Science.gov

Sample records for cubic gan grown

  1. Anharmonic phonon decay in cubic GaN

    NASA Astrophysics Data System (ADS)

    Cuscó, R.; Domènech-Amador, N.; Novikov, S.; Foxon, C. T.; Artús, L.

    2015-08-01

    We present a Raman-scattering study of optical phonons in zinc-blende (cubic) GaN for temperatures ranging from 80 to 750 K. The experiments were performed on high-quality, cubic GaN films grown by molecular-beam epitaxy on GaAs (001) substrates. The observed temperature dependence of the optical phonon frequencies and linewidths is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional-theory calculations. The longitudinal-optical (LO) mode relaxation is found to occur via asymmetric decay into acoustic phonons, with an appreciable contribution of higher-order processes. The transverse-optical mode linewidth shows a weak temperature dependence and its frequency downshift is primarily determined by the lattice thermal expansion. The LO phonon lifetime is derived from the observed Raman linewidth and an excellent agreement with previous theoretical predictions is found.

  2. High Cubic-Phase Purity InN on MgO (001) Using Cubic-Phase GaN as a Buffer Layer

    SciTech Connect

    Sanorpim, S.; Kuntharin, S.; Parinyataramas, J.; Yaguchi, H.; Iwahashi, Y.; Orihara, M.; Hijikata, Y.; Yoshida, S.

    2011-12-23

    High cubic-phase purity InN films were grown on MgO (001) substrates by molecular beam epitaxy with a cubic-phase GaN buffer layer. The cubic phase purity of the InN grown layers has been analyzed by high resolution X-ray diffraction, {mu}-Raman scattering and transmission electron microscopy. It is evidenced that the hexagonal-phase content in the InN overlayer much depends on hexagonal-phase content in the cubic-phase GaN buffer layer and increases with increasing the hexagonal-phase GaN content. From Raman scattering measurements, in addition, the InN layer with lowest hexagonal component (6%), only Raman characteristics of cubic TO{sub InN} and LO{sub InN} modes were observed, indicating a formation of a small amount of stacking faults, which does not affect on vibrational property.

  3. Surface acoustic wave velocity and elastic constants of cubic GaN

    NASA Astrophysics Data System (ADS)

    Jiménez Riobóo, Rafael J.; Cuscó, Ramon; Prieto, Carlos; Kopittke, Caroline; Novikov, Sergei V.; Artús, Luis

    2016-06-01

    We present high-resolution surface Brillouin scattering measurements on cubic GaN layers grown on GaAs substrate. By using a suitable scattering geometry, scattering by surface acoustic waves is recorded for different azimuthal angles, and the surface acoustic wave velocities are determined. A comparison of experimental results with numerical simulations of the azimuthal dependence of the surface wave velocity shows good agreement and allows a consistent set of elastic constants for c-GaN to be determined.

  4. GaN grown on nano-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jing, Kong; Meixin, Feng; Jin, Cai; Hui, Wang; Huaibing, Wang; Hui, Yang

    2015-04-01

    High-quality gallium nitride (GaN) film was grown on nano-patterned sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN buffer layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition, the electrical and optical properties of LEDs grown on NPSS were characterized. Project supported by the Suzhou Nanojoin Photonics Co., Ltd and the High-Tech Achievements Transformation of Jiangsu Province, China (No.BA2012010).

  5. Identification of optical transitions in cubic and hexagonal GaN by spatially resolved cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Menniger, J.; Jahn, U.; Brandt, O.; Yang, H.; Ploog, K.

    1996-01-01

    The hexagonal and cubic phases of GaN are characterized by spatially resolved cathodoluminescence (CL) spectra from micrometer-size single crystals with either hexagonal or cubic habits grown by plasma-assisted molecular-beam epitaxy. At 5 K, distinct narrow excitonic lines are found at 3.472 and 3.272 eV for the hexagonal and cubic phase, yielding energy gaps of 3.500 and 3.300 eV, respectively. Detailed temperature- and intensity-dependent CL measurements on cubic GaN crystals enable us to clearly identify the exciton (free: 3.272 eV, bound: 3.263 eV) and the donor-acceptor pair (3.150 eV) transition. Moreover, we determine the donor-band and acceptor-band transition energy for this phase. In addition, phonon replicas of the exciton line and of the donor-acceptor pair transition are observed at 3.185 and 3.064 eV, respectively.

  6. Effect of GaAs substrate orientation on the growth kinetic of GaN layer grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Laifi, J.; Chaaben, N.; Bouazizi, H.; Fourati, N.; Zerrouki, C.; El Gmili, Y.; Bchetnia, A.; Salvestrini, J. P.; El Jani, B.

    2016-06-01

    We have investigated the kinetic growth of low temperature GaN nucleation layers (LT-GaN) grown on GaAs substrates with different crystalline orientations. GaN nucleation layers were grown by metal organic vapor phase epitaxy (MOVPE) in a temperature range of 500-600 °C on oriented (001), (113), (112) and (111) GaAs substrates. The growth was in-situ monitored by laser reflectometry (LR). Using an optical model, including time-dependent surface roughness and growth rate profiles, simulations were performed to best approach the experimental reflectivity curves. Results are discussed and correlated with ex-situ analyses, such as atomic force microscopy (AFM) and UV-visible reflectance (SR). We show that the GaN nucleation layers growth results the formation of GaN islands whose density and size vary greatly with both growth temperature and substrate orientation. Arrhenius plots of the growth rate for each substrate give values of activation energy varying from 0.20 eV for the (001) orientation to 0.35 eV for the (113) orientation. Using cathodoluminescence (CL), we also show that high temperature (800-900 °C) GaN layers grown on top of the low temperature (550 °C) GaN nucleation layers, grown themselves on the GaAs substrates with different orientations, exhibit cubic or hexagonal phase depending on both growth temperature and substrate orientation.

  7. Single-photon emission from cubic GaN quantum dots

    SciTech Connect

    Kako, Satoshi; Holmes, Mark; Sergent, Sylvain; Bürger, Matthias; As, Donat J.; Arakawa, Yasuhiko

    2014-01-06

    We report the demonstration of single-photon emission from cubic GaN/AlN quantum dots grown by molecular beam epitaxy. We have observed spectrally clean and isolated emission peaks from these quantum dots. Clear single-photon emission was detected by analyzing one such peak at 4 K. The estimated g{sup (2)}[0] value is 0.25, which becomes 0.05 when corrected for background and detector dark counts. We have also observed the single-photon nature of the emission up to 100 K (g{sup (2)}[0] = 0.47). These results indicate that cubic GaN quantum dots are possible candidates for high-temperature operating UV single-photon sources with the possibility of integration into photonic nanostructures.

  8. Photoluminescence of gallium ion irradiated hexagonal and cubic GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Rothfuchs, Charlotte; Kukharchyk, Nadezhda; Koppe, Tristan; Semond, Fabrice; Blumenthal, Sarah; Becker, Hans-Werner; As, Donat J.; Hofsäss, Hans C.; Wieck, Andreas D.; Ludwig, Arne

    2016-09-01

    We report on ion implantation into GaN QDs and investigate their radiation hardness. The experimental study is carried out by photoluminescence (PL) measurements on molecular beam epitaxy-grown GaN quantum dots after ion implantation. Both quantum dots grown in the hexagonal (H) and the cubic (C) crystal structure were subjected to gallium ions with an energy of 400 kV (H) and 75 kV (C) with fluences ranging from 5 ×1010 cm-2 to 1 ×1014 cm-2 (H) and to 1 ×1015 cm-2 (C), respectively. Low-temperature PL measurements reveal a PL quenching for which a quantitative model as a function of the ion fluence is developed. A high degradation resistance is concluded. A non-radiative trap with one main activation energy is found for all QD structures by temperature-dependent PL measurements. Further analysis of fluence-dependent PL energy shifts shows ion-induced intermixing and strain effects. Particular for the hexagonal quantum dots, a strong influence of the quantum confined Stark effect is present.

  9. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    NASA Astrophysics Data System (ADS)

    Choudhary, B. S.; Singh, A.; Tanwar, S.; Tyagi, P. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2016-04-01

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  10. Strain dependent electron spin dynamics in bulk cubic GaN

    SciTech Connect

    Schaefer, A.; Buß, J. H.; Hägele, D.; Rudolph, J.; Schupp, T.; Zado, A.; As, D. J.

    2015-03-07

    The electron spin dynamics under variable uniaxial strain is investigated in bulk cubic GaN by time-resolved magneto-optical Kerr-rotation spectroscopy. Spin relaxation is found to be approximately independent of the applied strain, in complete agreement with estimates for Dyakonov-Perel spin relaxation. Our findings clearly exclude strain-induced relaxation as an effective mechanism for spin relaxation in cubic GaN.

  11. Magnesium diffusion profile in GaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Benzarti, Z.; Halidou, I.; Bougrioua, Z.; Boufaden, T.; El Jani, B.

    2008-07-01

    The diffusion of magnesium has been studied in GaN layers grown on sapphire substrate by atmospheric pressure metalorganic vapor-phase-epitaxy (MOVPE) in a "home-made" reactor. Secondary Ion Mass Spectroscopy (SIMS) was used to visualise the Mg profiles in two kinds of multi-sublayer GaN structures. One structure was grown with a variable flow of Ga precursor (TMG) and the second one with a variable growth temperature. In both cases, the Mg dopant precursor (Cp 2Mg) flow was kept constant. Using the second Fick's law to fit the experimental SIMS data, we have deduced an increasing then a saturating Mg diffusion coefficient versus the Mg concentration. Mg incorporation was found to get higher for lower growth rate, i.e. when TMG flow is reduced. Furthermore, based on the temperature-related behaviour we have found that the activation energy for Mg diffusion coefficient in GaN was 1.9 eV. It is suggested that Mg diffuses via substitutional sites.

  12. Epitaxially-Grown GaN Junction Field Effect Transistors

    SciTech Connect

    Baca, A.G.; Chang, P.C.; Denbaars, S.P.; Lester, L.F.; Mishra, U.K.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-05-19

    Junction field effect transistors (JFET) are fabricated on a GaN epitaxial structure grown by metal organic chemical vapor deposition (MOCVD). The DC and microwave characteristics of the device are presented. A junction breakdown voltage of 56 V is obtained corresponding to the theoretical limit of the breakdown field in GaN for the doping levels used. A maximum extrinsic transconductance (gm) of 48 mS/mm and a maximum source-drain current of 270 mA/mm are achieved on a 0.8 µ m gate JFET device at VGS= 1 V and VDS=15 V. The intrinsic transconductance, calculated from the measured gm and the source series resistance, is 81 mS/mm. The fT and fmax for these devices are 6 GHz and 12 GHz, respectively. These JFETs exhibit a significant current reduction after a high drain bias is applied, which is attributed to a partially depleted channel caused by trapped hot-electrons in the semi-insulating GaN buffer layer. A theoretical model describing the current collapse is described, and an estimate for the length of the trapped electron region is given.

  13. MBE grown high quality GaN films and devices

    NASA Astrophysics Data System (ADS)

    Kim, W.; Aktas, O.; Salvador, A.; Botchkarev, A.; Sverdlov, B.; Mohammad, S. N.; Morkoç, H.

    1997-02-01

    GaN films with much improved structural, transport, and optical properties have been prepared by molecular beam epitaxy using NH 3 as a nitrogen source. Films with a wide range of resistivity, including highly resistive ones, were grown with a chosen growth rate of 1.2 μm/h. The electron mobility in modulation doped structures is about 450 and 850 cm 2/Vs at 300 and 77 K, respectively, with an areal carrier concentration of about 10 13 cm -2. Low temperature luminescence shows A- and B-free-excitons as well as the excited state of the A- and B-excitons, the first known observation, attesting to the quality of the samples. These transition energies are consistent with the best MOCVD samples and represent a sizable reduction of the pandemic zincblende phase in MBE grown films. The high quality of films was demonstrated by the realization of high performance MODFETs and Schottky diodes.

  14. Inversion domains in GaN grown on sapphire

    SciTech Connect

    Romano, L.T.; Northrup, J.E.; OKeefe, M.A.

    1996-10-01

    Planar defects observed in GaN films grown on (0001) sapphire have been identified as inversion domain boundaries (IDBs) by a combination of high resolution transmission electron microscopy, multiple dark field imaging, and convergent beam electron diffraction techniques. Films grown by molecular beam epitaxy (MBE), metalorganic vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE) were investigated and all were found to contain IDBs. The IDBs in the MBE and HVPE films extended from the interface to the film surface and formed columnar domains that ranged in width from 3 to 20 nm in the MBE films and up to 100 nm in the HVPE films. For the films investigated, the MBE films had the highest density, and the MOCVD films had the lowest density of IDBs. The nucleation of inversion domains (IDs) may result from step-related inhomogeneities of the GaN/sapphire interface. {copyright} {ital 1996 American Institute of Physics.}

  15. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  16. Temperature dependence of the electron Landé g-factor in cubic GaN

    NASA Astrophysics Data System (ADS)

    Buß, J. H.; Schupp, T.; As, D. J.; Hägele, D.; Rudolph, J.

    2015-12-01

    The temperature dependence of the electron Landé g-factor in bulk cubic GaN is investigated over an extremely broad temperature range from 15 K up to 500 K by time-resolved Kerr-rotation spectroscopy. The g-factor is found to be approximately constant over the full investigated temperature range. Calculations by k .p -theory predict a negligible temperature dependence g(T) in complete agreement with the experiment as a consequence of the large band-gap and small spin orbit splitting in cubic GaN.

  17. Cubic and hexagonal GaN nanoparticles synthesized at low temperature

    NASA Astrophysics Data System (ADS)

    Qaeed, M. A.; Ibrahim, K.; Saron, K. M. A.; Salhin, A.

    2013-12-01

    This study involves a simple and low cost chemical method for the synthesis of Gallium Nitride (GaN) nanoparticles at low temperature. Structural and optical characterizations were carried out using various techniques in order to investigate the properties of the nanoparticles. The Field-Emission Scanning Electron Microscope (FESEM) images showed that the nanoparticles consist of cubic and hexagonal shapes, indicating crystallized structural quality of the GaN nanoparticles. The average size of the nanoparticles was found to be 51 nm. The X-ray Diffraction (XRD) and Raman analysis further confirmed the hexagonal and cubic phases of GaN nanoparticles. The room temperature photoluminescence deduced h-GaN energy gaps of 2.95, 3.12 and 3.13 eV.

  18. Depth dependence of defect density and stress in GaN grown on SiC

    NASA Astrophysics Data System (ADS)

    Faleev, N.; Temkin, H.; Ahmad, I.; Holtz, M.; Melnik, Yu.

    2005-12-01

    We report high resolution x-ray diffraction studies of the relaxation of elastic strain in GaN grown on SiC(0001). The GaN layers were grown with thickness ranging from 0.29to30μm. High level of residual elastic strain was found in thin (0.29to0.73μm thick) GaN layers. This correlates with low density of threading screw dislocations of 1-2×107cm-2, observed in a surface layer formed over a defective nucleation layer. Stress was found to be very close to what is expected from thermal expansion mismatch between the GaN and SiC. A model based on generation and diffusion of point defects accounts for these observations.

  19. Microstructure of GaN Grown on (111) Si by MOCVD

    SciTech Connect

    Fleming, J.G.; Follstaedt, D.M.; Han, J.; Provencio, P.

    1998-12-17

    Gallium nitride was grown on (111) Si by MOCVD by depositing an AIN buffer at 108O"C and then GaN at 1060 {degrees}C. The 2.2pm layer cracked along {1-100} planes upon cooling to room temperature, but remained adherent. We were able to examine the microstructure of material between cracks with TEM. The character and arrangement of dislocation are much like those of GaN grown on Al{sub 2}O{sub 3}: -2/3 pure edge and - 1/3 mixed (edge + screw), arranged in boundaries around domains of GaN that are slightly disoriented with respect to neighboring material. The 30 nm AIN buffer is continuous, indicating that AIN wets the Si, in contrast to GaN on Al{sub 2}O{sub 3}.

  20. GaN grown on (1 1 1) single crystal diamond substrate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dussaigne, A.; Malinverni, M.; Martin, D.; Castiglia, A.; Grandjean, N.

    2009-10-01

    GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm 2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.

  1. Depth dependence of defect density and stress in GaN grown on SiC

    SciTech Connect

    Faleev, N.; Temkin, H.; Ahmad, I.; Holtz, M.; Melnik, Yu.

    2005-12-15

    We report high resolution x-ray diffraction studies of the relaxation of elastic strain in GaN grown on SiC(0001). The GaN layers were grown with thickness ranging from 0.29 to 30 {mu}m. High level of residual elastic strain was found in thin (0.29 to 0.73 {mu}m thick) GaN layers. This correlates with low density of threading screw dislocations of 1-2x10{sup 7} cm{sup -2}, observed in a surface layer formed over a defective nucleation layer. Stress was found to be very close to what is expected from thermal expansion mismatch between the GaN and SiC. A model based on generation and diffusion of point defects accounts for these observations.

  2. Evolution of deep centers in GaN grown by hydride vapor phaseepitaxy

    SciTech Connect

    Fang, Z.-Q.; Look, D.C.; Jasinski, J.; Benamara, M.; Liliental-Weber, Z.; Molnar, R.J.

    2001-04-18

    Deep centers and dislocation densities in undoped n GaN, grown by hydride vapor phase epitaxy (HVPE), were characterized as a function of the layer thickness by deep level transient spectroscopy and transmission electron microscopy, respectively. As the layer thickness decreases, the variety and concentration of deep centers increase, in conjunction with the increase of dislocation density. Based on comparison with electron irradiation induced centers, some dominant centers in HVPE GaN are identified as possible point defects.

  3. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    NASA Astrophysics Data System (ADS)

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar

    2012-06-01

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 μm and 0.095 μm for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  4. Structural and optical studies of GaN pn-junction with AlN buffer layer grown on Si (111) by RF plasma enhanced MBE

    SciTech Connect

    Yusoff, Mohd Zaki Mohd; Hassan, Zainuriah; Woei, Chin Che; Hassan, Haslan Abu; Abdullah, Mat Johar

    2012-06-29

    GaN pn-junction grown on silicon substrates have been the focus in a number of recent reports and further effort is still necessary to improve its crystalline quality for practical applications. GaN has the high n-type background carrier concentration resulting from native defects commonly thought to be nitrogen vacancies. In this work, we present the growth of pn-junction of GaN on Si (111) substrate using RF plasma-enhanced molecular beam epitaxy (MBE). Both of the layers show uniformity with an average thickness of 0.709 {mu}m and 0.095 {mu}m for GaN and AlN layers, respectively. The XRD spectra indicate that no sign of cubic phase of GaN are found, so it is confirmed that the sample possessed hexagonal structure. It was found that all the allowed Raman optical phonon modes of GaN, i.e. the E2 (low), E1 (high) and A1 (LO) are clearly visible.

  5. Crack-free GaN substrates grown by the Na-flux method with a sapphire dissolution technique

    NASA Astrophysics Data System (ADS)

    Yamada, Takumi; Imanishi, Masayuki; Nakamura, Kosuke; Murakami, Kosuke; Imabayashi, Hiroki; Matsuo, Daisuke; Honjo, Masatomo; Maruyama, Mihoko; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke

    2016-07-01

    GaN wafers are generally fabricated by separating a foreign substrate from a GaN layer using thermal stress; however, thermal stress also leads to the cracking of the GaN layer. In this study, we first succeeded in dissolving a sapphire substrate just after Na-flux growth by successively changing the flux content for GaN growth (Ga–Na–C) to that for dissolving sapphire (Ga–Na–C–Li) at the considered growth temperature. Hence, no thermal stress was induced in the grown GaN crystals, resulting in a crack-free GaN substrate. We concluded that this process is a good candidate technique for supplying free-standing GaN substrates.

  6. Time-resolved photoluminescence of cubic Mg doped GaN

    SciTech Connect

    Seitz, R.; Gaspar, C.; Monteiro, T.; Pereira, E.; Schoettker, B.; Frey, T.; As, D.J.; Schikora, D.; Lischka, K.

    1999-07-01

    Mg doped cubic GaN layers were studied by steady state and time resolved photoluminescence. The blue emission due to Mg doping can be decomposed in three bands. The decay curves and the spectral shift with time delays indicates donor-acceptor pair behavior. This can be confirmed by excitation density dependent measurements. Furthermore temperature dependent analysis shows that the three emissions have one impurity in common. The authors propose that this is an acceptor level related to the Mg incorporation and the three deep donor levels are due to compensation effects.

  7. Characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Lo, Ikai; Pang, Wen-Yuan; Hsu, Yu-Chi; Hsieh, Chia-Ho; Shih, Cheng-Hung; Chou, Mitch M. C.; Chen, Wen-Yen; Hsu, Tzu-Min; Hsu, Gary Z. L.

    2013-06-15

    The characterization of GaN microstructures grown by plasma-assisted molecular beam epitaxy on LiAlO{sub 2} substrate was studied by cathodoluminescence and photoluminescence measurements. We demonstrated that the cathodoluminescence from oblique semi-polar surfaces of mushroom-shaped GaN was much brighter than that from top polar surface due to the reduction of polarization field on the oblique semi-polar surfaces. It implies that the oblique semi-polar surface is superior for the light-emitting surface of wurtzite nano-devices.

  8. Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers

    NASA Astrophysics Data System (ADS)

    Komiyama, Jun; Abe, Yoshihisa; Suzuki, Shunichi; Nakanishi, Hideo

    2006-08-01

    Stress in the epitaxial films of GaN on Si is reduced by using SiC as intermediate layers. The crystalline films of cubic SiC (0-1μm), thin AlN (50nm), and GaN (1-3μm) were prepared on 3in. (1 1 1) Si substrates—stacked in the order of GaN /AlN/SiC/Si—by metalorganic vapor-phase epitaxy. It is revealed by Raman spectroscopy that the tensile stress in GaN is reduced to half (reduction of about 300MPa) for GaN on Si with SiC intermediate layers compared with GaN on Si without SiC intermediate layers. Because of stress reduction, crack-free GaN on Si with a thickness of 2μm was obtained by using SiC intermediate layers. Cracking was minimized even on thicker GaN on Si (3μm thick) with SiC intermediate layers. The SiC intermediate layers are promising for the realization of nitride based electronic devices on Si.

  9. Cathodoluminescence study of luminescence centers in hexagonal and cubic phase GaN hetero-integrated on Si(100)

    NASA Astrophysics Data System (ADS)

    Liu, R.; Bayram, C.

    2016-07-01

    Hexagonal and cubic GaN—integrated on on-axis Si(100) substrate by metalorganic chemical vapor deposition via selective epitaxy and hexagonal-to-cubic-phase transition, respectively—are studied by temperature- and injection-intensity-dependent cathodoluminescence to explore the origins of their respective luminescence centers. In hexagonal (cubic) GaN integrated on Si, we identify at room temperature the near band edge luminescence at 3.43 eV (3.22 eV), and a defect peak at 2.21 eV (2.72 eV). At low temperature, we report additional hexagonal (cubic) GaN bound exciton transition at 3.49 eV (3.28 eV), and a donor-to-acceptor transition at 3.31 eV (3.18 eV and 2.95 eV). In cubic GaN, two defect-related acceptor energies are identified as 110 and 360 meV. For hexagonal (cubic) GaN (using Debye Temperature ( β ) of 600 K), Varshni coefficients of α = 7.37 ± 0.13 × 10 - 4 ( 6.83 ± 0.22 × 10 - 4 ) eV / K and E 0 = 3.51 ± 0.01 ( 3.31 ± 0.01 ) eV are extracted. Hexagonal and cubic GaN integrated on CMOS compatible on-axis Si(100) are shown to be promising materials for next generation devices.

  10. Effect of Capping on Electrical and Optical Properties of GaN Layers Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Usikov, A.; Helava, H.; Makarov, Yu.; Puzyk, M. V.; Papchenko, B. P.

    2016-04-01

    Gallium nitride, grown by hydride vapor phase epitaxy and capped with a thin AlGaN layer, was studied by photoluminescence (PL) methods. The concentration of free electrons in GaN was found from the time-resolved PL data, and the concentrations of point defects were estimated from the steady-state PL measurements. The intensity of PL from GaN decreases moderately after capping it with Si-doped AlGaN, and it decreases dramatically after capping with Mg-doped AlGaN. At the same time, the concentration of free electrons and the concentrations of main radiative defects in GaN are not affected by the AlGaN capping. We demonstrate that PL is a powerful tool for nondestructive characterization of semiconductor layers buried under overlying device structures.

  11. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  12. Fabrication of GaN Microporous Structure at a GaN/Sapphire Interface as the Template for Thick-Film GaN Separation Grown by HVPE

    NASA Astrophysics Data System (ADS)

    Chen, Jianli; Cheng, Hongjuan; Zhang, Song; Lan, Feifei; Qi, Chengjun; Xu, Yongkuan; Wang, Zaien; Li, Jing; Lai, Zhanping

    2016-06-01

    In this paper, a microporous structure at the GaN/sapphire interface has been obtained by an electrochemical etching method via a selective etching progress using an as-grown GaN/sapphire wafer grown by metal organic chemical vapor deposition. The as-prepared GaN interfacial microporous structure has been used as a template for the following growth of thick-film GaN crystal by hydride vapor phase epitaxy (HVPE), facilitating the fabrication of a free-standing GaN substrate detached from a sapphire substrate. The evolution of the interfacial microporous structure has been investigated by varying the etching voltages and time, and the formation mechanism of interfacial microporous structure has been discussed in detail as well. Appropriate interfacial microporous structure is beneficial for separating the thick GaN crystal grown by HVPE from sapphire during the cooling down process. The separation that occurred at the place of interfacial microporous can be attributed to the large thermal strain between GaN and sapphire. This work realized the fabrication of a free-standing GaN substrate with high crystal quality and nearly no residual strain.

  13. High electron mobility GaN grown under N-rich conditions by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Koblmueller, G.; Wu, F.; Mates, T.; Speck, J. S.; Fernandez-Garrido, S.; Calleja, E.

    2007-11-26

    An alternative approach is presented for the plasma-assisted molecular beam epitaxy of high-quality GaN. Under N-rich growth conditions, an unexpected layer-by-layer growth mode was found for a wide range of growth temperatures in the GaN thermal decomposition regime (>750 deg. C). Consequently, superior surface morphologies with roughness of less than 1 nm (rms) have been achieved. For lightly Si-doped GaN films, room-temperature electron mobilities exceeding 1100 cm{sup 2}/V s were measured, surpassing the commonly insulating nature of GaN grown under N-rich conditions at low temperature.

  14. Study of GaP single crystal layers grown on GaN by MOCVD

    SciTech Connect

    Li, Shuti; Liu, Chao; Ye, Guoguang; Xiao, Guowei; Zhou, Yugang; Su, Jun; Fan, Guanghan; Zhang, Yong; Liang, Fubo; Zheng, Shuwen

    2011-11-15

    Highlights: {yields} We investigated the growth of GaP layers on GaN by MOCVD. {yields} A single crystal GaP layer could be grown on GaN. {yields} The V/III ratio played an important role to improve GaP layer quality. {yields} The GaP:Mg layer with hole concentration of 4.2 x 10{sup 18} cm{sup -3} was obtained. -- Abstract: The performance of GaN based devices could possibly be improved by utilizing the good p-type properties of GaP layer and it provides the possibility of the integration of InAlGaN and AlGaInP materials to produce new devices, if high quality GaP compounds can be grown on III-nitride compounds. In this paper, the growth of GaP layers on GaN by metalorganic chemical vapor deposition (MOCVD) has been investigated. The results show that the GaP low temperature buffer layer can provide a high density of nucleation sites for high temperature GaP growth. Using a 40 nm thick GaP buffer layer, a single crystal GaP layer, whose full-width at half-maximum of the (1 1 1) plane measured by double crystal X-ray diffraction is 580'', can be grown on GaN. The V/III ratio plays an important role in the GaP layer growth and an appropriate V/III ratio can improve the quality of GaP layer. The GaP:Mg layer with hole carrier concentration of 4.2 x 10{sup 18} cm{sup -3} has been obtained.

  15. Effect of substrate nitridation temperature on the persistent photoconductivity of unintentionally-doped GaN layer grown by PAMBE

    NASA Astrophysics Data System (ADS)

    Prakash, Nisha; Choursia, B.; Barvat, Arun; Anand, Kritika; Kushvaha, S. S.; Singh, V. N.; Pal, Prabir; Khanna, Suraj P.

    2016-05-01

    The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaN films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.

  16. Influence of initial growth conditions and Mg-surfactant on the quality of GaN film grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Junsong, Cao; Xin, Lü; Lubing, Zhao; Shuang, Qu; Wei, Gao

    2015-02-01

    The initial growth conditions of a 100 nm thick GaN layer and Mg-surfactant on the quality of the GaN epilayer grown on a 6H-SiC substrate by metal-organic vapor phase epitaxy have been investigated in this research. Experimental results have shown that a high V/III ratio and the initially low growth rate of the GaN layer are favorable for two-dimension growth and surface morphology of GaN and the formation of a smoother growth surface. Mg-surfactant occurring during GaN growth can reduce the dislocations density of the GaN epilayer but increase the surface RMS, which are attributed to the change of growth mode.

  17. Comparison of the microstructural characterizations of GaN layers grown on Si (111) and on sapphire

    NASA Astrophysics Data System (ADS)

    Shin, Huiyoun; Jeon, Kisung; Jang, Youngil; Gang, Mingu; Choi, Myungshin; Park, Wonhwa; Park, Kyuho

    2013-10-01

    Due to the large differences in the lattice constants and the thermal expansion coefficients between GaN and Si, GaN growth on a Si substrate usually leads initially to high defect densities and cracks. If high-quality GaN films on Si substrate are to be obtained, it is essential to understand the different growth characteristics of GaN layers grown on Si and on sapphire. In this study, the GaN specimens were grown on sapphire and Si (111) substrates with AlGaN and AlN buffer layers, respectively, by metalorganic chemical vapor deposition (MOCVD). Using transmission electron microscopy (TEM) and micro-Raman spectroscope, we carried out a comparative investigation of GaN growth by characterizing lattice coherency, defect density, and residual strain. These analyses revealed that the GaN layers grown on Si have much residual tensile strain and that strain has an effect on the formation of InGaN/GaN multiple quantum wells (MQWs) above the GaN layers.

  18. Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Ruh, H.; Noh, Y. K.; Kim, M. D.; Oh, J. E.

    2010-03-01

    The microstructural properties of a GaN layer grown on a patterned sapphire substrate (PSS) were studied in detail using transmission electron microscope techniques to determine dislocation and growth behaviors. Regular and uniform recrystallized GaN islands were observed on the protruding pattern. On a flat sapphire surface, the crystallographic orientation relationship of ⟨1¯21¯0⟩GaN on FS//⟨11¯00⟩sapphire and {11¯01}GaN on FS//{12¯13}sapphire existed between the GaN and the substrate. On the other hand, the orientation relationship of ⟨1¯21¯0⟩GaN layer//⟨1¯21¯0⟩GaN island on IS//⟨11¯00⟩sapphire and {11¯01}GaN layer//{0002}GaN island on IS//{12¯13}sapphire was confirmed among the GaN layer, the recrystallized GaN islands on an inclined sapphire surface and the PSS. The flat surface among the protruding patterns began to fill rapidly with GaN. Then, the GaN gradually overgrew the protruding pattern and coalesced near the summit as the growth time increased. The generation of threading dislocations was observed in the vicinity of the coalescence points near the top of the protruding patterns.

  19. Nonpolar GaN grown on Si by hydride vapor phase epitaxy using anodized Al nanomask

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Markov, A. V.; Mezhennyi, M. V.; Govorkov, A. V.; Pavlov, V. F.; Smirnov, N. B.; Donskov, A. A.; D'yakonov, L. I.; Kozlova, Y. P.; Malakhov, S. S.; Yugova, T. G.; Osinsky, V. I.; Gorokh, G. G.; Lyahova, N. N.; Mityukhlyaev, V. B.; Pearton, S. J.

    2009-01-01

    GaN growth by the hydride vapor phase technique on (100) Si substrates masked by porous Al anodic oxide is described. The masks were prepared by vacuum deposition of Al with subsequent anodic oxidation in dilute sorrel acid. The grown GaN layer is nonpolar, with (112¯0) a-orientation and a full width at half maximum of the (112¯0) reflection below 500 arc sec and showing small anisotropy. This result is comparable with the results obtained for a-GaN growth using selective epitaxy or advanced buffer growth routines. Microcathodoluminescence spectra of the grown films confirm a low density of stacking faults. Possible growth mechanisms are discussed.

  20. Influence of Si doping on the infrared reflectance characteristics of GaN grown on sapphire

    NASA Astrophysics Data System (ADS)

    Hou, Y. T.; Feng, Z. C.; Chua, S. J.; Li, M. F.; Akutsu, N.; Matsumoto, K.

    1999-11-01

    Si-doped GaN films grown on sapphire are investigated by infrared reflectance. A damping behavior of the interference fringes is observed, and interpreted to be due to the presence of an interface layer between the film and the substrate. A theoretical calculation using a two-layer model to take into account the interface layer resulted in this damping in agreement with the experiment. The damping behavior and an improvement of interface properties by Si incorporation are demonstrated.

  1. Effect of growth temperature on defects in epitaxial GaN film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kushvaha, S. S. Pal, P.; Shukla, A. K.; Joshi, Amish G.; Gupta, Govind; Kumar, M.; Singh, S.; Gupta, Bipin K.; Haranath, D.

    2014-02-15

    We report the effect of growth temperature on defect states of GaN epitaxial layers grown on 3.5 μm thick GaN epi-layer on sapphire (0001) substrates using plasma assisted molecular beam epitaxy. The GaN samples grown at three different substrate temperatures at 730, 740 and 750 °C were characterized using atomic force microscopy and photoluminescence spectroscopy. The atomic force microscopy images of these samples show the presence of small surface and large hexagonal pits on the GaN film surfaces. The surface defect density of high temperature grown sample is smaller (4.0 × 10{sup 8} cm{sup −2} at 750 °C) than that of the low temperature grown sample (1.1 × 10{sup 9} cm{sup −2} at 730 °C). A correlation between growth temperature and concentration of deep centre defect states from photoluminescence spectra is also presented. The GaN film grown at 750 °C exhibits the lowest defect concentration which confirms that the growth temperature strongly influences the surface morphology and affects the optical properties of the GaN epitaxial films.

  2. Cathodoluminescence of GaN nanorods and nanowires grown by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Herrera, M.

    2014-02-01

    GaN nanorods and nanowires have been grown by thermal evaporation of GaN on Au/Si (1 0 0) substrates. The nanorods recorded a surface decorated with numerous grains with an average size of about 100 nm. The nanowires grew onto the surface of the nanorods exhibiting multiple bends along them. TEM measurements revealed the formation of irregular porous and a polycrystalline structure in the nanowires with diameter higher than 100 nm, while the nanowires with lower diameter showed a tubular structure with wall thickness of 10 nm. The luminescence of the samples recorded three bands centered at about 2.1, 2.74, and 3.2 eV, attributed to the GaN yellow emission and to the blue and UV emissions of the β-Ga2O3, respectively. Ga-ion irradiation in samples revealed a decrease in the intensity of the β-Ga2O3 blue emission attributed to the elimination of gallium vacancies. A thermal annealing treatment at 800 °C in N2 atmosphere generated a quenching of the GaN yellow emission, due to the elimination of nitrogen vacancies.

  3. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy

    SciTech Connect

    Ibanez, J.; Hernandez, S.; Alarcon-Llado, E.; Cusco, R.; Artus, L.; Novikov, S. V.; Foxon, C. T.; Calleja, E.

    2008-08-01

    We present a far-infrared transmission study on group-III nitride thin films. Cubic GaN and AlN layers and c-oriented wurtzite GaN, AlN, and Al{sub x}Ga{sub 1-x}N (x<0.3) layers were grown by molecular beam epitaxy on GaAs and Si(111) substrates, respectively. The Berreman effect allows us to observe simultaneously the transverse optic and the longitudinal optic phonons of both the cubic and the hexagonal films as transmission minima in the infrared spectra acquired with obliquely incident radiation. We discuss our results in terms of the relevant electromagnetic theory of infrared transmission in cubic and wurtzite thin films. We compare the infrared results with visible Raman-scattering measurements. In the case of films with low scattering volumes and/or low Raman efficiencies and also when the Raman signal of the substrate material obscures the weaker peaks from the nitride films, we find that the Berreman technique is particularly useful to complement Raman spectroscopy.

  4. Effect of residual stress on the microstructure of GaN epitaxial films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia; Zhu, Yunnong; Lin, Zhiting; Li, Guoqiang

    2016-04-01

    The stress-free GaN epitaxial films have been directly grown by pulsed laser deposition (PLD) at 850 °C, and the effect of different stress on the microstructure of as-grown GaN epitaxial films has been explored in detail. The as-grown stress-free GaN epitaxial films exhibit very smooth surface without any particles and grains, which is confirmed by the smallest surface root-mean-square roughness of 2.3 nm measured by atomic force microscopy. In addition, they also have relatively high crystalline quality, which is proved by the small full-width at half maximum values of GaN(0002) and GaN (10 1 bar 2) X-ray rocking curves as 0.27° and 0.68°, respectively. However, when the growth temperature is lower or higher than 850 °C, internal or thermal stress would be increased in as-grown GaN epitaxial films. To release the larger stress, a great number of dislocations are generated. Many irregular particulates, hexagonal GaN gains and pits are therefore produced on the films surface, and the crystalline quality is greatly reduced consequently. This work has demonstrated the direct growth of stress-free GaN epitaxial films with excellent surface morphology and high crystalline quality by PLD, and presented a comprehensive study on the origins and the effect of stress in GaN layer. It is instructional to achieve high-quality nitride films by PLD, and shows great potential and broad prospect for the further development of high-performance GaN-based devices.

  5. Structural Defects in Laterally Overgrown GaN Layers Grown onNon-polar Substrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2007-02-14

    Transmission electron microscopy was used to study defects in lateral epitaxial layers of GaN which were overgrown on a template of a-plane (11{und 2}0) GaN grown on (1{und 1}02) r-plane Al2O3. A high density of basal stacking faults is formed in these layers because the c-planes of wurtzite structure are arranged along the growth direction. Density of these faults is decreasing at least by two orders of magnitude lower in the wings compared to the seed areas. Prismatic stacking faults and threading dislocations are also observed, but their densities drastically decrease in the wings. The wings grow with opposite polarities and the Ga-wing width is at least 6 times larger than N-wing and coalescence is rather difficult. Some tilt and twist was detected using Large Angle Convergent Beam Electron Diffraction.

  6. Photoreflectance investigation of exciton-acoustic phonon scattering in GaN grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Bouzidi, M.; Soltani, S.; Halidou, I.; Chine, Z.; El Jani, B.

    2016-04-01

    In this paper, we report a systematic investigation of the near band edge (NBE) excitonic states in GaN using low temperature photoluminescence (PL) and photoreflectance (PR) measurements. For this purpose, GaN films of different thicknesses have been grown on silicon nitride (SiN) treated c-plane sapphire substrates by atmospheric pressure metalorganic vapor phase epitaxy (MOVPE). Low temperature PR spectra exhibit well-defined spectral features related to the A, B and C free excitons denoted by FXA FXB and FXC, respectively. In contrast, PL spectra are essentially dominated by the A free and donor bound excitons. By combining PR spectra and Hall measurements a strong correlation between residual electron concentration and exciton linewidths is observed. From the temperature dependence of the excitonic linewidths, the exciton-acoustic phonon coupling constant is determined for FXA, FXB and FXC. We show that this coupling constant is strongly related to the exciton kinetic energy and to the strain level.

  7. The study of in situ scanning tunnelling microscope characterization on GaN thin film grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Yang, R.; Krzyzewski, T.; Jones, T.

    2013-03-18

    The epitaxial growth of GaN by Plasma Assisted Molecular Beam Epitaxy was investigated by Scanning Tunnelling Microscope (STM). The GaN film was grown on initial GaN (0001) and monitored by in situ Reflection High Energy Electron Diffraction and STM during the growth. The STM characterization was carried out on different sub-films with increased thickness. The growth of GaN was achieved in 3D mode, and the hexagonal edge of GaN layers and growth gradient were observed. The final GaN was of Ga polarity and kept as (0001) orientation, without excess Ga adlayers or droplets formed on the surface.

  8. Mosaic Structure Evolution in GaN Films with Annealing Time Grown by Metalorganic Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Tao; Xu, Ke; Guo, Li-Ping; Yang, Zhi-Jian; Pan, Yao-Bo; Su, Yue-Yong; Zhang, Han; Shen, Bo; Zhang, Guo-Yi

    2006-05-01

    We investigate mosaic structure evolution of GaN films annealed for a long time at 800°C grown on sapphire substrates by metalorganic chemical vapour deposition by high-resolution x-ray diffraction. The result show that residual stress in GaN films is relaxed by generating edge-type threading dislocations (TDs) instead of screw-type TDs. Compared to as-grown GaN films, the annealed ones have larger mean twist angles corresponding to higher density of edge-type TDs but smaller mean tilt angles corresponding to lower density of screw-type TDs films. Due to the increased edge-type TD density, the lateral coherence lengths of the annealed GaN films also decrease. The results obtained from chemical etching experiment and grazing-incidence x-ray diffraction (GIXRD) also support the proposed structure evolution.

  9. Crystallographically tilted and partially strain relaxed GaN grown on inclined (111) facets etched on Si(100) substrate

    SciTech Connect

    Ansah Antwi, K. K.; Soh, C. B.; Wee, Q.; Tan, Rayson J. N.; Tan, H. R.; Yang, P.; Sun, L. F.; Shen, Z. X.; Chua, S. J.

    2013-12-28

    High resolution X-ray diffractometry (HR-XRD), Photoluminescence, Raman spectroscopy, and Transmission electron microscope measurements are reported for GaN deposited on a conventional Si(111) substrate and on the (111) facets etched on a Si(100) substrate. HR-XRD reciprocal space mappings showed that the GaN(0002) plane is tilted by about 0.63° ± 0.02° away from the exposed Si(111) growth surface for GaN deposited on the patterned Si(100) substrate, while no observable tilt existed between the GaN(0002) and Si(111) planes for GaN deposited on the conventional Si(111) substrate. The ratio of integrated intensities of the yellow to near band edge (NBE) luminescence (I{sub YL}/I{sub NBE}) was determined to be about one order of magnitude lower in the case of GaN deposited on the patterned Si(100) substrate compared with GaN deposited on the conventional Si(111) substrate. The Raman E{sub 2}(high) optical phonon mode at 565.224 ± 0.001 cm{sup −1} with a narrow full width at half maximum of 1.526 ± 0.002 cm{sup −1} was measured, for GaN deposited on the patterned Si(100) indicating high material quality. GaN deposition within the trench etched on the Si(100) substrate occurred via diffusion and mass-transport limited mechanism. This resulted in a differential GaN layer thickness from the top (i.e., 1.8 μm) of the trench to the bottom (i.e., 0.3 μm) of the trench. Mixed-type dislocation constituted about 80% of the total dislocations in the GaN grown on the inclined Si(111) surface etched on Si(100)

  10. Screw dislocations in GaN grown by different methods

    SciTech Connect

    Liliental-Weber, Z.; Zakharov, D.; Jasinski, J.; O'Keefe, M.A.; Morkoc, H.

    2003-05-27

    A study of screw dislocations in Hydride-Vapor-Phase-Epitaxy (HVPE) template and Molecular-Beam-Epitaxy (MBE) over-layers was performed using Transmission Electron Microscopy (TEM) in plan-view and in cross-section. It was observed that screw dislocations in the HVPE layers were decorated by small voids arranged along the screw axis. However, no voids were observed along screw dislocations in MBE overlayers. This was true both for MBE samples grown under Ga-lean and Ga-rich conditions. Dislocation core structures have been studied in these samples in the plan-view configuration. These experiments were supported by image simulation using the most recent models. A direct reconstruction of the phase and amplitude of the scattered electron wave from a focal series of high-resolution images was applied. It was shown that the core structures of screw dislocations in the studied materials were filled. The filed dislocation cores in an MBE samples were stoichiometric. However, in HVPE materials, single atomic columns show substantial differences in intensities and might indicate the possibility of higher Ga concentration in the core than in the matrix. A much lower intensity of the atomic column at the tip of the void was observed. This might suggest presence of lighter elements, such as oxygen, responsible for their formation.

  11. Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application

    SciTech Connect

    Szymański, Tomasz Wośko, Mateusz; Paszkiewicz, Bogdan; Paszkiewicz, Regina

    2015-07-15

    GaN layers without and with an in-situ SiN mask were grown by using metal organic vapor phase epitaxy for three different approaches used in GaN on silicon(111) growth, and the physical and optical properties of the GaN layers were studied. For each approach applied, GaN layers of 1.4 μm total thickness were grown, using silan SiH{sub 4} as Si source in order to grow Si{sub x}N{sub x} masking layer. The optical micrographs, scanning electron microscope images, and atomic force microscope images of the grown samples revealed cracks for samples without SiN mask, and micropits, which were characteristic for the samples grown with SiN mask. In situ reflectance signal traces were studied showing a decrease of layer coalescence time and higher degree of 3D growth mode for samples with SiN masking layer. Stress measurements were conducted by two methods—by recording micro-Raman spectra and ex-situ curvature radius measurement—additionally PLs spectra were obtained revealing blueshift of PL peak positions with increasing stress. The authors have shown that a SiN mask significantly improves physical and optical properties of GaN multilayer systems reducing stress in comparison to samples grown applying the same approaches but without SiN masking layer.

  12. Defect structure of a free standing GaN wafer grown by the ammonothermal method

    NASA Astrophysics Data System (ADS)

    Sintonen, Sakari; Suihkonen, Sami; Jussila, Henri; Lipsanen, Harri; Tuomi, Turkka O.; Letts, Edward; Hoff, Sierra; Hashimoto, Tadao

    2014-11-01

    White beam synchrotron radiation X-ray topography (SR-XRT) and X-ray diffraction (XRD) measurements were used to non-destructively study the defect structure of a bulk GaN wafer, grown by the ammonothermal method. SR-XRT topographs revealed high crystal quality with threading dislocation density 8.8×104 cm-2 and granular structure consisting of large, slightly misaligned grains. The threading dislocations within grains were identified as mixed and screw type, while no pure threading edge dislocations were observed.

  13. Cathodoluminescence and depth profiling studies of unintentionally doped GaN films grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Tounsi, Nabil; Guermazi, Hajer; Guermazi, Samir; El Jani, Belgacem

    2015-10-01

    GaN layers are grown by metalorganic vapor phase epitaxy at 1050 °C on porous silicon and (111) oriented silicon substrates. AlN buffer layers of about 100 nm thickness were previously deposited on Si substrates. The effect of substrates on optical properties is revealed by Cathodoluminescence measurements (CL), recorded at room temperature and liquid nitrogen temperature. Various excitonic transitions are depicted. Spectral features associated with F°X energy around 3.4 eV and bound excitons (D°X and A°X in the range 3.29-3.35 eV) related to wurtzite GaN excitons are observed. Yellow band is located around 2.15 eV. CL depth profiling is also investigated at various e-beam energies (3-25 keV). The low-energy electron beam irradiation reveals an inhomogeneous distribution of point defects in depth, and high non-radiative recombination beyond a threshold energy. Good agreement between our experimental data and literature is obtained. Moreover, CL investigations prove that growth of GaN on (111) oriented Si substrate improve the crystalline quality of the layer.

  14. Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Roul, Basanta; Krupanidhi, S. B.

    2014-11-01

    We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device.

  15. Semipolar and nonpolar GaN epi-films grown on m-sapphire by plasma assisted molecular beam epitaxy

    SciTech Connect

    Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B.; Roul, Basanta

    2014-11-28

    We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device.

  16. Differences and similarities between structural properties of GaN grown by different growth methods

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-08-01

    In this paper defects formed in GaN grown by different methods are reviewed. The crystal growth direction and growth rate play important roles. For bulk crystals grown under high pressure the highest growth rates are for planes perpendicular to the c-axis. Only planar defects formed on c-planes are observed in these crystals. There are no threading dislocations or nanotubes in the c-direction. However, polarity of the growth direction plays a role in the surface roughness and the distribution of planar defects. For growth of homo-epitaxial and hetero-epitaxial layers the growth is forced to take place in the much slower c-direction. As a result defects related to the purity of constituents used for growth are formed such as nanotubes and pinholes. In addition threading dislocations and dislocations that accommodate lattice and thermal expansion mismatch are formed.

  17. X-ray detection with zinc-blende (cubic) GaN Schottky diodes

    PubMed Central

    Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.

    2016-01-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At −5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At −5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm−2 and (189.0 ± 0.2) mA cm−2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics. PMID:27403806

  18. X-ray detection with zinc-blende (cubic) GaN Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.

    2016-07-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At ‑5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At ‑5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm‑2 and (189.0 ± 0.2) mA cm‑2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.

  19. X-ray detection with zinc-blende (cubic) GaN Schottky diodes.

    PubMed

    Gohil, T; Whale, J; Lioliou, G; Novikov, S V; Foxon, C T; Kent, A J; Barnett, A M

    2016-01-01

    The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm(-2) and (189.0 ± 0.2) mA cm(-2), respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics. PMID:27403806

  20. Comparison between structural properties of bulk GaN grown under high N pressure and GaN grown by other methods

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-07-31

    In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.

  1. Comparison between structural properties of bulk GaN grown in liquid Ga under high N pressure and GaN grown by other methods

    NASA Astrophysics Data System (ADS)

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-12-01

    In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to the formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.

  2. TEM studies of laterally overgrown GaN layers grown on non-polarsubstrates

    SciTech Connect

    Liliental-Weber, Z.; Ni, X.; Morkoc, H.

    2006-01-05

    Transmission electron microscopy (TEM) was used to study pendeo-epitaxial GaN layers grown on polar and non-polar 4H SiC substrates. The structural quality of the overgrown layers was evaluated using a number of TEM methods. Growth of pendeo-epitaxial layers on polar substrates leads to better structural quality of the overgrown areas, however edge-on dislocations are found at the meeting fronts of two wings. Some misorientation between the 'seed' area and wing area was detected by Convergent Beam Electron Diffraction. Growth of pendeo-epitaxial layers on non-polar substrates is more difficult. Two wings on the opposite site of the seed area grow in two different polar directions with different growth rates. Most dislocations in a wing grown with Ga polarity are 10 times wider than wings grown with N-polarity making coalescence of these layers difficult. Most dislocations in a wing grown with Ga polarity bend in a direction parallel to the substrate, but some of them also propagate to the sample surface. Stacking faults formed on the c-plane and prismatic plane occasionally were found. Some misorientation between the wings and seed was detected using Large Angle Convergent Beam Diffraction.

  3. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    PubMed

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-01-01

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573

  4. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    NASA Astrophysics Data System (ADS)

    Nirwal, Varun Singh; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao

    2016-05-01

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10-5 A to 7.31×10-7 A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of Rs decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  5. Photoreflectance study of GaN grown on SiN treated sapphire substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Bouzidi, M.; Benzarti, Z.; Halidou, I.; Chine, Z.; Bchetnia, A.; El Jani, B.

    2015-08-01

    GaN films were grown on silicon nitride (SiN) treated c-plane sapphire substrates in a home-made vertical reactor by atmospheric pressure metalorganic vapor phase epitaxy (MOVPE). In order to obtain different thickness layers, the growth procedure was interrupted at diverse stages using in-situ laser reflectometry. The structural and optical properties of obtained samples were investigated by high resolution X-ray diffraction (HRXRD) and photoreflectance (PR). In the 0.7-2 μm epilayer thickness range, the dislocation density decreases and remains roughly constant above this range. For fully coalesced layers, PR measurements at 11 K reveal the presence of well resolved excitonic transitions related to A, B and C excitons. A strong correlation between dislocation density and exciton linewidths is observed. Based on theoretical approaches and experimental results, the electronic band structure modification of GaN films due to isotropic biaxial strain was investigated. The valence band deformation potentials D3 and D4, interband hydrostatic deformation potentials a1 and a2, spin-orbit Δso and crystal field Δcr parameters were re-examined and found to be 8.2 eV, -4.1 eV, -3.8 eV, -12 eV, 15.6 meV and 16.5 meV, respectively.

  6. Comparison of stress states in GaN films grown on different substrates: Langasite, sapphire and silicon

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Saravana Kumar, R.; Moon, Mee-Lim; Kim, Moon-Deock; Kang, Tae-Won; Yang, Woo-Chul; Kim, Song-Gang

    2015-09-01

    We demonstrate the evolution of GaN films on novel langasite (LGS) substrate by plasma-assisted molecular beam epitaxy, and assessed the quality of grown GaN film by comparing the experimental results obtained using LGS, sapphire and silicon (Si) substrates. To study the substrate effect, X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and photoluminescence (PL) spectra were used to characterize the microstructure and stress states in GaN films. Wet etching of GaN films in KOH solution revealed that the films deposited on GaN/LGS, AlN/sapphire and AlN/Si substrates possess Ga-polarity, while the film deposited on GaN/sapphire possess N-polarity. XRD, Raman and PL analysis demonstrated that a compressive stress exist in the films grown on GaN/LGS, AlN/sapphire, and GaN/sapphire substrates, while a tensile stress appears on AlN/Si substrate. Comparative analysis showed the growth of nearly stress-free GaN films on LGS substrate due to the very small lattice mismatch (~3.2%) and thermal expansion coefficient difference (~7.5%). The results presented here will hopefully provide a new framework for the further development of high performance III-nitride-related devices using GaN/LGS heteroepitaxy.

  7. Microstructure of heteroepitaxial GaN grown on mesa-patterned 4H-SiC substrates

    NASA Astrophysics Data System (ADS)

    Bassim, N. D.; Twigg, M. E.; Eddy, C. R.; Henry, R. L.; Holm, R. T.; Culbertson, J. C.; Stahlbush, R. E.; Neudeck, P. G.; Trunek, A. J.; Powell, J. A.

    2004-06-01

    Cross-sectional transmission electron microscopy and atomic force microscopy have been used to study the microstructure of a thin heteroeptiaxial GaN film grown on (0001) 4H-SiC mesa surfaces with and without atomic scale steps. Analysis of a mesa that was completely free of atomic-scale surface steps prior to III -N film deposition showed that these GaN layers had a wide variation in island height (1-3μm ) and included the presence of pit-like defects on the film surface. This sample had a low dislocation density (5×108/cm2) as compared to conventionally grown samples on unpatterned (0001) on-axis 4H-SiC (2×109/cm2), coupled with a 3-5 times increase in grain size. A comparison of a GaN film on the step-free 4H-SiC mesa region with a GaN film on a stepped 4H-SiC mesa region on the same substrate showed that the presence of surface steps reduced the overall grain size of the film from 7-10μm to a grain size of about 2-3μm. Since the GaN films grow via a Volmer-Weber mechanism, a decrease in the number of heterogeneous nucleation sites may allow the growth of large GaN islands before coalescence, thus reducing the number of threading dislocations. These results are promising for the further development of unique, low-dislocation density active regions for GaN device structures on 4H-SiC.

  8. Geiger-mode operation of ultraviolet avalanche photodiodes grown on sapphire and free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Cicek, E.; Vashaei, Z.; McClintock, R.; Bayram, C.; Razeghi, M.

    2010-06-01

    GaN avalanche photodiodes (APDs) were grown on both conventional sapphire and low dislocation density free-standing (FS) c-plane GaN substrates. Leakage current, gain, and single photon detection efficiency (SPDE) of these APDs were compared. At a reverse-bias of 70 V, APDs grown on sapphire substrates exhibited a dark current density of 2.7×10-4 A/cm2 whereas APDs grown on FS-GaN substrates had a significantly lower dark current density of 2.1×10-6 A/cm2. Under linear-mode operation, APDs grown on FS-GaN achieved avalanche gain as high as 14 000. Geiger-mode operation conditions were studied for enhanced SPDE. Under front-illumination the 625-μm2-area APD yielded a SPDE of ˜13% when grown on sapphire substrates compared to more than 24% when grown on FS-GaN. The SPDE of the same APD on sapphire substrate increased to ˜30% under back-illumination—the FS-GaN APDs were only tested under front illumination due to the thick absorbing GaN substrate.

  9. Realization of compressively strained GaN films grown on Si(110) substrates by inserting a thin AlN/GaN superlattice interlayer

    SciTech Connect

    Shen, X. Q.; Takahashi, T.; Kawashima, H.; Ide, T.; Shimizu, M.

    2012-07-16

    We investigate the strain properties of GaN films grown by plasma-assisted molecular beam epitaxy on Si(110) substrates. It is found that the strain of the GaN film can be converted from a tensile to a compressive state simply by inserting a thin AlN/GaN superlattice structure (SLs) within the GaN film. The GaN layers seperated by the SLs can have different strain states, which indicates that the SLs plays a key role in the strain modulation during the growth and the cooling down processes. Using this simple technique, we grow a crack-free GaN film exceeding 2-{mu}m-thick. The realization of the compressively strained GaN film makes it possible to grow thick GaN films without crack generation on Si substrates for optic and electronic device applications.

  10. Morphology Control of Hot-Wall MOCVD Selective Area Grown Hexagonal GaN Pyramids

    NASA Astrophysics Data System (ADS)

    Lundskog, Anders; Forsberg, Urban; Holtz, Per Olof; Janzen, Erik

    2012-11-01

    Morphological variations of gallium polar (0001)-oriented hexagonal GaN pyramids grown by hot wall metal organic chemical vapor deposition under various growth conditions are investigated. The stability of the semipolar {1 (1) over bar 02} and nonpolar {1 (1) over bar 00} facets is particularly discussed. The presence of the {1 (1) over bar 02} facets near the apex of the pyramid was found to be controllable by tuning the absolute flow rate of ammonia during the growth Vertical nonpolar {1 (1) over bar 00} facets appeared in gallium rich conditions, which automatically were created when the growth time was prolonged beyond pyramid completion. The result was attributed to a gallium passivation of the {1 (1) over bar 00} surface.

  11. High-electron-mobility GaN grown on free-standing GaN templates by ammonia-based molecular beam epitaxy

    SciTech Connect

    Kyle, Erin C. H. Kaun, Stephen W.; Burke, Peter G.; Wu, Feng; Speck, James S.; Wu, Yuh-Renn

    2014-05-21

    The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimized GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.

  12. Strong coupling of light with A and B excitons in GaN microcavities grown on silicon

    SciTech Connect

    Sellers, I. R.; Semond, F.; Leroux, M.; Massies, J.; Disseix, P.; Henneghien, A-L.; Leymarie, J.; Vasson, A.

    2006-01-15

    We present experimental results demonstrating strong-light matter coupling at low and room temperature in bulk GaN microcavities with epitaxial (Al,Ga)N Bragg mirrors grown on silicon (111). At low temperature, the strong coupling of both the A and B excitonic features of GaN with the cavity mode is clearly resolved in the microcavity. At room temperature a Rabi energy of 50 meV is observed and well reproduced using transfer-matrix reflectivity calculations describing the interaction of both the A and B excitonic states with the photonic mode.

  13. Imaging extended non-homogeneities in HVPE grown GaN with Kelvin Probe Microscopy and photo-etching

    NASA Astrophysics Data System (ADS)

    Nowak, G.; Weyher, J. L.; Khachapuridze, A.; Grzegory, I.

    2012-08-01

    GaN bulk crystals grown by Hydrate Vapor Phase Epitaxy (HVPE) contain regions with non-homogenous electrical properties. Kelvin Probe Force Microscopy (KPFM) was used for revealing and analysis of these defects in thick GaN layers grown by this method on top of GaN on sapphire templates. Such layers initially grow in the form of separate pyramids, which are later overgrown, creating microscopically flat crystallization front. Cross-sectional KPFM images, made just above the template surface, revealed a series of inverted dome-like features of significantly lower potential, indicating regions of high electron concentration. Inside the thick HVPE-grown layer the changes of surface potential are much smaller and indicate the existence of minor fluctuation in carrier concentration during bulk growth of GaN. Subsequent photo-etching, sensitive to carrier concentration, and measurements of etch depth supported this findings. Both KPFM and photo-etching confirmed the known preferential incorporation of impurities at sides of the overgrown pits (pinholes) during initial phase of HVPE growth. During subsequent HVPE growth the changes of the surface potential and of the etch depth are small and may be related to non-uniform incorporation of impurities due to rotation of the growing sample.

  14. Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique

    SciTech Connect

    Lee, S. W.; Minegishi, T.; Lee, W. H.; Goto, H.; Lee, H. J.; Lee, S. H.; Lee, Hyo-Jong; Ha, J. S.; Goto, T.; Hanada, T.; Cho, M. W.; Yao, T.

    2007-02-05

    Strain-free freestanding GaN layers were prepared by in situ lift-off process using a ZnO buffer as a sacrificing layer. Thin Zn-polar ZnO layers were deposited on c-plane sapphire substrates, which was followed by the growth of Ga-polar GaN layers both by molecular beam epitaxy (MBE). The MBE-grown GaN layer acted as a protecting layer against decomposition of the ZnO layer and as a seeding layer for GaN growth. The ZnO layer was completely in situ etched off during growth of thick GaN layers at low temperature by hydride vapor phase epitaxy. Hence freestanding GaN layers were obtained for the consecutive growth of high-temperature GaN thick layers. The lattice constants of freestanding GaN agree with those of strain-free GaN bulk. Extensive microphotoluminescence study indicates that strain-free states extend throughout the high-temperature grown GaN layers.

  15. Electrical and optical properties of carbon-doped GaN grown by MBE on MOCVD GaN templates using a CCl4 dopant source

    SciTech Connect

    Armitage, Rob; Yang, Qing; Feick, Henning; Park, Yeonjoon; Weber, Eicke R.

    2002-04-15

    Carbon-doped GaN was grown by plasma-assisted molecular-beam epitaxy using carbon tetrachloride vapor as the dopant source. For moderate doping mainly acceptors were formed, yielding semi-insulating GaN. However at higher concentrations p-type conductivity was not observed, and heavily doped films (>5 x 10{sup 20} cm{sup -3}) were actually n-type rather than semi-insulating. Photoluminescence measurements showed two broad luminescence bands centered at 2.2 and 2.9 eV. The intensity of both bands increased with carbon content, but the 2.2 eV band dominated in n-type samples. Intense, narrow ({approx}6 meV) donor-bound exciton peaks were observed in the semi-insulating samples.

  16. Prospect of GaN light-emitting diodes grown on glass substrates

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Hee; Lee, Yun Sung; Baik, Chan Wook; Ahn, Ho Young; Cho, Kyung Sang; Kim, Sun Il; Hwang, Sungwoo

    2013-03-01

    We report the enhanced electroluminescence (EL) of GaN light-emitting diodes (LEDs) on glass substrates. We found that GaN morphology affected the EL and achieved enhanced EL of GaN-LEDs on glass by identifying the optimal GaN morphology having both high crystallinity and compatibility for device fabrication. At proper growth temperature, GaN crystallinity was improved with increasing GaN crystal size irrespective of the GaN crystallographic orientation, as determined by spatially resolved cathodoluminescent spectroscopy. The optimized GaN LEDs on glass composed of the nearly single-crystalline GaN pyramid arrays exhibited excellent microscopic EL uniformity and luminance values of ~ 9100 cd/m2 at the peak wavelength of 495 nm. The EL color could be adjusted mainly by varying the quantum well temperature. In addition, new growth methods for achieving high GaN crystallinity at a low growth temperature (e.g. ~700°C) were briefly reviewed and attempted by adopting selective heating. We expect that performance of the GaN LEDs on glass can be much enhanced by enhancing GaN crystallinity and p-GaN coating, and evolvement of low-temperature growth of high-quality GaN might even customize ordinary glass as a substrate, which enables high-performance, low-cost lighting or display.

  17. Microstructure of non-polar GaN on LiGaO2 grown by plasma-assisted MBE.

    PubMed

    Shih, Cheng-Hung; Huang, Teng-Hsing; Schuber, Ralf; Chen, Yen-Liang; Chang, Liuwen; Lo, Ikai; Chou, Mitch Mc; Schaadt, Daniel M

    2011-01-01

    We have investigated the structure of non-polar GaN, both on the M - and A-plane, grown on LiGaO2 by plasma-assisted molecular beam epitaxy. The epitaxial relationship and the microstructure of the GaN films are investigated by transmission electron microscopy (TEM). The already reported epi-taxial relationship and for M -plane GaN is confirmed. The main defects are threading dislocations and stacking faults in both samples. For the M -plane sample, the density of threading dislocations is around 1 × 1011 cm-2 and the stacking fault density amounts to approximately 2 × 105 cm-1. In the A-plane sample, a threading dislocation density in the same order was found, while the stacking fault density is much lower than in the M -plane sample. PMID:21711945

  18. Microstructure of non-polar GaN on LiGaO2 grown by plasma-assisted MBE

    PubMed Central

    2011-01-01

    We have investigated the structure of non-polar GaN, both on the M - and A-plane, grown on LiGaO2 by plasma-assisted molecular beam epitaxy. The epitaxial relationship and the microstructure of the GaN films are investigated by transmission electron microscopy (TEM). The already reported epi-taxial relationship and for M -plane GaN is confirmed. The main defects are threading dislocations and stacking faults in both samples. For the M -plane sample, the density of threading dislocations is around 1 × 1011 cm-2 and the stacking fault density amounts to approximately 2 × 105 cm-1. In the A-plane sample, a threading dislocation density in the same order was found, while the stacking fault density is much lower than in the M -plane sample. PMID:21711945

  19. Study of the partial decomposition of GaN layers grown by MOVPE with different coalescence degree

    NASA Astrophysics Data System (ADS)

    Bouazizi, H.; Chaaben, N.; El Gmili, Y.; Bchetnia, A.; Salvestrini, J. P.; El Jani, B.

    2016-01-01

    We investigated the partial decomposition of GaN layers grown with different coalescence degrees by atmospheric pressure metal organic vapor phase epitaxy (AP-MOVPE) on SiN treated sapphire substrate. The decomposition was performed in AP-MOVPE reactor under nitrogen (N2) flow at 1200 °C. The growth and decomposition processes were in-situ monitored by laser reflectometry (LR) at normal incidence. Surface morphology, crystalline and optical properties of GaN layers were examined before and after partial decomposition by scanning electron microscope (SEM) and high resolution X-ray diffraction (HRXRD). Low decomposition rate and low surface degradation were obtained for thick and most coalesced GaN layers. The partial decomposition did not significantly affect the optical and crystalline properties of GaN. In particular, HRXRD showed almost the same full width at halfmaximum (FWHM) of (00.2) and (10.2) rocking curves (RCs) before and after partial decomposition of coalesced GaN layer.

  20. Highly Uniform Characteristics of GaN Nanorods Grown on Si(111) by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Ra, Yong-Ho; Navamathavan, Rangaswamy; Park, Ji-Hyeon; Song, Ki-Young; Lee, Young-Min; Kim, Dong-Wook; Jun, Baek Byung; Lee, Cheul-Ro

    2010-09-01

    Gallium nitride (GaN) nanorod (NR) arrays were grown on a gold-coated Si(111) substrate by metalorganic chemical vapor deposition (MOCVD). The synthesized single GaN NRs were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and cathodoluminescence (CL) analysis. The HR-TEM images and selected area electron diffraction (SAED) patterns demonstrated that the GaN NRs were of high quality with a single-crystal wurtzite structure and free from defects. The GaN NRs were observed to have a uniform diameter ranging from 40 to 70 nm, length of up to 1 µm, and a sharp symmetrical pyramid-like tip at the top. The pyramid-like tip was attributed to the dissociation of nitrogen atoms by the cracking of ammonia (NH3) at the elevated growth temperature. Furthermore, there was no sign of any metal or alloy cluster at the end of the NRs. Thus, the growth of the GaN NRs does not occur by the typical vapor-liquid-solid (VLS) mechanism.

  1. Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions

    NASA Astrophysics Data System (ADS)

    Aseev, P.; Gačević, Ž.; Torres-Pardo, A.; González-Calbet, J. M.; Calleja, E.

    2016-06-01

    Series of GaN nanowires (NW) with controlled diameters (160-500 nm) and heights (420-1100 nm) were homoepitaxially grown on three different templates: GaN/Si(111), GaN/AlN/Si(111), and GaN/sapphire(0001). Transmission electron microscopy reveals a strong influence of the NW diameter on dislocation filtering effect, whereas photoluminescence measurements further relate this effect to the GaN NWs near-bandgap emission efficiency. Although the templates' quality has some effects on the GaN NWs optical and structural properties, the NW diameter reduction drives the dislocation filtering effect to the point where a poor GaN template quality becomes negligible. Thus, by a proper optimization of the homoepitaxial GaN NWs growth, the propagation of dislocations into the NWs can be greatly prevented, leading to an exceptional crystal quality and a total dominance of the near-bandgap emission over sub-bandgap, defect-related lines, such as basal stacking faults and so called unknown exciton (UX) emission. In addition, a correlation between the presence of polarity inversion domain boundaries and the UX emission lines around 3.45 eV is established.

  2. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Ohshima, Takeshi; Hemmingsson, Carl

    2014-09-01

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (EC-0.24 eV), D3 (EC-0.60 eV), D4 (EC-0.69 eV), D5 (EC-0.96 eV), D7 (EC-1.19 eV), and D8, were observed. After 2 MeV electron irradiation at a fluence of 1 × 1014 cm-2, three deep electron traps, labeled D1 (EC-0.12 eV), D5I (EC-0.89 eV), and D6 (EC-1.14 eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  3. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24 eV), D3 (E{sub C}–0.60 eV), D4 (E{sub C}–0.69 eV), D5 (E{sub C}–0.96 eV), D7 (E{sub C}–1.19 eV), and D8, were observed. After 2 MeV electron irradiation at a fluence of 1 × 10{sup 14 }cm{sup −2}, three deep electron traps, labeled D1 (E{sub C}–0.12 eV), D5I (E{sub C}–0.89 eV), and D6 (E{sub C}–1.14 eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  4. Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Henry, R. L.; Twigg, M. E.; Culbertson, J. C.; Binari, S. C.; Wickenden, A. E.; Fatemi, M.

    2002-06-01

    GaN electronic properties are shown to depend on the AlN nucleation layer (NL) growth temperature for GaN films grown on 6H- and 4H-SiC. Using identical GaN growth conditions except AlN NL growth temperature, 300 K electron mobilities of 876, 884, and 932 cm2/Vs were obtained on 6H-SiC, 4H-SiC, and 3.5deg off-axis 6H-SiC. An AlN NL temperature of 1080 degC was used for the planar and 3.5deg off-axis 6H-SiC, while an AlN NL temperature of 980 degC was used for 4H-SiC. Atomic force microscope images of the AlN NL grown at 1080 degC reveal smaller AlN grains on the 6H-SiC than those on 4H-SiC, suggesting that the AlN morphology influences GaN film formation and subsequent electron mobility. Transmission electron microscope cross section measurements reveal the absence of screw dislocations in the AlN and a low screw dislocation density near the AlN/GaN interface, consistent with the high electron mobilities achieved in these films.

  5. Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam epitaxy

    SciTech Connect

    Wang, X. Q.; Sun, H. P.; Pan, X. Q.

    2010-10-11

    Epitaxial ZnO thin films were grown on nitrided (0001) sapphire substrates with an intervening GaN layer by rf-plasma-assisted molecular beam epitaxy. It was found that polarity of the ZnO epilayer could be controlled by modifying the GaN interlayer. ZnO grown on a distorted 3-nm-thick GaN interlayer has Zn-polarity while ZnO on a 20-nm-thick GaN interlayer with a high structural quality has O-polarity. High resolution transmission electron microscopy analysis indicates that the polarity of ZnO epilayer is controlled by the atomic structure of the interface between the ZnO buffer layer and the intervening GaN layer.

  6. Structure and morphology characters of GaN grown by ECR-MBE using hydrogen-nitrogen mixed gas plasma[Electron Cyclotron Resonance-Molecular Beam Epitaxy

    SciTech Connect

    Araki, Tsutomu; Chiba, Yasuo; Nanishi, Yasushi

    2000-07-01

    GaN growth by electron-cyclotron-resonance plasma-excited molecular beam epitaxy using hydrogen-nitrogen mixed gas plasma were carried out on GaN templates with a different polar-surface. Structure and surface morphology of the GaN layers were characterized using transmission electron microscopy. The GaN layer grown with hydrogen on N-polar template showed a relatively flat morphology including hillocks. Columnar domain existed in the center of the hillock, which might be attributed to the existence of tiny inversion domain with Ga-polarity. On the other hand, columnar structure was formed in the GaN layer grown with hydrogen on Ga-polar template.

  7. Sub-230 nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski–Krastanov mode

    NASA Astrophysics Data System (ADS)

    Islam, SM; Protasenko, Vladimir; Rouvimov, Sergei; (Grace Xing, Huili; Jena, Debdeep

    2016-05-01

    We report tunable deep-ultraviolet (DUV) emission over the 222–231 nm range from 1–2 monolayer (ML) GaN quantum disks (QDs) grown in an AlN matrix. The linewidth of the emission were as narrow as ∼10 nm at 5 K. The disks were grown in modified Stranski–Krastanov (mSK) mode. High resolution scanning transmission electron microscopy (STEM) images confirmed insertion of 1–2 MLs of GaN between 3 nm AlN barriers. The internal quantum efficiency was estimated from low temperature photoluminescence measurements for the disks, and compared with 1 and 2 ML GaN quantum wells/AlN barriers. The internal quantum efficiency (IQE) of the GaN QDs was found to be ∼35% for 222 nm emission, ∼200% higher than 1 ML GaN QWs.

  8. Effect of the duration of the growth process on the properties of GaN grown by the sublimation method

    SciTech Connect

    Wolfson, A. A.; Mokhov, E. N.

    2009-03-15

    Variation in the structural and morphological features and luminescent characteristics of thick epitaxial GaN layers grown by the sublimation sandwich method with the duration of the crystallization process has been studied. This was, in particular, done by means of scanning electron microscopy in the secondary-electron and color-cathodoluminescence modes. It was found that rather high-quality GaN layers with a thickness of up to 0.5 mm can be grown in a time of about 1.5 h, with their surface hardly exhibiting any luminescence in the visible spectral range. However, making the growth process longer in order to obtain thicker layers impairs the quality of a crystal being grown, which is accompanied by an increase in the intensity of cathodoluminescence from its surface layer in the visible (predominantly yellow) region of the spectrum. Reasons for the poorer quality of GaN layers in this case are discussed. It is suggested that, as the evaporation rate from the source decreases, the amount of active nitrogen near the growth surface becomes lower.

  9. Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN

    NASA Astrophysics Data System (ADS)

    Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro

    1999-11-01

    Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.

  10. The annealing effects of V-doped GaN thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Souissi, M.; Bouzidi, M.; El Jani, B.

    2012-02-01

    We have investigated the annealing effect of V-doped GaN (GaN:V) epitaxial layers grown on sapphire by metal organic chemical vapor deposition (MOCVD). The film was annealed at a temperature of 1075 °C for 30 min in N 2 ambient after growth. The structural, surface morphology and optical properties of GaN:V films were studied by high resolution X-ray diffraction (HRXRD), atomic force microscope (AFM) and photoluminescence (PL). The results show that the annealing makes for the destruction in the crystal quality and surface morphology. After thermal annealing, the photoluminescence (PL) measurement showed a reduction of the blue luminescence (BL) band observed in GaN:V at room temperature (RT). The phenomenon is attributed to vanadium diffusion or to the V-related complex dissociation. Near-band-edge (NBE) peak exhibited a red shift after 1075 °C anneal. This is due to the decrease in the level of strain. In the infrared region, we observed the emergence of the line 0.93 eV accompanied by a decrease in the intensity of the 0.82 eV emission. Their possible origins are discussed.

  11. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    SciTech Connect

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.

  12. Polarity control of GaN grown on pulsed-laser-deposited AlN/GaN template by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoo, Jinyeop; Shojiki, Kanako; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2016-05-01

    We report on the polarity control of GaN regrown on pulsed-laser-deposition-grown N-polar AlN on a metalorganic-vapor-phase-epitaxy-grown Ga-polar GaN template. The polarity of the regrown GaN, which was confirmed using aqueous KOH solutions, can be inverted from that of AlN by inserting a low-temperature GaN (LT-GaN) buffer layer. We hypothetically ascribe the Ga-polarity selection of GaN on the LT-GaN buffer layer to the mixed polarity of LT-GaN grains and higher growth rate of the Ga-polar grain, which covers up the N-polar grain during the initial stage of the high-temperature growth. The X-ray rocking curve analysis revealed that the edge-dislocation density in the N-polar regrown GaN is 5 to 8 times smaller than that in the Ga-polar regrown GaN. N-polar GaN grows directly on N-polar AlN at higher temperatures. Therefore, nucleus islands grow larger than those of LT-GaN and the area fraction of coalescence boundaries between islands, where edge dislocations emerge, becomes smaller.

  13. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures

    PubMed Central

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-01-01

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices. PMID:26563573

  14. Step-induced misorientation of GaN grown on r-plane sapphire

    SciTech Connect

    Smalc-Koziorowska, J.; Dimitrakopulos, G. P.; Sahonta, S.-L.; Komninou, Ph.; Tsiakatouras, G.; Georgakilas, A.

    2008-07-14

    In the growth of nonpolar (1120) a-plane GaN on r-plane (1102) sapphire by plasma-assisted molecular beam epitaxy, misoriented crystallites are observed close to the substrate. They have average diameter {approx}10 nm and are oriented with the (0001){sub GaN} plane approximately parallel to the (2113){sub sapph.} plane and [0110]{sub GaN} parallel [1101]{sub sapph.}. This semipolar orientation is promoted by a low misfit (2.4%) between (1011){sub GaN} and (1210){sub sapph.} planes. Its introduction, after nitridation treatment, is due to GaN nucleation on (2113){sub sapph.} step facets inclined at 26 deg. relative to the r-plane. Two variants are observed, leading to twinning when they abut inside the epilayer.

  15. Band offset between cubic GaN and AlN from intra- and interband spectroscopy of superlattices

    SciTech Connect

    Mietze, C.; Lischka, K.; As, D. J.; DeCuir, E. A. Jr.; Manasreh, M. O.

    2010-11-01

    By the analysis of intra- and intersubband transitions in GaN/AlN superlattices the band offset is determined experimentally. Superlattice structures with different period lengths were fabricated by plasma-assisted molecular beam epitaxy 3C-SiC substrates. The structural properties were studied by high resolution X-ray diffraction, revealing a high structural perfection of the superlattice region with several peaks in the X-ray spectra. Infrared absorbance spectroscopy revealed clear intrasubband transitions in the spectral region of 1.55 {mu}m measured at room temperature. Clear intersubband transitions were observed by photoluminescence at room temperature. These transition energies were compared to calculated energies using a 1D Poisson Schroedinger solver. For the calculations standard parameters for cubic GaN and AlN were used, while the band offset between GaN and AlN was varied. Optimal agreement between experimental and theoretical data was obtained for a band offset {Delta}E{sub C}:{Delta} E{sub V} of 55:45.

  16. Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hurni, C. A.; Arehart, A. R.; Yang, J.; Myers, R. C.; Speck, J. S.; Ringel, S. A.

    2012-01-01

    Deep level defects in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy were characterized using deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) and compared with polar c-plane GaN that was grown simultaneously in the same growth run. Significant differences in both the levels present and their concentrations were observed upon comparison of both growth orientations. DLTS revealed electron traps with activation energies of 0.14 eV, 0.20 eV, and 0.66 eV in the m-plane material, with concentrations that were ˜10-50 × higher than traps of similar activation energies in the c-plane material. Likewise, DLOS measurements showed ˜20 × higher concentrations of both a CN acceptor-like state at EC - 3.26 eV, which correlates with a high background carbon concentration observed by secondary ion mass spectroscopy for the m-plane material [A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004)], and the VGa-related state level at EC - 2.49 eV, which is consistent with an enhanced yellow luminescence observed by photoluminescence. The findings suggest a strong impact of growth dynamics on the incorporation of impurities and electrically active native point defects as a function of GaN growth plane polarity.

  17. Lateral transport properties of Nb-doped rutile- and anatase-TiO2 films epitaxially grown on c-plane GaN

    NASA Astrophysics Data System (ADS)

    Hazu, K.; Ohtomo, T.; Nakayama, T.; Tanaka, A.; Chichibu, S. F.

    2012-08-01

    Valence-band offsets for Nb-doped (100) rutile (R-TiO2) epilayer on (0001) GaN and (001) anatase (A-TiO2) epilayer mixed with R-TiO2 on (0001) GaN were determined using x-ray photoelectron spectroscopy to be +0.2 eV and +0.6 eV, respectively. Accordingly, they form type-I and type-II heterojunctions, respectively. The electron mobility as high as 260 cm2 V-1 s-1 was measured for the A(+R)-TiO2:Nb epilayer on undoped GaN, which is quantitatively explained in terms of electron accumulation at the interfacial region of GaN. The intrinsic mobility of approximately 30 cm2 V-1 s-1 at 300 K was obtained for the A(+R)-TiO2:Nb epilayer grown on a p-type GaN.

  18. Optically active vacancies in GaN grown on Si substrates probed using a monoenergetic positron beam

    SciTech Connect

    Uedono, Akira Zhang, Yang; Yoshihara, Nakaaki; Fujishima, Tatsuya; Palacios, Tomás; Cao, Yu; Laboutin, Oleg; Johnson, Wayne; Ishibashi, Shoji; Sumiya, Masatomo

    2014-02-24

    Native defects in GaN layers grown on Si substrates by metal organic chemical vapor deposition have been studied using a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation for GaN layers showed that optically active vacancy-type defects were formed in the layers. Charge transition of the defects due to electron capture was found to occur when the layers were irradiated by photons with energy above 2.71 eV. The concentration of such defects increased after 600–800 °C annealing, but the defects have not been annealed out even at 1000 °C. They were identified as Ga-vacancy-type defects, such as complexes between Ga vacancies and carbon impurities, and the relationship between their charge transition and optical properties were discussed.

  19. Threading dislocation reduction in a GaN film with a buffer layer grown at an intermediate temperature

    NASA Astrophysics Data System (ADS)

    Cho, Youngji; Chang, Jiho; Ha, Joonseok; Lee, Hyun-jae; Fujii, Katsushi; Yao, Takafumi; Lee, Woong; Sekiguchi, Takashi; Yang, Jun-Mo; Yoo, Jungho

    2015-01-01

    Remarkable reduction of the threading dislocation (TD) density has been achieved by inserting a GaN layer grown at an intermediate temperature (900 °C) (IT-GaN layer), just prior to the growth of GaN at 1040 °C by using a hydride vapor phase epitaxy. The variation in the dislocation density variation along the growth direction was observed by using cathodoluminescence (CL) and transmission electron microscopy (TEM). A cross-sectional CL image revealed that the reduction of the TD density happened during the growth of IT-GaN layer. The TEM measurement provided the proof that the TD reduction could be ascribed to the masking of the TD by stacking faults in the IT-GaN layer.

  20. Study of carrier recombination transient characteristics in MOCVD grown GaN dependent on layer thickness

    SciTech Connect

    Gaubas, E. Čeponis, T.; Jasiunas, A.; Jelmakas, E.; Juršėnas, S.; Kadys, A.; Malinauskas, T.; Tekorius, A.; Vitta, P.

    2013-11-15

    The MOCVD grown GaN epi-layers of different thickness have been examined in order to clarify a role of surface recombination, to separate an impact of radiative and non-radiative recombination and disorder factors. The microwave probed –photoconductivity (MW-PC) and spectrally resolved photo-luminescence (PL) transients were simultaneously recorded under ultraviolet (UV) light 354 nm pulsed 500 ps excitation. The MW-PC transients exhibited the carrier decay components associated with carrier decay within micro-crystals and the disordered structure on the periphery areas surrounding crystalline columns. Three PL bands were resolved within PL spectrum, namely, the exciton ascribed UV-PL band edge for hν>3.3 eV, blue B-PL band for 2.5 < hν < 3.0 eV and yellow Y-PL band with hν < 2.4 eV. It has been obtained that intensity of UV-PL band increases with excitation density, while intensity of B-PL band is nearly invariant. However, intensity of the Y-PL increases with reduction of the excitation density. The Y-PL can be associated with trapping centers. A reduction of UV excitation density leads to a decrease of the relative amplitude of the asymptotic component within the MW-PC transients and to an increase of the amplitude as well as duration of the yellow spectral band (Y-PL) asymptotic component. Fractional index α with values 0.5 < α < 0.8 was evaluated for the stretched-exponent component which fits the experimental transients determined by the disordered structure ascribed to the periphery areas surrounding the crystalline columns.

  1. The effect of AlN buffer growth parameters on the defect structure of GaN grown on sapphire by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wong, Yuen-Yee; Chang, Edward Yi; Yang, Tsung-Hsi; Chang, Jet-Rung; Chen, Yi-Cheng; Ku, Jui-Tai; Lee, Ching-Ting; Chang, Chun-Wei

    2009-03-01

    The defect structure of GaN film grown on sapphire by plasma-assisted molecular beam epitaxy (PAMBE) depends on the growth temperature and thickness of the aluminum nitride (AlN) buffer layer. High-resolution X-ray diffraction was used to measure symmetric (0 0 0 2) and asymmetric (1 0 1¯ 2) rocking curve (ω-scans) broadening, which allowed the estimation of screw threading dislocation (TD) and edge TD densities, respectively. For GaN grown on lower-temperature buffer, the density of screw TD was increased while the density of edge TD was decreased. Further examinations revealed that the edge TD was closely related to stress in GaN film and the screw TD was controlled by AlN surface roughness. Since the GaN defect was dominated by edge TD, the total TD was also effectively suppressed with the use of lower-temperature buffer with appropriate thickness.

  2. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    PubMed

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-01

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light. PMID:25968805

  3. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers

    NASA Astrophysics Data System (ADS)

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-02-01

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting.

  4. Anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using double AlN buffer layers.

    PubMed

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11-22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11-22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1-100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  5. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  6. Investigation on the structural properties of GaN films grown on La0.3Sr1.7AlTaO6 substrates

    NASA Astrophysics Data System (ADS)

    Wang, Wenliang; Zhou, Shizhong; Liu, Zuolian; Yang, Weijia; Lin, Yunhao; Qian, Huirong; Gao, Fangliang; Li, Guoqiang

    2014-04-01

    Gallium nitride (GaN) films with excellent structural, electrical and optical properties have been epitaxially grown on La0.3Sr1.7AlTaO6 (LSAT) (111) substrates by radio-frequency molecular beam epitaxy at low temperature. The GaN films grown at 500 °C exhibits high crystalline quality with the (0002) and (10-12) full width at half maximum of 0.056° and 0.071°. There is a maximum of 1.1-nm-thick interfacial layer existing between the as-grown GaN and LSAT (111) substrate, and the as-grown about 300-nm-thick GaN films are almost fully relaxed only with a 0.0094% in-plane tensile strain. Hall and photoluminescence (PL) measurements also reveal outstanding electrical and optical properties of the as-grown GaN films on LSAT. This achievement brings the prospect for achieving highly-efficient GaN-based optoelectronic devices on LSAT (111) substrates.

  7. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  8. GaN nanorod light emitting diodes with suspended graphene transparent electrodes grown by rapid chemical vapor deposition

    SciTech Connect

    Xu, Kun; Xu, Chen Deng, Jun; Zhu, Yanxu; Guo, Weiling; Mao, Mingming; Xun, Meng; Chen, Maoxing; Zheng, Lei; Xie, Yiyang; Sun, Jie; Mikroteknologi och Nanovetenskap, Chalmers Tekniska Högskola AB, Göteborg 41296

    2013-11-25

    Ordered and dense GaN light emitting nanorods are studied with polycrystalline graphene grown by rapid chemical vapor deposition as suspended transparent electrodes. As the substitute of indium tin oxide, the graphene avoids complex processing to fill up the gaps between nanorods and subsequent surface flattening and offers high conductivity to improve the carrier injection. The as-fabricated devices have 32% improvement in light output power compared to conventional planar GaN-graphene diodes. The suspended graphene remains electrically stable up to 300 °C in air. The graphene can be obtained at low cost and high efficiency, indicating its high potential in future applications.

  9. Ultraviolet light-emitting diodes grown by plasma-assisted molecular beam epitaxy on semipolar GaN (2021) substrates

    SciTech Connect

    Sawicka, M.; Grzanka, S.; Skierbiszewski, C.; Turski, H.; Muziol, G.; Krysko, M.; Grzanka, E.; Sochacki, T.; Siekacz, M.; Kucharski, R.

    2013-03-18

    Multi-quantum well (MQW) structures and light emitting diodes (LEDs) were grown on semipolar (2021) and polar (0001) GaN substrates by plasma-assisted molecular beam epitaxy. The In incorporation efficiency was found to be significantly lower for the semipolar plane as compared to the polar one. The semipolar MQWs exhibit a smooth surface morphology, abrupt interfaces, and a high photoluminescence intensity. The electroluminescence of semipolar (2021) and polar (0001) LEDs fabricated in the same growth run peaks at 387 and 462 nm, respectively. Semipolar LEDs with additional (Al,Ga)N cladding layers exhibit a higher optical output power but simultaneously a higher turn-on voltage.

  10. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  11. Electron Transport in a High Mobility Free-Standing GaN Substrate Grown by Hydride Vapor Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Farina, L.; Kurdak, C.; Yun, F.; Morkoc, H.; Rode, D. L.; Tsen, K. T.; Park, S. S.; Lee, K. Y.

    2001-03-01

    We studied electron transport properties in a high quality free-standing GaN grown by hydride vapor phase epitaxy. The GaN, with a thickness of more than 200 μm, was lifted off the sapphire substrate and mechanically polished. At room temperature the carrier density is 1.3x10^16cm-3 and the Hall mobility is 1200 cm^2/V-s, which is the highest reported electron mobility for GaN with a wurtzite structure. Transport properties are studied using a van der Pauw geometry in a temperature range of 20 to 300 K and in magnetic fields up to 8 Tesla. Electron mobility is found to increase at lower temperatures with a peak mobility of 7400 cm^2/V-s at 48 K. The carrier density decreases exponentially at temperatures below 80 K with an activation energy of 28 meV. The electron transport measurements were used to examine the contributions of different scattering mechanisms. Numerical solution of the Boltzmann transport equation was carried out, including non-parabolic conduction bands and wavefunction admixture, along with lattice scattering and ionized-impurity scattering. LO and TO phonon energies were determined by Raman spectroscopy.

  12. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K.; Korona, K. P.

    2015-12-14

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 10{sup 2} and the leakage current of about 10{sup −4} A/cm{sup 2} at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ∼2 nm thick SiN{sub x} layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 10{sup 15 }cm{sup −3}. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiN{sub x} interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  13. Defect reduction of SiNx embedded m-plane GaN grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Woo, Seohwi; Kim, Minho; So, Byeongchan; Yoo, Geunho; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2014-12-01

    Nonpolar (1 0 -1 0) m-plane GaN has been grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE). We studied the defect reduction of m-GaN with embedded SiNx interlayers deposited by ex-situ metal organic chemical vapor deposition (MOCVD). The full-width at half-maximum values of the X-ray rocking curves for m-GaN with embedded SiNx along [1 1 -2 0]GaN and [0 0 0 1]GaN were reduced to 528 and 1427 arcs, respectively, as compared with the respective values of 947 and 3170 arcs, of m-GaN without SiNx. Cross-section transmission electron microscopy revealed that the basal stacking fault density was decreased by approximately one order to 5×104 cm-1 due to the defect blocking of the embedded SiNx. As a result, the near band edge emission intensities of the room-temperature and low-temperature photoluminescence showed approximately two-fold and four-fold improvement, respectively.

  14. Structural, electrical, and optical characterization of coalescent p-n GaN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Zytkiewicz, Z. R.; Korona, K. P.; Sobanska, M.; Klosek, K.

    2015-12-01

    The electrical, structural, and optical properties of coalescent p-n GaN nanowires (NWs) grown by molecular beam epitaxy on Si (111) substrate are investigated. From photoluminescence measurements the full width at half maximum of bound exciton peaks AX and DA is found as 1.3 and 1.2 meV, respectively. These values are lower than those reported previously in the literature. The current-voltage characteristics show the rectification ratio of about 102 and the leakage current of about 10-4 A/cm2 at room temperature. We demonstrate that the thermionic mechanism is not dominant in these samples and spatial inhomogeneties and tunneling processes through a ˜2 nm thick SiNx layer between GaN and Si could be responsible for deviation from the ideal diode behavior. The free carrier concentration in GaN NWs determined by capacitance-voltage measurements is about 4 × 1015 cm-3. Two deep levels (H190 and E250) are found in the structures. We attribute H190 to an extended defect located at the interface between the substrate and the SiNx interlayer or near the sidewalls at the bottom of the NWs, whereas E250 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

  15. Synthesis, microstructure, and cathodoluminescence of [0001]-oriented GaN nanorods grown on conductive graphite substrate.

    PubMed

    Yuan, Fang; Liu, Baodan; Wang, Zaien; Yang, Bing; Yin, Yao; Dierre, Benjamin; Sekiguchi, Takashi; Zhang, Guifeng; Jiang, Xin

    2013-11-27

    One-dimensional GaN nanorods with corrugated morphology have been synthesized on graphite substrate without the assistance of any metal catalyst through a feasible thermal evaporation process. The morphologies and microstructures of GaN nanorods were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results from HRTEM analysis indicate that the GaN nanorods are well-crystallized and exhibit a preferential orientation along the [0001] direction with Ga(3+)-terminated (101̅1) and N(3-)-terminated (101̅1̅) as side facets, finally leading to the corrugated morphology surface. The stabilization of the electrostatic surface energy of {101̅1} polar surface in a wurtzite-type hexagonal structure plays a key role in the formation of GaN nanorods with corrugated morphology. Room-temperature cathodoluminescence (CL) measurements show a near-band-edge emission (NBE) in the ultraviolet range and a broad deep level emission (DLE) in the visible range. The crystallography and the optical emissions of GaN nanorods are discussed. PMID:24164686

  16. Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy

    SciTech Connect

    Zhang, Z.; Arehart, A. R.; Hurni, C. A.; Speck, J. S.; Yang, J.; Myers, R. C.; Ringel, S. A.

    2012-01-30

    Deep level defects in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy were characterized using deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) and compared with polar c-plane GaN that was grown simultaneously in the same growth run. Significant differences in both the levels present and their concentrations were observed upon comparison of both growth orientations. DLTS revealed electron traps with activation energies of 0.14 eV, 0.20 eV, and 0.66 eV in the m-plane material, with concentrations that were {approx}10-50 x higher than traps of similar activation energies in the c-plane material. Likewise, DLOS measurements showed {approx}20 x higher concentrations of both a C{sub N} acceptor-like state at E{sub C} - 3.26 eV, which correlates with a high background carbon concentration observed by secondary ion mass spectroscopy for the m-plane material [A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004)], and the V{sub Ga}-related state level at E{sub C} - 2.49 eV, which is consistent with an enhanced yellow luminescence observed by photoluminescence. The findings suggest a strong impact of growth dynamics on the incorporation of impurities and electrically active native point defects as a function of GaN growth plane polarity.

  17. Time-resolved photoluminescence study of excitons in hexagonal GaN layers grown on sapphire

    NASA Astrophysics Data System (ADS)

    Pau, S.; Liu, Z. X.; Kuhl, J.; Ringling, J.; Grahn, H. T.; Khan, M. A.; Sun, C. J.; Ambacher, O.; Stutzmann, M.

    1998-03-01

    We performed time-resolved and continuous wave photoluminescence on two samples of hexagonal GaN, one with free exciton emission and the other without. For the sample with free exciton emission, very different decay dynamics are observed between the front and backside emission. We find that the strain caused by the lattice mismatch between the sapphire substrate and the GaN film has a large influence on the population decay of the sample with free exciton emission and a minor influence on the decay properties of the sample dominated by bound exciton emission. A polariton picture is used to describe the observed behavior.

  18. Structural and magnetic characterization of Sm-doped GaN grown by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Dehara, Kentaro; Miyazaki, Yuta; Hasegawa, Shigehiko

    2016-05-01

    We have investigated structural, optical and magnetic properties of Sm-doped GaN thin films grown by plasma-assisted molecular beam epitaxy. Reflection high-energy electron diffraction and X-ray diffraction reveal that Ga1- x Sm x N films with a SmN mole fraction of ˜8% or below are grown on GaN templates without segregation of any secondary phases. With increasing SmN mole fraction, the c-axis lattice parameter of the GaSmN films linearly increases. GaSmN films with low Sm concentrations exhibit inner-4f transitions of Sm3+ in photoluminescence spectra. The present findings show that Sm atoms are substituted for some Ga atoms as trivalent ions (Sm3+). The Ga1- x Sm x N films display hysteresis loops in magnetization versus external magnetic field (M-H) curves even at 300 K. We will discuss the origin of these features together with the corresponding temperature dependences of magnetization.

  19. Influence of different aspect ratios on the structural and electrical properties of GaN thin films grown on nanoscale-patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo

    2016-07-01

    This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.

  20. Structural, Optical and Electrical Properties of n-type GaN on Si (111) Grown by RF-plasma assisted Molecular Beam Epitaxy

    SciTech Connect

    Chin, C. W.; Hassan, Z.; Yam, F. K.

    2008-05-20

    In this paper, we present the study of the structural, optical and electrical of n-type GaN grown on silicon (111) by RF plasma-assisted molecular beam epitaxy (RF-MBE). X-ray diffraction (XRD) measurement reveals that the GaN was epitaxially grown on silicon. For the photoluminescence (PL) measurement, a sharp and intense peak at 364.5 nm indicates that the sample is of high optical quality. Hall effect measurement shows that the film has a carrier concentration of 3.28x10{sup 19} cm{sup -3}. The surface of the n-type GaN was smooth and no any cracks and pits.

  1. Correlation between the residual stress and the density of threading dislocations in GaN layers grown by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Röder, C.; Shashev, Y.; Lukin, G.; Motylenko, M.; Kortus, J.; Pätzold, O.; Rafaja, D.

    2014-01-01

    The correlation between the residual stress and the density of threading dislocations was investigated in polar GaN layers that were grown by using hydride vapor phase epitaxy (HVPE) on three different GaN templates. The first template type was GaN grown on sapphire by metal-organic vapor phase epitaxy. The second template type was a closed GaN nucleation layer grown on sapphire by HVPE. The third template type was a non-closed GaN nucleation layer grown by HVPE, which formed isolated pyramids on the sapphire surface. The residual stress was determined using the combination of micro-Raman spectroscopy and modified sin2 ψ method. The interplanar spacings needed for the sin2 ψ method were obtained from the reciprocal space maps that were measured using high-resolution X-ray diffraction. The density of threading dislocations was concluded from the broadening of the reciprocal lattice points that was measured using high-resolution X-ray diffraction as well. The fitting of the reciprocal space maps allowed the character of the threading dislocations to be described quantitatively in terms of the fractions of edge and screw dislocations. It was found that the threading dislocation density increases with increasing compressive residual stress. Furthermore, the dislocation density and the residual stress decrease with increasing thickness of the GaN layers. The edge component of the threading dislocations was dominant in all samples. Still, some differences in the character of the dislocations were observed for different templates.

  2. Influence of Mg and In on defect formation in GaN; bulk and MOCVD grown samples

    SciTech Connect

    Liliental-Weber, Z.; Benamara, M.; Jasinski, J.; Swider, W.; Washburn, J.; Grzegory, I.; Porowski, S.; Bak-Misiuk, J.; Domagala, J.; Bedair, S.; Eiting, C.J.; Dupuis, R.D.

    2000-11-22

    Transmission electron microscopy studies were applied to study GaN crystals doped with Mg. Both: bulk GaN:Mg crystals grown by a high pressure and high temperature process and those grown by metal-organic chemical-vapor deposition (MOCVD) have been studied. Structural dependence on growth polarity was observed in the bulk crystals. Spontaneous ordering (formation of polytypoids) was observed for growth in the N to Ga polar direction (N polarity). On the opposite site of the crystal (growth in the Ga to N polar direction) Mg-rich pyramidal defects with base on the basal planes and with walls inclined about 45O to these planes, empty inside (pinholes) were observed. A high concentration of these pyramidal defects was also observed in the MOCVD grown crystals. For samples grown with Mg delta doping planar defects were also observed especially at the early stages of growth followed by formation of pyramidal defects. TEM and x-ray studies of InxGa{sub 1{minus}x}N crystals for the range of 28-45% nominal In concentration shows formation of two sub-layers: strained and relaxed, with a much lower In concentration in the strained layer. Layers with the highest In concentration were fully relaxed.

  3. Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shao, Yongliang; Hao, Xiaopeng; Wu, Yongzhong; Qu, Shuang; Chen, Xiufang; Xu, Xiangang

    2011-11-01

    In this paper, GaN films were successfully grown on the samples of MOCVD-GaN/Al2O3 (MGA) and MOCVD-GaN/6H-SiC (MGS) by HVPE method. We compare the strain of GaN films grown on the two samples by employing various characterization techniques. The surface morphology of GaN films were characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The variations of strain characteristic were also microscopically identified using the Z scan of Raman spectroscopy. The Raman peak (E2) shift indicates that the stress enhanced gradually as a function of increasing the measurement depth. The strain of GaN grown on MGA sample is compressive strain, while on MGS is tensile strain. The stress of GaN films grown on MGA and MGS sample are calculated. The difference in the value of stress between calculation and measurement was interpreted.

  4. n{sup +}-GaN grown by ammonia molecular beam epitaxy: Application to regrown contacts

    SciTech Connect

    Lugani, L.; Malinverni, M.; Giraud, E.; Carlin, J.-F.; Grandjean, N.; Tirelli, S.; Marti, D.; Bolognesi, C. R.

    2014-11-17

    We report on the low-temperature growth of heavily Si-doped (>10{sup 20 }cm{sup −3}) n{sup +}-type GaN by N-rich ammonia molecular beam epitaxy (MBE) with very low bulk resistivity (<4 × 10{sup −4} Ω·cm). This is applied to the realization of regrown ohmic contacts on InAlN/GaN high electron mobility transistors. A low n{sup +}-GaN/2 dimensional electron gas contact resistivity of 0.11 Ω·mm is measured, provided an optimized surface preparation procedure, which is shown to be critical. This proves the great potentials of ammonia MBE for the realization of high performance electronic devices.

  5. Numerical analysis on the origin of thickness unevenness and formation of pits at GaN thin film grown by HVPE

    NASA Astrophysics Data System (ADS)

    Han, Xue-Feng; Lee, Jae-Hak; Lee, Yoo-Jin; Song, Jae-Ho; Yi, Kyung-Woo

    2016-09-01

    In this study, we propose a 3D model for analyzing the fluid flow, mass fractions of reacting gases, GaN deposition thickness distribution and V/III ratio distribution at the GaN deposition surface in the multi-susceptor HVPE equipment. The GaN thin film is grown in the multi-susceptor HVPE equipment at 1213 K and 1 bar. The deposition thickness distribution from the calculation has been compared with the experimental results. Moreover, the standard deviations of deposition thickness of the films achieved from calculations and experiments have been compared. Besides, in the calculation results, we found that the V/III ratio at the GaN deposition surface increased from the center to the periphery and from low susceptor to high susceptor. Our calculation results have also been verified by 3D measuring laser microscope observation of the surface morphology of the GaN thin film. In according with the calculation results, the density of the pits also decreases from the center to the periphery as well as from low susceptor to high susceptor, demonstrating that the pit density at the surface of the GaN thin films could be reduced when the V/III ratio is increased.

  6. Regularly patterned multi-section GaN nanorod arrays grown with a pulsed growth technique

    NASA Astrophysics Data System (ADS)

    Tu, Charng-Gan; Su, Chia-Ying; Liao, Che-Hao; Hsieh, Chieh; Yao, Yu-Feng; Chen, Hao-Tsung; Lin, Chun-Han; Weng, Chi-Ming; Kiang, Yean-Woei; Yang, C. C.

    2016-01-01

    The growth of regularly patterned multi-section GaN nanorod (NR) arrays based on a pulsed growth technique with metalorganic chemical vapor deposition is demonstrated. Such an NR with multiple sections of different cross-sectional sizes is formed by tapering a uniform cross section to another through stepwise decreasing of the Ga supply duration to reduce the size of the catalytic Ga droplet. Contrast line structures are observed in either a scanning electron microscopy or transmission electron microscopy image of an NR. Such a contrast line-marker corresponds to a thin Ga-rich layer formed at the beginning of GaN precipitation of a pulsed growth cycle and illustrates the boundary between two successive growth cycles in pulsed growth. By analyzing the geometry variation of the contrast line-markers, the morphology evolution in the growth of a multi-section NR, including a tapering process, can be traced. Such a morphology variation is controlled by the size of the catalytic Ga droplet and its coverage range on the slant facets at the top of an NR. The comparison of emission spectra between single-, two-, and three-section GaN NRs with sidewall InGaN/GaN quantum wells indicates that a multi-section NR can lead to a significantly broader sidewall emission spectrum.

  7. Low defect large area semi-polar (112) GaN grown on patterned (113) silicon

    PubMed Central

    Pristovsek, Markus; Han, Yisong; Zhu, Tongtong; Frentrup, Martin; Kappers, Menno J; Humphreys, Colin J; Kozlowski, Grzegorz; Maaskant, Pleun; Corbett, Brian

    2015-01-01

    We report on the growth of semi-polar GaN (112) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 m were realised without cracks in the layer. Transmission electron microscopy showed that most dislocations propagate along [0001] direction and hence can be covered by overgrowth from the next trench. The defect densities were below and stacking fault densities less than 100 cm . These numbers are similar to reports on patterned r-plane sapphire. Typical X-ray full width at half maximum (FHWM) were 500” for the asymmetric (00.6) and 450” for the (11.2) reflection. These FHWMs were 50 % broader than reported for patterned r-plane sapphire which is attributed to different defect structures and total thicknesses. The surface roughness shows strong variation on templates. For the final surface roughness the roughness of the sidewalls of the GaN ridges at the time of coalescence are critical. PMID:26212392

  8. Investigation of cracks in GaN films grown by combined hydride and metal organic vapor-phase epitaxial method

    PubMed Central

    2011-01-01

    Cracks appeared in GaN epitaxial layers which were grown by a novel method combining metal organic vapor-phase epitaxy (MOCVD) and hydride vapor-phase epitaxy (HVPE) in one chamber. The origin of cracks in a 22-μm thick GaN film was fully investigated by high-resolution X-ray diffraction (XRD), micro-Raman spectra, and scanning electron microscopy (SEM). Many cracks under the surface were first observed by SEM after etching for 10 min. By investigating the cross section of the sample with high-resolution micro-Raman spectra, the distribution of the stress along the depth was determined. From the interface of the film/substrate to the top surface of the film, several turnings were found. A large compressive stress existed at the interface. The stress went down as the detecting area was moved up from the interface to the overlayer, and it was maintained at a large value for a long depth area. Then it went down again, and it finally increased near the top surface. The cross-section of the film was observed after cleaving and etching for 2 min. It was found that the crystal quality of the healed part was nearly the same as the uncracked region. This indicated that cracking occurred in the growth, when the tensile stress accumulated and reached the critical value. Moreover, the cracks would heal because of high lateral growth rate. PMID:21711601

  9. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    SciTech Connect

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-20

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  10. A Transmission Electron Microscopy Observation of Dislocations in GaN Grown on (0001) Sapphire by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yao; Yang, Jer-Ren

    2008-10-01

    A transmission electron microscopy (TEM) observation of dislocations in GaN grown on (0001) sapphire by metal organic chemical vapor deposition (MOCVD) was carried out in this study. The GaN film was rotated 30° around the c-axis in the growth plane against the substrate. The finding of this research, according to TEM analysis, is that about 3% (or less) of the threading dislocations are pure screw (b = <0001 >) and 20% are pure edge (b = 1/3 <1120 >). The remaining threading dislocations, about 77%, are mixed-type dislocations; that is the major dislocation type in the GaN epitaxial layer grown on (0001) sapphire is the mixed type. In addition, to further understand the dislocation configuration on the interface of GaN/sapphire, a plane-view TEM sample of the GaN/sapphire interface was prepared. The plane-view TEM image of the GaN/sapphire interface reveals an extremely high density of kink dislocations lying on the interface, with a dislocation density of about 8×109 cm-2, involving high strain and stress. A comparison of the 8×109 cm-2 dislocation density with another plane-view TEM image (6×108 cm-2) near the GaN free surface revealed that approximately 7.5% of the dislocations lying on the substrate coalesce into threading dislocations generated from the interface to the GaN surface.

  11. Characterization of GaN nanowires grown on PSi, PZnO and PGaN on Si (111) substrates by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Shekari, Leila; Hassan, Haslan Abu; Thahab, Sabah M.; Hassan, Zainuriah

    2012-06-01

    In this research, we used an easy and inexpensive method to synthesize highly crystalline GaN nanowires (NWs); on different substrates such as porous silicon (PSi), porous zinc oxide (PZnO) and porous gallium nitride (PGaN) on Si (111) wafer by thermal evaporation using commercial GaN powder without any catalyst. Micro structural studies by scanning electron microscopy and transmission electron microscope measurements reveal the role of different substrates in the morphology, nucleation and alignment of the GaN nanowires. The degree of alignment of the synthesized nanowires does not depend on the lattice mismatch between wires and their substrates. Further structural and optical characterizations were performed using high resolution X-ray diffraction and energy-dispersive X-ray spectroscopy. Results indicate that the nanowires are of single-crystal hexagonal GaN. The quality and density of grown GaN nanowires for different substrates are highly dependent on the lattice mismatch between the nanowires and their substrates and also on the size of the porosity of the substrates. Nanowires grown on PGaN have the best quality and highest density as compared to nanowires on other substrates. By using three kinds of porous substrates, we are able to study the increase in the alignment and density of the nanowires.

  12. Effect of annealing on M-plane GaN thin films grown by PAMBE on tilt-cut LAO substrate

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chiao; Lo, Ikai; Wang, Ying-Chieh; Tsai, Cheng-Da; Yang, Chen-Chi; You, Shuo-Ting; Chou, Ming-Chi; Department of Materials and Optoelectronic Science Collaboration

    2014-03-01

    The non-polar GaN thin film is a potential candidate for high-efficient photoelectric devices. In this work, we analyzed the characteristics of M-plane GaN thin films which were grown on tilt-cut LiAlO2 (LAO) substrate by plasma-assisted molecular beam epitaxy (PAMBE). A series of samples were grown with different N/Ga flux ratios. The crystal structure and optical property of GaN samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and photoluminescence (PL) measurements. The peak of 32.2o in the XRD measurement showed the [1100] oriented (M-plane) for the GaN samples. To improve the crystal quality, we performed the thermal treatment by rapid thermal annealing (RTA) system on these samples and analyzed the crystal structure, surface morphology and optical property of the samples after thermal treatment. The effect of annealing on the M-plane GaN thin films was under investigation. This project is supported by National Science council of Taiwan(101-2112-M-110-006-MY3).

  13. Germanium doping of self-assembled GaN nanowires grown by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Schörmann, Jörg; Hille, Pascal; Schäfer, Markus; Müßener, Jan; Becker, Pascal; Klar, Peter J.; Hofmann, Detlev M.; Teubert, Jörg; Eickhoff, Martin; Kleine-Boymann, Matthias; Rohnke, Marcus; Mata, Maria de la; Arbiol, Jordi

    2013-09-14

    Germanium doping of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111) substrates is studied. Time of flight secondary ion mass spectrometry measurements reveal a constant Ge-concentration along the growth axis. A linear relationship between the applied Ge-flux and the resulting ensemble Ge-concentration with a maximum content of 3.3×10{sup 20} cm{sup −3} is extracted from energy dispersive X-ray spectroscopy measurements and confirmed by a systematic increase of the conductivity with Ge-concentration in single nanowire measurements. Photoluminescence analysis of nanowire ensembles and single nanowires reveals an exciton localization energy of 9.5 meV at the neutral Ge-donor. A Ge-related emission band at energies above 3.475 eV is found that is assigned to a Burstein-Moss shift of the excitonic emission.

  14. Exploration of the growth parameter space for MBE-grown GaN1-xSbx highly mismatched alloys

    NASA Astrophysics Data System (ADS)

    Sarney, W. L.; Svensson, S. P.; Novikov, S. V.; Yu, K. M.; Walukiewicz, W.; Ting, M.; Foxon, C. T.

    2015-09-01

    Highly mismatched GaN1-xSbx alloys were grown under N-rich conditions at low substrate temperatures (325-550 °C) at a growth rates of ~0.09 μm/hr on sapphire. The alloys ranged in Sb composition from 0% to 16%, with the bandgap shifting from 3.3 to 1.6 eV in accordance with the band anticrossing (BAC) model. We compare these results to growths from another chamber, having a different N source, and using a faster growth rate (~0.24 μm/hr), much lower substrate temperatures (as low as 80 °C), different III/V ratios and absolute fluxes. Despite the range of morphologies obtained, all alloys follow the predictions of the BAC model with the bandgap only depending on the Sb composition.

  15. High quality InAlN single layers lattice-matched to GaN grown by molecular beam epitaxy

    SciTech Connect

    Gacevic, Z.; Fernandez-Garrido, S.; Calleja, E.; Estrade, S.

    2011-07-18

    We report on properties of high quality {approx}60 nm thick InAlN layers nearly in-plane lattice-matched to GaN, grown on c-plane GaN-on-sapphire templates by plasma-assisted molecular beam epitaxy. Excellent crystalline quality and low surface roughness are confirmed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. High annular dark field observations reveal a periodic in-plane indium content variation (8 nm period), whereas optical measurements evidence certain residual absorption below the band-gap. The indium fluctuation is estimated to be {+-} 1.2% around the nominal 17% indium content via plasmon energy oscillations assessed by electron energy loss spectroscopy with sub-nanometric spatial resolution.

  16. Dislocation density investigation on MOCVD-grown GaN epitaxial layers using wet and dry defect selective etching

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Yadav, Brajesh S.; Rao, D. V. Sridhara; Kaur, Davinder; Kapoor, Ashok Kumar

    2016-06-01

    Results on the investigations of the dislocation etch pits in the GaN layers grown on sapphire substrate by metal organic chemical vapor deposition are revealed by wet chemical etching, and dry etching techniques are reported. The wet etching was carried out in molten KOH, and inductively coupled plasma (ICP) was used for dry etching. We show that ICP using dry etching and wet chemical etching using KOH solution under optimal conditions give values of dislocation density comparable to the one obtained from the high-resolution X-ray diffraction, atomic force microscopy and transmission electron microscopy investigations. Investigated threading dislocation density is in the order of ~109/cm2 using different techniques.

  17. Effects of growth temperature on Mg-doped GaN grown by ammonia molecular beam epitaxy

    SciTech Connect

    Hurni, Christophe A.; Lang, Jordan R.; Burke, Peter G.; Speck, James S.

    2012-09-03

    The hole concentration p in Mg-doped GaN films grown by ammonia molecular beam epitaxy depends strongly on the growth temperature T{sub GR}. At T{sub GR}=760 Degree-Sign C, GaN:Mg films showed a hole concentration of p=1.2 Multiplication-Sign 10{sup 18} cm{sup -3} for [Mg]=4.5 Multiplication-Sign 10{sup 19} cm{sup -3}, while at T{sub GR}=840 Degree-Sign C, p=4.4 Multiplication-Sign 10{sup 16} cm{sup -3} for [Mg]=7 Multiplication-Sign 10{sup 19} cm{sup -3}. Post-growth annealing did not increase p. The sample grown at 760 Degree-Sign C exhibited a low resistivity of 0.7 {Omega}cm. The mobility for all the samples was around 3-7 cm{sup 2}/V s. Temperature-dependent Hall measurements and secondary ion mass spectroscopy suggest that the samples grown at T{sub GR}>760 Degree-Sign C are compensated by an intrinsic donor rather than hydrogen.

  18. Effect of long anneals on the densities of threading dislocations in GaN films grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, Z. T.; Xu, K.; Guo, L. P.; Yang, Z. J.; Su, Y. Y.; Yang, X. L.; Pan, Y. B.; Shen, B.; Zhang, H.; Zhang, G. Y.

    2006-09-01

    Effect of long anneals on densities of different types of threading dislocations (TDs) in GaN films grown onto sapphire substrate by metal-organic chemical vapor deposition was investigated by high-resolution X-ray diffraction. The results showed that the densities of both types of TDs changed obviously but oppositely, and residual stress in the GaN films was relaxed by generating edge-type TDs instead of screw-type TDs. The results obtained from chemical etching experiments and grazing-incidence X-ray diffraction (GIXRD) also supported the proposed defect structure evolution.

  19. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate

    PubMed Central

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-01-01

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress. PMID:24569601

  20. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate.

    PubMed

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-01-01

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress. PMID:24569601

  1. Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy

    SciTech Connect

    Brubaker, Matt D.; Rourke, Devin M.; Sanford, Norman A.; Bertness, Kris A.; Bright, Victor M.

    2011-09-01

    Low-temperature AlN buffer layers grown via plasma-assisted molecular beam epitaxy on Si (111) were found to significantly affect the subsequent growth morphology of GaN nanowires. The AlN buffer layers exhibited nanowire-like columnar protrusions, with their size, shape, and tilt determined by the AlN V/III flux ratio. GaN nanowires were frequently observed to adopt the structural characteristics of the underlying AlN columns, including the size and the degree of tilt. Piezoresponse force microscopy and polarity-sensitive etching indicate that the AlN films and the protruding columns have a mixed crystallographic polarity. Convergent beam electron diffraction indicates that GaN nanowires are Ga-polar, suggesting that Al-polar columns are nanowire nucleation sites for Ga-polar nanowires. GaN nanowires of low density could be grown on AlN buffers that were predominantly N-polar with isolated Al-polar columns, indicating a high growth rate for Ga-polar nanowires and suppressed growth of N-polar nanowires under typical growth conditions. AlN buffer layers grown under slightly N-rich conditions (V/III flux ratio = 1.0 to 1.3) were found to provide a favorable growth surface for low-density, coalescence-free nanowires.

  2. The impact of RF-plasma power in carrier relaxation dynamics of unintentional doped GaN epitaxial layers grown by MBE

    NASA Astrophysics Data System (ADS)

    Prakash, Nisha; Anand, Kritika; Barvat, Arun; Pal, Prabir; Singh, Dilip K.; Jewariya, Mukesh; Ragam, Srinivasa; Adhikari, Sonachand; Maurya, Kamlesh K.; Khanna, Suraj P.

    2016-04-01

    In this work, unintentionally doped GaN samples were prepared on GaN template by radio frequency (RF)-plasma MBE technique using two different RF-plasma powers. Photoluminescence (PL), steady state photoconductivity (PC) and ultrafast optical pump-probe spectroscopy measurements have been carried out to characterize the samples. The effect of RF-plasma power towards unintentional doping and giving rise to yellow luminescence (YL) is discussed. Our PC measurements show relatively faster decay for sample grown with higher RF-plasma power. In addition, the ultrafast optical pump-probe spectroscopy results show the presence of various defect levels with different relaxation times. A faster ultrafast relaxation time from the conduction band to the closest defect level and conduction band to the next defect level was observed for the sample grown with higher plasma power. A comparatively low defect density and faster carrier relaxation observed in higher RF-plasma power grown samples is caused by lower impurities and gallium vacancies. The results imply that RF-plasma power is very important parameter for the growth of epitaxial GaN films and undesirable impurities and gallium vacancies might get incorporated in the epitaxial GaN films.

  3. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires

    NASA Astrophysics Data System (ADS)

    Kehagias, Th; Dimitrakopulos, G. P.; Becker, P.; Kioseoglou, J.; Furtmayr, F.; Koukoula, T.; Häusler, I.; Chernikov, A.; Chatterjee, S.; Karakostas, Th; Solowan, H.-M.; Schwarz, U. T.; Eickhoff, M.; Komninou, Ph

    2013-11-01

    The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0 0 0\\bar {1}) central facet was delimited by six-fold {1 0\\bar {1}\\ell } facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0 0 0\\bar {1}) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by

  4. Nanostructure and strain in InGaN/GaN superlattices grown in GaN nanowires.

    PubMed

    Kehagias, Th; Dimitrakopulos, G P; Becker, P; Kioseoglou, J; Furtmayr, F; Koukoula, T; Häusler, I; Chernikov, A; Chatterjee, S; Karakostas, Th; Solowan, H-M; Schwarz, U T; Eickhoff, M; Komninou, Ph

    2013-11-01

    The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0001¯) central facet was delimited by six-fold {101¯l} facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0001¯) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by the results of

  5. Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular-beam epitaxy

    SciTech Connect

    Hsu, J. W. P.; Manfra, M. J.; Chu, S. N. G.; Chen, C. H.; Pfeiffer, L. N.; Molnar, R. J.

    2001-06-18

    The impact of the Ga/N ratio on the structure and electrical activity of threading dislocations in GaN films grown by molecular-beam epitaxy is reported. Electrical measurements performed on samples grown under Ga-rich conditions show three orders of magnitude higher reverse bias leakage compared with those grown under Ga-lean conditions. Transmission electron microscopy (TEM) studies reveal excess Ga at the surface termination of pure screw dislocations accompanied by a change in the screw dislocation core structure in Ga-rich films. The correlation of transport and TEM results indicates that dislocation electrical activity depends sensitively on dislocation type and growth stoichiometry. {copyright} 2001 American Institute of Physics.

  6. Correlative analysis of the in situ changes of carrier decay and proton induced photoluminescence characteristics in chemical vapor deposition grown GaN

    SciTech Connect

    Gaubas, E. Ceponis, T.; Jasiunas, A.; Meskauskaite, D.; Pavlov, J.; Tekorius, A.; Vaitkus, J.; Kovalevskij, V.; Remeikis, V.

    2014-02-10

    In order to evaluate carrier densities created by 1.6 MeV protons and to trace radiation damage of the 2.5 μm thick GaN epi-layers grown by metalorganic chemical vapor deposition technique, a correlation between the photoconductivity transients and the steady-state photoluminescence spectra have been examined. Comparison of luminescence spectra induced by proton beam and by laser pulse enabled us to evaluate the efficiency of a single proton generation being of 1 × 10{sup 7} cm{sup −3} per 1.6 MeV proton and 40 carrier pairs per micrometer of layer depth. This result indicates that GaN layers can be an efficient material for detection of particle flows. It has been demonstrated that GaN material can also be a rather efficient scintillating material within several wavelength ranges.

  7. Characterization of M-plane GaN thin films grown on misoriented γ-LiAlO2 (100) substrates

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chiao; Lo, Ikai; Wang, Ying-Chieh; Yang, Chen-Chi; Hu, Chia-Hsuan; Chou, Mitch M. C.; Schaadt, D. M.

    2016-09-01

    M-plane GaN thin films were grown on 11° misoriented γ-LiAlO2 substrates without peeling off or cracking by plasma-assisted molecular beam epitaxy. Because of anisotropic growth kinetics, which leads to an anisotropic compressive in-plane strain in the M-plane GaN films, the surface presents a rough morphology with worse crystal quality. The crystal quality of sample was optimally improved, XRD rocking curve FWHM of which is about 900 arcsec, by raising growth temperature to 800 °C with proper Ga/N flux ratio. As the crystal quality was improved, the polarization ratio decreased from the unity (less than 0.8) which could be attributed to the effect of exciton localization due to the partial increased in-plane strain.

  8. Characterization of dislocations in GaN layer grown on 4-inch Si(111) with AlGaN/AlN strained layer superlattices

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshihiro; Ishikawa, Yukari; Watanabe, Arata; Miyoshi, Makoto; Egawa, Takashi

    2016-05-01

    Dislocations in a GaN layer grown on 4-in. Si(111) with AlGaN/AlN strained layer superlattices using a horizontal metal–organic chemical vapor deposition system were characterized by transmission electron microscopy and scanning transmission electron microscopy. Pure screw dislocations were not found in the observed area but mixed and edge dislocations were found. The dislocation density in the GaN layer decreased from the bottom (∼2 × 1010 cm‑2) to the top (∼6 × 109 cm‑2). Some dislocations were inclined from the c-axis, and half-loop dislocations were observed in the GaN layer. Plan-view weak-beam dark-field analysis indicated that the dislocation inclination was caused by climb and glide motions.

  9. Growth condition dependence of Mg-doped GaN film grown by horizontal atmospheric MOCVD system with three layered laminar flow gas injection

    NASA Astrophysics Data System (ADS)

    Tokunaga, H.; Waki, I.; Yamaguchi, A.; Akutsu, N.; Matsumoto, K.

    1998-06-01

    We developed a novel atmospheric pressure horizontal MOCVD system (SR2000) for the growth of III-nitride film. This system was designed for high-speed gas flow in order to suppress thermal convection and undesirable reactant gas reaction. We have grown Mg-doped GaN films using SR2000. We studied the bis-cyclopentadienyl magnesium (Cp 2Mg) flow rate dependence and growth temperature ( Tg) dependence of Mg-doped GaN. As a result, we have obtained p-type GaN film with hole carrier density of 8×10 17 cm -3 with a mobility of 7.5 cm 2/(V s) at the growth condition with Cp 2Mg flow rate of 0.1 μmol/min at Tg of 1025°C.

  10. Liquid-immersion laser micromachining of GaN grown on sapphire

    NASA Astrophysics Data System (ADS)

    Mak, Giuseppe Y.; Lam, Edmund Y.; Choi, H. W.

    2011-02-01

    Liquid-immersion nanosecond-pulsed laser micromachining is introduced as an efficient way for device isolation and rapid prototyping on GaN-on-sapphire wafer. Using deionized water as an ambient medium for laser micromachining, smooth trenches that are free from redeposition can be formed in the GaN layer. Coupled with the large difference between the ablation thresholds and ultraviolet absorption coefficients of GaN and sapphire, the GaN/sapphire interface can be left undamaged after the ablation process. This technique overcomes the limitation of heat accumulation in nanosecond-pulse regime, and offers a cost-effective alternative to ultrashort-pulse laser micromachining. In this report, the advantages offered by liquid immersion are elucidated in terms of improved heat conduction, increased plasma-induced recoil pressure due to water confinement, weakened plasma shielding effect in water, and the collapse of cavitation bubbles. Simulation results show that the reduced fluctuation of temperature profile over time in water could be correlated with the reduced redeposition of Ga from thermal decomposition at the trench sidewalls.

  11. Dislocations limited electronic transport in hydride vapour phase epitaxy grown GaN templates: A word of caution for the epitaxial growers

    SciTech Connect

    Chatterjee, Abhishek Khamari, Shailesh K.; Kumar, R.; Dixit, V. K.; Oak, S. M.; Sharma, T. K.

    2015-01-12

    GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.

  12. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Hommel, D.; Roskowski, A.M.; Davis, R.F.

    2010-06-25

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  13. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun; Einfeldt, S.; Hommel, D.; Roskowski, A. M.; Davis, R. F.

    2005-01-01

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  14. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    SciTech Connect

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-11

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 {mu}m occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  15. Efficient reduction of defects in (1120) non-polar and (1122) semi-polar GaN grown on nanorod templates

    NASA Astrophysics Data System (ADS)

    Bai, J.; Gong, Y.; Xing, K.; Yu, X.; Wang, T.

    2013-03-01

    (1120) non-polar and (1122) semi-polar GaNs with a low defect density have been achieved by means of an overgrowth on nanorod templates, where a quick coalescence with a thickness even below 1 μm occurs. On-axis and off-axis X-ray rocking curve measurements have shown a massive reduction in the linewidth for our overgrown GaN in comparison with standard GaN films grown on sapphire substrates. Transmission electron microscope observation demonstrates that the overgrowth on the nanorod templates takes advantage of an omni-directional growth around the sidewalls of the nanostructures. The dislocations redirect in basal planes during the overgrowth, leading to their annihilation and termination at voids formed due to a large lateral growth rate. In the non-polar GaN, the priority <0001> lateral growth from vertical sidewalls of nanorods allows basal plane stacking faults (BSFs) to be blocked in the nanorod gaps; while for semi-polar GaN, the propagation of BSFs starts to be impeded when the growth front is changed to be along inclined <0001> direction above the nanorods.

  16. Influence of post-deposition annealing on interfacial properties between GaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect

    Ye, Gang; Wang, Hong Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Geok Ng, Serene Lay; Ji, Rong; Liu, Zhi Hong

    2014-10-13

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaO{sub x} layer of ZrO{sub 2} grown by atomic layer deposition (ALD) on GaN is studied. ZrO{sub 2} films were annealed in N{sub 2} atmospheres in temperature range of 300 °C to 700 °C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500 °C, which could be attributed to the thinning of GaO{sub x} layer associated with low surface defect states due to “clean up” effect of ALD-ZrO{sub 2} on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  17. Growth diagram of N-face GaN (0001{sup ¯}) grown at high rate by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Okumura, Hironori McSkimming, Brian M.; Speck, James S.; Huault, Thomas; Chaix, Catherine

    2014-01-06

    N-face GaN was grown on free-standing GaN (0001{sup ¯}) substrates at a growth rate of 1.5 μm/h using plasma-assisted molecular beam epitaxy. Difference in growth rate between (0001{sup ¯}) and (0001) oriented GaN depends on nitrogen plasma power, and the (0001{sup ¯}) oriented GaN had only 70% of the growth rate of the (0001) oriented GaN at 300 W. Unintentional impurity concentrations of silicon, carbon, and oxygen were 2 × 10{sup 15}, 2 × 10{sup 16}, and 7 × 10{sup 16} cm{sup −3}, respectively. A growth diagram was constructed that shows the dependence of the growth modes on the difference in the Ga and active nitrogen flux, Φ{sub Ga} − Φ{sub N*}, and the growth temperature. At high Φ{sub Ga} − Φ{sub N*} (Φ{sub Ga} ≫ Φ{sub N*}), two-dimensional (step-flow and layer-by-layer) growth modes were realized. High growth temperature (780 °C) expanded the growth window of the two-dimensional growth modes, achieving a surface with rms roughness of 0.48 nm without Ga droplets.

  18. Influence of High Nitrogen Flux on Crystal Quality of Plasma-Assisted MBE Grown GaN Layers Using Raman Spectroscopy: Part-II

    SciTech Connect

    Asghar, M.; Hussain, I.; Islah u din; Saleemi, F.

    2007-05-09

    We have investigated lattice properties of plasma assisted MBE grown hexagonal GaN layers at varying nitrogen and gallium fluxes using Raman spectroscopy. Room temperature Raman spectra of Ga-rich layers and stoichiometric GaN are similar showing excitation modes at 434 cm-1, 567 cm-1 and 729 cm-1 identified as residual laser line, E{sub 2}{sup H} and A1(LO) mode, respectively. Similarity of Ga-rich and stoichiometric GaN layers is interpreted as the indication of comparable crystal quality of both GaN layers. In contrast, Raman scattering associated with N-rich GaN samples mere exhibit a broad band of excitations in the range of 250-650cm-1 leaving out A1(LO) mode. This typical observation along with intensity distribution of the peaks, is correlated with rough surface, bad crystal quality and high concentration of defects. Based on atomic displacement scheme, the broad band is identified as Ga- vacancies.

  19. Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy

    SciTech Connect

    Kamyczek, P.; Placzek-Popko, E.; Zielony, E.; Gumienny, Z.; Zytkiewicz, Z. R.

    2014-01-14

    In this study, we present the results of investigations on Schottky Au-GaN diodes by means of conventional DLTS and Laplace DLTS methods within the temperature range of 77 K–350 K. Undoped GaN layers were grown using the plasma-assisted molecular beam epitaxy technique on commercial GaN/sapphire templates. The quality of the epilayers was studied by micro-Raman spectroscopy (μ-RS) which proved the hexagonal phase and good crystallinity of GaN epilayers as well as a slight strain. The photoluminescence spectrum confirmed a high crystal quality by intense excitonic emission but it also exhibited a blue emission band of low intensity. DLTS signal spectra revealed the presence of four majority traps: two high-temperature and two low-temperature peaks. Using the Laplace DLTS method and Arrhenius plots, the apparent activation energy and capture cross sections were obtained. For two high-temperature majority traps, they were equal to E{sub 1} = 0.65 eV, σ{sub 1} = 8.2 × 10{sup −16} cm{sup 2} and E{sub 2} = 0.58 eV, σ{sub 2} = 2.6 × 10{sup −15} cm{sup 2} whereas for the two low-temperature majority traps they were equal to E{sub 3} = 0.18 eV, σ{sub 3} = 9.7 × 10{sup −18} cm{sup 2} and E{sub 4} = 0.13 eV, σ{sub 4} = 9.2 × 10{sup −18} cm{sup 2}. The possible origin of the traps is discussed and the results are compared with data reported elsewhere.

  20. Anomalous elongation of c-axis of GaN on Al2O3 grown by MBE using NH3-cluster ions

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yoshihiro; Imai, Kazuaki; Suzuki, Kazuhiko; Saito, Hiroshi

    2016-02-01

    GaN thin films were grown on Al2O3 (0001) by MBE using NH3-clusters either ionized with the energy of 4-7 eV/molecule (ionized Cluster Beam, i-CB) or un-ionized with the energy of about 0.1 eV/molecule (neutral Cluster Beam, n-CB) at growth temperatures ranging from 390 to 960 °C. The c-axis is extremely elongated but the a-axis is shrunken at the initial growth stage (up to the film thickness of about 10 nm) in GaN grown by the mixture of n- and i-CB under N-rich condition. The films thicker than 30 nm have the relaxed a- and c-axis lengths close to the unstrained values and obey the Poisson relation. GaN grown by i-CB under Ga-rich condition have the relaxed lattice constants obeying the Poisson relation for the film as thin as 6 nm. In GaN grown by the cluster beam (CB) which is not ionized intentionally, both a- and c-axis lengths are almost independent of the film thickness, having nearly the same values as those of the unstrained samples. These characteristics can be ascribed to the nature of interface between the nitrided Al2O3 substrate and epilayer. It is concluded that the films grown by i-CB bond firmly to underlay AlN than the films by n-CB and CB.

  1. The electrical, optical, and structural properties of GaN epitaxial layers grown on Si(111) substrate with SiN interlayers

    NASA Astrophysics Data System (ADS)

    Arslan, Engin; Duygulu, Özgür; Kaya, Ali Arslan; Teke, Ali; Özçelik, Süleyman; Ozbay, Ekmel

    2009-12-01

    The effect of the in situ substrate nitridation time on the electrical, structural and optical properties of GaN films grown on Si(111) substrates by metal organic chemical vapor deposition (MOCVD) was investigated. A thin buffer layer of silicon nitride (SiN x) with various thicknesses was achieved through the nitridation of the substrate at different nitridation times ranging from 0 to 660 s. The surface roughness of the GaN film, which was grown on the Si substrate 10 s, exhibited a root mean square (RMS) value of 1.12 nm for the surface roughness. However, further increments in the nitridation times in turn cause increments in the surface roughness in the GaN layers. The number of threading dislocation (TD) was counted from plan-view TEM (Transmission Electron Microscopy) images. The determined density of these threading dislocations was of the order of 9×10 9 cm -2. The sheet resistances of the GaN layers were measured. The average sheet resistance significantly increases from 2867 Ω sq -1 for sample A (without nitridation) to 8124 Ω sq -1 for sample F (with 660 s nitridation). The photoluminescence (PL) measurements of the samples nitridated at various nitridation times were done at a temperature range of 10-300 K. A strong band edge PL emission line, which was centered at approx. 3.453 eV along with its phonon replicas which was separated by approx. 92 meV in successive orders, was observed at 10 K. The full width at half maximum (FWHM) of this peak is approx. 14 meV, which indicates the reasonable optical quality of the GaN epilayers grown on Si substrate. At room temperature, the peak position and FWHM of this emission became 3.396 eV and 58 meV, respectively.

  2. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    SciTech Connect

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-06-15

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  3. Two coexisting mechanisms of dislocation reduction in an AlGaN layer grown using a thin GaN interlayer

    SciTech Connect

    Bai, J.; Wang, T.; Parbrook, P. J.; Wang, Q.; Lee, K. B.; Cullis, A. G.

    2007-09-24

    A significant dislocation reduction is achieved in an AlGaN layer grown on an AlN buffer by introducing a thin GaN interlayer. The mechanisms for the dislocation reduction are explored by transmission electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, and micro-Raman spectroscopy. The GaN interlayer grown on the AlN takes the form of platelets. The mechanisms of dislocation reduction in the platelet area and the area between the platelets are different. In the GaN platelets, due to the large misfit strain, the threading dislocations (TDs) in the AlN layer migrate into the interface and annihilate with each other. However, the GaN between the platelets is highly strained so that a higher density of TDs from AlN is incorporated into the upper layer. The coalescing of the platelets induced by the AlGaN growth makes the TDs in the areas between the platelets assemble and annihilate, resulting in additional dislocation reduction.

  4. The effect of nucleation layer thickness on the structural evolution and crystal quality of bulk GaN grown by a two-step process on cone-patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Zhai, Guangmei; Mei, Fuhong; Jia, Wei; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-05-01

    The role of nucleation layer thickness on the GaN crystal quality grown on cone-patterned sapphire substrate (PSS) was explored. The morphologies of epitaxial GaN at different growth stages were investigated by a series of growth interruption in detail. After 10- and 15-min three-dimensional growth, the nucleation sites are very important for the bulk GaN crystal quality. They have a close relationship with the nucleation layer thickness, as confirmed through the scanning electron microscope (SEM) analysis. Nucleation sites formed mainly on patterns are bad for bulk GaN crystal quality and nucleation sites formed mainly in the trenches of PSS mounds are good for bulk GaN crystal quality, as proved by X-ray diffraction analysis. Nucleation layer thickness can effectively control the nucleation sites and thus determine the crystal quality of bulk GaN.

  5. Deep level traps in GaN LEDs grown by metal organic vapour phase epitaxy on an 8 inch Si(111) substrate

    NASA Astrophysics Data System (ADS)

    Nguyen, Xuan Sang; Goh, Xuan Long; Zhang, Li; Zhang, Zeng; Arehart, Aaron R.; Ringel, Steven A.; Fitzgerald, Eugene A.; Chua, Soo Jin

    2016-06-01

    Deep level traps present in GaN LED grown on 8 in. Si substrate were revealed by deep level transient spectroscopy (DLTS). One electron trap located at E C ‑ 0.7 eV was revealed in the n-GaN barrier layer. Two electron traps and one hole trap were observed in the p-GaN layer. They are located at E C ‑ 0.60 eV, E C ‑ 0.79 eV and E V + 0.70 eV. The total trap density in both the n-GaN barrier layer and the p-GaN layer of the LED is in order of 1014 cm‑3, which is comparable with that found in GaN epi-layer grown on sapphire.

  6. m-plane GaN layers grown by rf-plasma assisted molecular beam epitaxy with varying Ga/N flux ratios on m-plane 4H-SiC substrates

    SciTech Connect

    Armitage, R.; Horita, M.; Suda, J.; Kimoto, T.

    2007-02-01

    A series of m-plane GaN layers with the Ga beam-equivalent pressure (BEP) as the only varied parameter was grown by rf-plasma assisted molecular beam epitaxy on m-plane 4H-SiC substrates using AlN buffer layers. The smoothest growth surfaces and most complete film coalescence were found for the highest Ga BEP corresponding to the Ga droplet accumulation regime. However, better structural quality as assessed by x-ray rocking curves was observed for growth at a lower Ga BEP value below the droplet limit. The variation of rocking curve widths for planes inclined with respect to the epilayer c axis followed a different trend with Ga BEP than those of reflections parallel to the c axis. The GaN layers were found to exhibit a large residual compressive strain along the a axis.

  7. Correlating exciton localization with compositional fluctuations in InGaN/GaN quantum wells grown on GaN planar surfaces and facets of GaN triangular prisms

    SciTech Connect

    Khatsevich, S.; Rich, D. H.; Zhang, X.; Dapkus, P. D.

    2007-11-01

    We have used spatially and temporally resolved cathodoluminescence (CL) to study the carrier recombination dynamics of InGaN quantum wells (QWs) grown on (0001)-oriented planar GaN and (1101)-oriented facets of GaN triangular prisms prepared by lateral epitaxial overgrowth in a metal-organic chemical vapor deposition system. The effects of In migration during growth on the resulting QW thickness and composition were examined. We employed a variable temperature time-resolved CL imaging approach that enables a spatial correlation between regions of enhanced exciton localization, luminescence efficiency, and radiative lifetime with the aim of distinguishing between excitons localized in In-rich quantum dots and those in the surrounding Ga-rich QW regions.

  8. Low-resistivity m-plane freestanding GaN substrate with very low point-defect concentrations grown by hydride vapor phase epitaxy on a GaN seed crystal synthesized by the ammonothermal method

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Tsukada, Yusuke; Furukawa, Erika; Saito, Makoto; Mikawa, Yutaka; Kubo, Shuichi; Ikeda, Hirotaka; Fujito, Kenji; Uedono, Akira; Chichibu, Shigefusa F.

    2015-09-01

    An m-plane freestanding GaN substrate satisfying both low resistivity (ρ = 8.5 × 10-3 Ω·cm) and a low point-defect concentration, being applicable to vertically conducting power-switching devices, was grown by hydride vapor phase epitaxy on a nearly bowing-free bulk GaN seed wafer synthesized by the ammonothermal method in supercritical ammonia using an acidic mineralizer. Its threading dislocation and basal-plane staking-fault densities were approximately 104 cm-2 and lower than 100 cm-1, respectively. A record-long fast-component photoluminescence lifetime of 2.07 ns at room temperature was obtained for the near-band-edge emission, reflecting a significantly low concentration of nonradiative recombination centers composed of Ga vacancies.

  9. High optical and structural quality of GaN epilayers grown on (2{sup ¯}01) β-Ga{sub 2}O{sub 3}

    SciTech Connect

    Muhammed, M. M.; Roqan, I. S.; Peres, M.; Franco, N.; Lorenz, K.; Yamashita, Y.; Morishima, Y.; Sato, S.; Kuramata, A.

    2014-07-28

    Producing highly efficient GaN-based optoelectronic devices has been a challenge for a long time due to the large lattice mismatch between III-nitride materials and the most common substrates, which causes a high density of threading dislocations. Therefore, it is essential to obtain alternative substrates with small lattice mismatches, appropriate structural, thermal and electrical properties, and a competitive price. Our results show that (2{sup ¯}01) oriented β-Ga{sub 2}O{sub 3} has the potential to be used as a transparent and conductive substrate for GaN-growth. Photoluminescence spectra of thick GaN layers grown on (2{sup ¯}01) oriented β-Ga{sub 2}O{sub 3} are found to be dominated by intense bandedge emission. Atomic force microscopy studies show a modest threading dislocation density of ∼10{sup 8 }cm{sup −2}. X-ray diffraction studies show the high quality of the single-phase wurtzite GaN thin film on (2{sup ¯}01) β-Ga{sub 2}O{sub 3} with in-plane epitaxial orientation relationships between the β-Ga{sub 2}O{sub 3} and the GaN thin film defined by (010) β-Ga{sub 2}O{sub 3} || (112{sup ¯}0) GaN and (2{sup ¯}01) β-Ga{sub 2}O{sub 3} || (0001) GaN leading to a lattice mismatch of ∼4.7%. Complementary Raman spectroscopy indicates that the quality of the GaN epilayer is high.

  10. Correlation of growth temperature with stress, defect states and electronic structure in an epitaxial GaN film grown on c-sapphire via plasma MBE.

    PubMed

    Krishna, Shibin; Aggarwal, Neha; Mishra, Monu; Maurya, K K; Singh, Sandeep; Dilawar, Nita; Nagarajan, Subramaniyam; Gupta, Govind

    2016-03-21

    The relationship of the growth temperature with stress, defect states, and electronic structure of molecular beam epitaxy grown GaN films on c-plane (0001) sapphire substrates is demonstrated. A minimum compressively stressed GaN film is grown by tuning the growth temperature. The correlation of dislocations/defects with the stress relaxation is scrutinized by high-resolution X-ray diffraction and photoluminescence measurements which show a high crystalline quality with significant reduction in the threading dislocation density and defect related bands. A substantial reduction in yellow band related defect states is correlated with the stress relaxation in the grown film. Temperature dependent Raman analysis shows the thermal stability of the stress relaxed GaN film which further reveals a downshift in the E2 (high) phonon frequency owing to the thermal expansion of the lattice at elevated temperatures. Electronic structure analysis reveals that the Fermi level of the films is pinned at the respective defect states; however, for the stress relaxed film it is located at the charge neutrality level possessing the lowest electron affinity. The analysis demonstrates that the generated stress not only affects the defect states, but also the crystal quality, surface morphology and electronic structure/properties. PMID:26916430

  11. High-quality GaN epilayer grown by newly designed horizontal counter-flow MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Lee, Cheul-Ro; Son, Sung-Jin; Lee, In-Hwan; Leem, Jae-Young; Noh, Sam Kyu

    1997-12-01

    We have fabricated a newly designed horizontal counter-flow reactor for growing high-quality III-V nitrides and characterized the GaN/sapphire(0 0 0 1) grown in it. The surface morphology of the film was featureless and smooth without any defects such as hillocks or truncated hexagonals. The measured background concentration and carrier mobility of the film 1.5 m thick are 4 × 1017/cm3 and 180 cm2/V s, respectively. The defect density measured by TEM is about 1 × 109/cm2 and the FWHM of DCX-ray curving is 336 arcsec, respectively. This crystallinity is similar to what was commonly obtained for GaN on sapphire until recently. The FWHM of the band-edge emission peak measured by PL at room temperature is typically around 14 and 4 meV for the main extonic peak(DBE) at 10 K. Except DBE at 3.490 eV, two minor structures are detected on the high-energy and low-energy shoulder of DBE at 3.498 eV(FE) and 3.483(ABE).

  12. Carrier diffusion length measured by optical method in GaN epilayers grown by MOCVD on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Yablonskii, G. P.; Gurskii, A. L.; Pavlovskii, V. N.; Lutsenko, E. V.; Zubialevich, V. Z.; Shulga, T. S.; Stognij, A. I.; Kalisch, H.; Szymakowski, A.; Jansen, R. H.; Alam, A.; Schineller, B.; Heuken, M.

    2005-02-01

    The carrier ambipolar diffusion length L of optically excited carriers in GaN epitaxial layers grown on sapphire substrate was estimated by an optical method using fitting of the experimental photoluminescence spectra recorded from the front and back sides of the samples by the theoretical equation describing light reflection, light absorption and carrier profile in the medium. The estimations were carried out in the range of excitation intensities from 5 W/cm 2 CW up to 1 MW/cm 2 (pulsed), using excitation at the wavelengths of 325, and 337.1 nm in order to vary the excited layer depth. It has been found that in the samples under study the value of L is about 120-130 nm and does not depend significantly on the excitation intensity up to 200 kW/cm 2. Further increase of excitation level leads to higher values of L about 150-170 nm, probably because of the electron-hole plasma expansion.

  13. Correlation on GaN epilayer quality and strain in GaN-based LEDs grown on 4-in. Si(1 1 1) substrate

    NASA Astrophysics Data System (ADS)

    Zhu, Youhua; Wang, Meiyu; Shi, Min; Huang, Jing; Zhu, Xiaojun; Yin, Haihong; Guo, Xinglong; Egawa, Takashi

    2015-09-01

    GaN-based LEDs with different thickness of n-GaN have been grown on 4-in. Si(1 1 1) substrate by metal-organic chemical vapor deposition. Quality of GaN epilayer has been evaluated by X-ray diffraction (XRD). Strain information in the structure has been directly investigated by means of micro-Raman scattering. It can be concluded that the compressive strain has varied to a tensile one with increasing n-GaN thickness from 0.5 to 2.0 μm. As a result, in a sample with a 2 μm n-GaN thickness, the tensile stress of GaN epilayer was calculated to be 0.44 GPa. Moreover, the strain states of GaN epilayer have been revealed from the variations of its a- and c-lattice constants, which have been calculated using XRD results. In addition, emission peak shift of GaN epilayer has been confirmed by cathodoluminescence measurement, and light output power of LEDs has also been measured. Nevertheless, some correlations in this study would inspire researcher to design much more reasonable GaN-LEDs structures in future.

  14. Deep-level transient spectroscopy of low-free-carrier-concentration n-GaN layers grown on freestanding GaN substrates: Dependence on carbon compensation ratio

    NASA Astrophysics Data System (ADS)

    Tanaka, Takeshi; Shiojima, Kenji; Mishima, Tomoyoshi; Tokuda, Yutaka

    2016-06-01

    Electron traps in n-GaN layers with a relatively low-free-carrier-concentration of approximately 1 × 1016 cm‑3 were characterized by deep-level transient spectroscopy. Sample layers were grown by metal organic chemical vapor deposition with a thickness of 12 µm on freestanding GaN substrates, and were doped with both silicon and carbon. The measurement results showed a reduction in the density of carbon-related electron traps at an energy level of E C ‑0.40 eV in GaN on GaN samples, compared with GaN on SiC samples. It was also observed that the doping of carbon significantly suppressed electron traps at E C ‑0.61 eV, which was associated with the nitrogen antisite. Consequently, the possibility of minimizing all of the electron traps located between E C ‑0.19 and ‑0.89 eV in n-GaN was demonstrated by controlling the carbon doping in the nitrogen site.

  15. Improvement of crystallinity of GaN layers grown using Ga2O vapor synthesized from liquid Ga and H2O vapor

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yohei; Taniyama, Yuuki; Takatsu, Hiroaki; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Isemura, Masashi; Mori, Yusuke

    2016-05-01

    Growth methods using Ga2O vapor allow long-term growth of bulk GaN crystals. Ga2O vapor is generated by the reduction of Ga2O3 powder with H2 gas (Ga2O3–H2 process) or by the oxidation of liquid Ga with H2O vapor (Ga–H2O process). We investigated the dependence of the properties of grown GaN layers on the synthesis of Ga2O. In the Ga–H2O process, the polycrystal density and full width at half maximum (FWHM) GaN(0002) X-ray rocking curves (XRC) at a high growth rate were lower than those in the Ga2O3–H2 process, and a GaN layer with FWHM of 99 arcsec and growth rate of 216 µm/h was obtained. A low H2O partial pressure in the growth zone improved crystallinity in the Ga–H2O process, realized by the high efficiency of conversion from liquid Ga to Ga2O vapor. We concluded that using Ga2O vapor in the Ga–H2O process has the potential for obtaining higher crystallinity with high growth rate.

  16. Impact of extended defects on optical properties of (1-101)GaN grown on patterned Si

    NASA Astrophysics Data System (ADS)

    Okur, S.; Izyumskaya, N.; Zhang, F.; Avrutin, V.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.; Özgür, Ü.

    2014-03-01

    The optical quality of semipolar (1 101)GaN layers was explored by time- and polarization-resolved photoluminescence spectroscopy. High intensity bandedge emission was observed in +c-wing regions of the stripes as a result of better structural quality, while -c-wing regions were found to be of poorer optical quality due to basal plane and prismatic stacking faults (BSFs and PSFs) in addition to a high density of TDs. The high optical quality region formed on the +cwings was evidenced also from the much slower biexponential PL decays (0.22 ns and 1.70 ns) and an order of magnitude smaller amplitude ratio of the fast decay (nonradiative origin) to the slow decay component (radiative origin) compared to the -c-wing regions. In regard to defect-related emission, decay times for the BSF and PSF emission lines at 25 K (~ 0.80 ns and ~ 3.5 ns, respectively) were independent of the excitation density within the range employed (5 - 420 W/cm2), and much longer than that for the donor bound excitons (0.13 ns at 5 W/cm2 and 0.22 ns at 420 W/cm2). It was also found that the emission from BSFs had lower polarization degree (0.22) than that from donor bound excitons (0.35). The diminution of the polarization degree when photogenerated carriers recombine within the BSFs is another indication of the negative effects of stacking faults on the optical quality of the semipolar (1101)GaN. In addition, spatial distribution of defects in semipolar (1101)-oriented InGaN active region layers grown on stripe patterned Si substrates was investigated using near-field scanning optical microscopy. The optical quality of -c- wing regions was found to be worse compared to +c-wing regions due to the presence of higher density of stacking faults and threading dislocations. The emission from the +c-wings was very bright and relatively uniform across the sample, which is indicative of a homogeneous In distribution.

  17. Electronic and optical characteristics of an m-plane GaN single crystal grown by hydride vapor phase epitaxy on a GaN seed synthesized by the ammonothermal method using an acidic mineralizer

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Tsukada, Yusuke; Furukawa, Erika; Saito, Makoto; Mikawa, Yutaka; Kubo, Shuichi; Ikeda, Hirotaka; Fujito, Kenji; Uedono, Akira; Chichibu, Shigefusa F.

    2016-05-01

    Fundamental electronic and optical properties of a low-resistivity m-plane GaN single crystal, which was grown by hydride vapor phase epitaxy on a bulk GaN seed crystal synthesized by the ammonothermal method in supercritical ammonia using an acidic mineralizer, were investigated. The threading dislocation and basal-plane staking-fault densities of the crystal were around 104 cm-2 and less than 100 cm-1, respectively. Oxygen doping achieved a high electron concentration of 4 × 1018 cm-3 at room temperature. Accordingly, a photoluminescence (PL) band originating from the recombination of hot carriers was observed at low temperatures, even under weak excitation conditions. The simultaneous realization of low-level incorporation of Ga vacancies (VGa) less than 1016 cm-3 was confirmed by using the positron annihilation technique. Consistent with our long-standing claim that VGa complexes are the major nonradiative recombination centers in GaN, the fast-component PL lifetime of the near-band-edge emission at room temperature longer than 2 ns was achieved.

  18. Comparison of GaN nanowires grown on c-, r- and m-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Maliakkal, Carina B.; Rahman, A. Azizur; Hatui, Nirupam; Chalke, Bhagyashree A.; Bapat, Rudheer D.; Bhattacharya, Arnab

    2016-04-01

    Gallium nitride nanowires were grown on c-plane, r-plane and m-plane sapphire substrates in a showerhead metalorganic chemical vapor deposition system using nickel catalyst with trimethylgallium and ammonia as precursors. We studied the influence of carrier gas, growth temperature, reactor pressure, reactant flow rates and substrate orientation in order to obtain thin nanowires. The nanowires grew along the < 10 1 bar 1 > and < 10 1 bar 0 > axes depending on the substrate orientation. These nanowires were further characterized using x-ray diffraction, electron microscopy, photoluminescence and Raman spectroscopy.

  19. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Malinverni, Marco; Martin, Denis; Okumura, Hironori; Ishibashi, Shoji; Grandjean, Nicolas

    2016-06-01

    Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5-0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 1019 cm-3, vacancy-type defects were introduced starting at above [Mg] = 1 × 1020 cm-3. The major defect species was identified as a complex between Ga vacancy (VGa) and multiple nitrogen vacancies (VNs). The introduction of vacancy complexes was found to correlate with a decrease in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.

  20. Structural properties of free-standing 50 mm diameter GaN waferswith (101_0) orientation grown on LiAlO2

    SciTech Connect

    Jasinski, Jacek; Liliental-Weber, Zuzanna; Maruska, Herbert-Paul; Chai, Bruce H.; Hill, David W.; Chou, Mitch M.C.; Gallagher, John J.; Brown, Stephen

    2005-09-27

    (10{und 1}0) GaN wafers grown on (100) face of {gamma}-LiAlO{sub 2} were studied using transmission electron microscopy. Despite good lattice matching in this heteroepitaxial system, high densities of planar structural defects in the form of stacking faults on the basal plane and networks of boundaries located on prism planes inclined to the layer/substrate interface were present in these GaN layers. In addition, significant numbers of threading dislocations were observed. High-resolution electron microscopy indicates that stacking faults present on the basal plane in these layers are of low-energy intrinsic I1type. This is consistent with diffraction contrast experiments.

  1. The interface analysis of GaN grown on 0° off 6H-SiC with an ultra-thin buffer layer

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Ohta, Akio; Miyazaki, Seiichi; Nagamatsu, Kentaro; Lee, Hojun; Olsson, Marc; Ye, Zheng; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-01-01

    Previously, we reported a growth method by metalorganic vapor phase epitaxy using a single two-dimensional growth step, resulting in 1.2-µm crack-free GaN directly grown on 6H-SiC substrate. The introduction of Al-treatment prior to the standard GaN growth step resulted in improved surface wetting of gallium on the SiC substrate. Transmission electron microscope and energy dispersive spectrometer analysis of the epitaxial interface to the SiC determined that an ultra-thin AlGaN interlayer had formed measuring around 2-3 nm. We expect our growth technique can be applied to the fabrication of GaN/SiC high frequency and high power devices.

  2. Polarization and temperature dependence of photoluminescence of m-plane GaN grown on {gamma}-LiAlO{sub 2} (100) substrate

    SciTech Connect

    Liu, B.; Kong, J. Y.; Zhang, R.; Xie, Z. L.; Fu, D. Y.; Xiu, X. Q.; Chen, P.; Lu, H.; Han, P.; Zheng, Y. D.; Zhou, S. M.

    2009-08-10

    We investigated the polarization and temperature dependence of photoluminescence (PL) of m-plane GaN grown on {gamma}-LiAlO{sub 2} (100) substrate. The calculated electronic band structure with kp Hamiltonian points out the energy splitting as well as polarization selection originate from the m-plane GaN epilayer under anisotropic strain. The polarization-angle dependence PL spectra are found to be selected from in-plane x- and z-polarized emission, corresponding to T{sub 1} and T{sub 2} transition. And the intensity distribution of the fitting peaks satisfies the Malus' law. An S-shape energy evolution of near band edge peak on temperatures is observed, which originates from the transition between the localized holes and electrons in triangular potentials induced by basal stacking faults.

  3. Local Strain, Defects and Crystallographic Tilt in GaN(0001) Layers Grown by Maskless Pendeo-epitaxy from X-ray Microdiffraction

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Roskovski, A.M.; Davis, R.F.

    2010-07-13

    Polychromatic x-ray microdiffraction, high-resolution monochromatic x-ray diffraction, and finite element simulations have been used to determine the distribution of strain, defects, and crystallographic tilt in uncoalesced GaN layers grown by maskless pendeo-epitaxy. An important materials parameter was the width-to-height ratio of the etched columns of GaN from which occurred the lateral growth of the wings. Tilt boundaries formed at the column/wing interface for samples with a large ratio. Formation of the tilt boundary can be avoided by using smaller ratios. The strain and tilt across the stripe increased with the width-to-height ratio. The wings were tilted upward at room temperature.

  4. Growth Mode and Threading Dislocation Behavior of GaN Films Grown on Patterned Sapphire Substrate with Radial Stripe Pattern

    NASA Astrophysics Data System (ADS)

    Okuno, Koji; Oshio, Takahide; Shibata, Naoki; Honda, Yoshio; Yamaguchi, Masahito; Amano, Hiroshi

    2013-08-01

    A sapphire substrate with a grooved stripe pattern along different radial directions was prepared to investigate the effects of stripe direction on the growth mode and threading dislocation (TD) behavior of GaN films. When the stripe direction is oriented parallel to [10bar 10]sapphire, the GaN films have a triangular structure that is formed by the GaN{10bar 11} facets. As the stripe direction rotates from [10bar 10]sapphire, nanosteps with a step height of around 80 nm are formed on the GaN{10bar 11} facets and then the coalescence of GaN on the ridges and grooves advances. GaN films with a smooth surface and a TD density as low as 2.0×108 cm-2 were achieved when the stripe direction was rotated 3° from [10bar 10]sapphire. Our result indicates that the surface roughness and TD density of GaN films can be controlled by precisely adjusting the angle of the stripe direction from [10bar 10]sapphire.

  5. Origins of hillock defects on GaN templates grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Han, Y.; Zhu, D.; Zhu, T.; Humphreys, C. J.; Wallis, D. J.

    2016-01-01

    The origin of surface hillocks (also known as pancake defects) on GaN-on-Si wafers grown by MOVPE has been investigated. FIB/TEM observations confirmed that the appearance of the hillocks is due to the formation of Ga-rich precipitates within the AlGaN buffer layer. XRD (002) FWHM measurements also show that the surface hillocks are associated with a high degree of crystal tilt in the AlN nucleation layer. Two factors are considered to be the cause of such a phase separation: (1) a high density of surface steps associated with the regions of large crystal tilt which act as nucleation centers and (2) a lower mobility of Al adatoms at the growth surface compared with Ga, leading to a preferential incorporation of Ga in the precipitates. The impact of these precipitates on the wafer bow of the structures is considered.

  6. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Shen, X. Q.; Takahashi, T.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.; Matsuhata, H.; Ide, T.; Shimizu, M.

    2013-12-01

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  7. Role of an ultra-thin AlN/GaN superlattice interlayer on the strain engineering of GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Shen, X. Q.; Takahashi, T.; Matsuhata, H.; Ide, T.; Shimizu, M.; Rong, X.; Chen, G.; Wang, X. Q.; Shen, B.

    2013-12-02

    We investigate the role of an ultra-thin AlN/GaN superlattice interlayer (SL-IL) on the strain engineering of the GaN films grown on Si(110) and Si(111) substrates by plasma-assisted molecular beam epitaxy. It is found that micro-cracks limitted only at the SL-IL position are naturally generated. These micro-cracks play an important role in relaxing the tensile strain caused by the difference of the coefficient of thermal expansion between GaN and Si and keeping the residual strain in the crack-free GaN epilayers resulted from the SL-IL during the growth. The mechanism understanding of the strain modulation by the SL-IL in the GaN epilayers grown on Si substrates makes it possible to design new heterostructures of III-nitrides for optic and electronic device applications.

  8. Crystallographic Wet Chemical Etching of Semipolar GaN (11-22) Grown on m-Plane Sapphire Substrates.

    PubMed

    Kim, Jae-Kwan; Lee, Sung Nam; Song, Keun-Man; Yoon, Jae-Sik; Lee, Ji-Myon

    2015-07-01

    This paper reports the etch rates and etched surface morphology of semipolar GaN using a potassium hydroxide (KOH) solution. Semipolar (11-22) GaN could be etched easily using a KOH solution and the etch rate was higher than that of Ga-polar c-plane GaN (0001). The etch rate was anisotropic and the highest etch rate was measured to be approximately 116 nm/min for the (1011) plane and 62 nm/min for the (11-20) plane GaN using a 4 M KOH solution at 100 °C, resulting in specific surface features, such as inclined trigonal cells. PMID:26373117

  9. Low dislocation density InAlN/AlN/GaN heterostructures grown on GaN substrates and the effects on gate leakage characteristics

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Tomabechi, Shuichi; Nakamura, Norikazu

    2016-04-01

    This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 104 cm-2 and 1.2 × 109 cm-2 by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, and a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel-Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.

  10. Comparative study of single InGaN layers grown on Si(111) and GaN(0001) templates: The role of surface wetting and epitaxial constraint

    NASA Astrophysics Data System (ADS)

    Gómez, V. J.; Gačević, Ž.; Soto-Rodríguez, P. E. D.; Aseev, P.; Nötzel, R.; Calleja, E.; Sánchez-García, M. A.

    2016-08-01

    This work presents a comparative study, based mainly on X-ray diffraction analysis, of compact (~100 nm thick) and uniform single crystal InGaN layers (In content <35%) grown by plasma-assisted molecular beam epitaxy. InGaN layers have been grown directly on Si(111) substrates and on commercially available GaN(0001)-on-sapphire templates.. A high reactivity of atomic N with Si leads to a formation of amorphous SiN on Si substrate, i.e. an indirect crystal-to-crystal InGaN/SiN/Si contact; the weak InGaN interaction with the underlying substrate (weak epitaxial constraint) further leads to poor surface "wetting" and consequent 3D nucleation. The InGaN growth on GaN is, on the other hand, characterized by a direct crystal-to-crystal InGaN/GaN contact; the strong InGaN interaction with the underlying substrate (strong epitaxial constraint) leads to good surface "wetting" and consequent 2D nucleation. All studied InGaN layers show single epitaxial relationship to both Si(111) and GaN(0001)-on-sapphire substrates as well as a relatively good compositional uniformity (no trace of InGaN phase separation). However, layers grown on Si show significantly lower strain and inferior crystallographic uniformity i.e. higher disorder in crystallographic tilt and twist. The surface "wetting" (poor vs. good) and epitaxial constraint (weak vs. strong) are suggested as the main origins of these discrepancies.

  11. Hardness and Young's modulus of high-quality cubic boron nitride films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Philip, J.; Zhang, W. J.; Hess, P.; Matsumoto, S.

    2003-02-01

    The elastic and mechanical properties of high-quality cubic boron nitride (cBN) films with a few microns thickness and submicron grain size grown on silicon substrates by chemical vapor deposition were determined by measuring the dispersion of surface acoustic waves propagating along the surface of the layered system. The values are compared with those obtained with an ultralow load indenter (Triboscope). Specifically, the hardness, Young's modulus and density of the film were measured.

  12. Interface structural defects and photoluminescence properties of epitaxial GaN and AlGaN/GaN layers grown on sapphire

    SciTech Connect

    Klad'ko, V. P.; Chornen'kii, S. V.; Naumov, A. V. Komarov, A. V.; Tacano, M.; Sveshnikov, Yu. N.; Vitusevich, S. A.; Belyaev, A. E.

    2006-09-15

    Overall characterization of the GaN and AlGaN/GaN epitaxial layers by X-ray diffractometry and optical spectral analysis is carried out. The layers are grown by metalloorganic gas-phase epitaxy on (0001)-oriented single crystal sapphire wafers. The components of strains and the density of dislocations are determined. The effects of strains and dislocations on the photoluminescence intensity and spectra are studied. The results allow better understanding of the nature and mechanisms of the formation of defects in the epitaxial AlGaN/GaN heterostructures.

  13. Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy

    SciTech Connect

    Browne, David A.; Young, Erin C.; Lang, Jordan R.; Hurni, Christophe A.; Speck, James S.

    2012-07-15

    The effects of NH{sub 3} flow, group III flux, and substrate growth temperature on indium incorporation and surface morphology have been investigated for bulk InGaN films grown by ammonia molecular beam epitaxy. The incorporation of unintentional impurity elements (H, C, O) in InGaN films was studied as a function of growth temperature for growth on polar (0001) GaN on sapphire templates, nonpolar (1010) bulk GaN, and semipolar (1122), (2021) bulk GaN substrates. Enhanced indium incorporation was observed on both (1010) and (2021) surfaces relative to c-plane, while reduced indium incorporation was observed on (1122) for co-loaded conditions. Indium incorporation was observed to increase with decreasing growth temperature for all planes, while being relatively unaffected by the group III flux rates for a 1:1 Ga:In ratio. Indium incorporation was found to increase at the expense of a decreased growth rate for higher ammonia flows; however, smooth surface morphology was consistently observed for growth on semipolar orientations. Increased concentrations of oxygen and hydrogen were observed on semipolar and nonpolar orientations with a clear trend of increased hydrogen incorporation with indium content.

  14. Structural anisotropic properties of a-plane GaN epilayers grown on r-plane sapphire by molecular beam epitaxy

    SciTech Connect

    Lotsari, A.; Kehagias, Th.; Katsikini, M.; Arvanitidis, J.; Ves, S.; Komninou, Ph.; Dimitrakopulos, G. P.; Tsiakatouras, G.; Tsagaraki, K.; Georgakilas, A.; Christofilos, D.

    2014-06-07

    Heteroepitaxial non-polar III-Nitride layers may exhibit extensive anisotropy in the surface morphology and the epilayer microstructure along distinct in-plane directions. The structural anisotropy, evidenced by the “M”-shape dependence of the (112{sup ¯}0) x-ray rocking curve widths on the beam azimuth angle, was studied by combining transmission electron microscopy observations, Raman spectroscopy, high resolution x-ray diffraction, and atomic force microscopy in a-plane GaN epilayers grown on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). The structural anisotropic behavior was attributed quantitatively to the high dislocation densities, particularly the Frank-Shockley partial dislocations that delimit the I{sub 1} intrinsic basal stacking faults, and to the concomitant plastic strain relaxation. On the other hand, isotropic samples exhibited lower dislocation densities and a biaxial residual stress state. For PAMBE growth, the anisotropy was correlated to N-rich (or Ga-poor) conditions on the surface during growth, that result in formation of asymmetric a-plane GaN grains elongated along the c-axis. Such conditions enhance the anisotropy of gallium diffusion on the surface and reduce the GaN nucleation rate.

  15. Strain in epitaxial Bi2Se3 grown on GaN and graphene substrates: A reflection high-energy electron diffraction study

    NASA Astrophysics Data System (ADS)

    Li, Bin; Guo, Xin; Ho, Wingkin; Xie, Maohai

    2015-08-01

    Topological insulator (TI) has been one of the focus research themes in condensed matter physics in recent years. Due to the relatively large energy bandgap, Bi2Se3 has been identified as one of the most promising three-dimensional TIs with application potentials. Epitaxial Bi2Se3 by molecular-beam epitaxy has been reported by many groups using different substrates. A common feature is that Bi2Se3 grows readily along the c-axis direction irrespective of the type and condition of the substrate. Because of the weak van deer Waals interaction between Bi2Se3 quintuple layers, the grown films are reported to be strain-free, taking the lattice constant of the bulk crystal. At the very initial stage of Bi2Se3 deposition, however, strain may still exist depending on the substrate. Strain may bring some drastic effects to the properties of the TIs and so achieving strained TIs can be of great fundamental interests as well as practical relevance. In this work, we employ reflection high-energy electron diffraction to follow the lattice constant evolution of Bi2Se3 during initial stage depositions on GaN and graphene, two very different substrates. We reveal that epitaxial Bi2Se3 is tensile strained on GaN but strain-free on graphene. Strain relaxation on GaN is gradual.

  16. Morphological evolution of InGaN/GaN light-emitting diodes grown on free-standing m-plane GaN substrates

    NASA Astrophysics Data System (ADS)

    Farrell, R. M.; Haeger, D. A.; Fujito, K.; DenBaars, S. P.; Nakamura, S.; Speck, J. S.

    2013-02-01

    We report on the morphological evolution of InGaN/GaN light-emitting diodes (LEDs) grown on nominally on-axis and intentionally misoriented free-standing m-plane GaN substrates. Large variations in p-n junction depth (±175nm) were observed for LEDs grown on nominally on-axis substrates, while negligible variations in junction depth (±20 nm) were observed for LEDs grown on intentionally misoriented substrates. The surfaces of LEDs grown on the nominally on-axis substrates were characterized by the presence of a high density of pyramidal hillocks [Hirai et al., Appl. Phys. Lett. 91, 191906 (2007)], while the surfaces of the LEDs grown on the intentionally misoriented substrates were relatively smooth and free of pyramidal hillocks. Detailed measurements indicated that the variations in junction depth observed for LEDs grown on nominally on-axis substrates were related to an evolution in the shape of individual pyramidal hillocks during the growth of the LEDs. These results indicate that growing LEDs on intentionally misoriented substrates is an effective way to eliminate the pyramidal hillocks and variations in junction depth associated with growth on nominally on-axis substrates.

  17. The dependence of Raman scattering on Mg concentration in Mg-doped GaN grown by MBE

    NASA Astrophysics Data System (ADS)

    Flynn, Chris; Lee, William

    2014-04-01

    Magnesium-doped GaN (GaN:Mg) films having Mg concentrations in the range 5 × 1018-5 × 1020 cm-3 were fabricated by molecular beam epitaxy. Raman spectroscopy was employed to study the effects of Mg incorporation on the positions of the E2 and A1(LO) lines identifiable in the Raman spectra. For Mg concentrations in excess of 2 × 1019 cm-3, increases in the Mg concentration shift both lines to higher wave numbers. The shifts of the Raman lines reveal a trend towards compressive stress induced by incorporation of Mg into the GaN films. The observed correlation between the Mg concentration and the Raman line positions establish Raman spectroscopy as a useful tool for optimizing growth of Mg-doped GaN.

  18. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    SciTech Connect

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, José H. D. da; Leite, Douglas M. G.; Bortoleto, José R. R.

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 °C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 °C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 °C, 30 W and 600 °C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  19. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Kordina, Olof; Janzén, Erik; Ohshima, Takeshi; Hemmingsson, Carl

    2016-03-01

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (EV + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 1014 cm-2, a second hole trap labelled H2 is observed. Simultaneously, the concentration of two electron traps, labelled T1 (EC - 0.12 eV) and T2 (EC - 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10-3 cm-1 and 0.9 cm-1, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.

  20. Electron tomography of (In,Ga)N insertions in GaN nanocolumns grown on semi-polar (112{sup -}2) GaN templates

    SciTech Connect

    Niehle, M. Trampert, A.; Albert, S.; Bengoechea-Encabo, A.; Calleja, E.

    2015-03-01

    We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN(112{sup -}2) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.

  1. Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal—organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Liang; Yang, Lin-An; Xue, Jun-Shuai; Cao, Rong-Tao; Xu, Sheng-Rui; Zhang, Jin-Cheng; Hao, Yue

    2014-06-01

    We report on an improvement in the crystal quality of GaN film with an In0.17Al0.83N interlayer grown by pulsed metal—organic chemical vapor deposition, which is in-plane lattice-matched to GaN films. The indium composition of about 17% and the reductions of both screw and edge threading dislocations (TDs) in GaN film with the InAlN interlayer are estimated by high resolution X-ray diffraction. Transmission electron microscopy (TEM) measurements are employed to understand the mechanism of reduction in TD density. Raman and photoluminescence measurements indicate that the InAlN interlayer can improve the crystal quality of GaN film, and verify that there is no additional residual stress induced into the GaN film with InAlN interlayer. Atomic force microscopy measurement shows that the InAlN interlayer brings in a smooth surface morphology of GaN film. All the results show that the insertion of the InAlN interlayer is a convenient method to achieve excellent crystal quality in GaN epitaxy.

  2. TEM study of defect structure of GaN epitaxial films grown on GaN/Al2O3 substrates with buried column pattern

    NASA Astrophysics Data System (ADS)

    Mynbaeva, M. G.; Kremleva, A. V.; Kirilenko, D. A.; Sitnikova, A. A.; Pechnikov, A. I.; Mynbaev, K. D.; Nikolaev, V. I.; Bougrov, V. E.; Lipsanen, H.; Romanov, A. E.

    2016-07-01

    A TEM study of defect structure of GaN films grown by chloride vapor-phase epitaxy (HVPE) on GaN/Al2O3 substrates was performed. The substrates were fabricated by metal-organic chemical vapor deposition overgrowth of templates with buried column pattern. The results of TEM study showed that the character of the defect structure of HVPE-grown films was determined by the configuration of the column pattern in the substrate. By choosing the proper pattern, the reduction in the density of threading dislocations in the films by two orders of magnitude (in respect to the substrate material), down to the value of 107 cm-2, was achieved.

  3. Strong light-matter coupling at room temperature in simple geometry GaN microcavities grown on silicon

    SciTech Connect

    Semond, F.; Sellers, I.R.; Natali, F.; Byrne, D.; Leroux, M.; Massies, J.; Ollier, N.; Leymarie, J.; Disseix, P.; Vasson, A.

    2005-07-11

    The reflectance spectra of simple design GaN-based microcavities have been studied in the 5 K-300 K range. The epitaxial structure consists of the silicon substrate and the stack of buffer layers as the back mirror, a GaN active layer, and a 100 A thick aluminium layer as the top mirror. Active layer thicknesses of {lambda}/2, {lambda}, or 3{lambda}/2 were investigated. The samples with GaN thicknesses {lambda}/2 and {lambda} display an anticrossing behavior between the cavity and exciton modes, with measured Rabi splittings of 47 and 60 meV, respectively, both at 5 K and room temperature.

  4. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    SciTech Connect

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Very little information is available in the literature concerning the experimental heavy-atom phasing of membrane-protein structures where the crystals have been grown using the lipid cubic phase (in meso) method. In this paper, pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine labelling as applied to an integral membrane kinase crystallized in meso are described. An assay to assess cysteine accessibility for mercury labelling of membrane proteins is introduced. Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  5. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    NASA Astrophysics Data System (ADS)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  6. Strain in epitaxial Bi{sub 2}Se{sub 3} grown on GaN and graphene substrates: A reflection high-energy electron diffraction study

    SciTech Connect

    Li, Bin; Guo, Xin; Ho, Wingkin; Xie, Maohai

    2015-08-24

    Topological insulator (TI) has been one of the focus research themes in condensed matter physics in recent years. Due to the relatively large energy bandgap, Bi{sub 2}Se{sub 3} has been identified as one of the most promising three-dimensional TIs with application potentials. Epitaxial Bi{sub 2}Se{sub 3} by molecular-beam epitaxy has been reported by many groups using different substrates. A common feature is that Bi{sub 2}Se{sub 3} grows readily along the c-axis direction irrespective of the type and condition of the substrate. Because of the weak van der Waals interaction between Bi{sub 2}Se{sub 3} quintuple layers, the grown films are reported to be strain-free, taking the lattice constant of the bulk crystal. At the very initial stage of Bi{sub 2}Se{sub 3} deposition, however, strain may still exist depending on the substrate. Strain may bring some drastic effects to the properties of the TIs and so achieving strained TIs can be of great fundamental interests as well as practical relevance. In this work, we employ reflection high-energy electron diffraction to follow the lattice constant evolution of Bi{sub 2}Se{sub 3} during initial stage depositions on GaN and graphene, two very different substrates. We reveal that epitaxial Bi{sub 2}Se{sub 3} is tensile strained on GaN but strain-free on graphene. Strain relaxation on GaN is gradual.

  7. Growth and characteristics of low dislocation density GaN grown on Si(111) from a single process

    NASA Astrophysics Data System (ADS)

    Chen, X.; Uesugi, T.

    2006-01-01

    From one uninterrupted growth process, GaN films were deposited on maskless stripe-patterned Si(111) substrates using the facet-initiated growth technique. The epilayer with a flat surface has a thickness of ˜1.3μm. The influence of stress on the behavior of dislocations in the crystal during growth was observed by the transmission electron microscopy (TEM). Concentrated lines of dislocations were found along the coalescence boundaries by atomic force microscopy (AFM). Few dislocations were detected in the other area. The average threading dislocation density of the GaN layer was decreased to ˜1.7×108cm-2. These dislocations have pure or partial screw dislocation characteristics.

  8. Dissociation of Al2O3(0001) substrates and the roles of silicon and oxygen in n-type GaN thin solid films grown by gas-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Van Nostrand, J. E.; Solomon, J.; Saxler, A.; Xie, Q.-H.; Reynolds, D. C.; Look, D. C.

    2000-06-01

    Unintentionally doped and silicon doped GaN films prepared by molecular beam epitaxy using ammonia are investigated. Hall, secondary ion mass spectroscopy (SIMS), photoluminescence, and x-ray data are utilized for analysis of sources of autodoping of GaN epitaxial films in an effort to identify whether the n-type background electron concentration is of impurity origin or native defect origin. We identify and quantify an anomalous relationship between the Si doping concentration and free carrier concentration and mobility using temperature dependent Hall measurements on a series of 2.0-μm-thick GaN(0001) films grown on sapphire with various Si doping concentrations. SIMS is used to identify oxygen as the origin of the excess free carriers in lightly doped and undoped GaN films. Further, the source of the oxygen is positively identified to be dissociation of the sapphire substrate at the nitride-sapphire interface. Dissociation of SiC at the nitride-carbide interface is also observed. Finally, SIMS is again utilized to show how Si doping can be utilized to suppress the diffusion of the oxygen into the GaN layer from the sapphire substrate. The mechanism of suppression is believed to be formation of a Si-O bond and a greatly reduced diffusion coefficient of the subsequent Si-O complex in GaN.

  9. Determination of carrier diffusion length in MOCVD-grown GaN epilayers on sapphire by optical techniques

    NASA Astrophysics Data System (ADS)

    Lutsenko, E. V.; Gurskii, A. L.; Pavlovskii, V. N.; Yablonskii, G. P.; Malinauskas, T.; Jarainas, K.; Schineller, B.; Heuken, M.

    2006-06-01

    Two optical techniques for the determination of a bipolar diffusion length LD of optically excited carriers in GaN epitaxial layers, namely a time-resolved picosecond four-wave mixing (FWM) on free carrier grating and time-integrated photoluminescence (PL) are presented and examined. The PL technique is based on time-integrated photoluminescence (PL) spectra measurements from the front and back sides of the sample under cw and nanosecond pulsed laser excitation. The another method utilizes time-resolved picosecond four-wave mixing (FWM) at various light-induced grating periods to extract diffusion coefficient and carrier recombination lifetime. The value of the diffusion length derived by means of FWM decreases with GaN layer thickness from LD = 260 nm (for 1.7 m-thick layer) to LD = 100 nm (for 0.3 m-thick layer). The integral PL measurements give the value of LD = 120-130 nm for the 620 nm layer under pulsed excitation intensities up to 200 kW/cm2. It increases to 150-170 nm at the excitation intensity enhancement to 1 MW/cm2. These values are close to the value of the diffusion length equal to 160 nm obtained using FWM for this layer thickness evidencing the compatibility of both methods. The changes in the value of LD are discussed in terms of the defect distribution in the epitaxial GaN layer.

  10. Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition

    PubMed Central

    Min, Daehong; Park, Donghwy; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2015-01-01

    Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-light emitters without any external processing, using only in-situ high-density GaN nanostructures that were formed by overgrowth on a silicon nitride (SiNx) interlayer deposited by metal organic chemical vapor deposition. The nano-sized facets produced variations in the InGaN thickness and the indium concentration when an InGaN/GaN double heterostructure was monolithically grown on them, leading to white-color light emission. It is important to note that the in-situ SiNx interlayer not only facilitated the GaN nano-facet structure, but also blocked the propagation of dislocations. PMID:26626890

  11. Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Daehong; Park, Donghwy; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2015-12-01

    Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-light emitters without any external processing, using only in-situ high-density GaN nanostructures that were formed by overgrowth on a silicon nitride (SiNx) interlayer deposited by metal organic chemical vapor deposition. The nano-sized facets produced variations in the InGaN thickness and the indium concentration when an InGaN/GaN double heterostructure was monolithically grown on them, leading to white-color light emission. It is important to note that the in-situ SiNx interlayer not only facilitated the GaN nano-facet structure, but also blocked the propagation of dislocations.

  12. Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations

    NASA Astrophysics Data System (ADS)

    Horita, Masahiro; Takashima, Shinya; Tanaka, Ryo; Matsuyama, Hideaki; Ueno, Katsunori; Edo, Masaharu; Suda, Jun

    2016-05-01

    Mg-doped p-type gallium nitride (GaN) layers with doping concentrations in the range from 6.5 × 1016 cm‑3 (lightly doped) to 3.8 × 1019 cm‑3 (heavily doped) were investigated by Hall-effect measurement for the analysis of hole concentration and mobility. p-GaN was homoepitaxially grown on a GaN free-standing substrate by metalorganic vapor-phase epitaxy. The threading dislocation density of the p-GaN was 4 × 106 cm‑2 measured by cathodoluminescence mapping. Hall-effect measurements of p-GaN were carried out at a temperature in the range from 160 to 450 K. A low compensation ratio of less than 1% was revealed. We also obtained the depth of the Mg acceptor level of 235 meV considering the lowering effect by the Coulomb potential of ionized acceptors. The hole mobilities of 33 cm2 V‑1 s‑1 at 300 K and 72 cm2 V‑1 s‑1 at 200 K were observed in lightly doped p-GaN.

  13. Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties

    SciTech Connect

    Coulon, P. M.; Mexis, M.; Teisseire, M.; Vennéguès, P.; Leroux, M.; Zuniga-Perez, J.; Jublot, M.

    2014-04-21

    Self-assembled catalyst-free GaN micropillars grown on (0001) sapphire substrates by metal organic vapor phase epitaxy are investigated. Transmission electron microscopy, as well as KOH etching, shows the systematic presence of two domains of opposite polarity within each single micropillar. The analysis of the initial growth stages indicates that such double polarity originates at the micropillar/substrate interface, i.e., during the micropillar nucleation, and it propagates along the micropillar. Furthermore, dislocations are also generated at the wire/substrate interface, but bend after several hundreds of nanometers. This leads to micropillars several tens of micrometers in length that are dislocation-free. Spatially resolved cathodoluminescence and microphotoluminescence show large differences in the optical properties of each polarity domain, suggesting unequal impurity/dopant/vacancy incorporation depending on the polarity.

  14. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5-6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm2/V s and sheet resistance of 130 Ω / □ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  15. Optical properties of yellow light-emitting diodes grown on semipolar (112xAF2) bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Sato, Hitoshi; Chung, Roy B.; Hirasawa, Hirohiko; Fellows, Natalie; Masui, Hisashi; Wu, Feng; Saito, Makoto; Fujito, Kenji; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2008-06-01

    We demonstrate high power yellow InGaN single-quantum-well light-emitting diodes (LEDs) with a peak emission wavelength of 562.7nm grown on low extended defect density semipolar (112¯2) bulk GaN substrates by metal organic chemical vapor deposition. The output power and external quantum efficiency at drive currents of 20 and 200mA under pulsed operation (10% duty cycle) were 5.9mW, 13.4% and 29.2mW, 6.4%, respectively. It was observed that the temperature dependence of the output power of InGaN LEDs was significantly smaller than that of AlInGaP LEDs.

  16. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    SciTech Connect

    Deen, David A. Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm{sup 2}/V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  17. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    PubMed Central

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin

    2015-01-01

    Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method. PMID:25615865

  18. Electronic-grade GaN(0001)/Al{sub 2}O{sub 3}(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target

    SciTech Connect

    Junaid, M.; Hsiao, C.-L.; Palisaitis, J.; Jensen, J.; Persson, P. O. A.; Hultman, L.; Birch, J.

    2011-04-04

    Electronic-grade GaN (0001) epilayers have been grown directly on Al{sub 2}O{sub 3} (0001) substrates by reactive direct-current-magnetron sputter epitaxy (MSE) using a liquid Ga sputtering target in an Ar/N{sub 2} atmosphere. The as-grown GaN epitaxial films exhibit low threading dislocation density on the order of {<=}10{sup 10} cm{sup -2} determined by transmission electron microscopy and modified Williamson-Hall plot. X-ray rocking curve shows narrow full-width at half maximum (FWHM) of 1054 arc sec of the 0002 reflection. A sharp 4 K photoluminescence peak at 3.474 eV with a FWHM of 6.3 meV is attributed to intrinsic GaN band edge emission. The high structural and optical qualities indicate that MSE-grown GaN epilayers can be used for fabricating high-performance devices without the need of any buffer layer.

  19. Repeatable low-temperature negative-differential resistance from Al0.18Ga0.82N/GaN resonant tunneling diodes grown by molecular-beam epitaxy on free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Li, D.; Tang, L.; Edmunds, C.; Shao, J.; Gardner, G.; Manfra, M. J.; Malis, O.

    2012-06-01

    Low-aluminum composition AlGaN/GaN double-barrier resonant tunneling structures were grown by plasma-assisted molecular-beam-epitaxy on free-standing c-plane GaN substrates grown by hydride-vapor phase epitaxy. Clear, exactly reproducible, negative-differential resistance signatures were observed from 4 × 4 μm2 devices at 1.5 V and 1.7 V at 77 K. The relatively small value of the maximum peak-to-valley ratio (1.03) and the area dependence of the electrical characteristics suggest that charge transport is affected by leakage paths through dislocations. However, the reproducibility of the data indicates that electrical traps play no significant role in the charge transport in resonant tunneling diodes grown by molecular-beam-epitaxy under Ga-rich conditions on free-standing GaN substrates.

  20. Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111) substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoshihiro; Ishikawa, Yukari; Watanabe, Arata; Miyoshi, Makoto; Egawa, Takashi

    2016-04-01

    The behavior of dislocations in a GaN layer grown on a 4-inch Si(111) substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (b=1/3[-211-3]) and anothor dislocation (b =1/3[-2113]) to form one dislocation (b =2/3[-2110]) in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.

  1. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    NASA Astrophysics Data System (ADS)

    Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou

    2016-06-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

  2. Study of Defects in GaN In Situ Doped with Eu3+ Ion Grown by OMVPE

    NASA Astrophysics Data System (ADS)

    Wang, Jingzhou; Koizumi, Atsushi; Fujiwara, Yasufumi; Jadwisienczak, Wojciech M.

    2016-04-01

    In this work, GaN epilayer in situ doped with Eu3+ ions was deposited on the top of an undoped n-GaN/LT-GaN/sapphire structure by organometallic vapor-phase epitaxy. A set of different ohmic and Schottky contacts on GaN:Eu3+ surface was fabricated by electron-beam evaporation for performing deep level transient spectroscopy (DLTS) measurement. The deep defect energy levels in GaN:Eu3+ epilayer were assessed by standard DLTS and high resolution Laplace DLTS (L-DLTS). Three dominant DLTS peaks were observed in the temperature range from 35 K to 400 K. The calculated activation energies of these defect energy levels were 0.108 ± 0.03 eV (Trap A), 0.287 ± 0.04 eV (Trap B) and 0.485 ± 0.06 eV (Trap C) below conduction band edge, respectively. High resolution L-DLTS conducted for the GaN:Eu3+ epilayer revealed at least four closely spaced defect energy levels associated with Trap B. It is proposed that these defect energy levels correspond to the selected optically active Eu3+ ion centers in GaN host previously identified by optical studies in this material (Fujiwara and Dierolf in Jpn J Appl Phys 53:05FA13, 2014).

  3. The determining factor of a preferred orientation of GaN domains grown on m-plane sapphire substrates.

    PubMed

    Jue, Miyeon; Kim, Cheol-Woon; Kang, Seoung-Hun; Yoon, Hansub; Jang, Dongsoo; Kwon, Young-Kyun; Kim, Chinkyo

    2015-01-01

    Epitaxial lateral overgrowth in tandem with the first-principles calculation was employed to investigate the determining factor of a preferred orientation of GaN on SiO2-patterned m-plane sapphire substrates. We found that the (1100)-orientation is favored over the (1103)-orientation in the region with a small filling factor of SiO2, while the latter orientation becomes preferred in the region with a large filling factor. This result suggests that the effective concentration determines the preferred orientation of GaN: the (1100)- and (1103)-orientations preferred at their low and high concentrations, respectively. Our computational study revealed that at a low coverage of Ga and N atoms, the local atomic arrangement resembles that on the (1103) surface, although the (1100) surface is more stable at their full coverage. Such a (1103)-like atomic configuration crosses over to the local structure resembling that on the (1100) surface as the coverage increases. Based on results, we determined that high effective concentration of Ga and N sources expedites the growth of the (1103)-orientation while keeping from transition to the (1100)-orientation. At low effective concentration, on the other hand, there is a sufficient time for the added Ga and N sources to rearrange the initial (1103)-like orientation to form the (1100)-orientation. PMID:26548446

  4. The determining factor of a preferred orientation of GaN domains grown on m-plane sapphire substrates

    PubMed Central

    Jue, Miyeon; Kim, Cheol-Woon; Kang, Seoung-Hun; Yoon, Hansub; Jang, Dongsoo; Kwon, Young-Kyun; Kim, Chinkyo

    2015-01-01

    Epitaxial lateral overgrowth in tandem with the first-principles calculation was employed to investigate the determining factor of a preferred orientation of GaN on SiO2-patterned m-plane sapphire substrates. We found that the (100)-orientation is favored over the (10)-orientation in the region with a small filling factor of SiO2, while the latter orientation becomes preferred in the region with a large filling factor. This result suggests that the effective concentration determines the preferred orientation of GaN: the (100)- and (10)-orientations preferred at their low and high concentrations, respectively. Our computational study revealed that at a low coverage of Ga and N atoms, the local atomic arrangement resembles that on the (10) surface, although the (100) surface is more stable at their full coverage. Such a (10)-like atomic configuration crosses over to the local structure resembling that on the (100) surface as the coverage increases. Based on results, we determined that high effective concentration of Ga and N sources expedites the growth of the (10)-orientation while keeping from transition to the (100)-orientation. At low effective concentration, on the other hand, there is a sufficient time for the added Ga and N sources to rearrange the initial (10)-like orientation to form the (100)-orientation. PMID:26548446

  5. The determining factor of a preferred orientation of GaN domains grown on m-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jue, Miyeon; Kim, Cheol-Woon; Kang, Seoung-Hun; Yoon, Hansub; Jang, Dongsoo; Kwon, Young-Kyun; Kim, Chinkyo

    2015-11-01

    Epitaxial lateral overgrowth in tandem with the first-principles calculation was employed to investigate the determining factor of a preferred orientation of GaN on SiO2-patterned m-plane sapphire substrates. We found that the (100)-orientation is favored over the (10)-orientation in the region with a small filling factor of SiO2, while the latter orientation becomes preferred in the region with a large filling factor. This result suggests that the effective concentration determines the preferred orientation of GaN: the (100)- and (10)-orientations preferred at their low and high concentrations, respectively. Our computational study revealed that at a low coverage of Ga and N atoms, the local atomic arrangement resembles that on the (10) surface, although the (100) surface is more stable at their full coverage. Such a (10)-like atomic configuration crosses over to the local structure resembling that on the (100) surface as the coverage increases. Based on results, we determined that high effective concentration of Ga and N sources expedites the growth of the (10)-orientation while keeping from transition to the (100)-orientation. At low effective concentration, on the other hand, there is a sufficient time for the added Ga and N sources to rearrange the initial (10)-like orientation to form the (100)-orientation.

  6. Strain states of AlN/GaN-stress mitigating layer and their effect on GaN buffer layer grown by ammonia molecular beam epitaxy on 100-mm Si(111)

    SciTech Connect

    Ravikiran, L.; Radhakrishnan, K.; Agrawal, M.; Dharmarasu, N.; Munawar Basha, S.

    2013-09-28

    The effect of strain states of AlN/GaN-stress mitigating layer (SML) on buried crack density and its subsequent influence on the residual stresses in GaN buffer layers grown using ammonia-molecular beam epitaxy on 100-mm Si(111) substrate has been investigated. Different stages involved in the formation of buried cracks, which are crack initialization, growth of relaxed AlN layer, and subsequent lateral over growth, are identified using in-situ curvature measurements. While the increase of GaN thickness in AlN/GaN-SML enhanced its compressive strain relaxation and resulted in reduced buried crack spacing, the variation of AlN thickness did not show any effect on the crack spacing. Moreover, the decrease in the crack spacing (or increase in the buried crack density) was found to reduce the residual compression in 1st and 2nd GaN layers of AlN/GaN-SML structure. The higher buried crack density relaxed the compressive strain in 1st GaN layer, which further reduced its ability to compensate the tensile stress generated during substrate cool down, and hence resulted in lower residual compressive stress in 2nd GaN layer.

  7. Relaxation and critical strain for maximum In incorporation in AlInGaN on GaN grown by metal organic vapour phase epitaxy

    SciTech Connect

    Reuters, Benjamin; Finken, M.; Wille, A.; Kalisch, H.; Vescan, A.; Hollaender, B.; Heuken, M.

    2012-11-01

    Quaternary AlInGaN layers were grown on conventional GaN buffer layers on sapphire by metal organic vapour phase epitaxy at different surface temperatures and different reactor pressures with constant precursor flow conditions. A wide range in compositions within 30-62% Al, 5-29% In, and 23-53% Ga was covered, which leads to different strain states from high tensile to high compressive. From high-resolution x-ray diffraction and Rutherford backscattering spectrometry, we determined the compositions, strain states, and crystal quality of the AlInGaN layers. Atomic force microscopy measurements were performed to characterize the surface morphology. A critical strain value for maximum In incorporation near the AlInGaN/GaN interface is presented. For compressively strained layers, In incorporation is limited at the interface as residual strain cannot exceed an empirical critical value of about 1.1%. Relaxation occurs at about 15 nm thickness accompanied by strong In pulling. Tensile strained layers can be grown pseudomorphically up to 70 nm at a strain state of 0.96%. A model for relaxation in compressively strained AlInGaN with virtual discrete sub-layers, which illustrates the gradually changing lattice constant during stress reduction is presented.

  8. Coalescence-induced planar defects in GaN layers grown on ordered arrays of nanorods by metal-organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Huang, Chang-Ning; Shields, Philip A.; Allsopp, Duncan W. E.; Trampert, Achim

    2013-08-01

    The planar defect structure of coalesced GaN layers fabricated on ordered arrays of nanorods and grown by metal-organic vapour phase epitaxy has been studied using conventional and high-resolution transmission electron microscopy. During the process of coalescence, a boundary was created between two pyramids, where I1-type basal plane stacking faults propagating through the overgrown layers are terminated by Frank-Shockley partial dislocations. According to multislice HRTEM simulations of experimental observed images in the [ ? ] zone axis, the step-and hairpin-shaped basal prismatic stacking faults with inclined ? plane are consistent with Drum's structural model, which has a lower formation energy compared with the model proposed by Amelinckx. Based on the observation that there are no stacking faults in the overgrown layers prior to the nanopyramid merging, the mechanism of coalescence induced stacking faults is proposed. This research contributes to the understanding of planar defect formation in III-nitride semiconductor grown by a coalescence process.

  9. High-quality, faceted cubic boron nitride films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, W. J.; Jiang, X.; Matsumoto, S.

    2001-12-01

    Thick cubic boron nitride (cBN) films showing clear crystal facets were achieved by chemical vapor deposition. The films show the highest crystallinity of cBN films ever achieved from gas phase. Clear evidence for the growth via a chemical route is obtained. A growth mechanism is suggested, in which fluorine preferentially etches hBN and stabilizes the cBN surface. Ion bombardment of proper energy activates the cBN surface bonded with fluorine so as to enhance the bonding probability of nitrogen-containing species on the F-stabilized B (111) surface.

  10. Strain distribution of thin InN epilayers grown on (0001) GaN templates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Delimitis, A.; Komninou, Ph.; Dimitrakopulos, G. P.; Kehagias, Th.; Kioseoglou, J.; Karakostas, Th.; Nouet, G.

    2007-02-01

    A structural characterization of thin InN films is performed to determine the post-growth strain distribution, using electron microscopy techniques. A 60° misfit dislocation network at the InN /GaN interface effectively accommodates the lattice mismatch. The InN in-plane lattice parameter, which remained practically constant throughout the epilayer thickness, was precisely determined by electron diffraction analysis, and cross-section and plan-view lattice images. Image analysis using the geometric phase and projection methods revealed a uniform distribution of the residual tensile strain along the growth and lateral directions. The in-plane strain is primarily attributed to InN island coalescence during the initial stages of growth.

  11. Optical and electrical step-recovery study of minority-carrier transport in an InGaN /GaN quantum-well light-emitting diode grown on sapphire

    NASA Astrophysics Data System (ADS)

    Kaplar, R. J.; Kurtz, S. R.; Koleske, D. D.

    2004-11-01

    Forward-to-reverse bias step-recovery experiments were performed on an InGaN /GaN single-quantum-well light-emitting diode grown on sapphire. With the quantum well sampling the minority-carrier hole density at a single position, the optical emission displayed a two-stage decay. Using a solution to the diffusion equation to self-consistently describe both the optical and electrical recovery data, we estimated values for the hole lifetime (758±44ns), diffusion length (588±45nm), and mobility (0.18±0.02cm2/Vs) in GaN grown on sapphire. This low value of the minority-carrier mobility may reflect trap-modulated transport, and the lifetime is suggestive of slow capture and emission processes occurring through deep levels.

  12. Kinetics of self-induced nucleation and optical properties of GaN nanowires grown by plasma-assisted molecular beam epitaxy on amorphous Al{sub x}O{sub y}

    SciTech Connect

    Sobanska, M. Zytkiewicz, Z. R.; Klosek, K.; Tchutchulashvili, G.

    2015-11-14

    Nucleation kinetics of GaN nanowires (NWs) by molecular beam epitaxy on amorphous Al{sub x}O{sub y} buffers deposited at low temperature by atomic layer deposition is analyzed. We found that the growth processes on a-Al{sub x}O{sub y} are very similar to those observed on standard Si(111) substrates, although the presence of the buffer significantly enhances nucleation rate of GaN NWs, which we attribute to a microstructure of the buffer. The nucleation rate was studied vs. the growth temperature in the range of 720–790 °C, which allowed determination of nucleation energy of the NWs on a-Al{sub x}O{sub y} equal to 6 eV. This value is smaller than 10.2 eV we found under the same conditions on nitridized Si(111) substrates. Optical properties of GaN NWs on a-Al{sub x}O{sub y} are analyzed as a function of the growth temperature and compared with those on Si(111) substrates. A significant increase of photoluminescence intensity and much longer PL decay times, close to those on silicon substrates, are found for NWs grown at the highest temperature proving their high quality. The samples grown at high temperature have very narrow PL lines. This allowed observation that positions of donor-bound exciton PL line in the NWs grown on a-Al{sub x}O{sub y} are regularly lower than in samples grown directly on silicon suggesting that oxygen, instead of silicon, is the dominant donor. Moreover, PL spectra suggest that total concentration of donors in GaN NWs grown on a-Al{sub x}O{sub y} is lower than in those grown under similar conditions on bare Si. This shows that the a-Al{sub x}O{sub y} buffer efficiently acts as a barrier preventing uptake of silicon from the substrate to GaN.

  13. Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire

    NASA Astrophysics Data System (ADS)

    Hansen, M.; Fini, P.; Zhao, L.; Abare, A. C.; Coldren, L. A.; Speck, J. S.; DenBaars, S. P.

    2000-01-01

    InGaN multiple-quantum-well laser diodes have been fabricated on fully coalesced laterally epitaxially overgrown (LEO) GaN on sapphire. The laterally overgrown "wing" regions as well as the coalescence fronts contained few or no threading dislocations. Laser diodes fabricated on these low-dislocation-density regions showed a reduction in threshold current density from 10 to 4.8 kA/cm2 compared to those on conventional planar GaN on sapphire. The internal quantum efficiency also improved from 3% for laser diodes on conventional GaN on sapphire to 22% for laser diodes on LEO GaN on sapphire.

  14. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lin, Zhiyu; Zhang, Jincheng Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue; Su, Xujun; Shi, Xuefang

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  15. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    SciTech Connect

    Bhasker, H. P.; Dhar, S.; Thakur, Varun; Kesaria, Manoj; Shivaprasad, S. M.

    2014-02-21

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close to a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a “dissipation less” transport of carriers, which are localized at the top edges (edge states) of the nanowalls.

  16. Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy

    SciTech Connect

    Zhang, Z.; Arehart, A. R.; Ringel, S. A.; Kyle, E. C. H.; Speck, J. S.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.

    2015-01-12

    The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 10{sup 13 }cm{sup −2} and 3 × 10{sup 13 }cm{sup −2} fluences not only introduces a trap with an E{sub V} + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at E{sub V} + 0.48 eV, E{sub V} + 2.42 eV, E{sub V} + 3.00 eV, and E{sub V} + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.

  17. Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN

    SciTech Connect

    Corfdir, P.; Dussaigne, A.; Giraud, E.; Ganiere, J.-D.; Grandjean, N.; Deveaud-Pledran, B.; Teisseyre, H.; Suski, T.; Grzegory, I.; Lefebvre, P.

    2012-02-01

    We investigate, via time-resolved photoluminescence, the temperature-dependence of charge carrier recombination mechanisms in nonpolar (Al,Ga)N/GaN single quantum wells (QWs) grown via molecular beam epitaxy on the a-facet of bulk GaN crystals. We study the influence of both QW width and barrier Al content on the dynamics of excitons in the 10-320 K range. We first show that the effective lifetime of QW excitons {tau} increases with temperature, which is evidence that nonradiative mechanisms do not play any significant role in the low-temperature range. The temperature range for increasing {tau} depends on the QW width and Al content in the (Al,Ga)N barriers. For higher temperatures, we observe a reduction in the QW emission lifetime combined with an increase in the decay time for excitons in the barriers, until both exciton populations get fully thermalized. Based on analysis of the ratio between barrier and QW emission intensities, we demonstrate that the main mechanism limiting the radiative efficiency in our set of samples is related to nonradiative recombination in the (Al,Ga)N barriers of charge carriers that have been thermally emitted from the QWs.

  18. Optical properties of small GaN-Al0.5Ga0.5N quantum dots grown on (11-22) GaN templates

    NASA Astrophysics Data System (ADS)

    Sellés, Julien; Rosales, Daniel; Gil, Bernard; Cassabois, Guillaume; Guillet, Thierry; Brault, Julien; Damilano, Benjamin; Vennéguès, Philippe; de Mierry, Philippe; Massies, Jean

    2015-03-01

    GaN/Al0.5Ga0.5N quantum dots deposited on the (11-22) plane have been grown by combining Molecular Beam Epitaxy (MBE) and Metal Organic Vapor Phase Epitaxy (MOVPE). The (11-22) GaN oriented template was realized by MOVPE starting from a M-plane oriented sapphire substrate. The average dot sizes are the following: between 15 and 20 nm in the <-1-123> and <1-100> directions and a height ranging between 0.8 and 1.4 nm. Their density is ranging between 2 and 8x1010cm-2. The crystal field splitting is measured in Al0.5Ga0.5N via polarized microphotoluminescence. We study the photoluminescence properties of small quantum dots which present innovative optical properties among which are the evolution of the polarization of the emitted photons at different temperatures. We also analyze the distortion of the photoluminescence at different time delays after the excitation pulse. A redshift is found that is attributed to the complex thermally-induced delocalization of the carriers through the assembly of dots from the smaller ones to the bigger ones.

  19. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong; Oehler, Fabrice; Kappers, Menno J.; Oliver, Rachel A.

    2015-08-01

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.

  20. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    SciTech Connect

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong; Oehler, Fabrice; Kappers, Menno J.; Oliver, Rachel A.

    2015-08-24

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.

  1. Transport and optical properties of c-axis oriented wedge shaped GaN nanowall network grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bhasker, H. P.; Thakur, Varun; Kesaria, Manoj; Shivaprasad, S. M.; Dhar, S.

    2014-02-01

    The transport and optical properties of wedge-shaped nanowall network of GaN grown spontaneously on cplane sapphire substrate by Plasma-Assisted Molecular Beam Epitaxy (PAMBE) show interesting behavior. The electron mobility at room temperature in these samples is found to be orders of magnitude higher than that of a continuous film. Our study reveals a strong correlation between the mobility and the band gap in these nanowall network samples. However, it is seen that when the thickness of the tips of the walls increases to an extent such that more than 70% of the film area is covered, it behaves close to a flat sample. In the sample with lower surface coverage (≈40% and ≈60%), it was observed that the conductivity, mobility as well as the band gap increase with the decrease in the average tip width of the walls. Photoluminescence (PL) experiments show a strong and broad band edge emission with a large (as high as ≈ 90 meV) blue shift, compared to that of a continuous film, suggesting a confinement of carriers on the top edges of the nanowalls. The PL peak width remains wide at all temperatures suggesting the existence of a high density of tail states at the band edge, which is further supported by the photoconductivity result. The high conductivity and mobility observed in these samples is believed to be due to a "dissipation less" transport of carriers, which are localized at the top edges (edge states) of the nanowalls.

  2. Influences of group-III source preflow on the polarity, optical, and structural properties of GaN grown on nitridated sapphire substrates by metal-organic chemical vapor deposition

    SciTech Connect

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2015-03-28

    We report the influences of group-III source preflow, which were introduced prior to the growth of the low temperature GaN on the polarity, photoluminescence (PL), and crystallographic properties of GaN epilayers grown on nitridated c-plane sapphire substrates by metal-organic chemical vapor deposition. By studying the surface morphology evolutions under chemical etching in KOH, we found that with increasing the trimethyl-gallium (TMGa) preflow duration (t), the polarity of the GaN film can be changed from a complete N-polarity to a mixture of N- and Ga-polarity and further to a complete Ga-polarity. PL and high-resolution X-ray diffraction studies revealed that the impurity incorporation and the edge- and screw-type threading dislocations are strongly polarity dependent. A further study at the optimized t (i.e., 30 s for TMGa) shows that the polarity inversion of GaN can be realized not only by TMGa preflow but also by trimethyl-aluminium preflow and by trimethyl-indium preflow. A two-monolayer model was employed to explain the polarity inversion mechanism.

  3. Influences of group-III source preflow on the polarity, optical, and structural properties of GaN grown on nitridated sapphire substrates by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2015-03-01

    We report the influences of group-III source preflow, which were introduced prior to the growth of the low temperature GaN on the polarity, photoluminescence (PL), and crystallographic properties of GaN epilayers grown on nitridated c-plane sapphire substrates by metal-organic chemical vapor deposition. By studying the surface morphology evolutions under chemical etching in KOH, we found that with increasing the trimethyl-gallium (TMGa) preflow duration (t), the polarity of the GaN film can be changed from a complete N-polarity to a mixture of N- and Ga-polarity and further to a complete Ga-polarity. PL and high-resolution X-ray diffraction studies revealed that the impurity incorporation and the edge- and screw-type threading dislocations are strongly polarity dependent. A further study at the optimized t (i.e., 30 s for TMGa) shows that the polarity inversion of GaN can be realized not only by TMGa preflow but also by trimethyl-aluminium preflow and by trimethyl-indium preflow. A two-monolayer model was employed to explain the polarity inversion mechanism.

  4. Non-polar a-plane ZnO films grown on r-Al2O3 substrates using GaN buffer layers

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Chen, W.; Pan, X. H.; Chen, S. S.; Ye, Z. Z.; Huang, J. Y.

    2016-09-01

    In this work, GaN buffer layer has been used to grow non-polar a-plane ZnO films by laser-assisted and plasma-assisted molecular beam epitaxy. The thickness of GaN buffer layer ranges from ∼3 to 12 nm. The GaN buffer thickness effect on the properties of a-plane ZnO thin films is carefully investigated. The results show that the surface morphology, crystal quality and optical properties of a-plane ZnO films are strongly correlated with the thickness of GaN buffer layer. It was found that with 6 nm GaN buffer layer, a-plane ZnO films display the best crystal quality with X-ray diffraction rocking curve full-width at half-maximum of only 161 arcsec for the (101) reflection.

  5. A surface flattening mechanism of a heteroepitaxial film consisting of faceted non-flat top twins: [11¯03¯]-oriented GaN films grown on m-plane sapphire substrates

    NASA Astrophysics Data System (ADS)

    Jue, Miyeon; Yoon, Hansub; Lee, Hyemi; Lee, Sanghwa; Kim, Chinkyo

    2014-03-01

    We carried out experiments and computational simulations in order to answer a yet unanswered question about a surface flattening mechanism of a [11¯03¯]-oriented GaN film consisting of faceted non-flat top twins. Our results revealed that an overgrowth of one variant of twins over the other, which was manifested only at a thickness larger than a few microns due to a slight asymmetric crystallographic tilt (1.0° ± 0.4°) of twins, played a key role in a surface flattening mechanism. In addition, we experimentally demonstrated that GaN grown on a SiO2-patterned m-plane sapphire substrate had no asymmetric tilt and that no surface flattening occurred.

  6. Wafer-Size and Single-Crystal MoSe2 Atomically Thin Films Grown on GaN Substrate for Light Emission and Harvesting.

    PubMed

    Chen, Zuxin; Liu, Huiqiang; Chen, Xuechen; Chu, Guang; Chu, Sheng; Zhang, Hang

    2016-08-10

    Two-dimensional (2D) atomic-layered semiconductors are important for next-generation electronics and optoelectronics. Here, we designed the growth of an MoSe2 atomic layer on a lattice-matched GaN semiconductor substrate. The results demonstrated that the MoSe2 films were less than three atomic layers thick and were single crystalline of MoSe2 over the entire GaN substrate. The ultrathin MoSe2/GaN heterojunction diode demonstrated ∼850 nm light emission and could also be used in photovoltaic applications. PMID:27409977

  7. In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Bin; Liu, Ming-Gang; Chen, Wei-Jie; Han, Xiao-Biao; Chen, Jie; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Chen, Yin-Song; Qiu, Yun-Ling; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-09-01

    In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

  8. Determination via luminescence spectroscopy and x-ray diffraction of the strain and composition of GaN and Al(x)Ga(1-x)N thin films grown on 6H-SiC(0001) substrates

    NASA Astrophysics Data System (ADS)

    Perry, William George

    1997-12-01

    This dissertation describes the luminescence and x-ray diffraction characterization of GaN and AlxGa1-xN thin films that were deposited on 6H-SiC(0001) substrates. These materials have applications for optoelectronic devices that are operational in the UV to green regions of the spectrum and for high-temperature, high-frequency and high-power microelectronic devices. The primary tools used in this research were photoluminescence and cathodoluminescence spectroscopies and high-resolution x-ray diffraction. Biaxial strains resulting from the mismatches in thermal expansion coefficients and lattice parameters in GaN films grown on AlN buffer layers previously deposited on vicinal and on-axis 6H-SiC(0001) substrates were measured using photoluminescence. A linear relationship between the bound exciton energy (EBX) and the biaxial strain along the c-axis direction was observed. A marked variation in the biaxial strain in GaN films deposited on off- and on-axis SiC was determined. It was attributed to the difference in the density and nature of the microstructural defects that originate at the steps on the SiC surface. The strain in the GaN films was either in tension or compression; whereas, only tensile strains were reported in all previous studies using SiC wafers. This indicated that the lattice mismatch strain in the former films was not fully relieved by defect formation. This result was confirmed by the observation via HRTEM of a 0.9% residual compressive strain at the GaN/AlN interface. Cathodoluminescence was used to determine the optical spectra in AlxGa1-xN films over the entire composition range of x. A bowing parameter of b = 1.65 eV for the bound exciton peak was observed. This bound exciton peak became more localized as the Al mole fraction increased. This was attributed to the increase in the ionization energy (ED) of the donor to which the exciton was bound. The donor-acceptor pair (DAP) band and the so-called 'yellow' emission band that are commonly

  9. Fixed charge and trap states of in situ Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kim, J.; Yeluri, R.; Lal, S.; Li, H.; Lu, J.; Keller, S.; Mazumder, B.; Speck, J. S.; Mishra, U. K.

    2013-10-01

    In situ Al2O3 on Ga-face GaN metal-oxide-semiconductor capacitors (MOSCAPs) were grown by metalorganic chemical vapor deposition and measured using capacitance-voltage techniques. The flat band voltage and hysteresis had a linear relationship with Al2O3 thickness, which indicates the presence of fixed charge and trap states that are located at or near the Al2O3/GaN interface. In addition, slow and fast near-interface states are distinguished according to their different electron emission characteristics. Atom probe tomography was used to characterize the in situ MOSCAPs to provide information on the Al/O stoichiometric ratios, Al2O3/GaN interface abruptnesses, and C concentrations. The in situ MOSCAPs with Al2O3 deposited at 700 °C exhibited an order of magnitude higher fast near-interface states density but a lower slow near-interface states density compared with those with Al2O3 deposited at 900 and 1000 °C. Furthermore, the 700 °C MOSCAPs exhibited a net negative fixed near-interface charge, whereas the 900 and 1000 °C MOSCAPs exhibited net positive fixed near-interface charges. The possible origins of various fixed charge and trap states are discussed in accordance with the experimental data and recently reported first-principals calculations.

  10. Growth kinetics of AlN and GaN films grown by molecular beam epitaxy on R-plane sapphire substrates

    SciTech Connect

    Chandrasekaran, R.; Moustakas, T. D.; Ozcan, A. S.; Ludwig, K. F.; Zhou, L.; Smith, David J.

    2010-08-15

    This paper reports the growth by molecular beam epitaxy of AlN and GaN thin films on R-plane sapphire substrates. Contrary to previous findings that GaN grows with its (1120) A-plane parallel to the (1102) R-plane of sapphire, our results indicate that the crystallographic orientation of the III-nitride films is strongly dependent on the kinetic conditions of growth for the GaN or AlN buffer layers. Thus, group III-rich conditions for growth of either GaN or AlN buffers result in nitride films having (1120) planes parallel to the sapphire surface, and basal-plane stacking faults parallel to the growth direction. The growth of these buffers under N-rich conditions instead leads to nitride films with (1126) planes parallel to the sapphire surface, with inclined c-plane stacking faults that often terminate threading dislocations. Moreover, electron microscope observations indicate that slight miscut ({approx}0.5 deg. ) of the R-plane sapphire substrate almost completely suppresses the formation of twinning defects in the (1126) GaN films.