Science.gov

Sample records for cu fe alloys

  1. Effect of Cu content on the defect evolution in Fe-Cu alloys investigated by PALS

    NASA Astrophysics Data System (ADS)

    Cao, X. Z.; Lai, X.; Cheng, G. D.; Jin, S. X.; Zhang, X.; Zhang, P.; Wang, B. Y.

    2016-01-01

    The effect of Cu content on the evolution of defects in Fe-x%Cu alloys (x= 0.15, 0.3, and 0.6) were investigated using Positron Annihilation Lifetime Spectroscopy (PALS). The vacancy-type and Cu-vacancy complexes defects were respectively produced by quenching from 1173 K and cold-rolled deformation followed by isochronal annealing. The PALS results with isochronal annealing showed that the temperature of defects recovery increased in deformed Fe-Cu alloys with Cu content. The increment of Cu content also restrained the migration of vacancies in as-quenched Fe-Cu alloys.

  2. A nanoglass alloying immiscible Fe and Cu at the nanoscale.

    PubMed

    Chen, Na; Wang, Di; Feng, Tao; Kruk, Robert; Yao, Ke-Fu; Louzguine-Luzgin, Dmitri V; Hahn, Horst; Gleiter, Herbert

    2015-04-21

    Synthesized from ultrafine particles with a bottom-up approach, nanoglasses are of particular importance in pursuing unique properties. Here, we design a metallic nanoglass alloy from two components of ∼Cu64Sc36 and ∼Fe90Sc10 nanoglasses. With nanoalloying mutually immiscible Fe and Cu, the properties of the nanoglass alloys can be tuned by varying the proportions of the ∼Fe90Sc10 component. This offers opportunity to create novel metallic glass nanocomposites and sheds light on building a structure-property correlation for the nanoglass alloys. PMID:25792519

  3. Irradiation-induced patterning in dilute Cu-Fe alloys

    NASA Astrophysics Data System (ADS)

    Stumphy, B.; Chee, S. W.; Vo, N. Q.; Averback, R. S.; Bellon, P.; Ghafari, M.

    2014-10-01

    Compositional patterning in dilute Cu1-xFex (x ≈ 12%) induced by 1.8 MeV Kr+ irradiation was studied as a function of temperature using atom probe tomography. Irradiation near room temperature led to homogenization of the sample, whereas irradiation at 300 °C and above led to precipitation and macroscopic coarsening. Between these two temperatures the irradiated alloys formed steady state patterns of composition where precipitates grew to a fixed size. The size in this regime increased somewhat with temperature. It was also observed that the steady state concentrations of Fe in Cu matrix and Cu in the Fe precipitates both greatly exceeded their equilibrium solubilities, with the degree of supersaturation in each phase decreasing with increasing temperature. In the macroscopic coarsening regime, the Fe-rich precipitates showed indications of a “cherry-pit” structure, with Cu precipitates forming within the Fe precipitates. In the patterning regime, interfaces between Fe-rich precipitates and the Cu-rich matrix were irregular and diffuse.

  4. Magnetic properties of Fe-Cu alloys prepared by pulsed electrodeposition

    SciTech Connect

    Noce, R. D.; Barthem, V. M. T. S.; Magalhaes, S. D. de; Wolf, W.; Castro, A. C. de; Guimaraes, R. B.; Pires, M. J. M.; Macedo, W. A. A.; Givord, D.

    2009-11-01

    Fe{sub x}Cu{sub 100-x} metastable alloys were prepared by pulsed electrodeposition for 5Fe-rich alloys crystallize in the bcc structure of alpha-Fe and the Fe-poor ones in the fcc structure of Cu. The magnetic properties of the ferromagnetic Fe-rich alloys (x>50) are reminiscent of those observed in Fe-Cu alloys prepared by other methods. The Curie temperature decreases regularly with decreasing x. In the Fe-poor alloys (x<=30), the observed properties indicate that Fe-rich clusters form within a Cu-rich matrix. In the x=10 alloy, the Fe clusters are found to be superparamagnetic at room temperature, but a superferromagnetic order develops below a critical temperature of about 120 K. It is suggested that the intercluster coupling is mediated by Ruderman-Kittel-Kasuya-Yosida interactions which are predominantly positive due to the very short intercluster distances.

  5. Crystallization behavior and magnetic properties in High Fe content FeBCSiCu alloy system

    NASA Astrophysics Data System (ADS)

    Fan, X. D.; Shen, B. L.

    2015-07-01

    High Fe content FeBCSiCu nanocrystalline alloys are prepared by annealing melt-spun amorphous ribbons with aim at increasing saturation magnetic flux density. Microstructures identified by XRD and TEM reveal that Cu addition inhibits the surface crystallization of Fe86B7C7 alloy and improve its glass-forming ability. Activation energy of crystallization calculated by Kissinger's equation indicates that both Cu and Si addition promotes the precipitation of α-Fe phase and improves the thermal stability. VSM and DC B-H loop tracer measurements show that the Fe85.5B7C6Si1Cu0.5 nanocrystalline alloy exhibits high saturation magnetic flux density of 1.8 T and low coercivity of 10 A/m, respectively. AC properties measured by AC B-H analyzer show this alloy exhibits low core loss of 0.35 W/kg at 1 T at 50 Hz. Low material cost and convenient productivity make the Fe85.5B7C6Si1Cu0.5 nanocrystalline alloy an economical application in industry.

  6. Abnormal magnetization behaviors in Sm-Ni-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Yang, W. Y.; Zhang, Y. F.; Zhao, H.; Chen, G. F.; Zhang, Y.; Du, H. L.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2016-06-01

    The magnetization behaviors in Sm-Ni-Fe-Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu5-type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu5-type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (Hcm) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10-15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion.

  7. Monte Carlo simulations of copper clustering in Fe-Cu alloys under irradiation

    NASA Astrophysics Data System (ADS)

    Kwon, J.; Kwon, S. C.; Hong, J. H.

    2004-10-01

    We present the computational approach for studying the microstructures of Cu clusters in Fe-Cu alloys by combining the molecular dynamics (MD) simulation and Monte Carlo methods. The MD simulation is used to characterize the primary damage resulting from the displacement cascade in Fe. Then, using the Metropolis Monte Carlo methods, the microstructure of the Cu clusters is predicted under the assumption that the system will evolve towards the equilibrium state. The formation of the Cu clusters is apparent for Fe-Cu alloys of a higher Cu content (1.0 w/o), whereas the degree of Cu clustering is not significant for the lower Cu content (0.1 w/o) alloys. The atomic configuration of the Cu-vacancy complex under irradiation, produced by this simulation, is in a fair agreement with the experiments. The simulation is expected to provide important information on the Cu-cluster morphology, which is useful for experimental data analysis.

  8. Metastable Demixing of Supercooled Cu-Co and Cu-Fe Alloys in an Oxide Flux

    NASA Technical Reports Server (NTRS)

    Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.

    1998-01-01

    A systematic study on the liquid separation in supercooled Cu-Co and Cu-Fe alloys was performed using a melt fluxing which permits high supercooling to be achieved. Moreover, this method renders it possible to directly measure binodal temperatures and establish metastable liquid miscibility gap (LMG). All phase-separated samples at compositions ranging from 10 to 80 wt pct Co or to 83 wt pct Fe were found to exhibit droplet-shaped morphologies, in spite of various droplet distributions. Uniformly dispersed microstructures were obtained as the minority component was less than 20 vol.%; while beyond this percentage, serious coarsening was brought about. Calculations of the miscibility gap in the Cu-Co system and Stokes movement velocity of Co and Fe droplets in Cu matrix were made to analyze the experimental results.

  9. Effect of Thermomechanical Processing on the Microstructure and Properties of a Cu-Fe-P Alloy

    NASA Astrophysics Data System (ADS)

    Dong, Qiyi; Shen, Leinuo; Cao, Feng; Jia, Yanlin; Liao, Kaiju; Wang, Mingpu

    2015-04-01

    A Cu-0.7Fe-0.15P (wt.%) alloy was designed, and its comprehensive properties, especially electrical conductivity and temper-softening resistance of the designed alloy, were higher than those of traditional Cu-Fe-P alloys. The microstructure of this alloy was investigated with optical microscopy, scanning electron microscopy, and transmission electron microscopy. The particle of secondary phase was confirmed to be Fe2P with x-ray spectroscopy and digital diffractogram. By virtue of precipitation hardening and work hardening, the tensile strength and electrical conductivity of Cu-0.7Fe-0.15P alloy were 498 MPa and 62% IACS, respectively. The electrical conductivity of this alloy can be up to 92% IACS due to the complete precipitation of Fe2P. After repeating the cold rolling and aging process for three times, the tensile strength, elongation, and conductivity of this alloy were 467 MPa, 22%, and 78% IACS, respectively. Due to the low driving force of recrystallization and the pinning effect of fine dispersed Fe2P, the alloy with low deformation rate showed excellent softening resistance. The designed alloy can be used as a high-strength, high-electrical-conductivity lead-frame alloy.

  10. Specific heat capacity and dendritic growth kinetics of liquid peritectic Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Xia, Z. C.; Wang, W. L.; Luo, S. B.; Wei, B.

    2016-08-01

    The specific heat and dendritic growth of highly undercooled peritectic Fe-Cu alloys were investigated by electromagnetic levitation technique. The specific heat values of liquid peritectic Fe92.8Cu7.2 and hyperperitectic Fe88.5Cu11.5 alloys were determined to be 40.4 and 39.58 J·mol-1·K-1 over wide temperature ranges. The measured growth velocities rose rapidly with increasing undercooling, which reached 69 and 68 m·s-1 at the maximum undercoolings of 401 K (0.23 TL) and 468 K (0.27 TL). The microstructures of peritectic Fe-Cu alloys were refined significantly with enhanced undercooling. Theoretical analyses showed that almost segregationless solidification was realized if undercooling was sufficiently large.

  11. Effect of Boron and Cerium on Corrosion Resistance of Cu -Fe -P Alloy

    NASA Astrophysics Data System (ADS)

    Zou, Jin; Lu, Lei; Lu, De-ping; Liu, Ke-Ming; Chen, Zhi-bao; Zhai, Qi-jie

    2016-03-01

    The effects of B and Ce on the corrosion resistance of Cu-0.22Fe-0.06P alloy were investigated by salt spray and electrochemical tests. The corrosion morphology was studied by scanning electron microscopy. The corrosion products were characterized by energy-dispersive x-ray spectroscopy and x-ray diffraction analysis. The impurity content was determined by inductively coupled plasma mass spectrometry. The conductivity was measured using an eddy current conductivity meter. The grains of Cu-0.22Fe-0.06P alloy were refined by the addition of B and Ce. The electrochemical corrosion process of alloy is retarded due to purification effect of B and Ce. After the addition of a trace amount of B, the corrosion resistance of the alloy decreased. The corrosion resistance of Cu-0.22Fe-0.06P-0.025B-0.05Ce was better than that of Cu-0.22Fe-0.06P-0.025B due to the fact that the purification effect of Ce is better than that of B. The main corrosion products of the Cu-Fe-P alloys in a NaCl solution are Cu2Cl(OH)3 and Cu2O. The addition of trace amounts of B and Ce did not change the components of the corrosion product.

  12. Local Structures of Mechanically Alloyed Al70Cu20Fe10 Nanocomposites Studied by XRD and XAFS

    SciTech Connect

    Yin Shilong; Qian Liying; He Bo; Zou Shaobo; Wei Shiqiang; Bian Qing

    2007-02-02

    Ternary Al70Cu20Fe10 alloy nano-composites prepared by mechanical alloying are characterized by X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). The results indicate that after milled for 10 hours, the coordination environment around Cu atoms is changed largely and becomes disordered, but the local structure of Fe atoms still remains as that of {alpha}-Fe. This indicates the forming of inter-metallic compound Al2Cu with body center cubic structure. Even if the milling time is extended to 40 hours, only small amount of {alpha}-Fe can be alloyed to produce Al-Fe-Cu alloy. However, the annealing treatment at 700 deg. C can drive the {alpha}-Fe to incorporate into the Al2Cu compound to form an icosahedral alloy phase.

  13. Overlapping solid solubility in mechanically alloyed Fe-Ni and Fe-Cu

    NASA Astrophysics Data System (ADS)

    Schilling, P. J.; Palshin, V.; Tittsworth, R. C.; He, J. H.; Ma, E.

    2003-12-01

    Solid solutions formed by mechanical alloying in the negative heat of mixing Fe-Ni system and the positive heat of mixing Fe-Cu system were studied. X-ray absorption near edge structure (XANES) spectroscopy data were analyzed to obtain the phase fractions and phase compositions for various overall compositions across the bcc/fcc two-phase region. For both systems, at each nominal composition of the powder mixture, the two solutions formed both have the same composition as the overall alloy. It is concluded that the two-phase coexistence represents an extended region of overlapping solubility for the two phases, rather than the usual two-phase region or a clear switchover at the concentration where the two phases have the same free energy. In terms of these features, the two binary systems, one with negative heat of mixing and one with positive heat of mixing, behave the same way. The external forcing action of mechanical alloying at low temperatures drives the system toward composition homogenization. There is no stable or metastable equilibrium, and the common tangent construction and lever rule are not applicable. What results is a novel two-phase coexistence which is defined by a region of overlapping solubility, rather than the normal solubility gap. That there can be two polymorphs at each composition even after the long ball-milling treatment represents a new type of steady-state two-phase coexistence that is completely different from the normal two-phase region dictated by thermodynamics.

  14. Comparison of the Crystallization Behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-Based Amorphous Soft Magnetic Alloys

    NASA Astrophysics Data System (ADS)

    Smith, Casey; Katakam, Shravana; Nag, Soumya; Zhang, Y. R.; Law, J. Y.; Ramanujan, Raju V.; Dahotre, Narendra B.; Banerjee, Rajarshi

    2014-06-01

    The role of the solute elements, copper, and niobium, on the different stages of de-vitrification or crystallization of two amorphous soft magnetic alloys, Fe73.5Si13.5B9Nb3Cu1, also referred to as FINEMET, and a Fe76.5Si13.5B9Cu1 alloy, a model composition without Nb, has been investigated in detail by coupling atom probe tomography and transmission electron microscopy. The effects of copper clustering and niobium pile-up at the propagating interface between the α-Fe3Si nanocrystals and the amorphous matrix, on the nucleation and growth kinetics have been addressed. The results demonstrate that while Cu clustering takes place in both alloys in the early stages, the added presence of Nb in FINEMET severely restricts the diffusivity of solute elements such as Cu, Si, and B. Therefore, the kinetics of solute partitioning and mobility of the nanocrystal/amorphous matrix interface is substantially slower in FINEMET as compared to the Fe76.5Si13.5B9Cu1 alloy. Consequently, the presence of Nb limits the growth rate of the α-Fe3Si nanocrystals in FINEMET and results in the activation of a larger no. of nucleation sites, leading to a substantially more refined microstructure as compared to the Fe76.5Si13.5B9Cu1 alloy.

  15. The lattice structure of nanocrystalline Fe-Cu-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Liu, X. D.; Lu, K.; Ding, B. Z.; Hu, Z. Q.; Zhu, J.; Jiang, J.

    1994-02-01

    Nanocrystalline Fe-Cu-Si-B alloys with different grain sizes were synthesized by crystallization of an amorphous alloy. Two nanophases, α-Fe(Se) and Fe 2B, were noticed in all samples. XRD results reveal that the lattice constant of the α-Fe(Si) phase increases; the a-axis is elongated and the c-axis is shortened in the Fe 2B phase upon reducing the grain size. Based on the thermodynamic analysis, the changes in the lattice parameters were attributed to the solution of vacancies in the above two phases. Owing to the lattice distortion of the α-Fe(Si) and Fe 2B phases, the crystallite with small size is found to exhibit a disordered character to some extent, which is manifested by large values of the half linewidth (HLW) and isomer shift (IS) of various Fe configurations in the Mössbauer parameters.

  16. Superelastic Deformation in Polycrystalline Fe-Ni-Co-Ti-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Titenko, Anatoliy N.; Demchenko, Lesya D.

    2012-12-01

    This article presents the deformation behavior of aged ferromagnetic alloys of Fe-Ni-Co-Ti-Cu system caused by phase transitions. The basic characteristic temperatures of martensitic transformation (MT) of the alloys were determined from temperature dependences of low-field magnetic susceptibility. The coefficients of thermal expansion of high- and low-temperature phases, as well as values of volume effect were obtained from dilatometric data. Peculiarities of deformation behavior were studied from the analysis of stress-strain curves, registered at uniaxial tension. It was found that investigated alloys have a substantial superelastic deformation and a low value of the temperature hysteresis of MT with the volume effect of 2%, which is typical for thermoelastic alloys of Fe-Ni-Co-Ti-Cu system.

  17. SDAS, Si and Cu Content, and the Size of Intermetallics in Al-Si-Cu-Mg-Fe Alloys

    NASA Astrophysics Data System (ADS)

    Sivarupan, Tharmalingam; Taylor, John Andrew; Cáceres, Carlos Horacio

    2015-05-01

    Plates of Al-(a)Si-(b)Cu-Mg-(c)Fe alloys with varying content of (mass pct) Si ( a = 3, 4.5, 7.5, 9, 10, or 11), Cu ( b = 0, 1, or 4), and Fe ( c = 0.2, 0.5 or 0.8) were cast in sand molds with a heavy chill at one end to ensure quasi-directional solidification over a wide range of Secondary Dendrite Arm Spacing (SDAS). Statistical analysis on the size of the β-Al5FeSi, α-Al8Fe2Si, or Al2Cu intermetallics on Backscattered Electron images showed that a high Si content reduced the size of the β platelets in alloys with up to 0.5 Fe content regardless of the SDAS, whereas at small SDAS the refining effect extended up to 0.8 Fe, and involved α-phase intermetallics which replaced the beta platelets at those concentrations. At low Si contents, a high Cu level appeared to have similar refining effects as increased Si, through the formation of α-phase particles in the post-eutectic stage which agglomerated with the Al2Cu intermetallics. A high content of Si appears to make the overall refining process less critical in terms of SDAS/cooling rate.

  18. New Fe-Co-Ni-Cu-Al-Ti Alloy for Single-Crystal Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Bazhenov, V. E.; Moiseev, A. V.; Kireev, A. V.

    2016-03-01

    A new alloy intended for single-crystal permanent magnets has been suggested. The new alloy has been designed based on the well-known Fe-Co-Ni-Cu-Al-Ti system and contains to 1 wt % Hf. The alloy demonstrates an enhanced potential ability for single-crystal forming in the course of unidirectional solidification of ingot. Single-crystal permanent magnets manufactured from this alloy are characterized by a high level of magnetic properties. When designing the new alloy, computer simulation of the phase composition and calculations of solidification parameters of complex metallic systems have been performed using the Thermo-Calc software and calculation and experimental procedures based on quantitative metallographic analysis of quenched structures. After the corresponding heat treatment, the content of high-magnetic phase in the alloy is 10% higher than that in available analogous alloys.

  19. Bulk metallic glass formation in Zr-Cu-Fe-Al alloys

    SciTech Connect

    Jin Kaifeng; Loeffler, Joerg F.

    2005-06-13

    We have discovered a series of bulk metallic glass-forming alloys of composition (Zr{sub x}Cu{sub 100-x}){sub 80}(Fe{sub 40}Al{sub 60}){sub 20} with x=68-77 and have investigated them by x-ray diffraction, small-angle neutron scattering, and differential scanning calorimetry. All of these alloys exhibit a calorimetric glass transition temperature of 670 Kalloy Zr{sub 58}Cu{sub 22}Fe{sub 8}Al{sub 12}. In rod shape this alloy has a critical casting thickness of 13 mm, as verified by detailed casting experiments, while alloys with x=68 and 77 can still be cast to a thickness of 5 mm. Furthermore, the region where glassy samples with a thickness of 0.5 mm can be prepared extends from x=62-81. The best glass-former, Zr{sub 58}Cu{sub 22}Fe{sub 8}Al{sub 12}, has a tensile yield strength of 1.71 GPa and shows an elastic limit of 2.25%. This new class of Ni-free Zr-based alloys is potentially very interesting for biomedical applications.

  20. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  1. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  2. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  3. Magnetic properties of nanocrystalline FeCuNb(Sb/W)SiB alloys

    SciTech Connect

    Degro, J.; Vojtanik, P.; Konc, M.; Zentko, A.; Csach, K.; Ocelik, V.

    1994-03-01

    The magnetic relaxation {Delta}r/r, the perminvar critical field H{sub CR}, the initial susceptibility {chi}{sub 10}, the coercive field H{sub c} as a function of annealing temperature in Fe{sub 73.5}Cu{sub 1}Nb{sub 2.95}Sb{sub 0.05}Si{sub 13.5}B{sub 9} and Fe{sub 73.5}Cu{sub 1}W{sub 3}Si{sub 13.5}B{sub 9} alloys were investigated. DSC measurements and thermomagnetic analyses were also done. The results using random anisotropy model can be explained.

  4. Study of Fe Zr U B and Fe Zr U Cu B nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Sólyom, A.; Petrovič, P.; Marko, P.; Kováč, J.; Konczos, G.

    2000-06-01

    The influence of uranium and copper additives on the crystallization process and magnetic properties was studied in Fe 87Zr 7B 6 amorphous alloys. The addition of copper resulted in homogeneous nanocrystalline precipitates and improvement of soft magnetic properties. The alloying with uranium led to the formation of inhomogeneous microstructure and increase in coercive force.

  5. Thermodynamic analysis of binary Fe85B15 to quinary Fe85Si2B8P4Cu1 alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Takeuchi, A.; Zhang, Y.; Takenaka, K.; Makino, A.

    2015-05-01

    Fe-based Fe85B15, Fe84B15Cu1, Fe82Si2B15Cu1, Fe85Si2B12Cu1, and Fe85Si2B8P4Cu1 (NANOMET®) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (Bs) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔHx1 and ΔHx2) and their crystallization temperatures (Tx1 and Tx2), respectively. The ratio ΔHx1/ΔHx2 measured by DSC experimentally tended to be extremely high for the Fe85Si2B8P4Cu1 alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (Vf) of α-Fe tends to increase from 0.56 for the Fe85B15 to 0.75 for the Fe85Si2B8P4Cu1 alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (Gα-Fe and Gamor) shows that a relationship Gα-Fe ˜ Gamor holds for the Fe85Si2B12Cu1, whereas Gα-Fe < Gamor for the Fe85Si2B8P4Cu1 alloy at Tx1 and that an extremely high Vf = 0.75 was achieved for the Fe85Si2B8P4Cu1 alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe85Si2B8P4Cu1 alloy barely forms amorphous phase, which, in turn, leads to high Vf and resultant high Bs.

  6. Novel Amorphous Fe-Zr-Si(Cu) Boron-free Alloys

    SciTech Connect

    Kopcewicz, M.; Grabias, A.; Latuch, J.; Kowalczyk, M.

    2010-07-13

    Novel amorphous Fe{sub 80}(Zr{sub x}Si{sub 20-x-y})Cu{sub y} boron-free alloys, in which boron was completely replaced by silicon as a glass forming element, have been prepared in the form of ribbons by a melt quenching technique. The X-ray diffraction and Moessbauer spectroscopy measurements revealed that the as-quenched ribbons with the composition of x = 6-10 at. % and y = 0, 1 at. % are predominantly amorphous. DSC measurements allowed the estimation of the crystallization temperatures of the amorphous alloys. The soft magnetic properties have been studied by the specialized rf-Moessbauer technique in which the spectra were recorded during an exposure of the samples to the rf field of 0 to 20 Oe at 61.8 MHz. Since the rf-collapse effect observed is very sensitive to the local anisotropy fields it was possible to evaluate the soft magnetic properties of amorphous alloys studied. The rf-Moessbauer studies were accompanied by the conventional measurements of the quasi-static hysteresis loops from which the magnetization and coercive fields were estimated. It was found that amorphous Fe-Zr-Si(Cu) alloys are magnetically very soft, comparable with those of the conventional amorphous B-containing Fe-based alloys.

  7. Structural and magnetic properties of Cu-alloyed FePd films

    NASA Astrophysics Data System (ADS)

    Polit, A.; Makarov, D.; Brombacher, C.; Krupinski, M.; Perzanowski, M.; Zabila, Y.; Albrecht, M.; Marszałek, M.

    2015-05-01

    Multilayer films [Cu(d Å)/Fe(9 Å)/Pd(11 Å)]5 were deposited at room temperature on Si(001)/SiO2(400 nm) substrates. In order to induce chemical L10 ordering, the as-deposited samples were post-annealed by rapid thermal annealing (RTA) at 600 °C for 90 s followed additionally by heating in ultra-high vacuum (UHV) at 700 °C up to several hours. In this study the impact of post-annealing on the structural and magnetic properties of FePdCu alloy films in dependence on the Cu content was investigated. It was found that the addition of Cu to the FePd alloy has a strong influence on the chemical ordering process and the (001) texture formation. After the RTA treatment only an isotropic distribution of the easy axis of magnetization with coercive fields in the range of a few hundred mT was observed. In contrast, samples which were additionally heated for 1 h at 700 °C revealed an out-of-plane easy axis of magnetization with an effective magnetic anisotropy of about 2×105 J/m3 for the sample containing 10 at% of Cu.

  8. Investigation of Cu-Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding

    NASA Astrophysics Data System (ADS)

    Zhou, Shengfeng; Zhang, Tianyou; Xiong, Zheng; Dai, Xiaoqin; Wu, Chao; Shao, Zhishong

    2014-07-01

    The Cu-Fe-based coating was produced on copper alloy substrate by laser induction hybrid rapid cladding (LIHRC). The results showed that the maximum laser scanning speed and the maximum powder feeding rate can be increased to 3200 mm/min and 110 g/min, respectively. The coating was mainly composed of α-Fe and ɛ-Cu phases. At the bottom of coating, Cu-rich matrix took on planar growth and columnar dendritic morphology. In the center of coating, Fe-rich spherical particles containing a supersaturated Cu were embedded in Cu-rich matrix and many fine Cu-rich grains were precipitated inside the Fe-rich spherical particles. However, at the top of coating, the smaller Fe-rich spherical particles were embedded inside the larger Cu-rich spherical particles which were embedded in the dendritic Fe-rich matrix. The microhardness of coating was much three times higher than that of substrate.

  9. Relaxation process of Fe(CuNb)SiB amorphous alloys investigated by dynamical calorimetry

    SciTech Connect

    Zhu, J.; Clavaguera-Mora, M.T.; Clavaguera, N.

    1997-03-01

    Differential scanning calorimetry and dynamic differential scanning calorimetry were used to analyze the relaxation process of Fe(CuNb)SiB amorphous alloys. The Curie temperature (T{sub C}) evolution of the amorphous phase during relaxation as a function of heating rate, time and pre-annealing temperature were measured. Two distinct relaxation processes are observed, consequent with topological and chemical short range order changes. {copyright} {ital 1997 American Institute of Physics.}

  10. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy

    NASA Astrophysics Data System (ADS)

    Zúñiga, Alejandro; Ajdelsztajn, Leonardo; Lavernia, Enrique J.

    2006-04-01

    The microstructure and aging behavior of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy was studied. The nanocrystalline powders were produced by milling at liquid nitrogen temperature and then consolidated using spark plasma sintering (SPS). The microstructure after SPS consisted of a bimodal aluminum grain structure (coarse-grained and fine-grained regions), along with Al9FeNi and Al2CuMg particles dispersed throughout. The microstructure observed in the as-consolidated sample is rationalized on the basis of high current densities that are generated during sintering. Solution treatment and aging of the SPS Al-Cu-Mg-Fe-Ni-Sc sample resulted in softening instead of hardening. This observation can be explained by the reduced amount of Cu, Mg, and Si in solid solution available to form S' Al2CuMg due to the precipitation of Al7FeCu2 and Si-rich particles, and by the fact that rodlike S' Al2CuMg particles could only precipitate out in the coarse-grained regions, greatly decreasing their influence on the hardness. This lack of precipitation in the fine-grained region is argued to represent a new physical observation and is rationalized on the basis of physical and thermodynamic effects. The nanocrystalline SPS Al-Cu-Mg-Fe-Ni-Sc sample was also extremely thermally stable, retaining a fine-grained structure even after solution treatment at 530°C for 5 h. The observed thermal stability is rationalized on the basis of solute drag and Zener pinning caused by the impurities introduced during the cryomilling process.

  11. Industrialization of nanocrystalline Fe-Si-B-P-Cu alloys for high magnetic flux density cores

    NASA Astrophysics Data System (ADS)

    Takenaka, Kana; Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki; Makino, Akihiro

    2016-03-01

    Nanocrystalline Fe-Si-B-P-Cu alloys exhibit high saturation magnetic flux density (Bs) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe-Si-B-P-Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe85.7Si0.5B9.5P3.5Cu0.8)99C1 ribbons exhibit low coercivity (Hc)~4.5 A/m, high Bs~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60-100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors

  12. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe Cu alloys

    NASA Astrophysics Data System (ADS)

    Djurabekova, F. G.; Domingos, R.; Cerchiara, G.; Castin, N.; Vincent, E.; Malerba, L.

    2007-02-01

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed.

  13. Rapid solidification and dendrite growth of ternary Fe-Sn-Ge and Cu-Pb-Ge monotectic alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehua; Ruan, Ying; Wang, Weili; Wei, Bingbo

    2007-08-01

    The phase separation and dendrite growth characteristics of ternary Fe-43.9%Sn-10%Ge and Cu-35.5%Pb-5%Ge monotectic alloys were studied systematically by the glass fluxing method under substantial undercooling conditions. The maximum undercoolings obtained in this work are 245 and 257 K, respectively, for these two alloys. All of the solidified samples exhibit serious macrosegregation, indicating that the homogenous alloy melt is separated into two liquid phases prior to rapid solidification. The solidification structures consist of four phases including α-Fe, (Sn), FeSn and FeSn2 in Fe-43.9%Sn-10%Ge ternary alloy, whereas only (Cu) and (Pb) solid solution phases in Cu-35.5%Pb-5%Ge alloy under different undercoolings. In the process of rapid monotectic solidification, α-Fe and (Cu) phases grow in a dendritic mode, and the transition “dendrite→monotectic cell” happens when alloy undercoolings become sufficiently large. The dendrite growth velocities of α-Fe and (Cu) phases are found to increase with undercooling according to an exponential relation.

  14. Magnetic properties of Nd-Fe-Co(Cu)-Al-B amorphous alloys prepared by nonequilibrium techniques

    NASA Astrophysics Data System (ADS)

    Kumar, G.; Eckert, J.; Roth, S.; Löser, W.; Ram, S.; Schultz, L.

    2002-03-01

    The amorphous alloys Nd40Fe40Co5Al8B7, Nd57Fe20Co5Al10B8, and Nd57Fe20Cu5Al10B8 were prepared by copper mold casting, melt spinning, and mechanical alloying. Despite their similar x-ray diffraction patterns, samples display different magnetic and thermal behavior correlated with the method of preparation. The fully amorphous melt-spun ribbons exhibit relatively soft magnetic properties with coercivities ≈40 kA/m at room temperature and a Curie temperature (TC)≈474 K. Apparently only the mold-cast cylinders of 3 mm diameter show hard magnetic behavior with a coercivity in the range of 258-270 kA/m (depending on composition) and have approximately the same TC as that of the melt-spun ribbons. An additional magnetic transition at 585 K due to the presence of Nd2Fe14B phase in the case of Nd40Fe40Co5Al8B7 cast rod has been observed. Heat treatment above crystallization temperature in as-cast Nd57Fe20Co5Al10B8 and Nd57Fe20Cu5Al10B8 samples destroys the hard magnetic properties. In contrast, mechanically alloyed amorphous samples are soft magnetic with maximum coercivity up to 11 kA/m but show an entirely different TC≈680-740 K, which is rather characteristic of an Fe solid solution. The magnetic properties are discussed in terms of different local atomic environment and cluster sizes in amorphous samples prepared by different methods.

  15. The ferrite and austenite lattice parameters of Fe-Co and Fe-Cu binary alloys as a function of temperature

    SciTech Connect

    Velthuis, S.G.E. te; Sietsma, J.; Rekveldt, M.T.; Zwaag, S. van der; Root, J.H.

    1998-09-18

    The lattice parameters of Fe-15 Cu, Fe-2% Cu, Fe-1% Co, and Fe-2% Co binary alloys were determined by means of neutron diffraction at temperatures around the austenite-ferrite phase transformation (860--1350 K). While the thermal expansion coefficients prove to be similar to those of Fe for all alloys, Cu and Co have an opposite effect on the lattice parameter of Fe. Addition of Cu increases the lattice parameter in both ferrite ({alpha}) and austenite ({gamma}), while Co decreases the lattice parameter. For all alloys, the {alpha} {leftrightarrow} {gamma} phase transformation introduces a volume change of 1.0%. Evidence is found that both ferrite and austenite are slightly strained ({epsilon} < 8 {times} 10{sup {minus}4}) when both phases are present simultaneously.

  16. Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Ethridge, E. C.

    1983-01-01

    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil.

  17. Phase and particle size distribution in magnetoresistive Fe-Cu granular alloys investigated by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Rogalski, M. S.; Pereira de Azevedo, M. M.; Sousa, J. B.

    1996-11-01

    The size distribution of ferromagnetic particles in granular Fe-Cu alloys is derived from the hyperfine field distribution of e57Fe Mössbauer spectra, on the grounds of collective magnetic excitations associated with the spectral line broadening. A good agreement with the X-ray diffraction results is found for the average particle size estimated from the Mössbauer data. The magnetoresistance of a splat-cooled Fe25Cu75 alloy reaches a maximum of 3% after appropriate annealing and its evolution is correlated with the various Fe phases (ferro, para and superparamagnetic) and particle sizes identified by the Mössbauer data.

  18. Development of FeSiBNbCu Nanocrystalline Soft Magnetic Alloys with High B s and Good Manufacturability

    NASA Astrophysics Data System (ADS)

    Wan, Fangpei; He, Aina; Zhang, Jianhua; Song, Jiancheng; Wang, Anding; Chang, Chuntao; Wang, Xinmin

    2016-06-01

    In order to develop Fe-based nanocrystalline soft magnetic alloys with high saturation magnetic flux density (B s) and good manufacturability, the effect of the Nb content on the thermal stability, microstructural evolution and soft magnetic properties of Fe78-x Si13B8Nb x Cu1 (x = 0, 1, 2 and 3) alloys were investigated. It is found that proper Nb addition is effective in widening the optimum annealing temperature range and refining the α-Fe grain in addition to enhancing the soft magnetic properties. For the representative Fe76 Si13B8Nb2Cu1 alloy, the effective annealing time can be over 60 min in the optimal temperature range of 500-600°C. FeSiBNbCu nanocrystalline soft magnetic alloys with desirable soft magnetic properties including high B s of 1.39 T, low coercivity (H c) of 1.5 A/m and high effective permeability (μ e) of 21,500 at 1 kHz have been developed. The enhanced soft magnetic performance and manufacturability of the FeSiBNbCu nanocrystalline alloys are attributed to the high activated energy for the precipitation of α-Fe(Si) and the second phase. These alloys with excellent performance have promising applications in electromagnetic fields like inductors.

  19. Specific heat and related thermophysical properties of liquid Fe-Cu-Mo alloy

    NASA Astrophysics Data System (ADS)

    Wang, Haipeng; Luo, Bingchi; Chang, Jian; Wei, Bingbo

    2007-08-01

    The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 T m) was achieved and the specific heat was determined as 44.71 J·mol-1·K-1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.

  20. Effects of Fe content on the microstructure and properties of CuNi10FeMn1 alloy tubes fabricated by HCCM horizontal continuous casting

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-bin; Xu, Jun; Liu, Xin-hua; Xie, Jian-xin

    2016-04-01

    Heating-cooling combined mold (HCCM) horizontal continuous casting technology developed by our research group was used to produce high axial columnar-grained CuNi10FeMn1 alloy tubes with different Fe contents. The effects of Fe content (1.08wt%-2.01wt%) on the microstructure, segregation, and flushing corrosion resistance in simulated flowing seawater as well as the mechanical properties of the alloy tubes were investigated. The results show that when the Fe content is increased from 1.08wt% to 2.01wt%, the segregation degree of Ni and Fe elements increases, and the segregation coefficient of Ni and Fe elements falls from 0.92 to 0.70 and from 0.92 to 0.63, respectively. With increasing Fe content, the corrosion rate of the alloy decreases initially and then increases. When the Fe content is 1.83wt%, the corrosion rate approaches the minimum and dense, less-defect corrosion films, which contain rich Ni and Fe elements, form on the surface of the alloy; these films effectively protect the α-matrix and reduce the corrosion rate. When the Fe content is increased from 1.08wt% to 2.01wt%, the tensile strength of the alloy tube increases from 204 MPa to 236 MPa, while the elongation to failure changes slightly about 46%, indicating the excellent workability of the CuNi10FeMn1 alloy tubes.

  1. Post-irradiation annealing behavior of neutron-irradiated FeCu, FeMnNi and FeMnNiCu model alloys investigated by means of small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Ulbricht, A.; Lindner, P.; Keiderling, U.; Malerba, L.

    2014-11-01

    Neutron irradiation of reactor pressure vessel steels gives rise to the formation of thermodynamically stable and unstable nano-features. The present work is focused on the stability of Cu-, Mn- and Ni-containing solute clusters in model alloys exposed to post-irradiation annealing. Fe0.1Cu, Fe1.2Mn0.7Ni and Fe1.2Mn0.7Ni0.1Cu (wt%) model alloys irradiated up to neutron exposures of 0.1 and 0.19 dpa (displacements per atom) were annealed at stepwise increasing temperatures in the range from 300 °C (i.e. near irradiation temperature) to 500 °C and characterized by means of small-angle neutron scattering (SANS). We have found characteristic differences in the annealing behavior of the alloys. In particular, there is a non-trivial (synergistic-antagonistic) interplay of Mn/Ni and Cu.

  2. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGESBeta

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; Shen, Guoyin; Park, Changyong; Yang, Wenge

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  3. Structural evolution and the kinetics of Cu clustering in the amorphous phase of Fe-Cu-Nb-Si-B alloy

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Gupta, A.; Shukla, A.; Ganguli, Tapas; Sinha, A. K.; Principi, G.; Maddalena, A.

    2011-08-01

    An attempt has been made to investigate the evolution of the structure of the amorphous phase of Fe73.9 Cu0.9 Nb3.1 Si13.2 B8.9 (finemet) alloy by a combination of wide-angle x-ray scattering, small angle x-ray scattering (SAXS), Mössbauer spectroscopy and X-ray absorption near edge spectroscopy on the supposition that they would provide complementary information. Before the onset of nanocrystallization, the amorphous phase undergoes a structural relaxation resulting in small increase in the hyperfine field and a decrease in the width of the first diffraction maxima. There is an increase in the topological ordering in the system, though chemical inhomogeneity sets-in due to the clustering of Cu atoms in the pure amorphous state of this alloy. Annealing at 400 °C (well below the crystallization temperature) for different time durations results in occurrence of Cu clusters having fcc structure. Kinetics of Cu clustering is studied using SAXS. The incubation time for the clustering at 400 °C is ˜120 min. With further annealing, the average cluster size gradually increases from the initial value of ˜0.4 nm, reaching a value of ˜0.6 nm after annealing for 720 min. Cluster size exhibits a t1/2 dependence, suggesting a diffusion controlled growth.

  4. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    PubMed Central

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  5. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Zhai, W; Zhang, X M; Wei, B

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  6. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  7. Atomic scale study of CU clustering and pseudo-homogeneous Fe-Si nanocrystallization in soft magnetic FeSiNbB(CU) alloys.

    PubMed

    Pradeep, K G; Herzer, G; Raabe, D

    2015-12-01

    A local electrode atom probe has been employed to trace the onset of Cu clustering followed by their coarsening and subsequent growth upon rapid (10s) annealing of an amorphous Fe73.5Si15.5Cu1Nb3B7 alloy. It has been found that the clustering of Cu atoms introduces heterogeneities in the amorphous matrix, leading to the formation of Fe rich regions which crystallizes pseudo-homogeneously into Fe-Si nanocrystals upon annealing. In this paper, we present the data treatment method that allows for the visualization of these different phases and to understand their morphology while still quantifying them in terms of their size, number density and volume fraction. The crystallite size of Fe-Si nanocrystals as estimated from the atom probe data are found to be in good agreement with other complementary techniques like XRD and TEM, emphasizing the importance of this approach towards accurate structural analysis. In addition, a composition driven data segmentation approach has been attempted to determine and distinguish nanocrystalline regions from the remaining amorphous matrix. Such an analysis introduces the possibility of retrieving crystallographic information from extremely fine (2-4 nm sized) nanocrystalline regions of very low volume fraction (< 5 Vol%) thereby providing crucial in-sights into the chemical heterogeneity induced crystallization process of amorphous materials. PMID:25907803

  8. Quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts: Synthesis, characterization and activity towards ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Easton, E. Bradley

    2012-10-01

    In this account, two series of quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts have been synthesized and characterized by ICP, XRD, XPS, TEM and cyclic voltammetry. XRD spectra of each series illustrated that PtMnCuX/C (X = Fe, Co and Ni) and PtMnMoX/C (X = Fe, Co, Ni and Cu) alloys have been formed without significant free Mn, Cu, Mo or X co-catalysts. For PtMnCuSn/C and PtMnMoSn/C, in addition to alloy formation, significant free Sn-oxides are present in each catalyst. Cyclic voltammetry and chronoamperometry revealed that all quaternary showed superior electrocatalytic activity towards ethanol oxidation compared to the ternary precursor. Also, shift of the onset potential of ethanol oxidation towards less positive values were also recorded with the quaternary alloys, demonstrating a facilitated oxidation with the quaternary alloys compared to ternary alloy precursor. The magnitude of the gain in potential depend on the alloy composition and PtMnMoSn/C was found to be the best of all synthetized quaternary alloys with an onset potential of ethanol oxidation of only 0.059 V vs. Ag/AgCl.

  9. Optimization of the microstructure and properties of Co-substituted Fe-Si-B-Nb-Cu nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ohnuma, M.; Ping, D. H.; Abe, T.; Onodera, H.; Hono, K.; Yoshizawa, Y.

    2003-06-01

    The effect of Co replacement for Fe on the microstructure and soft magnetic properties of Fe78.8-xCoxNb2.6Si9B9Cu0.6 (x=5-60) nanocrystalline alloys has been studied for improving the soft magnetic properties of Fe-Si-B-Nb-Cu type alloys at a high frequency range. The magnetic anisotropy constant increases with x, but the coercivity increases when x exceeds 20, indicating that magnetic softness is degraded by replacing Fe with Co. Three-dimensional atom-probe observations have revealed that the number density of Cu-enriched clusters decreases with x, thereby decreasing the number density of the heterogeneous nucleation sites for bcc-Fe primary crystals. In addition, differential scanning calorimetry measurements show that the Cu clustering temperature shifts to a higher temperature with increasing x, suggesting that the kinetics for the Cu clustering decreases as Co content. These experimental results are discussed from the thermodynamical point of view, and the optimized Cu composition to achieve a low coercivity with 40 at % Co has been found. 2003 American Institute of Physics.

  10. Grain boundary character distribution of CuNiSi and FeNi alloys processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Azzeddine, H.; Baudin, T.; Helbert, A. L.; Brisset, F.; Larbi, F. Hadj; Tirsatine, K.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-04-01

    In this work the Grain Boundary Character Distribution (GBCD) in general and the relative proportion of low-Σ CSL (Coincidence Site Lattice) grain boundaries are determined through EBSD in Cu-2.5Ni-0.6Si (wt.%) and Fe-36Ni (wt.%) alloys after processing by high-pressure torsion, equal- channel angular pressing and accumulative roll bonding.

  11. FePtCu alloy thin films: Morphology, L1{sub 0} chemical ordering, and perpendicular magnetic anisotropy

    SciTech Connect

    Brombacher, C.; Schletter, H.; Daniel, M.; Matthes, P.; Joehrmann, N.; Makarov, D.; Hietschold, M.; Albrecht, M.; Maret, M.

    2012-10-01

    Rapid thermal annealing was applied to transform sputter-deposited Fe{sub 51}Pt{sub 49}/Cu bilayers into L1{sub 0} chemically ordered ternary (Fe{sub 51}Pt{sub 49}){sub 100-x}Cu{sub x} alloys with (001) texture on amorphous SiO{sub 2}/Si substrates. It was found that for thin film samples, which were processed at 600 Degree-Sign C for 30 s, the addition of Cu strongly favors the L1{sub 0} ordering and (001) texture formation. Furthermore, it could be revealed by transmission electron microscopy and electron backscatter diffraction that the observed reduction of the ordering temperature with Cu content is accompanied by an increased amount of nucleation sites forming L1{sub 0} ordered grains. The change of the structural properties with Cu content and annealing temperature is closely related to the magnetic properties. While an annealing temperature of 800 Degree-Sign C induces strong perpendicular magnetic anisotropy (PMA) in binary Fe{sub 51}Pt{sub 49} films, the addition of Cu systematically reduces the PMA. However, due to the enhancement of both the A1-L1{sub 0} phase transformation and the development of the (001) texture with increasing Cu content, lowering of the annealing temperature leads to a shift of the maximum perpendicular magnetic anisotropy towards alloys with higher Cu content. Thus, for an annealing temperature of 600 Degree-Sign C, the highest perpendicular magnetic anisotropy energy is found for the (Fe{sub 51}Pt{sub 49}){sub 91}Cu{sub 9} alloy. The smooth surface morphology, adjustable PMA, and high degree of intergranular exchange coupling make these films suitable for post-processing required for specific applications such as for sensorics or magnetic data storage.

  12. Change in magnetic properties of a cold rolled and thermally aged Fe-Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, D. G.; Ryu, K. S.; Kobayashi, S.; Takahashi, S.; Cheong, Y. M.

    2010-05-01

    The variation in magnetic properties of a Fe-1%Cu model alloy due to a cold rolling and a thermal aging has been evaluated to simulate the radiation damage of reactor pressure vessel of nuclear power plant. The thermal aging was conducted at 500 °C with different aging times in series. The hysteresis loops, magnetic Barkhausen noise (BN) and Vickers microhardness were measured for prestrained, strained, and thermal aged samples. The coercivity increased by a plastic strain and decreased by thermal aging, The BN decreased in the prestrained and strained samples but large changes were observed in the strained sample. These results were interpreted in terms of the domain wall motion signified by a change in the mean free path associated with microinternal stress and copper rich precipitates.

  13. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-03-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe-x (x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δχ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe-x (x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  14. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-05-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe- x ( x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δ χ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe- x ( x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  15. Iron atoms redistribution in oxide films of Zr-Fe, Zr-Fe-Cu alloys during corrosion in autoclave at 350°C

    NASA Astrophysics Data System (ADS)

    Filippov, V.; Bateev, A.

    2016-04-01

    The data on changes of iron atoms state in the oxide films of binary Zr-1.24 mas.%Fe and ternary Zr-1.39 mas.%Fe-0.60 mas.%Cu zirconium alloys are obtained. Alloys are subjected to corrosion tests under autoclave conditions at 350°C temperature in a steam-water environment under pressure p = 16.8 MPa. In initial specimens of the alloys the iron atoms are in the form of intermetallic compounds. In oxide films the decomposition of intermetallic compounds and formation of new compounds occurs with structural phase distortion. In the oxide films metallic the metallic iron particles α-Fe, iron oxide in the form of hematite α-Fe2O3, solid solutions of iron ions in ZrO2 are formed. The phase composition of the oxide films depends on the alloy composition and changes during the growth process of the oxide film.

  16. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  17. Surface tension of liquid ternary Fe-Cu-Mo alloys measured by electromagnetic levitation oscillating drop method

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Luo, B. C.; Qin, T.; Chang, J.; Wei, B.

    2008-09-01

    For the liquid Fe-Cu-Mo ternary system, the surface tensions of three selected alloys, i.e., three typical monotectic alloys, were measured by the electromagnetic levitation oscillating drop method over a broad temperature range, including both superheated and undercooled states. The maximum undercooling attained is up to 173 K. The experimental results show a good linear correlation between the surface tension and the temperature. By applying on the Butler equation, the surface tensions were also calculated and they are in good agreement with the measured ones, except that in the undercooled state, the calculated value is slightly larger than the measured results. Interestingly, both the measured and calculated results indicate that the enriched element on the droplet surface is much more conspicuous than other elements in influencing the surface tension. Besides, the viscosity and the density of the liquid Fe-Cu-Mo ternary alloys are also derived on the grounds of the experimentally measured surface tensions.

  18. Surface tension of liquid ternary Fe-Cu-Mo alloys measured by electromagnetic levitation oscillating drop method.

    PubMed

    Wang, H P; Luo, B C; Qin, T; Chang, J; Wei, B

    2008-09-28

    For the liquid Fe-Cu-Mo ternary system, the surface tensions of three selected alloys, i.e., three typical monotectic alloys, were measured by the electromagnetic levitation oscillating drop method over a broad temperature range, including both superheated and undercooled states. The maximum undercooling attained is up to 173 K. The experimental results show a good linear correlation between the surface tension and the temperature. By applying on the Butler equation, the surface tensions were also calculated and they are in good agreement with the measured ones, except that in the undercooled state, the calculated value is slightly larger than the measured results. Interestingly, both the measured and calculated results indicate that the enriched element on the droplet surface is much more conspicuous than other elements in influencing the surface tension. Besides, the viscosity and the density of the liquid Fe-Cu-Mo ternary alloys are also derived on the grounds of the experimentally measured surface tensions. PMID:19045047

  19. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  20. Atomistic Simulations of Grain Boundary Pinning in CuFe Alloys

    SciTech Connect

    Zepeda-Ruiz, L A; Gilmer, G H; Sadigh, B; Caro, J A; Oppelstrup, T

    2005-05-22

    The authors apply a hybrid Monte Carlo-molecular dynamics code to the study of grain boundary motion upon annealing of pure Cu and Cu with low concentrations of Fe. The hybrid simulations account for segregation and precipitation of the low solubility Fe, together with curvature driven grain boundary motion. Grain boundaries in two different systems, a {Sigma}7+U-shaped half-loop grain and a nanocrystalline sample, were found to be pinned in the presence of Fe concentrations exceeding 3%.

  1. Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing

    NASA Astrophysics Data System (ADS)

    Morsdorf, L.; Pradeep, K. G.; Herzer, G.; Kovács, A.; Dunin-Borkowski, R. E.; Povstugar, I.; Konygin, G.; Choi, P.; Raabe, D.

    2016-03-01

    Nucleation of soft magnetic Fe3Si nanocrystals in Cu-free Fe74.5Si15.5Nb3B7 alloy, upon rapid (10 s) and conventional (30 min) annealing, was investigated using x-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and atom probe tomography. By employing rapid annealing, preferential nucleation of Fe3Si nanocrystals was achieved, whereas otherwise there is simultaneous nucleation of both Fe3Si and undesired Fe-B compound phases. Analysis revealed that the enhanced Nb diffusivity, achieved during rapid annealing, facilitates homogeneous nucleation of Fe3Si nanocrystals while shifting the secondary Fe-B crystallization to higher temperatures resulting in pure soft magnetic nanocrystallization with very low coercivities of ˜10 A/m.

  2. Analysis of Magnetic Minor Hysteresis Loops in Thermally Aged and Cold-rolled Fe-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, F.; Kobayashi, S.; Murakami, T.; Takahashi, S.; Kamada, Y.; Kikuchi, H.

    2011-01-01

    Neutron irradiation causes the formation of Cu precipitate in reactor pressure vessel steel and makes the steel susceptible to rupture. In the present study, we have examined magnetic minor hysteresis loops of Fe-1wt%Cu alloy after thermally ageing at 753 K and subsequent cold rolling to elucidate the effects of Cu precipitation on magnetic properties. Minor-loop coefficients, obtained from scaling power laws between field-dependent parameters of minor hysteresis loops, decrease with ageing time and show a local maximum around 200 min, reflecting the growth of Cu precipitates with ageing. For the alloy cold-rolled after ageing, the minor-loop properties linearly increase with reduction and show a good relationship with mechanical properties such as DBTT and hardness. These observations indicate that the analysis method using magnetic minor loops can be an useful technique of nondestructive evaluation of irradiation embrittlement and subsequent deformation hardening in reactor pressure vessel steels.

  3. Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys

    NASA Astrophysics Data System (ADS)

    Jelinek, B.; Groh, S.; Horstemeyer, M. F.; Houze, J.; Kim, S. G.; Wagner, G. J.; Moitra, A.; Baskes, M. I.

    2012-06-01

    A set of modified embedded-atom method (MEAM) potentials for the interactions between Al, Si, Mg, Cu, and Fe was developed from a combination of each element's MEAM potential in order to study metal alloying. Previously published MEAM parameters of single elements have been improved for better agreement to the generalized stacking fault energy (GSFE) curves when compared with ab initio generated GSFE curves. The MEAM parameters for element pairs were constructed based on the structural and elastic properties of element pairs in the NaCl reference structure garnered from ab initio calculations, with adjustment to reproduce the ab initio heat of formation of the most stable binary compounds. The new MEAM potentials were validated by comparing the formation energies of defects, equilibrium volumes, elastic moduli, and heat of formation for several binary compounds with ab initio simulations and experiments. Single elements in their ground-state crystal structure were subjected to heating to test the potentials at elevated temperatures. An Al potential was modified to avoid formation of an unphysical solid structure at high temperatures. The thermal expansion coefficient of a compound with the composition of AA 6061 alloy was evaluated and compared with experimental values. MEAM potential tests performed in this work, utilizing the universal atomistic simulation environment (ASE), are distributed to facilitate reproducibility of the results.

  4. Undercooling and solidification behavior of melts of the quasicrystal-forming alloys Al-Cu-Fe and Al-Cu-Co

    SciTech Connect

    Holland-Moritz, D.; Schroers, J.; Herlach, D.M.; Grushko, B.; Urban, K.

    1998-03-02

    Al-Cu-Fe, Al-Fe and Al-Cu-Co melts of different compositions were undercooled by containerless processing in an electromagnetic levitation facility. The phase selection during solidification from the undercooled melt was determined by direct measurements of the temperature changes during recalescence. Complimentarily, the phase selection and microstructure development was studied by scanning- and transmission electron microscopy (SEM, TEM) and X-ray diffraction (XRD) on the as-solidified samples with the undercooling and the alloy composition as experimental parameters. For comparison, rapidly quenched samples of the same alloys were produced by splat-cooling and investigated by TEM and XRD. The undercooling results were analyzed within the framework of classical nucleation theory. The activation threshold for the nucleation was found to be small for the icosahedral quasicrystalline phase in Al-Cu-Fe, medium for the decagonal D-phase in Al-Cu-Co and crystalline phases with polytetrahedral symmetry elements (Al{sub 13}Fe{sub 4} and Al{sub 5}Fe{sub 2}), but large for the cubic phase of Al{sub 50}(CuCo){sub 50} with non-polytetrahedral crystalline symmetry. These results are explained assuming of an icosahedral short-range order that prevails in the undercooled melt and gives rise to an interfacial energy decreasing with increasing degree of polytetrahedral order in the solid nucleus.

  5. Effects of Fe and Bi Minor Alloying on Mechanical, Thermal, and Microstructural Properties of Sn-0.7Cu Solder Alloy

    NASA Astrophysics Data System (ADS)

    Mahdavifard, M. H.; Sabri, M. F. M.; Said, S. M.; Shnawah, D. A.; Badruddin, I. A.; Rozali, S.

    2016-04-01

    The effects of adding 0.05 wt.% Fe and 1 wt.% or 2 wt.% Bi on the mechanical, thermal, and microstructural properties of Sn-0.7Cu solder alloy have been investigated. Addition of 0.05% Fe did not change the morphology of the microstructure, so the mechanical properties and melting behavior remained unchanged. Analyses showed that, besides inclusion of Fe in Cu6Sn5 intermetallic compound (IMC), a few FeSn2 IMCs formed in interdendritic regions. On the other hand, addition of 2% Bi to Sn-0.7Cu-0.05Fe alloy increased the yield strength by 97%, from 19.7 MPa to 38.84 MPa. This is because addition of Bi degraded interdendritic regions by reducing the amount of Cu6Sn5 IMC particles and refining primary β-Sn dendrites. Furthermore, differential scanning calorimetry indicated that Bi reduced the melting temperature by 4°C from 232.2°C to 228.1°C for the 2% Bi alloy.

  6. Effects of Fe and Bi Minor Alloying on Mechanical, Thermal, and Microstructural Properties of Sn-0.7Cu Solder Alloy

    NASA Astrophysics Data System (ADS)

    Mahdavifard, M. H.; Sabri, M. F. M.; Said, S. M.; Shnawah, D. A.; Badruddin, I. A.; Rozali, S.

    2016-07-01

    The effects of adding 0.05 wt.% Fe and 1 wt.% or 2 wt.% Bi on the mechanical, thermal, and microstructural properties of Sn-0.7Cu solder alloy have been investigated. Addition of 0.05% Fe did not change the morphology of the microstructure, so the mechanical properties and melting behavior remained unchanged. Analyses showed that, besides inclusion of Fe in Cu6Sn5 intermetallic compound (IMC), a few FeSn2 IMCs formed in interdendritic regions. On the other hand, addition of 2% Bi to Sn-0.7Cu-0.05Fe alloy increased the yield strength by 97%, from 19.7 MPa to 38.84 MPa. This is because addition of Bi degraded interdendritic regions by reducing the amount of Cu6Sn5 IMC particles and refining primary β-Sn dendrites. Furthermore, differential scanning calorimetry indicated that Bi reduced the melting temperature by 4°C from 232.2°C to 228.1°C for the 2% Bi alloy.

  7. Effect of electron- and neutron-irradiation on Fe-Cu model alloys studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Takadate, K.; Tang, Z.; Ohkubo, H.; Sunaga, H.; Takizawa, H.; Hasegawa, M.

    2011-01-01

    Electron- and neutron-irradiation effects on dilute Fe-Cu model alloys of nuclear reactor pressure vessel steels are studied by positron annihilation spectroscopy. We have found that, not only by high-dose neutron-irradiation but also by low-dose electron-irradiation, the aggregation of Cu atoms and vacancies takes place and the ultrafine Cu precipitates are formed after post-irradiation annealing at 400°C. In spite of large difference in the irradiation doses between the electron- and the neutron-irradiated samples, no significant difference is observed in the isochronal annealing behaviour above 400°C of positron annihilation and micro-hardness, indicating that small amount of extra vacancies enhance the aggregation of Cu atoms in Fe during the annealing-out process of the vacancies.

  8. Magnetic anisotropy of Fe1-yXyPt-L10 [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    NASA Astrophysics Data System (ADS)

    Cuadrado, R.; Klemmer, Timothy J.; Chantrell, R. W.

    2014-10-01

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L10 bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L10 alloys.

  9. ELECTROMAGNETIC MICROWAVE PROPERTIES OF Fe82B17Cu1 BALL MILLED ALLOY

    NASA Astrophysics Data System (ADS)

    Tian, N.; Fan, X. D.; Wang, J. W.; You, C. Y.; Lu, Z. X.; Ge, L. L.

    2013-07-01

    High saturation magnetization and magnetic anisotropy are helpful for getting a high frequency electromagnetic microwave absorption performance. The α-Fe possesses a high saturation magnetization. Fe-B phases exhibit a relatively higher magnetic anisotropy and higher resistivity than α-Fe simultaneously. In this work, we made nanocrystalline powders of Fe82B17Cu1, mainly consisting of α-Fe and Fe2B phases, by ball milling and post-annealing. Electromagnetic microwave characterization shows that Fe82B17Cu1 powders possess a relative high permeability and considerable permittivity. Due to a good electromagnetic impedance matching, a good electromagnetic microwave absorption property (RL < -35 dB) has been achieved at 3.6 GHz. The experimental frequency and the matching thickness are coincident with the quarter wavelength matching condition.

  10. Magnetic properties of FeCu (3 d transition metals) SiB alloys with fine grain structure

    SciTech Connect

    Sawa, T. ); Takahashi, Y. )

    1990-05-01

    Soft magnetic properties were investigated together with crystallization process and grain size for FeCu (3{ital d} transition metals) SiB alloys with fine grains. They were rapidly quenched from the melt to achieve amorphous states and then annealed above their crystallization temperatures. In the group of 3{ital d} transition metals studied, low magnetic core loss at high frequency was obtained for V-substituted Fe-based alloys, because only a bcc Fe solid solution with diameter of about 20 nm precipitated. On the other hand, Cr- or Mn-substituted alloys could not be attained with good soft magnetic properties because of the existence of Fe-metalloid compounds besides the bcc phase by annealing above their crystallization temperatures. The effect of grain size on the soft magnetic properties is more prominent at lower frequency. Diffraction peaks which are characteristics of an ordered phase (DO{sub 3}) are observed, which is the origin of excellent soft magnetic properties in FeAlSi alloys.

  11. Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition

    DOE PAGESBeta

    An, Zhinan; Jia, Haoling; Wu, Yueying; Rack, Philip D.; Patchen, Allan D.; Liu, Yuzi; Ren, Yang; Li, Nan; Liaw, Peter K.

    2015-05-04

    The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.

  12. Influence cobalt on microstructural and hardness property of Al-Zn-Mg-Cu-Fe-Cr-Ni P/ M alloys

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Hussin, Kamarudin; Rahmat, Azim; Bashirom, Nurhuda

    2015-05-01

    In this study, influence cobalt additives on the microstructural and hardness properties of an Al-Zn-Mg-Cu-Fe-Cr-Ni PM alloy undergone the retrogression and re-aging treatment were carried out. Green compacts pressed at 370 MPa were then sintered at temperature 650°C in argon atmosphere for two hours. The sintered compacts subjected to a homogenizing treated at 470°C for 1.5 hours then aged at 120°C for 24 hours and retrogressed at 180°C for 30 minutes, and then re-aged at 120°C for 24 hours. Microstructural results of the Al-Zn-Mg-Cu-Fe-Cr-Ni-Co alloys introduced an intermetallics compound in the matrix of alloy, identified as the Al5Co2, Al70Co20Ni10 and Al4Ni3 phases besides to the MgZn2 and Mg2Zn11 phases which produced of the precipitation hardening during heat treatment. These compounds with precipitates provided strengthening of dispersion that led to improved Vickers's hardness and dinsifications properties of the alloy. The highest Vickers hardness of aluminum alloy containing cobalt was gotten after applying the retrogression and re-aging treatment.

  13. Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Terentyev, D.; Zhurkin, E. E.; Malerba, L.

    2014-09-01

    Radiation-induced embrittlement of bainitic steels is the lifetime limiting factor of reactor pressure vessels in existing nuclear light water reactors. The primary mechanism of embrittlement is the obstruction of dislocation motion by nano-metric defects in the bulk of the material due to irradiation. Such features are known to be solute clusters that may be attached to point defect clusters. In this work we study the thermal stability of solute clusters near edge dislocation lines and loops with Burgers vector b = ½[1 1 1] and b = [1 0 0] in FeNiMnCu model alloys by means of Metropolis Monte Carlo simulations. It is concluded that small dislocation loops may indeed act as points for heterogeneous nucleation of solute precipitates in reactor pressure vessel steels and increase their thermodynamic stability up to and above normal reactor operating temperatures. We also found that, in the presence of dislocation-type defects, the Ni content determines the thermodynamic driving force for precipitation, rather than the Mn content.

  14. Microstructure Evolution and Rheological Behavior of Cooling Slope Processed Al-Si-Cu-Fe Alloy Slurry

    NASA Astrophysics Data System (ADS)

    Das, Prosenjit; Samanta, Sudip K.; Bera, Supriya; Dutta, Pradip

    2016-05-01

    In the present work, microstructure evolution during semi-solid slurry generation of Al-Si-Cu-Fe alloy, using a cooling slope, was studied and the effect of microstructural morphology of the slurry on its rheological behavior was investigated. Microstructure evolution during melt flow along the slope was studied by extracting samples from various locations of the slope and performing rapid oil quenching experiments. Quantitative investigation was performed to evaluate primary phase shape and size for different process conditions of the semi-solid slurry, and subsequently rheological investigations were performed to correlate slurry morphology with its flow behavior. Three different types of rheological experiments were performed: isothermal test, shear jump test, and shear time test, in order to investigate rheological behavior of the semi-solid slurry. In addition, effect of melt treatment, by adding modifier (0.1 wt pct of Al-10Sr) and grain refiner (0.15 wt pct of Al-5Ti-1B), on the microstructure evolution during slurry generation, flow behavior of the slurry, and intermetallics formation was studied.

  15. The effect of copper doping on martensite shear stress in porous TiNi(Mo,Fe,Cu) alloys

    NASA Astrophysics Data System (ADS)

    Khodorenko, V. N.; Kaftaranova, M. I.; Gunther, V. E.

    2015-03-01

    The properties of alloys based on porous nickel-titanium (TiNi) with copper additives have been studied. It is established that the copper doping of porous TiNi(Mo,Fe,Cu) alloys fabricated by the method of self-propagating high-temperature synthesis leads to a significant decrease in the martensite shear stress (below 30 MPa). Low values of the martensite shear stress (σmin) in copper-doped TiNi-based alloys allows medical implants of complex shapes to be manufactured for various purposes, including oral surgery. The optimum concentration of copper additives (within 3-6 at %) has been determined that ensures high performance characteristics of TiNi-based porous alloys for medical implants.

  16. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  17. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the

  18. Sulfurization of Fe-Ni-Cu-Co Alloy to Matte Phase by Carbothermic Reduction of Calcium Sulfate

    NASA Astrophysics Data System (ADS)

    Jeong, Eui Hyuk; Nam, Chul Woo; Park, Kyung Ho; Park, Joo Hyun

    2016-04-01

    Calcium sulfate (CaSO4) is proposed as an alternative sulfur source to convert the Fe-Ni-Cu-Co alloy to the matte phase. Solid carbon was used as a reducing agent and the influence of oxide fluxes on the sulfurization efficiency at 1673 K (1400 °C) in a CO-CO2-SO2-Ar atmosphere was investigated. When CaSO4 was equilibrated with the Fe-Ni-Cu-Co alloy without any reducing agent, it was reduced by Fe in the liquid alloy, resulting in the formation of FeS. The sulfurization efficiency was about 56 pct, even though an excess amount of CaSO4 (gypsum equivalent, G eq = 1.7) was added. Adding solid carbon as the reducing agent significantly shortened the equilibration time from 36 to 3.5 hours and increased the sulfurization efficiency from 56 to 91 pct, even though the amount of carbon was lower than the theoretical equivalent for carbothermic reduction of CaSO4, viz. C eq = 0.7. Although CaS (not FeS) was formed as a primary reaction product, it continuously reacted with CaSO4, forming CaO-rich slag. Neither the carbothermic reduction time nor the sulfurization efficiency were affected by the addition of Al2O3 (-SiO2) fluxes, but the equilibration time fell to 2.5 hours with the addition of Al2O3-Fe2O3 flux because the former systems produced primarily calcium silicate and calcium aluminate, which have relatively high melting points, whereas the latter system produced calcium ferrite, which has a lower melting point. Consequently, calcium sulfate (waste gypsum) can replace expensive pure sulfur as a raw material in the sulfurization of Fe-Ni-Cu-Co alloy with small amounts of iron oxide (Fe2O3) as a flux material. The present results can be used to improve the recovery of rare metals, such as Ni and Co, from deep sea manganese nodules.

  19. Performance of a prototype power transformer constructed by nanocrystalline Fe-Co-Si-B-P-Cu soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Takenaka, Kana; Nishiyama, Nobuyuki; Setyawan, Albertus D.; Sharma, Parmanand; Makino, Akihiro

    2015-05-01

    To clarify the feasibility and performance of Fe81.2Co4Si0.5B9.5P4Cu0.8 alloy (with trade name NANOMET®) for electrical power applications, a prototype transformer was constructed. After surface treatment, as-quenched ribbons with a constant width of 50 mm and a thickness of ˜30 μm were wound into a toroidal shape. Nanocrystallization of toroidal core was performed by immersing it in a salt at 673 K for 180 s. The transformer constructed in the present work exhibit low core loss similar to the transformer constructed by a commercial Fe-based amorphous alloy. In spite of issues related to the annealing/nano-crystallization of the core, the feasibility for commercialization of NANOMET in power transformer applications can be confirmed. We believe the potential of NANOMET as core material for next generation of power transformer seems to be huge.

  20. Effect of Additional 3d Elements M (M = Fe and Ni) on Atomic Ordered Structure in Cu-M-Pd alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseeb; Takahashi, Miwako; Bashir Ziya, Amer; Ohshima, Ken-ichi

    X-ray diffraction measurements were performed to elucidate the effect of ternary addition of Fe and Ni elements to Cu-rich Cu-Pd binary alloy system on the structure and an atomic ordering. X-ray polycrystalline diffraction patterns of the specimens quenched from 900 °C have shown that a single phase with face-centered cubic (fcc) structure is formed in all the specimens for Ni system and in specimens with Pd composition xPd (at. %) more than 10 for Fe system. After appropriate heat treatment, the Fe system a fcc single phase forms fcc-based Cu3Au-type ordered structure for xPd around 20, and body-centered-cubic based CsCl-type ordered structure xPd for around 40. Assuming that Fe atoms simply substitute for Cu atoms in the ordered structures, the atomic phase coincides well with that of Cu-Pd alloys for the Cu3Au-type structure, but there is a discrepancy for the CsCl-type structure on that it does not appear as a single phase in Cu-Fe-Pd alloys. As for Ni system, no ordered structures are formed except for the alloys with xPd more than 35, in which fcc and CsCl-type structures are found to coexist.

  1. Serration Behavior and Pop-in Phenomena in AlxCrCuFeMnNi High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Diao, Haoyan; Xie, Xie; Chen, Shuying; Wang, Gongyao; Yang, Fuqian; Dahmen, Karin; Liaw, Peter

    2015-03-01

    Recently, high-entropy alloys (HEAs), based on achieving a high configuration entropy of mixing among alloying elements, have been developed. Many of these alloys contain expensive elements, such as Co. Substituting these elements for less expensive elements, such as Mn, without compromising the mechanical performance is crucial to make HEAs commercially viable. The AlxCrCuFeMnNi (x = 0.1, 0.3, and 0.8) system is one such alloy that displays encouraging mechanical results in both compression and nanoindentation experiments. Discrete, jerky stress-drop bursts (serrations) are even found at room temperature. The mean-field-interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental parameters, such as aluminum content, strain rate, or temperature. In nanoindentation, a strain burst is manifested by a sudden displacement excursion or `pop-in', following the initial elastic Hertzian contact. The pop-in phenomena becomes more frequent and regular, as the indentation load is greater than 35 mN. A quantitative theory for the serration behavior and pop-in phenomena is a critical issue for understanding the deformation characteristics of HEAs. This work was supported by the Department of Energy No. DE-FE-0008855 and DE-FE-0011194.

  2. Changes in the magnetic and mechanical properties of thermally aged Fe-Cu alloys due to nano-sized precipitates

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Yuanfei; Deng, Shanquan; Xu, Ben; Li, Qiulin; Shu, Guogang; Liu, Wei

    2016-01-01

    The changes in the magnetic properties, mechanical properties, and microstructural parameters of Fe-Cu alloys due to thermal aging have been investigated to improve the fundamental understanding of using magnetic technology for the nondestructive evaluation (NDE) of irradiation embrittlement in the reactor pressure vessel (RPV). Nano-sized Cu particles precipitated from a Fe matrix after thermal aging at 500 °C for various times, and the microstructure parameters were determined. The coercivity, Barkhausen noise (BN), Vickers hardness, and yield stress were also measured for these samples. These properties show the same hardening-softening trend with increasing aging time, which can be interpreted in terms of the microstructure parameters evolution based on the model of the pinning of precipitates on domain walls and dislocations. These results suggest the practicability of using magnetic technology for the NDE of the irradiation embrittlement of the RPV.

  3. Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys

    NASA Astrophysics Data System (ADS)

    Todd, I.; Tate, B. J.; Davies, H. A.; Gibbs, M. R. J.; Kendall, D.; Major, R. V.

    2000-06-01

    The effects of up to 10 at% substitution of Fe by Al on the microstructure and DC and AC magnetic properties of nanocrystalline FeSiBCuNb alloy ribbon are summarised and analysed. The minimum DC H c developed during annealing decreases by 40% for 2 at% Al (to 0.3 A/m) and remains roughly constant for larger Al contents. The largest peak value of μ 0.4 at 50 Hz also corresponds to 2 at% Al. The best frequency response for μ 0.4 occurs for 6 at% Al while there was no improvement in AC power loss behaviour over the 0% Al alloy. The improvements in DC H c and AC μ 0.4 are ascribed to a reduction in K 1 of the Fe-Si-based nanocrystallites by the introduction of Al.

  4. Transmission Mössbauer spectroscopy and x-ray diffraction studies on the structure of nanocrystalline Fe-Cu-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Liu, X. D.; Lu, K.; Hu, Z. Q.; Ding, B. Z.; Zhu, J.; Jiang, J.

    1994-04-01

    Nanocrystalline Fe-Cu-Si-B alloys with grain sizes of 25-90 nm were synthesized by crystallization of the amorphous alloy. Two nanocrystalline phases of α-Fe(Si) and Fe2B were observed in all tested samples. Transmission Mössbauer spectroscopy investigation on the structure of nanocrystalline Fe-Cu-Si-B alloys showed that Si atoms are completely and substitutionally dissolved in Fe bcc lattice and the arrangement of the Si atoms in the α-Fe(Si) phase shows short range order (SRO), whereas 8.5-9.7 at. % of the B atoms were found as Fe2B and the remainder were located in the interfaces. When grains grow larger, the arrangement of the Si atoms in the α-Fe(Si) phase changes. Interestingly, x-ray diffraction results reveal that the lattice constant of α-Fe(Si) phase decreases rapidly with grain coarsening. Based on the thermodynamic analysis, the changes in the lattice constant of the α-Fe(Si) phase and SRO of Si atoms in bcc Fe lattices were attributed to the lattice expansion as a result of the variation of vacancy concentration in α-Fe(Si) solid solution. Meanwhile, owing to the interface contribution, the alloy with small grain size is found to exhibit large values of half linewidth (HLW) and isomer shift (IS) in the Mössbauer spectra. The results from electrical resistivity measurements agree and confirm the strong effects of the lattice distortion and interfaces.

  5. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  6. The huge influence of nanograins on the magnetic properties of iron-based Fe Cu Nb B nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Bremers, H.; Hupe, O.; Hofmeister, C. E.; Michele, O.; Hesse, J.

    2005-06-01

    In 1995 Skorvanek and O'Handley presented the first experimental evidence for a huge influence of nanograins on the magnetization of a nanostructured alloy. In this contribution experiments are described, performed on as-cast amorphous and nanostructured Fe79Cu1Nb7B13 alloys. In order to get nanostructured samples with different nanograin contents the samples were annealed at different properly chosen temperatures in vacuum. This led to the formation of nanograins embedded in a residual amorphous matrix. These nanograins consist of pure bcc Fe of about 5-6 nm in diameter. Their content can be enhanced without markedly changing their size when annealing at slightly higher temperatures. So an alloy series with the same nominal composition but different nanograin contents and residual amorphous matrices, i.e. a series of nanostructured alloys, was obtained. Our aim was to study the influence of increasing nanograin concentration on the magnetic properties of the coupled system amorphous matrix plus nanograins. We describe magnetization measurements over a wide temperature range, below and above the Curie temperature of the initial amorphous matrix. In a next step these measurements are evaluated in a molecular field approach assuming two different coupled ferromagnetic systems assigned to the amorphous matrix and the nanograins.

  7. THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS

    SciTech Connect

    Caro, A; Caro, M; Lopasso, E M; Turchi, P A; Farkas, D

    2005-04-14

    The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based on other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.

  8. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  9. Determination of the Surface Tension of Liquid Fe77.5Cu13Mo9.5 Ternary Monotectic Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Chang, Jian; Luo, Bing-Chi; Wei, Bing-Bo

    2007-02-01

    Thermophysical properties of undercooled liquid monotectic alloys are usually difficult to be determined because of the great difficulty in achieving large undercoolings. We measure the surface tension of liquid Fe77.5Cu13Mo9.5 monotectic alloy by an electromagnetic oscillating drop method over a wide temperature range from 1577 to 1784 K, including both superheated and undercooled states. A good linear relationship exists between the surface tension and temperature. The surface tension value is 1.588 N/m at the monotectic temperature of 1703 K, and its temperature coefficient is -3.7×10-4 Nm-1K-1. Based on the Butler equation, the surface tension is also calculated theoretically. The experimental and calculated results indicate that the effect of the enriched element on droplet surface is much more conspicuous than the other elements to decrease the surface tension.

  10. Nano-crystallization and magnetic mechanisms of Fe85Si2B8P4Cu1 amorphous alloy by ab initio molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2014-05-01

    Iron-based amorphous and nano-crystalline alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, fundamental understanding of the nano-crystallization mechanisms and magnetic features in the amorphous structure are still lack of knowledge. In the present work, we performed ab initio molecular dynamics simulation to clarify the ionic and electronic structure in atomic scale, and to derive the origin of the good magnetic property of Fe85Si2B8P4Cu1 amorphous alloy. The simulation gave a direct evidence of the Cu-P bonding preference in the amorphous alloy, which may promote nucleation in nano-crystallization process. On the other hand, the electron transfer and the band/orbital features in the amorphous alloy suggests that alloying elements with large electronegativity and the potential to expand Fe disordered matrix are preferred for enhancing the magnetization.

  11. Stability of metastable phase and soft magnetic properties of bulk Fe-B nano-eutectic alloy prepared by undercooling solidification combined with CU-mold chilling

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Zhang, Jun; Huang, Huili; Song, Qijiao; Liu, Feng

    2015-11-01

    Bulk Fe83B17 nano-eutectic alloys were prepared by undercooling solidification combined with Cu-mold chilling method. Stable phase Fe2B and metastable phase Fe3B were found to coexist in the as-solidified microstructure. The soft magnetic properties were improved significantly by the nano-lamellar eutectic and the metastable phase and, were increased further by annealing at 1173 K for 1.5 h after which the metastable phase was decomposed completely.

  12. EXAFS Studies and Microwave Magnetic Properties of FeGaB Thin Films and FeCuZr Ball-Milled Alloys

    NASA Astrophysics Data System (ADS)

    Gao, Jinsheng

    X-ray absorption fine structure (XAFS) is a spectroscopic technique which can investigate the physical and chemical structure of materials at the atomic scale. X-rays are applied in this technique to be near and above the binding energy of a particular core electronic level of a particular atomic species. Over the last decades, XAFS has emerged as a highly informative probe of the local structure around selected atomic species in solids, liquids, and molecular gases. It offers both element specificity and local structure sensitivity. Foremost among its strengths are its ability to probe the local atomic environments of different elements in the sample by selecting the corresponding incident X-ray energy. In the first part of this thesis, FeGaB alloys, which are of value as soft magnetic materials having relatively large magnetostriction coefficient, were fabricated in which varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films were investigated by extended X-ray absorption fine structure (EXAFS) analysis. EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting gradually increases as a function of boron addition and abruptly increases during the structural evolution from crystalline to amorphous. Upon the onset of this transition the static and microwave magnetic properties became exceptionally softer, with values of coercivity and ferromagnetic linewidth reducing dramatically. In the second part of this thesis, metastable alloys of the composition FeCuZr were synthesized by high energy ball milling and measured by EXAFS . The fitting results demonstrate that nanocrystalline or amorphous alloys have been obtained depending on the Zr content.

  13. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    NASA Astrophysics Data System (ADS)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  14. Direct imaging of structural heterogeneity of the melt-spun Fe85.2Si2B8P4Cu0.8 alloy

    NASA Astrophysics Data System (ADS)

    Sato, Kazuhisa; Takenaka, Kana; Makino, Akihiro; Hirotsu, Yoshihiko

    2015-06-01

    A structural heterogeneity of the melt-spun Fe85.2Si2B8P4Cu0.8 alloy has been studied by spherical aberration (Cs) corrected high-resolution transmission electron microscopy. Hollow-cone illumination imaging revealed that the density of coherent scattering regions in the as-quenched Fe85.2Si2B8P4Cu0.8 alloy is much higher than that in the Fe76Si9B10P5 bulk metallic glass. According to the Cs-corrected TEM, crystalline atomic clusters, typically of ˜1 nm in diameter, are densely distributed in an amorphous matrix of Fe85.2Si2B8P4Cu0.8 alloy. Observation of four-fold and six-fold atomic arrangements of these clusters implies existence of Fe clusters with the body centered cubic structure. These Fe clusters must be responsible for the formation of ultrahigh-density α-Fe nanocrystals produced by post-annealing.

  15. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  16. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-02-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  17. Nanocrystalline Fe88-2xCoxNixZr7B4Cu1 alloys: Soft magnets for vehicle electrification technologies (invited)

    NASA Astrophysics Data System (ADS)

    Knipling, K. E.; Daniil, M.; Willard, M. A.

    2015-05-01

    We report on the effect of substituting Co and Ni for Fe on the crystallization behavior, crystal structure, and magnetic properties of Fe88-2xCoxNixZr7B4Cu1 (x = 0-22.00). The magnetization generally decreases and the coercivity increases with increasing x, whereas the Curie temperature of the amorphous phase increases significantly (from 73 °C at x = 0 to 570 °C at x = 22.00). There is thus an optimum composition near x = 5.50 exhibiting excellent soft magnetic properties at 300-500 °C. The higher magnetization and Curie temperature as compared with Fe-based alloys, and smaller Co content as compared with (Fe,Co)-based alloys, make this alloy attractive as an affordable high-temperature soft magnetic material.

  18. Modification of the phase composition and structure of the quasicrystalline Al-Cu-Fe alloy prepared by plasma spraying

    NASA Astrophysics Data System (ADS)

    Lepeshev, A. A.; Bayukov, O. A.; Rozhkova, E. A.; Karpov, I. V.; Ushakov, A. V.; Fedorov, L. Yu.

    2015-02-01

    The structural-phase state of quasicrystalline coatings of the Al-Cu-Fe alloy produced under different thermal conditions of plasma spraying (different contact temperatures T k of the substrate) has been investigated. It has been shown that sprayed coatings are heterophase with the dominant content of the icosahedral ψ and cubic β phases, the formation and fractional ratio of which depend on spraying conditions. The distribution of probabilities P(QS) of quadrupole splitting in experimental γ-resonance spectra has been analyzed. The dependence of hyperfine interaction parameters (QS, A) on spraying conditions of the coating has been established. Five nonequivalent positions of resonant iron atoms, the appearance and filling of which are determined by spraying conditions, have been revealed.

  19. STRUCTURE AND MAGNETIC PROPERTIES OF NANOCRYSTALLINE (Fe50Co50)73.5Cu1Nb3Si13.5B9 ALLOYS

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Ju, Ying; Lu, Wei; Yan, Biao; Gao, Wei

    2013-07-01

    (Fe50Co50)73.5Cu1Nb3Si13.5B9 amorphous ribbons, a type of Co doped Finemet alloy, were prepared by melt-spinning and annealed at 440-560°C for 30 min. Influences of heat treatment and Co content on the crystallization were analyzed through differential scanning calorimetric (DSC) and X-ray diffractometry (XRD). The microstructure was analyzed by atomic force microscopy (AFM). The magnetic properties of (Fe50Co50)73.5Cu1Nb3Si13.5B9 and Finemet ribbons were tested by an alternating current soft magnetic properties measurement system. A comparative study of frequency dispersion properties between (Fe50Co50)73.5Cu1Nb3Si13.5B9 and Finemet was conducted. Results indicate that the optimal magnetic property has been achieved when (Fe50Co50)73.5Cu1Nb3Si13.5B9 ribbons were annealed at the temperature range of 480°C-520°C, after which the grain size became between 10 nm and 20 nm. Although the permeability of (Fe50Co50)73.5Cu1Nb3Si13.5B9 is not as high as that of Finemet, this Co-doped Finemet amorphous alloy presents better high frequency properties, and therefore is a promising candidate for the high frequency field applications.

  20. Morphology, structural and thermal characterization of nanocrystalline Ni50Cu30(Fe2B)10P10 powders prepared by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Slimi, M.; Suñol, J. J.; Khitouni, M.

    2016-05-01

    The mechanical alloying process has been used to prepare nanocrystalline Ni50Cu30(Fe2B)10P10 alloy from powder mixture. The transformations occurring in the material during milling were studied with the use of X-ray diffraction. In addition, lattice microstrain, average crystallite size, dislocation density and the lattice parameter were determined. The patterns so obtained were analyzed using the Maud program. The final product of the mechanical alloying process after 30h of milling was nanocrystalline Ni, Cu3P and Fe2B phases with a mean crystallite size in the range of a few nanometers. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. Thermal behaviour of the milled powders was examined by differential scanning calorimetry (DSC).

  1. Cu-Mn-Fe alloys and Mn-rich amphiboles in ancient copper slags from the Jabal Samran area, Saudi Arabia: With synopsis on chemistry of Fe-Mn(III) oxyhydroxides in alteration zones

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.

    2015-01-01

    In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled

  2. The mechanical and electronic properties of Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe and Ti: First-principles study

    NASA Astrophysics Data System (ADS)

    Sun, Ting; Wu, Xiaozhi; Li, Weiguo; Wang, Rui

    2015-03-01

    The adhesion and ductility of (100) and (110) Al/TiC interfaces alloyed by Mg, Zn, Cu, Fe, and Ti have been investigated using first-principles methods. Fe and Ti can enhance the adhesion of (100) and (110) interfaces. Mg and Zn have the opposite effect. Interfacial electronic structures have been created to analyze the changes of the work of adhesion. It is found that more charge is accumulated at interfaces alloyed by Fe and Ti compared with pure Al/TiC. There is also an obvious downward shift in the Fermi energy of Fe, Ti at the interface. Furthermore, the unstable stacking fault energies of the interfaces are calculated; the results demonstrate that the preferred slip direction is the < 110> direction for (100) and (110) Al/TiC. Based on the Rice criterion of ductility, the results predict that Mg, Fe, and Ti are promising candidates for improving the ductility of Al/TiC interfaces.

  3. Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe CuNiMnSi alloys

    NASA Astrophysics Data System (ADS)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2007-02-01

    The embrittlement of pressure vessel steels under radiation has been long ago correlated with the presence of Cu solutes. Other solutes such as Ni, Mn and Si are now suspected to contribute also to the embrittlement. The interactions of these solutes with radiation induced point defects thus need to be characterized properly in order to understand the elementary mechanisms behind the formation of the clusters formed upon radiation. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si) in order to build a database used to parameterise an atomic kinetic Monte Carlo model. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model are presented.

  4. Low-temperature magnetization of amorphous and nanocrystalline Fe 76.5- xU xCu 1Si 13.5B 9 alloys

    NASA Astrophysics Data System (ADS)

    Duša, O.; Kováč, J.; Konč, M.; Švec, T.; Kavečanský, V.

    1996-03-01

    The low-temperature magnetization of amorphous and nanocrystalline Fe 76.5- xU xCu 1Si 13.5B 9 alloys ( x = 0-11) has been studied in the 4.2-300 K range. All examined magnetic parameters (exchange integral J, range of exchange interactions < r2>, magnetic moment per Fe atom, μFe, spin wave stiffness constant D) are markedly influenced by the uranium substitution for iron. Both the μFe and D are found to increase with decreasing Fe content in amorphous alloys for x = 0 up to about 4. The noncollinear spin structures as a result of competing interactions are supposed to explain this behaviour. Some samples (with U contents of 2-6 at%) annealed for 1 h at 813 K appear to be nanocrystalline. Uranium seems to inhibit grain growth in the investigated FeUCuSiB system, just as Nb does in FeNbCuSiB nanocrystalline alloys.

  5. Elevated-Temperature Corrosion of CoCrCuFeNiAl0.5Bx High-Entropy Alloys in Simulated Syngas Containing H2S

    SciTech Connect

    Dogan, Omer N; Nielsen, Benjamin C; Hawk, Jeffrey A

    2013-08-01

    High-entropy alloys are formed by synthesizing five or more principal elements in equimolar or near equimolar concentrations. Microstructure of the CoCrCuFeNiAl{sub 0.5}B{sub x} (x = 0, 0.2, 0.6, 1) high-entropy alloys under investigation is composed of a mixture of disordered bcc and fcc phases and borides. These alloys were tested gravimetrically for their corrosion resistance in simulated syngas containing 0, 0.01, 0.1, and 1 % H{sub 2}S at 500 °C. The exposed coupons were characterized using XRD and SEM. No significant corrosion was detected at 500 °C in syngas containing 0 and 0.01 % H{sub 2}S while significant corrosion was observed in syngas containing 0.1 and 1 % H{sub 2}S. Cu{sub 1.96}S was the primary sulfide in the external corrosion scale on the low-boron high-entropy alloys, whereas FeCo{sub 4}Ni{sub 4}S{sub 8} on the high-boron high-entropy alloys. Multi-phase Cu-rich regions in the low-B high-entropy alloys were vulnerable to corrosive attack.

  6. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

    NASA Astrophysics Data System (ADS)

    Biswas, Krishanu; Chattopadhyay, Kamanio; Galun, Rolf; Mordike, Barry L.

    2005-07-01

    We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry

  7. Cluster formation, evolution and size distribution in Fe-Cu alloy: Analysis by XAFS, XRD and TEM

    NASA Astrophysics Data System (ADS)

    Cammelli, S.; Degueldre, C.; Cervellino, A.; Abolhassani, S.; Kuri, G.; Bertsch, J.; Lützenkirchen-Hecht, D.; Frahm, R.

    2010-03-01

    Fe-Cu alloys containing 1.3 at.% copper were studied as model systems for cluster formation in reactor pressure vessel steels. The samples were annealed at 775 K for different times and subsequently analyzed using X-ray absorption fine structure spectroscopy at the Cu-K-edge, X-ray diffraction and transmission electron microscopy. The results show that copper cluster formation might occur even with short annealing times. These clusters of about 1 nm size can switch easily from bcc iron-like structures to fcc copper, if the local copper concentration is high enough. While a short annealing time of 2.5 h at 775 K maintains a good dilution of copper in the bcc iron matrix, annealing for 312 h leads to large fcc copper precipitates. A linear combination analysis suggests that in the sample annealed 8 h, copper clusters are mostly formed with the same structure as the matrix. A co-existence of bcc and fcc clusters is obtained for 115 h of annealing. Transmission electron microscopy indicates the presence of precipitates as large as 60 nm size for an annealing time of 312 h, and X-ray diffraction provided complementary data about the clusters size distributions in all of the four samples.

  8. Low core loss of non-Si quaternary Fe83.3B8P8Cu0.7 nanocrystalline alloy with high Bs of 1.7 T

    NASA Astrophysics Data System (ADS)

    Urata, Akiri; Yamaki, Makoto; Takahashi, Masahiko; Okamoto, Koichi; Matsumoto, Hiroyuki; Yoshida, Shigeyoshi; Makino, Akihiro

    2012-04-01

    The effect of replacement Si by P on the soft magnetic and structural properties of nanocrystalline Fe-Si-B-P-Cu alloys has been investigated. The nanocrystalline Fe83.3SiXB8P8-XCu0.7 (X = 0, 2, 4, 6) alloy ribbons consist of precipitated α-Fe phase and residual amorphous phase, and initial permeability of these alloy ribbons are enhanced with decreasing Si content. In particular, the nanocrystalline Fe83.3B8P8Cu0.7 (X = 0) alloy has both low core loss of 1.4 W/kg at 1.0 T - 50 Hz and high saturation magnetic flux density of 1.70 T. In addition, this alloy exhibits the most favorable nanocrystalline structure containing the homogeneously precipitated α-Fe grains with 14 nm in mean diameter. Therefore, it can be concluded that the soft magnetic properties and nanostructure of Fe-Si-B-P-Cu alloys are strongly affected by Si and P content. The Fe83.3B8P8Cu0.7 alloy with low core loss and high saturation magnetic flux density compared with a Fe amorphous alloy is suitable for a magnetic core material in electronic devices such as transformers, inductors and motors.

  9. Thermodynamic analysis of binary Fe{sub 85}B{sub 15} to quinary Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloys for primary crystallizations of α-Fe in nanocrystalline soft magnetic alloys

    SciTech Connect

    Takeuchi, A. Zhang, Y.; Takenaka, K.; Makino, A.

    2015-05-07

    Fe-based Fe{sub 85}B{sub 15}, Fe{sub 84}B{sub 15}Cu{sub 1}, Fe{sub 82}Si{sub 2}B{sub 15}Cu{sub 1}, Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, and Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} (NANOMET{sup ®}) alloys were experimental and computational analyzed to clarify the features of NANOMET that exhibits high saturation magnetic flux density (B{sub s}) nearly 1.9 T and low core loss than conventional nanocrystalline soft magnetic alloys. The X-ray diffraction analysis for ribbon specimens produced experimentally by melt spinning from melts revealed that the samples were almost formed into an amorphous single phase. Then, the as-quenched samples were analyzed with differential scanning calorimeter (DSC) experimentally for exothermic enthalpies of the primary and secondary crystallizations (ΔH{sub x1} and ΔH{sub x2}) and their crystallization temperatures (T{sub x1} and T{sub x2}), respectively. The ratio ΔH{sub x1}/ΔH{sub x2} measured by DSC experimentally tended to be extremely high for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy, and this tendency was reproduced by the analysis with commercial software, Thermo-Calc, with database for Fe-based alloys, TCFE7 for Gibbs free energy (G) assessments. The calculations exhibit that a volume fraction (V{sub f}) of α-Fe tends to increase from 0.56 for the Fe{sub 85}B{sub 15} to 0.75 for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy. The computational analysis of the alloys for G of α-Fe and amorphous phases (G{sub α-Fe} and G{sub amor}) shows that a relationship G{sub α-Fe} ∼ G{sub amor} holds for the Fe{sub 85}Si{sub 2}B{sub 12}Cu{sub 1}, whereas G{sub α-Fe} < G{sub amor} for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy at T{sub x1} and that an extremely high V{sub f} = 0.75 was achieved for the Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} alloy by including 2.8 at. % Si and 4.5 at. % P into α-Fe. These computational results indicate that the Fe{sub 85}Si{sub 2}B

  10. Crystallization Kinetics of Fe76.5- x C6.0Si3.3B5.5P8.7Cu x ( x = 0, 0.5, and 1 at. pct) Bulk Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Jung, Hyo Yun; Stoica, Mihai; Yi, Seonghoon; Kim, Do Hyang; Eckert, Jürgen

    2015-06-01

    The influence of Cu on crystallization kinetics of Fe76.5- x C6.0Si3.3B5.5P8.7Cu x ( x = 0, 0.5, and 1 at. pct) bulk amorphous alloys was investigated by isothermal and isochronal differential scanning calorimetry combined with X-ray diffraction. The thermal analysis revealed that the crystallization of the amorphous matrix proceeds through at least two exothermic events. The Cu-free glassy alloy forms by primary crystallization the metastable Fe23C6 phase, while upon 0.5 at. pct Cu addition the primary crystallized phase is α-Fe. The activation energy for crystallization, calculated using both Kissinger and Ozawa methods, decreases from about 500 kJ/mol to about 330 kJ/mol. Further increase of Cu addition to 1 at. pct promotes the concomitant crystallization of several phases, as α-Fe, FeB, Fe3C, and Fe2P. In order to understand the crystallization behavior of the alloys as a function of Cu content, the Avrami exponent n, evaluated from the Johnson-Mehl-Avrami equation, was in details analyzed. The current study reveals that the minor Cu addition plays a crucial role at the initial stage of the crystallization. Among the studied alloys, the glassy samples with 0.5 at. pct Cu addition have the optimum compositional condition for the single α-Fe formation with a high nucleation rate.

  11. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M. I.; Hou, M.

    2009-09-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  12. Effects of Nickel on the Oxide/Metal Interface Morphology and Oxidation Rate During High-Temperature Oxidation of Fe-Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Balaji, Sukumar; Sridhar, Seetharaman

    2010-06-01

    Steel produced in an electric arc furnace (EAF) contains a high amount of Cu that causes a surface-cracking phenomenon called surface hot shortness. Ni reduces the risk for surface hot shortness, and this work focuses on investigating the following two phenomena caused by Ni during oxidation at 1150 °C for Fe-Cu-Ni alloys: (1) the decrease in oxidation rate and (2) the formation of a wavy liquid-Cu/oxide and of liquid-Cu/γ-iron (γFe) interfaces, which promote Cu occlusion into the scale. Thermogravimetry, scanning electron microscopy, and transmission electron microscopy-energy dispersive spectroscopy techniques were applied. A numerical model also was developed to explain the experimental results. High Ni contents cause higher liquid-Cu/γFe interface nickel concentrations and more potential for an interface breakdown. The decrease in oxidation rate by adding nickel can be explained qualitatively by the decrease in Fe cation transport through the wüstite layer.

  13. Effects of Small Additions of Tin on High-Temperature Oxidation of Fe-Cu-Sn Alloys for Surface Hot Shortness

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Sridhar, Seetharaman

    2010-10-01

    Steel produced in an electric arc furnace contains a high amount of copper (Cu) that causes a surface-cracking phenomenon called surface hot shortness. It is known that tin (Sn) can exacerbate the hot shortness problem. A series of iron (Fe)-0.3 wt pct Cu- x wt pct Sn alloys with an Sn content ranging from 0.03 to 0.15 wt pct was oxidized in air at 1423 K (1150 °C) for 60 seconds, 300 seconds, and 600 seconds using thermogravimetry. A numerical model developed in a previous article was applied to predict the liquid- γFe interface concentrations and interface morphology in the Fe-Cu-Sn ternary system. Scanning electron microscopy investigations show that (1) The interface between the oxide and the metal is planar as predicted by the numerical model, (2) Sn leads to severe Cu-rich liquid penetration and cracking along the grain boundaries, and (3) open cracks with Fe oxides were found beneath the oxide-metal interface. The focused ion beam serial-sectioning technique was used to reveal a three-dimensional structure of cracks in the grain boundary containing Cu-rich liquid and Fe oxides.

  14. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles

    SciTech Connect

    Fei Tang

    2004-12-19

    Metal matrix composites (MMC), especially Al matrix composites, received a lot of attention during many years of research because of their promise for the development of automotive and aerospace materials with improved properties and performance, such as lighter weight and better structural properties, improved thermal conductivity and wear resistance. In order to make the MMC materials more viable in various applications, current research efforts on the MMCs should continue to focus on two important aspects, including improving the properties of MMCs and finding more economical techniques to produce MMCs. Solid state vacuum sintering was studied in tap densified Al powder and in hot quasi-isostatically forged samples composed of commercial inert gas atomized or high purity Al powder, generated by a gas atomization reaction synthesis (GARS) technique. The GARS process results in spherical Al powder with a far thinner surface oxide. The overall results indicated the enhanced ability of GARS-processed Al and Al alloy powders for solid state sintering, which may lead to simplification of current Al powder consolidation processing methods. Elemental Al-based composites reinforced with spherical Al-Cu-Fe alloy powders were produced by quasi-isostatic forging and vacuum hot pressing (VHP) consolidation methods. Microstructures and tensile properties of AYAl-Cu-Fe composites were characterized. It was proved that spherical Al-Cu-Fe alloy powders can serve as an effective reinforcement particulate for elemental Al-based composites, because of their high hardness and a preferred type of matrix/reinforcement interfacial bonding, with reduced strain concentration around the particles. Ultimate tensile strength and yield strength of the composites were increased over the corresponding Al matrix values, far beyond typical observations. This remarkable strengthening was achieved without precipitation hardening and without severe strain hardening during consolidation because of

  15. Enhancement of Curie Temperature (T c) and Magnetization of Fe-Ni Invar alloy Through Cu Substitution and with He+2 Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Khan, Sajjad Ahmad; Ziya, Amer Bashir; Ibrahim, Ather; Atiq, Shabbar; Usman, Muhammad; Ahmad, Naseeb; Shakeel, Muhammad

    2016-04-01

    The magnetic properties of ternary Fe-Ni-Cu invar alloys are affected by ion irradiation, which goes on increasing with increasing ion fluence (Φ), and by increasing Cu content. In the present study, the ions used are He+2 with 2 MeV energy and with 1 × 1013 cm-2, 1 × 1014 cm-2, 5 × 1014 cm-2, 1 × 1015 cm-2 and 5 × 1015 cm-2 fluence (dose) for irradiation purpose. The face centered cubic structure of the alloy was investigated after ion irradiation using x-ray diffraction (XRD) and found unchanged. However, the peaks become broader with increasing ion dose. Additionally, the lattice fluctuations were observed in XRD study. Curie temperature (T c) is also increased after irradiation. Many factors are considered here for the reason for increasing T c, such as the stopping of incident ions, atomic mixing effect at micro scale level owing to ion irradiation, which might change local concentration and ordering already reported in diffuse scattering, and as a result the Fe-Fe interatomic distance and the Fe-Fe coupling are changed. A comparative study shows that the effect of irradiation on T c and magnetization with increasing ion fluence is more distinctive than the addition of Cu.

  16. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    SciTech Connect

    Akiya, T. Sepehri-Amin, H.; Ohkubo, T.; Liu, J.; Hono, K.; Hioki, K.; Hattori, A.

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  17. Magnetic properties of Fe73.5Cu1Nb3-xUxSi13.5B9 (x = 1, 2, 3) nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Kollár, P.; Füzer, J.; Matta, P.; Švec, T.; Konč, M.

    1996-05-01

    The influence of uranium content and annealing on the magnetic properties and Hall effect of Fe73.5Cu1Nb3-xUxSi13.5B9 (x = 1, 2, 3) nanocrystalline alloys prepared by melt spinning were investigated. Measurements of magnetic properties of surface layers confirmed higher concentration of uranium in the air-side surface layers than in the wheel-side layers.

  18. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe85.2Si1B9P4Cu0.8 soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Ofuchi, Hironori; Makino, Akihiro

    2014-05-01

    A role of Cu on the nanocrystallization of an Fe85.2Si1B9P4Cu0.8 alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ˜12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe3(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, Tx1 = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔGfcc - bcc, which causes phase transition of the Cu clusters from fcc to bcc structure.

  19. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    NASA Astrophysics Data System (ADS)

    Subbotin, A. V.; Panyukov, S. V.

    2016-08-01

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  20. Influence of uranium content on magnetostriction of Fe73.5Cu1Nb3-xUxSi13.5B9 alloys

    NASA Astrophysics Data System (ADS)

    Pavlík, G.; Sovák, P.

    2006-09-01

    The aim of this work was to study the influence of annealing treatment on structure, magnetic properties and magnetostriction of the Fe73.5Cu1Nb3-xUxSi13.5B9 nanocrystalline alloys. The results confirmed the nanocrystalline character of these alloys in the temperature range 550- 650C. The influence of the uranium content on the structural stability has been observed for annealing treatment at higher temperature, i.e. at about 700C. The coercivity and the magnetostriction strongly depended both on the annealing temperature and on the uranium content.

  1. Understanding of copper precipitation under electron or ion irradiations in FeCu0.1 wt% ferritic alloy by combination of experiments and modelling

    NASA Astrophysics Data System (ADS)

    Radiguet, B.; Barbu, A.; Pareige, P.

    2007-02-01

    This work is dedicated to the understanding of the basic processes involved in the formation of copper enriched clusters in low alloyed FeCu binary system (FeCu0.1 wt%) under irradiation at temperature close to 300 °C. Such an alloy was irradiated with electrons or with ions (Fe+ or He+) in order to deconvolute the effect of displacement cascades and the associated generation of point defect clusters (ion irradiations), and the super-saturation of mono-vacancies and self-interstitial atoms (electron irradiation). The microstructure of this alloy was characterised by tomographic atom probe. Experimental results were compared with results obtained with cluster dynamic model giving an estimation of the evolution of point defects (free or agglomerated) under irradiation on the one hand and describing homogeneous enhanced precipitation of copper on the other hand. The comparison between the results obtained on the different irradiation conditions and the model suggests that the point defect clusters (dislocation loops and/or nano-voids) created in displacement cascades play a major role in copper clustering in low copper alloy irradiated at 573 K.

  2. Microstructural characterization of selected AEA/UCSB model FeCuMn alloys

    SciTech Connect

    Rice, P.M.; Stoller, R.E.

    1996-06-01

    A set of 22 model ferritic alloys was purchased as part of a collaborative research program by the AEA Harwell Laboratory and the University of California at Santa Barbara. Nine of these alloys were selected by the Oak Ridge National Laboratory for use in a series of ion irradiation experiments investigating dispersed barrier hardening. These nine alloys contain varying amounts of copper, manganese, titanium, carbon, and nitrogen. The alloys have been characterized by transmission electron microscopy in the as-received condition to provide a baseline for comparison with the irradiated specimens. A description of the microstructural observations is provided for future reference. This summary focuses on the type and size distributions of the precipitates present; grain size and dislocation measurements are also included.

  3. Observation of Cu nanometre scale clusters formed in Fe85Si2B8P4Cu1 nanocrystalline soft magnetic alloy by a spherical aberration-corrected TEM/STEM

    NASA Astrophysics Data System (ADS)

    Nishijima, Masahiko; Matsuura, Makoto; Zhang, Yan; Makino, Akihiro

    2015-05-01

    Microstructure of a nanocrystalline soft magnetic Fe85Si2B8P4Cu1 alloy (NANOMET®) was investigated by the state of the art spherical aberration-corrected TEM/STEM. Observation by TEM shows that the microstructure of NANOMET® heat treated at 738 K for 600 s which exhibits the optimum soft magnetic properties has homogeneously distributed bcc-Fe nanocrystallites with the average grain size of 30 nm embedded in an amorphous matrix. Elemental mappings indicate that P is excluded from bcc-Fe grains and enriched outside the grains, which causes to retard the grain growth of bcc-Fe crystallites. The aberration-corrected STEM-EDS analysis with the ultrafine electron probe successfully proved that Cu atoms form nanometre scale clusters inside and/or outside the bcc-Fe nanocrystallites.

  4. The Mechanical and Corrosion Behaviors of As-cast and Re-melted AlCrCuFeMnNi Multi-Component High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Soare, Vasile; Mitrica, Dumitru; Constantin, Ionut; Popescu, Gabriela; Csaki, Ioana; Tarcolea, Mihai; Carcea, Ioan

    2015-04-01

    A multi-component AlCrCuFeMnNi high-entropy alloy, prepared by vacuum induction melting, was investigated for structural, mechanical, and corrosion characteristics, before and after the re-melting process. Optical microscopy analysis revealed a dendritic solidification behavior. The interdendritic area contains two main phases and occasionally small hard phases. The re-melting process produced a finer dendritic structure, with rounded dendrites and reduced interdendritic hard phases. The SEM-EDAX analysis showed that the dendrite region contains a Widmanstatten type of structure and are composed of Cr-Fe rich phases, whereas the interdendrite region contains Cu and Mn rich phases. XRD analysis revealed two disordered BCC type A2 structures with high Cr and Fe content and an FCC A12 type of structure for the Cu and Mn rich interdendritic phase. The lattice constants, determined by X-ray diffraction, are 2.87 and 2.91 Å for the A2 phases and 3.67 Å for A1 phase. The Vickers micro hardness increased with the homogeneity of the alloy, having a maximum value of 4370 MPa for the re-melted sample. Corrosion tests carried out in 3.5 wt pct sodium chloride aerated solution indicated that the corrosion resistance improved with the re-melting process, being 1.5 to 2 times better than that of 304 stainless steel.

  5. Effect of the addition of Mn on the tensile properties of a spray-formed and extruded Al-9Si-4Cu-1Fe alloy

    NASA Astrophysics Data System (ADS)

    Benetti, G. D.; Jorge, A. M., Jr.; Kiminami, C. S.; Botta, W. J.; Bolfarini, C.

    2009-01-01

    The microstructure and the tensile properties of a spray-formed and extruded Al- 9Si-4Cu-1Fe alloy were investigated. Manganese (0.3, 1, 2 in wt%) was added to the alloy to avoid the formation of the needle-like β-AlFeSi intermetallic phases that are highly detrimental to the alloy's ductility. The deposits were extruded at 623K with a n area reduction of 5 to 1. Small faceted dispersoids surrounding the equiaxial α-Al matrix, mainly in the form of silicon particles, were identified by SEM-EDS, as well as the Mn-containing α-Al15(Fe,Mn)3Si2 phase. The presence of the needle-like β-Al(Fe,Mn)Si was scanty, even with the lowest Mn content. The room temperature tensile tests of all the extruded alloys showed a significant increase in elongation to fracture when compared with the values observed fo r the as-spray formed deposits.This result can be ascribed to the elimination of porosity promoted by the extrusion process and to the smaller grain size of the extruded samples. PUBLISHER'S NOTE This article by Benetti et al was published in error, it was a duplicate of article 012114 which appears later in this volume, the duplicate PDF and references have been deleted. The missing article by S Jayalakshmi, E Fleury and D J Sordelet, which forms part of the section HYDROGEN IN METASTABLE ALLOYS, now appears at the end of the volume (012120).

  6. Precipitation of coherent FeRh nanoparticles with highly suppressed magnetostructural transition temperatures in rapidly solidified (FeRh)5Cu95 alloys

    NASA Astrophysics Data System (ADS)

    Barua, Radhika; Jiang, Xiujuan; Shield, Jeff; Heiman, Don; Lewis, Laura

    2012-02-01

    Magnetostructural phase transitions have the capability of delivering large functional effects in response to small excursions in magnetic field, temperature and strain; this potential might be amplified in nanostructured systems by virtue of large surface:volume ratios. Nanoprecipitates (˜10nm) of FeRh, a well-known magnetostructural material, were studied with structural and magnetic probes in a rapidly solidified phase-separated system of (FeRh)5Cu95. Magnetization studies indicate a dramatic reduction in the magnetostructural phase transition temperature (Tt) of the nanoscaled FeRh phase relative to the bulk value (δT=Tt,Bulk - Tt,Nano = 220 K). Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) reveals a coherent orientational relationship between the FeRh (aFeRh = 3.09 å)and Cu (aCu = 3.78 å) phases. At the matrix/precipitate interface a constrained misfit strain of ɛ = 0.18 is observed. The reduction of the magnetostructural phase transition temperature and evolution of the magnetic properties with system annealing is analyzed in the context of the strain between the FeRh nanoparticles and the Cu matrix.

  7. Multiscale modeling of the influence of Fe content in a Al-Si-Cu alloy on the size distribution of intermetallic phases and micropores

    NASA Astrophysics Data System (ADS)

    Wang, Junsheng; Li, Mei; Allison, John; Lee, Peter D.

    2010-03-01

    A multiscale model was developed to simulate the formation of Fe-rich intermetallics and pores in quaternary Al-Si-Cu-Fe alloys. At the microscale, the multicomponent diffusion equations were solved for multiphase (liquid-solid-gas) materials via a finite difference framework to predict microstructure formation. A fast and robust decentered plate algorithm was developed to simulate the strong anisotropy of the solid/liquid interfacial energy for the Fe-rich intermetallic phase. The growth of porosity was controlled by local pressure drop due to solidification and interactions with surrounding solid phases, in addition to hydrogen diffusion. The microscale model was implemented as a subroutine in a commercial finite element package, producing a coupled multiscale model. This allows the influence of varying casting conditions on the Fe-rich intermetallics, the pores, and their interactions to be predicted. Synchrotron x-ray tomography experiments were performed to validate the model by comparing the three-dimensional morphology and size distribution of Fe-rich intermetallics as a function of Fe content. Large platelike Fe-rich β intermetallics were successfully simulated by the multiscale model and their influence on pore size distribution in shape castings was predicted as a function of casting conditions.

  8. Structure analyses of Cu nanoclusters in the soft magnetic Fe85.2Si1B9P4Cu0.8 alloy by XAFS and fcc cluster model

    NASA Astrophysics Data System (ADS)

    Matsuura, M.; Nishijima, M.; Konno, K.; Ofuchi, H.; Takenaka, K.; Makino, A.

    2016-05-01

    Size of the clusters and structure details of fcc Cu clusters in nanocrystalline soft magnetic alloy of Fe85-86Si1-2B8P4Cu1 (NANOMET) are investigated. A linear combination fitting of XAFS data indicates that about 30% of Cu atoms are partitioned in the fcc clusters and the rest in the amorphous matrix. EXAFS of the fcc Cu nanocluster embedded in amorphous matrix is calculated on the basis of a simple fcc structure model using FEFF9. Surface effect of the nanoclusters is considered by counting a fraction of the nearest neighbour atoms in amorphous matrix. Good agreement with the experimental result is obtained for the fcc nanocluster with 9 coordination shells which consists of total 177 atoms within 1.5 nm in a diameter.

  9. Effect of Silicon on Hot Shortness in Fe-Cu-Ni-Sn-Si Alloys During Isothermal Oxidation in Air

    NASA Astrophysics Data System (ADS)

    Sampson, Erica; Sridhar, Seetharaman

    2013-10-01

    Residual Cu in scrap-based EAF steel leads to a surface-cracking phenomenon known as surface hot shortness. Si is known to provide a potential reduction in hot shortness; however, the mechanisms involved are not fully understood for low Si quantities. The current study aims to determine a window of Si contents with a given Ni content needed to counteract the negative effects of Sn and Cu to reduce hot shortness and to determine the mechanism. Thermogravimetric analysis (TG), SEM-EDS, XRD, and TEM were used to study the hot shortness behavior of Fe containing 0.2 pct Cu, 0.05 pct Ni, 0.01 pct Sn and with varying Si-content (0.02 pct, 0.1 pct, 0.15 pct, and 0.2 pct Si). It was found that the fayalite formation resulting in a reduction of oxidation and consequently liquid Cu formation occurred for all Si contents examined. The range of Si contents between 0.1 and 0.2 wt pct Si exhibited a mechanism that was a combination of fayalite formation impeding oxidation as well as occlusion of the Cu-rich liquid. This range was acceptable to alleviate hot shortness.

  10. Effect of Rotating Magnetic Field (RMF) on Segregation of Solute Elements in CuNi10Fe1Mn Alloy Hollow Billet

    NASA Astrophysics Data System (ADS)

    Yan, Zhiming; Jin, Wenzhong; Li, Tingju

    2012-09-01

    The effect of rotating magnetic field (RMF) on macro/microsegregation of solute elements is investigated experimentally, and a comprehensive three-dimensional mathematical model is built, and the finite element package ANSYS® is employed to calculate the distribution of temperature and liquid fraction along the radial direction in horizontal continuous casting of CuNi10Fe1Mn alloy hollow billet. The results show that RMF makes the temperature field and liquid fraction uniform. The original inhomogeneous columnar grain macrostructure turns into homogeneous equiaxed grain structure, and the macro/microsegregation of Ni, Fe, and Mn elements are restrained effectively with the application of RMF. Moreover, the action mechanism of RMF is discussed to explain its effect on improving the distribution of solute elements.

  11. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction.

    PubMed

    Zhu, Zhijun; Zhai, Yanling; Dong, Shaojun

    2014-10-01

    Constructing electrocatalysts with enhanced activity and stability is necessary due to the increasing demands of the fuel cell industry. This work demonstrates a facile approach to synthesize well-defined three-dimensional (3D) PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges (BANs) in the presence of Al. Significantly, with the aid of Al, the as-prepared BANs exhibit greatly enhanced electrochemistry catalytic activity in an oxygen reduction reaction (ORR), and PtFe BANs appear the best ORR property among the four BANs and commercial Pt/C catalysts. This work may provide a universal approach for convenient and large-scale fabrication of porous bimetallic nanocatalysts, thus providing promising potential application as an efficient cathodic component in fuel cells for industrial production. PMID:25223424

  12. Stability and mobility of Cu-vacancy clusters in Fe-Cu alloys: A computational study based on the use of artificial neural networks for energy barrier calculations

    NASA Astrophysics Data System (ADS)

    Pascuet, M. I.; Castin, N.; Becquart, C. S.; Malerba, L.

    2011-05-01

    An atomistic kinetic Monte Carlo (AKMC) method has been applied to study the stability and mobility of copper-vacancy clusters in Fe. This information, which cannot be obtained directly from experimental measurements, is needed to parameterise models describing the nanostructure evolution under irradiation of Fe alloys (e.g. model alloys for reactor pressure vessel steels). The physical reliability of the AKMC method has been improved by employing artificial intelligence techniques for the regression of the activation energies required by the model as input. These energies are calculated allowing for the effects of local chemistry and relaxation, using an interatomic potential fitted to reproduce them as accurately as possible and the nudged-elastic-band method. The model validation was based on comparison with available ab initio calculations for verification of the used cohesive model, as well as with other models and theories.

  13. The enhanced range of temperature for coefficient of low thermal expansion, electrical and thermal conductivities of Cu substituted Fe-Ni invar alloys

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Ziya, A. B.; Ibrahim, A.; Atiq, S.; Ahmad, N.; Bashir, F.

    2016-03-01

    Six alloys of Fe65Ni35-x Cu x (x = 0, 0.2, 0.6, 1, 1.4, 1.8 at.%) have been prepared by conventional arc-melting technique and characterized by utilizing high temperature x-ray diffraction (HTXRD) technique at a range from room temperature to 773 K for determination of phase, lattice parameter (a), coefficient of thermal expansion (α(T)), mean square amplitude of vibration (\\bar{{u}2}), characteristic Debye temperature (ΘD), electrical resistivity (ρ) and thermal conductivity (κ). The studies showed that these alloys form face centered cubic structure (fcc) throughout the investigated temperature range. The values of α(T) were found to be comparable to those for conventional Fe-Ni invar alloys but have increased temperature span to a significant extent. The mean square amplitude of vibration (\\bar{{u}2}) and Debye temperature were found to remain almost unchanged in the invar temperature range, whereas the electrical and thermal conductivity were found to improve.

  14. Formation of the icosahedral quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy

    SciTech Connect

    Wang Yan; Zhang Zhonghua . E-mail: zh_zhang@sdu.edu.cn; Geng Haoran; Yang Zhongxi

    2006-04-15

    In the present work, the effect of wheel speed (quenching rate) on the formation of the quasicrystalline phase in a rapidly solidified Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy has been investigated using X-ray diffraction (XRD), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results show that rapid solidification has no effect on the phase constitution of the Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The addition of Si decreases the stability of the quasicrystalline phase in the conventionally cast Al{sub 52}Cu{sub 25.5}Fe{sub 12.5}Si{sub 1} alloy. The thermal stability of the quasicrystalline phase in the melt-spun alloy depends upon the quenching rate. Moderate-rate rapid solidification can improve the thermal stability of the quasicrystalline phase in the melt-spun alloy. Higher quenching rate instigates the transformation of the quasicrystalline phase into the cubic approximant phase and decreases the stability of the quasicrystalline phase. Furthermore, the transformation temperature decreases with increasing Si addition into the Al{sub (62-x)}Cu{sub 25.5}Fe{sub 12.5}Si{sub x}.

  15. High-Temperature Deformation Processing Map Approach for Obtaining the Desired Microstructure in a Multi-component (Ni-Ti-Cu-Fe) Alloy

    NASA Astrophysics Data System (ADS)

    Nayan, Niraj; Singh, Gaurav; Narayana Murty, S. V. S.; Jha, Abhay K.; Pant, Bhanu; George, Koshy M.

    2015-05-01

    An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 °C to 1030 °C) and strain rate range of 10-3 to 10-1 s-1. The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature-strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 °C to 1030 °C) and range of 10-3 to 10-1.2 s-1, and the deformation is unstable at T = 1073 K to 1153 K (800 °C to 880 °C) and = 10-3 to 10-1.4 s-1 as well as T = 1223 K to 1293 K (950 °C to 1020 °C) and = 10-1.4 to 10-1 s-1, with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined.

  16. Direct imaging of structural heterogeneity of the melt-spun Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy

    SciTech Connect

    Sato, Kazuhisa Takenaka, Kana; Makino, Akihiro; Hirotsu, Yoshihiko

    2015-06-15

    A structural heterogeneity of the melt-spun Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy has been studied by spherical aberration (C{sub s}) corrected high-resolution transmission electron microscopy. Hollow-cone illumination imaging revealed that the density of coherent scattering regions in the as-quenched Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy is much higher than that in the Fe{sub 76}Si{sub 9}B{sub 10}P{sub 5} bulk metallic glass. According to the C{sub s}-corrected TEM, crystalline atomic clusters, typically of ∼1 nm in diameter, are densely distributed in an amorphous matrix of Fe{sub 85.2}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 0.8} alloy. Observation of four-fold and six-fold atomic arrangements of these clusters implies existence of Fe clusters with the body centered cubic structure. These Fe clusters must be responsible for the formation of ultrahigh-density α-Fe nanocrystals produced by post-annealing.

  17. On the Structural Stability of Melt Spun Ribbons of Fe95- x Zr x B4Cu1 ( x = 7 and 9) Alloys and Correlation with Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Arvindha Babu, D.; Majumdar, Bhaskar; Sarkar, Rajdeep; Murty, B. S.; Chattopadhyay, K.

    2016-01-01

    Melt spun ribbons of Fe95- x Zr x B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mössbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline α-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline α-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mössbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, α-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, α-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4.

  18. The Effects of Microstructure Heterogeneities and Casting Defects on the Mechanical Properties of High-Pressure Die-Cast AlSi9Cu3(Fe) Alloys

    NASA Astrophysics Data System (ADS)

    Timelli, Giulio; Fabrizi, Alberto

    2014-11-01

    Detailed investigations of the salient microstructural features and casting defects of the high-pressure die-cast (HPDC) AlSi9Cu3(Fe) alloy are reported. These characteristics are addressed to the mechanical properties and reliability of separate HPDC tensile bars. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes throughout the tensile specimen. The results indicate that the die-cast microstructure consists of several microstructural heterogeneities such as positive eutectic segregation bands, externally solidified crystals (ESCs), cold flakes, primary Fe-rich intermetallics (sludge), and porosities. In addition, it results that sludge particles, gas porosity, as well as ESCs, and cold flakes are concentrated toward the casting center while low porosity and fine-grained structure is observed on the surface layer of the castings bars. The local variation of the hardness along the cross section as well as the change of tensile test results as a function of gage diameter of the tensile bars seem to be ascribed to the change of porosity content, eutectic fraction, and amount of sludge. Further, this behavior reflects upon the reliability of the die-cast alloy, as evidenced by the Weibull statistics.

  19. In situ atomic force microscope study of high-temperature untwinning surface relief in Mn-Fe-Cu antiferromagnetic shape memory alloy

    SciTech Connect

    Wang, L.; Cui, Y. G.; Wan, J. F.; Rong, Y. H.; Zhang, J. H.; Jin, X.; Cai, M. M.

    2013-05-06

    The N-type untwinning surface relief associated with the fcc {r_reversible} fct martensitic transformation (MT) was observed in the Mn{sub 81.5}Fe{sub 14.0}Cu{sub 4.5} antiferromagnetic high-temperature shape memory alloy (SMA) by in situ atomic force microscopy. The measured untwinning relief angles ({theta}{sub {alpha}} Double-Vertical-Line {theta}{sub {beta}}) at the ridge and at the valley were different, and both angles were less than the conventional values. The surface relief exhibited good reversibility during heating and cooling because of the crystallographic reversibility of thermal-elastic SMAs. Untwinning shear was proposed as the main mechanism of the N-type surface relief. The order of the reverse MT was discussed based on the experimental measurements.

  20. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    DOE PAGESBeta

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types weremore » found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.« less

  1. Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Daoud, H. M.; Manzoni, A.; Völkl, R.; Wanderka, N.; Glatzel, U.

    2013-12-01

    Microstructure evolution and tensile behavior of the high-entropy alloy Al8Co17Cr17Cu8Fe17Ni33 (at.%) are investigated at room temperature and at 500°C in the as-cast state and under different heat-treatment conditions. Detailed microstructural characterizations are carried out using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The equilibrium phase evolution as a function of temperature was calculated using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden) integrated with TTNi-7 database. The observed majority phase is a face-centered cubic solid solution for all tested specimens. Tensile ductility at room temperature and at elevated temperature is enhanced by heat treatment at 1150°C. An embrittlement phenomenon has been observed after a heat treatment at 700°C resulting in significant degradation in tensile properties.

  2. Effects of temperature on serrated flows of Al0.5CoCrCuFeNi high-entropy alloy

    SciTech Connect

    Chen, Shuying; Xie, Xie; Chen, Bilin; Qiao, Junwei; Zhang, Yong; Ren, Yang; Dahmen, Karin A.; Liaw, Peter K.

    2015-08-14

    Compression behavior of the Al0.5CoCrCuFeNi high-entropy alloy (HEA) was studied at different temperatures from 673K to 873K at a low strain rate of 5 x 10-5/s to investigate the temperature effect on the mechanical properties and serration behavior. The face-centered cubic (FCC) structure is confirmed at the lower temperature of 673 K and 773 K, and a structure of mixed FCC and body-centered cubic (BCC) is identified at a higher temperature of 873 K after compression tests using high-energy synchrotron X-ray diffraction. As a result, by comparing the stress-strain curves at different temperatures, two opposite directions of serrations types were found, named upward serrations appearing at 673 K and 773 K and downward serrations at 873 K, which may be due to dynamic strain aging.

  3. Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy.

    PubMed

    Manzoni, Anna M; Daoud, Haneen M; Voelkl, Rainer; Glatzel, Uwe; Wanderka, Nelia

    2015-12-01

    Compositionally complex alloys, also called high entropy alloys, have been investigated for over a decade in view of different applications, but so far only a small number of alloys can be considered as presenting good enough properties for industrial application. The most common family of elements is Al-Co-Cr-Cu-Fe-Ni. The equiatomic alloy having 5 phases and being too brittle, the composition has been modified in order to improve the mechanical properties. Different compositions have been tested and as a first result ductile Al8Co17Cr17Cu8Fe17Ni33 has been chosen for deeper investigation. It shows a dendritic segregation into Co-Cr-Fe rich cores and Al-Cu-Ni rich interdendritic sites. The as-cast state is characterized mainly by two phases, namely Al-Cu-Ni rich precipitates of L12 structure inside a solid solution matrix. After homogenization both alloys consists of a single solid solution phase. Results are compared to calculations by ThermoCalc. In order to further improve the properties of the alloy the Cr content has been decreased and replaced by trace elements W, Mo and Ti, which, according to ThermoCalc, increase the melting point and the phase transition temperature which leads to the formation of the L12 phase. As-cast and heat treated samples of the base and the modified alloy have been investigated by transmission electron microscopy and three dimensional atom probe. Results of the investigations will be discussed in terms of microstructure, hardness and coherence with Thermo Calc predictions. PMID:26159736

  4. Spin glass freezing and superconductivity in YBa2(Cu(1-x)Fe(x))3O7 alloys

    NASA Technical Reports Server (NTRS)

    Mirebeau, I.; Hennion, M.; Dianoux, J.; Caignaert, V.; Phillips, T. E.; Moorjani, K.

    1991-01-01

    The dynamics were studied of the iron spins in superconducting YBa2(Cu(0.94)Fe(0.06))3O7 by neutron time of flight measurements. Two samples were studied with slightly different characteristics, as shown by resistivity and neutron diffraction measurements. The same dynamical anomalies are observed by neutrons in both samples. Differences appear qualitative but not quantitative. In the whole temperature range, the q-dependence of the magnetic intensity mainly reflects the magnetic form factor of iron which shows that the iron spins are almost uncorrelated. The elastic and quasielastic intensities strongly vary with temperature. A spin glass like freezing is revealed at low temperature by a sharp decrease of the quasielastic intensity, an increase of the 'elastic' or resolution limited intensity and a minimum in the quasielastic width. The freezing temperature (T sub f - 18 K) corresponds to that already determined by a magnetic splitting in Mossbauer experiments. Above T sub f, the relaxation of the iron spins in the paramagnetic state is modified by the occurrence of superconductivity. An increase was observed of the quasielastic intensity and of the quasielastic width at the superconducting transition.

  5. In situ surface magneto-optical Kerr effect (s-MOKE) study of ultrathin soft magnetic FeCuNbSiB alloy films

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Gupta, P.; Gupta, A.

    2014-12-01

    Herein we report on an in situ surface magneto-optical Kerr effect (s-MOKE) study of ion-beam-sputtered ultra-thin films of an amorphous Fe73.9Cu0.9Nb3.1Si13.2B8.9 (FINEMET) alloy with film growth that ranges from a fraction of a nm to a few tens of nms. Extrapolating the linear variation of the Kerr signal with film thickness suggests the absence of a magnetic dead layer at the substrate/FINEMET film interface, and hence the absence of any intermixing. The presence of a thin SiO2 film at the surface of the Si substrate may be responsible for preventing possible intermixing of Fe with Si to form nonmagnetic silicide. Close to the onset of ferromagnetic ordering, a steep increase in the coercive field with film thickness can be explained in terms of the Volmer-Weber growth of the film. Furthermore, the temperature dependence of the hysteresis loops of a 41 nm-thick FINEMET film has been studied. The Curie temperature of the amorphous film is found to be lower than that of a ribbon of the same composition. The origin of a uniaxial magnetic anisotropy in the as-prepared stage is attributed to the generation of some long-range stresses in the film, which are relieved close to the onset temperature for nanocrystallization.

  6. Magnetic anisotropy of Fe{sub 1−y}X{sub y}Pt-L1{sub 0} [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    SciTech Connect

    Cuadrado, R.; Chantrell, R. W.; Klemmer, Timothy J.

    2014-10-13

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L1{sub 0} bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L1{sub 0} alloys.

  7. Effects of coexisting spin disorder and antiferromagnetism on the magnetic behavior of nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} alloys

    SciTech Connect

    Mizrahi, M. E-mail: cabrera@fisica.unlp.edu.ar; Cabrera, A. F. E-mail: cabrera@fisica.unlp.edu.ar; Desimoni, J.; Stewart, S. J.

    2014-06-07

    We report a magnetic study on nanostructured (Fe{sub 79}Mn{sub 21}){sub 1−x}Cu{sub x} (0.00 ≤ x ≤ 0.30) alloys using static magnetic measurements. The alloys are mainly composed by an antiferromagnetic fcc phase and a disordered region that displays a spin-glass-like behavior. The interplay between the antiferromagnetic and magnetically disordered phases establishes an exchange anisotropy that gives rise to a loop shift at temperatures below the freezing temperature of moments belonging to the disordered region. The loop shift is more noticeable as the Cu content increases, which also enhances the spin-glass-like features. Further, in the x = 0.30 alloy the alignment imposed by applied magnetic fields higher than 4 kOe prevail over the configuration determined by the frustration mechanism that characterizes the spin glass-like phase.

  8. Partitioning behavior of Al in a nanocrystalline Fe{sub 71.5}Si{sub 13.5}B{sub 9}Nb{sub 3}Cu{sub 1}Al{sub 2} alloy

    SciTech Connect

    Warren, P.J.; Todd, I.; Davies, H.A.; Cerezo, A.; Gibbs, M.R.J.; Kendall, D.; Major, R.V.

    1999-11-05

    The nanocrystalline Fe-Si-B-Nb-Cu alloy, known as FINEMET, is now a well established commercial soft magnetic material exhibiting excellent permeability while maintaining a high saturation magnetization. It is produced by melt-spinning to form a ribbon with an amorphous structure. The purpose of this investigation was to use 3-dimensional atom probe microanalysis to experimentally quantify the local phase chemistries of this nanocomposite microstructure, with particular reference to the partitioning behavior of the Al.

  9. Microstructural evolution under high flux irradiation of dilute Fe CuNiMnSi alloys studied by an atomic kinetic Monte Carlo model accounting for both vacancies and self interstitials

    NASA Astrophysics Data System (ADS)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2008-12-01

    Under neutron irradiation, a large amount of point defects (vacancies and interstitials) are created. In the irradiated pressure vessel steels, weakly alloyed, these point defects are responsible for the diffusion of the solute atoms, leading to the formation of solute rich precipitates within the matrix. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si). For Mn, the results of these calculations lead to think that solute transport in α-Fe can very likely take place through an interstitial mechanism as well as via vacancies while the other solutes (Cu, Ni and Si) which establish strong bonds with vacancies diffuse more likely via vacancies only. The database thus created has been used to parameterize an atomic kinetic Monte Carlo model taking into account both vacancies and interstitials. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model will be presented.

  10. Nano-crystallization and magnetic mechanisms of Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} amorphous alloy by ab initio molecular dynamics simulation

    SciTech Connect

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2014-05-07

    Iron-based amorphous and nano-crystalline alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, fundamental understanding of the nano-crystallization mechanisms and magnetic features in the amorphous structure are still lack of knowledge. In the present work, we performed ab initio molecular dynamics simulation to clarify the ionic and electronic structure in atomic scale, and to derive the origin of the good magnetic property of Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} amorphous alloy. The simulation gave a direct evidence of the Cu-P bonding preference in the amorphous alloy, which may promote nucleation in nano-crystallization process. On the other hand, the electron transfer and the band/orbital features in the amorphous alloy suggests that alloying elements with large electronegativity and the potential to expand Fe disordered matrix are preferred for enhancing the magnetization.

  11. Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high B for power applications (invited)

    NASA Astrophysics Data System (ADS)

    Makino, Akihiro; Kubota, Takeshi; Yubuta, Kunio; Inoue, Akihisa; Urata, Akiri; Matsumoto, Hiroyuki; Yoshida, Shigeyoshi

    2011-04-01

    Recently, the energy crisis and the continued growth in electrical power generation strongly demand minimization of wasteful energy dissipation. Magnetic core loss (W) is the main source of energy dissipation in motors and transformers. This requires the development of soft magnetic materials with low coercivity (Hc) and high magnetic flux density (B). Fe-rich Fe85-86Si1-2B8P4Cu1 (at. %) alloy ribbons made from industrial raw materials (containing some impurities) with 6 mm in width have a heteroamorphous structure containing a large number of extremely small Fe grains (less than 3 nm), resulting from the unique effects of P and Cu addition in proper amounts. Crystallization of these alloys by annealing shows a uniform precipitation of α-Fe, leading to a uniform nanocrystallized structure of α-Fe grains, 16-19 nm in size, accompanied by an intergranular amorphous layer about 1 nm in width. The wide ribbons exhibit high B of 1.82-1.85 T (at 800 A/m), almost comparable to commercial oriented Fe-3 mass% Si alloys. Excellent magnetic softness (low Hc of 2.6-5.8 A/m, high permeability of 2.4-2.7 × 104 at 1 kHz and small saturation magnetostriction of 2.3-2.4 × 10-6) along with high electrical resistivity (0.67-0.74 μΩ m) of these alloys result in superior frequency characteristics of core losses and a much lower W at 50 Hz up to the maximum induction of 1.75 T, in comparison to the silicon steels now in practical use for power applications.

  12. Phase transition from fcc to bcc structure of the Cu-clusters during nanocrystallization of Fe{sub 85.2}Si{sub 1}B{sub 9}P{sub 4}Cu{sub 0.8} soft magnetic alloy

    SciTech Connect

    Nishijima, Masahiko; Matsuura, Makoto; Takenaka, Kana; Takeuchi, Akira; Makino, Akihiro; Ofuchi, Hironori

    2014-05-15

    A role of Cu on the nanocrystallization of an Fe{sub 85.2}Si{sub 1}B{sub 9}P{sub 4}Cu{sub 0.8} alloy was investigated by X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM). The Cu K-edge XAFS results show that local structure around Cu is disordered for the as-quenched sample whereas it changes to fcc-like structure at 613 K. The fcc Cu-clusters are, however, thermodynamically unstable and begin to transform into bcc structure at 638 K. An explicit bcc structure is observed for the sample annealed at 693 K for 600 s in which TEM observation shows that precipitated bcc-Fe crystallites with ∼12 nm are homogeneously distributed. The bcc structure of the Cu-clusters transforms into the fcc-type again at 973 K, which can be explained by the TEM observations; Cu segregates at grain boundaries between bcc-Fe crystallites and Fe{sub 3}(B,P) compounds. Combining the XAFS results with the TEM observations, the structure transition of the Cu-clusters from fcc to bcc is highly correlated with the preliminary precipitation of the bcc-Fe which takes place prior to the onset of the first crystallization temperature, T{sub x1} = 707 K. Thermodynamic analysis suggests that an interfacial energy density γ between an fcc-Cu cluster and bcc-Fe matrix dominates at a certain case over the structural energy between fcc and bcc Cu, ΔG{sub fcc} {sub −} {sub bcc}, which causes phase transition of the Cu clusters from fcc to bcc structure.

  13. Influence of hot isostatic pressing on the structure and properties of an innovative low-alloy high-strength aluminum cast alloy based on the Al-Zn-Mg-Cu-Ni-Fe system

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.

    2015-11-01

    Hot isostatic pressing (HIP) is applied for treatment of castings of innovative low-ally high-strength aluminum alloy, nikalin ATs6N0.5Zh based on the Al-Zn-Mg-Cu-Ni-Fe system. The influence of HIP on the structure and properties of castings is studied by means of three regimes of barometric treatment with different temperatures of isometric holding: t 1 = 505 ± 2°C, p 1 = 100 MPa, τ1 = 3 h (HIP1); t 2 = 525 ± 2°C, p 2 = 100 MPa, τ2 = 3 h (HIP2); and t 3 = 545 ± 2°C, p 3 = 100 MPa, τ3 = 3 h (HIP3). It is established that high-temperature HIP leads to actually complete elimination of porosity and additional improvement of the morphology of second phases. Improved structure after HIP provides improvement properties, especially of plasticity. In particular, after heat treatment according of regime HIP2 + T4 (T4 is natural aging), the alloy plasticity is improved by about two times in comparison with the initial state (from ~6 to 12%). While applying regime HIP3 + T6 (T6 is artificial aging for reaching the maximum strength), the plasticity has improved by more than three times in comparison with the initial state, as after treatment according to regimes HIP1 + T6 and HIP2 + T6 (from ~1.2 to ~5.0%), which are characterized by a lower HIP temperature.

  14. Magnetic microstructure in a stress-annealed Fe73.5Si15.5B7Nb3Cu1 soft magnetic alloy observed using off-axis electron holography and Lorentz microscopy

    NASA Astrophysics Data System (ADS)

    Kovács, A.; Pradeep, K. G.; Herzer, G.; Raabe, D.; Dunin-Borkowski, R. E.

    2016-05-01

    Fe-Si-B-Nb-Cu alloys are attractive for high frequency applications due to their low coercivity and high saturation magnetization. Here, we study the effect of stress annealing on magnetic microstructure in Fe73.5Si15.5B7Nb3Cu1 using off-axis electron holography and the Fresnel mode of Lorentz transmission electron microscopy. A stress of 50 MPa was applied to selected samples during rapid annealing for 4 s, resulting in uniaxial anisotropy perpendicular to the stress direction. The examination of focused ion beam milled lamellae prepared from each sample revealed a random magnetic domain pattern in the sample that had been rapidly annealed in the absence of stress, whereas a highly regular domain pattern was observed in the stress-annealed sample. We also measured a decrease in domain wall width from ˜ 94 nm in the sample annealed without stress to ˜ 80 nm in the stress-annealed sample.

  15. In-situ study of surface relief due to cubic-tetragonal martensitic transformation in Mn69.4Fe26.0Cu4.6 antiferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yuan, F.; Gen, Z.; Wang, L.; Cui, Y. G.; Wan, J. F.; Zhang, J. H.; Rong, Y. H.

    2016-06-01

    Temperature-dependence surface relief during cubic↔tetragonal martensitic transformation (MT) in Mn69.4Fe26.0Cu4.6 antiferromegnetic shape memory alloy was studied by means of in-situ atomic force microscopy. The surface morphology memory effect was found and the crystallography reversibility of the transformation and its shearing characters were directly verified. Twin shearing is suggested as the main mechanism of formation of tent-type surface relief. The surface relief angle (θα|θβ)<0.5° was firstly measured and might be the smallest compared with that in other shape memory alloys. A Landau model was proposed to consider the shearing strain related with surface relief of MT varying with the coupling effect between second-order antiferromagnetic transition and first-order MT. According to this model, the Mn69.4Fe26.0Cu4.6 alloy belongs to the weak coupling system and this kind of weak coupling effect makes the main contribution to the small relief angle.

  16. (Fe,Si,Al)-based nanocrystalline soft magnetic alloys for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Daniil, Maria; Osofsky, Michael S.; Gubser, Donald U.; Willard, Matthew A.

    2010-04-01

    In this work Al and Si are substituted for Fe in a (Fe,Si,Al)-Nb-B-Cu alloy with the goal of improving its magnetic properties at 77 K. The x-ray diffraction patterns for a series of five alloys annealed at 823 K shows a Fe3(Si,Al) ordered phase with some residual amorphous phase. The lowest coercivity at room temperature was observed for the alloy with composition Fe68Si15.5Al3.5Nb3B9Cu1. At cryogenic temperatures, the saturation magnetization of 99.3 A m2/kg, coercivity of 0.45 A/m, and resistivity of 122 μΩ cm for the Fe63Si17.5Al6Nb3B9Cu1 alloy, compare favorably to commercial alloys at 77 K.

  17. Mercury embrittlement of Cu-Al alloys under cyclic loading

    NASA Technical Reports Server (NTRS)

    Regan, T. M.; Stoloff, N. S.

    1977-01-01

    The effect of mercury on the room temperature, high cycle fatigue properties of three alloys: Cu-5.5 pct Al, Cu-7.3 pct Al, and Cu-6.3 pct Al-2.5 pct Fe has been determined. Severe embrittlement under cyclic loading in mercury is associated with rapid crack propagation in the presence of the liquid metal. A pronounced grain size effect is noted under mercury, while fatigue properties in air are insensitive to grain size. The fatigue results are discussed in relation to theories of adsorption-induced liquid metal embrittlement.

  18. Study of the nanocrystalline Fe{sub 73.5}Nb{sub 4.5}Cr{sub 5}Cu{sub 1}B{sub 16} alloy by the radio-frequency-M{umlt o}ssbauer technique

    SciTech Connect

    Kopcewicz, M.; Grabias, A.; Skorvanek, I.

    1998-01-01

    The influence of Cr on the structural and magnetic properties of iron based amorphous and nanocrystalline alloys is studied for the Fe{sub 73.5}Nb{sub 4.5}Cr{sub 5}Cu{sub 1}B{sub 16} alloy by an unconventional technique which combines the M{umlt o}ssbauer spectroscopy with the effects induced by the radio-frequency (rf) magnetic fields (rf collapse and rf sideband effects). The nanocrystalline bcc-Fe phase, formed by annealing the amorphous precursor for 1 h at temperatures 490{degree}C{endash}550{degree}C, was embedded in the retained amorphous matrix. The conventional M{umlt o}ssbauer measurements allowed the identification of three types of phases in the nanocrystalline alloy: (i) the retained amorphous matrix, (ii) the nanocrystalline bcc-Fe phase, whose abundance increased with increasing annealing temperature, and (iii) the interfacial phase formed at the bcc-Fe grain boundaries. The rf collapse effect observed in the M{umlt o}ssbauer spectra of the samples exposed to the rf field of 60.9 MHz permits the study of the magnetic anisotropy in all phases present. The rf collapse effect occurs only in the amorphous phase, thus revealing that the magnetic anisotropy of the amorphous matrix is significantly smaller than that encountered in the nanocrystalline phase. The rf-M{umlt o}ssbauer experiments performed as a function of the rf field intensity allowed the determination of the distributions of the anisotropy fields in the nanocrystalline-amorphous composite alloy. The rf sidebands effect reveals a strong reduction of magnetostriction related to the formation of the nanocrystalline phase. {copyright} {ital 1998 American Institute of Physics.}

  19. Temperature dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties

    SciTech Connect

    Nielsen, O.V.; Petersen, J.R.; Herzer, G.

    1994-03-01

    Making use of the stress induced magnetic anisotropy in some iron-rich FeCuNbSiD nanocrystalline materials the authors studied the thermal dependence of their magnetostriction which becomes zero below the Curie temperature. The choice of a suitable composition and annealing temperature results in materials with zero magnetostriction at room temperature. Due to the low magnetostriction these materials have very promising fluxgate properties which were studied as well.

  20. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  1. Bulk amorphous steels based on Fe alloys

    DOEpatents

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  2. High sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures with FeCuNbSiB nanocrystalline soft magnetic alloy

    NASA Astrophysics Data System (ADS)

    Qiu, Jing; Wen, Yumei; Li, Ping; Chen, Hengjia

    2016-05-01

    In this paper, a high sensitivity zero-biased magnetic field sensor based on multiphase laminate heterostructures consisting of FeCuNbSiB/Terfenol-D (Tb1-xDyxFe2)/PZT (Pb(Zr1-x,Tix)O3)/Terfenol-D/PZT/Ternol-D/FeCuNbSiB (FMPMPMF) is presented, whose ME coupling characteristics and sensing performances have been investigated. Compared to traditional Terfenol-D/PZT/Terfenol-D (MPM) and Terfenol-D/PZT/Terfenol-D/PZT/Terfenol-D (MPMPM) sensors, the zero-biased ME coupling characteristics of FMPMPMF sensor were significantly improved, owing to a build-in magnetic field in FeCuNbSiB/Terfenol-D layers. The optimum zero-biased resonant ME voltage coefficient of 3.02 V/Oe is achieved, which is 1.65 times as great as that of MPMPM and 2.51 times of MPM sensors. The mean value of low-frequency ME field coefficient of FMPMPMF reaches 122.53 mV/cm Oe, which is 2.39 times as great as that of MPMPM and 1.79 times of MPM sensors. Meanwhile, the induced zero-biased ME voltage of FMPMPMF sensor shows an excellent linear relationship to ac magnetic field both at the low frequency (1 kHz) and the resonant frequency (106.6 kHz). Remarkably, it indicates that the proposed zero-biased magnetic field sensor give the prospect of being able to applied to the field of highly sensitive ac magnetic field sensing.

  3. Microstructural evolution and correlated magnetic domain configuration of nanoparticles embedded in a single crystal of Cu75–Ni20–Fe5 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seop; Taniuchi, Toshiyuki; Mizuguchi, Masaki; Shin, Shik; Takanashi, Koki; Takeda, Mahoto

    2016-08-01

    We have investigated the microstructural evolution and magnetic domain configurations in nano-scale Fe–Ni rich precipitates formed in a single-crystal specimen of Cu–20at%Ni–5at%Fe alloy on isothermal annealing at 873 K and 973 K, using a combination of transmission electron microscopy (TEM), electron backscattering diffraction, field-emission scanning electron microscopy (FE-SEM), and laser-based photoemission electron microscopy (laser-PEEM). The TEM and FE-SEM observations showed that small, spherical solute-rich particles formed randomly in the initial stage of the precipitation, but on isothermal annealing, cubic, rectangular, plate-shaped and rod-shaped precipitates appeared and aligned along the  <1 0 0 >  directions in the copper-rich matrix. Laser-PEEM was applied to single-crystal specimens of the alloy and allowed direct observations of magnetic domain configurations in individual ferromagnetic particles at the nanometer scale. This revealed that cubic particles of size approximately 50–60 nm consist of single magnetic domains, but particles of size 100 nm have a closed spin structure (e.g. vortex or multiple domains).

  4. Ab initio investigation of the oxygen reduction reaction activity on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, for Lisbnd O2 cells

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Prakash, Jai

    2016-07-01

    First principles, density functional theory (DFT) modelling of the oxygen reduction reaction (ORR) on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, was carried out. Periodic models of close-packed (111) surfaces were constructed, their geometry was optimized and the most stable geometric surface configuration was identified. The correlation between the intermediate species binding energy and the favored reaction pathway from amongst 1e-, 2e-, and 4e- mechanisms were studied by calculating the binding energies of a 1/4 monolayer of O, O2, LiO, LiO2, Li2O2, and Li2O on various sites and orientations. The reaction free energies (ΔGrxn) were calculated and used to compute the catalytic activity of the surfaces using molecular kinetics theory. Plots of the catalytic activity vs. Oxygen binding energy (EBinding (O)) showed a typical "volcano" profile. The insights gained from this study can be used to guide the choice of cathode catalysts in Lisbnd O2 cells.

  5. Effect of alloying on the resistance of Cu-10% Ni alloys to seawater impingement

    SciTech Connect

    Burleigh, T.D.; Waldeck, D.H.

    1999-08-01

    Cu-Ni castings and wrought pipes nominally contain 1% Fe to 2% Fe, which is added to improve the Cu-Ni alloy`s erosion-corrosion resistance. After fabrication, Cu-Ni products are solution heat-treated to dissolve the iron uniformly and form a single-phase alloy. During welding, however, iron can precipitate from solid solution onto grain boundaries in the heat-affected zones (HAZ). During seawater service, these iron-rich precipitates can dissolve preferentially (galvanically), leading to intergranular corrosion of the HAZ. The present report described 90-10 Cu-Ni alloys in which different soluble elements were substituted for iron. Jet-impingement testing in filtered natural seawater showed that 2% In also promoted improved erosion-corrosion resistance. Because indium is very soluble in copper, it should not precipitate in the HAZ during welding and cause intergranular corrosion of the HAZ during seawater service. The present study reviewed the literature on the mechanisms by which iron is believed to improve the erosion-corrosion resistance, and proposed a different model based on doping of the thin surface oxide film.

  6. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  7. Giant magnetoresistance in evaporated NiFe/Cu and NiFeCo/Cu multilayers (abstract)

    NASA Astrophysics Data System (ADS)

    Zeltser, A. M.; Smith, Neil

    1996-04-01

    The magnetic and transport properties of electron beam evaporated (Ni83Fe17/Cu)10 and (Ni66Fe16Co18/Cu)10 multilayers (ML) were studied as a function of the Cu spacer and magnetic layer thicknesses (tCu and tNiFe), annealing conditions and Ta buffer layer thickness. The ML were evaporated in a magnetic field at deposition rates ˜ 2 Å/s and background pressure <5×10-8 mbar on Si/SiO2 substrates at Ts=200 °C. These ML exhibited two unique features: (1) ΔR/R and the interlayer coupling did not show oscillatory behavior as a function of tCu; and (2) after magnetic post annealing, ΔR/R increased from <0.3% in the as-deposited state, to up to ˜6% and 7% in Ta/(NiFe/Cu) and (NiFeCo/Cu), respectively. The coupling between the NiFe layers changed from ferromagnetic in the as-deposited state Mr/Ms˜0.9k;20 to essentially antiferromagnetic Mr/Ms<0.2) after appropriate annealing, and the ML became virtually isotropic in-plane. This is quite different from strong oscillatory behavior of giant magnetoresistance (GMR) previously reported in (NiFe/Cu) as-deposited ML made by ion-beam sputtering. After annealing at 300° and 325 °C for 2 h, the ΔR/R became ˜4.5% and ˜6.5% in (NiFe/Cu) and (NiFeCo/Cu) ML, respectively, and remained approximately constant for tCu=20 to 40 Å. The coupling field generally decreased with an increase in Cu and NiFe and after annealing at 300 °C dropped to as low as ˜25 and 45 Oe in (NiFe/Cu) and (NiFeCo/Cu) ML, respectively. The of ΔR/R Ta/(NiFe/Cu) ML increased with the thickness of Ta buffer layer from 30 to 70 Å. The high-angle θ-2θ x-ray scans of (NiFe/Cu) ML showed (111) texture, essentially independent of annealing temperature. The low-angle x-ray diffraction did not reveal roughening of the Cu-NiFe interfaces as a result of annealing. In many respects the GMR behavior of these ML is similar to that reported in sputtered ``discontinuous'' NiFe/Ag. However, in contrast to the latter, the resistivity of NiFe/Cu monotonically

  8. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  9. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  10. In situ X-ray diffraction study of structural evaluation in Fe73Cu1.5Nd3Si13.5B9 amorphous alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Li, Gong; Xu, Tao; Gao, Yunpeng; Liu, Riping

    2008-04-01

    The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs.

  11. The stability of precepitates and the role of lattice defects in Fe-1at%Cu-1at%Ni-1at%Mn alloy: A phase-field model study

    NASA Astrophysics Data System (ADS)

    Biner, S. B.; Rao, Weifeng; Zhang, Yongfeng

    2016-01-01

    In the first part of this study, the stability of Cu precipitates, up to 2 nm in diameter, in Fe-1at%Cu-1at%Ni-1at%Mn system was evaluated within the framework of phase-field modeling by utilizing a thermodynamic database. The implanted precipitates either in isolated or in clustered arrangements, were unstable and dissolved into the matrix. The dissolution rate decreases with increasing precipitate size; however, it is strongly influenced by the spatial arrangements of the implants and the overall alloy content. In the second part, the precipitation/segregation behavior at a circular dislocation, and square prismatic loops was parametrically studied. While precipitates formed at the dislocation loop, a significant segregation of Cu was observed at prismatic loops with either vacancy or interstitial character. Although, the both types of prismatic loops provide the spatial evolution of the stress-fields with the same absolute magnitude, the vacancy loops appears to be stronger sinks and their sink strength increases with decreasing loop size. The results clearly show the necessity of inclusion of the underlying lattice defects in the microstructure modeling of materials under the irradiation environments.

  12. Effect of carbon on copper precipitation in deformed Fe-based alloys studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Schut, H.; Brück, E.; van der Zwaag, S.; van Dijk, N. H.

    2013-06-01

    The role of deformation-induced defects and carbon addition on the copper precipitation during aging at 550 °C is investigated in high-purity Fe-Cu-B-N-C alloy samples by Coincidence Doppler Broadening. In samples with 0% and 8% cold pre-strain, the influence of tensile pre-deformation on the precipitation kinetics of copper is studied. The deformation-induced defects are found to enhance the Cu precipitation kinetics. A sharp reduction in open volume defects is accompanied with a strong increase of Cu signature during the initial stage of aging, implying that the open defects (mainly dislocations) act as nucleation sites for Cu precipitates. A comparison of the time evolution of S-W plots between Fe-Cu, Fe-Cu-B-N, and Fe-Cu-B-N-C alloys indicates that the addition of carbon does not alter the Cu precipitation mechanism but decelerates the kinetics.

  13. Atmospheric Corrosion of Different Fe-based Alloys in Nanocrystalline State

    NASA Astrophysics Data System (ADS)

    Sitek, J.; Sedlačková, K.; Seberíni, M.

    2005-07-01

    Nanocrystalline Fe-based alloys are interesting for their soft magnetic properties. Because these alloys are potentially applicable in outdoor-working components, their corrosion behaviour requires careful analysis. This work presents the results of the atmospheric corrosion tests in industrial and rural environments performed for up to 6 months. We compared the corrosion behaviour of two different compositions of NANOPERM-type alloys: Fe87.5Zr6.5B6 and Fe76Mo8Cu1B15 with classical FINEMET alloys of the nominal composition of Fe73.5Cu1Nb3Si13.5B9 type. The techniques of Mössbauer spectroscopy, conversion electron Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy have been employed to compare their corrosion rate, characterize corrosion products and inspect the structural changes of the nanocrystalline structure. It was found that the Si-containing FINEMET alloys are the most corrosion-resistant whereas worse corrosion properties were observed for molybdenum-containing Fe76Mo8Cu1B15 alloy. The corrosion product formed on the surface of NANOPERM-type alloys showed a needlelike morphology and a poor crystalline order and has been identified as lepidocrocite, γ-FeOOH.

  14. Surface Segregation in Cu-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Monte Carlo simulation is used to calculate the composition profiles of surface segregation of Cu-Ni alloys. The method of Bozzolo, Ferrante, and Smith is used to compute the energetics of these systems as a function of temperature, crystal face, and bulk concentration. The predictions are compared with other theoretical and experimental results.

  15. Giant magnetoresistance in evaporated Ni-Fe/Cu and Ni-Fe-Co/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Zeltser, Alexander M.; Smith, Neil

    1996-06-01

    The magnetic and transport properties of electron-beam evaporated (Ni83Fe17/Cu)10 and (Ni66Fe16Co18/Cu)10 multilayers were studied as a function of the Cu spacer, magnetic layer and Ta buffer layer thicknesses, as well as annealing conditions. All multilayers exhibited very small giant magnetoresistance (GMR) effect (<0.3%) in the as-deposited state, however, after magnetic post-annealing at 300-325 °C, GMR increased up to 4.5%-7%, depending on the multilayer type. In contrast to sputtered Ni-Fe-(Co)/Cu multilayers, GMR showed no oscillatory behavior as a function of Cu thickness. Similar to that reported in sputtered ``discontinuous'' Ni-Fe/Ag multilayers, it is believed that Cu diffusion along the Ni-Fe-(Co) grain boundaries creates intra-layer magnetic discontinuities in Ni-Fe-(Co) layers which promote inter-layer antiferromagnetic coupling. The evaporated Ni-Fe/Cu multilayers exhibited very low remanence, exceptionally low hysteresis, and quite uniform GMR properties through the thickness of the multilayer. All of these makes them potentially attractive for application to future magnetoresistive reproduce heads for very high areal density magnetic storage systems.

  16. Thermal Stability Comparison of Nanocrystalline Fe-Based Binary Alloy Pairs

    NASA Astrophysics Data System (ADS)

    Clark, B. G.; Hattar, K.; Marshall, M. T.; Chookajorn, T.; Boyce, B. L.; Schuh, C. A.

    2016-06-01

    The widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest; yet, they have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dominated systems. Although traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloys can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdoch et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10 at.% Mg) with a predicted non-NC stable alloy (Fe-10 at.% Cu) using the same processing and characterization methodologies. Results show improved thermal stability of the Fe-Mg alloy in comparison with the Fe-Cu, and thermally-evolved microstructures that are consistent with those predicted by Monte Carlo simulations.

  17. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs

    DOE PAGESBeta

    Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; Chookajorn, Tonghai; Boyce, Brad L.; Schuh, Christopher A.

    2016-02-01

    Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less

  18. Cu-Ni-Fe anodes having improved microstructure

    DOEpatents

    Bergsma, S. Craig; Brown, Craig W.

    2004-04-20

    A method of producing aluminum in a low temperature electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten electrolyte having alumina dissolved therein in an electrolytic cell containing the electrolyte. A non-consumable anode and cathode is disposed in the electrolyte, the anode comprised of Cu--Ni--Fe alloys having single metallurgical phase. Electric current is passed from the anode, through the electrolyte to the cathode thereby depositing aluminum on the cathode, and molten aluminum is collected from the cathode.

  19. Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Yoshizawa, Y.

    2011-02-01

    High saturation magnetic flux density (high-Bs) alloy has been developed in an Fe-based nanocrystalline alloy system. A nanocrystalline phase with an average grain size of about 20 nm is obtained by annealing Cu-substituted and/or Cu-and-Si-complex-substituted Fe-B amorphous alloys. The alloy exhibits low coercivity of less than 7 A m-1 and a high Bs of more than 1.8 T. The iron loss at 50 Hz and 1.6 T for a toroidal core made of Fe80.5Cu1.5Si4B14 nanocrystalline alloy is 0.46 W kg-1, which is about 2/3 of that of grain-oriented Si steel. Moreover, the iron loss at 10 kHz and 0.2 T for a wound core made of this alloy is 7.5 W kg-1, which is about 25% of that of non-grain-oriented Si steel and about 60% of that of an Fe-based amorphous alloy. In addition, the cut cores made of the alloy show good superimposed dc-current characteristics and appear promising in applications such as power choke coils (at the high-frequency region).

  20. Soft magnetic properties of nanocrystalline Fe73B7Si16Nb3Cu1 alloy after rapid heating under tensile stress.

    PubMed

    Nosenko, Anton; Mika, Taras; Rudenko, Olexandr; Yarmoshchuk, Yevhenii; Nosenko, Viktor

    2015-01-01

    Amorphous Fe73B7Si16Nb3Cu1 ribbon was crystallized rapidly by electric current heating under simultaneously applied tensile stress along the ribbon axis. As a result, strong transverse magnetic anisotropy was induced in the ribbon. Dynamic magnetic properties of the ribbons rapidly heated either under the tensile stress or without tensile stress were measured using toroidal cores. Optimal electric current heating regime that provides maximum improvement of the initial magnetic permeability and core loss was determined. Tensile stress increase from 0 to 180 MPa was shown to result in the decrease of the initial magnetic permeability down to 400 and core loss at frequencies from 0.4 to 200 kHz. Comparative analysis of magnetic properties of the cut core (with non-magnetic gap) and the cores heated under tensile stress was carried out. The magnetic properties of the latter cores are advantageous for manufacturing the reactors and linear chokes of switch-mode power supplies. PMID:25852427

  1. Soft magnetic properties of nanocrystalline Fe73B7Si16Nb3Cu1 alloy after rapid heating under tensile stress

    NASA Astrophysics Data System (ADS)

    Nosenko, Anton; Mika, Taras; Rudenko, Olexandr; Yarmoshchuk, Yevhenii; Nosenko, Viktor

    2015-03-01

    Amorphous Fe73B7Si16Nb3Cu1 ribbon was crystallized rapidly by electric current heating under simultaneously applied tensile stress along the ribbon axis. As a result, strong transverse magnetic anisotropy was induced in the ribbon. Dynamic magnetic properties of the ribbons rapidly heated either under the tensile stress or without tensile stress were measured using toroidal cores. Optimal electric current heating regime that provides maximum improvement of the initial magnetic permeability and core loss was determined. Tensile stress increase from 0 to 180 MPa was shown to result in the decrease of the initial magnetic permeability down to 400 and core loss at frequencies from 0.4 to 200 kHz. Comparative analysis of magnetic properties of the cut core (with non-magnetic gap) and the cores heated under tensile stress was carried out. The magnetic properties of the latter cores are advantageous for manufacturing the reactors and linear chokes of switch-mode power supplies.

  2. Compression of Fe-Si-H alloys

    NASA Astrophysics Data System (ADS)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  3. Effect of delayed aging on mechanical properties of an Al-Cu-Mg alloy

    SciTech Connect

    Ravindranathan, S.P.; Kashyap, K.T.; Kumar, S.R.; Ramachandra, C.; Chatterji, B.

    2000-02-01

    The effect of delayed aging on mechanical properties is characteristically found in Al-Mg-Si alloys. Delayed aging refers to the time elapsed between solutionizing and artificial aging. Delayed aging leads to inferior properties. This effect was investigated in an Al-Cu-Mg alloy (AU2GN) of nominal composition Al-2Cu-1.5Mg-1Fe-1Ni as a function of delay. This alloy also showed a drop in mechanical properties with delay. The results are explained on the basis of Pashley's kinetic model to qualitatively explain the evolution of a coarse precipitate structure with delay. It is found that all the results of delayed aging in the Al-Cu-Mg alloys are similar to those found in Al-Mg-Si alloys.

  4. Two-current model of the composition dependence of resistivity in amorphous (Fe{sub 100-x}Co{sub x}){sub 89-y}Zr{sub 7}B{sub 4}Cu{sub y} alloys using a rigid-band assumption

    SciTech Connect

    Shen, S.; Ohodnicki, P. R.; Kernion, S. J.; McHenry, M. E.

    2012-11-15

    Composition dependence of resistivity is studied in amorphous (Fe{sub 100−x}Co{sub x}){sub 89−y}Zr{sub 7}B{sub 4}Cu{sub y} (0 ≤ x ≤ 50, y = 0, 1) alloys. The two-current model proposed by Mott for crystalline materials is extended to a disordered amorphous system where s-d scattering is dominant in electron conduction. A rigid-band assumption is made due to the small atomic number difference between Fe and Co. Band structures with a constant density of states (DOS), parabolic distributed DOS, and Gaussian distributed DOS were investigated to fit experimental data. The Gaussian distributed DOS was found to simulate the resistivity maximum and magnetic moment maximum in the Fe-rich region. The basic concepts presented here can potentially provide insight into the optimization of FeCo-based HITPERM alloys for applications at increased frequencies.

  5. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  6. Corrosion behaviors of amorphous and nanocrystalline Fe-based alloys in NaCl solution.

    PubMed

    Li, Xiang; Wang, Yuxin; Du, Chunfeng; Yan, Biao

    2010-11-01

    Amorphous Fe(73.5)Si(13.5)B9Nb3Cu1 alloy was prepared by the chill block melt-spinning process and nanocrystalline Fe(73.5)Si(13.5)B9Nb3Cu1 alloy was obtained by annealing. The crystallization behaviors were analysed by DSC, XRD and TEM. The electrochemical corrosion behaviors in different annealed states were performed by linear polarization method and electrochemical impedance spectroscopy in 3.5% NaCl solution. The results show that the crystallization of amorphous alloy occurs in the two steps. Some nanometer crystals appear when annealing in 550 degrees C and 600 degrees C, respectively with grain size 13 nm and 15 nm. The nanocrystalline alloy has a tendency to passivation and lower anodic current density than amorphous alloy. It indicates that nanocrystalline alloy has a higher corrosion resistance. Amorphous Fe(73.5)Si(13.5)B9Nb3Cu1 alloy consisted of only single semi-circle. When the alloy was annealed in 600 degrees C, its EIS consisted of two time constants, i.e., high frequency and low frequency capacitive loops. The charge transfer reaction resistances increases as annealing temperature rises. PMID:21137903

  7. Magnetic x-ray linear dichroism of ultrathin Fe-Ni alloy films

    SciTech Connect

    Schumann, F.O.; Willis, R.F.; Goodman, K.W.

    1997-04-01

    The authors have studied the magnetic structure of ultrathin Fe-Ni alloy films as a function of Fe concentration by measuring the linear dichroism of the 3p-core levels in angle-resolved photoemission spectroscopy. The alloy films, grown by molecular-beam epitaxy on Cu(001) surfaces, were fcc and approximately four monolayers thick. The intensity of the Fe dichroism varied with Fe concentration, with larger dichroisms at lower Fe concentrations. The implication of these results to an ultrathin film analogue of the bulk Invar effect in Fe-Ni alloys will be discussed. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  8. Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents

    NASA Astrophysics Data System (ADS)

    Liu, K.; Cao, X.; Chen, X.-G.

    2014-05-01

    The Al-Cu 206 cast alloys with varying alloy compositions ( i.e., different levels of Fe, Mn, and Si) were investigated to evaluate the effect of the iron-rich intermetallics on the tensile properties. It is found that the tensile strength decreases with increasing iron content, but its overall loss is less than 10 pct over the range of 0.15 to 0.5 pct Fe at 0.3 pct Mn and 0.3 pct Si. At similar iron contents, the tensile properties of the alloys with dominant Chinese script iron-rich intermetallics are generally higher than those with the dominant platelet phase. In the solution and artificial overaging condition (T7), the tensile strength of the 206 cast alloys with more than 0.15 pct Fe is satisfactory, but the elongation does not sufficiently meet the minimum requirement of ductility (>7 pct) for critical automotive applications. However, it was found that both the required ductility and tensile strength can be reached at high Fe levels of 0.3 to 0.5 pct for the alloys with well-controlled alloy chemistry and microstructure in the solution and natural aging condition (T4), reinforcing the motivation for developing recyclable high-iron Al-Cu 206 cast alloys.

  9. On reversion phenomena in Cu-Zr-Cr alloys

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Kitano, H.; Kanno, M.

    1985-01-01

    Reversion phenomena in aged Cu-0.12% Zr-0.28% Cr alloy were investigated by means of resistivity measurement and transmission electron microscopy and compared with those of Cu-0.30% Zr and Cu-0.26% Cr alloys. Specimens in the form of a 0.5 mm sheet were solution-treated at 950 F for 1 hr water-quenched, aged, and finally reversed. The reversion phenomena were confirmed to exist in Cu-Zr and Cu-Zr-Cr alloys as well as Cu-Cr alloys, at aging temperatures of 300 to 500 F. The critical aging temperature for the reversion was not observed in all the alloys. Split aging increased the amount of reversion, particularly in Cu-Zr and Cu-Zr-Cr alloys, compared with that by conventional aging. The amount of reversion in Cu-Zr-Cr alloy was greatly affected by the resolution of Cr precipitate formed by preaging. Structural changes in Cu-Zr-Cr alloy due to the reversion were hardly observed by transmission electron microscopy.

  10. Evaluation of Ti-Cr-Cu alloys for dental applications

    NASA Astrophysics Data System (ADS)

    Koike, Marie; Okabe, Toru; Itoh, Masayuki; Okuno, Osamu; Kimura, Kohei; Takeda, Osamu; Okabe, Toru H.

    2005-12-01

    This study examined the characteristics of as-cast Ti-Cr(7 19%)-Cu(3 7%) (all percentages in this article are mass%) alloys to evaluate their suitability for dental applications; studies on the alloy structures and mechanical properties, grindability, and corrosion behavior were included in the investigation. The alloys were centrifugally cast and bench-cooled in investment molds. The x-ray diffractometry of the as-cast alloys bench-cooled in the molds indicated the following phases: α+β+ω in the 7% Cr and 7% Cr+3% Cu; β+ω in the 13%Cr; and β in the 13%Cr+3% Cu through the 19%Cr+3% Cu alloys. The strengths of the binary β Ti-Cr and ternary β Ti-Cr-Cu alloys with 13 and 19% Cr were approximately two times higher than those of CP Ti. The alloy ductility was dependent on the chemical composition and thus, the microstructure. The 7% Cr alloys were extremely brittle and hard due to the ω phase, but the ductility was restored in the 13 and 19% Cr alloys. The hardness (HV) of the cast 13 and 19% Cr alloys was approximately 300 350 compared with a value of 200 for CP Ti. The grindability of the cast alloys was examined using a rotating SiC wheel at speeds (circumferential) of 500 and 1250 m/min. At the higher speed, the grindability of the 13 and 19% Cr alloys increased with the Cu content. The grindability of the 13% Cr alloy with 7% Cu was similar to that of CP Ti. Evaluation of the corrosion behavior in an artificial saliva revealed that the alloys are like many other titanium alloys within the normal intraoral oxidation potential. The wear resistance testing of these alloys also showed favorable results.

  11. Dendritic solidification of undercooled Cu-20%Pb hypomonotectic alloy

    SciTech Connect

    Dong, C.; Wei, B.

    1996-05-15

    The Cu-Pb monotectic system is the basis of an important category of wear-resistant materials especially bearing alloys. Its industrially interesting composition ranges from 10 to 50%Pb. In order to produce aligned composites or homogeneous dispersions, extensive research has been performed to investigate the solidification mechanism of Cu-Pb monotectic alloys under directional solidification or microgravity conditions. The preliminary nature of the current space experiments on Cu-Pb monotectic solidification excludes the possibility to draw any really definite conclusions about the influences of microgravity. In contrast, so far still little has been known about the undercooling behavior and rapid solidification kinetics of Cu-Pb monotectic alloys. The objective of the present work is to undercool bulk samples of Cu-Pb alloys to a significant extent and investigate their subsequent rapid solidification process. and this paper reports the related results obtained for Cu-20%Pb hypomonotectic alloy.

  12. Preparation of magnetic recoverable nanosize Cu-Fe2O3/Fe photocatalysts.

    PubMed

    Kang, Hsu-Ya; Wang, H Paul

    2013-07-01

    Iron based catalysts generally have the advantage of the easily operated magnetically recovery from application sites. In the present work, paramagnetic iron and copper core-shell nanoparticles having the iron fractions (X(Fe) = Fe/(Cu+Fe)) of 0.33-1.0 were prepared and characterized by in situ synchrotron X-ray absorption and scattering spectroscopy. During the temperature-programmed carbonization (TPC) of Cu(2+)- and Fe(3+)-β-cyclodextrin (CD) complexes, a rapid reduction of Cu(II) occurs at about 453 K together with a growth of the metallic copper (Cu). Iron proceeds in the distinct growth path. At 453-513 K, the Fe(III) → Fe(II) → Fe consecutive reduction is observed. The unreduced Fe(III) (7-13%) is coated on the surfaces of the Fe nanoparticles (as Fe2O3/Fe). Growth of the Fe nanoparticle is inhibited by the surface Fe2O3, while the steady growth in Cu is observed. The Cu has a size range of 14-18 nm in diameter, compared to the small Fe2O3/Fe ones (3-6 nm). Under the UV-visible light irradiation for four hours, methylene blue can be photocatalytically degraded (>90%) by the (Cu-Fe2O3/Fe)@C. The (Cu-Fe2O3/Fe)@C photocatalysts can effectively oxidize dye molecules, providing a promising alternative for dye degradation using solar energy. Recovery of the (Cu-Fe2O3/Fe)@C photocatalysts can be attained by applying external magnetic field to trap the ferromagnetic Cu-Fe2O3/Fe nanoparticles, which suggests an economically attractive process, especially applied in photocatalytic degradation of dye-contaminated wastewater. PMID:23790076

  13. Ultra-soft magnetic properties and correlated phase analysis by 57Fe Mössbauer spectroscopy of Fe74Cu0.8Nb2.7Si15.5B7 alloy

    NASA Astrophysics Data System (ADS)

    Manjura Hoque, S.; Liba, S. I.; Anirban, A.; Choudhury, Shamima; Akhter, Shireen

    2016-02-01

    A detailed study of magnetic softness has been performed on FINEMENT type of ribbons by investigating the BH loop with maximum applied field of 960 A/m. The ribbon with the composition of Fe74Cu0.8Nb2.7Si15.5B7 was synthesized by rapid solidification technique and the compositions volume fraction was controlled by changing the annealing condition. Detail phase analysis was performed through X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Vibrating sample magnetometer (VSM) and Mössbauer spectroscopy in order to correlate the ultrasoft magnetic properties with the volume fraction of amorphous and α-Fe(Si) soft nano composites. Bright (BF) and dark field (DF) image with selective area diffraction (SAD) patterns by the transmission electron microscopy (TEM) of the sample annealed for the optimized annealed condition at 853 K for 3 min reveals nanocrystals with an average size between 10-15 nm possessing the bcc structure which matches with the grain size revealed by the X-ray diffraction. Kinetics of crystallization of α-Fe(Si) phases has been determined by DSC curves. Extremely small coercivity of 30.9 A/m and core loss of 2.5 W/Kg for the sample annealed at 853 K for 3 min was found. Similar values for other crystalline conditions were determined by using BH loop tracer with a maximum applied field of around 960 A/m. Mössbauer spectroscopy was used to determine chemical shift, hyperfine field distribution (HFD), and peak width of different phases. The volume fractions of the relative amount of amorphous and crystalline phases are also determined by Mössbauer spectroscopy. High saturation magnetization along with ultrasoft magnetic properties exhibits very high potentials technological applications.

  14. Ferromagnetism of Fe3Sn and Alloys

    PubMed Central

    Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.

    2014-01-01

    Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals. PMID:25387850

  15. Ferromagnetism of Fe3Sn and alloys

    DOE PAGESBeta

    Sales, Brian C.; Saparov, Bayrammurad; McGuire, Michael A.; Singh, David J.; Parker, David S.

    2014-11-12

    Hexagonal Fe3Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m3. However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential tomore » switch the easy axis direction. Transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe3Sn is reported, as are some are magnetic and structural properties for the Fe3Sn2, and Fe5Sn3 compounds, which could be prepared as mm-sized single crystals.« less

  16. Ferromagnetism of Fe3Sn and alloys.

    PubMed

    Sales, Brian C; Saparov, Bayrammurad; McGuire, Michael A; Singh, David J; Parker, David S

    2014-01-01

    Hexagonal Fe(3)Sn has many of the desirable properties for a new permanent magnet phase with a Curie temperature of 725 K, a saturation moment of 1.18 MA/m. and anisotropy energy, K1 of 1.8 MJ/m(3). However, contrary to earlier experimental reports, we found both experimentally and theoretically that the easy magnetic axis lies in the hexagonal plane, which is undesirable for a permanent magnet material. One possibility for changing the easy axis direction is through alloying. We used first principles calculations to investigate the effect of elemental substitutions. The calculations showed that substitution on the Sn site has the potential to switch the easy axis direction. However, transition metal substitutions with Co or Mn do not have this effect. We attempted synthesis of a number of these alloys and found results in accord with the theoretical predictions for those that were formed. However, the alloys that could be readily made all showed an in-plane easy axis. The electronic structure of Fe(3)Sn is reported, as are some are magnetic and structural properties for the Fe(3)Sn(2), and Fe(5)Sn(3) compounds, which could be prepared as mm-sized single crystals. PMID:25387850

  17. Elastic anomalies in Fe-Cr alloys.

    PubMed

    Zhang, Hualei; Wang, Guisheng; Punkkinen, Marko P J; Hertzman, Staffan; Johansson, Börje; Vitos, Levente

    2013-05-15

    Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe(1-c)Cr(c) (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects. The nonmonotonic composition dependence of the elastic parameters has marked implications on the micro-mechanical properties of ferrite stainless steels. PMID:23604218

  18. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  19. Magnetic properties of metastable Fe Pd alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Yabe, Hiromasa; O'Handley, Robert C.; Kuji, Toshiro

    2007-03-01

    Metastable Fe-Pd powder samples with various Pd content were synthesized by mechanical alloying. Their fundamental properties, i.e., structure, magnetization and coercive fore are discussed. The saturation magnetizations of the metastable Fe-Pd powders gradually decreases with increasing Pd content. The coercive forces observed in as-milled samples are all less than 40 Oe. However, some of the heat-treated samples, notably, Pd content around 55 at% with L1 0 structure, shows Hc up to 1589 Oe.

  20. Fe and Cu isotope mass balances in the human body

    NASA Astrophysics Data System (ADS)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  1. Controlled CVD growth of Cu-Sb alloy nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-01

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu11Sb3 nanowires (NWs), Cu2Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu11Sb3 NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu11Sb3 nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu11Sb3 nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co.

  2. Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60-xNi20Cu20Fex (x=15, 20) high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Fazakas, É.; Zadorozhnyy, V.; Louzguine-Luzgin, D. V.

    2015-12-01

    In this work, we investigated the microstructure and mechanical properties of Al25Ti25Ni25Cu25 Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 high entropy alloys, produced by arc melting and casting in an inert atmosphere. The structure of these alloys was studied by X-ray diffractometry and scanning electron microscopy. The as-cast alloys were heat treated at 773, 973 and 1173 K for 1800 s to investigate the effects of aging on the plasticity, hardness and elastic properties. Compared to the conventional high-entropy alloys the Al25Ti25Ni25Cu25, Al22.5Ti22.5Ni20Cu20Fe15 and Al20Ti20Ni20Cu20Fe20 alloys are relatively hard and ductile. Being heat treated at 973 K the Al22.5Ti22.5Ni20Cu20Fe15 alloy shows considerably high strength and relatively homogeneous deformation under compression. The plasticity, hardness and elastic properties of the studied alloys depend on the fraction and intrinsic properties of the constituent phases. Significant hardening effect by the annealing is found.

  3. Displacement cascades in Fesbnd Nisbnd Mnsbnd Cu alloys: RVP model alloys

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Zinovev, A.; Bonny, G.

    2016-07-01

    Primary damage due to displacement cascades (10-100 keV) has been assessed in Fesbnd 1%Mnsbnd 1%Ni-0.5%Cu and its binary alloys by molecular dynamics (MD), using a recent interatomic potential, specially developed to address features of the Fesbnd Mnsbnd Nisbnd Cu system in the dilute limit. The latter system represents the model matrix for reactor pressure vessel steels. The applied potential reproduces major interaction features of the solutes with point defects in the binary, ternary and quaternary dilute alloys. As compared to pure Fe, the addition of one type of a solute or all solutes together does not change the major characteristics of primary damage. However, the chemical structure of the self-interstitial defects is strongly sensitive to the presence and distribution of Mn and Cu in the matrix. 20 keV cascades were also studied in the Fesbnd Nisbnd Mnsbnd Cu matrix containing <100> dislocation loops (with density of 1024 m-3 and size 2 nm). Two solute distributions were investigated, namely: a random one and one obtained by Metropolis Monte Carlo simulations from our previous work. The presence of the loops did not affect the defect production efficiency but slightly reduced the fraction of isolated self-interstitials and vacancies. The cascade event led to the transformation of the loops into ½<111> glissile configurations with a success rate of 10% in the matrix with random solute distribution, while all the pre-created loops remain stable if the alloy's distribution was applied using the Monte-Carlo method. This suggests that solute segregation to loops "stabilizes" the pre-existing loops against transformation or migration induced by collision cascades.

  4. Concentric nano rings observed on Al-Cu-Fe microspheres

    NASA Astrophysics Data System (ADS)

    Li, Chunfei; Wang, Limin; Hampikian, Helen; Bair, Matthew; Baker, Andrew; Hua, Mingjian; Wang, Qiongshu; Li, Dingqiang

    2016-05-01

    It is well known that when particle size is reduced, surface effect becomes important. As a result, micro/nanoparticles tend to have well defined geometric shapes to reduce total surface energy, as opposed to the irregular shapes observed in most bulk materials. The surface of such micro/nanostructures are smooth. Any deviation from a smooth surface implies an increased surface energy which is not energetically favorable. Here, we report an observation of spherical particles in an alloy of Al65Cu20Fe15 nominal composition prepared by arc melting. Such spherical particles stand out from those reported so far due to the decoration of concentric nanorings on the surface. Three models for the formation of these concentric ring patterns are suggested. The most prominent ones assume that the rings are frozen features of liquid motion which could open the door to investigate the kinetics of liquid motion on the micro/nanometer scale.

  5. Facile synthesis of dendritic Cu by electroless reaction of Cu-Al alloys in multiphase solution

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liang, Shuhua; Yang, Qing; Wang, Xianhui

    2016-11-01

    Two-dimensional nano- or micro-scale fractal dendritic coppers (FDCs) were synthesized by electroless immersing of Cu-Al alloys in hydrochloric acid solution containing copper chloride without any assistance of template or surfactant. The FDC size increases with the increase of Al content in Cu-Al alloys immersed in CuCl2 + HCl solution. Compared to Cu40Al60 and Cu45Al55 alloys, the FDC shows hierarchical distribution and homogeneous structures using Cu17Al83 alloy as the starting alloy. The growth direction of the FDC is <110>, and all angles between the trunks and branches are 60°. Nanoscale Cu2O was found at the edge of FDC. Interestingly, nanoporous copper (NPC) can also be obtained through Cu17Al83 alloy. Studies showed that the formation of FDC depended on two key factors: the potential difference between CuAl2 intermetallic and α-Al phase of dual-phase Cu-Al alloys; a replacement reaction that usually occurs in multiphase solution. The electrochemical experiment further proved that the multi-branch dendritic structure is very beneficial to the proton transfer in the process of catalyzing methanol.

  6. Electrochemical and corrosion properties of YNi{sub 2.5}M{sub 0.5} (M = Ni, Al, Fe, Cr, Cu, Co, Mn) hybride-forming alloys

    SciTech Connect

    Korobov, I.I.; Vasina, S.Ya.; Petrii, O.A.

    1995-06-01

    Hydrogen sorption by electrode materials based on YNi{sub 2.5}M{sub 0.5} (M = Ni, Al, Fe, Cr, Co, Cu, Mn) intermetallic compounds (IMC) with Cu and PTFE binders is studied in 1 M NaOH solution. The obtained reversible electrochemical capacities correspond to YNi{sub 2.5}M{sub 0.5}H{sub 1.3-1.7} hybrides which are stable at room temperature and atmospheric pressure. The application of Cu binder allows one to more completely use the material sorption capacity and promotes both extraction and sorption of hydrogen by IMC.

  7. Synthesis and characterization of quasicrystals in an Al-Fe-W alloy

    SciTech Connect

    Mukhopadhyay, N.K.; Weatherly, G.C.; Embury, J.D. ); Lloyd, D.J. )

    1992-07-01

    After the discovery of quasicrystals (QC) in an al-14% Mn alloy, many attempts have been made to find alloy systems which form quasicrystals. Much effort has been devoted to the study of the Al-Fe system and its modification by Cu and other elements such as Mn, Cr, Mo and Ta to improve the ease of forming icosahedral quasicrystals (IQC). Although the Al-Fe system does not form IQC, the formation of a decagonal quasicrystal (DQC) being favored, these elements promote the IQC phase. This paper considers the Al-Fe system and its modification by W and demonstrates the existence of IQC in an Al-Fe-W ternary alloy.

  8. Copper segregated layer and oxide layer formed on the surface of an Fe-0.8 at% Cu alloy by angle resolved XPS

    SciTech Connect

    Suzuki, S.; Waseda, Y.

    1997-04-15

    The influence of copper on the surface properties of steel is of great interest, since it is known as a tramp element in recycled steel produced from steel scrap. Since copper is sometimes detected on the surface of alloy steel, it may be considered to affect the surface properties. Moreover, it has been recognized that the surface reaction such as initial oxidation of iron and steel may be affected by the surface composition. For instance, it has been shown by angle resolved XPS (AR-XPS) that the chromium segregation reduces the initial oxidation occurring at room temperature. Thus, the surface reaction behaviors are considered to depend significantly on species of constituent elements, and also the surface composition which is determined by processing conditions, e.g., annealing and pickling, may modify the surface reaction. This prompts a study of the surface segregation of copper and its influence on the oxidation of an iron-copper alloy at room temperature. In the present work, it may also be stressed that the AR-XPS method enables one to investigate the segregated layers and oxide layers, of which thickness is comparable to the escape depth of X-ray photoelectrons, non-destructively.

  9. Kinetics of crystallization in FeB based nanocrystalline soft magnetic alloys

    NASA Astrophysics Data System (ADS)

    Hosseini-Nasab, Farzad; Tavakoli, Mohammad Mahdi; Beitollahi, Ali; Moravvej-Farshi, Mohammad Kazem

    2016-06-01

    An attempt is made to study the effect of substituting Si and Cu atoms for B in Fe84B16 alloys on the microstructure and magnetic properties of the resulting melt spun compositions (i.e., Fe84B14Si2 and Fe84B12Si3.3Cu0.7). As-spun and annealed samples were characterized by various techniques to investigate their crystallization kinetics and the magnetic properties of the resulting microstructures. Experiments have revealed that Fe84B12Si3.3Cu0.7 composition exhibits the optimum magnetic properties of MS=1.92 T and HC=11 A/m among the three samples under study.

  10. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  11. Slip, twinning and transformation in Laves phases. [Ti-TiCr[sub 2]; Fe-ZrFe[sub 2]; Ni-Cu-Mg containing MgNi[sub 2] and MgCu[sub 2

    SciTech Connect

    Allen, S.M.; Livingston, J.D.

    1993-01-26

    Research was concentrated on two-phase Ti-TiCr[sub 2] alloys, two- phase Fe-ZrFe[sub 2] alloys, and two-phase ternary Ni-Cu-Mg alloys containing MgNi[sub 2] and MgCu[sub 2] phases. Work demonstrated that a variety of room-temperature deformation processes are possible in Laves phases. A strain-induced phase transformation from C36[r arrow]C15 structures is one mechanism for plastic deformation in ZrFe[sub 2]. The C15 structure in TiCr[sub 2] deforms by slip and twinning. The microstructure after indentation of specimens containing C36 phases ZrFe[sub 2] and MgNi[sub 2] indicates that a variety of slip systems operate in this form. 8 figs.

  12. Observations Of A Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    The calculated phase diagram and observations of Zeng et al were confirmed. 1) Additional X-ray diffraction peaks for aged sample indicates possibility that additional metastable phases may form; 2) Cu5Zr was observed rather than the Cu9Zr2 proposed for the binary Cu-Zr phase diagram. Despite similarities between Zr and Nb, Cu-Cr-Zr does not appear to be a good candidate alloy system for rocket engine applications.

  13. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  14. Mechanical Properties of Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1997-01-01

    The chemical compositions of the alloys are listed. The alloying levels were near the values for stochiometric Cr2Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance. The microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM) micrographs are presented. The images show the presence of large mount of Cr2Nb precipitates in a nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but as the images demonstrates, the extremely fine (less then 15 nm) Cr2Nb are the primary strengtheners for the alloy.

  15. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  16. Low temperature behavior of hyperfine fields in amorphous and nanocrystalline FeMoCuB

    SciTech Connect

    Kohout, Jaroslav; Křišt'an, Petr; Kubániová, Denisa; Kmječ, Tomáš; Závěta, Karel; Štepánková, Helena; Lančok, Adriana; Sklenka, L'ubomír; Matúš, Peter; and others

    2015-05-07

    Low temperature (4.2 K) magnetic behavior of Fe{sub 76}Mo{sub 8}Cu{sub 1}B{sub 15} metallic glass was studied by {sup 57}Fe Mössbauer spectrometry (MS) and {sup 57}Fe NMR. Distributions of hyperfine magnetic fields P(B) were determined for as-quenched and annealed (nanocrystalline) samples with relative fraction of the grains about 43%. P(B) distributions were derived for both the amorphous matrix and nanocrystalline grains. NMR of alloys with natural and {sup 57}Fe enriched Fe enabled to assess the contribution of {sup 11}B to the total NMR signal. P(B) distribution of the as-quenched alloy derived from MS matches reasonably well the one from NMR of the enriched sample. NMR signal from the sample with natural Fe exhibits contributions from {sup 11}B nuclei. The principal NMR lines of the annealed alloys at 47 MHz correspond to bcc Fe nanocrystals. Small asymmetry of the lines towards higher frequencies might be an indication of possible impurity atoms in the bcc structure. The observed differences between natural and enriched samples are attributed to higher sensitivity in the latter. Positions of the lines attributed to bcc Fe nanocrystals obtained from MS and NMR are in perfect agreement.

  17. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  18. Ti2FeZ (Z=Al, Ga, Ge) alloys: Structural, electronic, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Liping, Mao; Yongfan, Shi; yu, Han

    2014-11-01

    Using the first-principle projector augmented wave potential within the generalized gradient approximation taking into account the on-site Coulomb repulsive, we investigate the structural, electronic and magnetic properties of Ti2FeZ (Z=Al, Ga, Ge) alloys with Hg2CuTi-type structure. These alloys are found to be half-metallic ferrimagnets. The total magnetic moments of the Heusler alloys Ti2FeZ follow the μt=Zt-18 rule and agree with the Slater-Pauling curve quite well. The band gaps are mainly determined by the bonding and antibonding states created from the hybridizations of the d states between the Ti(A)-Ti(B) coupling and Fe atom.

  19. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURE AND AC MAGNETIC PROPERTIES OF Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1.0, 1.5, 2.0) NANOCRYSTALLINE SOFT MAGNETIC ALLOYS

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    In this paper, Nb element was partially replaced by V element in Finemet-type Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α-Fe phase greatly. When the annealing temperature is between 540-560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.

  20. Preferential Cu precipitation at extended defects in bcc Fe: An atomistic study

    SciTech Connect

    Zhang, Yongfeng; Millett, Paul C.; Tonks, Michael R.; Bai, Xian-Ming; Biner, S. Bulent

    2015-04-01

    As a starting point to understand Cu precipitation in RPV alloys, molecular dynamics and Metropolis Monte-Carlo simulations are carried out to study the effect of lattice defects on Cu precipitation by taking Fe-Cu system as a model alloy. Molecular dynamics simulations show that owing to the high heat of mixing and positive size mismatch, Cu is attracted by vacancy type defects such as vacancies and voids, and tensile stress fields. In accordance, preferential precipitation of Cu is observed in Metropolis Monte-Carlo simulations at dislocations, prismatic loops and voids. The interaction of Cu with a stress field, e.g., that associated with a dislocation or a prismatic loop, is dominated by elastic effect and can be well described by the linear-elasticity theory. For prismatic loops, the attraction to Cu is found to be size-dependent with opposite trends displayed by vacancy and interstitial loops. The size-dependences can be explained by considering the stress fields produced by these loops. The current results will be useful for understanding the effect of neutron irradiation on Cu precipitation in reactor-pressure-vessel steels.

  1. Research on pulse electrodeposition of Fe-Ni alloy

    SciTech Connect

    Peng, Yongsen; Zhu, Zengwei Ren, Jianhua; Chen, Jiangbo; Han, Taojie

    2014-03-15

    Fe-Ni alloys were fabricated on steel substrates by means of pulse electrodeposition in sulfate solutions. The layers were electrodeposited using different peak current densities, duty cycles and frequencies. Fe contents, microhardnesses and crystalline phases were examined systematically. The Fe content in the deposit decreased and the microhardness increased with increasing duty cycle and peak current density. The pulse frequency had little effect on Fe content but led to a slight decrease in microhardness. X-ray diffraction patterns show that the crystalline phases vary with changes in peak current density and duty cycle but are barely influenced by frequency. When the peak current density or duty cycle is relatively low, crystalline Fe-Ni alloy and pure Fe phases coexist; the pure Fe phases disappear as the peak current density or duty cycle increases. At still larger peak current densities or duty cycles, crystalline Fe-Ni alloy and pure Ni phases coexist.

  2. Investigation of crystallization of a mechanically alloyed Sm-Fe alloy

    SciTech Connect

    Lue, M.Q.; Wang, K.Y.; Miao, W.F.; Song, Q.H.; Sun, W.S.; Wei, W.D.; Wang, L.B. )

    1992-06-15

    The crystallization of a mechanically alloyed Sm-Fe alloy was investigated. The results show that the Sm-Fe alloy prepared by mechanical alloying consists of amorphous Sm-Fe phase and crystalline {alpha}-Fe phase. The composition of the alloy is inhomogeneous, i.e., the surface of the as-milled powder is relatively poor in iron. The crystallization process involves the long-range diffusion of iron atoms and solid state reaction. After proper crystallization, the as-milled powder transforms into a Sm{sub 2}Fe{sub 17} phase completely; no distinguishable crystalline {alpha}-Fe phase can be found. A metastable phase, which may be a Sm{sub 2}Fe{sub 17} phase with the structure of hexagonal Th{sub 2}Ni{sub 17} type, appears during the crystallization process.

  3. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    NASA Astrophysics Data System (ADS)

    Zhang, W. Y.; Skomski, R.; Kashyap, A.; Valloppilly, S.; Li, X. Z.; Shield, J. E.; Sellmyer, D. J.

    2016-05-01

    Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti3(Fe,Co)5B2, FeCo-rich bcc, and NiAl-rich L21 phases; Ti3(Fe,Co)5B2, is a new substitutional alloy series whose end members Ti3Co5B2 and Ti3Fe5B2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti11+xFe37.5-0.5xCo37.5-0.5xB14 (x = 0, 4) and alnico-like Ti11Fe26Co26Ni10Al11Cu2B14, the latter also containing an L21-type alloy. The volume fraction of the Ti3(Fe,Co)5B2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystalline anisotropy of the tetragonal Ti3(Fe,Co)5B2 phase. The alloy containing Ni, Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Our results indicate that magnetocrystalline anisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.

  4. Production and processing of Cu-Cr-Nb alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.; Orth, Norman W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling.

  5. Synthesis and Characterization of Bulk Al-Cu-Fe Based Quasicrystals and Composites by Spray Forming

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, N. K.; Uhlenwinkel, V.; Srivastava, V. C.

    2015-06-01

    The bulk quasicrystalline (QC) materials and their composites have attracted considerable interest due to their promising mechanical properties. In the present investigation, spray forming has been used to synthesize bulk single-phase icosahedral quasicrystals and composites in Al62.5Cu25Fe12.5 system as well as in quaternary system containing 10% Sn. The elemental materials were induction melted under nitrogen cover and a billet of 250 mm in diameter and 350 mm in height was spray formed. The phase constitution of the spray-formed materials showed a bulk single-phase icosahedral quasicrystal as a major phase along with other crystalline phases. A large number of annealing twins were observed in the microstructure in ternary AlCuFe alloys. It is interesting to note that due to addition of Sn, the volume fraction of β-Al(CuFe) phase was found to increase and annealing twins were almost absent. The hardness of the single-phase AlCuFe alloy and Sn-containing composites was found to be 8.6 and 6.0 GPa, respectively, at a load of 300 g. In general, the hardness decreases with heat treatment at high temperatures. However, in case of Sn-containing alloy, hardness increases with low-temperature heat treatment. Long and hair-like cracks (Palmqvist type) are observed to form from the corner of the indentations of the ternary alloys, whereas in Sn-containing composites, the cracks are not sharp and long suggesting the enhancement of fracture toughness in the composites. Attempts have been made to understand the effect of Sn on the evolution of icosahedral phase, other crystalline phases and their composite effects on the mechanical properties.

  6. Controlled CVD growth of Cu-Sb alloy nanostructures.

    PubMed

    Chen, Jing; Yin, Zongyou; Sim, Daohao; Tay, Yee Yan; Zhang, Hua; Ma, Jan; Hng, Huey Hoon; Yan, Qingyu

    2011-08-12

    Sb based alloy nanostructures have attracted much attention due to their many promising applications, e.g. as battery electrodes, thermoelectric materials and magnetic semiconductors. In many cases, these applications require controlled growth of Sb based alloys with desired sizes and shapes to achieve enhanced performance. Here, we report a flexible catalyst-free chemical vapor deposition (CVD) process to prepare Cu-Sb nanostructures with tunable shapes (e.g. nanowires and nanoparticles) by transporting Sb vapor to react with copper foils, which also serve as the substrate. By simply controlling the substrate temperature and distance, various Sb-Cu alloy nanostructures, e.g. Cu(11)Sb(3) nanowires (NWs), Cu(2)Sb nanoparticles (NPs), or pure Sb nanoplates, were obtained. We also found that the growth of Cu(11)Sb(3) NWs in such a catalyst-free CVD process was dependent on the substrate surface roughness. For example, smooth Cu foils could not lead to the growth of Cu(11)Sb(3) nanowires while roughening these smooth Cu foils with rough sand papers could result in the growth of Cu(11)Sb(3) nanowires. The effects of gas flow rate on the size and morphology of the Cu-Sb alloy nanostructures were also investigated. Such a flexible growth strategy could be of practical interest as the growth of some Sb based alloy nanostructures by CVD may not be easy due to the large difference between the condensation temperature of Sb and the other element, e.g. Cu or Co. PMID:21757793

  7. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  8. L10 phase transformation and magnetic behaviors of (Fe, FePt, FePtCu)-C nanocomposite films

    NASA Astrophysics Data System (ADS)

    Mi, W. B.; Liu, Hui; Li, Z. Q.; Wu, P.; Jiang, E. Y.; Bai, H. L.

    2005-06-01

    As-deposited (Fe, FePt, FePtCu)-C nanocomposite films with fixed C atomic fraction xc=47 fabricated using facing-target sputtering method at room temperature are composed of ˜2-3-nm amorphous metal granules buried in a-C matrix. Annealing at high temperatures turns the amorphous granules into α-Fe, α-Fe- and L10-structured FePt, and L10-ordered FePtCu for Fe-C, FePt-C, and FePtCu-C films, respectively, and makes a-C preferential graphitization. As-deposited granules are superparamagnetic at 300K, and ferromagnetic at 5K. The zero-field-cooled (ZFC) and field-cooled (FC) curves reveal that there exist strong intergranular interactions at temperatures below 300K, and the size distribution of granules becomes broad by Pt and Cu addition. The M-H loop of annealed Fe31Pt22C47 films exhibits a two-step saturation behavior because of the coexistence of soft and hard ferromagnetic phases. As the Cu atomic fraction is 14%, the coercivity of annealed Fe23Pt16Cu14C47 films reaches a large value of ˜11.2kOe at 5K and decreases to ˜7.2kOe at 300K.

  9. First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures

    SciTech Connect

    Kowalewski, M.; Heninrich, B.; Schulthess, T.C.; Butler, W.H.

    1998-01-01

    The authors report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag, or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu spacer thicknesses in the range of 0 < k < 16. The effect of the foreign atoms X on the exchange coupling was investigated using the structure with 9 AL Cu spacer as a reference sample. The calculated changes in the exchange coupling are in qualitative agreement with experiment.

  10. Environmental impact and potential utilization of historical Cu-Fe-Co slags.

    PubMed

    Veselská, Veronika; Majzlan, Juraj

    2016-04-01

    Historical slags from the past Fe and Cu-Co production were investigated in order to evaluate either their potential for utilization or their long-term environmental risk for unsupervised old smelting areas. Here, we studied ferrous slags produced during the recovery of Fe from siderite-Cu ores in Slovakia and two different types of non-ferrous slags produced during the recovery of Cu and Co from Kupferschiefer ores in Germany. The glassy character, rare occurrence of primary silicate phases, and the lack of secondary phases in Cu slags indicate their stability for a prolonged period of time. Electron microprobe analytical work showed that the metals and metalloids (Cu, Co, Fe, Zn, Pb, As) are largely encased in droplets of matte and metal alloys and remain protected by the glassy matrix with its low weathering rate. Fe and Co slags are composed of high-temperature silicates such as wollastonite, cristobalite, as well as olivine, feldspar, quartz, leucite, pyroxene, and pyroxenoids. The presence of secondary phases attests to a certain degree metal release owing to weathering. Assuming minimal contents of metals in slags after a treatment with dilute H2SO4, slags could be used as pozzolanas for addition to cement. PMID:26681328

  11. The effect of coarse second phase particles on fatigue crack propagation of an Al-Zn-Mg-Cu alloy

    SciTech Connect

    Guerbuez, R.; Alpay, S.P. . Dept. of Metallurgical Engineering)

    1994-06-01

    The objective of this study is to determine the role of the most commonly observed coarse second phase particles; Al[sub 7]Cu[sub 2]Fe, Mg[sub 2]Si and CuAl[sub 2]Mg on the Stage 2 fatigue crack propagation of a 7050 aluminum alloy. The differences in the composition of this alloy when compared to the conventional 7075 alloy are: (1) increased Cu content for additional strengthening during aging and for increasing the temperature range of GP zone stability; (2) replacement of Cr by Zr to reduce quench sensitivity; (3) reduced Fe and Si contents to improve fracture toughness which, however, decreases fatigue crack growth threshold, [Delta]K[sub th], slightly; and (4) increased Zn content for strengthening.

  12. Mössbauer spectroscopic studies in U-Fe and U-Fe-Zr alloys

    NASA Astrophysics Data System (ADS)

    Panda, Alaka; Singh, L. Herojit; Rajagopalan, S.; Govindaraj, R.; Ramachandran, Renjith; Kalavathi, S.; Amarendra, G.

    2016-05-01

    57Fe Mössbauer studies have been carried out in an alloy of U and Fe with atomic percentage in the ratio of 68%:32% in order to understand the local structure and valence of Fe atoms associated with different phases that may get formed. The effect of changes in the hyperfine parameters such as isomer shift and quadrupole splitting at Fe sites due to additional alloying of Zr has been studied in an alloy of U, Fe and Zr in the ratio of 44%:33%:23% respectively with respect to that of the U-Fe alloy chosen in the present study. Possible effect of solute clustering in these systems has been addressed in an analogous alloy of uranium and zirconium using positron lifetime spectroscopy.

  13. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  14. Thermodynamic Measurements of Fe-Rh Alloys

    NASA Astrophysics Data System (ADS)

    Cooke, David W.; Hellman, F.; Baldasseroni, C.; Bordel, C.; Moyerman, S.; Fullerton, E. E.

    2012-12-01

    FeRh undergoes an unusual antiferromagnetic-to-ferromagnetic (AFM-FM) transition just above room temperature (TAFM>FM) that can be tuned or even completely suppressed with small changes in composition. The underlying temperature-dependent entropy difference between the competing AFM and FM states that drives this transition is measured by specific heat as a function of temperature from 2 to 380 K on two nearly equiatomic epitaxial Fe-Rh films, one with a ferromagnetic ground state (Fe-rich) and the other with an antiferromagnetic ground state (Rh-rich). The FM state shows an excess heat capacity near 100 K associated with magnetic excitations that are not present in the AFM state. The integrated entropy and enthalpy differences between the two alloys up to TAFM>FM agree with the previously measured entropy of the transition (ΔS=17±3J/kg/K) and yield a T=0 energy difference of 3.4J/g, consistent with literature calculations and experimental data; this agreement supports the use of the Fe-rich FM sample as a proxy for the (unstable) FM state of the AFM Rh-rich sample. From the low-temperature specific heat, along with sound velocity and photoemission measurements, the lattice contribution to the difference (ΔSlatt=-33±9J/kg/K) and electronic contribution (ΔSel=8±1J/kg/K) to the difference in entropy are calculated, from which the excess heat capacity in the FM phase and the resulting entropy difference are shown to be dominated by magnetic fluctuations (ΔSmag=43±9J/kg/K). The excess magnetic heat capacity is dominated by the magnetic heat capacity of the FM phase, which can be fit to a Schottky-like anomaly with an energy splitting of 16±1meV and a multiplicity of 1 per unit cell.

  15. Droplet Growth in Undercooled Cu-Co Alloys

    NASA Technical Reports Server (NTRS)

    Robinson, Michael B.; Li, Delin; Rathz, Thomas J.; Williams, Gary A.

    1999-01-01

    High undercooling usually leads to the refinement of microstructures, while an opposite tendency occurs in liquid immiscible alloys. In the Cu-Co system, there is a metastable liquid miscibility gap which may allow the study of droplet nucleation and growth by undercooling experiments. In the present work, two alloys of Cu50Co50 and Cu68Co32 (atomic) were undercooled using a melt fluxing technique in which the liquid separation temperature could be directly measured. It was observed that after separation the resultant melts were further undercooled by 315 K prior to solidification. The relationship between the largest droplet radius and undercooling was found to exhibit three regimes: a power law growth, linear growth, and saturation stage. In addition to dendrites and droplet-like morphology reported previously, an interconnected structure was formed for the Cu50Co50 alloy at intermediate undercooling. It played a crucial role in droplet coarsening at high undercooling.

  16. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  17. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  18. Au-Ag-Cu nano-alloys: tailoring of permittivity.

    PubMed

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  19. Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation

    NASA Astrophysics Data System (ADS)

    Liu, Xiangbing; Wang, Rongshan; Ren, Ai; Jiang, Jing; Xu, Chaoliang; Huang, Ping; Qian, Wangjie; Wu, Yichu; Zhang, Chonghong

    2014-01-01

    Nanoindentation in combination with ion irradiation offers the possibility to quantify irradiation hardening due to radiation damage. Irradiation experiments for Fe-1.0wt.%Cu alloys, China A508-3 steels, and 16MND5 steels were carried out at about 100 °C by proton and Fe-ions with the energy of 240 keV, 3 MeV respectively. The constant stiffness measurement (CSM) with a diamond Berkovich indenter was used to obtain the depth profile of hardness. The results showed that under 240 keV proton irradiation (peak damage up to 0.5 dpa), Fe-1.0wt.%Cu alloys exhibited the largest hardening (∼55%), 16MND5 steels resided in medium hardening (∼46%), and China A508-3(2) steels had the least hardening (∼10%). Under 3 MeV Fe ions irradiation (peak damage up to 1.37 dpa), both China A508-3(1) and 16MND5 steels showed the same hardening (∼26%). The sequence of irradiation tolerance for these materials is China A508-3(2) > 16MND5 ≈ China A508-3(1) > Fe-1.0wt.%Cu. Based on the determination of the transition depth, the nominal hardness H0irr was also calculated by Kasada method.

  20. Dissolution of Cu/Mg Bearing Intermetallics in Al-Si Foundry Alloys

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2016-08-01

    Evolutions of the Cu/Mg bearing intermetallics were thoroughly investigated in four Al-Si hypoeutectic alloys containing various Cu (1 and 1.6 wt pct) and Mg (0.4 and 0.8 wt pct) contents. The area fractions of Cu/Mg bearing phases before and after solution heat treatment (SHT) were quantified to evaluate the solubility/stability of the phases. Two Mg-bearing intermetallics (Q-Al5Cu2Mg8Si6, π-Al8FeMg3Si6) which appear as gray color under optical microscope were discriminated by the developed etchant. Moreover, the concentrations of the elements (Cu, Mg, and Si) in α-Al were analyzed. The results illustrated that in the alloys containing ~0.4 pct Mg, Q-Al5Cu2Mg8Si6 phase was dissolved after 6 hours of SHT at 778 K (505 °C); but containing in the alloys ~0.8 pct Mg, it was insoluble/ partially soluble. Furthermore, after SHT at 778 K (505 °C), Mg2Si was partially substituted by Q-phase. Applying a two-step SHT [6 hours@778 K (505 °C) + 8 hours@798 K (525 °C)] in the alloys containing ~0.4 pct Mg helped to further dissolve the remaining Mg bearing intermetallics and further modified the microstructure, but in the alloys containing ~0.8 pct Mg, it caused partial melting of Q-phase. Thermodynamic calculations were carried out to assess the phase formation in equilibrium and in non-equilibrium conditions. There was an excellent agreement between the experimental results and the predicted results.

  1. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, Uday B.; Sadoway, Donald R.

    1997-01-01

    A process for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere.

  2. Accelerated decarburization of Fe-C metal alloys

    DOEpatents

    Pal, U.B.; Sadoway, D.R.

    1997-05-27

    A process is described for improving the rate of metal production and FeO utilization in a steelmaking process or a process combining iron-making and steelmaking in a single reactor that uses or generates Fe-C metal alloy droplets submerged in an FeO-containing slag. The process involves discharging a charge build-up (electron accumulation) in the slag at the slag-metal alloy interface by means of an electron conductor connected between the metal alloy droplets and a gas at a gas-slag interface, said gas having an oxygen partial pressure of at least about 0.01 atmosphere. 2 figs.

  3. Phase transformations during deformation of Fe-Ni and Fe-Mn alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Pustov, L. Yu.; Kaloshkin, S. D.; Tomilin, I. A.; Shelekhov, E. V.; Laptev, A. I.; Baldokhin, Yu. V.; Estrin, E. I.

    2007-10-01

    Compositions of Fe(100 - x)Mn x ( x = 10 and 12 at. %) and Fe(100 - y)Ni y ( y = 18 and 20 at. %) were produced by combined mechanical alloying of pure-metal powders and annealed in the austenitic field. After annealing and cooling to room temperature, the alloys had a single-phase austenitic structure. During deformation, the γ phase partially transforms into the α 2 phase (and/or ɛ phase in Fe-Mn alloys). The phase composition of the alloys after deformation depends on the amount of alloying elements and the predeformation annealing regime. The amount of martensite in the structure of a bulk alloy obtained by powder compacting grows proportionally to the degree of deformation of the sample.

  4. Sonochemical preparation of nanosized amorphous Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shafi, K. V. P. M.; Gedanken, A.; Goldfarb, R. B.; Felner, I.

    1997-05-01

    Nanosized amorphous alloy powders of Fe20Ni80, Fe40Ni60, and Fe60Ni40 were prepared by sonochemical decomposition of solutions of volatile organic precursors, Fe(CO)5 and Ni(CO)4 in decalin, under an argon pressure of 100 to 150 kPa at 273 K. Magnetic susceptibility of Fe40Ni60 and Fe60Ni40 indicates blocking temperatures of 35 K and a magnetic particle size of about 6 nm. Thermogravimetric measurements of Fe20Ni80 give Curie temperatures of 322 °C for amorphous and 550 °C for crystallized forms. Differential scanning calorimetry exhibits an endothermic transition at 335 °C from a combination of the magnetic phase transition and alloy crystallization. The Mössbauer spectrum of crystallized Fe20Ni80 shows a sextet pattern with a hyperfine field of 25.04 T.

  5. High Frequency Properties of Ferrite/Fe-Si-Al Alloy Soft Magnetic Composites

    NASA Astrophysics Data System (ADS)

    Stergiou, Charalampos A.; Zaspalis, Vassilios

    The inclusion of Fe-Si-Al alloy particles in NiCuZn ferrite matrix was investigated with regard to the high frequency electromagnetic properties (complex permeability and permittivity). The resultant composites of relatively low density exhibit a shift of the permeability spectra to higher frequencies and an increase of dielectric polarization, which finally favour the electromagnetic wave attenuation at microwave frequencies. Thus, wider band return loss peaks are attained at frequencies above 6 GHz by thinner composite materials.

  6. Microstructural evolution of Fe{sub 3}B/Nd{sub 2}Fe{sub 14}B nanocomposite magnets microalloyed with Cu and Nb

    SciTech Connect

    Ping, D.H.; Hono, K.; Kanekiyo, H.; Hirosawa, S.

    1999-12-10

    The microalloying effect of Cu and Nb on the microstructure and magnetic properties of an Fe{sub 3}B Nd{sub 2}Fe{sub 14}B nanocomposite permanent magnet has been studied by transmission electron microscopy (TEM) and atom probe field ion microscopy (APFIM). Additions of Cu are effective in refining the nanocomposite microstructure and the temperature range of the heat treatment to optimize the hard magnetic properties is significantly extended compared with that of the ternary alloy. Combined addition of Cu and Nb is further effective in reducing the grain size. Optimum magnetic properties obtained by annealing a melt-spun Nd{sub 4.5}Fe{sub 75.8}B{sub 18.5}Cu{sub 0.2}Nb{sub 1} amorphous ribbon at 660 C for 6 min are B{sub r} = 1.25 T, H{sub cJ} = 273 kA/m and (BH){sub max} = 125 kJ/m{sup 3}. The soft magnetic Fe{sub 23}B{sub 6} phase coexists with the Fe{sub 3}B and Nd{sub 2}Fe{sub 14}B phases in the optimum microstructure of the Cu and Nb containing quinternary alloy. Three-dimensional atom probe (3DAP) results show that the finer microstructure is due to the formation of a high number density of Cu clusters prior to the crystallization reaction, which promote the nucleation of the Fe{sub 3}B phase. The Nb atoms appear to induce the formation of the Fe{sub 23}B{sub 6} phase when the remaining amorphous phase is crystallized.

  7. Moessbauer spectroscopy evidence of a spinodal mechanism for the thermal decomposition of fcc FeCu

    SciTech Connect

    Crespo, P. |; Barro, M.J.; Hernando, A.; Escorial, A.G.; Menendez, N.; Tornero, J.D.; Barandiaran, J.M.

    1998-07-24

    Moessbauer spectroscopy shows the existence of compositional fluctuations, where different Fe environments coexist, during decomposition upon heat treatment of metastable f.c.c. FeCu solid solution. The presence of isolated Fe atoms in the Cu matrix, f.c.c. Fe{sub rich}Cu, f.c.c. FeCu{sub rich} and b.c.c. Fe has been detected in early decomposition stages. At later decomposition stages, low temperature Moessbauer spectroscopy indicates the presence of a broad distribution of Curie temperatures, coexisting with isolated Fe atoms in the Cu matrix, f.c.c. Fe and b.c.c. Fe.

  8. Microstructure Evaluation of Fe-BASED Amorphous Alloys Investigated by Doppler Broadening Positron Annihilation Technique

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    Microstructure of Fe-based amorphous and nanocrystalline soft magnetic alloy has been investigated by X-ray diffraction (XRD), transmission electronic microscopy (TEM) and Doppler broadening positron annihilation technique (PAT). Doppler broadening measurement reveals that amorphous alloys (Finemet, Type I) which can form a nanocrystalline phase have more defects (free volume) than alloys (Metglas, Type II) which cannot form this microstructure. XRD and TEM characterization indicates that the nanocrystallization of amorphous Finemet alloy occurs at 460°C, where nanocrystallites of α-Fe with an average grain size of a few nanometers are formed in an amorphous matrix. With increasing annealing temperature up to 500°C, the average grain size increases up to around 12 nm. During the annealing of Finemet alloy, it has been demonstrated that positron annihilates in quenched-in defect, crystalline nanophase and amorphous-nanocrystalline interfaces. The change of line shape parameter S with annealing temperature in Finemet alloy is mainly due to the structural relaxation, the pre-nucleation of Cu nucleus and the nanocrystallization of α-Fe(Si) phase during annealing. This study throws new insights into positron behavior in the nanocrystallization of metallic glasses, especially in the presence of single or multiple nanophases embedded in the amorphous matrix.

  9. Development of ODS-Fe{sub 3}Al alloys

    SciTech Connect

    Wright, I.G.; Pint, B.A.; Tortorelli, P.F.; McKamey, C.G.

    1997-12-01

    The overall goal of this program is to develop an oxide dispersion-strengthened (ODS) version of Fe{sub 3}Al that has sufficient creep strength and resistance to oxidation at temperatures in the range 1000 to 1200 C to be suitable for application as heat exchanger tubing in advanced power generation cycles. The main areas being addressed are: (a) alloy processing to achieve the desired alloy grain size and shape, and (b) optimization of the oxidation behavior to provide increased service life compared to semi-commercial ODS-FeCrAl alloys intended for the same applications. The recent studies have focused on mechanically-alloyed powder from a commercial alloy vendor. These starting alloy powders were very clean in terms of oxygen content compared to ORNL-produced powders, but contained similar levels of carbon picked up during the milling process. The specific environment used in milling the powder appears to exert a considerable influence on the post-consolidation recrystallization behavior of the alloy. A milling environment which produced powder particles having a high surface carbon content resulted in a consolidated alloy which readily recrystallized, whereas powder with a low surface carbon level after milling resulted in no recrystallization even at 1380 C. A feature of these alloys was the appearance of voids or porosity after the recrystallization anneal, as had been found with ORNL-produced alloys. Adjustment of the recrystallization parameters did not reveal any range of conditions where recrystallization could be accomplished without the formation of voids. Initial creep tests of specimens of the recrystallized alloys indicated a significant increase in creep strength compared to cast or wrought Fe{sub 3}Al, but the specimens failed prematurely by a mechanism that involved brittle fracture of one of the two grains in the test cross section, followed by ductile fracture of the remaining grain. The reasons for this behavior are not yet understood. The

  10. Wetting and Interfacial Chemistry of SnZnCu Alloys with Cu and Al Substrates

    NASA Astrophysics Data System (ADS)

    Fima, Przemysław; Pstruś, Janusz; Gancarz, Tomasz

    2014-05-01

    Wetting of Cu and Al pads by Sn-Zn eutectic-based alloys with 0.5, 1, and 1.5 wt.% of Cu was studied at 250 °C, in the presence of ALU33® flux, with wetting times of 15, 30, 60, and 180 s, respectively. With increasing wetting time the wetting angle decreases only slightly and the angles on Cu pads are higher than those on Al pads. Selected, solidified solder-pad couples were cross-sectioned and subjected to SEM-EDS study of the interfacial microstructure. The results revealed that the microstructure of the SnZnCu/Cu interface is much different from SnZnCu/Al interface. In the first case continuous interlayers are observed while in the latter case there is no interlayer but the alloy dissolves the substrate along grain boundaries.