with brown algae, Macrocystis pyrifera, Kjellmaniella crassiforia, and Undaria pinnatifida. A metal binding model proposed by the authors was used for the description of metal binding data. The results showed that the biosorption of bivalent metal ions to brown algae was due to bivalent binding to carboxylic groups on alginic acid in brown algae.

  13. RESPONSES OF MARINE UNICELLULAR ALGAE TO BROMINATED ORGANIC COMPOUNDS IN SIX GROWTH MEDIA

    EPA Science Inventory

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp., were exposed to the industrial brominated compounds, tetrabromobisphenol A (TBBP), decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromo...

  14. Multispectral sorter for rapid, nondestructive optical bioprospecting for algae biofuels

    NASA Astrophysics Data System (ADS)

    Davis, Ryan W.; Wu, Hauwen; Singh, Seema

    2014-03-01

    Microalgal biotechnology is a nascent yet burgeoning field for developing the next generation of sustainable feeds, fuels, and specialty chemicals. Among the issues facing the algae bioproducts industry, the lack of efficient means of cultivar screening and phenotype selection represents a critical hurdle for rapid development and diversification. To address this challenge, we have developed a multi-modal and label-free optical tool which simultaneously assesses the photosynthetic productivity and biochemical composition of single microalgal cells, and provides a means for actively sorting attractive specimen (bioprospecting) based on the spectral readout. The device integrates laser-trapping micro-Raman spectroscopy and pulse amplitude modulated (PAM) fluorometry of microalgal cells in a flow cell. Specifically, the instrument employs a dual-purpose epi-configured IR laser for single-cell trapping and Raman spectroscopy, and a high-intensity VISNIR trans-illumination LED bank for detection of variable photosystem II (PSII) fluorescence. Micro-Raman scatter of single algae cells revealed vibrational modes corresponding to the speciation and total lipid content, as well as other major biochemical pools, including total protein, carbohydrates, and carotenoids. PSII fluorescence dynamics provide a quantitative estimate of maximum photosynthetic efficiency and regulated and non-regulated non-photochemical quenching processes. The combined spectroscopic readouts provide a set of metrics for subsequent optical sorting of the cells by the laser trap for desirable biomass properties, e.g. the combination of high lipid productivity and high photosynthetic yield. Thus the device provides means for rapid evaluation and sorting of algae cultures and environmental samples for biofuels development.

  15. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria.

    PubMed

    Reichardt, Thomas A; Collins, Aaron M; McBride, Robert C; Behnke, Craig A; Timlin, Jerilyn A

    2014-08-20

    We assess the measurement of hyperspectral reflectance for outdoor monitoring of green algae and cyanobacteria cultures with a multichannel, fiber-coupled spectroradiometer. Reflectance data acquired over a 4-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, which is dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water-surface reflection of sunlight and skylight. For the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a nonsampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared with auxiliary measurements and physics-based calculations. The model-derived magnitudes of sunlight and skylight water-surface reflections compare favorably with Fresnel reflectance calculations, while the model-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. Finally, the water temperatures derived from the reflectance model exhibit excellent agreement with thermocouple measurements during the morning hours but correspond to significantly elevated temperatures in the afternoon hours. PMID:25321139

  16. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    SciTech Connect

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximated as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.

  17. Spectroradiometric monitoring for open outdoor culturing of algae and cyanobacteria

    DOE PAGESBeta

    Reichardt, Thomas A.; Collins, Aaron M.; McBride, Robert C.; Behnke, Craig A.; Timlin, Jerilyn A.

    2014-08-20

    We assess the measurement of hyperspectral reflectance for the outdoor monitoring of green algae and cyanobacteria cultures with a multi-channel, fiber-coupled spectroradiometer. Reflectance data acquired over a four-week period are interpreted via numerical inversion of a reflectance model, in which the above-water reflectance is expressed as a quadratic function of the single backscattering albedo, dependent on the absorption and backscatter coefficients. The absorption coefficient is treated as the sum of component spectra consisting of the cultured species (green algae or cyanobacteria), dissolved organic matter, and water (including the temperature dependence of the water absorption spectrum). The backscatter coefficient is approximatedmore » as the scaled Hilbert transform of the culture absorption spectrum with a wavelength-independent vertical offset. Additional terms in the reflectance model account for the pigment fluorescence features and the water surface reflection of sunlight and skylight. For both the green algae and cyanobacteria, the wavelength-independent vertical offset of the backscatter coefficient is found to scale linearly with daily dry weight measurements, providing the capability for a non-sampling measurement of biomass in outdoor ponds. Other fitting parameters in the reflectance model are compared to auxiliary measurements and physics-based calculations. The magnitudes of the sunlight and skylight water-surface contributions derived from the reflectance model compare favorably with Fresnel reflectance calculations, while the reflectance-derived quantum efficiency of Chl-a fluorescence is found to be in agreement with literature values. To conlclude, the water temperature derived from the reflectance model exhibits excellent agreement with thermocouple measurements during the morning hours and highlights significantly elevated temperatures in the afternoon hours.« less

  18. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass. PMID:26108504

  19. Multi-scale Characterization of Improved Algae Strains

    SciTech Connect

    Dale, Taraka T.

    2015-04-01

    This report relays the important role biofuels such as algae could have in the energy market. The report cites that problem of crude oil becoming less abundant while the demand for energy continues to rise. There are many benefits of producing energy with biofuels such as fewer carbon emissions as well as less land area to produce the same amount of energy compared to other sources of renewable fuels. One challenge that faces biofuels right now is the cost to produce it is high.

  20. Receptor mediated mineralocorticoid action in alga cell mutants.

    PubMed

    Mirshahi, M; Mirshahi, A; Nato, A; Agarwal, M K

    1992-12-21

    The multiplication of Chlamydomonas cells can be arrested by the spirolactone derivative RU 26752 and this is fully reversible by the natural hormone aldosterone. Continuous growth in the presence of RU 26752 led to the isolation of a population subsequently resistant to the action of mineralocortoid analogues, due possibly to the selection of mutant cells. Immunophotochemical evidence is provided for a 52 kDa protein that possesses functional steroid and DNA binding domains. Alga cells therefore appear to respond to steroid hormones in a manner similar to the mammalian systems, possibly via a receptor that may represent a pygmy ancestor of the latter day steroid receptor superfamily. PMID:1334844

  1. The value of post-extracted algae residue

    DOE PAGESBeta

    Bryant, Henry; Gogichaishvili, Ilia; Anderson, David; Richardson, James; Sawyer, Jason; Wickersham, Tryon; Drewery, Merritt

    2012-07-26

    This paper develops a hedonic pricing model for post-extracted algae residue (PEAR), which can be used for assessing the economic feasibility of an algal production enterprise. Prices and nutritional characteristics of commonly employed livestock feed ingredients are used to estimate the value of PEAR based on its composition. We find that PEAR would have a value lower than that of soybean meal in recent years. The value of PEAR will vary substantially based on its characteristics. PEAR could have generated algal fuel co-product credits that in recent years would have ranged between $0.95 and $2.43 per gallon of fuel produced.

  2. The auxin concentration in sixteen Chinese marine algae

    NASA Astrophysics Data System (ADS)

    Han, Lijun

    2006-09-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1 46.9 ng/g Fw (fresh weight) with FS and 5.3 110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3 103 ng/g Fw reported previously from multiple references.

  3. [Antimicrobial activity of various algae of the Panamanian Atlantic coast].

    PubMed

    Gupta, M P; Gómez, N E; Santana, A I; Solis, P N; Palacios, G

    1991-01-01

    The methanolic extracts in 5 of 7 alagae from the Atlantic coast of Panama: Caulerpa racemosa, Halimeda opuntia, Gelidiela acerosa, Laurencia papillosa y Acanthophora spicifera, showed antimicrobial activity against Staphylococcus aureus and Bacillus subtilis in a concentration of 50 mg/ml by the cylinder plate method. None of the algae studies showed activity against Escherichia coli, Pseudomonas aeruginosa, Aspergillus niger and Candida albicans. The content of agar in Acanthophora spicifera was found to be the highest (33.5%) of all the species studied. PMID:2024058

  4. Multidimensional electronic spectroscopy of phycobiliproteins from cryptophyte algae

    NASA Astrophysics Data System (ADS)

    Turner, Daniel

    2011-03-01

    We describe new spectroscopic measurements which reveal additional information regarding the observed quantum coherences in proteins extracted from photosynthetic algae. The proteins we investigate are the phycobiliproteins phycoerythrin 545 and phycocyanin 645. Two new avenues have been explored. We describe how changes to the chemical and biological environment impact the quantum coherence present in the 2D electronic correlation spectrum. We also use new multidimensional spectroscopic techniques to reveal insights into the nature of the quantum coherence and the nature of the participating states.

  5. Bioactivities from Marine Algae of the Genus Gracilaria

    PubMed Central

    de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096

  6. Waltzing Volvox/: Orbiting Bound States of Flagellated Multicellular Algae

    NASA Astrophysics Data System (ADS)

    Drescher, K.; Leptos, K.; Pedley, T. J.; Goldstein, R. E.; Ishikawa, T.

    2008-11-01

    The spherical colonial alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size makes it a model organism for the fluid dynamics of multicellularity. Remarkably, when two nearby colonies swim close to a solid surface, they are attracted together and can form a stable bound state in which they continuously waltz around each other. A surface-mediated hydrodynamic attraction between colonies combined with the rotational motion of bottom-heavy Volvox are shown to explain the stability and dynamics of the bound state. This phenomenon is suggested to underlie observed clustering of colonies at surfaces.

  7. Dancing Volvox: Hydrodynamic Bound States of Swimming Algae

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Leptos, Kyriacos C.; Tuval, Idan; Ishikawa, Takuji; Pedley, Timothy J.; Goldstein, Raymond E.

    2009-04-01

    The spherical alga Volvox swims by means of flagella on thousands of surface somatic cells. This geometry and its large size make it a model organism for studying the fluid dynamics of multicellularity. Remarkably, when two nearby Volvox colonies swim close to a solid surface, they attract one another and can form stable bound states in which they “waltz” or “minuet” around each other. A surface-mediated hydrodynamic attraction combined with lubrication forces between spinning, bottom-heavy Volvox explains the formation, stability, and dynamics of the bound states. These phenomena are suggested to underlie observed clustering of Volvox at surfaces.

  8. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  9. The role of algae in mine drainage bioremediation

    SciTech Connect

    Davison, J. )

    1990-06-01

    The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.

  10. Genetic diversity and variability in populations of the white wax insect Ericerus pela, assessed by AFLP analysis.

    PubMed

    Chen, H; He, R; Wang, Z L; Wang, S Y; Chen, Y; Zhu, Z C; Chen, X M

    2015-01-01

    The white wax insect Ericerus pela Chavannes (Hemiptera: Coccoidea) is an economically valuable insect species that has been used for over a thousand years in China. The present study focuses on assessing the genetic variability in different populations of E. pela collected from seven Chinese provinces. The amplified fragment length polymorphism technique was used to generate DNA fingerprints of individuals from each population using nine primer combinations (EcoRI-MseI). A total of 435 polymorphic loci were generated; fragment sizes ranged from 200 to 1000 bp. The percentage of polymorphic loci was 85.29%. Nei's genetic diversity and Shannon index indicated consistency in the results, which showed that the Sichuan population had the highest diversity, followed by Yunnan and Zhejiang populations. Dendrogram analysis showed the shortest genetic distance between the Sichuan and Yunnan populations, suggesting that they probably form sister groups. High genetic differentiation between population values among all sampled populations indicated a low degree of genetic variability within each population (40.85%) and higher variation among populations (59.15%). Gene flow estimate values were low in all samples, suggesting low gene flow from events such as interbreeding and migration. Low gene flow values also suggested that populations among species of E. pela might become genetically heterogeneous, due to counteracting forces such as strong differential selection. Our data support the probability that E. pela will remain localized, and has a low potential to spread beyond current habitats. PMID:26782427

  11. Balamuthia mandrillaris: in vitro interactions with selected protozoa and algae.

    PubMed

    Tapia, José L; Torres, Benjamin Nogueda; Visvesvara, Govinda S

    2013-01-01

    Although Balamuthia mandrillaris was identified more than two decades ago as an agent of fatal granulomatous encephalitis in humans and other animals, little is known about its ecological niche, biological behavior in the environment, food preferences and predators, if any. When infecting humans or other animals, Balamuthia feeds on tissues; and in vitro culture, it feeds on mammalian cells (monkey kidney cells, human lung fibroblasts, and human microvascular endothelial cells). According to recent reports, it is believed that Balamuthia feeds on small amebae, for example, Acanthamoeba that are present in its ecological niche. To test this hypothesis, we associated Balamuthia on a one-on-one basis with selected protozoa and algae. We videotaped the behavior of Balamuthia in the presence of a potential prey, its ability to hunt and attack its food, and the time required to eat and cause damage to the target cell by direct contact. We found that B. mandrillaris ingested trophozoites of Naegleria fowleri, Naegleria gruberi, Acanthamoeba spp., Trypanosoma cruzi epimastigotes, Toxoplasma gondii tachyzoites, and Giardia. However, it did not feed on Acanthamoeba cysts or algae. Balamuthia caused cytolysis of T. cruzi epimastigotes and T. gondii tachyzoites by direct contact. Balamuthia trophozoites and cysts were, however, eaten by Paramecium sp. PMID:23790262

  12. Drift algae reduce foraging efficiency of juvenile flatfish

    NASA Astrophysics Data System (ADS)

    Nordström, Marie; Booth, Dale M.

    2007-11-01

    Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator-prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.

  13. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants.

    PubMed

    Basiuk, Elena V; Ochoa-Olmos, Omar E; De la Mora-Estrada, León F

    2011-04-01

    The ecotoxicological effects of carbon nanomateriales (CNMs), namely fullerenes and carbon nanotubes, on algae, fungi and plants are analyzed. In different toxicity tests, both direct and indirect effects were found. The direct effects are determined by nanomaterial chemical composition and surface reactivity, which might catalyze redox reactions in contact with organic molecules and affect respiratory processes. Some indirect effects of carbon nanoparticles (CNPs) are physical restraints or release of toxic ions. Accumulation of CNPs in photosynthetic organs provokes obstruction in stomata, foliar heating and alteration in physiological processes. The phytotoxicity studies of CNMs should be focused on determining phytotoxicity mechanisms, size distribution of CNPs in solution, uptake and translocation of nanoparticles by plants, on characterization of their physical and chemical properties in rhizosphere and on root surfaces. More studies on plants and algae, as a part of food chain, are needed to understand profoundly the toxicity and health risks of CNMs as ecotoxicological stressors. Correct and detailed physical and chemical characterization of CNMs is very important to establish the exposure conditions matching the realistic ones. Ecotoxicity experiments should include examinations of both short and long-term effects. One must take into account that real carbon nanomaterials are complex mixtures of carbon forms and metal residues of variable chemistry and particle size, and the toxicity reported may reflect these byproducts/residues/impurities rather than the primary material structure. One more recommendation is not only to focus on the inherent toxicity of nanoparticles, but also consider their possible interactions with existing environmental contaminants. PMID:21776669

  14. Photosynthetic hydrogen and oxygen production by green algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of photosynthesis throughout the entire range of terrestrial solar irradiance--including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transport and (3) the minimum number of light reactions that are required to split water to elemental hydrogen and oxygen. Each of these research topics is being actively addressed by the photobiological hydrogen research community.

  15. Photosynthetic Hydrogen and Oxygen Production by Green Algae

    SciTech Connect

    Greenbaum, E.; Lee, J.W.

    1999-08-22

    Photosynthesis research at Oak Ridge National Laboratory is focused on hydrogen and oxygen production by green algae in the context of its potential as a renewable fuel and chemical feed stock. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are: (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of hotosynthesis throughout the entire range of terrestrial solar irradiance-including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transpor;t and (3) constructing real-world bioreactors, including the generation of hydrogen and oxygen against workable back pressures of the photoproduced gases.

  16. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  17. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGESBeta

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; et al

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  18. Monoclonal Antibodies Directed to Fucoidan Preparations from Brown Algae

    PubMed Central

    Torode, Thomas A.; Marcus, Susan E.; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S.; Hervé, Cécile; Knox, J. Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  19. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga

    PubMed Central

    Qin, Jie; Lehr, Corinne R.; Yuan, Chungang; Le, X. Chris; McDermott, Timothy R.; Rosen, Barry P.

    2009-01-01

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a Topt of 60–70 °C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases. PMID:19276121

  20. Chemical mediation of coral larval settlement by crustose coralline algae

    PubMed Central

    Tebben, J.; Motti, C. A; Siboni, Nahshon; Tapiolas, D. M.; Negri, A. P.; Schupp, P. J.; Kitamura, Makoto; Hatta, Masayuki; Steinberg, P. D.; Harder, T.

    2015-01-01

    The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds – glycoglycerolipids and polysaccharides – as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples. PMID:26042834

  1. Marine Algae: a Source of Biomass for Biotechnological Applications.

    PubMed

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development. PMID:26108496

  2. Identifying vital effects in Halimeda algae with Ca isotopes

    NASA Astrophysics Data System (ADS)

    Blättler, C. L.; Stanley, S. M.; Henderson, G. M.; Jenkyns, H. C.

    2014-12-01

    Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater, resulting in experimental samples with somewhat malformed skeletons. The Ca-isotope fractionation of the algal calcite (-0.6‰) appears to be much smaller than that for the algal aragonite (-1.4‰), similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda has higher Ca-isotope ratios than inorganic forms by approximately 0.25‰, likely because of Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the marine Ca-isotope cycle.

  3. Identifying vital effects in Halimeda algae with Ca isotopes

    NASA Astrophysics Data System (ADS)

    Blättler, C. L.; Stanley, S. M.; Henderson, G. M.; Jenkyns, H. C.

    2014-03-01

    Geochemical records of biogenic carbonates provide some of the most valuable records of the geological past, but are often difficult to interpret without a mechanistic understanding of growth processes. In this experimental study, Halimeda algae are used as a test organism to untangle some of the specific factors that influence their skeletal composition, in particular their Ca-isotope composition. Algae were stimulated to precipitate both calcite and aragonite by growth in artificial Cretaceous seawater. The Ca-isotope fractionation of the algal calcite is much smaller than that for the algal aragonite, similar to the behaviour observed in inorganic precipitates. However, the carbonate from Halimeda is isotopically heavier than inorganic forms, likely due to Rayleigh distillation within the algal intercellular space. In identifying specific vital effects and the magnitude of their influence on Ca-isotope ratios, this study suggests that mineralogy has a first-order control on the Ca-isotope budget of the carbonate sink and the Ca-isotope composition of seawater.

  4. Interest of dynamic tests in acute ecotoxicity assessment in algae

    SciTech Connect

    Jouany, J.M.; Ferard, J.F.; Vasseur, P.; Gea, J.; Truhaut, R.; Rast, C.

    1983-04-01

    Sorption of toxics by algae may be important and occurs very early. Thus, a decrease of the experimental toxic concentrations in the medium results in understating toxicity when tests are conducted under static conditions. In this work, two different methods of exposure of algae (Chlorella vulgaris) are studied, the static test and the pseudodynamic test. Acute effects (biological and analytical effects) of inorganic compounds (Cu/sup 2 +/, Cd/sup 2 +/, Pb/sup 2 +/, Cr/sup 6 +/) have been evaluated for 96 hr of exposure; in each case, IC50 is much lower in the dynamic condition than in the static one. The percentage of reduction varies from 55 to 75% after 96 hr. Accumulation of metal by chlorellae is greater when testing by the pseudodynamic way, with Cu/sup 2 +/ and Pb/sup 2 +/. But in the case of Cd/sup 2 +/ and Cr/sup 6 +/, the concentration factors are similar in the two kinds of exposure. These results point out the advantage of the pseudodynamic test, of which the methodology is very easy, for a more realistic assessment of acute ecotoxicity in these organisms.

  5. Unlocking nature's treasure-chest: screening for oleaginous algae.

    PubMed

    Slocombe, Stephen P; Zhang, QianYi; Ross, Michael; Anderson, Avril; Thomas, Naomi J; Lapresa, Ángela; Rad-Menéndez, Cecilia; Campbell, Christine N; Black, Kenneth D; Stanley, Michele S; Day, John G

    2015-01-01

    Micro-algae synthesize high levels of lipids, carbohydrates and proteins photoautotrophically, thus attracting considerable interest for the biotechnological production of fuels, environmental remediation, functional foods and nutraceuticals. Currently, only a few micro-algae species are grown commercially at large-scale, primarily for "health-foods" and pigments. For a range of potential products (fuel to pharma), high lipid productivity strains are required to mitigate the economic costs of mass culture. Here we present a screen concentrating on marine micro-algal strains, which if suitable for scale-up would minimise competition with agriculture for water. Mass-Spectrophotometric analysis (MS) of nitrogen (N) and carbon (C) was subsequently validated by measurement of total fatty acids (TFA) by Gas-Chromatography (GC). This identified a rapid and accurate screening strategy based on elemental analysis. The screen identified Nannochloropsis oceanica CCAP 849/10 and a marine isolate of Chlorella vulgaris CCAP 211/21A as the best lipid producers. Analysis of C, N, protein, carbohydrate and Fatty Acid (FA) composition identified a suite of strains for further biotechnological applications e.g. Dunaliella polymorpha CCAP 19/14, significantly the most productive for carbohydrates, and Cyclotella cryptica CCAP 1070/2, with utility for EPA production and N-assimilation. PMID:26202369

  6. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  7. Spectrin-like proteins in green algae (Desmidiaceae).

    PubMed

    Holzinger, A; De Ruijter, N; Emons, A M; Lütz-Meindl, U

    1999-01-01

    Immunochemical detection of actin as well as spectrin-like proteins have been carried out in the green algae Micrasterias denticulata, Closterium lunula, and Euastrum oblongum. In these algae, actin is detected on Western blots at 43 kDa with antibodies to actin from higher plant and animal origin. By use of antibodies to human and chicken erythrocyte spectrin a cross-reactivity with desmid proteins is found at about the molecular mass of 220 kDa, where also human erythrocyte spectrin is detected. Additional bands are present at 120 kDa and 70 kDa, which are probably breakdown products. An antibody against chicken alpha-actinin, a small protein of the spectrin superfamily, recognizes bands at 90 kDa, where it is expected, and 70 kDa, probably the same breakdown product as mentioned for spectrin. Isoelectric focusing provides staining at pI 4.6 with antibodies against spectrin. Immunogold labelling of spectrin and alpha-actinin antigens on high-pressure frozen, freeze-substituted Micrasterias denticulata cells with the same antibodies exhibits staining, especially at membranes of different populations of secretory vesicles, at dictyosomes, and the plasma membrane. However, no clear correlation to the growth pattern of the cell could be observed. Taken together, our results demonstrate the presence of spectrin-like proteins in desmid cells which are probably functional in exocytosis. PMID:10579899

  8. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  9. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. PMID:27253478

  10. Marine algae and land plants share conserved phytochrome signaling systems

    PubMed Central

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-01-01

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae. PMID:25267653

  11. Polyploidy of Endosymbiotically Derived Genomes in Complex Algae

    PubMed Central

    Hirakawa, Yoshihisa; Ishida, Ken-Ichiro

    2014-01-01

    Chlorarachniophyte and cryptophyte algae have complex plastids that were acquired by the uptake of a green or red algal endosymbiont via secondary endosymbiosis. The plastid is surrounded by four membranes, and a relict nucleus, called the nucleomorph, remains in the periplastidal compartment that is the remnant cytoplasm of the endosymbiont. Thus, these two algae possess four different genomes in a cell: Nuclear, nucleomorph, plastid, and mitochondrial. Recently, sequencing of the nuclear genomes of the chlorarachniophyte Bigelowiella natans and the cryptophyte Guillardia theta has been completed, and all four genomes have been made available. However, the copy number of each genome has never been investigated. It is important to know the actual DNA content of each genome, especially the highly reduced nucleomorph genome, for studies on genome evolution. In this study, we calculated genomic copy numbers in B. natans and G. theta using a real-time quantitative polymerase chain reaction approach. The nuclear genomes were haploid in both species, whereas the nucleomorph genomes were estimated to be diploid and tetraploid, respectively. Mitochondria and plastids contained a large copy number of genomic DNA in each cell. In the secondary endosymbioses of chlorarachniophytes and cryptophytes, the endosymbiont nuclear genomes were highly reduced in size and in the number of coding genes, whereas the chromosomal copy number was increased, as in bacterial endosymbiont genomes. This suggests that polyploidization is a general characteristic of highly reduced genomes in broad prokaryotic and eukaryotic endosymbionts. PMID:24709562

  12. Solar-driven hydrogen production in green algae.

    PubMed

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept. PMID:21807246

  13. Health benefit of fucosterol from marine algae: a review.

    PubMed

    Abdul, Qudeer Ahmed; Choi, Ran Joo; Jung, Hyun Ah; Choi, Jae Sue

    2016-04-01

    Seaweeds belong to a group of marine plants known as algae, which are consumed as sea vegetables in several Asian countries. Recent studies have focused on the biological and pharmacological activities of seaweeds and their highly bioactive secondary metabolites because of their potential in the development of new pharmaceutical agents. Although several varieties of bioactive novel compounds such as phlorotannins, diterpenes and polysaccharides from seaweeds have already been well scrutinized, fucosterol as a phytosterol still needs to reinvent itself. Fucosterol (24-ethylidene cholesterol) is a sterol that can be isolated from algae, seaweed and diatoms. Fucosterol exhibits various biological therapeutics, including anticancer, antidiabetic, antioxidant, hepatoprotective, antihyperlipidemic, antifungal, antihistaminic, anticholinergic, antiadipogenic, antiphotodamaging, anti-osteoporotic, blood cholesterol reducing, blood vessel thrombosis preventive and butyrylcholinesterase inhibitory activities. In this review, we address some potential approaches for arbitrating novel fucosterol biologics in the medical field, focusing on the selection of personalized drug candidates and highlighting the challenges and opportunities regarding medical breakthroughs. We also highlight recent advances made in the design of this novel compound, as the significant health benefits from using these optimized applications apply to the nutraceutical and pharmaceutical fields. PMID:26455344

  14. Endolithic algae: an alternative source of photoassimilates during coral bleaching.

    PubMed Central

    Fine, Maoz; Loya, Yossi

    2002-01-01

    Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, providing an alternative source of energy. We studied the dynamics of photosynthetic pigment concentrations and biomass of endoliths in the skeleton of the encrusting coral Oculina patagonica throughout a bleaching event. During repeated summer bleaching events these endolithic algae receive increased photosynthetically active radiation, increase markedly in biomass, and produce increasing amounts of photoassimilates, which are translocated to the coral. Chlorophyll concentrations and biomass of endoliths were 4.6 +/- 1.57 and 1570 +/- 427 microg cm(-2) respectively, in skeletons of relatively healthy colonies (0-40% bleaching) but up to 14.8 +/- 2.5 and 4036 +/- 764 microg cm(-2) endolith chlorophyll and biomass respectively, in skeletons of bleached colonies (greater than 40% bleaching). The translocation dynamics of (14)C-labelled photoassimilates from the endoliths to bleached coral tissue showed significantly higher 14C activity of the endoliths harboured within the skeletons of bleached corals than that of the endoliths in non-bleached corals. This alternative source of energy may be vital for the survivorship of O. patagonica, allowing gradual recruitment of zooxanthellae and subsequent recovery during the following winter. PMID:12065035

  15. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    PubMed

    Torode, Thomas A; Marcus, Susan E; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S; Hervé, Cécile; Knox, J Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance. PMID:25692870

  16. Indefatigable: an erect coralline alga is highly resistant to fatigue.

    PubMed

    Denny, Mark; Mach, Katharine; Tepler, Sarah; Martone, Patrick

    2013-10-15

    Intertidal organisms are subjected to intense hydrodynamic forces as waves break on the shore. These repeated insults can cause a plant or animal's structural materials to fatigue and fail, even though no single force would be sufficient to break the organism. Indeed, the survivorship and maximum size of at least one species of seaweed is set by the accumulated effects of small forces rather than the catastrophic imposition of a single lethal force. One might suppose that fatigue would be especially potent in articulated coralline algae, in which the strain of the entire structure is concentrated in localized joints, the genicula. However, previous studies of joint morphology suggest an alternative hypothesis. Each geniculum is composed of a single tier of cells, which are attached at their ends to the calcified segments of the plant (the intergenicula) but have minimal connection to each other along their lengths. This lack of neighborly attachment potentially allows the weak interfaces between cells to act as 'crack stoppers', inhibiting the growth of fatigue cracks. We tested this possibility by repeatedly loading fronds of Calliarthron cheilosporioides, a coralline alga common on wave-washed shores in California. When repeatedly loaded to 50-80% of its breaking strength, C. cheilosporioides commonly survives more than a million stress cycles, with a record of 51 million. We show how this extraordinary fatigue resistance interacts with the distribution of wave-induced water velocities to set the limits to size in this species. PMID:24068348

  17. Effects of tetrabromobisphenol A on the green alga Chlorella pyrenoidosa.

    PubMed

    Liu, Hongling; Yu, Yang; Kong, Fanxiang; He, Luning; Yu, Hongxia; Giesy, John P; Wang, Xiaorong

    2008-09-01

    Flow cytometry (FC) was used to determine effects of tetrabromobisphenol A (TBBPA) on the green alga Chlorella pyrenoidosa (C. pyrenoidosa) by evaluating esterase activity, membrane integrity, concentrations of intracellular reactive oxygen species (ROS) and chlorophyll a (Chl-a) auto-fluorescence. TBBPA can inhibit esterase activity. Esterase activity was inversely proportional with TBBPA with a 24 h EC(50) value of 3.13 mg TBBPA/L. After 48 h of exposure to TBBPA intracellular ROS was significantly greater than in the unexposed cells. TBBPA inhibited Chl-a fluorescence after 168 h. Concentrations of ROS were directly proportional to both magnitude and duration of exposure and was inversely proportional to cellular Chl-a. FC was useful as an integrated, ecologically relevant, measure of a functional response of the algae. The possible action pathway of TBBPA in C. pyrenoidosa is that TBBPA can cause toxic effects on esterase activity. As concentrations and exposure time increased, TBBPA change the ROS level in the internal. The role of anti-oxidative action is marked and significant at the duration of 48 h exposure, compared to the control. This suggested there was a redox cycle. TBBPA changes physiological status of cells, further decreased Chl-a fluorescence indicating inhibition. PMID:18642150

  18. Chemical mediation of coral larval settlement by crustose coralline algae.

    PubMed

    Tebben, J; Motti, C A; Siboni, Nahshon; Tapiolas, D M; Negri, A P; Schupp, P J; Kitamura, Makoto; Hatta, Masayuki; Steinberg, P D; Harder, T

    2015-01-01

    The majority of marine invertebrates produce dispersive larvae which, in order to complete their life cycles, must attach and metamorphose into benthic forms. This process, collectively referred to as settlement, is often guided by habitat-specific cues. While the sources of such cues are well known, the links between their biological activity, chemical identity, presence and quantification in situ are largely missing. Previous work on coral larval settlement in vitro has shown widespread induction by crustose coralline algae (CCA) and in particular their associated bacteria. However, we found that bacterial biofilms on CCA did not initiate ecologically realistic settlement responses in larvae of 11 hard coral species from Australia, Guam, Singapore and Japan. We instead found that algal chemical cues induce identical behavioral responses of larvae as per live CCA. We identified two classes of CCA cell wall-associated compounds--glycoglycerolipids and polysaccharides--as the main constituents of settlement inducing fractions. These algae-derived fractions induce settlement and metamorphosis at equivalent concentrations as present in CCA, both in small scale laboratory assays and under flow-through conditions, suggesting their ability to act in an ecologically relevant fashion to steer larval settlement of corals. Both compound classes were readily detected in natural samples. PMID:26042834

  19. Spatiotemporal associations of reservoir nutrient characteristics and the invasive, harmful alga Prymnesium parvum in West Texas

    USGS Publications Warehouse

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Golden alga (Prymnesium parvum) is a harmful alga that has caused ecological and economic harm in freshwater and marine systems worldwide. In inland systems of North America, toxic blooms have nearly eliminated fish populations in some systems. Modifying nutrient profiles through alterations to land or water use may be a viable alternative for golden alga control in reservoirs. The main objective of this study was to improve our understanding of the nutrient dynamics that influence golden alga bloom formation and toxicity in west Texas reservoirs. We examined eight sites in the Upper Colorado River basin, Texas: three impacted reservoirs that have experienced repeated golden alga blooms; two reference reservoirs where golden alga is present but nontoxic; and three confluence sites downstream of the impacted and reference sites. Total, inorganic, and organic nitrogen and phosphorus and their ratios were quantified monthly along with golden alga abundance and ichthyotoxicity between December 2010 and July 2011. Blooms persisted for several months at the impacted sites, which were characterized by high organic nitrogen and low inorganic nitrogen. At impacted sites, abundance was positively associated with inorganic phosphorus and bloom termination coincided with increases in inorganic nitrogen and decreases in inorganic phosphorus in late spring. Management of both inorganic and organic forms of nutrients may create conditions in reservoirs unfavorable to golden alga.

  20. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae

    PubMed Central

    Barott, Katie L.; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L.; Vermeij, Mark J. A.; Smith, Jennifer E.; Rohwer, Forest L.

    2012-01-01

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral–CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs. PMID:22090385

  1. Turf algae-mediated coral damage in coastal reefs of Belize, Central America

    PubMed Central

    Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12–70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26–29%) when compared to the other sites (4–19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs. PMID:25276504

  2. FRESHWATER ALGAE OF RAE LAKES BASIN, KINGS CANYON NATIONAL PARK (CALIFORNIA)

    EPA Science Inventory

    This report illustrates and characterizes algae (exclusive of diatoms) found in Kings Canyon National Park, California and describes their distribution among the Rae Lakes within. It is the first taxonomic study of the freshwater algae for the southern Sierra Nevada and the most ...

  3. Turf algae-mediated coral damage in coastal reefs of Belize, Central America.

    PubMed

    Wild, Christian; Jantzen, Carin; Kremb, Stephan Georg

    2014-01-01

    Many coral reefs in the Caribbean experienced substantial changes in their benthic community composition during the last decades. This often resulted in phase shifts from scleractinian coral dominance to that by other benthic invertebrate or algae. However, knowledge about how the related role of coral-algae contacts may negatively affect corals is scarce. Therefore, benthic community composition, abundance of algae grazers, and the abundance and character of coral-algae contacts were assessed in situ at 13 Belizean reef sites distributed along a distance gradient to the Belizean mainland (12-70 km): Mesoamerican Barrier Reef (inshore), Turneffe Atoll (inner and outer midshore), and Lighthouse Reef (offshore). In situ surveys revealed significantly higher benthic cover by scleractinian corals at the remote Lighthouse Reef (26-29%) when compared to the other sites (4-19%). The abundance of herbivorous fish and the sea urchin Diadema antillarum significantly increased towards the offshore reef sites, while the occurrence of direct coral-algae contacts consequently increased significantly with decreasing distance to shore. About 60% of these algae contacts were harmful (exhibiting coral tissue damage, pigmentation change, or overgrowth) for corals (mainly genera Orbicella and Agaricia), particularly when filamentous turf algae were involved. These findings provide support to the hypothesis that (turf) algae-mediated coral damage occurs in Belizean coastal, near-shore coral reefs. PMID:25276504

  4. The current potential of algae biofuels in the United Arab Emirates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of future uncertainties about industrial algae biofuel production, the UAE is planning to become "a world leader in biofuels from the algae industry by 2020;" thus joining major countries which have already started producing renewable energy and biofuels (biodiesel and bioethanol) from rene...

  5. Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae.

    PubMed

    Barott, Katie L; Rodriguez-Mueller, Beltran; Youle, Merry; Marhaver, Kristen L; Vermeij, Mark J A; Smith, Jennifer E; Rohwer, Forest L

    2012-04-22

    Competition between reef-building corals and benthic algae is of key importance for reef dynamics. These interactions occur on many spatial scales, ranging from chemical to regional. Using microprobes, 16S rDNA pyrosequencing and underwater surveys, we examined the interactions between the reef-building coral Montastraea annularis and four types of benthic algae. The macroalgae Dictyota bartayresiana and Halimeda opuntia, as well as a mixed consortium of turf algae, caused hypoxia on the adjacent coral tissue. Turf algae were also associated with major shifts in the bacterial communities at the interaction zones, including more pathogens and virulence genes. In contrast to turf algae, interactions with crustose coralline algae (CCA) and M. annularis did not appear to be antagonistic at any scale. These zones were not hypoxic, the microbes were not pathogen-like and the abundance of coral-CCA interactions was positively correlated with per cent coral cover. We propose a model in which fleshy algae (i.e. some species of turf and fleshy macroalgae) alter benthic competition dynamics by stimulating bacterial respiration and promoting invasion of virulent bacteria on corals. This gives fleshy algae a competitive advantage over corals when human activities, such as overfishing and eutrophication, remove controls on algal abundance. Together, these results demonstrate the intricate connections and mechanisms that structure coral reefs. PMID:22090385

  6. Closed and continuous algae cultivation system for food production and gas exchange in CELSS

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Shimada, Atsuhiro; Fujii, Shigeo; Koyano, Takashi; Miki, Keizaburo

    In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. o (1)In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2)Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3)Algae mass and medium are separated by a specially designed harvester. (4)Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quanlity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system.

  7. Competitive interactions between corals and turf algae depend on coral colony form.

    PubMed

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  8. MONITORING CHLOROPHYLL-A AS A MEASURE OF ALGAE IN LAKE TEXOMA MARINAS

    EPA Science Inventory

    Lake water quality in five marinas on Lake Texoma was determined over a two year period. Quality parameters were methyl tert-butyl ether, nitrate, some metals, fecal coliform and algae. Common blue-green algae can produce a toxin harmful to other aquatic organisms and humans. ...

  9. Artificial microfossils - Experimental studies of permineralization of blue-green algae in silica.

    NASA Technical Reports Server (NTRS)

    Oehler, J. H.; Schopf, J. W.

    1971-01-01

    A technique has been developed to artificially fossilize microscopic algae in crystalline silica under conditions of moderately elevated temperature and pressure. The technique is designed to simulate geochemical processes thought to have resulted in the preservation of organic microfossils in Precambrian bedded cherts. In degree of preservation and mineralogic setting, the artificially permineralized microorganisms are comparable to naturally occurring fossil algae.

  10. Competitive interactions between corals and turf algae depend on coral colony form

    PubMed Central

    Vermeij, Mark JA

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral–turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  11. ALGAE-BACTERIA INTERACTION IN A LIGHT-DARK CYCLE (JOURNAL VERSION)

    EPA Science Inventory

    Nutrient and population dynamics accompanying algae-bacteria interaction were observed in unialgal, 18-liter batch cultures during a light-dark cycle. The green alga Chlorella vulgaris, and the nitrogen fixing blue-green Anabaena flos-aquae were inoculated with an aquatic communi...

  12. Plants as bio-monitors for Cs-137, Pu-238, Pu-239,240 and K-40 at the Savannah River Site.

    PubMed

    Caldwell, Eric Frank; Duff, Martine C; Ferguson, Caitlin E; Coughlin, Daniel P

    2011-05-01

    The Savannah River Site was constructed in South Carolina to produce plutonium (Pu) in the 1950s. Discharges associated with these now-ceased operations have contaminated large areas within the site, particularly streams associated with reactor cooling basins. Evaluating the exposure risk of contamination to an ecosystem requires methodologies that can assess the bioavailability of contaminants. Plants, as primary producers, represent an important mode of transfer of contaminants from soils and sediments into the food chain. The objective of this study was to identify local area plants for their ability to act as bio-monitors of radionuclides. The concentrations of cesium-137 ((137)Cs), potassium-40 ((40)K), (238)Pu and (239,240)Pu in plants and their associated soils were determined using γ and α spectrometry. The ratio of contamination concentration found in the plant relative to the soil was calculated to assess a concentration ratio (CR). The highest CR for (137)Cs was found in Pinus palustris needles (CR of 2.18). The correlation of soil and plant (137)Cs concentration was strong (0.76) and the R(2) (0.58) from the regression was significant (p = 0.006). This suggests the ability to predict the degree of (137)Cs contamination of a soil through analysis of the pine needles. The (238)Pu and (239,240)Pu concentrations were most elevated within the plant roots. Extremely high CR values were found in Sparganium americanum (bur-reed) roots with a value of 5.86 for (238)Pu and 5.66 for (239,240)Pu. The concentration of (40)K was measured as a known congener of (137)C. Comparing (40)K and (137)C concentrations in each plant revealed an inverse relationship for these radioisotopes. Correlating (40)K and (137)Cs was most effective in identifying plants that have a high affinity for (137)Cs uptake. The P. palustris and S. americanum proved to be particularly strong accumulators of all K congeners from the soil. Some species that were measured, warrant further investigation, are the carnivorous plant Utricularia inflata (bladderwort) and the emergent macrophyte Juncus effusus. For U. inflata, the levels of (137)Cs, (238)Pu, and (239,240)Pu (which were 3922, 8399, and 803 Bq kg(-1), respectively) in the leaves were extremely high. The highest (137)Cs concentration from the study was measured in the J. effusus root (5721 Bq kg(-1)). PMID:21412545

  13. Global and local cancer risks after the Fukushima Nuclear Power Plant accident as seen from Chernobyl: a modeling study for radiocaesium ((134)Cs &(137)Cs).

    PubMed

    Evangeliou, Nikolaos; Balkanski, Yves; Cozic, Anne; Møller, Anders Pape

    2014-03-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (NPP) in Japan resulted in the release of a large number of fission products that were transported worldwide. We study the effects of two of the most dangerous radionuclides emitted, (137)Cs (half-life: 30.2years) and (134)Cs (half-life: 2.06years), which were transported across the world constituting the global fallout (together with iodine isotopes and noble gasses) after nuclear releases. The main purpose is to provide preliminary cancer risk estimates after the Fukushima NPP accident, in terms of excess lifetime incident and death risks, prior to epidemiology, and compare them with those occurred after the Chernobyl accident. Moreover, cancer risks are presented for the local population in the form of high-resolution risk maps for 3 population classes and for both sexes. The atmospheric transport model LMDZORINCA was used to simulate the global dispersion of radiocaesium after the accident. Air and ground activity concentrations have been incorporated with monitoring data as input to the LNT-model (Linear Non-Threshold) frequently used in risk assessments of all solid cancers. Cancer risks were estimated to be small for the global population in regions outside Japan. Women are more sensitive to radiation than men, although the largest risks were recorded for infants; the risk is not depended on the sex at the age-at-exposure. Radiation risks from Fukushima were more enhanced near the plant, while the evacuation measures were crucial for its reduction. According to our estimations, 730-1700 excess cancer incidents are expected of which around 65% may be fatal, which are very close to what has been already published (see references therein). Finally, we applied the same calculations using the DDREF (Dose and Dose Rate Effectiveness Factor), which is recommended by the ICRP, UNSCEAR and EPA as an alternative reduction factor instead of using a threshold value (which is still unknown). Excess lifetime cancer incidents were estimated to be between 360 and 850, whereas 220-520 of them will be fatal. Nevertheless, these numbers are expected to be even smaller, as the response of the Japanese official authorities to the accident was rapid. The projected cancer incidents are much lower than the casualties occurred from the earthquake itself (>20,000) and also smaller than the accident of Chernobyl. PMID:24361922

  14. Patterns and dynamics of Cs-137 soil contamination on the plot scale of the Bryansk Region (Russia): the role of processes, connectivity

    NASA Astrophysics Data System (ADS)

    Linnik, Vitaly; Sokolov, Alexander; Saveliev, Anatoly

    2014-05-01

    Character of surface and subsurface water flow was studied using 137Cs as a marker on a forest plot with a size of 50x70 m in the western part of the Bryansk Region, situated in the lower part of a slope that has a southern exposition and is drained by a stream. The range of altitudinal levels of plot amounts to 152,68-154,68 m. The plot was surveyed with a terrain contour level equalling to 20 sm. The data of the survey were used to make a digital elevation model (DEM). The plot has a undulated relief with a general surface slope in southern and southeast directions, with some depressions ranging from dozens of centimeters to several meters and 20-40 cm deep, in which groundwater comes up straight to the surface in spring. 137Cs distribution was investigated using field radiometry survey by different steps: 10m for the total plot, and 2 m for the two local plots with the size of 10x10 m, and 0,5 m step for a subplot with the size of 3x4 m. The total quantity of measuring points was more than 200. For the total plot 137Cs mean value was 950 kBq/m2, min - 463 kBq/m2 and max- 1706 kBq/m2. Local plot in the depression, was characterized by the following levels of the 137Cs pollution: mean, max and min value accordingly were equal 682, 1280, 281 kBq/m2. At the initial period of the accident at the Chernobyl NPP (April-May 1986) the quantity of 137Cs water soluble form could reach 50%, therefore 137Cs could have been carried out because of a surface and subsurface water flow. The dependence of 137Cs distribution on microrelief has been examined. Values of Laplace operator obtained for a detailed (step of 0,1 m, Laplace1) and a generalized grid (step 0,25 m, Laplace2), as well as altitude were regarded as parameters which control 137Cs redistribution. Negative Laplacian corresponds to wash-out zones (convex microrelief) while positive Laplacian corresponds to accumulation zones (concave microrelief). To determine the relation of 137Cs distribution to the mentioned relief parameters, general additive models were used. According to results of modeling using a detailed and a generalized grid it has been found (Linnik, Saveliev et.al., 2007), that in accumulation zones (depressions) 137Cs deposit was lower when Laplace operator was positive (Laplace1>0=915 kBq/m2; Laplace2>0=921 kBq/m2) than in wash-out zones, singled out by negative values of Laplace operator (Laplace1<0=978 kBq/m2; Laplace2<0=979 kBq/m2). The inversion effect revealed in 137Cs deposit distribution could not be accounted for be processes of surface 137Cs wash-off as the chain of depressions was isolated. We found that connectivity of subsurface moving soil moisture saturation was made up by a number of small and shallow channels, covered by litter, they served as 137Cs travel paths at the period of spring wetting in April-May 1986. The total 137Cs output in soluble form from this plot calculated for the two models was 5,9% and 6,4%. References: Linnik V.G., Saveliev A.A., Govorun A.P., Ivanitsky O.M., Sokolov A.V. Spatial Variability and Topographic Factors of 137Cs Soil Contamination at a Field Scale// International Journal of Ecology & Development, 2007, Vol. 8, No.7, p.8-25.

  15. Distribution of Natural (U-238, Th-232, Ra-226) and Technogenic (Sr-90, Cs-137) Radionuclides in Soil-Plants Complex Near Issyk-Kul Lake, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Jovanovic, L.; Kaldybaev, B.; Djenbaev, B.; Tilenbaev, A.

    2012-04-01

    Researches on radionuclides distribution in the soil-plants complex provide essential information in understanding human exposure to natural and technogenic sources of radiation. It is necessary in establishing regulation relating to radiation protection. The aim of this study was the radiochemical analysis of the content natural radionuclides 238U, 232Th,226Ra and technogenic radionuclides content (90Sr, 137Cs) in soils near Issyk-Kul lake (Kyrgyzstan). Results of radiochemical analyses have shown, that the concentrations of thorium-232 are fluctuating in the limits (11.7-84.1)-10-4% in the soils. The greatest concentration of thorium-232 has been found in the light chestnut soils. The content of uranium-238 in the soils near Issyk-Kul lake is fluctuating from 2.8 up to 12.7-10-4%. Radium-226 has more migration ability in comparison with other heavy natural radionuclides. According to our research the concentrations of radium-226 are fluctuating in the limits (9.4-43.0)-10-11%. The greatest concentration of radium-226 (43,0±2,8)-10-11% has been determined in the light chestnut soil. In connection with global migration of contaminating substances, including radioactive, the special attention is given long-lived radionuclides strontium-90 and caesium-137 in food-chains, and agroecosystems. Results of radiochemical analyses have shown, that specific activity of strontium-90 is fluctuating in the range of 2.9 up to 11.1 Bq/kg, and caesium-137 from 3.7 up to 14,3 Bq/kg in the soil of agroecosystems in the region of Issyk-Kul. In soil samples down to 1 meter we have observed vertical migration of these radionuclides, they were found to accumulate on the surface of soil horizon (0-5 cm) and their specific activity sharply decreases with depth. In addition in high-mountain pastures characterized by horizontal migration of cattle in profiles of soil, it was discovered that specific activity of radionuclides are lower on the slope than at the foot of the mountain. The content of natural radionuclides (238U, 232Th, 226Ra ) and technogenic radionuclides (90Sr, 137Cs) in the soils depend on many factors: the type and mechanical composition of soil, capacity of absorption, acidity, concentration of exchange forms of carbonates, organic substances. The radionuclides accumulation process in the plants depend on a specific accumulation ability of plants. During the researches it has been found that radionuclides accumulate in vegetative organs more than in reproductive parts of plants. According to the accumulation degrees of natural radionuclides plants taking place in the following decreasing series: sugar beet > potatoes > lucerne > clover > oats > perennial herbs > wheat > annual grass crops > barley > corn. Radiochemical analysis of the technogenic radionuclides in the plants has been determined that specific activity of strontium-90 is increased in leguminous plants (cobs of corn, lucerne) in comparison with other cultures. Caesium-137 is accumulated in beet roots, cobs of corn and lucerne. Key words: natural radionuclides, technogenic radionuclides, soil-plants complex, Issyk-Kul lake, Kyrgyzstan

  16. A Discordancy Between Short-Term Sedimentation Rate Using Pb-210, Cs-137 and Pu and Long-Term Sedimentation Rate Using C-14

    NASA Astrophysics Data System (ADS)

    Baskaran, M.; Filley, T. R.; Bianchi, T. S.; Freeman, K. H.; Hatcher, P. G.

    2005-12-01

    Short-lived radionuclides (210Pb, 137Cs, etc) have been successfully utilized to obtain sedimentation rates in freshwater and coastal marine environments over the past 3 decades. Combined use of 210Pb and Pu enable to delineate sedimentation from sediment mixing. However independent validation of short-term accumulation rates using other long-lived isotopes, such as 14C are very limited. We collected a sediment core from a sinkhole lake, Mud Lake, Florida, USA and analyzed it for 210Pb, 137Cs, 239,240Pu and 14C. The sediment inventories of 137Cs, and 239,240Pu are comparable to the regional global fallout values while 210Pb inventory is comparable to the value reported for this region. A plot of depth against 14C age yields an intercept value of 1070 yrs, indicating a reservoir correction age of 1070 yrs. Most of the data points fall either on the straight line or close to the line possibly suggesting that the relative proportion of fossil carbon had remained constant throughout the core. Due to sediment compaction, a comparison of linear sedimentation rate obtained using short-lived radionuclides with those 14C could yield considerable difference and hence we compared the mass accumulation rates obtained from these isotopes. The 210Pbxs-based sediment mass accumulation rate of 17 mg cm-2 y-1, is almost a factor of 3 higher than that obtained using 14C -derived mass accumulation rate of 6 mg cm-2 y-1. The peak fallout of Pu is well preserved in the lake core suggesting relatively minimum sediment mixing. The factors that could cause this discordancy between the long-term and short-term mass accumulation rates will be discussed.

  17. TECHNICAL BASIS DOCUMENT OF MARSSIM FIELD CALIBRATION FOR QUANTIFICATION OF CS-137 VOLUMETRICALLY CONTAMINATED SOILS IN THE BC CONTROLLED AREA USING 2 BY 2 SODIUM IODIDE DETECTORS

    SciTech Connect

    PAPPIN JL

    2007-10-26

    The purpose of this paper is to provide the Technical Basis and Documentation for Field Calibrations of radiation measurement equipment for use in the MARSSIM Seeping Surveys of the BC Controlled Area (BCCA). The Be Controlled Area is bounded on tt1e north by (but does not include) the BCCribs & Trenches and is bounded on the south by Army Loop Road. Parts of the BC Controlled Area are posted as a Contamination Area and the remainder is posted as a Soil Contamination Area. The area is approximately 13 square miles and divided into three zones (Zone A , Zone B. and Zone C). A map from reference 1 which shows the 3 zones is attached. The MARSSIM Scoping Surveys are intended 10 better identify the boundaries of the three zones based on the volumetric (pCi/g) contamination levels in the soil. The MARSSIM Field Calibration. reference 2. of radiation survey instrumentation will determine the Minimum Detectable Concentration (MDC) and an algorithm for converting counts to pCi/g. The instrumentation and corresponding results are not intended for occupational radiation protection decisions or for the release of property per DOE Order 5400.5.

  18. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  19. Uptake of caprolactam and its influence on growth and oxygen production of Desmodesmus quadricauda algae.

    PubMed

    Kalinová, Jana Pexová; Tříska, Jan; Vrchotová, Naděžda; Novák, Jan

    2016-06-01

    The consumption of polyamides produced from caprolactam is increasing continuously, and for that reason the danger of environmental contamination by this lactam is also rising. This study's aim was to evaluate the influence of caprolactam on the growth and oxygen production of the green alga Desmodesmus quadricauda and on caprolactam uptake by this alga. The presence of caprolactam in water was observed to cause the algae significantly to increase its oxygen production. Caprolactam concentration of 5,000 mg/L stopped algae growth after 6 days and influenced coenobia structure (seen as disappearance of pyrenoids, deformation of cells) but did not decrease the number of cells in the coenobia. Caprolactam uptake is probably passive but relatively rapid. Maximum concentration in the algae was reached after 18-24 h. PMID:26985739

  20. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation

    PubMed Central

    Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W.

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ΦPSIImax) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611

  1. OPTIMIZATION OF SOME HEAVY METALS BIOSORPTION BY REPRESENTATIVE EGYPTIAN MARINE ALGAE(1).

    PubMed

    Elrefaii, Abdelmonem H; Sallam, Lotfy A; Hamdy, Abdelhamid A; Ahmed, Eman F

    2012-04-01

    Marine algae-as inexpensive and renewable natural biomass-have attracted the attention of many investigators to be used to preconcentrate and biosorb many heavy metal ions. Impressed by this concept, the metal uptake capacity of Egyptian marine algae was examined using representatives of green and brown algae, namely, Ulva lactuca L. and Sargassum latifolium (Turner) C. Agardh, respectively. The biosorption efficiencies of Cu(2+) , Co(2+) , Ni(2+) , Cd(2+) , Hg(2+) , Ag(2+) , and Pb(2+) ions seem to depend on the type of the algae used as well as the conditions under which the uptake processes were conducted. It was demonstrated that a pH range of 7.5-8.8 was optimum for the removal of the tested metals. Similarly, the uptake process was markedly accelerated during the first 2 h using relatively low metal level and sufficient amounts of the dried powdered tested algae. PMID:27009736

  2. Computational Visual Stress Level Analysis of Calcareous Algae Exposed to Sedimentation.

    PubMed

    Osterloff, Jonas; Nilssen, Ingunn; Eide, Ingvar; de Oliveira Figueiredo, Marcia Abreu; de Souza Tâmega, Frederico Tapajós; Nattkemper, Tim W

    2016-01-01

    This paper presents a machine learning based approach for analyses of photos collected from laboratory experiments conducted to assess the potential impact of water-based drill cuttings on deep-water rhodolith-forming calcareous algae. This pilot study uses imaging technology to quantify and monitor the stress levels of the calcareous algae Mesophyllum engelhartii (Foslie) Adey caused by various degrees of light exposure, flow intensity and amount of sediment. A machine learning based algorithm was applied to assess the temporal variation of the calcareous algae size (∼ mass) and color automatically. Measured size and color were correlated to the photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, [Formula: see text]) and degree of sediment coverage using multivariate regression. The multivariate regression showed correlations between time and calcareous algae sizes, as well as correlations between fluorescence and calcareous algae colors. PMID:27285611

  3. Red coralline algae assessed as marine pH proxies using 11B MAS NMR.

    PubMed

    Cusack, M; Kamenos, N A; Rollion-Bard, C; Tricot, G

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  4. Application of rbcL based molecular diversity analysis to algae in wastewater treatment plants.

    PubMed

    Ghosh, Sudeshna; Love, Nancy G

    2011-02-01

    The molecular diversity of algae in the final clarifier or denitrification filter outfall from three wastewater treatment plants (WWTPs) with activated sludge based treatment was analyzed using the rbcL gene as a phylogenetic marker. The rbcL gene encodes the large subunit of the CO(2) fixing enzyme RuBisCO. Among algae identified at the WWTPs were diatoms, green algae, cyanobacteria, Eustigmatophyceae, and unknown heterokonts. A high level of diversity was observed within WWTPs with 19-24 unique rbcL sequences detected at each plant. Algae composition also varied between treatment plants. Our results show that the rbcL gene can be used as a phylogenetic marker for algae diversity analysis in a wastewater treatment context. PMID:21130646

  5. The green alga Dicytosphaeria ocellata and its organic extracts alter natural bacterial biofilm communities.

    PubMed

    Sneed, Jennifer M; Pohnert, Georg

    2011-04-01

    Surfaces immersed in the marine environment are under intense fouling pressure by a number of invertebrates and algae. The regulation of this fouling can often be attributed to the bacterial biofilm that quickly develops on the surface of any available substratum in the ocean. The bacterial community composition on the surface of the green alga Dictyosphaeria ocellata was investigated and compared to those found on two other green algae, Batophora oerstedii and Cladophoropsis macromeres, and on a reference surface from three sites along the Florida Keys. Although the bacterial community composition of D. ocellata was not consistent across the sites, it was significantly different from the other algae and the reference surface at two of the three sites tested. Methanol extracts of D. ocellata significantly affected the abundance of bacteria and composition of the bacterial community on Phytagel™ plates when compared to solvent controls, suggesting that the alga regulates the bacterial community by producing active metabolites. PMID:21512919

  6. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    PubMed Central

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions. PMID:25640229

  7. The Effects of Nutrient Enrichment and Herbivore Abundance on the Ability of Turf Algae to Overgrow Coral in the Caribbean

    PubMed Central

    Vermeij, Mark J. A.; van Moorselaar, Imke; Engelhard, Sarah; Hörnlein, Christine; Vonk, Sophie M.; Visser, Petra M.

    2010-01-01

    Turf algae are multispecies communities of small marine macrophytes that are becoming a dominant component of coral reef communities around the world. To assess the impact of turf algae on corals, we investigated the effects of increased nutrients (eutrophication) on the interaction between the Caribbean coral Montastraea annularis and turf algae at their growth boundary. We also assessed whether herbivores are capable of reducing the abundance of turf algae at coral-algae boundaries. We found that turf algae cause visible (overgrowth) and invisible negative effects (reduced fitness) on neighbouring corals. Corals can overgrow neighbouring turf algae very slowly (at a rate of 0.12 mm 3 wk−1) at ambient nutrient concentrations, but turf algae overgrew corals (at a rate of 0.34 mm 3 wk−1) when nutrients were experimentally increased. Exclusion of herbivores had no measurable effect on the rate turf algae overgrew corals. We also used PAM fluorometry (a common approach for measuring of a colony's “fitness”) to detect the effects of turf algae on the photophysiology of neighboring corals. Turf algae always reduced the effective photochemical efficiency of neighbouring corals, regardless of nutrient and/or herbivore conditions. The findings that herbivores are not capable of controlling the abundance of turf algae and that nutrient enrichment gives turf algae an overall competitive advantage over corals together have serious implications for the health of Caribbean coral reef systems. At ambient nutrient levels, traditional conservation measures aimed at reversing coral-to-algae phase shifts by reducing algal abundance (i.e., increasing herbivore populations by establishing Marine Protected Areas or tightening fishing regulations) will not necessarily reduce the negative impact of turf algae on local coral communities. Because turf algae have become the most abundant benthic group on Curaçao (and likely elsewhere in the Caribbean), new conservation strategies

  8. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Reyes-Nivia, C.; Diaz-Pulido, G.; Dove, S.

    2014-09-01

    The susceptibility of crustose coralline algae (CCA) skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected pCO2 and temperature (pCO2-T) scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes) to four pCO2-T treatments (pre-industrial, present-day, SRES-B1 "reduced" pCO2, and SRES-A1FI "business-as-usual" pCO2 emission scenarios) under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200%) than those colonized by endolithic algae across all pCO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day-night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harbouring photosynthetic microborers will be less impacted than those without algal endoliths.

  9. Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Reyes-Nivia, C.; Diaz-Pulido, G.; Dove, S.

    2014-02-01

    The susceptibility of crustose coralline algae (CCA) skeletons to dissolution is predicted to increase as oceans warm and acidify. Skeletal dissolution is caused by bioerosion from endolithic microorganisms and by chemical processes associated with undersaturation of carbonate minerals in seawater. Yet, the relative contribution of algal microborers and seawater carbonate chemistry to the dissolution of organisms that cement reefs under projected CO2 and temperature (CO2-T) scenarios have not been quantified. We exposed CCA skeletons (Porolithon onkodes) to four CO2-T treatments (pre-industrial, present-day, SRES-B1 reduced CO2 emission scenario, SRES-A1FI business-as-usual CO2 emission scenario) under natural light cycles vs. constant dark conditions for 8 weeks. Dissolution rates of skeletons without photo-endoliths were dramatically higher (200%) than those colonized by endolithic algae across all CO2-T scenarios. This suggests that daytime photosynthesis by microborers counteract dissolution by reduced saturation states resulting in lower net erosion rates over day-night cycles. Regardless of the presence or absence of phototrophic microborers, skeletal dissolution increased significantly under the spring A1FI "business-as-usual" scenario, confirming the CCA sensitivity to future oceans. Projected ocean acidity and temperature may significantly disturb the stability of reef frameworks cemented by CCA, but surficial substrates harboring photosynthetic microborers will be less impacted than those without algal endoliths.

  10. Managing phosphorus fertilizer to reduce algae, maintain water quality, and sustain yields in water-seeded rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In water-seeded rice systems blue-green algae (cyanobacteria) hinder early-season crop growth by dislodging rice seedlings and reducing light. Since algae are often phosphorus (P) limited, we investigated whether changing the timing of P fertilizer application could reduce algae without reducing cro...

  11. Characterization of phosphorus forms in lake macrophytes and algae by solution 31P nuclear magnetic resonance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic macrophytes and algae are important sources of phosphorus (P) in the lake environment that cause blooms of algae under certain biogeochemical conditions. However, the knowledge of forms of P in these plants and algae and their contribution to internal loads of lake P is very limited. Witho...

  12. Ozonation of algae and odor causing substances in eutrophic waters.

    PubMed

    Huang, Winn-Jung; Cheng, Bai-Ling; Hu, Su-Kind; Chu, Chenghwa

    2006-01-01

    Consumers generally concern taste and odor in drinking water. In the Southern Taiwan, more than 5,000,000 people are suffered from earth/musty odor in drinking water, especially in the summer. Thus, ozonation of geosmin (GSM), 2-methylisoborneol (2-MIB), and 2-furfural (2-FF) in eutrophic surface waters has been studied in the present work. Experimentally, it was found that the water contained high dissolved organic carbon (DOC), humic substances, and specific ultraviolet absorbance (SUVA) resulting the highly ozone (O3) demand. The natural organic matters (NOM) in the waters had a significant effect on the ozonation of GSM, 2-MIB and 2-FF. Their destruction rates were increased with high contents of aromatics, phenolics, and SUVAs. In addition, during ozonation of raw waters, O3 and OH. played an important role in destruction of algae cells and caused excretion of extracellular organic matter (EOM) to the bulk phase. PMID:16835113

  13. Testing an Algae-Based Air-Regeneration System

    NASA Technical Reports Server (NTRS)

    Nienow, James

    1998-01-01

    The potential of an air-regeneration system based on the growth of unicellular algae on the surface of porous ceramic tubes was evaluated. The system is fairly robust with respect to environmental conditions and is capable of maintaining algal cultures for up to 365 days. Under standard conditions (50-66 micro mol/sq mm s (PPF), 450 micro mol mol of CO2), mature tubes can remove CO2 at a rate of up to 90 micro mol/sq m min. Under these conditions, approximately 200 square meters of area would be required for each member of the crew. However, the rate of uptake increases with both photon flux and CO2 concentration in accordance with Michaelis-Menton dynamics. An extrapolation to conditions of saturating light and carbon dioxide indicates that the area required can be reduced by a factor of at least 2.5.

  14. Toxicity testing with the marine algae, Symbiodinium kawagutii (Dinophyceae)

    SciTech Connect

    Gorrie, J.R.; Bidwell, J.R.; Rippingale, R.J.

    1994-12-31

    The dinoflagellate, Symbiodinium kawagutii, is among the algal taxa which exist in symbiosis with a range of marine invertebrates. S. kawagutii is commonly found in association with the Hawaiian stony coral, Montipora verrucosa. The algae has been successfully cultured in the laboratory using a common marine algal growth media (Guillard f/2), and sufficient cell densities were achieved in a 96-hr bioassay to allow statistical evaluation of toxicity data. A 96-hr EC{sub 50} of 6.47 mg/L (95% C.I.: 3.54--9.88 mg/L) was calculated after exposure to potassium dichromate. Wide distribution of the coral host and ecological importance of the symbiosis make S. kawagutii an excellent candidate species for hazard evaluation in tropical marine ecosystems. Continuing research will seek to further refine the bioassay, including the use of a microplate technique for more rapid testing.

  15. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  16. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  17. The effect of low temperature on Antarctic endolithic green algae

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Morris, G. J.; Friedmann, E. I.

    1988-01-01

    Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.

  18. Antithrombotic effects of bromophenol, an alga-derived thrombin inhibitor

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Li, Xiaohong; Li, Jing; Guo, Shuju; Su, Hua; Fan, Xiao

    2010-01-01

    Thrombin, the ultimate proteinase of the coagulation cascade, is an attractive target for the treatment of a variety of cardiovascular diseases. A bromophenol derivative named (+)-3-(2,3-dibromo-4, 5-dihydroxy-phenyl)-4-bromo-5,6-dihydroxy-1,3-dihydroiso-benzofuran 1, isolated from the brown alga Leathesia nana exhibited significant thrombin inhibitory activity. In this study, we investigated the inhibition of human thrombin in vitro with this bromophenol derivative, and its antithrombotic efficacy in vivo using the arteriovenous shunt model and the ferric chloride-induced arterial thrombosis model in rats. The results show that the bromophenol derivative is a potential inhibitor of thrombin (IC50=1.03 nmol/L). In antithrombotic experiments in vivo, the bromophenol derivative also shows good effect comparing with the control group. These data indicate that the bromophenol derivative is a potential drug for prophylaxis and the treatment of thrombotic diseases.

  19. Effects of salts on the halophilic alga Dunaliella viridis.

    PubMed

    Johnson, M K; Johnson, E J; MacElroy, R D; Speer, H L; Bruff, B S

    1968-04-01

    Determinations of the salt sensitivity of enzymes extracted from the halophilic alga Dunaliella viridis revealed that pentose phosphate isomerase, ribulose diphosphate carboxylase, glucose-6-phosphate dehydrogenase, and phosphohexose isomerase were inhibited by NaCl concentrations far lower than that in the growth medium (3.75 m). The inhibition was reversible and was not prevented by preparing the extracts in the presence of salt. Potassium, lithium, and cesium chlorides were equally inhibitory. In contrast, whole cells require rather high levels of NaCl for optimal growth, whereas growth is inhibited by low levels of the other cations. The results suggest a specific mechanism for the exclusion of sodium from the interior of the cell. PMID:5646631

  20. Genomic insights from the oleaginous model alga Nannochloropsis gaditana.

    PubMed

    Jinkerson, Robert E; Radakovits, Randor; Posewitz, Matthew C

    2013-01-01

    Nannochloropsis species have emerged as leading phototrophic microorganisms for the production of biofuels. Several isolates produce large quantities of triacylglycerols, grow rapidly, and can be cultivated at industrial scales. Recently, the mitochondrial, plastid and nuclear genomes of Nannochloropsis gaditana were sequenced. Genomic interrogation revealed several key features that likely facilitate the oleaginous phenotype observed in Nannochloropsis, including an over-representation of genes involved in lipid biosynthesis. Here we present additional analyses on gene orientation, vitamin B12 requiring enzymes, the acetyl-CoA metabolic node, and codon usage in N. gaditana. Nuclear genome transformation methods are established with exogenous DNA integration occurring via either random incorporation or by homologous recombination, making Nannochloropsis amenable to both forward and reverse genetic engineering. Completion of a draft genomic sequence, establishment of transformation techniques, and robust outdoor growth properties have positioned Nannochloropsis as a new model alga with significant potential for further development into an integrated photons-to-fuel production platform. PMID:22922732

  1. Self-deconstructing algae biomass as feedstock for transportation fuels

    SciTech Connect

    Davis, Ryan Wesley

    2014-09-01

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydrate and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.

  2. PCD and autophagy in the unicellular green alga Micrasterias denticulata.

    PubMed

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; Lütz-Meindl, Ursula

    2009-08-01

    Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments ("DNA laddering") indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress, but also that it is triggered by the ionic and not osmotic component of salinity. Additionally, results from the present and previous studies suggest that different inducers may lead to different cell death pathways in one and the same organism. PMID:19430197

  3. PCD and autophagy in the unicellular green alga Micrasterias denticulata

    PubMed Central

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; Lütz-Meindl, Ursula

    2010-01-01

    Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments (“DNA laddering”) indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress, but also that it is triggered by the ionic and not osmotic component of salinity. Additionally, results from the present and previous studies suggest that different inducers may lead to different cell death pathways in one and the same organism. PMID:19430197

  4. Satellite-Observed Algae Blooms in China's Lake Taihu

    NASA Astrophysics Data System (ADS)

    Wang, Menghua; Shi, Wei

    2008-05-01

    During the spring of 2007, a massive blue-green algae (Microcystis) bloom broke out in Lake Taihu, one of the largest inland lakes in China. This freshwater lake is located in the Yangtze River delta (Figure 1), one of the world's most urbanized and heavily populated areas. The massive bloom event became an environmental crisis that prompted officials to cut tap water supply to several million residents in nearby Wuxi city in China's Jiangsu province. The outbreak, which the Chinese government identified as a major natural disaster, forced unprepared residents to rush to buy bottled water for their normal usage. This article presents results from an analysis of that event that demonstrate an application of satellite-derived imagery for inland lake water quality monitoring, assessment, and management.

  5. Genomic insights from the oleaginous model alga Nannochloropsis gaditana

    PubMed Central

    Jinkerson, Robert E.; Radakovits, Randor; Posewitz, Matthew C.

    2013-01-01

    Nannochloropsis species have emerged as leading phototrophic microorganisms for the production of biofuels. Several isolates produce large quantities of triacylglycerols, grow rapidly, and can be cultivated at industrial scales. Recently, the mitochondrial, plastid and nuclear genomes of Nannochloropsis gaditana were sequenced. Genomic interrogation revealed several key features that likely facilitate the oleaginous phenotype observed in Nannochloropsis, including an over-representation of genes involved in lipid biosynthesis. Here we present additional analyses on gene orientation, vitamin B12 requiring enzymes, the acetyl-CoA metabolic node, and codon usage in N. gaditana. Nuclear genome transformation methods are established with exogenous DNA integration occurring via either random incorporation or by homologous recombination, making Nannochloropsis amenable to both forward and reverse genetic engineering. Completion of a draft genomic sequence, establishment of transformation techniques, and robust outdoor growth properties have positioned Nannochloropsis as a new model alga with significant potential for further development into an integrated photons-to-fuel production platform. PMID:22922732

  6. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.

    PubMed

    Nakazawa, A; Nishii, I

    2012-01-01

    A number of volvocalean green algae species were subjected to a two-step cryopreservation protocol with various cryoprotectants. Potential cryoprotectants were methanol (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylformamide, and hydroxyacetone (HA). We confirmed prior reports that MeOH was effective for cryopreserving Chlamydomonas, but did not work well for larger volvocaleans such as Volvox. In contrast, DMF and HA were effective for both unicellular and multicellular representatives. When we used a cold-inducible transposon to probe Southern blots of Volvox DNA samples taken before and after storage for one month in LN, we could detect no differences, indicating that the genome had remained relatively stable and that the transposon had not been induced by the cryopreservation procedure. We believe these methods will facilitate long-term storage of several volvocine algal species, including Volvox strains harboring transposon-induced mutations of developmental interest. PMID:22825787

  7. Simultaneous coupling of phototaxis and electrotaxis in Volvox algae.

    PubMed

    Hayashi, Yoshikatsu; Sugawara, Ken

    2014-04-01

    In nature, living creatures are affected by several stimuli simultaneously. The response of living creatures to stimuli is called taxis. In order to reveal the principles of taxis behavior in response to complex stimuli, we simultaneously applied photostimulation and electric stimulation perpendicularly to a Volvox algae solution. The probability distribution of the swimming direction showed that a large population of swimming cells moved in a direction that was the result of the composition of phototaxis and electrotaxis. More surprisingly, we uncovered the coupling of signs of taxis, i.e., coupling of phototaxis and electrotaxis induced positive electrotaxis, which did not emerge in the single stimulation experiments. We qualitatively explained the coupling of taxis based on the polarization of the swimming cells induced by the simultaneous photo- and electric stimulation. PMID:24827285

  8. Simultaneous coupling of phototaxis and electrotaxis in Volvox algae

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Sugawara, Ken

    2014-04-01

    In nature, living creatures are affected by several stimuli simultaneously. The response of living creatures to stimuli is called taxis. In order to reveal the principles of taxis behavior in response to complex stimuli, we simultaneously applied photostimulation and electric stimulation perpendicularly to a Volvox algae solution. The probability distribution of the swimming direction showed that a large population of swimming cells moved in a direction that was the result of the composition of phototaxis and electrotaxis. More surprisingly, we uncovered the coupling of signs of taxis, i.e., coupling of phototaxis and electrotaxis induced positive electrotaxis, which did not emerge in the single stimulation experiments. We qualitatively explained the coupling of taxis based on the polarization of the swimming cells induced by the simultaneous photo- and electric stimulation.

  9. Degradation of Petroleum by an Alga, Prototheca Zopfii

    PubMed Central

    Walker, J. D.; Colwell, R. R.; Petrakis, L.

    1975-01-01

    Prototheca zopfii is an achlorophyllous alga which degrades oil. It has been found to degrade 10 and 40% of a motor oil and crude oil, respectively, when tested under appropriate conditions. Degradation of the crude oil observed in this study compares well with the amount of degradation accomplished by bacteria. P. zopfii was found to degrade a greater percentage of the aromatic hydrocarbons in motor oil than of the saturated hydrocarbons and a greater percentage of saturated hydrocarbons in crude oil than of aromatic hydrocarbons. Resins and asphaltenes were produced during degradation of motor oil, whereas these fractions in crude oil were degraded. P. zopfii did not demonstrate preferential utilization of lower homologues of cycloalkanes and aromatics as has been observed with bacteria. PMID:1147621

  10. Degradation of petroleum by an alga, Prototheca zopfii.

    PubMed

    Walker, J D; Colwell, R R; Petrakis, L

    1975-07-01

    Prototheca zopfii is an achlorophyllous alga which degrades oil. It has been found to degrade 10 and 40% of a motor oil and crude oil, respectively, when tested under appropriate conditions. Degradation of the crude oil observed in this study compares well with the amount of degradation accomplished by bacteria. P. zopfii was found to degrade a greater percentage of the aromatic hydrocarbons in motor oil than of the saturated hydrocarbons and a greater percentage of saturated hydrocarbons in crude oil than of aromatic hydrocarbons. Resins and asphaltens were produced during degradation of motor oil, whereas these fractions in crude oil were degraded. P. zopfii did not demonstrate preferential utilization of lower homologues of cycloalkanes and aromatics as has been observed with bacteria. PMID:1147621

  11. Optical fiber spectrofluorimetry for in-situ algae discriminations

    NASA Astrophysics Data System (ADS)

    Lehaitre, Michel; Birot, Dominique; Feron, Patrice; Hureau, Olivier; Laine, Jacques; Charrier, Patrice

    1993-12-01

    Nowadays it becomes more and more necessary to identify suspended matter in oceans in order to increase knowledge about primary productivity as well as the transfer of contaminants or to discriminate toxic phytoplanctonic species. It has been demonstrated for many years that fluorescence can be a well suited method to obtain specific signatures of organic matter in the sea. The paper presented here describes an interesting design of instrumentation based on optical fiber use and multiwavelength analysis which will offer wide possibilities for in situ monitoring of algae. Combining the flexibility of optical fibers and video as data carrier, results show great promise for new oceanographic equipment. In addition to technical descriptions, responses of some different grown species like dinoflagelates or diatoms families will be presented and discussed.

  12. A new ketosteroid from red alga Acanthophora spicifera

    NASA Astrophysics Data System (ADS)

    Shi, Dayong; Guo, Shuju; Fan, Xiao

    2011-05-01

    A new ketosteroid, along with six known steroids, was isolated from the ethanolic extracts of red alga Acanthophora spicifera (Vahl.) Boergesen. The structures, identified using chemical and spectroscopic methods including 2D NMR, were: (1) 22-hydroxy-5α-cholest-3,6-dione, (2) 6-hydroxycholest-4-ene-3-one, (3) cholest-4-ene-3,6-dione, (4) cholest-5-ene-3β-ol, (5) 5α-cholestane-3,6-dione, (6) β-Sitosterol and (7) Saringosterol. The MTT method was used to test the cytotoxicity of the compounds against the human cancer cell lines, HCT-8, Bel-7402, BGC-823, A549 and HELA. Compounds 1, 2, 3 and 5 showed moderate cytotoxic activity against human cancer cell lines.

  13. Effect of Alexandrium tamarense on three bloom-forming algae

    NASA Astrophysics Data System (ADS)

    Yin, Juan; Xie, Jin; Yang, Weidong; Li, Hongye; Liu, Jiesheng

    2010-07-01

    We investigated the allelopathic properties of Alexandrium tamarense (Laboar) Balech on the growth of Prorocentrum donghaiense Lu, Chattonella marina (Subrahmanyan) Hara et Chihara and Heterosigma akashiwo (Hada) Hada in a laboratory experiment. We examined the growth of A. tamarense, C. marina, P. donghaiense and H. Akashiwo in co-cultures and the effect of filtrates from A. tamarense cultures in various growth phases, on the three harmful algal bloom (HAB)-forming algae. In co-cultures with A. tamarense, both C. marina and H. akashiwo were dramatically suppressed at high cell densities; in contrast, the growth of P. donghaiense varied in different inoculative ratios of A. tamarense and P. donghaiense. When the ratio was 1:1 ( P. donghaiense: A. tamarense), growth of P. donghaiense was inhibited considerably, while the growth of P. donghaiense was almost the same as that of the control when the ratio was 9:1. The growth difference of P. donghaiense, C. marina and H. akashiwo when co-cultured with A. tamarense indicated that the allelopathic effect may be one of the important factors in algal competition and phytoplankton succession involving A. tamarense. In addition, the filtrate from A. tamarense culture had negative impacts on these three HAB algae, and such inhibition varied with different growth phases of A. tamarense in parallel with reported values of PSP toxin content in Alexandrium cells. This implied that PSP toxin was possibly involved in allelopathy of A. tamarense. However, the rapid decomposition and inactivation of PSP toxin above pH 7 weakened this possibility. Further studies on the allelochemicals responsible for the allelopathy of A. tamarense need to be carried out in future.

  14. Ecotoxicological effects of Mikado and Viper on algae and daphnids.

    PubMed

    Marques, C R; Gonçalves, A M M; Pereira, R; Gonçalves, F

    2012-12-01

    The toxicity of single and combined formulated herbicides (Mikado and Viper) was assessed on several endpoints in species from two trophic levels: algae growth-Pseudokirchneriella subcapitata and Chlorella vulgaris-immobilization and life-history traits (only for single compound toxicity) of daphnids-Daphnia longispina and Daphnia magna. Viper was the most toxic formulated herbicide. It was hypothesized that the toxicity of both formulated herbicides could have been enhanced by adjuvants, especially for Viper. In most cases, the sublethal endpoints were the most sensitive and affected by both formulations, comparatively to their acute effects. Concentration addition (CA) and independent action (IA) models provided an accurate description of Mikado and Viper joint action on algae growth and immobilization of daphnids, although significant deviations were always detected. A low-dose antagonism and high-dose synergism were identified for P. subcapitata, whereas C. vulgaris response deviated antagonistically from CA and synergistically from IA. For both daphnids, however, synergistic effects were observed for higher mixture concentrations. Under a regulatory standpoint, CA provided the most conservative estimation either because the mixture effects were overestimated or less subestimated than IA. Overall, the great sensitivity differences observed within species did not allow the conclusion that one trophic level was more tolerant than the other. Instead, P. subcapitata was always the most sensitive species to both herbicide formulations, followed by D. longispina, while D. magna and C. vulgaris were the most tolerant species. On a whole, further studies are needed toward a comprehensive understanding of herbicides mode of action, their effects at lower biological-level endpoints, and under different mixture designs. PMID:21374788

  15. Evidence for methane production by the marine algae Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  16. Mannitol metabolism in brown algae involves a new phosphatase family.

    PubMed

    Groisillier, Agnès; Shao, Zhanru; Michel, Gurvan; Goulitquer, Sophie; Bonin, Patricia; Krahulec, Stefan; Nidetzky, Bernd; Duan, Delin; Boyen, Catherine; Tonon, Thierry

    2014-02-01

    Brown algae belong to a phylogenetic lineage distantly related to green plants and animals, and are found predominantly in the intertidal zone, a harsh and frequently changing environment. Because of their unique evolutionary history and of their habitat, brown algae feature several peculiarities in their metabolism. One of these is the mannitol cycle, which plays a central role in their physiology, as mannitol acts as carbon storage, osmoprotectant, and antioxidant. This polyol is derived directly from the photoassimilate fructose-6-phosphate via the action of a mannitol-1-phosphate dehydrogenase and a mannitol-1-phosphatase (M1Pase). Genome analysis of the brown algal model Ectocarpus siliculosus allowed identification of genes potentially involved in the mannitol cycle. Among these, two genes coding for haloacid dehalogenase (HAD)-like enzymes were suggested to correspond to M1Pase activity, and thus were named EsM1Pase1 and EsM1Pase2, respectively. To test this hypothesis, both genes were expressed in Escherichia coli. Recombinant EsM1Pase2 was shown to hydrolyse the phosphate group from mannitol-1-phosphate to produce mannitol but was not active on the hexose monophosphates tested. Gene expression analysis showed that transcription of both E. siliculosus genes was under the influence of the diurnal cycle. Sequence analysis and three-dimensional homology modelling indicated that EsM1Pases, and their orthologues in Prasinophytes, should be seen as founding members of a new family of phosphatase with original substrate specificity within the HAD superfamily of proteins. This is the first report describing the characterization of a gene encoding M1Pase activity in photosynthetic organisms. PMID:24323504

  17. Antiherpetic activities of sulfated polysaccharides from green algae.

    PubMed

    Lee, Jung-Bum; Hayashi, Kyoko; Maeda, Masaakira; Hayashi, Toshimitsu

    2004-09-01

    In order to evaluate the potency of novel antiviral drugs, 11 natural sulfated polysaccharides (SPs) from 10 green algae ( Enteromorpha compressa, Monostroma nitidum, Caulerpa brachypus, C. okamurai, C. scapelliformis, Chaetomorpha crassa, C. spiralis, Codium adhaerens, C. fragille, and C. latum) and 4 synthetic sulfated xylans (SXs) prepared from the beta-(1,3)-xylan of C. brachypus, were assayed for anti-Herpes simplex virus type 1 (HSV-1) activity. Except for one from E. compressa, all SPs showed potent anti-HSV-1 activities with 50 % inhibitory concentrations (IC (50)) of 0.38 - 8.5 microg/mL, while having low cytotoxicities with 50 % inhibitory concentrations of >2900 microg/mL. Anti-HSV-1 activities of SXs were dependent on their degrees of sulfation. To delineate the drug-sensitive phase, 4 polysaccharides, which showed potent anti-HSV-1 activities, were applied to time-of-addition experiments. Among the polysaccharides tested, 3 polysaccharides (SX4, SP4 from C. brachypus, and SP11 from C. latum) showed strong anti-HSV-1 activities with IC (50) of 6.0, 7.5, and 6.9 microg/mL, respectively, even when added to the medium 8 h post-infection. These experiments demonstrated that some sulfated polysaccharides not only inhibited the early stages of HSV-1 replication, such as virus binding to and penetration into host cells, but also interfered with late steps of virus replication. These results revealed that some sulfated polysaccharides from green algae should be promising candidates of antiviral agents which might act on different stages in the virus replication cycle. PMID:15386190

  18. [Mechanism of the inhibitory action of allelochemical dibutyl phthalate on algae Gymnodinium breve].

    PubMed

    Bie, Cong-Cong; Li, Feng-Min; Wang, Yi-Fei; Wang, Hao-Yun; Zhao, Ya-Han; Zhao, Wei; Wang, Zhen-Yu

    2012-01-01

    The aim of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. The effects of DBP on malonaldehyde, subcellular structure and superoxide dismutase (SOD) isoforms were investigated. The results showed that MDA accumulated in the algae cell under DBP exposure, and for the 3 mg x L(-1) DBP treated algae culture a peak value of 0.34 micromol x (10(9) cells) (-1) occurred at 72 h, which was about 2. 3 times than that of the control. TEM pictures showed the disruption of DBP on the subcellular structure of G. breve. A morphological phenomenon appeared that the algae cell was commonly found small tubules or apical parts around the cell membrane, and almost all normal cell organelles were indistinguishable finally. The activity of CuZn-SOD (main cytoplast located isoform with little in cloroplast) under DBP exposure was higher than that of the control, and no significant difference was observed on Fe-SOD (chloroplast located isoform) activity, but for the Mn-SOD (mitochondrial isoform), the activity was significantly inhibited. These results indicated that DBP might inhibit the algae growth from the plasma membrane and the mitochondria, resulting in oxidative damage in algae cell and a final death. This paper will give a theoretical support to the practical usage of the allelochemical on red tide algae. PMID:22452215

  19. Possible future effects of large-scale algae cultivation for biofuels on coastal eutrophication in Europe.

    PubMed

    Blaas, Harry; Kroeze, Carolien

    2014-10-15

    Biodiesel is increasingly considered as an alternative for fossil diesel. Biodiesel can be produced from rapeseed, palm, sunflower, soybean and algae. In this study, the consequences of large-scale production of biodiesel from micro-algae for eutrophication in four large European seas are analysed. To this end, scenarios for the year 2050 are analysed, assuming that in the 27 countries of the European Union fossil diesel will be replaced by biodiesel from algae. Estimates are made for the required fertiliser inputs to algae parks, and how this may increase concentrations of nitrogen and phosphorus in coastal waters, potentially leading to eutrophication. The Global NEWS (Nutrient Export from WaterSheds) model has been used to estimate the transport of nitrogen and phosphorus to the European coastal waters. The results indicate that the amount of nitrogen and phosphorus in the coastal waters may increase considerably in the future as a result of large-scale production of algae for the production of biodiesel, even in scenarios assuming effective waste water treatment and recycling of waste water in algae production. To ensure sustainable production of biodiesel from micro-algae, it is important to develop cultivation systems with low nutrient losses to the environment. PMID:25058933

  20. Can benthic algae mediate larval behavior and settlement of the coral Acropora muricata?

    NASA Astrophysics Data System (ADS)

    Denis, V.; Loubeyres, M.; Doo, S. S.; de Palmas, S.; Keshavmurthy, S.; Hsieh, H. J.; Chen, C. A.

    2014-06-01

    The resilience of coral reefs relies significantly on the ability of corals to recover successfully in algal-dominated environments. Larval settlement is a critical but highly vulnerable stage in the early life history of corals. In this study, we analyzed how the presence of two upright fleshy algae, Sargassum mcclurei (SM) and Padina australis (PA), and one crustose coralline algae, Mesophyllum simulans (MS), affects the settlement of Acropora muricata larvae. Coral larvae were exposed to seawater flowing over these algae at two concentrations. Larval settlement and mortality were assessed daily through four variables related to their behavior: swimming, substratum testing, metamorphosis, and stresses. Temperature, dissolved oxygen, pH, algal growth, and photosynthetic efficiency were monitored throughout the experiment. Results showed that A. muricata larvae can settle successfully in the absence of external stimuli (63 ± 6 % of the larvae settled in control treatments). While algae such as MS may stimulate substrate testing and settlement of larvae in the first day after competency, they ultimately had a lower settlement rate than controls. Fleshy algae such as PA, and in a lesser measure SM, induced more metamorphosis than controls and seemed to eventually stimulate settlement. A diverse combination of signals and/or modifications of microenvironments by algae and their associated microbial communities may explain the pattern observed in coral settlement. Overall, this study contributes significantly to the knowledge of the interaction between coral and algae, which is critical for the resilience of the reefs.