The quantization of the radii of coordination spheres cubic crystals and cluster systems
NASA Astrophysics Data System (ADS)
Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.
2016-02-01
The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.
NASA Astrophysics Data System (ADS)
Cardenas, M. Bayani
2009-12-01
The transition from non-Fickian to Fickian macroscale transport is explicitly demonstrated for an increasing array of three-dimensional pores with vortices in between a lattice of cubic packed spheres by microscale finite element Navier-Stokes flow and transport simulations. Solute residence time distribution begins with a power law for one pore but gradually and eventually transforms to an exponential distribution typical of classic dispersive transport after about ten pores. Parameter fitting of an analytical solution to the 1-D advection-dispersion equation using the simulated breakthrough curves leads to fitted pore velocities within 1% of actual values and an asymptotic fitted dispersion coefficient after a few pores. Therefore, after dozens of pores, bulk transport can be described by the advection-dispersion equation. Persistent vortices in similarly structured porous media subjected to similar grain-scale Reynolds and Peclet numbers may have minimal contribution to anomalous transport observed at larger scales.
Glass transition of dense fluids of hard and compressible spheres.
Berthier, Ludovic; Witten, Thomas A
2009-08-01
We use computer simulations to study the glass transition of dense fluids made of polydisperse repulsive spheres. For hard particles, we vary the volume fraction, phi , and use compressible particles to explore finite temperatures, T>0 . In the hard sphere limit, our dynamic data show evidence of an avoided mode-coupling singularity near phi(MCT) is approximately 0.592; they are consistent with a divergence of equilibrium relaxation times occurring at phi(0) is approximately 0.635, but they leave open the existence of a finite temperature singularity for compressible spheres at volume fraction phi>phi(0). Using direct measurements and a scaling procedure, we estimate the equilibrium equation of state for the hard sphere metastable fluid up to phi(0), where pressure remains finite, suggesting that phi(0) corresponds to an ideal glass transition. We use nonequilibrium protocols to explore glassy states above phi(0) and establish the existence of multiple equations of state for the unequilibrated glass of hard spheres, all diverging at different densities in the range phi in [0.642, 0.664]. Glassiness thus results in the existence of a continuum of densities where jamming transitions can occur. PMID:19792128
Shape transitions in soft spheres regulated by elasticity
NASA Astrophysics Data System (ADS)
Fogle, Craig; Rowat, Amy; Levine, Alex; Rudnick, Joseph
2014-03-01
Soft core shell structures abound in nature. Examples of these structures, comprised of a thin outer membrane bounding an elastic core, include raisins, gel-filled vesicles, and a variety of membrane-bound organelles in the cell. We study the elasticity-driven morphological transitions of spherical core shell structures when either their surface area is increased or their interior volume is decreased. We demonstrate a transition, which is related to the Euler buckling, from the spherical initial shape to a lower symmetry one. We discuss the dependence of the critical excess surface area (relative to that of a bounding sphere) for buckling, the internal stresses in the core, and the symmetry of the buckled state on the elastic parameters of the system. We compare these predictions to a variety of observed morphological transitions in hard and soft materials, and discuss extensions of this work to growing viscoelastic media.
Shape transitions in soft spheres regulated by elasticity
NASA Astrophysics Data System (ADS)
Fogle, Craig; Rowat, Amy C.; Levine, Alex J.; Rudnick, Joseph
2013-11-01
We study elasticity-driven morphological transitions of soft spherical core-shell structures in which the core can be treated as an isotropic elastic continuum and the surface or shell as a tensionless liquid layer, whose elastic response is dominated by bending. To generate the transitions, we consider the case where the surface area of the liquid layer is increased for a fixed amount of interior elastic material. We find that generically there is a critical excess surface area at which the isotropic sphere becomes unstable to buckling. At this point it adopts a lower symmetry wrinkled structure that can be described by a spherical harmonic deformation. We study the dependence of the buckled sphere and critical excess area of the transition on the elastic parameters and size of the system. We also relate our results to recent experiments on the wrinkling of gel-filled vesicles as their interior volume is reduced. The theory may have broader applications to a variety of related structures from the macroscopic to the microscopic, including the wrinkling of dried peas, raisins, as well as the cell nucleus.
G2 cubic transition between two circles with shape control
NASA Astrophysics Data System (ADS)
Habib, Zulfiqar; Sakai, Manabu
2009-01-01
This paper describes a method for joining two circles with an S-shaped or with a broken back C-shaped transition curve, composed of at most two spiral segments. In highway and railway route design or car-like robot path planning, it is often desirable to have such a transition. It is shown that a single cubic curve can be used for blending or for a transition curve preserving G2 continuity with local shape control parameter and more flexible constraints. Provision of the shape parameter and flexibility provide freedom to modify the shape in a stable manner which is an advantage over previous work by Meek, Walton, Sakai and Habib.
Jamming transition and inherent structures of hard spheres and disks.
Ozawa, Misaki; Kuroiwa, Takeshi; Ikeda, Atsushi; Miyazaki, Kunimasa
2012-11-16
Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. We find that φ(J) remains constant when φ(eq) is small but sharply increases as φ(eq) exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of φ(J) is accompanied with subtle but distinct changes of local orders, a static length scale, and an exponent of the finite-size scaling. These results are consistent with the scenario of the random first-order transition theory of the glass transition. PMID:23215507
Nonclassical Nucleation in a Solid-Solid Transition of Confined Hard Spheres
NASA Astrophysics Data System (ADS)
Qi, Weikai; Peng, Yi; Han, Yilong; Bowles, Richard K.; Dijkstra, Marjolein
2015-10-01
A solid-solid phase transition of colloidal hard spheres confined between two planar hard walls is studied using a combination of molecular dynamics and Monte Carlo simulation. The transition from a solid consisting of five crystalline layers with square symmetry (5 □ ) to a solid consisting of four layers with triangular symmetry (4 △ ) is shown to occur through a nonclassical nucleation mechanism that involves the initial formation of a precritical liquid cluster, within which the cluster of the stable 4 △ phase grows. Free-energy calculations show that the transition occurs in one step, crossing a single free-energy barrier, and that the critical nucleus consists of a small 4 △ solid cluster wetted by a metastable liquid. In addition, the liquid cluster and the solid cluster are shown to grow at the planar hard walls. We also find that the critical nucleus size increases with supersaturation, which is at odds with classical nucleation theory. The △-solid-like cluster is shown to contain both face-centered-cubic and hexagonal-close-packed ordered particles.
Photoluminescence and electronic transitions in cubic silicon nitride
Museur, Luc; Zerr, Andreas; Kanaev, Andrei
2016-01-01
A spectroscopic study of cubic silicon nitride (γ-Si3N4) at cryogenic temperatures of 8 K in the near IR - VUV range of spectra with synchrotron radiation excitation provided the first experimental evidence of direct electronic transitions in this material. The observed photoluminescence (PL) bands were assigned to excitons and excited and centers formed after the electron capture by neutral structural defects. The excitons are weakly quenched on neutral and strongly on charged defects. The fundamental band-gap energy of 5.05 ± 0.05 eV and strong free exciton binding energy ~0.65 eV were determined. The latter value suggests a high efficiency of the electric power transformation in light in defect-free crystals. Combined with a very high hardness and exceptional thermal stability in air, our results indicate that γ-Si3N4 has a potential for fabrication of robust and efficient photonic emitters. PMID:26725937
Noise-to-signal transition of a Brownian particle in the cubic potential: I. general theory
NASA Astrophysics Data System (ADS)
Filip, Radim; Zemánek, Pavel
2016-06-01
The noise-to-signal transitions are very interesting processes in physics, as they might transform environmental noise to useful mechanical effects. We theoretically analyze stochastic noise-to-signal transition of overdamped Brownian motion of a particle in the cubic potential. The particle reaches thermal equilibrium with its environment in the quadratic potential which is suddenly swapped to the cubic potential. We predict a simultaneous increase of both the displacement and signal-to-noise ratio in the cubic potential for the position linearly powered by the temperature of the particle environment. The short-time analysis and numerical simulations fully confirm different dynamical regimes of this noise-to-signal transition.
Ising-like phase transition of an n-component Eulerian face-cubic model
NASA Astrophysics Data System (ADS)
Ding, Chengxiang; Guo, Wenan; Deng, Youjin
2013-11-01
By means of Monte Carlo simulations and a finite-size scaling analysis, we find a critical line of an n-component Eulerian face-cubic model on the square lattice and the simple cubic lattice in the region v>1, where v is the bond weight. The phase transition belongs to the Ising universality class independent of n. The critical properties of the phase transition can also be captured by the percolation of the complement of the Eulerian graph.
Reese, Caleb W.; Strango, Zachariah I.; Dell, Zachary R.; Tristram-Nagle, Stephanie; Harper, Paul E.
2015-01-01
Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol/kg of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition (cubic-HII) exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12 % and 4 % respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases. PMID:25758637
Torija, Maria A.; Choi, Soo-Hyung; Lodge, Timothy P.; Bates, Frank S.
2013-03-07
Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C{sub 30}H{sub 62}), an EP selective solvent, at a concentration of 10 wt %. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.
Reese, Caleb W; Strango, Zachariah I; Dell, Zachary R; Tristram-Nagle, Stephanie; Harper, Paul E
2015-04-14
Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12% and 4% respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases. PMID:25758637
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
Deformation-induced structural transition in body-centred cubic molybdenum.
Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
The structural origin of the hard-sphere glass transition in granular packing
Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie
2015-09-28
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleationmore » process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.« less
The structural origin of the hard-sphere glass transition in granular packing
Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie
2015-09-28
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.
The structural origin of the hard-sphere glass transition in granular packing
Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie
2015-01-01
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses. PMID:26412008
The structural origin of the hard-sphere glass transition in granular packing
NASA Astrophysics Data System (ADS)
Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie
2015-09-01
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a `hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.
The structural origin of the hard-sphere glass transition in granular packing.
Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie
2015-01-01
Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a 'hidden' polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. Our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses. PMID:26412008
Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form.
Takeya, Satoshi; Fujihisa, Hiroshi; Yamawaki, Hiroshi; Gotoh, Yoshito; Ohmura, Ryo; Alavi, Saman; Ripmeester, John A
2016-08-01
The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition. PMID:27346760
Glass-transition properties of Yukawa potentials: from charged point particles to hard spheres.
Yazdi, Anoosheh; Ivlev, Alexei; Khrapak, Sergey; Thomas, Hubertus; Morfill, Gregor E; Löwen, Hartmut; Wysocki, Adam; Sperl, Matthias
2014-06-01
The glass transition is investigated in three dimensions for single and double Yukawa potentials for the full range of control parameters. For vanishing screening parameter, the limit of the one-component plasma is obtained; for large screening parameters and high coupling strengths, the glass-transition properties cross over to the hard-sphere system. Between the two limits, the entire transition diagram can be described by analytical functions. Unlike other potentials, the glass-transition and melting lines for Yukawa potentials are found to follow shifted but otherwise identical curves in control-parameter space. PMID:25019902
Freezing, melting and the glass transition in a suspension of hard spheres
NASA Astrophysics Data System (ADS)
van Megen, W.
2002-08-01
When a suspension of hard spheres traverses the freezing volume fraction we find discontinuous changes in the character of the tagged particle density. In particular, the velocity auto-correlation function develops a negative algebraic decay and the fluctuations become subject to interruption. From these, and the exponent of the algebraic growth of the non-Gaussian parameter, the difference in mode of relaxation of the density fluctuations between the stable and metastable colloidal fluids can be quantified. A diagrammatic scheme is proposed that reconciles the dynamics of phase transitions observed in hard-sphere colloids.
Hard sphere-like glass transition in eye lens α-crystallin solutions
Savin, Gabriela; Bucciarelli, Saskia; Dorsaz, Nicolas; Thurston, George M.; Stradner, Anna; Schurtenberger, Peter
2014-01-01
We study the equilibrium liquid structure and dynamics of dilute and concentrated bovine eye lens α-crystallin solutions, using small-angle X-ray scattering, static and dynamic light scattering, viscometry, molecular dynamics simulations, and mode-coupling theory. We find that a polydisperse Percus–Yevick hard-sphere liquid-structure model accurately reproduces both static light scattering data and small-angle X-ray scattering liquid structure data from α-crystallin solutions over an extended range of protein concentrations up to 290 mg/mL or 49% vol fraction and up to ca. 330 mg/mL for static light scattering. The measured dynamic light scattering and viscosity properties are also consistent with those of hard-sphere colloids and show power laws characteristic of an approach toward a glass transition at α-crystallin volume fractions near 58%. Dynamic light scattering at a volume fraction beyond the glass transition indicates formation of an arrested state. We further perform event-driven molecular dynamics simulations of polydisperse hard-sphere systems and use mode-coupling theory to compare the measured dynamic power laws with those of hard-sphere models. The static and dynamic data, simulations, and analysis show that aqueous eye lens α-crystallin solutions exhibit a glass transition at high concentrations that is similar to those found in hard-sphere colloidal systems. The α-crystallin glass transition could have implications for the molecular basis of presbyopia and the kinetics of molecular change during cataractogenesis. PMID:25385638
NASA Astrophysics Data System (ADS)
Menniger, J.; Jahn, U.; Brandt, O.; Yang, H.; Ploog, K.
1996-01-01
The hexagonal and cubic phases of GaN are characterized by spatially resolved cathodoluminescence (CL) spectra from micrometer-size single crystals with either hexagonal or cubic habits grown by plasma-assisted molecular-beam epitaxy. At 5 K, distinct narrow excitonic lines are found at 3.472 and 3.272 eV for the hexagonal and cubic phase, yielding energy gaps of 3.500 and 3.300 eV, respectively. Detailed temperature- and intensity-dependent CL measurements on cubic GaN crystals enable us to clearly identify the exciton (free: 3.272 eV, bound: 3.263 eV) and the donor-acceptor pair (3.150 eV) transition. Moreover, we determine the donor-band and acceptor-band transition energy for this phase. In addition, phonon replicas of the exciton line and of the donor-acceptor pair transition are observed at 3.185 and 3.064 eV, respectively.
Zhang, Fan; An, Yongling; Zhai, Wei; Gao, Xueping; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin
2015-10-15
Highlights: • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were successfully prepared by a facile hydrothermal method using SiO{sub 2} nanosphere. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} were tested as anode materials for lithium batteries. • The hollow Co{sub 2}SiO{sub 4}, MnSiO{sub 3} and CuSiO{sub 3} delivered superior electrochemical performance. • The lithium storage mechanism is probe via cyclic voltammetry and XPS. - Abstract: A series of transition metal silicate hollow spheres, including cobalt silicate (Co{sub 2}SiO{sub 4}), manganese silicate (MnSiO{sub 3}) and copper silicate (CuSiO{sub 3}.2H{sub 2}O, CuSiO{sub 3} as abbreviation in the text) were prepared via a simple and economic hydrothermal method by using silica spheres as chemical template. Time-dependent experiments confirmed that the resultants formed a novel type of hierarchical structure, hollow spheres assembled by numerous one-dimensional (1D) nanotubes building blocks. For the first time, the transition metal silicate hollow spheres were characterized as novel anode materials of Li-ion battery, which presented superior lithium storage capacities, cycle performance and rate performance. The 1D nanotubes assembly and hollow interior endow this kind of material facilitate fast lithium ion and electron transport and accommodate the big volume change during the conversion reactions. Our study shows that low-cost transition metal silicate with rationally designed nanostructures can be promising anode materials for high capacity lithium-ion battery.
Dynamics of Disorder-Order Transitions in Hard Sphere Colloidal Dispersions in micro-g
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Li, M.; Phan, S. E.; Russel, W. B.; Chaikin, Paul M.; Rogers, Rick; Meyers, W.
1996-01-01
We performed a series of experiments on 0.518 millimeter PMMA spheres suspended in an index matching mixture of decalin and tetralin the microgravity environment provided by the Shuttle Columbia on mission STS-73. The samples ranged in concentration from 0.49 to 0.62. volume fraction (phi) of spheres, which covers the range in which liquid, coexistence, solid and glass phases are expected from Earth bound experiments. Light scattering was used to probe the static structure, and the particle dynamics. Digital and 35 mm photos provided information on the morphology of the crystals. In general, the crystallites grew considerably larger (roughly an order of magnitude larger) than the same samples with identical treatment in 1 g. The dynamic light scattering shows the typical short time diffusion and long time caging effects found in 1 g. The surprises that were encountered in microgravity include the preponderance of random hexagonal close packed (RHCP) structures and the complete absence of the expected face centered cubic (FCC) structure, existence of large dendritic crystals floating in the coexistence samples (where liquid and solid phases coexist) and the rapid crystallization of samples which exist only in glass phase under the influence of one g. These results suggest that colloidal crystal growth is profoundly effected by gravity in yet unrecognized ways. We suspect that the RCHP structure is related to the nonequilibrium growth that is evident from the presence of dendrites. An analysis of the dendritic growth instabilities is presented within the framework of the Ackerson-Schatzel equation.
NASA Astrophysics Data System (ADS)
Hanifpour, M.; Francois, N.; Robins, V.; Kingston, A.; Vaez Allaei, S. M.; Saadatfar, M.
2015-06-01
Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕBernal≈0.64 . We study packings of monosized hard spheres whose density spans over a wide range (0.59 <ϕ <0.72 ) . These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕBernal≈0.64 and ϕc≈0.68 . These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable.
Hanifpour, M; Francois, N; Robins, V; Kingston, A; Allaei, S M Vaez; Saadatfar, M
2015-06-01
Here we present an experimental and numerical investigation on the grain-scale geometrical and mechanical properties of partially crystallized structures made of macroscopic frictional grains. Crystallization is inevitable in arrangements of monosized hard spheres with packing densities exceeding Bernal's limiting density ϕ(Bernal)≈0.64. We study packings of monosized hard spheres whose density spans over a wide range (0.59<ϕ<0.72). These experiments harness x-ray computed tomography, three-dimensional image analysis, and numerical simulations to access precisely the geometry and the 3D structure of internal forces within the sphere packings. We show that clear geometrical transitions coincide with modifications of the mechanical backbone of the packing both at the grain and global scale. Notably, two transitions are identified at ϕ(Bernal)≈0.64 and ϕ(c)≈0.68. These results provide insights on how geometrical and mechanical features at the grain scale conspire to yield partially crystallized structures that are mechanically stable. PMID:26172700
First-order patterning transitions on a sphere as a route to cell morphology.
Lavrentovich, Maxim O; Horsley, Eric M; Radja, Asja; Sweeney, Alison M; Kamien, Randall D
2016-05-10
We propose a general theory for surface patterning in many different biological systems, including mite and insect cuticles, pollen grains, fungal spores, and insect eggs. The patterns of interest are often intricate and diverse, yet an individual pattern is robustly reproducible by a single species and a similar set of developmental stages produces a variety of patterns. We argue that the pattern diversity and reproducibility may be explained by interpreting the pattern development as a first-order phase transition to a spatially modulated phase. Brazovskii showed that for such transitions on a flat, infinite sheet, the patterns are uniform striped or hexagonal. Biological objects, however, have finite extent and offer different topologies, such as the spherical surfaces of pollen grains. We consider Brazovskii transitions on spheres and show that the patterns have a richer phenomenology than simple stripes or hexagons. We calculate the free energy difference between the unpatterned state and the many possible patterned phases, taking into account fluctuations and the system's finite size. The proliferation of variety on a sphere may be understood as a consequence of topology, which forces defects into perfectly ordered phases. The defects are then accommodated in different ways. We also argue that the first-order character of the transition is responsible for the reproducibility and robustness of the pattern formation. PMID:27102872
The Dynamics of Disorder-Order Transition in Hard Sphere Colloidal Dispersions
NASA Technical Reports Server (NTRS)
Chaikin, Paul M.; Zhu, Jixiang; Cheng, Zhengdong; Phan, See-Eng; Russel, William B.; Lant, Christian T.; Doherty, Michael P.; Meyer, William V.; Rogers, Richard; Cannell, D. S.; Ottewill, R. H.
1998-01-01
The Physics of Hard Spheres Experiment (PHaSE) seeks a complete understanding of the entropically driven disorder-order transition in hard sphere colloidal dispersions. The light scattering instrument designed for flight collects Bragg and low angle light scattering in the forward direction via a CCD camera and performs conventional static and dynamic light scattering at 10-160 deg. through fiber optic cables. Here we report on the kinetics of nucleation and growth extracted from time-resolved Bragg images and measurements of the elastic modulus of crystalline phases obtained by monitoring resonant responses to sinusoidal forcing through dynamic light scattering. Preliminary analysis of the former indicates a significant difference from measurements on the ground, while the latter confirms nicely laboratory experiments with the same instrument and predictions from computer simulations.
Manaka, Hirotaka; Yagi, Genta; Miura, Yoko
2016-07-01
Optical birefringence imaging systems demonstrate a high potential for comprehensively investigating various phase transitions. To completely demonstrate such abilities, the temperature dependence of birefringence (Δn) was measured in Δn ≃ 0 materials (i.e., cubic crystals with imperfect crystallization) via a background subtraction method. As a result, highly accurate birefringence imaging at 384 × 288 pixels was obtained using phase transition processes as well as varying temperatures visually characterized by the spatial distribution of not only the retardance level but also the optical fast-axis azimuth. PMID:27475562
NASA Astrophysics Data System (ADS)
Manaka, Hirotaka; Yagi, Genta; Miura, Yoko
2016-07-01
Optical birefringence imaging systems demonstrate a high potential for comprehensively investigating various phase transitions. To completely demonstrate such abilities, the temperature dependence of birefringence (Δn) was measured in Δn ≃ 0 materials (i.e., cubic crystals with imperfect crystallization) via a background subtraction method. As a result, highly accurate birefringence imaging at 384 × 288 pixels was obtained using phase transition processes as well as varying temperatures visually characterized by the spatial distribution of not only the retardance level but also the optical fast-axis azimuth.
NASA Technical Reports Server (NTRS)
Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.
1998-01-01
Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.
Sesé, Luis M; Bailey, Lorna E
2007-04-28
The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45
Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics
NASA Astrophysics Data System (ADS)
Li, Yiming; Zhao, Lijuan; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua
2016-02-01
Tm3+ ions doped β-PbF2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an Oh to D4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.
Nematic-isotropic phase transition in diblock fused-sphere chain fluids
NASA Astrophysics Data System (ADS)
Diplock, R.; Sullivan, D. E.; Jaffer, K. M.; Opps, S. B.
2004-06-01
A density-functional theory for the isotropic-nematic phase transition in fluids of rigid or semiflexible fused hard-sphere chains, developed previously by the authors, is extended to diblock chains each consisting of both a rigid and a flexible part. The theory is compared with recent Monte Carlo simulation results of McBride et al. The theoretical results for the variation of pressure and nematic order parameter with density agree well with the simulation data over density ranges where the simulations find isotropic and nematic phases.
Transition to a time-dependent state of fluid flow in the wake of a sphere.
Gumowski, K; Miedzik, J; Goujon-Durand, S; Jenffer, P; Wesfreid, J E
2008-05-01
In this paper, the results of laboratory investigation about the flow behind the sphere in the range of 150
NASA Astrophysics Data System (ADS)
Zemánek, Pavel; Šiler, Martin; Brzobohatý, Oto; Jákl, Petr; Filip, Radim
2016-06-01
The noise-to-signal transitions belong to an exciting group of processes in physics. In Filip and Zemánek (2016, J. Opt. 18 065401) we theoretically analyse the stochastic noise-to-signal transition of overdamped Brownian motion of a particle in the cubic potential. In this part, we propose a feasible experimental setup for a proof-of-principle experiment that uses methods of optical trapping in shaped laser beams which provide cubic and quadratic potentials. Theoretical estimates and results from the numerical simulations indicate that the noise-to-signal transition can be observed under realistic experimental conditions.
Constraining turbulence mixing strength in transitional discs with planets using SPHERE and ALMA
NASA Astrophysics Data System (ADS)
de Juan Ovelar, M.; Pinilla, P.; Min, M.; Dominik, C.; Birnstiel, T.
2016-06-01
We investigate the effect that the turbulent mixing strength parameter αturb plays on near-infrared polarimetric and sub-millimetre interferometric imaging observations of transitional discs (TDs) with a gap carved by a planet. We generate synthetic observations of these objects with ALMA and VLT/SPHERE-ZIMPOL by combining hydrodynamical, dust evolution, radiative transfer and instrument models for values of α _{turb}=[10^{-4}, 10^{-3}, 10^{-2}]. We find that, through a combination of effects on the viscosity of the gas, the turbulent mixing and dust evolution processes, αturb strongly affects the morphology of the dust distribution that can be traced with these observations. We constrain the value of αturb to be within an order of magnitude of 10-3 in TD sources that show cavities in sub-mm continuum images while featuring continuous distribution of dust or smaller cavities in NIR-polarimetric images.
NASA Astrophysics Data System (ADS)
Chremos, Alexandros; Register, Richard; Chaikin, Paul; Panagiotopoulos, Athanassios
2011-03-01
The shear-induced sphere-to-cylinder transition in diblock copolymer thin films has been studied using large-scale coarse- grained Langevin dynamics simulations. At zero-shear conditions and below the order-disorder transition temperature the thin film forms a monolayer or bilayer of spheres given the thickness of the film. Mimicking the experimental setup the minority block has an affinity to be adsorbed on the confining surfaces forming brushes which interpenetrate the rest of the film. Once a shear field is applied and above a critical shear rate, the spheres elongate and merge with their neighbors to form cylinders. We find that the mechanism with which the spheres merge is closely related with the stretching of individual diblock chains. In particular, we find that in monolayer thin films it is more difficult to achieve the sphere-to-cylinder transition, which is also an experimental observation, because the brushes restrict the stretching of diblock chains. The simulations were performed with the use of Graphical Processing Units allowing large-scale simulations with long polymer chains to studied.
Lattice vibrations and structural instability in caesium near the cubic-to-tetragonal transition
NASA Astrophysics Data System (ADS)
Kong, Y.; Jepsen, O.
2000-10-01
Under pressure, caesium undergoes a transition from a high-pressure fcc (face-centred cubic) phase (Cs-II) to a collapsed fcc phase (Cs-III) near 4.2 GPa. At 4.4 GPa there follows a transition to the tetragonal Cs-IV phase. In order to investigate the lattice vibrations in the fcc phase and seek a possible dynamical instability of the lattice, the phonon spectra of fcc Cs at volumes near the III-to-IV transition are calculated using Savrasov's density functional linear-response LMTO (linear muffin-tin orbital) method. Compared with quasiharmonic model calculations including non-central interatomic forces up to second neighbours, at the volume V/V0 = 0.44 (V0 is the experimental volume of bcc Cs (bcc≡body-centred cubic) with a0 = 6.048 Å), the linear-response calculations show soft intermediate-wavelength T[1ξξ0] phonons. Similar softening is also observed for short-wavelength L[ξξξ] and L[00ξ] phonons and intermediate-wavelength L[ξξξ] phonons. The Born-von Kármán analysis of the dispersion curves indicates that the interplanar force constants exhibit oscillating behaviours against plane spacing n and the large softening of intermediate-wavelength T[1ξξ0] phonons results from a negative (110) interplanar force constant Φn = 2. The calculated frequencies for high-symmetry K and W and longitudinal X and L phonons decrease with volume compression. In particular, the frequencies of the T[1ξξ0] phonons with ξ around 1/3 become imaginary and the fcc structure becomes dynamically unstable for volumes below 0.41V0. It is suggested that superstructures corresponding to the q&\
Qiu, S L; Marcus, P M
2012-06-01
The phase transition between the cubic diamond (cd) and beta-tin (β-Sn) phases of Si under pressure and the region of interaction of the two phases are studied by first-principles total energy calculations. For a non-vibrating crystal we determine the pressure of the thermodynamic phase transition p(t) = 96 kbar, the Gibbs free energy barrier at p(t) of ΔG = 19.6 mRyd/atom that stabilizes the phases against a phase transition and the finite pressure range in which both phases are stable. We show that the phases in that pressure range are completely described by three equilibrium lines of states along which the structure, the total energy E, the hydrostatic pressure p that would stabilize the structure and the values of G all vary. Two equilibrium lines describe the two phases (denoted the ph-eq line, ph is cd or β-Sn phase); a third line is a line of saddle points of G with respect to structure (denoted the sp-eq line) that forms a barrier of larger G against instability of the metastable ranges of the phase lines. An important conclusion is that the sp-eq line merges with the two ph-eq lines: one end of the sp-eq line merges with the cd-eq line at high pressure, the other end merges with the β-Sn-eq line at low pressure. The mergers end the barrier protecting the metastable ranges of the two ph-eq lines, hence the lines go unstable beyond the mergers. The mergers thus simplify the phase diagram by providing a natural termination to the stable parts of all metastable ranges of the ph-eq lines. Although 96 kbar is lower than the experimental transition pressure, we note that phonon pressure raises the observed transition pressure. PMID:22551557
Prediction of a metastable cubic phase for the transition metals with hcp ground state.
NASA Astrophysics Data System (ADS)
de Coss, Romeo; Aguayo, Aaron; Murrieta, Gabriel
2007-03-01
The discovery of a metastable phase for a given material is interesting because corresponds to a new bonding and new properties are expected. The calculation of the total-energy along the Bain path is frequently used as a method to find tetragonal metastable states. However, a local minimum in the tetragonal distortion is not a definitive proof of a metastable state, and the elastic stability needs to be evaluated. In a previous work, using the elastic stability criteria for a cubic structure, we have shown that the transition metals with hcp ground state; Ti, Zr, and Hf have a fcc metastable phase [Aguayo, G. Murrieta, and R. de Coss, Phys. Rev. B 65, 092106 (2002)]. That result is interesting since the fcc crystal structure does not appear in the current pressure-temperature phase diagram of these metals, and support the experimental observations of fcc Ti and Zr in thin films. In the present work, we extend the elastic stability study of the fcc structure to the non-magnetic transition metals with hcp ground state; Sc, Ti, Y, Zr, Tc, Ru, Hf, Re, and Os. We find that all the metals involved in this study have a metastable fcc structure. From these results, substrates on which the fcc structure of these metals could be growth epitaxially are predicted.
NASA Astrophysics Data System (ADS)
Lechman, Jeremy; Pierce, Flint
2012-02-01
Diffusive transport is a ubiquitous process that is typically understood in terms of a classical random walk of non-interacting particles. Here we present the results for a model of hard-sphere colloids in a Newtonian incompressible solvent at various volume fractions below the ordering transition (˜50%). We numerically simulate the colloidal systems via Fast Lubrication Dynamics -- a Brownian Dynamics approach with corrected mean-field hydrodynamic interactions. Colloid-colloid interactions are also included so that we effectively solve a system of interacting Langevin equations. The results of the simulations are analyzed in terms of the diffusion coefficient as a function of time with the early and late time diffusion coefficients comparing well with experimental results. An interpretation of the full time dependent behavior of the diffusion coefficient and mean-squared displacement is given in terms of a continuous time random walk. Therefore, the deterministic, continuum diffusion equation which arises from the discrete, interacting random walkers is presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Chess, David J.; Billings, Eric; Covian, Raúl; Glancy, Brian; French, Stephanie; Taylor, Joni; de Bari, Heather; Murphy, Elizabeth; Balaban, Robert S.
2013-01-01
Recent evidence suggests that the activity of mitochondrial oxidative phosphorylation Complexes (MOPC) is modulated at multiple sites. Herein, a method of optically monitoring electron distribution within and between MOPC is described using a center-mounted sample in an integrating sphere (to minimize scattering effects) with a rapid-scanning spectrometer. The redox-sensitive MOPC absorbances (~465 to 630 nm) were modeled using linear least squares analysis with individual chromophore spectra. Classical mitochondrial activity transitions (e.g., ADP-induced increase in oxygen consumption) were used to characterize this approach. Most notable in these studies was the observation that intermediates of the catalytic cycle of cytochrome oxidase are dynamically modulated with metabolic state. The MOPC redox state, along with measurements of oxygen consumption and mitochondrial membrane potential, was used to evaluate the conductances of different sections of the electron transport chain. This analysis then was applied to mitochondria isolated from rabbit hearts subjected to ischemia-reperfusion (I/R). Surprisingly, I/R resulted in an inhibition of all measured MOPC conductances, suggesting a coordinated down-regulation of mitochondrial activity with this well-established cardiac perturbation. PMID:23665273
Note: Sound velocity of a soft sphere model near the fluid-solid phase transition.
Khrapak, Sergey A
2016-03-28
The quasilocalized charge approximation is applied to estimate the sound velocity of simple soft sphere fluid with the repulsive inverse-power-law interaction. The obtained results are discussed in the context of the sound velocity of the hard-sphere system and of liquid metals at the melting temperature. PMID:27036483
Hexagonal graphite to cubic diamond transition from equilibrium lines and barrier calculations
NASA Astrophysics Data System (ADS)
Qiu, Shen Li
2014-07-01
Phase equilibrium lines of hexagonal graphite (hg) and cubic diamond (cd) phases of carbon as well as a saddle-point equilibrium line between the two phase equilibrium lines are studied by first-principles total-energy calculations. The Gibbs free energies ( G) of the three equilibrium lines determine the transition pressure p t = 70 kbar (0.070 Mbar) from hg phase to cd phase and the barrier height at p t of ΔG = 178 mRy/atom that stabilizes the two phases against a phase transition. The cd phase becomes unstable at V = 13.6 au3/atom ( p = 26 Mbar) where the curvature at the equilibrium point of the energy curve (denoted E V ( c/ a) curve) goes to zero. The hg and cd phase equilibrium lines cross at V = 14.5 au3/atom where the regular hg phase (with one minimum in each E V ( c/ a) curve) ends and the irregular hg phase (with two minima in each E V ( c/ a) curve) develops. The feature of "two phase equilibrium lines cross" was not observed in our previous work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012); S.L. Qiu, P.M. Marcus, Eur. Phys. J. B 86, 425 (2013)] where the two interacting crystal phases have a common unit cell with different c/ a ratios. This work demonstrates that the saddle-point equilibrium line along with the two phase equilibrium lines are all needed for a complete description of crystal phases and their transitions under pressure.
Hexagonal graphite to cubic diamond transition from equilibrium lines and barrier calculations
NASA Astrophysics Data System (ADS)
Li Qiu, Shen
2014-07-01
Phase equilibrium lines of hexagonal graphite (hg) and cubic diamond (cd) phases of carbon as well as a saddle-point equilibrium line between the two phase equilibrium lines are studied by first-principles total-energy calculations. The Gibbs free energies (G) of the three equilibrium lines determine the transition pressure pt = 70 kbar (0.070 Mbar) from hg phase to cd phase and the barrier height at pt of ΔG = 178 mRy/atom that stabilizes the two phases against a phase transition. The cd phase becomes unstable at V = 13.6 au3/atom (p = 26 Mbar) where the curvature at the equilibrium point of the energy curve (denoted EV(c/a) curve) goes to zero. The hg and cd phase equilibrium lines cross at V = 14.5 au3/atom where the regular hg phase (with one minimum in each EV(c/a) curve) ends and the irregular hg phase (with two minima in each EV(c/a) curve) develops. The feature of "two phase equilibrium lines cross" was not observed in our previous work [S.L. Qiu, P.M. Marcus, J. Phys.: Condens. Matter 24, 225501 (2012); S.L. Qiu, P.M. Marcus, Eur. Phys. J. B 86, 425 (2013)] where the two interacting crystal phases have a common unit cell with different c/a ratios. This work demonstrates that the saddle-point equilibrium line along with the two phase equilibrium lines are all needed for a complete description of crystal phases and their transitions under pressure.
ERIC Educational Resources Information Center
Chiung, Wi-vun Taiffalo
2007-01-01
The Han sphere, including Vietnam, Korea, Japan, Taiwan and China, adopted Han characters and classical Han writing as the official written language before the 20th century. However, great changes came with the advent of the 20th century. After World War II, Han characters in Vietnam and Korea were officially replaced by the romanised "Chu Quoc…
Mills, P; Snabre, P
2009-11-01
We consider the steady shear flow of a homogeneous and dense assembly of hard spheres suspended in a Newtonian viscous fluid. In a first part, a mean-field approach based on geometric arguments is used to determine the viscous dissipation in a dense isotropic suspension of smooth hard spheres and the hydrodynamic contribution to the suspension viscosity. In a second part, we consider the coexistence of transient solid clusters coupled to regions with free flowing particles near the jamming transition. The fraction of particles in transient clusters is derived through the Landau-Ginzburg concepts for first-order phase transition with an order parameter corresponding to the proportion of "solid" contacts. A state equation for the fraction of particle-accessible volume is introduced to derive the average normal stresses and a constitutive law that relates the total shear stress to the shear rate. The analytical expression of the average normal stresses well accounts for numerical or experimental evaluation of the particle pressure and non-equilibrium osmotic pressure in a dense sheared suspension. Both the friction level between particles and the suspension dilatancy are shown to determine the singularity of the apparent shear viscosity and the flow stability near the jamming transition. The model further predicts a Newtonian behavior for a concentrated suspension of neutrally buoyant particles and no shear thinning behavior in relation with the shear liquefaction of transient solid clusters. PMID:19856003
Li,M.; Liu, Y.; Nie, H.; Bansil, R.; Steinhart, M.
2007-01-01
Time-resolved small-angle X-ray scattering (SAXS) was used to examine the kinetics of the transition from hexagonal (hex) cylinders to body-centered cubic (bcc) spheres at various temperatures in poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS) in mineral oil, a selective solvent for the middle ethylene-co-butylene (EB) block. Temperature-ramp SAXS and rheology measurements show the hex to bcc order-order transition (OOT) at 127 C and order-disorder transition (ODT) at 180 C. We also observed the metastability limit of hex in bcc with a spinodal temperature, Ts 150 C. The OOT exhibits three stages and occurs via a nucleation and growth mechanism when the final temperature Tf < Ts. Spinodal decomposition in a continuous ordering system was seen when Ts < Tf < TODT. We observed that hex cylinders transform to disordered spheres via a transient bcc state. We develop a geometrical model of coupled anisotropic fluctuations and calculate the scattering which shows very good agreement with the SAXS data. The splitting of the primary peak into two peaks when the cylinder spacing and modulation wavelength are incommensurate predicted by the model is confirmed by analysis of the SAXS data.
Zhang, Jingyan; Ge, Zhishen; Jiang, Xiaoze; Hassan, P A; Liu, Shiyong
2007-12-15
The kinetics and mechanism of sphere-to-rod transitions of sodium alkyl sulfate micelles induced by hydrotropic salt, p-toluidine hydrochloride (PTHC), were investigated by stopped-flow with light scattering detection. Spherical sodium dodecyl sulfate (SDS) micelles transform into short ellipsoidal shapes at low salt concentrations ([PTHC]/[SDS], chi(PTHC)=0.3 and 0.4). Upon stopped-flow mixing aqueous solutions of spherical SDS micelles with PTHC, the scattered light intensity gradually increases with time. Single exponential fitting of the dynamic traces leads to characteristic relaxation time, tau(g), for the growth process from spherical to ellipsoidal micelles, and it increases with increasing SDS concentrations. This suggests that ellipsoidal micelles might be produced by successive insertion of unimers into spherical micelles, similar to the case of formation of spherical micelles as suggested by Aniansson-Wall (A-W) theory. At chi(PTHC) > or = 0.5, rod-like micelles with much higher axial ratio form. The scattered light intensity exhibits an initially abrupt increase and then levels off. The dynamic curves can be well fitted with single exponential functions, and the obtained tau(g) decreases with increasing SDS concentration. Thus, the growth from spherical to rod-like micelles might proceed via fusion of spherical micelles, in agreement with mechanism proposed by Ikeda et al. At chi(PTHC)=0.3 and 0.6, the apparent activation energies obtained from temperature dependent kinetic studies for the micellar growth are 40.4 and 3.6 kJ/mol, respectively. The large differences between activation energies for the growth from spherical to ellipsoidal micelles at low chi(PTHC) and the sphere-to-rod transition at high chi(PTHC) further indicate that they should follow different mechanisms. Moreover, the sphere-to-rod transition kinetics of sodium alkyl sulfate with varying hydrophobic chain lengths (n=10, 12, 14, and 16) are also studied. The longer the carbon chain
NASA Astrophysics Data System (ADS)
Klintberg, Lina E.; Goh, Swee K.; Alireza, Patricia L.; Saines, Paul J.; Tompsett, David A.; Logg, Peter W.; Yang, Jinhu; Chen, Bin; Yoshimura, Kazuyoshi; Grosche, F. Malte
2012-12-01
We show that the quasi-skutterudite superconductor Sr3Ir4Sn13 undergoes a structural transition from a simple cubic parent structure, the I phase, to a superlattice variant, the I' phase, which has a lattice parameter twice that of the high temperature phase. We argue that the superlattice distortion is associated with a charge density wave transition of the conduction electron system and demonstrate that the superlattice transition temperature T* can be suppressed to zero by combining chemical and physical pressure. This enables the first comprehensive investigation of a superlattice quantum phase transition and its interplay with superconductivity in a cubic charge density wave system.
Three-dimensional kinetic Monte Carlo simulations of cubic transition metal nitride thin film growth
NASA Astrophysics Data System (ADS)
Nita, F.; Mastail, C.; Abadias, G.
2016-02-01
A three-dimensional kinetic Monte Carlo (KMC) model has been developed and used to simulate the microstructure and growth morphology of cubic transition metal nitride (TMN) thin films deposited by reactive magnetron sputtering. Results are presented for the case of stoichiometric TiN, chosen as a representative TMN prototype. The model is based on a NaCl-type rigid lattice and includes deposition and diffusion events for both N and Ti species. It is capable of reproducing voids and overhangs, as well as surface faceting. Simulations were carried out assuming a uniform flux of incoming particles approaching the surface at normal incidence. The ballistic deposition model is parametrized with an interaction parameter r0 that mimics the capture distance at which incoming particles may stick on the surface, equivalently to a surface trapping mechanism. Two diffusion models are implemented, based on the different ways to compute the site-dependent activation energy for hopping atoms. The influence of temperature (300-500 K), deposition flux (0.1-100 monolayers/s), and interaction parameter r0 (1.5-6.0 Å) on the obtained growth morphology are presented. Microstructures ranging from highly porous, [001]-oriented straight columns with smooth top surface to rough columns emerging with different crystallographic facets are reproduced, depending on kinetic restrictions, deposited energy (seemingly captured by r0), and shadowing effect. The development of facets is a direct consequence of the diffusion model which includes an intrinsic (minimum energy-based) diffusion anisotropy, although no crystallographic diffusion anisotropy was explicitly taken into account at this stage. The time-dependent morphological evolution is analyzed quantitatively to extract the growth exponent β and roughness exponent α , as indicators of kinetic roughening behavior. For dense TiN films, values of α ≈0.7 and β =0.24 are obtained in good agreement with existing experimental data. At this
NASA Astrophysics Data System (ADS)
An, Xi-Zhong
2007-08-01
Micro structures of equal sphere packing (ranging from loose to dense packing) generated numerically by discrete element method under different vibration conditions are characterized using Voronoi/Delaunay tessellation, which is applied on a wide range of packing densities. The analysis on micro properties such as the total perimeter, surface area, and the face number distribution of each Voronoi polyhedron, and the pore size distribution in each Voronoi/Delaunay subunit is systematically carried out. The results show that with the increasing density of sphere packing, the Voronoi/Delaunay pore size distribution is narrowed. That indicates large pores to be gradually substituted by small uniformed ones during densification. Meanwhile, the distributions of face number, total perimeter, and surface area of Voronoi polyhedra at high packing densities tend to be narrower and higher, which is in good agreement with those in random loose packing.
Structure and phase transition of BiFeO{sub 3} cubic micro-particles prepared by hydrothermal method
Zhou, Jian-Ping; Yang, Ruo-Lin; Xiao, Rui-Juan; Chen, Xiao-Ming; Deng, Chao-Yong
2012-11-15
Graphical abstract: Bismuth ferrite (BiFeO{sub 3}) cubic micro-particles with smooth surfaces were synthesized. BiFeO{sub 3} has a hexagonal perovskite structure with a space group R3c below 370 °C and rhombohedral perovskite structure with a space group R3m below 755 °C, undergoes a phase transition in the temperature range of 755–817 °C to a cubic structure, then decompose to liquid and Fe{sub 2}O{sub 3} above 939 °C. Highlights: ► BiFeO{sub 3} micro-particles with smooth surface were synthesized by hydrothermal method. ► BiFeO{sub 3} enjoys hexagonal structure with well element ratio and chemical valence. ► BiFeO{sub 3} transition from rhombohedral phase to cubic phase lasts 60 °C. -- Abstract: Single-phase bismuth ferrite (BiFeO{sub 3}) powders were synthesized with a hydrothermal method by controlling the experimental conditions carefully. The powder structure, morphology and composition were characterized by using X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscope, Raman measurement and X-ray photoelectron spectroscopy. The particles change from irregular agglomerations to regular cubes with increasing KOH concentration. The large BiFeO{sub 3} cubic particles enjoy much smooth surfaces with well-matched element ratio (Bi:Fe:O = 1:1:3) and chemical valence (Bi{sup 3+}, Fe{sup 3+} and O{sup 2−}). The high temperature XRD and differential scanning calorimetry show that BiFeO{sub 3} powders have a hexagonal perovskite structure with a space group R3c below 370 °C and a rhombohedral structure with a space group R3m below 755 °C. BiFeO{sub 3} undergoes a phase transition in the temperature range of 755–817 °C from rhombohedral structure to a cubic phase, then decomposes to liquid and Fe{sub 2}O{sub 3} above 939 °C.
Wang, J.; Chen, W; Russell, T
2008-01-01
The effect of the interfacial energy on the electric-field-induced sphere-to-cylinder (S-to-C) transition in polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) copolymer thin films was studied as a function of the difference in the interfacial interactions of the PS and PMMA blocks with the substrate, d. It was found that the interfacial energies altered both the critical electric field strength and the time scales of kinetics. A very strong preferential interfacial interaction suppressed the electric-field-induced S-to-C transition even though such a transition occurred on a neutralized surface where the interfacial interactions were balanced. For a moderate interfacial interaction, the S-to-C transition can be induced by an applied electric field, but the time scale of the morphology change is much longer. Furthermore, the formation of ionic complexes in the BCP was found to enhance the electric-field-induced S-to-C transition even on a native Si substrate without any surface modification, providing a simple route to generate ordered arrays of high-aspect-ratio cylinders oriented normal to a film surface.
Behera, Pallavi Suhasinee; Vasanthavel, S.; Ponnilavan, V.; Kannan, S.
2015-05-15
The present study reports the effect of gadolinium (Gd{sup 3+}) in zirconia-silica (ZrO{sub 2}-SiO{sub 2}) binary oxides. The pure ZrO{sub 2}-SiO{sub 2} synthesized at 1100 °C was tetragonal. The addition of Gd{sup 3+} in the concentration range of 5%–10% resulted in the formation of t-ZrO{sub 2}, whereas higher contents of Gd{sup 3+} led to the formation of cubic ZrO{sub 2} (c-ZrO{sub 2}). The presence of Gd{sup 3+} also affected the lattice parameters of both t-ZrO{sub 2} and c-ZrO{sub 2}. Magnetic studies confirmed a steady increase in the paramagnetic behaviour with increasing content of Gd{sup 3+}. - Graphical abstract: t-ZrO{sub 2} to c-ZrO{sub 2} phase transition influenced by Gd{sup 3+} content. - Highlights: • Sol-gel synthesis of Gd{sup 3+} added SiO{sub 2}-ZrO{sub 2} binary oxides. • Significant role of Gd{sup 3+} content in the tetragonal and cubic stabilization of ZrO{sub 2}. • Phase stability of either tetragonal or cubic stabilization till 1100 °C. • Gd{sup 3+} additions ensured additional paramagnetic behaviour in SiO{sub 2}-ZrO{sub 2} binary oxide.
Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito
2016-02-01
Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition. PMID:26766583
Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.
2014-02-15
The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.
Liu, Kong; Li, Huanyuan; Lu, Yuan; Wang, Ruijuan; Bei, Fengli; Lu, Lude; Han, Qiaofeng; Wu, Xiaodong
2016-04-20
The combination of a simple modification of the sample addition method to generate a sort of continuously accumulated external stimulation with only minute increments in amplitude and the introduction of probe molecules (herein aniline) within the micelle allow the direct continuous in situ spectroscopic monitoring of possible micellar transitions. In this way, a sphere-to-ellipsoid and further an ellipsoid-to-bilayer micellar transition of sodium dodecyl sulfate (SDS) induced by camphor sulfuric acid (CSA) is observed to experience four stages in the time sequence: (i) the accumulated protons released from CSA in the hydration layer of the micelle stimulate the rearrangement of SDS micelles; (ii) the micelles transform into ellipsoidal shapes as evidenced by the characteristic chemical shift anisotropy and the corresponding molecular dynamic properties from probe molecules; (iii) further protonation of aniline induces the micelle to turn into lamellar structures; (iv) aniline is freed from the micelle while leaving the SDS bilayers undistorted. Moreover, polyaniline nanosheets incorporating SDS bilayers in sandwich structures, which can display excellent capacitive behavior at relatively high current densities for the fabricated supercapacitors, are prepared from the aniline oriented by the bending energy of the SDS bilayers. PMID:26996652
Zhang, Jie; Huang, Rong; Wei, Fenfen; Cheng, Guosheng; Kong, Tao
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
NASA Astrophysics Data System (ADS)
Freitas, F. L.; Marques, M.; Teles, L. K.
2016-08-01
We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1-x-yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.
NASA Astrophysics Data System (ADS)
Reiss, Howard; Manzanares, José A.
2016-09-01
Using several theoretical toolsldots (i) the nucleation theorem, (ii) an equivalent cavity, (iii) the reversible work of adding a cavity to an open hard sphere system, and (iv) the theory of "stability"... the authors estimated the density at which the hard sphere freezing transition occurs. No direct involvement of the equilibrium solid phase is involved. The reduced density \\uppi a^3ρ _f/6 (where a is the hard sphere diameter and ρ _f is the actual density at which freezing occurs) is found to be 0.4937 while the value obtained by computer simulation is 0.494. The agreement is good, but the new method still contains some approximation. However, the approximation is based on the idea that at a density just below ρ _f the fluid adopts a distorted structure resembling the solid, but different enough so that long-range order vanishes. Initial loss of stability may not be involved in every fluid-solid transition, but it may be an early step in the hard sphere and related systems.
The effect of disorder in Ba{sub 2}YTaO{sub 6} on the tetragonal to cubic phase transition
Zhou, Qingdi; Kennedy, Brendan J.; Kimpton, Justin A.
2011-04-15
Synchrotron X-ray diffraction and Raman spectroscopy have been used to study the structure of the complex perovskite Ba{sub 2}YTaO{sub 6}, at temperatures down to 100 K. Where the Ta and Y cations exhibit long-range rock-salt like ordering, Ba{sub 2}YTaO{sub 6} displays a continuous phase transition from a high temperature cubic structure, described in space group Fm3-bar m, to a tetragonal, I4/m, structure near 260 K. This transition is inhibited if extensive disorder and/or vacancies are/is present in the sample. -- Graphical abstract: The tetragonal-cubic phase transition observed in the cation ordered double perovskite Ba{sub 2}YTaO{sub 6} is inhibited when these are disordered. Display Omitted Highlights: {yields} Double perovskite Ba{sub 2}YTaO{sub 6} characterised by XRD and Raman spectroscopy. {yields} Cubic-tetragonal transition in Ba{sub 2}YTaO{sub 6} studied. {yields} Impact of disorder on the structure and phase transitions established.
NASA Astrophysics Data System (ADS)
Horiuchi, Shigeo; He, Lian-Long; Onoda, Mitsuko; Akaishi, Minoru
1996-01-01
Fine structures appearing on the phase transition from h (hexagonal) to c (cubic) boron nitride under high pressure (7.7 GPa) and high temperature (1800-2150 °C) are examined by high-resolution transmission electron microscopy. A prominent contraction of the interplanar spacing between sp2 sheets from 3.33 to 3.10 Å in so-called ``compressed h-BN'' is attributable to a monoclinic lattice distortion of the residual h-BN, which originates from the difference in the compressibility as well as the thermal expansion between adjoining h- and c-BN grains. The parameters of the monoclinic unit cell are am=4.33, bm=2.50, cm=3.1-3.3 Å, and β=92-95°. Thin plates of h-BN are often folded and the folding also causes the monoclinic structure. The sheet sequence of r (rhombohedral)-BN locally appears when the strong volume shrinkage occurs due to the formation of a c-BN grain. Nanoscale twins appear in resulting c-BN grains, as long as they are small, and w (wurzite)-BN is sometimes included in them.
NASA Astrophysics Data System (ADS)
Heinemann, S.; Sharp, T. G.; Seifert, F.; Rubie, D. C.
Garnets along the join Mg4Si4O12 (majorite end member) - Mg3Al2Si3O12 (pyrope) synthesized at 2000 °C, 19 GPa are, after quench, tetragonal in the compositional range up to 20 mol% pyrope, but cubic at higher Al contents. Lattice constants atet and atet in the tetragonal compositional range converge with increasing pyrope contents towards the lattice constant of the cubic garnets. The elastic strain and the intensity of the (222) reflection as a function of composition indicate a second-order phase transition near 20 mol% pyrope. From the wedge-like shape of pseudomerohedral twins and their interaction near 90° twin-boundary corners, as well as from the absence of growth-induced dislocations, it is concluded that the Al-poor garnets are also cubic at synthesis conditions but invert by (Mg,Si) ordering on the octahedral sites into tetragonal phases of space group I41/a upon quench. This implies that the cubic-to-tetragonal phase transition in Mg4Si4O12 garnet occurs below 2000 °C at 19 GPa and at even lower temperatures in more aluminous compositions. A composition-dependent Landau model is consistent with a direct transformation from Ia3d to I41/a. Comparison of the T-X stability field of majorite-pyrope garnets with the chemistry of majorite-rich garnets expected to occur in the Earth's transition zone shows that the latter will be cubic under all conditions. Softening of elastic constants, which commonly accompanies ferroelastic phase transitions, may affect the seismic velocities of garnets in the deeper transition zone where majorite contents are highest.
Murtazaev, A. K.; Ramazanov, M. K.; Kassan-Ogly, F. A.; Kurbanova, D. R.
2015-01-15
Phase transitions in the antiferromagnetic Ising model on a body-centered cubic lattice are studied on the basis of the replica algorithm by the Monte Carlo method and histogram analysis taking into account the interaction of next-to-nearest neighbors. The phase diagram of the dependence of the critical temperature on the intensity of interaction of the next-to-nearest neighbors is constructed. It is found that a second-order phase transition is realized in this model in the investigated interval of the intensities of interaction of next-to-nearest neighbors.
Walker, David M; Tordesillas, Antoinette; Brodu, Nicolas; Dijksman, Joshua A; Behringer, Robert P; Froyland, Gary
2015-03-21
We use a Markov transition matrix-based analysis to explore the structures and structural transitions in a three-dimensional assembly of hydrogel spheres under cyclic uniaxial compression. We apply these methods on experimental data obtained from a packing of nearly frictionless hydrogel balls. This allows an exploration of the emergence and evolution of mesoscale internal structures - a key micromechanical property that governs self-assembly and self-organization in dense granular media. To probe the mesoscopic force network structure, we consider two structural state spaces: (i) a particle and its contacting neighbours, and (ii) a particle's local minimal cycle topology summarized by a cycle vector. In both spaces, our analysis of the transition dynamics reveals which structures and which sets of structures are most prevalent and most likely to transform into each other during the compression/decompression of the material. In compressed states, structures rich in 3-cycle or triangle topologies form in abundance. In contrast, in uncompressed states, transitions comprising poorly connected structures are dominant. An almost-invariant transition set within the cycle vector space is discovered that identifies an intermediate set of structures crucial to the material's transition from weakly jammed to strongly jammed, and vice versa. Preferred transition pathways are also highlighted and discussed with respect to thermo-micro-mechanical constitutive formulations. PMID:25634109
NASA Astrophysics Data System (ADS)
van Westen, Thijs; Vlugt, Thijs J. H.; Gross, Joachim
2014-01-01
An analytical equation of state (EoS) is derived to describe the isotropic (I) and nematic (N) phase of linear- and partially flexible tangent hard-sphere chain fluids and their mixtures. The EoS is based on an extension of Onsager's second virial theory that was developed in our previous work [T. van Westen, B. Oyarzún, T. J. H. Vlugt, and J. Gross, J. Chem. Phys. 139, 034505 (2013)]. Higher virial coefficients are calculated using a Vega-Lago rescaling procedure, which is hereby generalized to mixtures. The EoS is used to study (1) the effect of length bidispersity on the I-N and N-N phase behavior of binary linear tangent hard-sphere chain fluid mixtures, (2) the effect of partial molecular flexibility on the binary phase diagram, and (3) the solubility of hard-sphere solutes in I- and N tangent hard-sphere chain fluids. By changing the length bidispersity, two types of phase diagrams were found. The first type is characterized by an I-N region at low pressure and a N-N demixed region at higher pressure that starts from an I-N-N triphase equilibrium. The second type does not show the I-N-N equilibrium. Instead, the N-N region starts from a lower critical point at a pressure above the I-N region. The results for the I-N region are in excellent agreement with the results from molecular simulations. It is shown that the N-N demixing is driven both by orientational and configurational/excluded volume entropy. By making the chains partially flexible, it is shown that the driving force resulting from the configurational entropy is reduced (due to a less anisotropic pair-excluded volume), resulting in a shift of the N-N demixed region to higher pressure. Compared to linear chains, no topological differences in the phase diagram were found. We show that the solubility of hard-sphere solutes decreases across the I-N phase transition. Furthermore, it is shown that by using a liquid crystal mixture as the solvent, the solubility difference can by maximized by tuning the
Wei, Yong-Kai; Ge, Ni-Na; Chen, Xiang-Rong E-mail: cyfjkf@caep.ac.cn; Ji, Guang-Fu E-mail: cyfjkf@caep.ac.cn; Cai, Ling-Cang; Gu, Zhuo-Wei
2014-03-28
The phase transition, thermoelastic, lattice dynamic, and thermodynamic properties of the cubic metallic phase AlH{sub 3} were obtained within the density-function perturbation theory. The calculated elastic modulus and phonon dispersion curves under various pressures at 0 K indicate the cubic phase is both mechanically and dynamically stable above 73 GPa. The superconducting transition temperature T{sub c} was calculated using the Allen-Dynes modification of the McMillan formula based on BCS theory. The calculations show that T{sub c} for the cubic phase AlH{sub 3} is 8.5 K (μ{sup *}=0.1) at the onset of this phase (73 GPa), while decreases to 5.7 K at 80 GPa and almost disappears at 110 GPa, consisting with experimental phenomenon that there was no superconducting transition observed down to 4 K over a wide pressure range 110–164 GPa. It is found that the soft phonon mode for branch 1, namely, the lowest acoustic mode, plays a crucial role in elevating the total EPC parameter λ of cubic AlH{sub 3}. And the evolution of T{sub c} with pressure follows the corresponding change of this soft mode, i.e. this mode is responsible for the disappearance of T{sub c} in experiments. Meanwhile, the softening of this lowest acoustic mode originates from the electronic momentum transfer from M to R point. This phenomenon provides an important insight into why drastic changes in the diffraction pattern were observed in the pressure range of 63–73 GPa in Goncharenko's experiments. Specifically, once finite electronic temperature effects are included, we find that dynamical instabilities can be removed in the phonon dispersion for P≥63 GPa, rendering the metastability of this phase in the range of 63–73 GPa, and T{sub c} (15.4 K) becomes remarkably high under the lowest possible pressure (63 GPa) compared with that of under 73 GPa (8.5 K). Our calculations open the possibility that finite temperature may allow cubic AlH{sub 3} to be
Zahid, N Idayu; Abou-Zied, Osama K; Hashim, Rauzah; Heidelberg, Thorsten
2012-03-20
Water-driven self-assembly of lipids displays a variety of liquid crystalline phases that are crucial for membrane functions. Herein, we characterize the temperature-induced phase transitions in two compositions of an aqueous self-assembly system of the octyl β-D-glucoside (βGlcOC(8)) system, using steady-state and time-resolved fluorescence measurements. The phase transitions hexagonal ↔ micellar and cubic ↔ lamellar were investigated using tryptophan (Trp) and two of its ester derivatives (Trp-C(4) and Trp-C(8)) to probe the polar headgroup region and pyrene to probe the hydrophobic tail region. The polarity of the headgroup region was estimated to be close to that of simple alcohols (methanol and ethanol) for all phases. The pyrene fluorescence indicates that the pyrene molecules are dispersed among the tails of the hydrophobic region, yet remain in close proximity to the polar head groups. Comparing the present results with our previously reported one for βMaltoOC(12), increasing the tail length of the hexagonal phase from C(8) to C(12) leads to less interaction with pyrene, which is attributed to the more random and wobbling motion of the longer alkyl tail. We measured a reduction (more hydrophobic) in the ratio of the vibronic peak intensities of pyrene (I(1)/I(3)) for the lamellar phase compared to that of the cubic phase. The higher polarity in the cubic phase can be correlated to the nature of its interface, which curves toward the bulk water. This geometry also explains the slight reduction in polarity of the headgroup region compared to the other phases. Upon the addition of Trp-C(8), the fluorescence lifetime of pyrene is reduced by 28% in the lamellar and cubic phases, whereas the I(1)/I(3) value is only slightly reduced. The results reflect the dominant role of dynamic interaction mechanism between the C(8) chain of Trp-C(8) and pyrene. This mechanism may be important for these two phases since they participate in the process of membrane fusion
Boujnah, M.; Zaari, H.; El Kenz, A.; Labrim, H.; Benyoussef, A.; Mounkachi, O.
2014-03-28
The electronic structure, magnetic, and optical properties in cubic crystalline phase of Zr{sub 1−x}TM{sub x}O{sub 2} (TM = V, Mn, Fe, and Co) at x = 6.25% are studied using density functional theory with the Generalized Gradient Approximation and the modified Becke-Johnson of the exchange-correlation energy and potential. In our calculations, the zirconia is a p-type semiconductor and has a large band gap. We evaluated the possibility of long-range magnetic order for transition metal ions substituting Zr. Our results show that ferromagnetism is the ground state in V, Mn, and Fe-doped ZrO{sub 2} and have a high value of energy in Mn-doped ZrO{sub 2}. However, in Co-doped ZrO{sub 2}, antiferromagnetic ordering is more stable than the ferromagnetic one. The exchange interaction mechanism has been discussed to explain the responsible of this stability. Moreover, it has been found that the V, Mn, and Fe transition metals provide half-metallic properties considered to be the leading cause, responsible for ferromagnetism. Furthermore, the optical absorption spectra in the TM -doped cubic ZrO{sub 2} are investigated.
NASA Technical Reports Server (NTRS)
Reed, W. B.
1972-01-01
The sphere launcher was designed to eject a 200 lb, 15 in. diameter sphere from a space vehicle or missile, at a velocity of 58 ft/sec without imparting excessive lateral loads to the vehicle. This launching is accomplished with the vehicle operating in vacuum conditions and under a 9 g acceleration. Two principal elements are used: a high thrust, short burn time rocket motor and two snubbers for reducing the lateral loads to acceptable limits.
Dereymaker, Aswin; Van Den Mooter, Guy
2015-05-01
Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes. PMID:25702912
Angelov, Borislav; Angelova, Angelina; Vainio, Ulla; Garamus, Vasil M; Lesieur, Sylviane; Willumeit, Regine; Couvreur, Patrick
2009-04-01
To generate nanostructured vehicles with tunable internal organization, the structural phase behavior of a self-assembled amphiphilic mixture involving poly(ethylene glycol) monooleate (MO-PEG) and glycerol monooleate (MO) is studied in excess aqueous medium by time-resolved small-angle X-ray scattering (SAXS) in the temperature range from 1 to 68 degrees C. The SAXS data indicate miscibility of the two components in lamellar and nonlamellar soft-matter nanostructures. The functionalization of the MO assemblies by a MO-PEG amphiphile, which has a flexible large hydrophilic moiety, appears to hinder the epitaxial growth of a double diamond (D) cubic lattice from the lamellar (L) bilayer structure during the thermal phase transition. The incorporated MO-PEG additive is found to facilitate the formation of structural intermediates. They exhibit greater characteristic spacings and large diffusive scattering in broad temperature and time intervals. Their features are compared with those of swollen long-living intermediates in MO/octylglucoside assemblies. A conclusion can be drawn that long-living intermediate states can be equilibrium stabilized in two- or multicomponent amphiphilic systems. Their role as cubic phase precursors is to smooth the structural distortions arising from curvature mismatch between flat and curved regions. The considered MO-PEG functionalized assemblies may be useful for preparation of sterically stabilized liquid-crystalline nanovehicles for confinement of therapeutic biomolecules. PMID:19708151
NASA Astrophysics Data System (ADS)
Shirokov, V. B.; Shakhovoy, R. A.; Razumnaya, A. G.; Yuzyuk, Yu. I.
2015-07-01
A phenomenological thermodynamic theory of BaxSr1-xTiO3 (BST-x) thin films epitaxially grown on (111)-oriented cubic substrates is developed using the Landau-Devonshire approach. The group-theoretical analysis of the low-symmetry phases was performed taking into account two order parameters: the polarization related to ionic shifts in polar zone-center F1u mode and the out-of-phase rotation of TiO6 octahedra corresponding to the R25 zone-boundary mode in the parent cubic phase P m 3 ¯ m . The eight-order thermodynamic potential for BST-x solid solutions was developed and analyzed. We constructed the "concentration-misfit strain" phase diagram for BST-x thin films at room temperature and found that polar rhombohedral R3m phase with the polarization normal to the substrate is stable for x > 0.72 and negative misfit strains, while ferroelectric monoclinic C2 and Cm phases with in-plane polarization are stable for much smaller x and positive or slightly negative misfit strains. We constructed the "temperature-misfit strain" phase diagrams for several concentrations (x = 1, 0.8, 0.6, 0.4, and 0.2). Systematic changes of the phase transition lines between the paraelectric and ferroelectric phases are discussed. The phase diagrams are useful for practical applications in thin-film engineering.
Zhang, Yin; Chen, Chen; Gao, Ran; Xia, Feng; Li, YueSheng; Che, Renchao
2015-11-02
Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transition from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.
NASA Astrophysics Data System (ADS)
Flores-Ruiz, Hugo M.; Naumis, Gerardo G.
2009-10-01
Using molecular dynamics at constant pressure, the relationship between the excess of low frequency vibrational modes (known as the boson peak) and the glass transition is investigated for a truncated Lennard-Jones potential. It is observed that the quadratic mean displacement is enhanced by such modes, as predicted using a harmonic Hamiltonian for metastable states. As a result, glasses loose mechanical stability at lower temperatures than the corresponding crystal, since the Lindemann criteria are observed, as is also deduced from density functional theory. Finally, we found that the average force and elastic constant are reduced in the glass due to such excess of modes. The ratio between average elastic constants can be approximated using the 2/3 rule between melting and glass transition temperatures.
NASA Astrophysics Data System (ADS)
Vives, Eduard; Baró, Jordi; Gallardo, María Carmen; Martín-Olalla, José-María; Romero, Francisco Javier; Driver, Sarah L.; Carpenter, Michael A.; Salje, Ekhard K. H.; Stipcich, Marcelo; Romero, Ricardo; Planes, Antoni
2016-07-01
We studied the two-step martensitic transition of a Cu-Al-Ni shape-memory alloy by calorimetry, acoustic emission (AE), and resonant ultrasound spectroscopy (RUS) measurements. The transition occurs under cooling from the cubic (β , F m 3 m ) parent phase near 242 K to a mixture of orthorhombic 2 H and monoclinic 18 R phases. Heating leads first to the back transformation of small 18 R domains to β and/or 2 H near 255 K, and then to the transformation 2 H to β near 280 K. The total transformation enthalpy is Δ HT=328 ±10 J/mol and is observed as one large latent heat peak under cooling. The back-transformation entropy under heating breaks down into a large component 18 R to β at 255 K and a smaller, smeared component of the transformation 2 H to β near 280 K. The proportions inside the phase mixture depend on the thermal history of the sample. The elastic response of the sample is dominated by large elastic softening during cooling. The weakening of the elastic shear modulus shows a peak at 242 K, which is typical for the formation of complex microstructures. Cooling the sample further leads to additional changes of the microstructure and domain wall freezing, which is seen by gradual elastic hardening and increasing damping of the RUS signal. Heating from 220 K to room temperature leads to elastic anomalies due to the initial transformation, which is now shifted to high temperatures. The transition is smeared over a wider temperature interval and shows strong elastic damping. The shear modulus of the cubic phase is recovered at 280 K. The phase transformation leads to avalanches, which were recorded by AE and by time-resolved calorimetry. The cooling transition shows very extended avalanche signals in calorimetry with power-law distributions. Cooling and heating runs show AE signals over a large temperature interval above 260 K. Splitting the transformation into two martensite phases leads to power-law exponents ɛ ˜2 (β ↔ 18 R ) and ɛ ˜1.5 (β ↔ 2
Observation of a possible charge-density-wave transition in cubic Ce3Co4Sn13
NASA Astrophysics Data System (ADS)
Lue, C. S.; Liu, H. F.; Hsu, S.-L.; Chu, M. W.; Liao, H. Y.; Kuo, Y. K.
2012-05-01
We report an observation of a first-order phase transition in Ce3Co4Sn13 by means of the specific heat, electrical resistivity, Seebeck coefficient, and thermal conductivity, as well as 59Co nuclear magnetic resonance (NMR) measurements. The phase transition has been evidenced by marked features near To≃155 K in all measured physical quantities except for magnetic susceptibility. This excludes a magnetic origin for the observed phase transition. In addition, x-ray diffraction results below and above To confirm the absence of a structural change, suggesting that the peculiar phase transition is possibly related to an electronic origin and/or electron-lattice coupling such as the formation of a charge density wave (CDW). As a matter of fact, the disappearance of the double-peak feature of 59Co NMR central lines below To can be realized as the spatial modulation of the electric field gradient due to incommensurate CDW superlattices. Also, a distinct peak found in the spin-lattice relaxation rate near To manifests a phase transition and its feature can be accounted for by the thermally driven normal modes of the CDW. From the NMR analyses, we obtained a consistent picture that the change of electronic structures below To is mainly due to the weakening of p-d hybridization. Such an effect could result in possible electron-lattice instability and, thus, the formation of a CDW state in Ce3Co4Sn13.
NASA Astrophysics Data System (ADS)
Ding, Xueru; Lim, Chjan C.
2009-04-01
A statistical equilibrium theory based on the Lagrangian of the rotating shallow water equations is presented with applications to cooperative properties of large-scale features in the Jovian atmosphere when the flows have pronounced hemispherical asymmetry. Large planetary spin is shown to play a significant role in the orientation asymmetry or energy gap between cyclonic and anticyclonic vorticity distributions. This suggests that angular momentum is the key physical factor behind the statistical preference for a cyclonic vorticity distribution at high levels of flow energy. Simulation results reported here show that for a range of high energy-to-enstrophy ratios at Jupiter's parameters, a broad-based cyclonic vortex forms in one of the hemisphere with few other coherent spots. Evidence that this cooperative phenomenon arise from a first-order phase transition is discussed.
NASA Astrophysics Data System (ADS)
Huang, Ran; Purushottam, D. Gujrati
2015-09-01
Two types of recursive lattices with the identical coordination number but different unit cells (2-D square and 3-D cube) are constructed and the antiferromagnetic Ising model is solved exactly on them to study the stable and metastable states. A multi-branched structure of the 2-D plaquette model, which we introduced in this work, makes it possible to be an analog to the cubic lattice. Two solutions of each model can be found to exhibit the crystallization of liquid, and the ideal glass transition of supercooled liquid respectively. Based on the solutions, the thermodynamics on both lattices, e.g. the free energy, energy density, and entropy of the supercooled liquid, crystal, and liquid state of the model are calculated and compared with each other. Interactions between particles farther away than the nearest neighbor distance and multi-spins interactions are taken into consideration, and their effects on the thermal behavior are examined. The two lattices show comparable properties on the thermodynamics, which proves that both of them are practical to describe the regular 3-D case, especially to locate the ideal glass transition, while the 2-D multi-branched plaquette model is less accurate with the advantage of simpler formulation and less computation time consumption. Supported by National Natural Science Foundation of China under Grant No. 11505110
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2010-08-01
Prior computations have predicted the time-averaged acoustic radiation force on fluid spheres in water when illuminated by an acoustic high-order Bessel beam (HOBB) of quasi-standing waves. These computations are extended to the case of a rigid sphere in water which perfectly mimics a fluid sphere in air. Numerical results for the radiation force function of a HOBB quasi-standing wave tweezers are obtained for beams of zero, first and second order, and discussed with particular emphasis on the amplitude ratio describing the transition from progressive waves to quasi-standing waves behavior. This investigation may be helpful in the development of acoustic tweezers and methods for manipulating objects in reduced gravity environments and space related applications.
Banik, Mayukh; El-Khoury, Patrick Z; Nag, Amit; Rodriguez-Perez, Alejandro; Guarrottxena, Nekane; Bazan, Guillermo C; Apkarian, Vartkess A
2012-11-27
By taking advantage of the tensor nature of surface-enhanced Raman scattering (SERS), we track trajectories of the linker molecule and a CO molecule chemisorbed at the hot spot of a nano-dumbbell consisting of dibenzyldithio-linked silver nanospheres. The linear Stark shift of CO serves as an absolute gauge of the local field, while the polyatomic spectra characterize the vector components of the local field. We identify surface-enhanced Raman optical activity due to a transient asperity in the nanojunction in an otherwise uneventful SERS trajectory. During fusion of the spheres, we observe sequential evolution of the enhanced spectra from dipole-coupled Raman to quadrupole- and magnetic dipole-coupled Raman, followed by a transition from line spectra to band spectra, and the full reversal of the sequence. From the spectrum of CO, the sequence can be understood to track the evolution of the junction plasmon resonance from dipolar to quadrupolar to charge transfer as a function of intersphere separation, which evolves at a speed of ∼1 Å/min. The crossover to the conduction limit is marked by the transition of line spectra to Stark-broadened and shifted band spectra. As the junction closes on CO, the local field reaches 1 V/Å, limited to a current of 1 electron per vibrational cycle passing through the molecule, with associated Raman enhancement factor via the charge transfer plasmon resonance of 10(12). The local field identifies that a sharp protrusion is responsible for room-temperature chemisorption of CO on silver. The asymmetric phototunneling junction, Ag-CO-Ag, driven by the frequency-tunable charge transfer plasmon of the dumbbell antenna, combines the design elements of an ideal rectifying photocollector. PMID:23092179
B═B and B≡E (E = N and o) multiple bonds in the coordination sphere of late transition metals.
Brand, Johannes; Braunschweig, Holger; Sen, Sakya S
2014-01-21
Because of their unusual structural and bonding motifs, multiply bonded boron compounds are fundamentally important to chemists, leading to enormous research interest. To access these compounds, researchers have introduced sterically demanding ligands that provide kinetic as well as electronic stability. A conceptually different approach to the synthesis of such compounds involves the use of an electron-rich, coordinatively unsaturated transition metal fragment. To isolate the plethora of borane, boryl, and borylene complexes, chemists have also used the coordination sphere of transition metals to stabilize reactive motifs in these molecules. In this Account, we summarize our results showing that increasingly synthetically challenging targets such as iminoboryl (B≡N), oxoboryl (B≡O), and diborene (B═B) fragments can be stabilized in the coordination sphere of late transition metals. This journey began with the isolation of two new iminoboryl ligands trans-[(Cy3P)2(Br)M(B≡N(SiMe3))] (M = Pd, Pt) attached to palladium and platinum fragments. The synthesis involved oxidative addition of the B-Br bond in (Me3Si)2N═BBr2 to [M(PCy3)2] (M = Pt, Pd) and the subsequent elimination of Me3SiBr at room temperature. Variation of the metal, the metal-bound coligands, and the substituent at the nitrogen atom afforded a series of analogous iminoboryl complexes. Following the same synthetic strategy, we also synthesized the first oxoboryl complex trans-[(Cy3P)2BrPt(BO)]. The labile bromide ligand adjacent to platinum makes the complex a viable candidate for further substitution reactions, which led to a number of new oxoboryl complexes. In addition to allowing us to isolate these fundamental compounds, the synthetic strategy is very convenient and minimizes byproducts. We also discuss the reaction chemistry of these types of compounds. In addition to facilitating the isolation of compounds with B≡E (E = N, O) triple bonds, the platinum fragment can also stabilize a
Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; Ding, Yang; Shirako, Y.; Marshall, L. G.; Li, Z.-Y.; Li, X.; dos Santos, António M.; Suchomel, M. R.; Matsubayashi, K.; Uwatoko, Y.; Hwang, G. S.; Goodenough, John B.; Zhou, J.-S.
2015-01-01
The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations. PMID:25624483
NASA Technical Reports Server (NTRS)
Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali
2014-01-01
Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.
Dynamic self-assembly of non-Brownian spheres studied by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Carvente, O.; Salazar-Cruz, M.; Peñuñuri, F.; Ruiz-Suárez, J. C.
2016-02-01
Granular self-assembly of confined non-Brownian spheres under gravity is studied by molecular dynamics simulations. Starting from a disordered phase, dry or cohesive spheres organize, by vibrational annealing, into body-centered-tetragonal or face-centered-cubic structures, respectively. During the self-assembling process, isothermal and isodense points are observed. The existence of such points indicates that both granular temperature and packing fraction undergo an inversion process that may be in the core of crystal nucleation. Around the isothermal point, a sudden growth of granular clusters having the maximum coordination number takes place, indicating the outcome of a first-order phase transition. We propose a heuristic equation that successfully describes the dynamic evolution of the local packing fraction in terms of the local granular temperature, along the entire crystallization process.
Electric dipoles on the Bloch sphere
NASA Astrophysics Data System (ADS)
Vutha, Amar C.
2015-03-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics.
Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres.
Shin, Homin; Schweizer, Kenneth S
2013-02-28
We propose an Einstein-solid, self-consistent phonon theory for the crystal phase of hard spheres that interact via short-range attractions. The approach is first tested against the known behavior of hard spheres, and then applied to homogeneous particles that interact via short-range square well attractions and the Baxter adhesive hard sphere model. Given the crystal symmetry, packing fraction, and strength and range of attractive interactions, an effective harmonic potential experienced by a particle confined to its Wigner-Seitz cell and corresponding mean square vibrational amplitude are self-consistently calculated. The crystal free energy is then computed and, using separate information about the fluid phase free energy, phase diagrams constructed, including a first-order solid-solid phase transition and its associated critical point. The simple theory qualitatively captures all the many distinctive features of the phase diagram (critical and triple point, crystal-fluid re-entrancy, low-density coexistence curve) as a function of attraction range, and overall is in good semi-quantitative agreement with simulation. Knowledge of the particle localization length allows the crystal shear modulus to be estimated based on elementary ideas. Excellent predictions are obtained for the hard sphere crystal. Expanded and condensed face-centered cubic crystals are found to have qualitatively different elastic responses to varying attraction strength or temperature. As temperature increases, the expanded entropic solid stiffens, while the energy-controlled, fully-bonded dense solid softens. PMID:23464163
Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters
Walton, O.R.; Braun, R.L.
1993-11-01
The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.
Archaic artifacts resembling celestial spheres
NASA Astrophysics Data System (ADS)
Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.
We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.
Ouardi, Siham; Fecher, Gerhard H.; Stinshoff, Rolf; Felser, Claudia; Kubota, Takahide; Mizukami, Shigemi; Miyazaki, Terunobu; Ikenaga, Eiji
2012-12-10
Epitaxial thin films of Mn{sub 3-x}Co{sub x}Ga were grown on MgO by magnetron co-sputtering with different Co content. Dependent on the Co content tetragonal or cubic structures are obtained. The composition dependence of saturation magnetization M{sub S} and uniaxial magnetic anisotropy K{sub u} in the epitaxial films were investigated. A high magnetic anisotropy K{sub u} of 1.2 MJ m{sup -3} was achieved for the Mn{sub 2.6}Co{sub 0.3}Ga{sub 1.1} film with low magnetic moment of 0.84 {mu}{sub B}. The valence band spectra of the films were investigated mainly by hard x-ray photoelectron spectroscopy. The evidence of sharp states in the cubic case, which are smeared out in the tetragonal case, proof the existence of a van Hove singularity that causes a band Jahn-Teller effect accompanied by a tetragonal distortion. These differences are in well agreement to the ab-initio calculations of the electronic structure.
Zinin, P.V.; Ming, L.C.; Ishii, H.A.; Jia, R.; Acosta, T.; Hellebrand, E.
2012-07-11
We synthesized a cubic BC{sub 3} (c-BC{sub 3}) phase, by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell. A combination of x-ray diffraction, electron diffraction, transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC{sub 3}. High-resolution TEM imaging of the c-BC{sub 3} specimen recovered at ambient conditions demonstrates that the c-BC{sub 3} is a single, uniform, nanocrystalline phase with a grain size of about 3-5 nm. The EELS measurements show that the atoms inside the cubic structure are bonded by sp{sup 3} bonds. The zero-pressure lattice parameter of the c-BC{sub 3} calculated from diffraction peaks was found to be a = 3.589 {+-} 0.007 {angstrom}. The composition of the c-BC{sub 3} is determined from EELS measurements. The ratio of carbon to boron, C/B, is approximately 3 (2.8 {+-} 0.7).
The Smart SPHERES space robot (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) equipped with an Android smartphone performs a video survey inside of the International Space S...
ERIC Educational Resources Information Center
Szekely, George
2011-01-01
This article describes an art lesson that allows students to set up and collect sphere canvases. Spheres move art away from a rectangular canvas into a dimension that requires new planning and painting. From balls to many other spherical canvases that bounce, roll, float and fly, art experiences are envisioned by students. Even if adults recognize…
ERIC Educational Resources Information Center
Nathanson, Jeanne H., Ed.
1993-01-01
This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…
NASA Astrophysics Data System (ADS)
Chaney, A.; Lu, Lei; Stern, A.
2015-09-01
We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch singularities appear only after taking the commutative limit. The commutative limit of these solutions corresponds to a sphere embedded in Minkowski space. This "sphere" has several novel features. The induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become tachyonic for a range of the parameters of the theory.
Effects of periodicity on flow and dispersion through closely packed fixed beds of spheres
NASA Astrophysics Data System (ADS)
Reynolds, A. M.
2002-02-01
A lattice-Boltzmann formulation is used to investigate the effects of ``periodicity'' (geometry) on fluid flow and tracer-particle dispersion through fixed beds of spheres comprising of closely packed layers. In the ``period-1'' arrangement, spheres in the adjacent layers contact at their poles while the ``period-2'' and ``period-3'' arrangements correspond to hexagonal and faced-centered cubic close packing. For all three packing arrangements, there is a transition with increasing Reynolds number from a power law to a log-normal distribution of kinetic energies and, velocity and vorticity become more closely aligned giving rise to helical tracer-particle trajectories. It is suggested that these flow characteristics, unlike the stability of flow and the distribution of helicity, are largely insensitive to geometry, even when the geometry creates direct channels through the pack bed orientated along the gradient in applied pressure. For steady flows and strongly turbulent flows, such channels are predicted to provide direct routes for dispersion through a packed bed, while for weakly turbulent flows they influence dispersion primarily by destabilizing the flow and thereby promoting dispersion throughout a bed. The dispersion of tracer-particles released from a source located on or close to a ``stagnation streamline'' is predicted to be faster than ballistic in the near field and the transition to long-time Fickian diffusion is predicted to be distinguished by a regime of subdiffusion.
Quantum states of two particles on concentric spheres
NASA Astrophysics Data System (ADS)
Ezra, Gregory S.; Berry, R. Stephen
1983-10-01
The model of two particles on a sphere is extended to two particles on concentric spheres (POCS). The quantum states are found for two electrons, one on a sphere of radius 10 a.u. (simulating the shell n=3 in He) and the other, on spheres of 10, 15, 25, 50, and 100 a.u. The eigenvalues and densities ρ(θ12) exhibit a transition from collective, moleculelike behavior to independent-particle-like behavior with Russell-Saunders coupling. The parallel problem of two particles with electron masses interacting via a repulsive Gaussian potential is also treated and a similar transition from collective to independent-particle behavior found. The principal difference between the two cases is only the region of radius of the larger sphere where the transition occurs.
NASA Astrophysics Data System (ADS)
Pastore, G.; Bernu, B.; Hansen, J. P.; Hiwatari, Y.
1988-07-01
Using molecular-dynamics (MD) data on a binary-alloy model, we have computed the self (incoherent) -part of the density autocorrelation functions of both species in the supercooled liquid and near the glass transition, over an extensive range of wave numbers. Standard theoretical models of liquid-state theory fail to reproduce the data, while the Chudley-Elliott jump diffusion model yields reasonable results in the glass range. With a suitable scaling of the time axis, the data for different temperatures can be brought onto a single master curve, which is well fitted by a Kohlrausch (``stretched-exponential'') function with a wave-number-dependent exponent.
Piecewise Cubic Interpolation Package
Energy Science and Technology Software Center (ESTSC)
1982-04-23
PCHIP (Piecewise Cubic Interpolation Package) is a set of subroutines for piecewise cubic Hermite interpolation of data. It features software to produce a monotone and "visually pleasing" interpolant to monotone data. Such an interpolant may be more reasonable than a cubic spline if the data contain both 'steep' and 'flat' sections. Interpolation of cumulative probability distribution functions is another application. In PCHIP, all piecewise cubic functions are represented in cubic Hermite form; that is, f(x)more » is determined by its values f(i) and derivatives d(i) at the breakpoints x(i), i=1(1)N. PCHIP contains three routines - PCHIM, PCHIC, and PCHSP to determine derivative values, six routines - CHFEV, PCHFE, CHFDV, PCHFD, PCHID, and PCHIA to evaluate, differentiate, or integrate the resulting cubic Hermite function, and one routine to check for monotonicity. A FORTRAN 77 version and SLATEC version of PCHIP are included.« less
Weisemoeller, T.; Bertram, F.; Gevers, S.; Greuling, A.; Deiter, C.; Tobergte, H.; Neumann, M.; Wollschlaeger, J.; Giussani, A.; Schroeder, T.
2009-06-15
Films of hexagonal praseodymium sesquioxide (h-Pr{sub 2}O{sub 3}) were deposited on Si(111) by molecular beam epitaxy and thereafter annealed in 1 atm oxygen at different temperatures, ranging from 100 to 700 deg. C. The films of the samples annealed at 300 deg. C or more were transformed to PrO{sub 2} with B-oriented Fm3m structure, while films annealed at lower temperatures kept the hexagonal structure. The films are composed of PrO{sub 2} and PrO{sub 2-d}elta species, which coexist laterally and are tetragonally distorted due to the interaction at the interface between oxide film and Si substrate. Compared to PrO{sub 2}, PrO{sub 2-d}elta has the same cubic structure but with oxygen vacancies. The oxygen vacancies are partly ordered and increase the vertical lattice constant of the film, whereas the lateral lattice constant is almost identical for both species and on all samples. The latter lattice constant matches the lattice constant of the originally crystallized hexagonal praseodymium sesquioxide. That means that no long range reordering of the praseodymium atoms takes place during the phase transformation.
NASA Astrophysics Data System (ADS)
Mukherji, Debashis; Strunz, Pavel; Piegert, Sebastian; Gilles, Ralph; Hofmann, Michael; Hölzel, Markus; Rösler, Joachim
2012-06-01
Co-Re-based alloys have been developed to supplement the Ni-base superalloys used in gas turbine applications at high temperatures (1473 K [1200 °C] bare metal temperature). Unlike other commercial Co-based alloys, the Co matrix in the Co-Re alloys has a stable hexagonal close-packed (hcp) structure at room temperature. In situ neutron diffraction measurements on experimental Co-Re alloys hardened by carbide precipitates showed that the matrix undergoes an hcp ⇆ face-centered cubic (fcc) allotropic transformation after heating to high temperatures. Furthermore, it was found that this transformation has a large hysteresis (~100 K). Thermodynamic calculations were undertaken to study the high-temperature phase stability and transformations in the complex multicomponent, multiphase Co-Re-Cr-C system with or without the addition of Ta. The results show that the minor phases (Cr23C6-type carbides and the Cr2Re3-type σ phase) play an important role in the hcp ⇆ fcc hysteresis by influencing the partitioning of Cr and Re between the matrix and the other phases.
NASA Technical Reports Server (NTRS)
Benavides, Jose
2014-01-01
SPHERES is a facility of the ISS National Laboratory with three IVA nano-satellites designed and delivered by MIT to research estimation, control, and autonomy algorithms. Since Fall 2010, The SPHERES system is now operationally supported and managed by NASA Ames Research Center (ARC). A SPHERES Program Office was established and is located at NASA Ames Research Center. The SPHERES Program Office coordinates all SPHERES related research and STEM activities on-board the International Space Station (ISS), as well as, current and future payload development. By working aboard ISS under crew supervision, it provides a risk tolerant Test-bed Environment for Distributed Satellite Free-flying Control Algorithms. If anything goes wrong, reset and try again! NASA has made the capability available to other U.S. government agencies, schools, commercial companies and students to expand the pool of ideas for how to test and use these bowling ball-sized droids. For many of the researchers, SPHERES offers the only opportunity to do affordable on-orbit characterization of their technology in the microgravity environment. Future utilization of SPHERES as a facility will grow its capabilities as a platform for science, technology development, and education.
NASA Astrophysics Data System (ADS)
Shaulov, S. B.; Besshapov, S. P.; Kabanova, N. V.; Sysoeva, T. I.; Antonov, R. A.; Anyuhina, A. M.; Bronvech, E. A.; Chernov, D. V.; Galkin, V. I.; Tkaczyk, W.; Finger, M.; Sonsky, M.
2009-12-01
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10-10 eV.
PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES
McNees, R.A. Jr.; Taylor, A.J.
1963-12-31
A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)
ERIC Educational Resources Information Center
Field, David; And Others
1992-01-01
Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)
ERIC Educational Resources Information Center
Thompson, Sandy, Ed.; And Others
1990-01-01
This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…
NASA Public Affairs Officer Kelly Humphries conducts a phone interview with Mark Micire, SPHERES Engineering Manager at Ames Research Center. Questions? Ask us on Twitter @NASA_Johnson and include ...
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1986-01-01
The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
Catalytic, hollow, refractory spheres
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1987-01-01
Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1989-01-01
The improved, heterogeneous catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitably formed of a shell (12) of metal such as aluminum having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be, itself, catalytic or the catalyst can be coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
NASA Astrophysics Data System (ADS)
Sun, Xiaochun
The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.
NASA Astrophysics Data System (ADS)
Li, Tengfei; Liu, Tianmo; Wei, Hongmei; Hussain, Shahid; Wang, Jinxing; Zeng, Wen; Peng, Xianghe; Wang, Zhongchang
2015-11-01
The twin boundary energies of TiN, ZrN, HfN, TiC, ZrC, HfC, VC, NbC and TaC and the adhesion energies of twin interfaces and interfaces of TiN/ZrN, VC/TiC and TiN/TiC were calculated using first-principles methods. A new route in the preparation of mechanically superhard films has been proposed by introducing twin into the multilayer of transition-metal nitrides and carbides.
Numerical simulation of a shear-thinning fluid through packed spheres
NASA Astrophysics Data System (ADS)
Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol
2012-12-01
Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.
Accurate monotone cubic interpolation
NASA Technical Reports Server (NTRS)
Huynh, Hung T.
1991-01-01
Monotone piecewise cubic interpolants are simple and effective. They are generally third-order accurate, except near strict local extrema where accuracy degenerates to second-order due to the monotonicity constraint. Algorithms for piecewise cubic interpolants, which preserve monotonicity as well as uniform third and fourth-order accuracy are presented. The gain of accuracy is obtained by relaxing the monotonicity constraint in a geometric framework in which the median function plays a crucial role.
DNS of Swirling Flow Past a Sphere
NASA Astrophysics Data System (ADS)
Higgins, Keith; Ooi, Andrew; Chong, Min; Balachandar, S.
2001-11-01
Experimental investigations into the swirling flow past a sphere have revealed a range of surprising and complex flow phenomena. These results have advanced our understanding in applications such as particle entrainment and the combustion of fuel droplets. Renewed interest in this problem has been kindled by recent experimental observations. (Mattner et al. 2001, submitted for review to J. Fluid Mech.) This has motivated the development of a fully spectral direct numerical simulation of the three-dimensional time-dependent swirling flow past a sphere. The effect of swirl on the various transitions in the wake structure behind a sphere is unknown. The main objective of our study is to identify transitions that occur with increasing Reynolds number and swirl strength. Firstly, we show the effect of swirl strength on the axisymmetric sphere wake and drag. Then, using a three-dimensional simulation, we examine the effect of swirl on the time histories of the lift, drag and velocities. We hope to show some visualisations of the topology of the 3D wake flow using the invariants of the velocity gradient tensor.
Rotzinger, François P
2015-11-01
The electron self-exchange reaction FeCl(OH2)5(2+) + Fe(OH2)6(2+) → Fe(OH2)6(2+) + FeCl(OH2)5(2+), proceeding via the inner-sphere pathway, was investigated with quantum chemical methods. Geometry and vibrational frequencies of the precursor/successor complex, (H2O)5Fe(III)ClFe(II)(OH2)5(4+)/(H2O)5Fe(II)ClFe(III)(OH2)5(4+) (P/S), and the transition state, (H2O)5FeClFe(OH2)5(4+⧧) (TS), were computed with the LC-BOP functional and CPCM hydration. Bent and linear structures were computed for the TS and P/S. The electronic coupling matrix element (Hab) and the electronic energies were calculated with multistate extended general multiconfiguration quasi-degenerate second-order perturbation theory (XGMC-QDPT2) and spin-orbit configuration interaction (SO-CI). Since the Fe···Fe distance changes considerably along the electron transfer step, the transformation P → TS → S, equations based on the hypothesis of a fixed donor-acceptor distance cannot be applied. Hence, the rate constant for the electron transfer step (ket) was calculated as described previously (Rotzinger, F. P. Inorg. Chem. 2014, 53, 9923). ket is very fast, ∼9.4 × 10(8)-6.6 × 10(9) s(-1) at 0 °C. The experimental rate constant of the title reaction (k) is much slower and controlled by the formation of the precursor complex. The substitution of a water ligand by FeCl(OH2)5(2+) at Fe(OH2)6(2+) is rate-determining. PMID:26479082
Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
2000-01-01
Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g
Diagnosis of a poorly performing liquid hydrogen bulk storage sphere
NASA Astrophysics Data System (ADS)
Krenn, Angela Gray
2012-06-01
There are two 3,218 cubic meter (850,000 gallon) Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A, the other at Launch Pad B. The Sphere at Pad B had a high boiloff rate when brought into service in the 1960s. In 2001, the daily commodity loss was approximately double that of the Pad A sphere, and well above the maximum allowed by the specification. After being re-painted in the 1990s a "cold spot" appeared on the outer sphere that resulted in poor paint bonding and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of service, which provided a unique opportunity to perform a series of visual inspections of the insulation. Boroscope examinations revealed a large Perlite void in the region where the cold spot was apparent. Perlite was then trucked in and offloaded into the annular void region until full. The sphere has not yet been brought back into service.
NASA Astrophysics Data System (ADS)
Tkachuk, A. M.; Ivanova, S. E.; Mirzaeva, A. A.; Joubert, M.-F.; Guyot, Y.
2014-03-01
Using the Bridgman-Stockbarger technique, we have grown a series of cubic crystals Na0.4Y0.6F2.2:Pr3+ (NYF:Pr3+) with a content of praseodymium in the range of 0.04-9 at %. We have determined the composition of crystals, evaluated their optical quality, and found the incorporation coefficient of Pr3+ ions into the Na0.4Y0.6F2.2 matrix ( K Pr ˜ 0.9). We have examined optical spectra of NaYF:Pr3+ crystals at room and low (7 K) temperatures in the range of 200-2500 nm. The low-temperature absorption spectra of NYF:Pr3+ crystals have been shown to consist of broad weakly structured bands. Based on the analysis of low-temperature absorption spectra, the structure of the Stark splitting of praseodymium levels has been represented in terms of a model of "quasi-centers," which are characterized by an inhomogeneous broadening of Stark components. From experimental absorption cross-section spectra at T = 300 K, we have calculated oscillator strengths for transitions from the ground state 3 H 4 to excited multiplets 3 H 5, 3 H 6, 3 F j ( j = 2, 3, 4), 1 G 4, 1 D 2, and (3 P j ,1 I 6) ( j = 0, 1, 2). Using the Judd-Ofelt method, we have determined intensity parameters Ω t and found that Ω2 = 0, Ω4 = 4.4 × 10-20, and Ω6 = 2.28 × 10-20 cm2. With these values, we have calculated the probabilities of radiative transitions, the branching coefficients, and the lifetimes of the radiative levels 1 D 2 and 3 P 0. The probabilities of multiphonon nonradiative transitions in NYF:Pr3+ crystals have been estimated. Using the method of kinetic spectroscopy with selective excitation, we have investigated the luminescence decay kinetics of praseodymium from the 3 P 0 and 1 D 2 levels upon their selective resonant excitation by nanosecond laser pulses. The inference has been made that Na0.4Y0.6F2.2:Pr3+ crystals are processable; admit doping by praseodymium in high concentrations; and, with respect to all their radiative characteristics, can be potentially considered as active media for
Vacancy-dependent stability of cubic and wurtzite Ti1−xAlxN
Euchner, H.; Mayrhofer, P.H.
2015-01-01
While it is well-known that supersaturated cubic-structured Ti1−xAlxN can be prepared by physical vapor deposition, the impact of point defects on formation process and cubic to wurtzite transition is largely unexplored. Irrespective of point defects, ab initio calculations correctly predict the Al concentration of the cubic to wurtzite transition. By means of density functional theory we show that vacancies on metal and/or non-metal sites only slightly affect the cubic to wurtzite transition region, whereas they clearly affect the physical properties. PMID:26412921
NASA Astrophysics Data System (ADS)
Peng, Gan Chew; Hin, Pooi Ah; Ho, C. K.
2015-12-01
The power-normal distribution given in Yeo and Johnson in year 2000 is a unimodal distribution with wide ranges of skewness and kurtosis. A shortcoming of the power-normal distribution is that the negative and positve parts of the underlying random variable have to be specified by two different expressions of the standard normal random variable. In this paper, we construct a new distribution, called the cubic-normal distribution, via a single polynomial expression in cubic root function. Apart from having the properties which are similar to those of the power-normal distribution, this cubic-normal distribution can be developed into a multivariate version which is more attractive from the theoretical and computational points of view.
Packings of a charged line on a sphere
NASA Astrophysics Data System (ADS)
Alben, Silas
2008-12-01
We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations—“baseball seam” and “twist”—which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.
Krogh, M.; Painter, J.; Hansen, C.
1996-10-01
Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the M.
NASA Astrophysics Data System (ADS)
Claudi, R.; Gratton, R.; Desidera, S.; Maire, A.-L.; Mesa, D.; Turatto, M.; Baruffolo, A.; Cascone, E.; De Caprio, V.; D'Orazi, V.; Fantinel, D.; Giro, E.; Salasnich, B.; Scuderi, S.; Sissa, E.; Beuzit, J.-L.; Mouillet, D.
The Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE) facility mounted at ESO-VLT aims at discovering giant extrasolar planets in the proximity of bright stars and characterising them through spectroscopic and polarimetric observations. SPHERE is a complete system with a core made of an extreme-Adaptive Optics (XAO) turbulence correction, a pupil tracker and NIR and Visible coronagraph devices. At its back end, a differential dual imaging camera (IRDIS) and an integral field spectrograph (IFS) work in the Near Infrared (NIR) (0.95 < lambda < 2.32 μm) while a high resolution polarization camera covers the visible domain (0.6 < lambda < 0.9 μm). The IFS is a low resolution spectrograph (R˜50) that operates in the near IR (0.95< lambda < 1.6 μm), an optimal wavelength range for the detection of planetary features, over a field of view of about 1.7 × 1.7 square arcsecs. From spectra it is possible to reconstruct monochromatic images with high contrast (10-6 at 0.5 arcsec) and high spatial resolution, well inside the star PSF. The commissioning of the instrument ended in October 2014 and ESO has already offered SPHERE to the community. In this paper several results obtained during the commissioning and science verification phase are described.
Myers, B.F.; Montgomery, F.C.; Morris, R.N.
1993-08-01
The equivalent sphere model, which is widely used in calculating the release of fission gases from nuclear fuel, is idealized. The model is based on the diffusion of fission products in and their escape from a homogeneous sphere of fuel; the fission products are generated at a constant rate and undergo radiodecay. The fuel is assumed to be a set of spherical particles with a common radius. The value of the radius is such that the surface-to-volume ratio, S/V, of the set of spherical particles is the same as the S/V of the fuel mass of interest. The release rate depends on the dimensionless quantity {lambda}a{sup 2}/D where {lambda} is the radiodecay constant, a, the equivalent sphere radius and D, the diffusion coefficient. In the limit {lambda}t {much_gt} 1, the steady-state fractional release for isotopes with half-lives less than about 5 d is given by the familiar relation R/B = 3{radical}D/{lambda}a{sup 2} (1). For the spherical particles, S/V = 3/a. However, in important cases, the assumption of a single value of a is inappropriate. Examples of configurations for which multiple values of a are appropriate include powders, hydrolyzed fuel kernels, normally configured HTR fuel particles and perhaps, fuel kernels alone. In the latter case, one can imagine a distribution of values of a whose mean yields the value appropriate for agreement of Eq. (1) with measurement.
Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Mueller, Alexander H; Luo, Hongmei
2013-04-30
A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.
Phase behavior of binary hard-sphere mixtures from perturbation theory.
Velasco, E; Navascués, G; Mederos, L
1999-09-01
Using a first-order perturbation theory, we have studied the phase diagram of a binary mixture of hard spheres for different values of the size ratio. Recent models for the two-body depletion potential between large spheres are used to take into account the role of the small spheres. The theory predicts a complex phase diagram including a fluid-solid transition at high packing fraction of small spheres, metastability of fluid-fluid demixing, an isostructural solid-solid transition at high packing fraction of the large spheres for sufficiently small values of the size ratio q of the spheres, and the tendency to sticky-sphere behavior in the limit q-->0. The agreement with recent simulation results is quite good. We also show that this phenomenology was already implicit in the pioneering work of Asakura and Oosawa. PMID:11970123
Dendritic Growth of Hard-Sphere Crystals. Experiment 34
NASA Technical Reports Server (NTRS)
Russel, W. B.; Chaikin, P. M.; Zhu, Ji-Xiang; Meyer, W. V.; Rogers, R.
1998-01-01
Recent observations of the disorder-order transition for colloidal hard spheres under microgravity revealed dendritic crystallites roughly 1-2 mm in size for samples in the coexistence region of the phase diagram. Order-of-magnitude estimates rationalize the absence of large or dendritic crystals under normal gravity and their stability to annealing in microgravity. A linear stability analysis of the Ackerson and Schaetzel model for crystallization of hard spheres establishes the domain of instability for diffusion-limited growth at small supersaturations. The relationship between hard-sphere and molecular crystal growth is established and exploited to relate the predicted linear instability to the well-developed dendrites observed.
Conforming quadrilaterals meshes on the cubed sphere.
Taylor, Mark A.; Levy, Michael Nathan; Overfelt, James Robert
2010-08-01
The cubed sphere geometry, obtained by inscribing a cube in a sphere and mapping points between the two surfaces using a gnomonic (central) projection, is commonly used in atmospheric models because it is free of polar singularities and is well-suited for parallel computing. Global meshes on the cubed-sphere typically project uniform (square) grids from each face of the cube onto the sphere, and if refinement is desired then it is done with non-conforming meshes - overlaying the area of interest with a finer uniform mesh, which introduces so-called hanging nodes on edges along the boundary of the fine resolution area. An alternate technique is to tile each face of the cube with quadrilaterals without requiring the quads to be rectangular. These meshes allow for refinement in areas of interest with a conforming mesh, providing a smoother transition between high and low resolution portions of the grid than non-conforming refinement. The conforming meshes are demonstrated in HOMME, NCAR's High Order Method Modeling Environment, where two modifications have been made: the dependence on uniform meshes has been removed, and the ability to read arbitrary quadrilateral meshes from a previously-generated file has been added. Numerical results come from a conservative spectral element method modeling a selection of the standard shallow water test cases.
Ultraviolet characterization of integrating spheres.
Shaw, Ping-Shine; Li, Zhigang; Arp, Uwe; Lykke, Keith R
2007-08-01
We have studied the performance of polytetrafluoroethylene integrating spheres in the ultraviolet (UV) region with wavelengths as short as 200 nm. Two techniques were used for this study; first, the spectral throughput of an integrating sphere irradiated by a deuterium lamp was analyzed by a monochromator. Second, a UV laser beam was directed into an integrating sphere, and spectrally dispersed laser induced fluorescence was studied. Significant absorption and fluorescence features were observed in the UV region and attributed to the contamination in the integrating sphere. We demonstrate that integrating spheres are easily contaminated by environmental pollutants such as polycyclic aromatic hydrocarbons emitted from engine exhaust. Baking of the contaminated integrating sphere can reverse some but not all of the effects caused by contaminants. The implications for using integrating spheres for UV measurement are discussed. PMID:17676122
Ultraviolet characterization of integrating spheres
NASA Astrophysics Data System (ADS)
Shaw, Ping-Shine; Li, Zhigang; Arp, Uwe; Lykke, Keith R.
2007-08-01
We have studied the performance of polytetrafluoroethylene integrating spheres in the ultraviolet (UV) region with wavelengths as short as 200 nm. Two techniques were used for this study; first, the spectral throughput of an integrating sphere irradiated by a deuterium lamp was analyzed by a monochromator. Second, a UV laser beam was directed into an integrating sphere, and spectrally dispersed laser induced fluorescence was studied. Significant absorption and fluorescence features were observed in the UV region and attributed to the contamination in the integrating sphere. We demonstrate that integrating spheres are easily contaminated by environmental pollutants such as polycyclic aromatic hydrocarbons emitted from engine exhaust. Baking of the contaminated integrating sphere can reverse some but not all of the effects caused by contaminants. The implications for using integrating spheres for UV measurement are discussed.
Krogh, M.; Hansen, C.; Painter, J.; de Verdiere, G.C.
1995-05-01
Sphere rendering is an important method for visualizing molecular dynamics data. This paper presents a parallel divide-and-conquer algorithm that is almost 90 times faster than current graphics workstations. To render extremely large data sets and large images, the algorithm uses the MIMD features of the supercomputers to divide up the data, render independent partial images, and then finally composite the multiple partial images using an optimal method. The algorithm and performance results are presented for the CM-5 and the T3D.
Ellipsoids beat Spheres: Experiments with Candies, Colloids and Crystals
NASA Astrophysics Data System (ADS)
Chaikin, Paul
2006-04-01
How many gumballs fit in the glass sphere of a gumball machine? Scientists have been puzzling over problems like this since the Ancient Greeks. Yet it was only recently proven that the standard way of stacking oranges at a grocery store--with one orange on top of each set of three below--is the densist packing for spheres, with a packing fraction φ˜ 0.74. Random (amorphous) packings of spheres have a lower density, with φ ˜0.64. The density of crystalline and random packings of atoms is intimately related to the melting transition in matter. We have studied the crystal-liquid transition in spherical colloidal systems on earth and in microgravity. The simplest objects to study after spheres are squashed spheres -- ellipsoids. Surprisingly we find that ellipsoids can randomly pack more densely than spheres, up to φ˜0.68 - 0.71 for a shape close to that of M&M's^ Candies, and even approach φ˜0.75 for general ellipsoids. The higher density relates directly to the higher number of neighbors needed to prevent the more asymetric ellipsoid from rotating. We have also found the ellipsoids can be packed in a crystalline array to a density, φ˜.7707 which exceeds the highest previous packing. Our findings provide insights into granular materials, rigidity, crystals and glasses, and they may lead to higher quality ceramic materials.
Numerical simulation of negative Magnus force on a rotating sphere
NASA Astrophysics Data System (ADS)
Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki
2010-11-01
Flow characteristics and fluid force on a sphere rotating along with axis perpendicular to mean air flow were investigated using Large Eddy Simulation at two different Reynolds numbers of 10,000 and 200,000. As a result of simulation, opposite flow characteristics around the sphere and displacement of the separation point were visualized depending on the Reynolds number even though the sphere rotates at the same rotation speed according to the Reynolds number. When Reynolds number is 10,000, flow characteristics agree with the flow field explained in the Magnus effect. However sphere rotates at the same rotation speed while increasing Reynolds number to 200,000, separation point moves in opposite direction and wake appears in the different direction. The reason of the negative Magnus force was discussed in terms of the boundary layer transition on the surface.
The role of attractive interactions in rod-sphere mixtures.
Antypov, Dmytro; Cleaver, Douglas J
2004-06-01
We present a computer simulation study of binary mixtures of prolate Gay-Berne particles and Lennard-Jones spheres. Results are presented for three such rod-sphere systems which differ from each other only in the interaction between unlike particles. Both the mixing-demixing behavior and the transitions between the isotropic and any liquid crystalline phases are studied for each system, as a function of temperature and concentration ratio. For systems which show macroscopic demixing, the rod-sphere interaction is shown to give direct control over interfacial anchoring properties, giving rise to the possibility of micellar phase formation in the case of homeotropic anchoring. Additionally, it is shown that on incorporating high concentrations of spheres into a system of rods with weak demixing properties, microphase-separated structures can be induced, including bicontinuous and lamellar arrangements. PMID:15268056
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Hynninen, Antti-Pekka; Dijkstra, Marjolein
2005-04-01
Phase diagrams of hard and soft spheres with a fixed dipole moment are determined by calculating the Helmholtz free energy using simulations. The pair potential is given by a dipole-dipole interaction plus a hard-core and a repulsive Yukawa potential for soft spheres. Our system models colloids in an external electric or magnetic field, with hard spheres corresponding to uncharged and soft spheres to charged colloids. The phase diagram of dipolar hard spheres shows fluid, face-centered-cubic (fcc), hexagonal-close-packed (hcp), and body-centered-tetragonal (bct) phases. The phase diagram of dipolar soft spheres exhibits, in addition to the above mentioned phases, a body-centered-orthorhombic (bco) phase, and it agrees well with the experimental phase diagram [Nature (London) 421, 513 (2003)]. Our results show that bulk hcp, bct, and bco crystals can be realized experimentally by applying an external field. PMID:15904046
Dynamical tachyons on fuzzy spheres
Berenstein, David; Trancanelli, Diego
2011-05-15
We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set up a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.
Dynamical tachyons on fuzzy spheres
NASA Astrophysics Data System (ADS)
Berenstein, David; Trancanelli, Diego
2011-05-01
We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set up a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.
Bidispersed Sphere Packing on Spherical Surfaces
NASA Astrophysics Data System (ADS)
Atherton, Timothy; Mascioli, Andrew; Burke, Christopher
Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.
Rainbow Scattering by a Coated Sphere
NASA Technical Reports Server (NTRS)
Lock, James A.; Jamison, J. Michael; Lin, Chih-Yang
1994-01-01
We examine the behavior of the first-order rainbow for a coated sphere by using both ray theory and Aden-Kerker wave theory as the radius of the core alpha(sub 12) and the thickness of the coating beta are varied. As the ratio beta/alpha(sub 12) increases from 10(sup -4) to 0.33, we find three classes of rainbow phenomena that cannot occur for a homogeneous-sphere rainbow. For beta/alpha(sub 12) approx less than 10(sup -3), the rainbow intensity is an oscillatory function of the coating thickness, for beta/alpha(sub 12) approx. 10(sup -2), the first-order rainbow breaks into a pair of twin rainbows, and for beta/alpha(sub 12) approx. 0.33, various rainbow-extinction transitions occur. Each of these effects is analyzed, and their physical interpretations are given. A Debye series decomposition of coated-sphere partial-wave scattering amplitudes is also performed and aids in the analysis.
Rainbow scattering by a coated sphere.
Lock, J A; Jamison, J M; Lin, C Y
1994-07-20
We examine the behavior of the first-order rainbow for a coated sphere by using both ray theory and Aden-Kerker wave theory as the radius of the core a(12) and the thickness of the coating δ are varied. As the ratio δ/a(12) increases from 10(-4) to 0.33, we find three classes of rainbow phenomena that cannot occur for a homogeneous-sphere rainbow. For δ/a(12) ≲ 10(-3), the rainbow intensity is an oscillatory function of the coating thickness, for δ/a(12) ≈ 10(-2), the first-order rainbow breaks into a pair of twin rainbows, and for δ/a(12) ≈ 0.33, various rainbow-extinction transitions occur. Each of these effects is analyzed, and their physical interpretations are given. A Debye series decomposition of coated-sphere partial-wave scattering amplitudes is also performed and aids in the analysis. PMID:20935838
Periodically oscillating plasma sphere
Park, J.; Nebel, R.A.; Stange, S.; Murali, S. Krupakar
2005-05-15
The periodically oscillating plasma sphere, or POPS, is a novel fusion concept first proposed by D. C. Barnes and R. A. Nebel [Fusion Technol. 38, 28 (1998)]. POPS utilizes the self-similar collapse of an oscillating ion cloud in a spherical harmonic oscillator potential well formed by electron injection. Once the ions have been phase-locked, their coherent motion simultaneously produces very high densities and temperatures during the collapse phase of the oscillation. A requirement for POPS is that the electron injection produces a stable harmonic oscillator potential. This has been demonstrated in a gridded inertial electrostatic confinement device and verified by particle simulation. Also, the POPS oscillation has been confirmed experimentally through observation that the ions in the potential well exhibit resonance behavior when driven at the POPS frequency. Excellent agreement between the observed POPS frequencies and the theoretical predictions has been observed for a wide range of potential well depths and three different ion species. Practical applications of POPS require large plasma compressions. These large compressions have been observed in particle simulations, although space charge neutralization remains a major issue.
Multiply charged monopoles in cubic dimer model
NASA Astrophysics Data System (ADS)
Ganesh Jaya, Sreejith; Powell, Stephen
2015-03-01
The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.
Science off the Sphere: Bistronauts
International Space Station Expedition 30 astronaut Don Pettit demonstrates physics in space for 'Science off the Sphere.' Through a partnership between NASA and the American Physical Society you c...
Ancient Celestial Spheres from Greece
NASA Astrophysics Data System (ADS)
Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.
2006-08-01
We present several ancient celestial spheres from the 8th century B.C. found throughout Greece, mainly in Thessaly, at the temple of Itonia Athena, but also in Olympia and other places. These celestial spheres have an axis, equator and several meridians and they have several markings with the symbol of stars (today's symbol for the Sun) $\\odot$. Such instruments could have been used to measure the time, the latitude of a location, or the coordinates of stars.
NASA Astrophysics Data System (ADS)
Chesneau, O.; Schmid, H.-M.; Carbillet, M.; Chiavassa, A.; Abe, L.; Mouillet, D.
2013-05-01
SPHERE, the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument for the VLT is optimized towards reaching the highest contrast in a limited field of view and at short distances from the central star, thanks to an extreme AO system. SPHERE is very well suited to study the close environment of Betelgeuse, and has a strong potential for detecting the ejection activity around this key red supergiant.
NASA Astrophysics Data System (ADS)
Shoockron, Joseph
1989-06-01
This work deals with the analysis and calculation of the critical angle for the ricochet of a sphere off water. The critical angle is defined as the maximum incidence angle of a sphere over water which enables it to ricochet. This work presents the development and calculation of the forces acting on the sphere during its entry into the water. Since the critical angle is very sensitive to the hydrodynamic forces, the accurate development and calculation of these forces has been emphasized in some previous methods. There is a simple empirical formula for calculation of the critical angle, which is theta(sub c) = 18 deg/square root of zeta, where theta(sub c) is the critical angle and zeta is the ratio between the density of the sphere and the density of the water. Likewise, there are works which give a theoretical basis to the above-mentioned formula. This formula does not depend on the incidence velocity of the sphere or on the sphere radius, these being parameters that affect the critical angle. In this work it is verified that the critical angle depends on these added parameters, in the form of the F(sub r) number, where F(sub r) = V(exp 2)/Rg.
Confined disordered strictly jammed binary sphere packings
NASA Astrophysics Data System (ADS)
Chen, D.; Torquato, S.
2015-12-01
Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these
NASA Astrophysics Data System (ADS)
Russier, V.
2016-07-01
The low temperature behavior of densely packed interacting spherical single domain nanoparticles (MNP) is investigated by Monte Carlo simulations in the framework of an effective one spin model. The particles are distributed through a hard sphere like distribution with periodic boundary conditions and interact through the dipole dipole interaction (DDI) with an anisotropy energy including both cubic and uniaxial symmetry components. The cubic component is shown to play a sizable role on the value of the blocking temperature Tb only when the MNP easy axes are parallel to the cubic easy direction ([111] direction for a negative cubic anisotropy constant). The nature of the collective low temperature state, either ferromagnetic or spin glass like, is found to depend on the ratio of the anisotropy to the dipolar energies characterizing partly the disorder in the system.
Porous Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, Fred
2005-01-01
This document is a slide presentation that examines the use of a simple templating process to produce hollow ceramic spheres with a pore size of 1 to 10 microns. Using ion exchange process it was determined that the method produces porous ceramic spheres with a unique structure: (i.e., inner sphere surrounded by an outer sphere.)
Large attractive depletion interactions in soft repulsive-sphere binary mixtures.
Cinacchi, Giorgio; Martínez-Ratón, Yuri; Mederos, Luis; Navascués, Guillermo; Tani, Alessandro; Velasco, Enrique
2007-12-01
We consider binary mixtures of soft repulsive spherical particles and calculate the depletion interaction between two big spheres mediated by the fluid of small spheres, using different theoretical and simulation methods. The validity of the theoretical approach, a virial expansion in terms of the density of the small spheres, is checked against simulation results. Attention is given to the approach toward the hard-sphere limit and to the effect of density and temperature on the strength of the depletion potential. Our results indicate, surprisingly, that even a modest degree of softness in the pair potential governing the direct interactions between the particles may lead to a significantly more attractive total effective potential for the big spheres than in the hard-sphere case. This might lead to significant differences in phase behavior, structure, and dynamics of a binary mixture of soft repulsive spheres. In particular, a perturbative scheme is applied to predict the phase diagram of an effective system of big spheres interacting via depletion forces for a size ratio of small and big spheres of 0.2; this diagram includes the usual fluid-solid transition but, in the soft-sphere case, the metastable fluid-fluid transition, which is probably absent in hard-sphere mixtures, is close to being stable with respect to direct fluid-solid coexistence. From these results, the interesting possibility arises that, for sufficiently soft repulsive particles, this phase transition could become stable. Possible implications for the phase behavior of real colloidal dispersions are discussed. PMID:18067358
Demixing in binary mixtures of apolar and dipolar hard spheres
NASA Astrophysics Data System (ADS)
Almarza, N. G.; Lomba, E.; Martín, C.; Gallardo, A.
2008-12-01
We study the demixing transition of mixtures of equal size hard spheres and dipolar hard spheres using computer simulation and integral equation theories. Calculations are carried out at constant pressure, and it is found that there is a strong correlation between the total density and the composition. The critical temperature and the critical total density are found to increase with pressure. The critical mole fraction of the dipolar component on the contrary decreases as pressure is augmented. These qualitative trends are reproduced by the theoretical approaches that on the other hand overestimate by far the value of the critical temperature. Interestingly, the critical parameters for the liquid-vapor equilibrium extrapolated from the mixture results in the limit of vanishing neutral hard sphere concentration agree rather well with recent estimates based on the extrapolation of charged hard dumbbell phase equilibria when dumbbell elongation shrinks to zero [G. Ganzenmüller and P. J. Camp, J. Chem. Phys. 126, 191104 (2007)].
The viscosity of colloidal spheres in deionized suspensions
NASA Astrophysics Data System (ADS)
Okubo, Tsuneo
1987-12-01
Viscosities of colloidal spheres, i.e., colloidal silica (diameter 8 and 45 nm) and monodisperse polystyrene latices (diameter 85 to 780 nm), are measured in deionized (``salt-free'') suspensions and in the presence of a small amount of NaCl. The reduced viscosities (specific viscosity divided by concentration) of deionized silica (diameter 8 nm) are much higher than would be expected by Einstein's prediction and decrease sharply with increasing concentration. A sharp peak is observed in the reduced viscosity vs concentration curves of deionized colloidal silica of 45 nm diameter and the deionized latex spheres. The peak corresponds to the transition between ``liquid-like'' and ``crystal-like'' structures. These results show that electrostatic intersphere repulsion and the elongated Debye-screening length around the colloidal spheres are essential to explain the extraordinary properties.
Computational polymer physics: Hard-sphere chain in solvent systems
NASA Astrophysics Data System (ADS)
Gautam, Avinash; Gavazzi, Daniel; Taylor, Mark
2009-10-01
In this work we present results for chain conformation in two simple chain-in-solvent systems constructed from hard-sphere monomers of diameter D. The first system consists of a flexible chain of fused hard spheres (i.e., bond length L=D) in a monomeric hard-sphere solvent. The second system consists of a flexible tangent hard-sphere chain (L=D) in a dimeric hard-sphere solvent with L=D. These systems are studied using Monte Carlo simulations which employ both single-site crankshaft and multi-site pivot moves to sample the configuration space of the chain. We report chain structure, in terms of site-site probability functions, as a function of solvent density. In all cases, increasing solvent density leads to an overall compression of the chain. At high solvent density the chain conformation is closely coupled to the local solvent structure and we speculate that incommensurate structures may lead to interesting conformational transitions.
Use of Pom Pons To Illustrate Cubic Crystal Structures
NASA Astrophysics Data System (ADS)
Cady, Susan G.
1997-07-01
In general chemistry classes, students are introduced to the ways in which atoms are arranged in cubic crystal structures. Transposing the textbook illustrations into three dimensional structures is difficult for some students. This transitions is easier if a three dimensional model is available for examination. Several 3D models are cited. A quick to assemble, inexpensive, colorful, and durable alternative to these models and styrofoam balls is the use of olefin pom pons. Different sized pom pons can be used to demonstrate how the atomic radius will vary when comparing the different types of cubic crystal unit cells. Being made of a coarse material, pom pons can be stacked to illustrate different packing arrangements such as hexagonal close-packed and cubic close-packed structures. Pom pons make great atoms.
Laflamme-Sanders, Alexandra; Zhu, Mu
2008-11-01
LAGO is an efficient kernel algorithm designed specifically for the rare target detection problem. However, unlike other kernel algorithms, LAGO cannot be easily used with many domain-specific kernels. We solve this problem by first providing a unified framework for LAGO and clarifying its basic principle, and then applying that principle on the unit sphere instead of in the Euclidean space. PMID:18775643
Simple manipulator for rotating spheres.
Weinstein, B W; Hendricks, C D; Ward, C M; Willenborg, D L
1978-06-01
We describe a simple device for rapidly rotating a small sphere to any orientation for inspection of the surface. The ball is held between two small, flat surfaces and rolls as the surfaces are moved differentially parallel to one another. PMID:18699214
Evolution of cubic membranes as antioxidant defence system.
Deng, Yuru; Almsherqi, Zakaria A
2015-08-01
Possibly the best-characterized cubic membrane transition has been observed in the mitochondrial inner membranes of free-living giant amoeba (Chaos carolinense). In this ancient organism, the cells are able to survive in extreme environments such as lack of food, thermal and osmolarity fluctuations and high levels of reactive oxygen species. Their mitochondrial inner membranes undergo rapid changes in three-dimensional organization upon food depletion, providing a valuable model to study this subcellular adaptation. Our data show that cubic membrane is enriched with unique ether phospholipids, plasmalogens carrying very long-chain polyunsaturated fatty acids. Here, we propose that these phospholipids may not only facilitate cubic membrane formation but may also provide a protective shelter to RNA. The potential interaction of cubic membrane with RNA may reduce the amount of RNA oxidation and promote more efficient protein translation. Thus, recognizing the role of cubic membranes in RNA antioxidant systems might help us to understand the adaptive mechanisms that have evolved over time in eukaryotes. PMID:26464785
Evolution of cubic membranes as antioxidant defence system
Deng, Yuru; Almsherqi, Zakaria A.
2015-01-01
Possibly the best-characterized cubic membrane transition has been observed in the mitochondrial inner membranes of free-living giant amoeba (Chaos carolinense). In this ancient organism, the cells are able to survive in extreme environments such as lack of food, thermal and osmolarity fluctuations and high levels of reactive oxygen species. Their mitochondrial inner membranes undergo rapid changes in three-dimensional organization upon food depletion, providing a valuable model to study this subcellular adaptation. Our data show that cubic membrane is enriched with unique ether phospholipids, plasmalogens carrying very long-chain polyunsaturated fatty acids. Here, we propose that these phospholipids may not only facilitate cubic membrane formation but may also provide a protective shelter to RNA. The potential interaction of cubic membrane with RNA may reduce the amount of RNA oxidation and promote more efficient protein translation. Thus, recognizing the role of cubic membranes in RNA antioxidant systems might help us to understand the adaptive mechanisms that have evolved over time in eukaryotes. PMID:26464785
Science off the Sphere: Fun with Antibubbles
International Space Station Expedition 30 astronaut Don Pettit injects air bubbles inside a sphere of water to demonstrate physics in space for 'Science off the Sphere.' Through a partnership betwe...
Tessellating the Sphere with Regular Polygons
ERIC Educational Resources Information Center
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
Eddy currents in a conducting sphere
NASA Technical Reports Server (NTRS)
Bergman, John; Hestenes, David
1986-01-01
This report analyzes the eddy current induced in a solid conducting sphere by a sinusoidal current in a circular loop. Analytical expressions for the eddy currents are derived as a power series in the vectorial displacement of the center of the sphere from the axis of the loop. These are used for first order calculations of the power dissipated in the sphere and the force and torque exerted on the sphere by the electromagnetic field of the loop.
ERIC Educational Resources Information Center
Nikitina, N. N.
2010-01-01
Present-day Russia is characterized by a resolute transition to the innovative path of development in all spheres of economic and social life, and that includes the sphere of education. The processes that took place in Russian education in the 1990s, which can be characterized as a time of "precipitous innovation," were, to some extent, an…
Coating a Sphere With Evaporated Metal
NASA Technical Reports Server (NTRS)
Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.
1986-01-01
In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.
NASA Astrophysics Data System (ADS)
Sknepnek, Rastko; Henkes, Silke
2015-02-01
We show that coupling to curvature nontrivially affects collective motion in active systems, leading to motion patterns not observed in flat space. Using numerical simulations, we study a model of self-propelled particles with polar alignment and soft repulsion confined to move on the surface of a sphere. We observe a variety of motion patterns with the main hallmarks being polar vortex and circulating band states arising due to the incompatibility between spherical topology and uniform motion—a consequence of the "hairy ball" theorem. We provide a detailed analysis of density, velocity, pressure, and stress profiles in the circulating band state. In addition, we present analytical results for a simplified model of collective motion on the sphere showing that frustration due to curvature leads to stable elastic distortions storing energy in the band.
Sknepnek, Rastko; Henkes, Silke
2015-02-01
We show that coupling to curvature nontrivially affects collective motion in active systems, leading to motion patterns not observed in flat space. Using numerical simulations, we study a model of self-propelled particles with polar alignment and soft repulsion confined to move on the surface of a sphere. We observe a variety of motion patterns with the main hallmarks being polar vortex and circulating band states arising due to the incompatibility between spherical topology and uniform motion-a consequence of the "hairy ball" theorem. We provide a detailed analysis of density, velocity, pressure, and stress profiles in the circulating band state. In addition, we present analytical results for a simplified model of collective motion on the sphere showing that frustration due to curvature leads to stable elastic distortions storing energy in the band. PMID:25768504
Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart
Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen
1992-01-01
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.
Hard sphere packings within cylinders.
Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick
2016-02-23
Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle. PMID:26843132
Cubic Unit Cell Construction Kit.
ERIC Educational Resources Information Center
Mattson, Bruce
2000-01-01
Presents instructions for building a simple interactive unit-cell construction kit that allows for the construction of simple, body-centered, and face-centered cubic lattices. The lit is built from inexpensive and readily available materials and can be built in any number of sizes. (WRM)
Cubication of Conservative Nonlinear Oscillators
ERIC Educational Resources Information Center
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Generating perfect fluid spheres in general relativity
NASA Astrophysics Data System (ADS)
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-06-01
Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.
Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets
NASA Astrophysics Data System (ADS)
Leonov, A. O.; Togawa, Y.; Monchesky, T. L.; Bogdanov, A. N.; Kishine, J.; Kousaka, Y.; Miyagawa, M.; Koyama, T.; Akimitsu, J.; Koyama, Ts.; Harada, K.; Mori, S.; McGrouther, D.; Lamb, R.; Krajnak, M.; McVitie, S.; Stamps, R. L.; Inoue, K.
2016-08-01
Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns.
Chiral Surface Twists and Skyrmion Stability in Nanolayers of Cubic Helimagnets.
Leonov, A O; Togawa, Y; Monchesky, T L; Bogdanov, A N; Kishine, J; Kousaka, Y; Miyagawa, M; Koyama, T; Akimitsu, J; Koyama, Ts; Harada, K; Mori, S; McGrouther, D; Lamb, R; Krajnak, M; McVitie, S; Stamps, R L; Inoue, K
2016-08-19
Theoretical analysis and Lorentz transmission electron microscopy (LTEM) investigations in an FeGe wedge demonstrate that chiral twists arising near the surfaces of noncentrosymmetric ferromagnets [Meynell et al., Phys. Rev. B 90, 014406 (2014)] provide a stabilization mechanism for magnetic Skyrmion lattices and helicoids in cubic helimagnet nanolayers. The magnetic phase diagram obtained for freestanding cubic helimagnet nanolayers shows that magnetization processes differ fundamentally from those in bulk cubic helimagnets and are characterized by the first-order transitions between modulated phases. LTEM investigations exhibit a series of hysteretic transformation processes among the modulated phases, which results in the formation of the multidomain patterns. PMID:27588877
Cubic Icosahedra? A Problem in Assigning Symmetry
ERIC Educational Resources Information Center
Lloyd, D. R.
2010-01-01
There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…
Solving Cubic Equations by Polynomial Decomposition
ERIC Educational Resources Information Center
Kulkarni, Raghavendra G.
2011-01-01
Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…
Stimulus-responsive azobenzene supramolecules: fibers, gels, and hollow spheres.
Lee, Sumi; Oh, Seungwhan; Lee, Joosub; Malpani, Yashwardhan; Jung, Young-Sik; Kang, Baotao; Lee, Jin Yong; Ozasa, Kazunari; Isoshima, Takashi; Lee, Sang Yun; Hara, Masahiko; Hashizume, Daisuke; Kim, Jong-Man
2013-05-14
Novel, stimulus-responsive supramolecular structures in the form of fibers, gels, and spheres, derived from an azobenzene-containing benzenetricarboxamide derivative, are described. Self-assembly of tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxamide (Azo-1) in aqueous organic solvent systems results in solvent dependent generation of microfibers (aq DMSO), gels (aq DMF), and hollow spheres (aq THF). The results of a single crystal X-ray diffraction analysis of Azo-1 (crystallized from a mixture of DMSO and H2O) reveal that it possesses supramolecular columnar packing along the b axis. Data obtained from FTIR analysis and density functional theory (DFT) calculation suggest that multiple hydrogen bonding modes exist in the Azo-1 fibers. UV irradiation of the microfibers, formed in aq DMSO, causes complete melting while regeneration of new fibers occurs upon visible light irradiation. In addition to this photoinduced and reversible phase transition, the Azo-1 supramolecules display a reversible, fiber-to-sphere morphological transition upon exposure to pure DMSO or aq THF. The role played by amide hydrogen bonds in the morphological changes occurring in Azo-1 is demonstrated by the behavior of the analogous, ester-containing tris(4-((E)-phenyldiazenyl)phenyl)benzene-1,3,5-tricarboxylate (Azo-2) and by the hydrogen abstraction in the presence of fluoride anions. PMID:23597134
Singh, M. N.; Sinha, A. K. Ghosh, Haranath
2015-08-15
We report anomalous x-ray diffraction studies on Co ferrite with composition Co{sub 1.5}Fe{sub 1.5}O{sub 4} to obtain the distribution of transition metal ions in tetrahedral and octahedral sites. We synthesize spinel oxide (Co{sub 1.5}Fe{sub 1.5}O{sub 4}) through co-precipitation and subsequent annealing route. The imaginary part (absorption) of the energy dependent anomalous form factor is measured and the real part is calculated theoretically through Kramers–Krönig transformation to analyze anomalous x-ray diffraction peak intensities. Fe and Co K-edge x-ray absorption near edge structure (XANES) spectra are used to estimate charge states of transition metals. Our analysis, within experimental errors, suggests 44% of the tetrahedral sites contain Co in +2 oxidation state and the rest 56% sites contain Fe in +2 and +3 oxidation states. Similarly, 47% of the octahedral sites contain Fe in +3 oxidation states, whereas, the rest of the sites contain Co in +2 and +3 oxidation states. While a distinct pre-edge feature in the Fe K-edge XANES is observed, Co pre-edge remains featureless. Implications of these results to magnetism are briefly discussed.
Steel and titanium hollow sphere foams
Hurysz, K.M.; Clark, J.L.; Nagel, A.R.; Lee, K.J.; Cochran, J.K.; Sanders, T.H. Jr.; Hardwicke, C.U.
1998-12-31
Metal hollow sphere foams are fabricated by bonding millimeter sized metal alloy hollow spheres at points of contact. The spheres are formed as powder shells from slurries. For stainless steel spheres, the starting powder is a mixture of iron and chromium oxide. Thermal treatment in hydrogen reduces the oxides to Fe/Cr alloys with less than 2% porosity in sphere walls. The nominal composition is close to that of 405 stainless. Carburization in CO/CO{sub 2} atmosphere followed by heat treatment produces foams of either 410 or 420 type stainless steels depending on carbon content. Compressive stress-strain behavior was measured on point contact bonded stainless foams both before and after carburization. Hardness measurements on steel sphere walls were used to estimate the yield strength. Relative strengths of the foams were positioned between open and closed cell models. This was encouraging because bonding in the foams was less than optimum and the hollow sphere walls contained defects. As processing improves, strengths should increase. To produce titanium alloy spheres, the starting powder is titanium alloy hydride. Thermal treatment in an inert atmosphere decomposes the hydride and sinters the titanium powder in the sphere walls to greater than 96% relative density. Both titanium and Ti-6V-4V spheres and foams have been produced. Oxygen contents are a concern for titanium compositions and processing is being altered to reduce oxygen levels to increase ductility.
Perturbative Casimir Energies of Spheres
NASA Astrophysics Data System (ADS)
Barton, G.
The Casimir energies of single bodies (as opposed to the interaction between mutually disjoint bodies) have accumulated deceptive folklore which this talk will try to exorcise, by mean of calculations for atomic solids that, though optically dilute, are realistically dispersive. This is easy, because quantum electrodynamics then yields identically the same energy as one gets from the properly retarded interatomic potentials. The problem of regularizing (nominal) divergences turns out to be quite distinct from the appropriate process of renormalization: simply discarding all nominally divergent contributions would prevent one from understanding the physics. Contrary to legend, the pertinent Casimir energies for dielectric spheres are attractive.
Hydrophobic Surfactant Proteins Induce a Phosphatidylethanolamine to Form Cubic Phases
Chavarha, Mariya; Khoojinian, Hamed; Schulwitz, Leonard E.; Biswas, Samares C.; Rananavare, Shankar B.; Hall, Stephen B.
2010-01-01
Abstract The hydrophobic surfactant proteins SP-B and SP-C promote rapid adsorption of pulmonary surfactant to an air/water interface. Previous evidence suggests that they achieve this effect by facilitating the formation of a rate-limiting negatively curved stalk between the vesicular bilayer and the interface. To determine whether the proteins can alter the curvature of lipid leaflets, we used x-ray diffraction to investigate how the physiological mixture of these proteins affects structures formed by 1-palmitoyl-2-oleoyl phosphatidylethanolamine, which by itself undergoes the lamellar-to-inverse hexagonal phase transition at 71°C. In amounts as low as 0.03% (w:w) and at temperatures as low as 57°C, the proteins induce formation of bicontinuous inverse cubic phases. The proteins produce a dose-related shift of diffracted intensity to the cubic phases, with minimal evidence of other structures above 0.1% and 62°C, but no change in the lattice-constants of the lamellar or cubic phases. The induction of the bicontinuous cubic phases, in which the individual lipid leaflets have the same saddle-shaped curvature as the hypothetical stalk-intermediate, supports the proposed model of how the surfactant proteins promote adsorption. PMID:20409474
When do jammed sphere packings have a valid linear regime?
NASA Astrophysics Data System (ADS)
Goodrich, Carl; Liu, Andrea; Nagel, Sidney
2014-03-01
The physics of jamming can be studied in its purest form in packings of soft spheres at zero temperature. One of the successes of this approach is that bulk material properties, such as the elastic moduli or density of normal modes, can be predicted solely from the distance of the system to the jamming transition. Such properties are both defined and measured in the linear-response regime. It is thus tacitly assumed that the harmonic approximation to the local energy landscape can capture the meaningful physics, and it is therefore essential to delineate when this assumption is valid. We will examine the regime of validity of the harmonic approximation in jammed sphere packings as a function of system size and density. We will also discuss the crossover from linear response of the zero-temperature jammed solid to thermal behavior at nonzero temperatures.
Visual attention on the sphere.
Bogdanova, Iva; Bur, Alexandre; Hugli, Heinz
2008-11-01
Human visual system makes an extensive use of visual attention in order to select the most relevant information and speed-up the vision process. Inspired by visual attention, several computer models have been developed and many computer vision applications rely today on such models. However, the actual algorithms are not suitable to omnidirectional images, which contain a significant amount of geometrical distortion. In this paper, we present a novel computational approach that performs in spherical geometry and thus is suitable for omnidirectional images. Following one of the actual models of visual attention, the spherical saliency map is obtained by fusing together intensity, chromatic, and orientation spherical cue conspicuity maps that are themselves obtained through multiscale analysis on the sphere. Finally, the consecutive maxima in the spherical saliency map represent the spots of attention on the sphere. In the experimental part, the proposed method is then compared to the standard one using a synthetic image. Also, we provide examples of spots detection in real omnidirectional scenes which show its advantages. Finally, an experiment illustrates the homogeneity of the detected visual attention in omnidirectional images. PMID:18854253
NASA Astrophysics Data System (ADS)
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-01-01
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698
Sphere-Pac Evaluation for Transmutation
Icenhour, A.S.
2005-05-19
The U.S. Department of Energy Advanced Fuel Cycle Initiative (AFCI) is sponsoring a project at Oak Ridge National Laboratory with the objective of conducting the research and development necessary to evaluate the use of sphere-pac transmutation fuel. Sphere-pac fuels were studied extensively in the 1960s and 1970s. More recently, this fuel form is being studied internationally as a potential plutonium-burning fuel. For transmutation fuel, sphere-pac fuels have potential advantages over traditional pellet-type fuels. This report provides a review of development efforts related to the preparation of sphere-pac fuels and their irradiation tests. Based on the results of these tests, comparisons with pellet-type fuels are summarized, the advantages and disadvantages of using sphere-pac fuels are highlighted, and sphere-pac options for the AFCI are recommended. The Oak Ridge National Laboratory development activities are also outlined.
Process for making hollow carbon spheres
Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle
2013-04-16
A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.
Porous Ceramic Spheres from Ion Exchange Resin
NASA Technical Reports Server (NTRS)
Dynys, Fred
2005-01-01
A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.
Impingement of Water Droplets on a Sphere
NASA Technical Reports Server (NTRS)
Dorsch, Robert G.; Saper, Paul G.; Kadow, Charles F.
1955-01-01
Droplet trajectories about a sphere in ideal fluid flow were calculated. From the calculated droplet trajectories the droplet impingement characteristics of the sphere were determined. Impingement data and equations for determining the collection efficiency, the area, and the distribution of impingement are presented in terms of dimensionless parameters. The range of flight and atmospheric conditions covered in the calculations was extended considerably beyond the range covered by previously reported calculations for the sphere.
Photonic crystals from multiply-coated spheres
NASA Astrophysics Data System (ADS)
Chan, Che Ting
2000-03-01
We show theoretically and experimentally that photonic band gaps can be realized using metal or metal-coated spheres as building blocks. Robust photonic gaps exist in any periodic structure built from such spheres when the filling ratio of the spheres exceeds a threshold, and they are not sensitive to the symmetry or the global long range order, with stacking faults cause almost no degradation. Good agreement between theory and experiment is obtained in the microwave regime. The gaps persist even in a random packing of such spheres. Calculations show that the approach can be scaled up to IR and optical frequencies.
Science off the Sphere: Earth in Infrared
International Space Station Expedition 30 astronaut Don Pettit views cities, agricultural areas and deserts using an infrared camera for 'Science off the Sphere.' Through a partnership between NASA...
Unexpected ricochet of spheres off water
NASA Astrophysics Data System (ADS)
Shlien, D. J.
1994-08-01
A sphere was observed to apparently ricochet off the free surface of water at incident angles as large as 45° while the expected (empirical/analytical) maximum angle to the horizontal for ricochet was 6°. Closer examination of the process revealed that the cavitating sphere penetrated the liquid to depths as great as 35 sphere diameters. Under certain circumstances the sphere was also observed to leave the liquid in a direction close to the incoming direction; that is, the sphere ricocheted backwards! This peculiar behavior was found to be a result of an unintentional spin applied to the sphere upon launching. By crudely modelling the process, the sphere path is qualitatively predicted. It was found that the drag and lift coefficients required to model the trajectory data were several times smaller than those obtained for the non-cavitating case or for the non-spinning case. If more precise sphere trajectory data were available, this experiment could be used to measure the lift and drag coefficients of a spinning and cavitating sphere.
Method for producing small hollow spheres
Hendricks, C.D.
1979-01-09
Method is disclosed for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T [approx gt] 600 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10[sup 3] [mu]m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants. 1 fig.
Method for producing small hollow spheres
Hendricks, Charles D. [Livermore, CA
1979-01-09
Method for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T .gtorsim. 600.degree. C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.
Preparation of thorium-uranium gel spheres
Spence, R.D.; Haas, P.A.
1980-01-01
Ceramic oxide spheres with diameters of 15 to 1500 ..mu..m are being evaluated for fabrication of power reactor fuel rods. (Th,U)O/sub 2/ spheres can be prepared by internal or external chemical gelation of nitrate solutions or oxide sols. Two established external gelation techniques were tested but proved to be unsatisfactory for the intended application. Established internal gelation techniques for UO/sub 2/ spheres were applied with minor modifications to make 75% ThO/sub 2/-25% UO/sub 2/ spheres that sinter to diameters of 200 to 1400 ..mu..m (99% T.D.).
Liu, Hanyu; Tse, John S.; Hu, Michael Y.; Bi, Wenli; Zhao, Jiyong; Alp, E. Ercan; Pasternak, Moshe; Taylor, R. Dean; Lashley, Jason C.
2015-10-27
The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres,more » we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less
Dynamics of hard sphere colloidal dispersions
NASA Technical Reports Server (NTRS)
Zhu, J. X.; Chaikin, Paul M.; Phan, S.-E.; Russel, W. B.
1994-01-01
Our objective is to perform on homogeneous, fully equilibrated dispersions the full set of experiments characterizing the transition from fluid to solid and the properties of the crystalline and glassy solid. These include measurements quantifying the nucleation and growth of crystallites, the structure of the initial fluid and the fully crystalline solid, and Brownian motion of particles within the crystal, and the elasticity of the crystal and the glass. Experiments are being built and tested for ideal microgravity environment. Here we describe the ground based effort, which exploits a fluidized bed to create a homogeneous, steady dispersion for the studies. The differences between the microgravity environment and the fluidized bed is gauged by the Peclet number Pe, which measures the rate of convection/sedimentation relative to Brownian motion. We have designed our experiment to accomplish three types of measurements on hard sphere suspensions in a fluidized bed: the static scattering intensity as a function of angle to determine the structure factor, the temporal autocorrelation function at all scattering angles to probe the dynamics, and the amplitude of the response to an oscillatory forcing to deduce the low frequency viscoelasticity. Thus the scattering instrument and the colloidal dispersion were chosen such as that the important features of each physical property lie within the detectable range for each measurement.
Hollow Spheres in Composite Materials and Metallic Hollow Sphere Composites (MHSC)
NASA Astrophysics Data System (ADS)
Baumeister, Erika; Molitor, Martin
The newly developed metallic hollow spheres are used in combination with a polymeric matrix for producing metallic hollow-sphere-composites (MSHC), which have been developed for mechanical engineering applications in the “InnoZellMet” project.
Tracer diffusion and cluster formation in mixtures of spheres and rotating rods
NASA Astrophysics Data System (ADS)
Kirchhoff, R.; Löwen, H.
2005-12-01
On the basis of Brownian dynamics computer simulation studies, we investigate the structure and dynamics of two-dimensional mixtures of rods driven by an external torque and spheres. First, we show that the tracer long-time diffusion of spheres in a system of rotating rods can be efficiently tuned via the rod density. It behaves non-monotonically for increasing rod density. In particular, the sphere diffusion becomes strongly enhanced across the jamming transition of the rods. Second, we show that rotating rods in a dense suspension of spheres form aggregates of rod clusters which are rotating jointly. The cluster size is in reasonable agreement with the predictions of a simple theory.
Tandem spheres in hypersonic flow
Laurence, Stuart J; Deiterding, Ralf; Hornung, Hans G
2009-01-01
The problem of determining the forces acting on a secondary body when it is travelling at some point within the shocked region created by a hypersonic primary body is of interest in such situations as store or stage separation, re-entry of multiple vehicles, and atmospheric meteoroid fragmentation. The current work is concerned with a special case of this problem, namely that in which both bodies are spheres and are stationary with respect to one another. We first present an approximate analytical model of the problem; subsequently, numerical simulations are described and results are compared with those from the analytical model. Finally, results are presented from a series of experiments in the T5 hypervelocity shock tunnel in which a newly-developed force-measurement technique was employed.
Verma, Anurag; Ford, David M
2011-05-01
The free-energy difference between coexisting solid and liquid phases is studied in the context of classical density functional theory (DFT). A bridge function is used to represent the higher-order (n>2) terms in the perturbative expansion of the excess Helmholtz free energy, and the values of this bridge function within the solid lattice are determined by inversion using literature Monte Carlo simulation results. Four potential models, specifically hard-sphere and inverse twelfth-, sixth-, and fourth-power repulsive, are studied. The face-centered cubic (fcc) solid is considered for the hard-sphere and inverse twelfth- and sixth-power potentials, while the body-centered cubic (bcc) solid is considered for the inverse sixth- and fourth-power potentials. For a given solid structure there is a remarkable similarity among the bridge functions for different potentials that is analogous to the universality in the sum of elementary diagrams, or bridge functions, of liquid-state theory as originally observed by Rosenfeld and Ashcroft [Phys. Rev. A 20, 1208 (1979)]. In further analogy with liquid-state theory, the bridge functions in the present problem are plotted as functionals of the second-order convolution term in the perturbative expansion. In each case, the plot indicates a unique functionality in the dense regions of the solid near the lattice sites but a scattered and nonunique behavior in the void regions. Interestingly, knowledge of the functional relationship in the unique region near the lattice sites seems to be sufficient to quantitatively model the solid-fluid phase transition. These qualitative observations are true for both fcc and bcc solid phases, although there are some quantitative differences between them. The findings suggest that pursuit of a closure-based DFT of solid-fluid transitions may be profitable. PMID:21728493
Conn, Charlotte E.; Ces, Oscar; Mulet, Xavier; Seddon, John M.; Templer, Richard H.; Finet, Stephanie; Winter, Roland
2006-03-17
The liquid crystalline lamellar (L{sub {alpha}}) to double-diamond inverse bicontinuous cubic (Q{sub II}{sup D}) phase transition for the amphiphile monoelaidin in excess water exhibits a remarkable sequence of structural transformations for pressure or temperature jumps. Our data imply that the transition dynamics depends on a coupling between changes in molecular shape and the geometrical and topological constraints of domain size. We propose a qualitative model for this coupling based on theories of membrane fusion via stalks and existing knowledge of the structure and energetics of bicontinuous cubic phases.
Swelling of Bicontinuous Cubic Phases in Guerbet Glycolipid: Effects of Additives.
Salim, Malinda; Wan Iskandar, Wan Farah Nasuha; Patrick, Melonney; Zahid, N Idayu; Hashim, Rauzah
2016-06-01
Inverse bicontinuous cubic phases of lyotropic liquid crystal self-assembly have received much attention in biomedical, biosensing, and nanotechnology applications. An Ia3d bicontinuous cubic based on the gyroid G-surface can be formed by the Guerbet synthetic glucolipid 2-hexyl-decyl-β-d-glucopyranoside (β-Glc-OC6C10) in excess water. The small water channel diameter of this cubic phase could provide nanoscale constraints in encapsulation of large molecules and crystallization of membrane proteins, hence stresses the importance of water channel tuning ability. This work investigates the swelling behavior of lyotropic self-assembly of β-Glc-OC6C10 which could be controlled and modulated by different surfactants as a hydration-modulating agent. Our results demonstrate that addition of nonionic glycolipid octyl-β-d-glucopyranoside (β-Glc-OC8) at 20 and 25 mol % gives the largest attainable cubic water channel diameter of ca. 62 Å, and formation of coacervates which may be attributed to a sponge phase were seen at 20 mol % octyl-β-d-maltopyranoside (β-Mal-OC8). Swelling of the cubic water channel can also be attained in charged surfactant-doped systems dioctyl sodium sulfosuccinate (AOT) and hexadecyltrimethylammonium bromide (CTAB), of which phase transition occurred from cubic to a lamellar phase. Destabilization of the cubic phase to an inverse hexagonal phase was observed when a high amount of charged lecithin (LEC) and stearylamine (SA) was added to the lipid self-assembly. PMID:27183393
The Circle and Sphere as Great Equalizers.
ERIC Educational Resources Information Center
Schwartzman, Steven
1991-01-01
From the equality of the ratios of the surface areas and volumes of a sphere and its circumscribed cylinder, the exploration of theorems relating the ratios of surface areas and volumes of a sphere and other circumscribed solids in three dimensions, and analogous questions relating two-dimensional concepts of perimeter and area is recounted. (MDH)
The "Magical" Sphere: Uncovering the Secret
ERIC Educational Resources Information Center
Petruševski, Vladimir M.; Bukleski, Miha
2006-01-01
A red sphere is seen at the bottom of a sealed glass tube filled with a colorless, transparent liquid. Holding the tube for a short period makes the sphere rise slowly from the bottom until it finally floats on the surface of the liquid. Instructions for preparing the demonstration are given, together with an explanation of the phenomenon. A…
Chupin, V.; Killian, J. A.; de Kruijff, B.
2003-01-01
The cubic phase of monoolein has successfully been used for crystallization of a number of membrane proteins. However, the mechanism of protein crystallization in the cubic phase is still unknown. It was hypothesized, that crystallization occurs at locally formed patches of bilayers. To get insight into the stability of the cubic phase, we investigated the effect of different phospholipids and a model transmembrane peptide on the lipid organization in mixed monoolein systems. Deuterium-labeled 1-oleoyl-rac-[2H5]-glycerol was used as a selective probe for 2H NMR. The phase behavior of the phospholipids was followed by 31P NMR. Upon incorporation of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, or phosphatidic acid, the cubic phase of monoolein transformed into the Lα or HII phase depending on the phase preference of the phospholipid and its concentration. The ability of phospholipids to destabilize the cubic phase was found to be dependent on the phospholipid packing properties. Electrostatic repulsion facilitated the cubic-to-Lα transition. Incorporation of the transmembrane peptide KALP31 induced formation of the Lα phase with tightly packed lipid molecules. In all cases when phase separation occurs, monoolein and phospholipid participate in both phases. The implications of these findings for protein crystallization are discussed. PMID:12668446
Chiral Structures of Thermoresponsive Soft Spheres in Hollow Cylinders
NASA Astrophysics Data System (ADS)
Lohr, Matthew A.; Alsayed, Ahmed; Zhang, Zexin; Yodh, Arjun G.
2009-03-01
We experimentally observe the formation of closely packed crystalline structures in hollow cylinders. The structures have varying degrees of chiral order. The systems are created from aqueous suspensions of thermoresponsive N-isopropylacrylamide (NIPA) microgel particles packed in micron-diameter glass capillaries. We categorize these structures according to classifications used by Erickson for tubular packings of hard spheres [1]. By varying the temperature-tunable diameter of these particles, the system's volume fraction is changed, permitting observations of the resilience of these structures and their melting transitions. Melting of these thermal crystalline structures is observed. [1] R. O. Erickson, Science 181 (1973) 705-716.
NASA Astrophysics Data System (ADS)
Wang, Lin; An, Xizhong; Wang, Defeng; Qian, Quan
2016-01-01
Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra) for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores) of perfect face centered cubic (FCC) and hexagonal close packed (HCP) crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP), edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure.
Impact into Coarse Grained Spheres
NASA Technical Reports Server (NTRS)
Barnouin-Jha, O. S.; Cintala, M.; Crawford, D. A.
2005-01-01
Several experimental studies [1,2,3] indicate that differences in the grain size of the target relative to the projectile could influence the cratering process. Impacts into coarse sand grains of size comparable to the projectile show some discrepancies with existing relationships for crater growth [e.g. 4]. Similarly, targets of ne grained, uniform in diameter glass spheres show differences in crater depth, transient crater diameter, and volume of ejecta excavated as a function of grain size [2,3]. The purpose of this work is to continue investigating how the relative grain size may influence early time coupling between a projectile and target, with implications for subsequent ejecta excavation and crater growth. In previous efforts we used numerical techniques to focus on the propagation of shock waves in coarse, granular media emphasizing the influence of relative grain size on crater growth, ejecta production, cratering efficiency, target strength, and crater shape [5,6,7]. In this study, we use experimental techniques - in part as a reality check for the numerical studies - to report on how coarse grained targets might influence ejecta excavation and crater shape. This body of work possesses important implications for ejecta excavation and cratering efficiency on asteroids that may possess rubble pile-like structures, and on planets that may possess either pre-fractured surfaces or large-scale heterogeneities in shock impedance.
Ceramic Spheres From Cation Exchange Beads
NASA Technical Reports Server (NTRS)
Dynys, F. W.
2003-01-01
Porous ZrO2 and hollow TiO2 spheres were synthesized from a strong acid cation exchange resin. Spherical cation exchange beads, polystyrene based polymer, were used as a morphological-directing template. Aqueous ion exchange reaction was used to chemically bind (ZrO)(2+) ions to the polystyrene structure. The pyrolysis of the polystyrene at 600 C produces porous ZrO2 spheres with a surface area of 24 sq m/g with a mean sphere size of 42 microns. Hollow TiO2 spheres were synthesized by using the beads as a micro-reactor. A direct surface reaction - between titanium isopropoxide and the resin beads forms a hydrous TiO2 shell around the polystyrene core. The pyrolysis of the polystyrene core at 600 C produces hollow anatase spheres with a surface area of 42 sq m/g with a mean sphere size of 38 microns. The formation of ceramic spheres was studied by XRD, SEM and B.E.T. nitrogen adsorption measurements.
Induced differentiation inhibits sphere formation in neuroblastoma.
Craig, Brian T; Rellinger, Eric J; Alvarez, Alexandra L; Dusek, Haley L; Qiao, Jingbo; Chung, Dai H
2016-08-19
Neuroblastoma arises from the neural crest, the precursor cells of the sympathoadrenal axis, and differentiation status is a key prognostic factor used for clinical risk group stratification and treatment strategies. Neuroblastoma tumor-initiating cells have been successfully isolated from patient tumor samples and bone marrow using sphere culture, which is well established to promote growth of neural crest stem cells. However, accurate quantification of sphere-forming frequency of commonly used neuroblastoma cell lines has not been reported. Here, we show that MYCN-amplified neuroblastoma cell lines form spheres more frequently than non-MYCN-amplified cell lines. We also show that sphere formation is directly sensitive to cellular differentiation status. 13-cis-retinoic acid is a clinically used differentiating agent that induces a neuronal phenotype in neuroblastoma cells. Induced differentiation nearly completely blocked sphere formation. Furthermore, sphere formation was specifically FGF-responsive and did not respond to increasing doses of EGF. Taken together, these data suggest that sphere formation is an accurate method of quantifying the stemness phenotype in neuroblastoma. PMID:27297102
Flow around spheres by dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Chen, Shuo; Phan-Thien, Nhan; Khoo, Boo Cheong; Fan, Xi Jun
2006-10-01
The dissipative particle dynamics (DPD) method is used to study the flow behavior past a sphere. The sphere is represented by frozen DPD particles while the surrounding fluids are modeled by simple DPD particles (representing a Newtonian fluid). For the surface of the sphere, the conventional model without special treatment and the model with specular reflection boundary condition proposed by Revenga et al. [Comput. Phys. Commun. 121-122, 309 (1999)] are compared. Various computational domains, in which the sphere is held stationary at the center, are investigated to gage the effects of periodic conditions and walls for Reynolds number (Re)=0.5 and 50. Two types of flow conditions, uniform flow and shear flow are considered, respectively, to study the drag force and torque acting on the stationary sphere. It is found that the calculated drag force imposed on the sphere based on the model with specular reflection is slightly lower than the conventional model without special treatment. With the conventional model the drag force acting on the sphere is in better agreement with experimental correlation obtained by Brown and Lawler [J. Environ. Eng. 129, 222 (2003)] for the case of larger radius up to Re of about 5. The computed torque also approaches the analytical Stokes value when Re <1. For a force-free and torque-free sphere, its motion in the flow is captured by solving the translational and rotational equations of motion. The effects of different DPD parameters (a, γ, and σ) on the drag force and torque are studied. It shows that the dissipative coefficient (γ) mainly affects the drag force and torque, while random and conservative coefficient have little influence on them. Furthermore the settling of a single sphere in square tube is investigated, in which the wall effect is considered. Good agreement is found with the experiments of Miyamura et al. [Int. J. Multiphase Flow 7, 31 (1981)] and lattice-Boltzmann simulation results of Aidun et al. [J. Fluid Mech
Numerical Simulations of Falling Sphere Viscometry Experiments.
NASA Astrophysics Data System (ADS)
O Dwyer, L.; Kellogg, L. H.; Lesher, C. E.
2007-12-01
The falling sphere technique based on Stokes' law is widely used to determine the viscosities of geologically relevant melts at high pressures. Stokes' law is valid when a rigid sphere falls slowly and steadily through a stationary and infinite Newtonian medium of uniform properties. High-pressure falling sphere experiments however, usually involve dropping a dense, refractory sphere through a liquid contained by a cylindrical capsule of finite size. The sphere velocity is influenced by the walls (Faxen correction) and ends of the capsule, and possible convective motion of the fluid. Efforts are made to minimize thermal gradients in laboratory experiments, but small temperature differences within the capsule can lead to convection complicating interpretation. We utilize GALE (Moresi et al., 2003;), a finite element particle-in-cell code, to examine these factors in numerical models of conditions similar to those of high-pressure experiments. Our modeling considers a three- dimensional box or cylinder containing a cluster of particles that represent the dense sphere in laboratory experiments surrounded by low viscosity particles representing the melt. GALE includes buoyancy forces, heat flow, and viscosity variations so our model can be used to assess the effects of the capsule's walls and ends, and the consequences of thermal gradients on the sphere's velocity and trajectory. Comparisons between our numerical simulations and real-time falling sphere experiments involving lower viscosity molten komatiite are made to assess the validity of Stokes' law with the standard Faxen correction included, and formulations considering end effects. The modeling also permits an evaluation of the uncertainties in recovering accurate liquid viscosities from Stokes' law when a dense sphere falls through a convecting low viscosity melt. It also allows us to assess acceleration to a terminal velocity that can provide constraints on melt viscosity in experiments in which the terminal
NASA Astrophysics Data System (ADS)
Cheng, Hongbo
2015-08-01
The Casimir energies for plate-sphere system and sphere-sphere systems under PFA in the presence of one extra compactified universal dimension are analyzed. We find that the Casimir energy between a plate and a sphere in the case of sphere-based PFA is divergent. The Casimir energy of plate-sphere system in the case of plate-based PFA is finite and keeps negative. The extra-dimension corrections to the Casimir energy will be more manifest if the sphere is larger or farther away from the plate. It is shown that the negative Casimir energy for two spheres is also associated with the sizes of spheres and extra space. The larger spheres and the longer distance between them make the influence from the additional dimension stronger.
Pressure-driven flow past spheres moving in a circular tube
NASA Astrophysics Data System (ADS)
Sheard, G. J.; Ryan, K.
A computational investigation, supported by a theoretical analysis, is performed to investigate a pressure-driven flow around a line of equispaced spheres moving at a prescribed velocity along the axis of a circular tube. This fundamental study underpins a range of applications including physiological circulation research. A spectral-element formulation in cylindrical coordinates is employed to solve for the incompressible fluid flow past the spheres, and the flows are computed in the reference frame of the translating spheres.Both the volume flow rate relative to the spheres and the forces acting on each sphere are computed for specific sphere-to-tube diameter ratios and sphere spacing ratios. Conditions at which zero axial force on the spheres are identified, and a region of unsteady flow is detected at higher Reynolds numbers (based on tube diameter and sphere velocity). A regular perturbation analysis and the reciprocal theorem are employed to predict flow rate and drag coefficient trends at low Reynolds numbers. Importantly, the zero drag condition is well-described by theory, and states that at this condition, the sphere velocity is proportional to the applied pressure gradient. This result was verified for a range of spacing and diameter ratios. Theoretical approximations agree with computational results for Reynolds numbers up to O(100).The geometry dependence of the zero axial force condition is examined, and for a particular choice of the applied dimensionless pressure gradient, it is found that this condition occurs at increasing Reynolds numbers with increasing diameter ratio, and decreasing Reynolds number with increasing sphere spacing.Three-dimensional simulations and predictions of a Floquet linear stability analysis independently elucidate the bifurcation scenario with increasing Reynolds number for a specific diameter ratio and sphere spacing. The steady axisymmetric flow first experiences a small region of time-dependent non
Integrating Sphere Alkali-Metal Vapor Cells
NASA Astrophysics Data System (ADS)
McGuyer, Bart; Ben-Kish, Amit; Jau, Yuan-Yu; Happer, William
2010-03-01
An integrating sphere is an optical multi-pass cavity that uses diffuse reflection to increase the optical path length. Typically applied in photometry and radiometry, integrating spheres have previously been used to detect trace gases and to cool and trap alkali-metal atoms. Here, we investigate the potential for integrating spheres to enhance optical absorption in optically thin alkali-metal vapor cells. In particular, we consider the importance of dielectric effects due to a glass container for the alkali-metal vapor. Potential applications include miniature atomic clocks and magnetometers, where multi-passing could reduce the operating temperature and power consumption.
Manipulator for rotating and examining small spheres
Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA
1980-02-12
A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.
Manipulator for rotating and examining small spheres
Weinstein, B.W.; Willenborg, D.L.
1980-02-12
A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.
Superelastic carbon spheres under high pressure
NASA Astrophysics Data System (ADS)
Li, Meifen; Guo, Junjie; Xu, Bingshe
2013-03-01
We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.
Temperature dependent cubic and hexagonal close packing in micellar structures.
Wolff, Nicole; Gerth, Stefan; Gutfreund, Philipp; Wolff, Max
2014-11-14
The interfacial structure and phase diagram of a micellar solution formed by the three block copolymer (EO20-PO70-EO20) also known as P123 solved in deuterated water close to a solid boundary is investigated with respect to temperature. We find a hysteretic behavior of the d-spacing of the micellar crystal and a spontaneous change in the lateral correlation length going hand in hand with a structural reorganization between cubic and hexagonal. The phase transitions may be initiated by a change in the shape of the micelles from spherical to elongated together with a minimization of the polymer water interface. PMID:25212786
Cubic and Hexagonal Liquid Crystals as Drug Delivery Systems
Chen, Yulin; Ma, Ping; Gui, Shuangying
2014-01-01
Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed. PMID:24995330
Mutifuntional GdPO4:Eu3+ hollow spheres: synthesis and magnetic and luminescent properties.
Zhang, Lihui; Yin, Meili; You, Hongpeng; Yang, Mei; Song, Yanhua; Huang, Yeju
2011-11-01
Mondispersed submicrometer GdPO(4):Eu(3+) hollow spheres were synthesized via an effective one-pot hydrothermal process. These hollow spheres have the average diameter of 200 nm, and the shell thickness is about 20 nm. The surface of the spheres consists of a number of nanorods with diameters of about 10 nm and lengths of about 50-80 nm. Both magnetic and luminescent properties of the obtained Eu(3+)-doped GdPO(4) hollow spheres were investigated. The hysteresis plot (M-H) analysis result indicates their paramagnetic property. The fluorescence spectra demonstrate that they emit orange-red color light originated from the (5)D(0) → (7)F(J) transitions of the Eu(3+) ions. Therefore, the obtained GdPO(4) hollow spheres hold promise for encapsulate drugs with controlled release. Moreover, the GdPO(4):Eu(3+) hollow spheres are attributes for bimodal magnetic resonance imaging (MRI)/optical bioimaging labeling. PMID:21970439
Liu, Hanyu; Tse, John S.; Hu, Michael Y.; Bi, Wenli; Zhao, Jiyong; Alp, E. Ercan; Pasternak, Moshe; Taylor, R. Dean; Lashley, Jason C.
2015-10-27
The pressure-induced amorphization and subsequent recrystallization of SnI_{4} have been investigated using first principles molecular dynamics calculations together with high-pressure ^{119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI_{4} under ambient conditions. Although high pressure structures of SnI_{4} were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.
Liu, H.; Tse, J. S.; Hu, M. Y.; Bi, W.; Zhao, J.; Alp, E. E.; Pasternak, M.; Taylor, R. D.; Lashley, J. C.
2015-10-28
The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.
Supersymmetric cubic Galileons have ghosts
NASA Astrophysics Data System (ADS)
Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt A.
2013-07-01
Galileons are higher-derivative theories of a real scalar which nevertheless admit second-order equations of motion. They have interesting applications as dark energy models and in early universe cosmology, and have been conjectured to arise as descriptions of brane dynamics in string theory. In the present paper, we study the bosonic sector of globally N=1 supersymmetric extensions of the cubic Galileon Lagrangian in detail. Supersymmetry requires that the Galileon scalar now becomes paired with a second real scalar field. We prove that the presence of this second scalar causes the equations of motion to become higher than second order, thus leading to the appearance of ghosts. We also analyze the energy scales up to which, in an effective field theory description, the ghosts can be tamed.
Separate spheres and indirect benefits
Brock, Dan W
2003-01-01
On any plausible account of the basis for health care resource prioritization, the benefits and costs of different alternative resource uses are relevant considerations in the prioritization process. Consequentialists hold that the maximization of benefits with available resources is the only relevant consideration. Non-consequentialists do not reject the relevance of consequences of benefits and costs, but insist that other considerations, and in particular the distribution of benefits and costs, are morally important as well. Whatever one's particular account of morally justified standards for the prioritization of different health interventions, we must be able to measure those interventions' benefits and costs. There are many theoretical and practical difficulties in that measurement, such as how to weigh extending life against improving health and quality of life as well as how different quality of life improvements should be valued, but they are not my concern here. This paper addresses two related issues in assessing benefits and costs for health resource prioritization. First, should benefits be restricted only to health benefits, or include as well other non health benefits such as economic benefits to employers from reducing the lost work time due to illness of their employees? I shall call this the Separate Spheres problem. Second, should only the direct benefits, such as extending life or reducing disability, and direct costs, such as costs of medical personnel and supplies, of health interventions be counted, or should other indirect benefits and costs be counted as well? I shall call this the Indirect Benefits problem. These two issues can have great importance for a ranking of different health interventions by either a cost/benefit or cost effectiveness analysis (CEA) standard. PMID:12773217
#4 Simulated Solar Sphere from Data - Interpolated
Rotating solar sphere made from a combination of imagery from the two STEREO spacecraft, together with simultaneous data from the Solar Dynamic Observatory.This movie is made from data taken on Jan...
Science off the Sphere: Lenses and Vortices
International Space Station Expedition 30 astronaut Don Pettit demonstrates physics in space for 'Science off the Sphere.' Through a partnership between NASA and the American Physical Society you c...
Elastic spheres can walk on water
NASA Astrophysics Data System (ADS)
Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.
2016-02-01
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
Acoustic levitation of a large solid sphere
NASA Astrophysics Data System (ADS)
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Entanglement entropy across a deformed sphere
NASA Astrophysics Data System (ADS)
Mezei, Márk
2015-02-01
I study the entanglement entropy (EE) across a deformed sphere in conformal field theories (CFTs). I show that the sphere (locally) minimizes the universal term in EE among all shapes. In the work of Allais and Mezei [Phys. Rev. D 91, 046002 (2015)] it was derived that the sphere is a local extremum, by showing that the contribution linear in the deformation parameter is absent. In this paper I demonstrate that the quadratic contribution is positive and is controlled by the coefficient of the stress tensor two-point function, CT. Such a minimization result contextualizes the fruitful relation between the EE of a sphere and the number of degrees of freedom in field theory. I work with CFTs with gravitational duals, where all higher curvature couplings are turned on. These couplings parametrize conformal structures in stress tensor n -point functions; hence I show the result for infinitely many CFT examples.
Elastic spheres can walk on water
Belden, Jesse; Hurd, Randy C.; Jandron, Michael A.; Bower, Allan F.; Truscott, Tadd T.
2016-01-01
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-01-01
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys. PMID:26842860
Catalytic, hollow, refractory spheres, conversions with them
NASA Technical Reports Server (NTRS)
Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor); Lee, Mark C. (Inventor); Kendall, Jr., James M. (Inventor)
1989-01-01
Improved, heterogeneous, refractory catalysts are in the form of gas-impervious, hollow, thin-walled spheres (10) suitable formed of a shell (12) of refractory such as alumina having a cavity (14) containing a gas at a pressure greater than atmospheric pressure. The wall material may be itself catalytic or a catalytically active material coated onto the sphere as a layer (16), suitably platinum or iron, which may be further coated with a layer (18) of activator or promoter. The density of the spheres (30) can be uniformly controlled to a preselected value within .+-.10 percent of the density of the fluid reactant such that the spheres either remain suspended or slowly fall or rise through the liquid reactant.
StenniSphere reopens after Hurricane Katrina
NASA Technical Reports Server (NTRS)
2006-01-01
StenniSphere reopened Jan. 18, 2006, almost five months after Hurricane Katrina damaged the basement of the building that houses the visitor center. Thanks to the staff's careful preparations before the storm, no artifacts or exhibits were harmed.
Science off the Sphere: Knitting Needles
International Space Station Expedition 30 astronaut Don Pettit uses knitting needles and water droplets to demonstrate physics in space for 'Science off the Sphere.' Through a partnership between N...
Science off the Sphere: Thin Film Physics
International Space Station Expedition 30 astronaut Don Pettit demonstrates physics in space for 'Science off the Sphere.' Through a partnership between NASA and the American Physical Society you c...
Rakhimov, Abdulla; Askerzade, Iman N
2014-09-01
We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases. PMID:25314412
Please comply: the water entry of soft spheres
NASA Astrophysics Data System (ADS)
Belden, Jesse; Hurd, Randy; Fanning, Tate; Jandron, Michael; Rekos, John; Bower, Allan; Truscott, Tadd
2015-11-01
The typical phenomena associated with sphere water impact are significantly altered when the sphere material is highly compliant rather than rigid. We describe the water impact physics of homogenous and hollow elastic spheres. The homogeneous spheres undergo large oscillatory deformations throughout entry that carve nested disturbances into the normally smooth air cavity, altering cavity shape and pinch off. Using an analytical model, we relate the maximum sphere deformation to the material properties and impact velocity. This characteristic deformation is used to reconcile the differences between cavities formed by compliant and rigid spheres. In addition to the nested disturbances seen with the homogeneous spheres, we observe azimuthal irregularities on the cavity during water entry of hollow elastic spheres. Based on experiments and finite-element modeling, we suggest that these disturbances are initiated by vibration mode shapes excited in the hollow spheres upon impact. For all sphere types, we compare the forces throughout water entry to the rigid sphere case.
NASA Astrophysics Data System (ADS)
Shenoy, S. R.; Lookman, T.; Saxena, A.
2010-10-01
We consider ferroelastic first-order phase transitions with NOP order-parameter strains entering Landau free energies as invariant polynomials that have NV structural-variant Landau minima. The total free energy includes (seemingly innocuous) harmonic terms, in the n=6-NOP nonorder-parameter strains. Four three-dimensional (3D) transitions are considered, tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal, and cubic/orthorhombic unit-cell distortions, with, respectively, NOP=1 , 2, 3, and 2; and NV=2 , 3, 4, and 6. Five two-dimensional (2D) transitions are also considered, as simpler examples. Following Barsch and Krumhansl, we scale the free energy to absorb most material-dependent elastic coefficients into an overall prefactor, by scaling in an overall elastic energy density; a dimensionless temperature variable; and the spontaneous-strain magnitude at transition λ≪1 . To leading order in λ the scaled Landau minima become material independent, in a kind of “quasiuniversality.” The scaled minima in NOP -dimensional order-parameter space, fall at the center and at the NV corners, of a transition-specific polyhedron inscribed in a sphere, whose radius is unity at transition. The “polyhedra” for the four 3D transitions are, respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the n terms harmonic in the nonorder-parameter strains, by substituting solutions of the “no dislocation” St Venant compatibility constraints, and explicitly obtain power-law anisotropic, order-parameter interactions, for all transitions. In a reduced discrete-variable description, the competing minima of the Landau free energies induce unit-magnitude pseudospin vectors, with NV+1 values, pointing to the polyhedra corners and the (zero-value) center. The total scaled free energies then become ZNV+1 clocklike pseudospin Hamiltonians, with temperature-dependent local Landau terms, nearest-neighbor Ginzburg couplings, and power-law St Venant
Shenoy, S. R.; Lookman, T.; Saxena, A.
2010-10-01
We consider ferroelastic first-order phase transitions with N{sub OP} order-parameter strains entering Landau free energies as invariant polynomials that have N{sub V} structural-variant Landau minima. The total free energy includes (seemingly innocuous) harmonic terms, in the n=6-N{sub OP} nonorder-parameter strains. Four three-dimensional (3D) transitions are considered, tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal, and cubic/orthorhombic unit-cell distortions, with, respectively, N{sub OP}=1, 2, 3, and 2; and N{sub V}=2, 3, 4, and 6. Five two-dimensional (2D) transitions are also considered, as simpler examples. Following Barsch and Krumhansl, we scale the free energy to absorb most material-dependent elastic coefficients into an overall prefactor, by scaling in an overall elastic energy density; a dimensionless temperature variable; and the spontaneous-strain magnitude at transition {lambda}<<1. To leading order in {lambda} the scaled Landau minima become material independent, in a kind of ''quasiuniversality.'' The scaled minima in N{sub OP}-dimensional order-parameter space, fall at the center and at the N{sub V} corners, of a transition-specific polyhedron inscribed in a sphere, whose radius is unity at transition. The ''polyhedra'' for the four 3D transitions are, respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the n terms harmonic in the nonorder-parameter strains, by substituting solutions of the ''no dislocation'' St Venant compatibility constraints, and explicitly obtain power-law anisotropic, order-parameter interactions, for all transitions. In a reduced discrete-variable description, the competing minima of the Landau free energies induce unit-magnitude pseudospin vectors, with N{sub V}+1 values, pointing to the polyhedra corners and the (zero-value) center. The total scaled free energies then become Z{sub N{sub V+1}} clocklike pseudospin Hamiltonians, with temperature-dependent local Landau terms, nearest
Approximating spheroid inductive responses using spheres
Smith, J. Torquil; Morrison, H. Frank
2003-12-12
The response of high permeability ({mu}{sub r} {ge} 50) conductive spheroids of moderate aspect ratios (0.25 to 4) to excitation by uniform magnetic fields in the axial or transverse directions is approximated by the response of spheres of appropriate diameters, of the same conductivity and permeability, with magnitude rescaled based on the differing volumes, D.C. magnetizations, and high frequency limit responses of the spheres and modeled spheroids.
Hollow sphere ceramic particles for abradable coatings
Longo, F.N.; Bader, N.F. III; Dorfman, M.R.
1984-05-22
A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate.
Liouville Quantum Gravity on the Riemann Sphere
NASA Astrophysics Data System (ADS)
David, François; Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent
2016-03-01
In this paper, we rigorously construct Liouville Quantum Field Theory on the Riemann sphere introduced in the 1981 seminal work by Polyakov. We establish some of its fundamental properties like conformal covariance under PSL{_2({C})}-action, Seiberg bounds, KPZ scaling laws, KPZ formula and the Weyl anomaly formula. We also make precise conjectures about the relationship of the theory to scaling limits of random planar maps conformally embedded onto the sphere.
Inverse Magnus effect on a rotating sphere
NASA Astrophysics Data System (ADS)
Kim, Jooha; Park, Hyungmin; Choi, Haecheon; Yoo, Jung Yul
2011-11-01
In this study, we investigate the flow characteristics of rotating spheres in the subcritical Reynolds number (Re) regime by measuring the drag and lift forces on the sphere and the two-dimensional velocity in the wake. The experiment is conducted in a wind tunnel at Re = 0 . 6 ×105 - 2 . 6 ×105 and the spin ratio (ratio of surface velocity to the free-stream velocity) of 0 (no spin) - 0.5. The drag coefficient on a stationary sphere remains nearly constant at around 0.52. However, the magnitude of lift coefficient is nearly zero at Re < 2 . 0 ×105 , but rapidly increases to 0.3 and then remains constant with further increasing Reynolds number. On the other hand, with rotation, the lift coefficient shows negative values, called inverse Magnus effect, depending on the magnitudes of the Reynolds number and spin ratio. The velocity field measured from a particle image velocimetry (PIV) indicates that non-zero lift coefficient on a stationary sphere at Re > 2 . 0 ×105 results from the asymmetry of separation line, whereas the inverse Magnus effect for the rotating sphere results from the differences in the boundary-layer growth and separation along the upper and lower sphere surfaces. Supported by the WCU, Converging Research Center and Priority Research Centers Program, NRF, MEST, Korea.
Possible significance of cubic water-ice, H2O-Ic, in the atmospheric water cycle of Mars
NASA Technical Reports Server (NTRS)
Gooding, James L.
1988-01-01
The possible formation and potential significance of the cubic ice polymorph on Mars is discussed. When water-ice crystallizes on Earth, the ambient conditions of temperature and pressure result in the formation of the hexagonal ice polymorph; however, on Mars, the much lower termperature and pressures may permit the crystallization of the cubic polymorph. Cubic ice has two properties of possible importance on Mars: it is an excellant nucleator of other volatiles (such as CO2), and it undergoes an exothermic transition to hexagonal ice at temperatures above 170 K. These properties may have significant implications for both martian cloud formation and the development of the seasonal polar caps.
Barauskas, Justas; Anderberg, Hanna; Svendsen, Allan; Nylander, Tommy
2016-01-01
In this study well-ordered glycerol monooleate (GMO)-based cubic liquid crystalline nanoparticles (LCNPs) have been used as substrates for Thermomyces lanuginosus lipase in order to establish the relation between the catalytic activity, measured by pH-stat titration, and the change in morphology and nanostructure determined by cryogenic transmission electron microscopy and synchrotron small angle X-ray diffraction. The initial lipase catalyzed LCNP hydrolysis rate is approximately 25% higher for large 350nm nanoparticles compared to the small 190nm particles, which is attributed to the increased number of structural defects on the particle surface. At pH 8.0 and 8.4 bicontinuous Im3m cubic LCNPs transform into "sponge"-like assemblies and disordered multilamellar onion-like structures upon exposure to lipase. At pH 6.5 and 7.5 lipolysis induced phase transitions of the inner core of the particles, following the sequence Im3m cubic → reversed hexagonal → reversed micellar Fd3m cubic → reversed micelles. These transitions to the liquid crystalline phases with higher negative curvature of the lipid/water interface were found to trigger protonation of the oleic acid produced during lipase catalyzed reaction. The increase curvature of the reversed discrete micellar cubic phase was suggested to cause an increase in the oleic acid pKa to a larger value observed by pH-stat titration. PMID:26047576
Force distribution/transmission in amorphous and crystalline packings of spheres
NASA Astrophysics Data System (ADS)
An, Xizhong; Huang, Fei
2013-06-01
In this paper, the discrete element modeling (DEM) was used to study the force distributions/transmissions in the packings of amorphous and crystalline states generated by equal spheres subjected to an external load (of a large sphere) applied on the top of a packing. Crystalline packings such as {100}-and {111}-oriented face centered cubic (FCC), hexagonal close packed (HCP) and body centered cubic (BCC) were considered. The results show that the forces among the particles in these packings are quite different, with different force chains identified with different structures. For amorphous packings, the force chain supporting the external load gives a conical shape. The force chain in a crystalline packing is mainly of a pyramid shape and the forces therein are transmitted along the crystalline lattice. For {100}-FCC, {111}-FCC, and BCC other than HCP, the forces transmit along straight lines with different orientations. In crystalline packings, the forces in the chains are uniformly distributed in each layer and decrease linearly with the height. The force distributions in amorphous and crystalline granular packings are structure-dependent.
Sun, Xiaoran; Zhang, Hongwei; Zhou, Liang; Huang, Xiaodan; Yu, Chengzhong
2016-07-01
Here, ZnFe2 O4 double-shell hollow microspheres are designed to accommodate the large volume expansion during lithiation. A facile and efficient vapor-phase polymerization method has been developed to coat the ZnFe2 O4 hollow spheres with polypyrrole (PPY). The thin PPY coating improves not only the electronic conductivity but also the structural integrity, and thus the cycling stability of the ZnFe2 O4 hollow spheres. Our work sheds light on how to enhance the electrochemical performance of transition metal oxide-based anode materials by designing delicate nanostructures. PMID:27259158
Generalized Vaidya spacetime for cubic gravity
NASA Astrophysics Data System (ADS)
Ruan, Shan-Ming
2016-03-01
We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.
Terminal energy distribution of blast waves from bursting spheres
NASA Technical Reports Server (NTRS)
Adamczyk, A. A.; Strehlow, R. A.
1977-01-01
The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.
The Separate Spheres Model of Gendered Inequality
Miller, Andrea L.; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
The Separate Spheres Model of Gendered Inequality.
Miller, Andrea L; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
Feng, Dong-Xia; Nguyen, Anh V
2016-03-01
Floating objects on the air-water interfaces are central to a number of everyday activities, from walking on water by insects to flotation separation of valuable minerals using air bubbles. The available theories show that a fine sphere can float if the force of surface tension and buoyancies can support the sphere at the interface with an apical angle subtended by the circle of contact being larger than the contact angle. Here we show that the pinning of the contact line at the sharp edge, known as the Gibbs inequality condition, also plays a significant role in controlling the stability and detachment of floating spheres. Specifically, we truncated the spheres with different angles and used a force sensor device to measure the force of pushing the truncated spheres from the interface into water. We also developed a theoretical modeling to calculate the pushing force that in combination with experimental results shows different effects of the Gibbs inequality condition on the stability and detachment of the spheres from the water surface. For small angles of truncation, the Gibbs inequality condition does not affect the sphere detachment, and hence the classical theories on the floatability of spheres are valid. For large truncated angles, the Gibbs inequality condition determines the tenacity of the particle-meniscus contact and the stability and detachment of floating spheres. In this case, the classical theories on the floatability of spheres are no longer valid. A critical truncated angle for the transition from the classical to the Gibbs inequality regimes of detachment was also established. The outcomes of this research advance our understanding of the behavior of floating objects, in particular, the flotation separation of valuable minerals, which often contain various sharp edges of their crystal faces. PMID:26837262
Clustering and gelation of hard spheres induced by the Pickering effect.
Fortini, Andrea
2012-04-01
A mixture of hard-sphere particles and model emulsion droplets is studied with a Brownian dynamics simulation. We find that the addition of nonwetting emulsion droplets to a suspension of pure hard spheres can lead to both gas-liquid and fluid-solid phase separations. Furthermore, we find a stable fluid of hard-sphere clusters. The stability is due to the saturation of the attraction that occurs when the surface of the droplets is completely covered with colloidal particles. At larger emulsion droplet densities a percolation transition is observed. The resulting networks of colloidal particles show dynamical and mechanical properties typical of a colloidal gel. The results of the model are in good qualitative agreement with recent experimental findings [E. Koos and N. Willenbacher, Science 331, 897 (2011)] in a mixture of colloidal particles and two immiscible fluids. PMID:22680411
SPHERES flight operations testing and execution
NASA Astrophysics Data System (ADS)
Mohan, Swati; Saenz-Otero, Alvar; Nolet, Simon; Miller, David W.; Sell, Steven
2009-10-01
Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) is a formation flight testing facility consisting of three satellites operating inside the International Space Station (ISS). The goal is to use the long term microgravity environment of the ISS to mature formation flight and docking algorithms. The operations processes of SPHERES have also matured over the course of the first seven test sessions. This paper describes the evolution of the SPHERES program operations processes from conception to implementation to refinement through flight experience. Modifications to the operations processes were based on experience and feedback from Marshall Space Flight Center Payload Operations Center, USAF Space Test Program office at Johnson Space Center, and the crew of Expedition 13 (first to operate SPHERES on station). Important lessons learned were on aspects such as test session frequency, determination of session success, and contingency operations. This paper describes the tests sessions; then it details the lessons learned, the change in processes, and the impact on the outcome of later test sessions. SPHERES had very successful initial test sessions which allowed for modification and tailoring of the operations processes to streamline the code delivery and to tailor responses based on flight experiences.
Robotics Programming Competition Spheres, Russian Part
NASA Astrophysics Data System (ADS)
Sadovski, Andrei; Kukushkina, Natalia; Biryukova, Natalia
2016-07-01
Spheres" such name was done to Russian part of the Zero Robotics project which is a student competition devoted to programming of SPHERES (SPHERES - Synchronized Position Hold Engage and Reorient Experimental Satellites are the experimental robotics devices which are capable of rotation and translation in all directions, http://ssl.mit.edu/spheres/), which perform different operations on the board of International Space Station. Competition takes place online on http://zerorobotics.mit.edu. The main goal is to develop a program for SPHERES to solve an annual challenge. The end of the tournament is the real competition in microgravity on the board of ISS with a live broadcast. The Russian part of the tournament has only two years history but the problems, organization and specific are useful for the other educational projects especially for the international ones. We introduce the history of the competition, its scientific and educational goals in Russia and describe the participation of Russian teams in 2014 and 2015 tournaments. Also we discuss the organizational problems.
Thermodynamic properties of non-conformal soft-sphere fluids with effective hard-sphere diameters.
Rodríguez-López, Tonalli; del Río, Fernando
2012-01-28
In this work we study a set of soft-sphere systems characterised by a well-defined variation of their softness. These systems represent an extension of the repulsive Lennard-Jones potential widely used in statistical mechanics of fluids. This type of soft spheres is of interest because they represent quite accurately the effective intermolecular repulsion in fluid substances and also because they exhibit interesting properties. The thermodynamics of the soft-sphere fluids is obtained via an effective hard-sphere diameter approach that leads to a compact and accurate equation of state. The virial coefficients of soft spheres are shown to follow quite simple relationships that are incorporated into the equation of state. The approach followed exhibits the rescaling of the density that produces a unique equation for all systems and temperatures. The scaling is carried through to the level of the structure of the fluids. PMID:22158949
Electrostatic swelling of bicontinuous cubic lipid phases.
Tyler, Arwen I I; Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Law, Robert V; Seddon, John M; Brooks, Nicholas J
2015-04-28
Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å. PMID:25790335
Physics of the granite sphere fountain
NASA Astrophysics Data System (ADS)
Snoeijer, Jacco H.; der Weele, Ko van
2014-11-01
A striking example of levitation is encountered in the "kugel fountain" where a granite sphere, sometimes weighing over a ton, is kept aloft by a thin film of flowing water. In this paper, we explain the working principle behind this levitation. We show that the fountain can be viewed as a giant ball bearing and thus forms a prime example of lubrication theory. It is demonstrated how the viscosity and flow rate of the fluid determine (i) the remarkably small thickness of the film supporting the sphere and (ii) the surprisingly long time it takes for rotations to damp out. The theoretical results compare well with measurements on a fountain holding a granite sphere of one meter in diameter. We close by discussing several related cases of levitation by lubrication.
Impact of a superhydrophobic sphere onto water.
Lee, Duck-Gyu; Kim, Ho-Young
2008-01-01
When a water drop hits a superhydrophobic solid surface, it bounces off the substrate like an elastic ball. Here we show that when a tiny superhydrophobic solid sphere impacts with water, it can bounce off the free surface just as it impacts with an elastic membrane. The motion of a sinking sphere is analytically calculated by solving a potential flow whose free boundary is determined by the Young-Laplace equation. To find conditions under which the solid sphere should sink, bounce off, or oscillate upon impact with water, we construct simple scaling laws which are shown to agree well with experimentally found boundaries between the distinct impact behaviors in a regime map based on dimensionless parameters. PMID:17999546
Ion collection by a sphere in a weakly magnetized plasma
NASA Astrophysics Data System (ADS)
Patacchini, L.; Hutchinson, I. H.
2006-10-01
Ion collection by a sphere in a collisionless flowing magnetoplasma is studied using the kinetic code SCEPTIC[1]. The key features of this 2d3v electrostatic PIC code are a spherical geometry accurately resolving the sheath at the collector's edge, and a Boltzmann treatment of the electrons. We concentrate on the transition between unmagnetized and weakly magnetized regimes: ion thermal Larmor radius ρi> rp (sphere radius). Two different Debye length (λD) regimes will be covered, giving the most relevant effects of the magnetic field in each regime. In the case λDrp, relevant to mach-probe physics, as the magnetic field increases the angular collection distribution changes particularly strongly on the downstream side. The flow and the magnetic field effect being correlated, we will deduce to what extent previous calibrations based on their independence are still valid. In the long Debye length case, λD>=rp, most relevant to dust in plasmas, one interesting effect of the magnetic field is to cancel the flux reversal caused by ion focusing downstream of the plasma flow. [1] I.H. Hutchinson PPCF 45 (2003) 1477.
Unsteady relativistic shock-wave diffraction by cylinders and spheres.
Tsai, I-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J Y
2012-02-01
The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases. PMID:22463327
Unsteady relativistic shock-wave diffraction by cylinders and spheres
NASA Astrophysics Data System (ADS)
Tsai, I.-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J. Y.
2012-02-01
The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases.
Analysis of the Free Rising Sphere in Newtonian Fluid and the ``Pop Off'' Effect
NASA Astrophysics Data System (ADS)
Shchetinina, Anna; Garcia, Julio; Gaillard, Emmanuel; Kadem, Lyes; Ng, Hoi Dick
2011-11-01
In this experiment motion of a free rising sphere in Newtonian fluid is studied. Spheres of various densities and diameters are placed at the bottom of a large water tank and then released with zero initial velocity and no distortion in trajectory. The motion of the rising sphere is described in three phases: ascending, where the body undergoes constant acceleration and moves vertically while developing vortices on its both sides; transitional, where a secondary sideway motion is added and vortex shedding begins; and, finally, oscillatory, where the sphere begins to move in a sinusoidal pattern while describing even spiral trajectory. The mode in which the ball exits the water varies depending on several conditions. Depending on the Reynolds number, it escapes vertically or diagonally, which is referred to by Bourrier et al. (1984) [Eur. J. Phys. 5:225-231] as the `pop off' effect. Using Particle Image Velocimetry (PIV), high-speed photography and image processing techniques, we discuss the causes of the oscillatory motion as well as the ``pop off'' effect produced by a sphere under placed conditions. This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI).
Polyimide nanocomposites based on cubic zirconium tungstate
NASA Astrophysics Data System (ADS)
Ramasubramanian Sharma, Gayathri
2009-12-01
In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C. The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique. The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not
Geometrical characterization of hard-sphere systems.
Richard, P; Oger, L; Troadec, J P; Gervois, A
1999-10-01
By using molecular dynamics simulations on a large number of hard spheres and the Voronoï tessellation we characterize hard-sphere systems geometrically at any packing fraction eta along the different branches of the phase diagram. Crystallization of disordered packings occurs only for a small range of packing fraction. For the other packing fractions the system behaves as either a fluid (stable or metastable) or a glass. We have studied the evolution of the statistics of the Voronoï tessellation during crystallization and characterized the apparition of order by an order parameter (Q(6)) built from spherical harmonics. PMID:11970312
Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography
Demurtas, Davide; Guichard, Paul; Martiel, Isabelle; Mezzenga, Raffaele; Hébert, Cécile; Sagalowicz, Laurent
2015-01-01
Bulk and dispersed cubic liquid crystalline phases (cubosomes), present in the body and in living cell membranes, are believed to play an essential role in biological phenomena. Moreover, their biocompatibility is attractive for nutrient or drug delivery system applications. Here the three-dimensional organization of dispersed cubic lipid self-assembled phases is fully revealed by cryo-electron tomography and compared with simulated structures. It is demonstrated that the interior is constituted of a perfect bicontinuous cubic phase, while the outside shows interlamellar attachments, which represent a transition state between the liquid crystalline interior phase and the outside vesicular structure. Therefore, compositional gradients within cubosomes are inferred, with a lipid bilayer separating at least one water channel set from the external aqueous phase. This is crucial to understand and enhance controlled release of target molecules and calls for a revision of postulated transport mechanisms from cubosomes to the aqueous phase. PMID:26573367
Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T
2014-08-21
We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. PMID:24849267
Strength Measurement of Ceramic Spheres Using a Diametrally Compressed "C-Sphere" Specimen
Wereszczak, Andrew A; Jadaan, Osama M.; Kirkland, Timothy Philip
2007-01-01
A "C-sphere" flexure strength specimen geometry was conceived and developed to measure the hoop tensile strength of bearing-grade silicon nitride (Si3N4) balls. Because such a strength can be measured, the important study of surface-located strength-limiting flaws in ceramic sphere is also enabled with this specimen. A slot is machined into the balls to a set depth to produce the C-sphere geometry. A simple, monotonically increasing uniaxial compressive force produces a hoop tensile stress at the C-sphere's outer surface that ultimately initiates fracture. The strength is determined using the combination of failure load, C-sphere geometry, and finite element analysis. Additionally, the stress field was used to determine C-sphere effective areas and effective volumes as a function of Weibull modulus. To demonstrate this new specimen, C-sphere flexure strength distributions were determined for three commercially available bearing-grade Si3N4 materials (NBD200, SN101C, and TSN-03NH), and differences among their characteristic strengths and Weibull moduli were found.
Negative Magnus Effect on a Rotating Sphere at around the Critical Reynolds Number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Watanabe, Hiroaki; Tsubokura, Makoto; Oshima, Nobuyuki
2011-12-01
Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow is investigated using large-eddy simulation at three Reynolds numbers of 1.0× 104, 2.0 × 105, and 1.14 × 106. The numerical methods adopted are first validated on a non-rotating sphere and the spatial resolution around the sphere is determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed at around the critical Reynolds number. In the rotating sphere, positive or negative Magnus effect is observed depending on the Reynolds number and the rotating speed imposed. At the Reynolds number in the subcritical or supercritical region, the direction of the lift force follows the Magnus effect to be independent of the rotational speed tested here. In contrast, negative lift is observed at the Reynolds number at the critical region when particular rotating speeds are imposed. The negative Magnus effect is discussed in the context of the suppression or promotion of boundary layer transition around the separation point.
Negative Magnus lift on a rotating sphere at around the critical Reynolds number
NASA Astrophysics Data System (ADS)
Muto, Masaya; Tsubokura, Makoto; Oshima, Nobuyuki
2012-01-01
Negative Magnus lift acting on a sphere rotating about the axis perpendicular to an incoming flow was investigated using large-eddy simulation at three Reynolds numbers of 1.0 × 104, 2.0 × 105, and 1.14 × 106. The numerical methods used were first validated on a non-rotating sphere, and the spatial resolution around the sphere was determined so as to reproduce the laminar separation, reattachment, and turbulent transition of the boundary layer observed in the vicinity of the critical Reynolds number. The rotating sphere exhibited a positive or negative Magnus effect depending on the Reynolds number and the imposed rotating speed. At Reynolds numbers in the subcritical or supercritical regimes, the direction of the Magnus lift force was independent of the rotational speed. In contrast, the lift force was negative in the critical regime when particular rotating speeds were imposed. This negative Magnus effect was investigated in the context of suppression or promotion of boundary layer transition around the separation point.
Translational Dielectric Friction on a Chain of Charged Spheres
Boughammoura, Sondès; M'halla, Jalel
2014-01-01
We have proved in details that the dielectric friction remains the principal frictional effect for a stretched polyion modeled as a chain of charged spheres, whereas, in the case of Manning's model (infinite thread with a continuous distribution of charge), this friction effect is nonexistent. According to this chain model, it is therefore possible to detect by conductivity measurements any transition from a coiled configuration (ellipsoidal model) to a stretched configuration during dilution process. We have also underlined the important interdependence between the dielectric friction and the ionic condensation of the counterions, in order to distinguish between the Ostwald regime and the Manning regime for which the degree of condensation is practically constant in a large range of concentrations. PMID:24672333
Replica exchange Monte Carlo applied to hard spheres.
Odriozola, Gerardo
2009-10-14
In this work a replica exchange Monte Carlo scheme which considers an extended isobaric-isothermal ensemble with respect to pressure is applied to study hard spheres (HSs). The idea behind the proposal is expanding volume instead of increasing temperature to let crowded systems characterized by dominant repulsive interactions to unblock, and so, to produce sampling from disjoint configurations. The method produces, in a single parallel run, the complete HS equation of state. Thus, the first order fluid-solid transition is captured. The obtained results well agree with previous calculations. This approach seems particularly useful to treat purely entropy-driven systems such as hard body and nonadditive hard mixtures, where temperature plays a trivial role. PMID:19831433
NASA Astrophysics Data System (ADS)
Umamaheswari, R.; Yogeswari, M.; Kalpana, G.
2013-02-01
Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.
Modified electrodes based on lipidic cubic phases.
Bilewicz, Renata; Rowiński, Paweł; Rogalska, Ewa
2005-04-01
The lipidic cubic phase can be characterized as a curved bilayer forming a three-dimensional, crystallographical, well-ordered structure that is interwoven by aqueous channels. It provides a stable, well-organized environment in which diffusion of both water-soluble and lipid-soluble compounds can take place. Cubic phases based on monoacylglycerols form readily and attract our interest due to their ability to incorporate and stabilize proteins. Their lyotropic and thermotropic phase behaviour has been thoroughly investigated. At hydration over 20%, lipidic cubic phases Ia3d and Pn3m are formed. The latter is stable in the presence of excess water, which is important when the cubic phase is considered as an electrode-modifying material. Due to high viscosity, the cubic phases can be simply smeared over solid substrates such as electrodes and used to host enzymes and synthetic catalysts, leading to new types of catalytically active modified electrodes as shown for the determination of cholesterol, CO(2), or oxygen. The efficiency of transport of small hydrophilic molecules within the film can be determined by voltametry using two types of electrodes: a normal-size electrode working in the linear diffusion regime, and an ultramicroelectrode working under spherical diffusion conditions. This allows determining both the concentration and diffusion coefficient of the electrochemically active probe in the cubic phase. The monoolein-based cubic phase matrices are useful for immobilizing enzymes on the electrode surface (e.g., laccases from Trametes sp. and Rhus vernicifera were employed for monitoring dioxygen). The electronic contact between the electrode and the enzyme was maintained using suitable electroactive probes. PMID:15833697
The "Reverse Commute": Adult Students and the Transition from Professional to Academic Literacy
ERIC Educational Resources Information Center
Michaud, Michael J.
2011-01-01
The notion of "transporting literacy" across spheres or cultures is a useful way to imagine the transition many of today's adult students make as writers from the literate sphere of the workplace to that of the school--a transition the author refers to in this article as the "reverse commute." By the time such students reach (or rereach) the…
Alexander, Jenolyn F; Kozlovskaya, Veronika; Chen, Jun; Kuncewicz, Thomas; Kharlampieva, Eugenia; Godin, Biana
2015-12-01
Blood-borne objects display a nonspherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side effects. In this study, sphere- and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone) (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid five-bilayer (TA/PVPON) core shells, hollow elastic shells are unrecognized by J774A.1 macrophages, yet interact with endothelial and breast cancer cells. Internalization of cubical shells is fivefold more efficient by HMVEC (human microvascular endothelial cells) and sixfold and 2.5-fold more efficient by MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s(-1) (characteristic of tumor vasculature) and 100 s(-1) shear rate (normal vasculature) while it is decreased at 100 s(-1) shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment. PMID:26424126
Stability of a cubic fixed point in three dimensions: Critical exponents for generic N
NASA Astrophysics Data System (ADS)
Varnashev, K. B.
2000-06-01
The detailed analysis of the global structure of the renormalization-group (RG) flow diagram for a model with isotropic and cubic interactions is carried out in the framework of the massive field theory directly in three dimensions (3D) within an assumption of isotropic exchange. Perturbative expansions for RG functions are calculated for arbitrary N up to four-loop order and resummed by means of the generalized Padé-Borel-Leroy technique. Coordinates and stability matrix eigenvalues for the cubic fixed point are found under the optimal value of the transformation parameter. Critical dimensionality of the model is proved to be equal to Nc=2.89+/-0.02 that agrees well with the estimate obtained on the basis of the five-loop ɛ expansion [H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. B 342, 284 (1995)] resummed by the above method. As a consequence, the cubic fixed point should be stable in 3D for N>=3, and the critical exponents controlling phase transitions in three-dimensional magnets should belong to the cubic universality class. The critical behavior of the random Ising model being the nontrivial particular case of the cubic model when N=0 is also investigated. For all physical quantities of interest the most accurate numerical estimates with their error bounds are obtained. The results achieved in the work are discussed along with the predictions given by other theoretical approaches and experimental data.
Electromagnetic resonant modes of dielectric sphere bilayers
Andueza, A. Pérez-Conde, J.; Sevilla, J.
2015-05-28
Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10–25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.
Steel Spheres and Skydiver--Terminal Velocity
ERIC Educational Resources Information Center
Costa Leme, J.; Moura, C.; Costa, Cintia
2009-01-01
This paper describes the use of open source video analysis software in the study of the relationship between the velocity of falling objects and time. We discuss an experiment in which a steel sphere falls in a container filled with two immiscible liquids. The motion is similar to that of a skydiver falling through air.
Exact Interior Solutions for Charged Fluid Spheres
NASA Astrophysics Data System (ADS)
Patel, L. K.; Tikekar, R.; Sabu, M. C.
1997-04-01
A new method is discussed to obtain the interior solution of Einstein-Maxwell equations for a charged static sphere from a known particular solutions of a similar kind. Beginning with a charged fluid interior solution reported by Patel and Pandya [11], a new interior Reissner-Nordström metric is obtained using this method and physical aspects of it are extensively discussed.
Metal-Matrix/Hollow-Ceramic-Sphere Composites
NASA Technical Reports Server (NTRS)
Baker, Dean M.
2011-01-01
A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.
Spheres: from Ground Development to ISS Operations
NASA Technical Reports Server (NTRS)
Katterhagen, A.
2016-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.
Electromagnetic resonant modes of dielectric sphere bilayers
NASA Astrophysics Data System (ADS)
Andueza, A.; Pérez-Conde, J.; Sevilla, J.
2015-05-01
Sphere bilayers have been proposed as promising structures for electromagnetic management in photonic crystal devices. These arrangements are made of two intertwined subsets of spheres of different size and refractive index, one subset filling the interstitial sites of the other. We present a systematic study of the electromagnetic resonant modes of the bilayers, in comparison with those of the constituent subsets of spheres. Three samples were built with glass and Teflon spheres and their transmission spectra measured in the microwave range (10-25 GHz). Simulations with finite integration time-domain method are in good agreement with experiments. Results show that the bilayer presents the same resonances as one of the subsets but modified by the presence of the other in its resonant frequencies and in the electric field distributions. As this distortion is not very large, the number of resonances in a selected spectral region is determined by the dominant subset. The degree of freedom that offers the bilayer could be useful to fine tune the resonances of the structure for different applications. A map of modes useful to guide this design is also presented. Scale invariance of Maxwell equations allows the translation of these results in the microwave range to the visible region; hence, some possible applications are discussed in this framework.
Propulsion of a two-sphere swimmer
NASA Astrophysics Data System (ADS)
Klotsa, Daphne; Baldwin, Kyle; Hill, Richard; Bowley, Roger; Swift, Michael
We describe experiments and simulations demonstrating the propulsion of a neutrally-buoyant macroscopic swimming robot that consists of a pair of spheres attached by a spring, immersed in a vibrating fluid. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. We observe a change in the streaming flows as the Reynolds number increases, from that generated by two independent oscillating spheres to a collective flow pattern around the swimmer as a whole. The mechanism for swimming is traced to a strengthening of a jet of fluid in the wake of the swimmer.
Some analytical models of radiating collapsing spheres
Herrera, L.; Di Prisco, A; Ospino, J.
2006-08-15
We present some analytical solutions to the Einstein equations, describing radiating collapsing spheres in the diffusion approximation. Solutions allow for modeling physical reasonable situations. The temperature is calculated for each solution, using a hyperbolic transport equation, which permits to exhibit the influence of relaxational effects on the dynamics of the system.
The Sphere of Women in Colonial America.
ERIC Educational Resources Information Center
Cook, Robert
This project is a unit of six lessons designed to study and understand the roles and expectations of women in the colonial period. The unit provides an historical perspective on those expectations, examines how both men and women viewed the sphere of women, and how enlightened thought on this topic began to emerge during this revolutionary time.…
ERIC Educational Resources Information Center
Pelton, Joseph N.
2002-01-01
Discusses the survival of the human race in the Third Millennium. Considers environmental issues; shifting from a focus on economic growth to human development; the rate of technological change; the e-sphere, which goes beyond a global village to a global brain; technology in education and in health care; and educational reform. (LRW)
Experimentation on recurrent sphere collision with Audacity
NASA Astrophysics Data System (ADS)
Muradoglu, Murat; Ng, Enoch Ming Wei; Ng, Tuck Wah
2014-11-01
Under the theme of collisions that occur repeatedly, we conducted easy and inexpensive experiments of rebounding spheres and Newton’s cradle with two spheres to determine the coefficients of restitution using the sound record feature in modern laptops and a free and open source software called Audacity. In the rebounding sphere experiment, the coefficients of restitution of the golf and ping pong balls used were found to be 0.727 ± 0.025 and 0.816 ± 0.041 respectively. With the Netwon’s cradle experiment, the coefficient of restitution of two steel sphere balls was found to be 0.987 ± 0.003. The contrasts in the results obtained from both experiments permit the operational principles of a pendulum to be emphasized, and engagements to be made to consider the transfer of kinetic energy in the form of vibrational energy of the bodies’ constituents. Using a one-dimensional two-mass model with spring and damper linkages to account for harmonic motions that occur during impact, we found it possible to perform a simple analysis to account for this, and how it can be linked to high energy transfer modes such as the phenomenon of resonance and impedance matching.
Propulsion of a Two-Sphere Swimmer.
Klotsa, Daphne; Baldwin, Kyle A; Hill, Richard J A; Bowley, R M; Swift, Michael R
2015-12-11
We describe experiments and simulations demonstrating the propulsion of a neutrally buoyant swimmer that consists of a pair of spheres attached by a spring, immersed in a vibrating fluid. The vibration of the fluid induces relative motion of the spheres which, for sufficiently large amplitudes, can lead to motion of the center of mass of the two spheres. We find that the swimming speed obtained from both experiment and simulation agree and collapse onto a single curve if plotted as a function of the streaming Reynolds number, suggesting that the propulsion is related to streaming flows. There appears to be a critical onset value of the streaming Reynolds number for swimming to occur. We observe a change in the streaming flows as the Reynolds number increases, from that generated by two independent oscillating spheres to a collective flow pattern around the swimmer as a whole. The mechanism for swimming is traced to a strengthening of a jet of fluid in the wake of the swimmer. PMID:26705658
Magnetic Behavior of 3d Transition Metals in Silicon Carbide
NASA Astrophysics Data System (ADS)
Miao, Maosheng; Lambrecht, Walter R. L.
2002-03-01
The magnetic properties of cubic silicon carbide (SiC) doped by first row transition metals (TM) are studied within the local spin density functional approach using the linearized muffin-tin orbital method in the atomic sphere approximation. It is found that the couplings between the TM d orbitals and the dangling bond states are stronger for the Si site doping, which gives a larger e-t2 splitting. The stronger coupling also delocalizes the t2 states and hence reduces the spin polarization. As a result the TMs tend to have a low spin configuration at the Si site and a high spin one at the C site. On the other hand, the strong couplings lower the formation energy at the Si site and TMs prefer to dope the Si site in both the Si-rich and C-rich limits. For Si site doping, Cr and Mn exhibit the most pronounced magnetic behavior with Cr favoring ferromagnetic and Mn antiferromagnetic nearest neighbor coupling.
He II heat transfer through random packed spheres
NASA Astrophysics Data System (ADS)
Vanderlaan, Mark
Superfluid helium (He II) contained in porous media is examined. In particular, heat transfer experiments were performed on He II contained in random packs of uniform size polyethylene spheres. Measured results include the steady state temperature and pressure drops across packs of spheres (35 micron, 49 micron, and 98 micron diameter) and the associated steady, step, and pulse heat inputs. Bath temperatures range from 1.6 K to 2.1 K to help grasp the superfluid effects. Laminar, turbulent, and transitional fluid flow regimes are examined. Turbulent results are fitted to an empirically derived turbulent He II heat flow in a channel equation with an added tortuosity (extra length traveled) term that accounts for the porous media. An average tortuosity of 1.33 +/- 0.07 was obtained, which is in good agreement with the values of 1.36 - 1.41 concluded from published work on classical fluid pressure drop across random packed spheres. Laminar permeability and shape factor results are compared to past studies of He II in porous media and in channel flows. The average critical heat flux, which describes the onset of turbulence, is predicted to be 0.19 W cm-2. The onset of turbulence is determined through a critical heat flux from which a critical Reynolds number is formulated, but does not describe He II turbulence in the normal fluid component. Other proposed He II "Reynolds numbers" are examined. The addition of the laminar and turbulent heat flow equations into a unifying prediction fits the transition regime data within 25 %. Transient temperatures compare favorably to a one-dimensional numerical solution that considers a variable Gorter-Mellink exponent and a piece-wise determination of the heat flux. Turbulent pressure drop results are fitted with empirically derived friction factors. The laminar permeability and equivalent channel shape factor derived from the pressure drop are compared the permeability and shape factor obtained from the temperature drop. Results
An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.
2005-01-01
Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.
Reversible Nanoparticle Cubic Lattices in Blue Phase Liquid Crystals.
Gharbi, Mohamed Amine; Manet, Sabine; Lhermitte, Julien; Brown, Sarah; Milette, Jonathan; Toader, Violeta; Sutton, Mark; Reven, Linda
2016-03-22
Blue phases (BPs), a distinct class of liquid crystals (LCs) with 3D periodic ordering of double twist cylinders involving orthogonal helical director twists, have been theoretically studied as potential templates for tunable colloidal crystals. Here, we report the spontaneous formation of thermally reversible, cubic crystal nanoparticle (NP) assemblies in BPs. Gold NPs, functionalized to be highly miscible in cyanobiphenyl-based LCs, were dispersed in BP mixtures and characterized by polarized optical microscopy and synchrotron small-angle X-ray scattering (SAXS). The NPs assemble by selectively migrating to periodic strong trapping sites in the BP disclination lines. The NP lattice, remarkably robust given the small particle size (4.5 nm diameter), is commensurate with that of the BP matrix. At the BP I to BP II phase transition, the NP lattice reversibly switches between two different cubic structures. The simultaneous presence of two different symmetries in a single material presents an interesting opportunity to develop novel dynamic optical materials. PMID:26900753
NASA Astrophysics Data System (ADS)
Liu, R.; Bayram, C.
2016-07-01
Hexagonal and cubic GaN—integrated on on-axis Si(100) substrate by metalorganic chemical vapor deposition via selective epitaxy and hexagonal-to-cubic-phase transition, respectively—are studied by temperature- and injection-intensity-dependent cathodoluminescence to explore the origins of their respective luminescence centers. In hexagonal (cubic) GaN integrated on Si, we identify at room temperature the near band edge luminescence at 3.43 eV (3.22 eV), and a defect peak at 2.21 eV (2.72 eV). At low temperature, we report additional hexagonal (cubic) GaN bound exciton transition at 3.49 eV (3.28 eV), and a donor-to-acceptor transition at 3.31 eV (3.18 eV and 2.95 eV). In cubic GaN, two defect-related acceptor energies are identified as 110 and 360 meV. For hexagonal (cubic) GaN (using Debye Temperature ( β ) of 600 K), Varshni coefficients of α = 7.37 ± 0.13 × 10 - 4 ( 6.83 ± 0.22 × 10 - 4 ) eV / K and E 0 = 3.51 ± 0.01 ( 3.31 ± 0.01 ) eV are extracted. Hexagonal and cubic GaN integrated on CMOS compatible on-axis Si(100) are shown to be promising materials for next generation devices.
The Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation
Shook, Ryan L.
2012-01-01
Alfred Werner proposed nearly 100 years ago that the secondary coordination sphere has a role in determining physical properties of transition metal complexes. We now know that the secondary coordination sphere impacts nearly all aspects of transition metal chemistry, including the reactivity and selectivity in metal-mediated processes. These features are highlighted in the binding and activation of dioxygen by transition metal complexes. There are clear connections between the control of the secondary coordination sphere and the ability of metal complexes to 1) reversibly bind dioxygen or 2) bind and activate dioxygen to form highly reactive M–oxo complexes. In this forum article, several biological and synthetic examples are presented and discussed in terms of structure-function relationships. Particular emphasis is given to systems with defined non-covalent interactions, such as intramolecular hydrogen bonds involving dioxygen-derived ligands. To further illustrate these effects, the homolytic cleavage of C–H bonds by M–oxo complexes with basic oxo ligands is described. PMID:20380466
New cubic phase of lithium nitride to 200 GPa
Lazicki, A; Maddox, B; Evans, W; Yoo, C S; McMahan, A K; Pickett, W E; Scalettar, R T; Hu, M Y; Chow, P
2005-07-19
We present a new cubic ({gamma}) Li{sub 3}N phase discovered above 40({+-}5) GPa. Structure and electronic bands are examined at high pressure with synchrotron x-ray diffraction and inelastic x-ray scattering in a diamond anvil cell, and also with first-principles calculations. We observe a dramatic band-gap widening and volume collapse at the phase transition. {gamma}-Li{sub 3}N remains extremely stable and ionic to 200 GPa, with predicted metallization near 8 TPa. The high structural stability, wide band-gap and simple electronic structure of {gamma}-Li{sub 3}N are analogous to that of such lower valence closed-shell solids as NaCl, MgO and Ne, meriting its use as a low-Z internal pressure standard.
Mechanism for direct graphite-to-diamond phase transition
Xie, Hongxian; Yin, Fuxing; Yu, Tao; Wang, Jian-Tao; Liang, Chunyong
2014-01-01
Using classical molecular dynamics with a more reliable reactive LCBOPII potential, we have performed a detailed study on the direct graphite-to-diamond phase transition. Our results reveal a new so-called “wave-like buckling and slipping” mechanism, which controls the transformation from hexagonal graphite to cubic diamond. Based on this mechanism, we have explained how polycrystalline cubic diamond is converted from hexagonal graphite, and demonstrated that the initial interlayer distance of compressed hexagonal graphite play a key role to determine the grain size of cubic diamond. These results can broaden our understanding of the high pressure graphite-to-diamond phase transition. PMID:25088720
Structural forms of cubic BC2N
Sun, Hong; Jhi, Seung-Hoon; Roundy, David; Cohen, Marvin L.; Louie, Steven G.
2001-03-01
Superhard cubic boron-carbonitrides (c-BC2N) are studied with the use of the ab initio pseudopotential density functional method. The total energy, lattice constant, bulk and shear moduli, and electronic band structures as well as the electron density of states are calculated for all the possible c-BC2N structures in an eight-atom zinc-blende-structured cubic unit cell. The results obtained provide a plausible explanation for recent experimental observations as well as a possible path to synthesis of the materials.
Quadratic-Like Dynamics of Cubic Polynomials
NASA Astrophysics Data System (ADS)
Blokh, Alexander; Oversteegen, Lex; Ptacek, Ross; Timorin, Vladlen
2016-02-01
A small perturbation of a quadratic polynomial f with a non-repelling fixed point gives a polynomial g with an attracting fixed point and a Jordan curve Julia set, on which g acts like angle doubling. However, there are cubic polynomials with a non-repelling fixed point, for which no perturbation results into a polynomial with Jordan curve Julia set. Motivated by the study of the closure of the Cubic Principal Hyperbolic Domain, we describe such polynomials in terms of their quadratic-like restrictions.
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Viscosity of concentrated suspensions of sphere/rod mixtures
Mor, R.; Gottlieb, M.; Graham, A.L.; Mondy, L.A.
1996-05-01
This paper discusses the viscosity of concentrated suspensions of sphere/rod mixtures by adopting the Thomas relations for spheres and Milliken`s for randomly oriented rods with aspect ratio of 20. The relative viscosity of a mixed suspension may now be calculated for any combination of rods (of aspect ratio 20) and spheres.
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food... DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An eye sphere implant is a device intended to be implanted in the eyeball to occupy space following the...
Generalized orbital angular momentum Poincaré sphere
NASA Astrophysics Data System (ADS)
Chithrabhanu, P.; Reddy, Salla Gangi; Anwar, Ali; Singh, R. P.
2015-06-01
We construct a orbital angular momentum (OAM) Poincaŕe sphere in which we can represent 2-D superposition states of arbitrary OAM. In addition, we represent the mixed states of OAM as non separable states inside the sphere. We also give an experimental set up to generate all points on this sphere.
Roughening and Preroughening of Diamond-Cubic {l_brace}111{r_brace} Surfaces
Woodraska, D.L.; Jaszczak, J.A.
1997-01-01
A solid-on-solid model for {l_brace}111{r_brace} surfaces of diamond-cubic materials that correctly takes into account the diamond-cubic crystal structure has been developed for Monte Carlo simulation. In addition to a roughening transition at temperature T{sub R}, a distinct preroughening transition at T{sub PR}{approx}0.43T{sub R} is indicated by divergences in the surface specific heat and order-parameter susceptibility. Preroughening appears to arise naturally in our nearest-neighbor bond model from the entropic freedom available in the nontrivial crystal structure. Preroughening is shown to dramatically lower the nucleation barrier for growth and etching at low driving forces. {copyright} {ital 1997} {ital The American Physical Society}
Depletion-driven crystallization of cubic colloids sedimented on a surface.
Hatch, Harold W; Krekelberg, William P; Hudson, Steven D; Shen, Vincent K
2016-05-21
Cubic colloids, sedimented on a surface and immersed in a solution of depletant molecules, were modeled with a family of shapes which smoothly varies from squares to circles. Using Wang-Landau simulations with expanded ensembles, we observe the formation of rhombic lattices, square lattices, hexagonal lattices, and a fluid phase. This systematic investigation includes locating transitions between all combinations of the three lattice structures upon changing the shape and transitions between the fluid and crystal upon changing the depletant concentration. The rhombic lattice deforms smoothly between square-like and hexagonal-like angles, depending on both the shape and the depletant concentration. Our results on the effect of the depletant concentration, depletant size, and colloid shape to influence the stability of the fluid and the lattice structures may help guide experimental studies with recently synthesized cubic colloids. PMID:27208969
Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium
NASA Astrophysics Data System (ADS)
Zaoui, A.; Belabbes, A.; Ahuja, R.; Ferhat, M.
2011-04-01
Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.
Pressure-driven orbital reorientations and coordination-sphere reconstructions in [CuF2(H2O)2(pyz)
Prescimone, A.; Morien, C.; Allan, D.; Schlueter, J.; Tozer, S.; Manson, J. L.; Parsons, S.; Brechin, E. K.; Hill, S.
2012-07-23
Successive reorientations of the Jahn-Teller axes associated with the Cu{sup II} ions accompany a series of pronounced structural transitions in the title compound, as is shown by X-ray crystallography and high-frequency EPR measurements. The second transition forces a dimerization involving two thirds of the Cu{sup II} sites due to ejection of one of the water molecules from the coordination sphere
Bidirectional reflection effects in practical integrating spheres.
Mahan, J R; Walker, J A; Stancil, M M
2015-10-20
Integrating spheres play a central role in radiometric instrument calibration, surface optical property measurement, and radiant source characterization. Our work involves a simulation, based on the Monte Carlo ray-trace (MCRT) of bidirectional reflections within a practical integrating sphere pierced with two viewing ports. We used data from the literature to create an empirical model for the bidirectional reflection distribution function (BRF) of Spectralon suitable for use in the MCRT environment. The ratio of power escaping through the two openings is shown to vary linearly with wall absorptivity for both diffuse and bidirectional reflections. The sensitivity of this ratio to absorptivity is shown to be less when reflections are weakly bidirectional. PMID:26560384
Improved method for producing small hollow spheres
Rosencwaig, A.; Koo, J.C.; Dressler, J.L.
An improved method and apparatus for producing small hollow spheres of glass having an outer diameter ranging from about 100..mu.. to about 500..mu.. with a substantially uniform wall thickness in the range of about 0.5 to 20..mu.. are described. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions.
From Noncommutative Sphere to Nonrelativistic Spin
NASA Astrophysics Data System (ADS)
Deriglazov, Alexei A.
2010-02-01
Reparametrization invariant dynamics on a sphere, being parameterized by angular momentum coordinates, represents an example of noncommutative theory. It can be quantized according to Berezin-Marinov prescription, replacing the coordinates by Pauli matrices. Following the scheme, we present two semiclassical models for description of spin without use of Grassman variables. The first model implies Pauli equation upon the canonical quantization. The second model produces nonrelativistic limit of the Dirac equation implying correct value for the electron spin magnetic moment.
Equilibrium configurations of degenerate fluid spheres
Whitman, P.G.
1985-04-01
Equilibrium configurations of degenerate fluid spheres which assume a polytropic form in the ultrahigh-density regime are considered. We show that analytic solutions more general than those of Misner and Zapolsky exist which possess the asymptotic equation of state. Simple expressions are derived which indicate this nature of the fluids in the extreme relativistic limit, and the stability of these interiors is considered in the asymptotic region.
Diffusion processes in general relativistic radiating spheres
Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )
1989-09-01
The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.
Integrating spheres for improved skin photodynamic therapy.
Glennie, Diana L; Farrell, Thomas J; Hayward, Joseph E; Patterson, Michael S
2010-01-01
The prescribed radiant exposures for photodynamic therapy (PDT) of superficial skin cancers are chosen empirically to maximize the success of the treatment while minimizing adverse reactions for the majority of patients. They do not take into account the wide range of tissue optical properties for human skin, contributing to relatively low treatment success rates. Additionally, treatment times can be unnecessarily long for large treatment areas if the laser power is not sufficient. Both of these concerns can be addressed by the incorporation of an integrating sphere into the irradiation apparatus. The light fluence rate can be increased by as much as 100%, depending on the tissue optical properties. This improvement can be determined in advance of treatment by measuring the reflectance from the tissue through a side port on the integrating sphere, allowing for patient-specific treatment times. The sphere is also effective at improving beam flatness, and reducing the penumbra, creating a more uniform light field. The side port reflectance measurements are also related to the tissue transport albedo, enabling an approximation of the penetration depth, which is useful for real-time light dosimetry. PMID:21054127
Broadband Electromagnetic Transparency by Graded Metamaterial Sphere
NASA Astrophysics Data System (ADS)
Sun, L.; Yu, K. W.
2010-03-01
We have investigated the scattering of electromagnetic waves from a radially inhomogeneous metamaterial sphere whose dielectric permittivity is described by the graded Drude model ɛs(r)=1-φp^2(r)/2̂. The radial position dependent plasma frequency depends on r as φp^2=1/2-c(r/r0)^n, where c and n are positive constants and r0 is the radius of the sphere. The electromagnetic field distribution has been calculated within the full-wave Mie scattering theory. When n=2, exact analytic solutions can be obtained in terms of confluent Heun function and confluent hypergeometric function of Kummer. This allows us to obtain the full-wave total scattering cross section analytically from the scattering field amplitudes. While the total scattering cross section Qs depends on both the graded plasma frequency profile and the frequency of the incident electromagnetic wave, it is found that Qs can achieve extremely small values over a broad frequency band and graded parameters. The analytic solutions allow us to assess the conditions for achieving broadband electromagnetic transparency in the metamaterial sphere and make tunable electromagnetic transparency feasible.
Method for producing small hollow spheres
Rosencwaig, Allen; Koo, Jackson C.; Dressler, John L.
1981-01-01
A method for producing small hollow spheres of glass having an outer diameter ranging from about 100.mu. to about 500.mu. with a substantially uniform wall thickness in the range of about 0.5-20.mu.. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions. In one embodiment, one of the temperature regions is lower than both the preceeding region and the subsequent region. One region utilizes a temperature of at least 200.degree. C. higher than the melting point of the glass-forming material in the solution and, for example, may be at least 3 times higher than the temperature of the preceeding region. In addition, there is a sharp temperature gradient between these regions. As each droplet of solution passes through a first region it forms into a gel membrane having a spherical shape and encapsulates the rest of the drop retained in the elastic outer surface and the water entrapped within diffuses rapidly through the thin gel membrane which causes more of the glass-forming material to go out of solution and is incorporated into the gel membrane causing it to grow in size and become hollow. thus produced hollow glass sphere has a sphericity, concentricity, and wall uniformity of better than 5%. The sphere is capable of retaining material of up to at least 100 atmospheres therein over long periods of time. In one embodiment.
Technology Transfer Automated Retrieval System (TEKTRAN)
Sticky red spheres can be used to capture western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), but whether they capture more flies than yellow spheres and panels is poorly known. The objective of this study was to compare fly captures on red spheres versus yellow traps so...
Viscosities and sintering rates of composite packings of spheres
Jagota, A.; Scherer, G.W.
1995-03-01
The effective sintering rates and viscosities of three-dimensional composite packings have been studied using a discrete numerical model. The packings consist of random mixtures of hard and soft spheres of the same size. With increasing substitution of hard particles for soft particles in the packing, the viscosity increases and the sintering rate decreases. This is particularly abrupt at well-defined rigidity thresholds where there is a transition from softlike to hardlike behavior. The site fraction of hard particles at which the transition occurs depends on the nature of the interaction between hard particles. When the contact between hard particles resists all six relative degrees of freedom (relative velocities and spins). the bonded case, the rigidity threshold coincides with the percolation threshold (site fraction {approx}0.32). When the contact between hard particles resists only interpenetration. the sliding case, the threshold occurs at a site fraction of hard particles very close to unity. Results for the variation of effective properties with site fraction of hard particles are presented for these and other cases. These results can also be applied to the study of elastic percolating networks.
Topological lifetimes of polydisperse colloidal hard spheres at a wall
NASA Astrophysics Data System (ADS)
Dullens, Roel P. A.; Kegel, Willem K.
2005-01-01
Confocal scanning laser microscopy was used to study the behavior of dense suspensions of model colloidal hard spheres at a single wall. Due to the slight polydispersity, our system shows a reentrant melting transition at high densities involving a hexatic structure [R. P. A. Dullens and W. K. Kegel, Phys. Rev. Lett 92, 195702 (2004)]. The reentrant melting transition is accompanied by an increase in the mean-squared displacement. The correlation between structure and dynamics was quantitatively analyzed on a single-particle level. In particular, the topological lifetime, being the average time that a particle spends having the same coordination number, is determined for all coordination numbers and as a function of volume fraction. The defective (non-sixfold-coordinated) particles exhibit shorter lifetimes than sixfold-coordinated particles, indicating that the mobility of the system is larger at or close to defective particles. The lifetime itself is a strong function of volume fraction. In particular, the global behavior of the mean-squared displacement is proportional to the hopping frequency (the inverse of the lifetime), showing that particles changing their coordination number contribute most to the local mobility.
Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio
2014-08-15
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outer spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.
A monotonicity conjecture for real cubic maps
Dawson, S.P.; Galeeva, R.; Milnor, J.; Tresser, C.
1993-12-01
This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends ``monotonely`` on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set. This material will be presented in more detail in a later paper.
Sound velocity anisotropy in cubic crystals
NASA Technical Reports Server (NTRS)
Tsang, T.; Park, H. Y.
1983-01-01
Simple analytical expressions may be derived for sound velocities in cubic crystals by using lattice harmonics or functions which are invariant under the crystal symmetry operations. These expressions are in good agreement with the exact results for typical crystals such as metallic iron and potassium fluoride.
Evaporative coating of a sphere from a point source
NASA Technical Reports Server (NTRS)
Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.
1984-01-01
To optimize the procedure for evaporating a metal film onto a sphere, calculations of the film thickness distribution for various motions of the sphere have been carried out. These calculations, including shadowing effects of sphere support rods, are presented in this paper. Also, an apparatus and procedure for the evaporative coating of a sphere are described. A comparison of measured thickness with the calculated values is made for one example of sphere motion. The implications of the calculated results for coating techniques are discussed.
Planetary Education and Outreach Using the NOAA Science on a Sphere
NASA Technical Reports Server (NTRS)
Simon-Miller, A. A.; Williams, D. R.; Smith, S. M.; Friedlander, J. S.; Mayo, L. A.; Clark, P. E.; Henderson, M. A.
2011-01-01
animated at frame rates up to 30 frames per second. Transitions, special effects, and other computer graphics techniques can be added to a sequence through the use of off-the-shelf software, like Final Cut Pro. However, one drawback is that the Sphere cannot be used in the same manner as a flat movie screen; images cannot be pushed to a "side", a highlighted area must be viewable to all sides of the room simultaneously, and some transitions do not work as well as others. We discuss these issues and workarounds in our poster.
Cubic Phases in Phosphatidylcholine-Cholesterol Mixtures: Cholesterol as Membrane 'Fusogen'
Tenchov, Boris G.; MacDonald, Robert C.; Siegel, David P.
2010-01-18
X-ray diffraction reveals that mixtures of some unsaturated phosphatidylcholines (PCs) with cholesterol (Chol) readily form inverted bicontinuous cubic phases that are stable under physiological conditions. This effect was studied in most detail for dioleoyl PC/Chol mixtures with molar ratios of 1:1 and 3:7. Facile formation of Im3m and Pn3m phases with lattice constants of 30-50nm and 25-30nm, respectively, took place in phosphate-buffered saline, in sucrose solution, and in water near the temperature of the L{alpha}HII transition of the mixtures, as well as during cooling of the HII phase. Once formed, the cubic phases displayed an ability to supercool and replace the initial L{sub {alpha}} phase over a broad range of physiological temperatures. Conversion into stable cubic phases was also observed for mixtures of Chol with dilinoleoyl PC but not for mixtures with palmitoyl-linoleoyl PC or palmitoyl-oleoyl PC, for which only transient cubic traces were recorded at elevated temperatures. A saturated, branched-chain PC, diphytanoyl PC, also displayed a cubic phase in mixture with Chol. Unlike the PEs, the membrane PCs are intrinsically nonfusogenic lipids: in excess water they only form lamellar phases and not any of the inverted phases on their own. Thus, the finding that Chol induces cubic phases in mixtures with unsaturated PCs may have important implications for its role in fusion. In ternary mixtures, saturated PCs and sphingomyelin are known to separate into liquid-ordered domains along with Chol. Our results thus suggest that unsaturated PCs, which are excluded from these domains, could form fusogenic domains with Chol. Such a dual role of Chol may explain the seemingly paradoxical ability of cell membranes to simultaneously form rigid, low-curvature raft-like patches while still being able to undergo facile membrane fusion.
Random sphere packing model of heterogeneous propellants
NASA Astrophysics Data System (ADS)
Kochevets, Sergei Victorovich
It is well recognized that combustion of heterogeneous propellants is strongly dependent on the propellant morphology. Recent developments in computing systems make it possible to start three-dimensional modeling of heterogeneous propellant combustion. A key component of such large scale computations is a realistic model of industrial propellants which retains the true morphology---a goal never achieved before. The research presented develops the Random Sphere Packing Model of heterogeneous propellants and generates numerical samples of actual industrial propellants. This is done by developing a sphere packing algorithm which randomly packs a large number of spheres with a polydisperse size distribution within a rectangular domain. First, the packing code is developed, optimized for performance, and parallelized using the OpenMP shared memory architecture. Second, the morphology and packing fraction of two simple cases of unimodal and bimodal packs are investigated computationally and analytically. It is shown that both the Loose Random Packing and Dense Random Packing limits are not well defined and the growth rate of the spheres is identified as the key parameter controlling the efficiency of the packing. For a properly chosen growth rate, computational results are found to be in excellent agreement with experimental data. Third, two strategies are developed to define numerical samples of polydisperse heterogeneous propellants: the Deterministic Strategy and the Random Selection Strategy. Using these strategies, numerical samples of industrial propellants are generated. The packing fraction is investigated and it is shown that the experimental values of the packing fraction can be achieved computationally. It is strongly believed that this Random Sphere Packing Model of propellants is a major step forward in the realistic computational modeling of heterogeneous propellant of combustion. In addition, a method of analysis of the morphology of heterogeneous
Use of Pom Pons to Illustrate Cubic Crystal Structures.
ERIC Educational Resources Information Center
Cady, Susan G.
1997-01-01
Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)
Cubic Polynomials with Rational Roots and Critical Points
ERIC Educational Resources Information Center
Gupta, Shiv K.; Szymanski, Waclaw
2010-01-01
If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.
Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres.
Fouxon, Itzhak
2014-05-01
We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/t(c)](-2), where t(c) diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries. PMID:25353790
The role of bond tangency and bond gap in hard sphere crystallization of chains.
Karayiannis, Nikos Ch; Foteinopoulou, Katerina; Laso, Manuel
2015-03-01
We report results from Monte Carlo simulations on dense packings of linear, freely-jointed chains of hard spheres of uniform size. In contrast to our past studies where bonded spheres along the chain backbone were tangent, in the present work a finite tolerance in the bond is allowed. Bond lengths are allowed to fluctuate in the interval [σ, σ + dl], where σ is the sphere diameter. We find that bond tolerance affects the phase behaviour of hard-sphere chains, especially in the close vicinity of the melting transition. First, a critical dl(crit) exists marking the threshold for crystallization, whose value decreases with increasing volume fraction. Second, bond gaps enhance the onset of phase transition by accelerating crystal nucleation and growth. Finally, bond tolerance has an effect on crystal morphologies: in the tangent limit the majority of structures correspond to stack-faulted random hexagonal close packing (rhcp). However, as bond tolerance increases a wealth of diverse structures can be observed: from single fcc (or hcp) crystallites to random hcp/fcc stackings with multiple directions. By extending the simulations over trillions of MC steps (10(12)) we are able to observe crystal-crystal transitions and perfection even for entangled polymer chains in accordance to the Ostwald's rule of stages in crystal polymorphism. Through simple geometric arguments we explain how the presence of rigid or flexible constraints affects crystallization in general atomic and particulate systems. Based on the present results, it can be concluded that proper tuning of bond gaps and of the connectivity network can be a controlling factor for the phase behaviour of model, polymer-based colloidal and granular systems. PMID:25594158
NASA Astrophysics Data System (ADS)
Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan
2015-11-01
As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.
Heng, Ri-Liang; Sy, Ki Cheong; Pilon, Laurent
2015-01-01
This study demonstrates that the absorption and scattering cross sections and asymmetry factor of randomly oriented and optically soft bispheres, quadspheres, and circular rings of spheres, with either monodisperse or polydisperse monomers, can be approximated by an equivalent coated sphere with identical volume and average projected area. This approximation could also apply to the angle-dependent scattering matrix elements for monomer size parameter less than 0.1. However, it quickly deteriorated with increasing monomer number and/or size parameter. It was shown to be superior to previously proposed approximations considering a volume equivalent homogeneous sphere and a coated sphere with identical volume and surface area. These results provide a rapid and accurate way of predicting the radiation characteristics of bispheres, quadspheres, and rings of spheres representative of various unicellular and multicellular cyanobacteria considered for producing food supplements, biofuels, and fertilizers. They could also be used in inverse methods for retrieving the monomers' optical properties, morphology, and/or concentration. PMID:26366489
Tracking three-phase coexistences in binary mixtures of hard plates and spheres
NASA Astrophysics Data System (ADS)
Aliabadi, Roohollah; Moradi, Mahmood; Varga, Szabolcs
2016-02-01
The stability of demixing phase transition in binary mixtures of hard plates (with thickness L and diameter D) and hard spheres (with diameter σ) is studied by means of Parsons-Lee theory. The isotropic-isotropic demixing, which is found in mixtures of large spheres and small plates, is very likely to be pre-empted by crystallization. In contrast, the nematic-nematic demixing, which is obtained in mixtures of large plates and small spheres, can be stabilized at low diameter ratios (σ/D) and aspect ratios (L/D). At intermediate values of σ/D, where the sizes of the components are similar, neither the isotropic-isotropic nor the nematic-nematic demixing can be stabilized, but a very strong fractionation takes place between a plate rich nematic and a sphere rich isotropic phases. Our results show that the excluded volume interactions are capable alone to explain the experimental observation of the nematic-nematic demixing, but they fail in the description of isotropic-isotropic one [M. Chen et al., Soft Matter 11, 5775 (2015)].
Modulated point-vortex pairs on a rotating sphere: Dynamics and chaotic advection
NASA Astrophysics Data System (ADS)
Drótos, Gábor; Tél, Tamás; Kovács, Gergely
2013-06-01
The dynamics of modulated point-vortex pairs is investigated on a rotating sphere, where modulation is chosen to reflect the conservation of angular momentum (potential vorticity). For sufficiently close vortices (dipoles) the trajectories of their center-of-mass are shown to correspond to those of a point particle moving freely on a rotating sphere. For finite size vortex pairs, a qualitative similarity to the geodesic dynamics is found. The advection dynamics generated by vortex pairs on a rotating sphere is found to be chaotic. In the short time dynamics we point out a transition from closed to open chaotic advection, which implies that the transport properties of the flow might drastically be altered by changing the initial conditions of the pair on the sphere. Due to spherical topology, for long times, even the open advection patterns are found to gradually cross over to that corresponding to a homogeneous closed mixing. This pattern extends along a zonal band, whereas short term closed mixing remains always bounded to the moving pair.
Ring formation in the quasi-two-dimensional system of the patchy magnetic spheres
NASA Astrophysics Data System (ADS)
Zhang, Cheng-yu; Jian, Xing-liang; Lu, Wei
2016-04-01
Fabricating new functional materials has always been at the center of colloidal science, and how to form circular rings is a meaningful challenge due to their special electronic, magnetic and optical properties. Magnetic colloidal spheres can self-assemble into rings, but these rings have an uncontrollable length and shape and also have to coexist with chains and defected clusters. To make the most of magnetic spheres being able to self-assemble into rings, a patch is added to the surface of the sphere to form a chiral link between particles. The structural transition in the system of patchy magnetic spheres is studied using the Monte Carlo simulation. When the patch angle is in the interval {{60}{^\\circ}} to {{75}{^\\circ}} , rings become the dominant structure if the strength of patchy interaction exceeds a particular threshold and the shape of these rings is close to the circle. With an increase in the patch angle, the threshold of patchy interaction decreases and the average length of the circular ring increases approximately from 5 to 8.5.
Modulated point-vortex pairs on a rotating sphere: dynamics and chaotic advection.
Drótos, Gábor; Tél, Tamás; Kovács, Gergely
2013-06-01
The dynamics of modulated point-vortex pairs is investigated on a rotating sphere, where modulation is chosen to reflect the conservation of angular momentum (potential vorticity). For sufficiently close vortices (dipoles) the trajectories of their center-of-mass are shown to correspond to those of a point particle moving freely on a rotating sphere. For finite size vortex pairs, a qualitative similarity to the geodesic dynamics is found. The advection dynamics generated by vortex pairs on a rotating sphere is found to be chaotic. In the short time dynamics we point out a transition from closed to open chaotic advection, which implies that the transport properties of the flow might drastically be altered by changing the initial conditions of the pair on the sphere. Due to spherical topology, for long times, even the open advection patterns are found to gradually cross over to that corresponding to a homogeneous closed mixing. This pattern extends along a zonal band, whereas short term closed mixing remains always bounded to the moving pair. PMID:23848782
Analytical solution for the lubrication force between two spheres in a bi-viscous fluid
NASA Astrophysics Data System (ADS)
Vázquez-Quesada, A.; Ellero, M.
2016-07-01
An analytical solution for the calculation of the normal lubrication force acting between two moving spheres embedded in a shear-thinning fluid represented by a bi-viscous model is provided. The resulting force between the suspended spheres exhibits a consistent transition between the Newtonian constant-viscosity limits and it reduces to the well-known standard Newtonian lubrication theory for viscosity-ratio approaching one. Effects of several physical parameters of the theory are analyzed under relevant physical conditions, i.e., for a prototypical case of two non-colloidal spheres immersed in a non-Newtonian fluid with rheology parameterized by a bi-viscosity model. Topological results for high/low-viscosity regions in the gap between spheres are also analyzed in detail showing a rich phenomenology. The presented model enables the extension of lubrication dynamics for suspensions interacting with non-Newtonian matrices and provides a clean theoretical framework for new numerical computations of flow of dense complex particulate systems.
Statistical equilibria of the coupled barotropic flow and shallow water flow on a rotating sphere
NASA Astrophysics Data System (ADS)
Ding, Xueru
The motivation of this research is to build equilibrium statistical models that can apply to explain two enigmatic phenomena in the atmospheres of the solar system's planets: (1) the super-rotation of the atmospheres of slowly-rotating terrestrial planets---namely Venus and Titan, and (2) the persistent anticyclonic large vortex storms on the gas giants, such as the Great Red Spot (GRS) on Jupiter. My thesis is composed of two main parts: the first part focuses on the statistical equilibrium of the coupled barotropic vorticity flow (non-divergent) on a rotating sphere; the other one has to do with the divergent shallow water flow rotating sphere system. The statistical equilibria of these two systems are simulated in a wide range of parameter space by Monte Carlo methods based on recent energy-relative enstrophy theory and extended energy-relative enstrophy theory. These kind of models remove the low temperatures defect in the old classical doubly canonical energy-enstrophy theory which cannot support any phase transitions. The other big difference of our research from previous work is that we work on the coupled fluid-sphere system, which consists of a rotating high density rigid sphere, enveloped by a thin shell of fluid. The sphere is considered to have infinite mass and angular momentum; therefore, it can serve as a reservoir of angular momentum. Unlike the fluid sphere system itself, the coupled fluid sphere system allows for the exchange of angular momentum between the atmosphere and the solid planet. This exchange is the key point in any model that is expected to capture coherent structures such as the super-rotation and GRS-like vortices problems in planetary atmospheres. We discovered that slowly-rotating planets can have super-rotation at high energy state. All known slowly-rotating cases in the solar system---Venus and Titan---have super-rotation. Moreover, we showed that the anticyclonicity in the GRS-like structures is closely associated with the
Laser confocal radius measurement method for unpolished spheres.
Wang, Xu; Zhao, Weiqian; Qiu, Lirong; Yang, Shuai; Wang, Zhongyu
2016-06-10
A laser confocal radius measurement method for unpolished spheres (CRMUS) is proposed for measuring the radius of an unpolished sphere during optical sphere processing. CRMUS uses the laser confocal focusing technique to accurately identify the cat's eye and confocal positions of the unpolished sphere, and then uses the distance between the cat's eye and confocal positions measured by a distance measurement interferometer to derive the radius. The partially coherent optical theoretical model of the CRMUS derived indicates that the CRMUS is able to measure the radius of the unpolished sphere with a roughness of less than 0.15 μm. Using an unpolished sphere made of Schott BK7 as the test sphere, experimental results indicate that the CRMUS has a relative expanded uncertainty of less than 20 ppm. The CRMUS could greatly increase processing efficiency. PMID:27409012
Fabrication and calibration of sensitively photoelastic biocompatible gelatin spheres
NASA Astrophysics Data System (ADS)
Fu, Henry; Ceniceros, Ericson; McCormick, Zephyr
2013-11-01
Photoelastic gelatin can be used to measure forces generated by organisms in complex environments. We describe manufacturing, storage, and calibration techniques for sensitive photoelastic gelatin spheres to be used in aqueous environments. Calibration yields a correlation between photoelastic signal and applied force to be used in future studies. Images for calibration were collected with a digital camera attached to a linear polariscope. The images were then processed in Matlab to determine the photoelastic response of each sphere. The effect of composition, gelatin concentration, glycerol concentration, sphere size, and temperature were all examined for their effect on signal response. The minimum detectable force and the repeatability of our calibration technique were evaluated for the same sphere, different spheres from the same fabrication batch, and spheres from different batches. The minimum force detectable is 10 μN or less depending on sphere size. Factors which significantly contribute to errors in the calibration were explored in detail and minimized.
Angelov, Borislav; Angelova, Angelina; Garamus, Vasil M; Lebas, Geneviève; Lesieur, Sylviane; Ollivon, Michel; Funari, Sérgio S; Willumeit, Regine; Couvreur, Patrick
2007-11-01
The structural evolution of a diamond-type bicontinuous lipid cubic phase upon application of thermal and chemical (hydration agent) stimuli is investigated by means of small-angle neutron (SANS) and X-ray scattering (SAXS). The soft-matter cubic architecture responds by dramatic swelling (DLarge cubic structure) upon incorporation of a hydration-enhancing guest component (octyl glucoside) at low and ambient temperatures, the aqueous channel diameter increasing twice to approximately 7 nm. DLarge appears to be built up from an assembly of cubosomic domains, which may coexist with an amphiphilic lamellae domain at low temperatures. The chemical stimulus concentration can be selected as to tune the hydration of the nanochannels in the DLarge phase and its transformation into a DNormal phase at temperatures above the body temperature. Two-dimensional SANS images recorded upon heating scan reveal growth of spontaneously oriented domains of single-crystal cubic nature. Phase separation and squeezing out the guest-hydrating agent from the higher-curvature regions of the amphiphilic bilayer suggest a possible mechanism for the established transformations. The order-order structural transition, cubic DLarge-cubic DNormal, is found to be reversible upon cooling. The obtained results put forward a structure-based concept for release of encapsulated guest molecules from stimuli-responsive and self-regulated cubosomic nanocarriers. PMID:17929809
Wurtzite ZnO (001) films grown on cubic MgO (001) with bulk-like opto-electronic properties
Zhou Hua; Wang Huiqiong; Chen Xiaohang; Zhan Huahan; Kang Junyong; Wu Lijun; Zhu Yimei; Zhang Lihua; Kisslinger, Kim
2011-10-03
We report the growth of ZnO (001) wurtzite thin films with bulk-like opto-electronic properties on MgO (001) cubic substrates using plasma-assisted molecular beam epitaxy. In situ reflection high-energy electron diffraction patterns and ex situ high resolution transmission electron microscopy images indicate that the structure transition from the cubic MgO substrates to the hexagonal films involves 6 ZnO variants that have the same structure but different orientations. This work demonstrates the possibility of integrating wurtzite ZnO films and functional cubic substrates while maintaining their bulk-like properties.
Brittle onset of monodispersed magmatic suspensions: from spheres to spheroid
NASA Astrophysics Data System (ADS)
Cordonnier, B.; Kaus, B.; Manga, M.; Caricchi, L.; Pistone, M.; Castro, J.; Hess, K.-U.; Gottschaller, S.; Dingwell, D. B.; Burlini, L.
2012-04-01
post-processing are all performed under MATLAB. For the largest meshes, the computation has been performed with the help of the BRUTUS cluster at ETH Zurich. For solving the system of equation we used the MILAMIN solver and extended it from 2-D to 3-D by the use of Crouzeix-Raviart type elements. MILAMIN is a native MATLAB implementation, which takes advantage of Tim Davi's SuiteSparse package. Here we solve the incompressible Stokes equations. We tested random to structured configurations (Simple Cubic, Body Centered Cubic and Face Centered Cubic) for different particle orientations from random to aligned. These numerical simulations allow us to estimate the stress concentration in magmas due to the presence of the crystals. Our results first confirm the hydrodynamics effects on the flow of elongated particles. The calculated apparent viscosity of the material versus the crystal fraction confirms an early increase for the suspensions viscosity with elongated particles. More importantly, the stress localization due to the particles suggests that the melt will start cracking for a relatively lower bulk stress. Finally, the experimental trend is supported by the numerical simulations, which highlight the importance of the critical packing fraction in addition to the maximum packing fraction. The combination of experimental results and numerical modeling allow us to characterize the physical processes responsible for the failure of particle bearing suspensions and characterize the effect of fraction and shape on the brittle-ductile transition.
Edison, John R; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures. PMID:27497577
NASA Astrophysics Data System (ADS)
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Eggs and milk: Spinning spheres partially immersed in a liquid bath
NASA Astrophysics Data System (ADS)
Langley, Kenneth R.; Maynes, Daniel; Truscott, Tadd T.
2015-03-01
When a hard-boiled egg spins through a pool of milk on the kitchen counter, the milk rises up the sides of the egg and droplets are ejected. This phenomenon occurs when any partially submerged object whose radius increases upward from the fluid surface (e.g., spheres, inverted cones, and rings) spins in a liquid bath. The fluid ejects from the surface near the maximum radius in one of three ejection modes: jets, sheets, or sheet breakup. Additionally, a surprisingly large flow rate is induced by the spinning object. In this study, we used spheres to determine the effects of experimental parameters on the induced flow rate. We characterized the modes of ejection and measured the sheet breakup distance using high-speed imaging. The basis of our closed form analytical model utilizes an integral momentum boundary layer analysis both beneath the free surface and in the thin film attached to the sphere. We present criteria defining the transitions between ejection modes and the radius where liquid sheets break up in the sheet ejection regime. Criteria defining the transitions between ejection modes and the radius where liquid sheets break up in the sheet ejection regime shows good agreement with experiments.
The compression of spheres coated with an aqueous ethylcellulose dispersion.
Miller, R A; Leung, E M; Oates, R J
1999-04-01
Tablets were compressed from commercial samples of Sugar Spheres NF, Sucrose NF, Corn Starch NF, as well as ground spheres and a physical mixture of ground sucrose plus cornstarch. Additional tablets were compressed from spheres that had been coated with a water-soluble cellulosic polymer solution followed by an aqueous ethylcellulose dispersion. Tableting parameters measured "in-die" included work of compression, peak offset time, tablet density, and Young's modulus. Following ejection, tensile strength was determined under diametrical loading. Dissolution of a marker contained in the water-soluble layer was determined for both compressed and uncompressed spheres. Porosities at peak pressure and peak offset times or tensile strength as functions of peak pressure did not differ between tablets compressed from pristine spheres or from ground spheres. Tablets compressed from spheres had higher values for porosity, tensile strength, and peak offset time than those compressed from sucrose or the sucrose: starch mixture. Values for work of compression were higher for tablets compressed from pristine spheres or from starch. This was attributed to the work required for particle deformation and for breaking of the spheres. The greatest elastic recovery during decompression was observed for tablets compressed from pristine spheres or starch. More brittle behavior was observed for tablets compressed from sucrose or the sucrose: starch mixture. Tablets compressed from ground spheres were more brittle than those compressed from the pristine spheres, indicating an effect due to grinding. Most mechanical properties of tablets compressed from the coated spheres were comparable to those of tablets compressed from uncoated spheres. An exception was diametric strain for tablets compressed from spheres coated with the aqueous ethylcellulose dispersion. These values increased since the plasticized ethylcellulose allowed greater distortion of the tablet before failure occurred. The dye
Fear not the tectosphere (and other -spheres)
NASA Astrophysics Data System (ADS)
Lee, C. A.
2004-12-01
Based on a highly unrepresentative sampling of the community, not unlike Fox news polls, it has been recognized that the use of words having the suffix "-sphere" is confused and often abused. Such words include lithosphere, asthenosphere, perisphere, tectosphere, and mesosphere. In addition, there appears to be equal confusion in the use of the related terms: mechanical boundary layer, thermal boundary layer, chemical boundary layer, low velocity zone, low viscosity zone, effective elastic thickness, etc. This confusion is not confined to beginning students of the Earth sciences but is also manifest in seasoned Earth scientists (including myself), that is, it is not uncommon to find a geochemist and a geophysicist with completely different definitions of "lithosphere" and "tectosphere", for example. In this poster, an attempt will be made to illustrate the concepts behind some of these terms using visual and verbal aids. One of the focuses, could be the concept of a tectosphere, which may go something like this: A Wise maN once said to me; That cOntinents float because they are light; Then said my dog - DiorITE; Oceans sInk because they are heavy; And so I ask, why miGht this be?; With a Laugh and a Bark, she says the oceans are cOld; And to test if she's rigHT; I stick a tHermometer in the continent's core; To my surprise coNtinents are cold, if not more; So something does not Jive; A parAdox has come alive; Perhaps you surMise that the story is not coMplete; Indeed, you may be right; BecausE under the contiNents lie Green rocks - PerIdotite!; InFertile as Hell and fortuitouslY light; Together they fOrm the TecToSphere; And this is why we are here; Fear not the TecToSphere.
Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere
NASA Technical Reports Server (NTRS)
Krenn, Angela G.
2011-01-01
There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.
Free vibration of layered magnetoelectroelastic spheres.
Heyliger, P R; Pan, E
2016-08-01
A discrete-layer model is presented and applied to the free vibration of layered anisotropic spheres with coupling among the elastic, electric, and magnetic fields. Through-thickness approximations in the radial direction are pre-integrated and combined with independent approximations in the azimuthal and circumferential directions to provide estimates of the natural frequencies for a variety of representative geometries. Results are in excellent agreement with existing analytical studies and additional results are presented for higher-order spheroidal modes. Predictions of the level of influence of magnetoelectric coupling are also given. PMID:27586731
Soft Sphere Suspensions: Flow and Relaxation
NASA Astrophysics Data System (ADS)
Workamp, Marcel; Dijksman, Joshua A.
We experimentally study the role of particle elasticity on the rheology of soft sphere suspensions. Experiments consist of custom designed particles with tuneable stiffness. These particles allow us to probe the role of elastic timescales, relaxation and anisotropy in a custom 3D printed shear cell. We find robust rheological features, such as a flow instability, that are not well captured by existing models for suspension flows. In addition, we find relaxation effects after shear even in the absence of shear or thermal fluctuations. We aim to integrate these findings in the emerging unified framework for structured fluids.
Further Investigations of NIST Water Sphere Discrepancies
Broadhead, B.L.
2001-01-11
Measurements have been performed on a family of water spheres at the National Institute of Standards and Technology (NIST) facilities. These measurements are important for criticality safety studies in that, frequently, difficulties have arisen in predicting the reactivity of individually subcritical components assembled in a critical array. It has been postulated that errors in the neutron leakage from individual elements in the array could be responsible for these problems. In these NIST measurements, an accurate determination of the leakage from a fission spectrum, modified by water scattering, is available. Previously, results for 3-, 4-, and 5-in. diam. water-filled spheres, both with and without cadmium covers over the fission chambers, were presented for four fissionable materials: {sup 235}U, {sup 238}U, {sup 237}Np, and {sup 239}Pu. Results were also given for ''dry'' systems, in which the water spheres were drained of water, with the results corresponding to essentially measurements of unmoderated {sup 252}Cf spontaneous-fission neutrons. The calculated-to-experimental (C/E) values ranged from 0.94 to 1.01 for the dry systems and 0.93 to 1.05 for the wet systems, with experimental uncertainties ranging from 1.5 to 1.9%. These results indicated discrepancies that were clearly outside of the experimental uncertainties, and further investigation was suggested. This work updates the previous calculations with a comparison of the predicted C/E values with ENDF/B-V and ENDF/B-VI transport cross sections. Variations in the predicted C/E values that arise from the use of ENDF/B-V, ENDF/B-VI, ENDL92, and LLLDOS for the response fission cross sections are also tabulated. The use of both a 45-group NIST fission spectrum and a continuous-energy fission spectrum for {sup 252}Cf are evaluated. The use of the generalized-linear-least-squares (GLLSM) procedures to investigate the reported discrepancies in the water sphere results for {sup 235}U, {sup 238}U, {sup 239}Pu
Eddington capture sphere around luminous relativistic stars
NASA Astrophysics Data System (ADS)
Wielgus, Maciek
2016-02-01
We discuss the interplay of gravity and radiation in a static, spherically symmetric spacetime. Because of the spacetime curvature, balance between radiation pressure from spherical star and effective force of gravity may be established in a particular distance from the star surface, on so-called Eddington capture sphere. This is in contrast with the Newtonian scenario, for which Eddington luminosity of the radiation assures gravity-radiation balance at any radius. We explore properties of this relativistic equilibrium and the dynamics of test particles under radiation influence in the strong gravity regime.
Random packing of spheres in Menger sponge
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Barbasz, Jakub
2013-06-01
Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.
Random packing of spheres in Menger sponge.
Cieśla, Michał; Barbasz, Jakub
2013-06-01
Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3. PMID:23758392
Liquid water in the domain of cubic crystalline ice Ic
NASA Technical Reports Server (NTRS)
Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.
1997-01-01
Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.
Wavelets based on Hermite cubic splines
NASA Astrophysics Data System (ADS)
Cvejnová, Daniela; Černá, Dana; Finěk, Václav
2016-06-01
In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.
Face-Centered-Cubic Nanostructured Polymer Foams
NASA Astrophysics Data System (ADS)
Cui, C.; Baughman, R. H.; Liu, L. M.; Zakhidov, A. A.; Khayrullin, I. I.
1998-03-01
Beautifully iridescent polymer foams having Fm-3m cubic symmetry and periodicities on the scale of the wavelength of light have been synthesized by the templating of porous synthetic opals. These fabrication processes involve the filling of porous SiO2 opals (with typical cubic lattice parameters of 250 nm) with either polymers or polymer precursors, polymerization of the precursors if necessary, and removal of the fcc array of SiO2 balls to provide an all-polymer structure. The structures of these foams are similar to periodic minimal surfaces, although the Gaussian curvature can have both positive and negative values. Depending upon whether the internal surfaces of the opal are polymer filled or polymer coated, the polymer replica has either one or two sets of independent channels. We fill these channels with semiconductors, metals, or superconductors to provide electronic and optical materials with novel properties dependent on the nanoscale periodicity.
Gel transitions in colloidal suspensions
NASA Astrophysics Data System (ADS)
Bergenholtz, J.; Fuchs, M.
1999-12-01
The idealized mode-coupling theory (MCT) is applied to colloidal systems interacting via short-range attractive interactions of Yukawa form. At low temperatures, MCT predicts a slowing down of the local dynamics and ergodicity-breaking transitions. The non-ergodicity transitions share many features with the colloidal gel transition, and are proposed to be the source of gelation in colloidal systems. Previous calculations of the phase diagram are complemented with additional data for shorter ranges of the attractive interaction, showing that the path of the non-ergodicity transition line is then unimpeded by the gas-liquid critical curve at low temperatures. Particular attention is given to the critical non-ergodicity parameters; this is motivated by recent experimental measurements. An asymptotic model is developed, valid for dilute systems of spheres interacting via strong short-range attractions, and is shown to capture all aspects of the low-temperature MCT non-ergodicity transitions.
Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"
NASA Technical Reports Server (NTRS)
Ling, Jerri S.; Doherty, Michael P.
1998-01-01
The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for
Deposition Of Cubic BN On Diamond Interlayers
NASA Technical Reports Server (NTRS)
Ong, Tiong P.; Shing, Yuh-Han
1994-01-01
Thin films of polycrystalline, pure, cubic boron nitride (c-BN) formed on various substrates, according to proposal, by chemical vapor deposition onto interlayers of polycrystalline diamond. Substrate materials include metals, semiconductors, and insulators. Typical substrates include metal-cutting tools: polycrystalline c-BN coats advantageous for cutting ferrous materials and for use in highly oxidizing environments-applications in which diamond coats tend to dissolve in iron or be oxidized, respectively.
Lin, Tsung-Hsien; Li, Yannian; Wang, Chun-Ta; Jau, Hung-Chang; Chen, Chun-Wei; Li, Cheng-Chung; Bisoyi, Hari Krishna; Bunning, Timothy J; Li, Quan
2013-09-25
A new light-driven chiral molecular switch doped in a stable blue phase (BP) liquid crystal allows wide optical tunability of three-dimensional cubic nanostructures with a selective reflection wavelength that is reversibly tuned through the visible region. Moreover, unprecedented reversible light-directed red, green, and blue reflections of the self-organized three-dimensional cubic nanostructure in a single film are demonstrated for the first time. Additionally, unusual isothermal photo-stimulated less ordered BP II to more ordered BP I phase transition was observed in the system. PMID:23913627
Tuning emission in violet, blue, green and red in cubic GaN/InGaN/GaN quantum wells
NASA Astrophysics Data System (ADS)
Orozco Hinostroza, I. E.; Avalos-Borja, M.; Compeán García, V. D.; Zamora, C. Cuellar; Rodríguez, A. G.; López Luna, E.; Vidal, M. A.
2016-02-01
Light emission in the three primary colors was achieved in cubic GaN/InGaN/GaN heterostructures grown by molecular beam epitaxy on MgO substrates in a single growth process. A heterostructure with four quantum wells with a width of 10 nm was grown; this quantum wells width decrease the segregation effect of In. Photoluminescence emission produced four different emission signals: violet, blue, green-yellow and red. Thus, we were able to tune energy transitions in the visible spectrum modifying the In concentration in cubic InxGa1-xN ternary alloy.
NASA Astrophysics Data System (ADS)
Song, T.; Ma, Q.; Sun, X. W.; Liu, Z. J.; Fu, Z. J.; Wei, X. P.; Wang, T.; Tian, J. H.
2016-09-01
The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model.
López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés
2013-04-28
The problem of demixing in a binary fluid mixture of highly asymmetric additive hard spheres is revisited. A comparison is presented between the results derived previously using truncated virial expansions for three finite size ratios with those that one obtains with the same approach in the extreme case in which one of the components consists of point particles. Since this latter system is known not to exhibit fluid-fluid segregation, the similarity observed for the behavior of the critical constants arising in the truncated series in all instances, while not being conclusive, may cast serious doubts as to the actual existence of a demixing fluid-fluid transition in disparate-sized binary additive hard-sphere mixtures. PMID:23635104
Method of synthesizing cubic system boron nitride
Yuzu, S.; Sumiya, H.; Degawa, J.
1987-10-13
A method is described for synthetically growing cubic system boron nitride crystals by using boron nitride sources, solvents for dissolving the boron nitride sources, and seed crystals under conditions of ultra-high pressure and high temperature for maintaining the cubic system boron nitride stable. The method comprises the following steps: preparing a synthesizing vessel having at least two chambers, arrayed in order in the synthesizing vessel so as to be heated according to a temperature gradient; placing the solvents having different eutectic temperatures in each chamber with respect to the boron nitride sources according to the temperature gradient; placing the boron nitride source in contact with a portion of each of the solvents heated at a relatively higher temperature and placing at least a seed crystal in a portion of each of the solvents heated at a relatively lower temperature; and growing at least one cubic system boron nitride crystal in each of the solvents in the chambers by heating the synthesizing vessel for establishing the temperature gradient while maintaining conditions of ultra-high pressure and high temperature.
Ulfat Jafri, A D; Lakhtakia, Akhlesh
2014-01-01
An exact transition matrix was formulated for electromagnetic scattering by an orthorhombic dielectric-magnetic sphere whose permeability dyadic is a scalar multiple of its permittivity dyadic. Calculations were made for plane waves incident on the sphere. As the size parameter increases, the role of anisotropy evolves; multiple lobes appear in the plots of the differential scattering efficiency in any scattering plane; the total scattering, extinction, and forward-scattering efficiencies exhibit a prominent maximum each; and the absorption efficiency generally increases with weak undulations. Certain orientations of the sphere with respect to the directions of propagation and the electric field of the incident plane wave make it highly susceptible to detection in a monostatic configuration, whereas other orientations make it much less vulnerable to detection. Impedance match to the ambient free space decreases backscattering efficiency significantly, although anisotropy prevents null backscattering. PMID:24561944
The hydrodynamics of an oscillating porous sphere
NASA Astrophysics Data System (ADS)
Looker, Jason R.; Carnie, Steven L.
2004-01-01
We determine the hydrodynamics of a rigid, weakly permeable sphere undergoing translational oscillations in an incompressible Newtonian fluid. We check using homogenization and scaling arguments that the flow inside the sphere may be modeled by Darcy's law and that the Beavers-Joseph-Saffman (BJS) boundary condition still applies for oscillatory flows, provided the frequency of oscillation is not too high. The BJS boundary condition introduces a slip velocity and to leading order in ɛ=√k /a, where k is the particle permeability and a is the radius, the particle may be regarded as impermeable with a slip length independent of frequency. Under these circumstances we solve for the flow field, pressure distribution and drag explicitly and show their behavior for 0⩽ɛ⩽0.05 and frequencies relevant to electroacoustics (1-10 MHz). From the drag we find the leading order corrections due to particle permeability of the pseudo-steady drag, Basset force and added mass.
Hydrodynamics of an oscillating sphere in water
NASA Astrophysics Data System (ADS)
Donnelly, Russell; Hershberger, Robert
2006-11-01
We have studied the flow patterns and damping of a one inch steel ball oscillating in water. The suspension was a 128 cm copper wire which allowed electrical connection to the water bath providing visualization by means of the Baker (thymol blue) electrolytic technique. The ball could be set into motion by means of a linear motor arranged to oscillate in the horizontal direction at the top of the suspension. Alternatively the bob could be set in motion and allowed to decay freely. The range of Reynolds numbers based on the maximum velocity ranged from 376 to 820 and the Carpenter-Keulegan number from 1.46 to 3.20. The period of oscillation was 2.5 sec. For Reynolds numbers up to about 380 we observed a boundary layer on the ball with a suggestion of a laminar wake spreading from the equator in the direction of oscillation. At higher Reynolds numbers around 550 we began to see periodic structure developing on the wake. By Re=726 it is clear the disturbances are a series of vortex rings which form on the rear of the sphere during an oscillation, and leapfrog over the sphere and propagate away when the direction of oscillation is reversed. The significance of this experiment for quantum turbulence will be discussed.
The physics of anisotropic spheres in general relativity
NASA Astrophysics Data System (ADS)
Dev, Krsna
2001-11-01
We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound spheres. We consider the full general-relativistic and Newtonian treatment of this problem and obtain exact solutions for various forms of the equation of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of both Newtonian and general relativistic spheres. We show that it is possible for Newtonian spheres to have an infinite core pressure without requiring the radius to be infinite and that there exists stable anisotropic spheres with adiabatic exponents less than 4/3. For general relativistic spheres we demonstrate that the maximum value of 2M/R can approach unity (2M/R < 8/9 for isotropic spheres) and the surface redshift can be arbitrarily large.
Photoelastic gelatin spheres for investigation of locomotion in granular media
NASA Astrophysics Data System (ADS)
Mirbagheri, Seyed Amir; Ceniceros, Ericson; Jabbarzadeh, Mehdi; McCormick, Zephyr; Fu, Henry
2014-11-01
We describe a force measurement method in granular media which uses highly-sensitive photoelastic gelatin spheres and its application to measuring forces exerted as animals burrow through granular media. The method is applicable to both freshwater and marine organisms. We fabricate sensitively photoelastic gelatin spheres and describe a calibration method which relates forces applied to gelatin spheres with photoelastic signal. We show that photoelastic gelatin spheres can detect forces as small as 1 microNewton, and quantitatively measure forces with up to 60 microNewton precision, a two order of magnitude improvement compared to methods using plastic disks. Gelatin spheres can be fabricated with a range of sizes to investigate a variety of granular media. Finally, we used the calibrated gelatin spheres in a proof-of-principle experiment to measure forces during earthworm locomotion.
Analysis of rainbow scattering by a chiral sphere.
Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu; Gong, Lei
2013-09-23
Based on the scattering theory of a chiral sphere, rainbow phenomenon of a chiral sphere is numerically analyzed in this paper. For chiral spheres illuminated by a linearly polarized wave, there are three first-order rainbows, with whose rainbow angles varying with the chirality parameter. The spectrum of each rainbow structure is presented and the ripple frequencies are found associated with the size and refractive indices of the chiral sphere. Only two rainbow structures remain when the chiral sphere is illuminated by a circularly polarized plane wave. Finally, the rainbows of chiral spheres with slight chirality parameters are found appearing alternately in E-plane and H-plane with the variation of the chirality. PMID:24104080
Growth and characterization of cubic and non-cubic Ge nanocrystals
NASA Astrophysics Data System (ADS)
Mukherjee, S.; Pradhan, A.; Mukherjee, S.; Maitra, T.; Nayak, A.; Bhunia, S.
2016-05-01
Germanium nanocrystals with tetragonal (ST-12) and diamond like cubic (Ge-I) phases have been selectively grown by controlling the ionization and electrostatic potential of Ge clusters in an ion cluster beam deposition system. Predominantly tetragonal nanocrystals were obtained when grown using neutral clusters. The percentage of cubic phase increased when grown by ionizing the clusters and accelerating them towards substrates by applying electrostatic bias in the range of 1.5 -2.5 kV. Raman spectroscopic measurement showed strong peak at 275 cm-1 and 300 cm-1 for tetragonal and cubic Ge nanocrystals, respectively. TEM measurements showed crystalline lattice fringes of both type of the nanocrystals. The selected area electron diffraction patterns showed (111) and (210) as the dominating lattice planes for tetragonal nanocrystals while the cubic phases had (111), (311) and (331) as the prominent lattice planes. The optical absorption edge redshifted from 1.75 to 1.55 eV as the percentage of the cubic phases increased in the NC composition in the composite film.
Fano resonance in high-permittivity dielectric spheres.
Kong, Xianghong; Xiao, Gaobiao
2016-04-01
In this paper, an approximate model is presented to understand Fano resonance observed in the Mie scattering from a homogeneous dielectric sphere. By using the model, we can analyze the Fano parameters and resonance widths of the dielectric spheres with given lossless high-permittivity materials. An analytic condition for the occurrence of Fano resonance in the homogeneous spheres can be shown in the approximate model. PMID:27140783
Hopf fibration and monopole connection over the contact quantum spheres
NASA Astrophysics Data System (ADS)
Brzeziński, Tomasz; Dąbrowski, Ludwik; Zieliński, Bartosz
2004-04-01
Non-commutative geometry of quantised contact spheres introduced by Omori et al. in [J. Math. Soc. Jpn. 50 (1998) 915; Noncommutative 3-sphere as an Example of Noncommutative Contact Algebras, Banach Center Publications, vol. 40, 1997, pp. 329-334] is studied. In particular it is proven that these spheres form a non-commutative Hopf fibration in the sense of Hopf-Galois extensions. The monopole (strong) connection is constructed, and projectors describing projective modules of all monopole charges are computed.
Meteoroid ablation spheres from deep-sea sediments
NASA Astrophysics Data System (ADS)
Blanchard, M. B.; Brownlee, D. E.; Bunch, T. E.; Hodge, P. W.; Kyte, F. T.
1980-01-01
The paper deals with an examination of spheres that are magnetically extracted from mid-Pacific abyssal clays that are up to half a million years old. The spheres are divided into three groups using their dominant mineralogy - namely, iron, glassy, and silicate. Most spheres were formed from particles that completely melted as they separated from their parent meteoroids during the ablation process. It is concluded that the mineralogy and composition of the deep-sea spheres are identical in many respects to the meteorite fusion crusts, laboratory-created ablation debris, and the ablated interplanetary dust particles in the stratospheric collection.
Orbital dynamics of two electrically charged conducting spheres
NASA Astrophysics Data System (ADS)
Hoffmeister, Brent K.; Meyer, Deseree A.; Atkins, Brad M.; Franks, Gavin A.; Fuchs, Joshua T.; Li, Lulu; Sliger, Chase W.; Thompson, Jennifer E.
2010-10-01
The similar forms of Coulomb's law of electrostatics and Newton's law of gravitation suggest that two oppositely charged spheres can orbit each other by means of the electrostatic force. We demonstrate electrostatic binary orbits using two oppositely charged graphite coated Styrofoam® spheres. The experiment was conducted on the NASA aircraft Weightless Wonder which simulates weightless conditions. Videos of 23 orbital attempts were analyzed to investigate the dynamics and orbital stability of the two sphere system. The results support predictions of a recently developed theory that establishes criteria for stable orbits between two conducting, electrically charged spheres.
Oil capture from a water surface by a falling sphere
NASA Astrophysics Data System (ADS)
Smolka, Linda; McLaughlin, Clare; Witelski, Thomas
2015-11-01
When a spherical particle is dropped from rest into an oil lens that floats on top of a water surface, a portion of the oil adheres to the sphere. Once the sphere comes to rest at the subsurface, the oil forms a pendant drop that remains attached in equilibrium to the sphere effectively removing oil from the water surface. Best fit solutions of the Laplace equation to experimental profiles are used to investigate the parameter dependence of the radius of curvature and the filling and contact angles at the three-phase contact line of the pendant drop for spheres with different wetting properties, densities and radii. The volume of oil captured by a sphere increases with a sphere's mass and diameter. However, lighter and smaller spheres capture more oil relative to their own volume than do heavier and larger spheres (scaling with the sphere mass ~M - 0 . 544) and are thus more efficient at removing oil from a water surface. The authors wish to acknowledge the support of the National Science Foundation Grant Nos. DMS-0707755 and DMS-0968252.
Porous Sphere in Stratified Environments: Entrainment and Diffusion
NASA Astrophysics Data System (ADS)
Camassa, Roberto; Falcon, Claudia; Khatri, Shilpa; McLaughlin, Richard; UNC Joint Fluids Lab Team
2014-11-01
A theoretical, experimental, and numerical study of porous spheres falling in stratified fluids will be presented. The systematic justification of asymptotic regimes resulting in asymptotic models with ``heat bath'' boundary conditions for salinity are derived in low Reynolds number regimes. Violation of these asymptotic scalings will be discussed in the context of experiments and mathematical modeling. In particular the presence of a salt depletion or enrichment wake left behind by the settling, ab/de-sorbing sphere, and its competition with entrainment, will be presented and highlighted. Experimental results with microporous spheres as well calibrated manufactured drilled spheres will be compared. Supported by: NSF CMG, NSF RTG, ONR.
Human postprandial gastric emptying of 1-3-millimeter spheres.
Meyer, J H; Elashoff, J; Porter-Fink, V; Dressman, J; Amidon, G L
1988-06-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with 113mIn or 99mTc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with 113mIn and of chicken liver labeled with 99mTc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as 99mTc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food. PMID:3360258
Human postprandial gastric emptying of 1-3-millimeter spheres
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-06-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food.
ISS Update: SPHERES with Telerobotics Project Manager Terry Fong
NASA Public Affairs Officer Brandi Dean talks with Terry Fong, Telerobotics Project Manager, about how the Synchronized Position, Hold, Engage and Reorient Experimental Satellites, or SPHERES, are ...
Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres
NASA Astrophysics Data System (ADS)
Wallén, Henrik; Kettunen, Henrik; Sihvola, Ari
2015-01-01
This article analyzes the response of a sphere with radially anisotropic permittivity dyadic (RA sphere), in both the electrostatic and full electrodynamic settings. Depending on the values and signs of the permittivity components, the quasistatic polarizability of the RA sphere exhibits several very different interesting properties, including invisibility, field concentration, resonant singularities, and emergent losses. Special attention is given to the anomalous losses that appear in the case of certain hyperbolic anisotropy values. We show that their validity can be justified in a limiting sense by puncturing the sphere at the origin and adding a small imaginary part into the permittivity components. A hyperbolic RA sphere with very small intrinsic losses can thus have significant effective losses making it an effective absorber. With different choices of permittivities, the RA sphere could also perform as a cloak or a sensor. The Mie scattering results by an RA sphere are used to justify the quasistatic calculations. It is shown that in the small parameter limit the absorption efficiency of an RA sphere is nonzero for certain lossless hyperbolic anisotropies. The absorption and scattering efficiencies agree with the quasistatic calculations fairly well for spheres with size parameters up to 1/3.
GRADIENT INDEX SPHERES BY THE SEQUENTIAL ACCRETION OF GLASS POWDERS
MARIANO VELEZ
2008-06-15
The Department of Energy is seeking a method for fabricating mm-scale spheres having a refractive index that varies smoothly and continuously from the center to its surface [1]. The fabrication procedure must allow the creation of a range of index profiles. The spheres are to be optically transparent and have a refractive index differential greater than 0.2. The sphere materials can be either organic or inorganic and the fabrication technique must be capable of scaling to low cost production. Mo-Sci Corporation proposed to develop optical quality gradient refractive index (GRIN) glass spheres of millimeter scale (1 to 2 mm diameter) by the sequential accretion and consolidation of glass powders. Other techniques were also tested to make GRIN spheres as the powder-accretion method produced non-concentric layers and poor optical quality glass spheres. Potential ways to make the GRIN spheres were (1) by "coating" glass spheres (1 to 2 mm diameter) with molten glass in a two step process; and (2) by coating glass spheres with polymer layers.
Method and apparatus for producing small hollow spheres
Hendricks, Charles D.
1979-01-01
Method and apparatus for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T.gtoreq.600.degree. C.). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10.sup.3 .mu.m) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants.
Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.
Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M
2012-08-01
The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range. PMID:22722609
Time required for a sphere to fall through a funnel
NASA Astrophysics Data System (ADS)
Sridharan, J.; Altschul, B.; Crittenden, S.
2014-12-01
We experimentally test a recently proposed theory of the behavior of a single frictional, inelastic, spherical particle falling under gravity through a symmetric funnel. We find that, while many qualitative results of the theory are supported by the data, the quantitative behavior of a real sphere falling through a real funnel differs from the predictions. The behavior above a 45∘ funnel angle, the duration, and the dependence of the duration on the initial horizontal position all show significant deviations from the predicted results. In particular, for drop positions near the gap, the duration of the fall is often significantly less than predicted for 50∘ and 60∘ funnel angles; and at a 60∘ funnel angle, where the data best matches the model, the R2 goodness of fit is only 0.27. The fit can be significantly improved for 60∘ funnel angle by relaxing the most stringent approximation of the theory, which asserts that the transition from slipping to rolling is governed by a single constant parameter, β, independent of impact speed and angle. We conclude that, although the theory captures most of the key features of the dynamics of a ball falling through a funnel, it does not do so with quantitative accuracy, indicating that for commonly encountered balls and drop heights, a more realistic model of particle collisions is required.
Ti{sub 5}O{sub 5} superstructures of cubic titanium monoxide
Gusev, A. I.
2013-08-15
A cubic model is proposed for the Ti{sub 5}O{sub 5} (Ti{sub 5} Black-Small-Square O{sub 5}{open_square} {identical_to} Ti{sub 90} Black-Small-Square {sub 18}O{sub 90}{open_square}{sub 18}) superstructure of nonstoichiometric titanium monoxide Ti{sub x}O{sub z} with double imperfection. The unit cell of the cubic Ti{sub 5}O{sub 5} superstructure has the threefold lattice parameter of the unit cell of the basis disordered B1 structure of Ti{sub x}O{sub z} monoxide and belongs to space group Pm 3-bar m . The channel of the disorder-order transition, i.e., Ti{sub x}O{sub z} (space group Fm 3-bar m)-Ti{sub 5}O{sub 5} (space group Pm 3-bar m), includes 75 superstructure vectors of seven stars (k{sub 10}), (k{sub 7}), (k{sub 6(1)}), (k{sub 6(2)}), (k{sub 4(1)}), (k{sub 4(2)}), and (k{sub 1}). The distribution functions of Ti and O atoms over the sites of the cubic Ti{sub 5}O{sub 5} superstructure are calculated. A comparison of the X-ray and electron diffraction data obtained for ordered TiO{sub 1.087} monoxide with the theoretical simulation results supports the existence of the cubic Ti{sub 5}O{sub 5} superstructure. The cubic (space group Pm 3-bar m) Ti{sub 5}O{sub 5} superstructure is shown to be a high-temperature structure relative to the well-known monoclinic (space group C2/m) superstructure of the same type.
Patrinoiu, Greta; Calderón-Moreno, Jose Maria; Culita, Daniela C.; Birjega, Ruxandra; Ene, Ramona; Carp, Oana
2013-06-15
A green template route for the synthesis of mesoscale solid ZnO spheres was ascertained. The protocol involves a double coating of the carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. The composites were characterized by FTIR spectroscopy, thermal analysis, scanning electron microscopy while the obtained ZnO spheres by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopy, N{sub 2} adsorption–desorption isotherms and photoluminescence investigations. A growth mechanism of the solid spheres is advanced based on these results. While the spheres' diameters and the mean size values of ZnO are independent on deposition order, the surface area and the external porosity are fairly dependent. The photoluminescence measurements showed interesting emission features, with emission bands in the violet to orange region. The spheres present high photocatalytical activity towards the degradation of phenol under UV irradiation, the main reaction being its mineralization. - Graphical abstract: A novel and eco-friendly methodology for the synthesis of mesoscale solid ZnO spheres was developed. The protocol involves a double coating of the starch-derived carbonaceous spheres with successive layers of zinc-containing species by alternating a non-ultrasound and ultrasound-assisted deposition, followed by calcination treatments. - Highlights: • ZnO solid spheres are obtained via a template route using carbonaceous spheres. • Two-step coatings of interchangeable order are used as deposition procedure. • The coating procedure influences the porosity and surface area. • ZnO spheres exhibited interesting visible photoluminescence properties. • Solid spheres showed photocatalytical activity in degradation of phenol.
Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure
NASA Astrophysics Data System (ADS)
Liu, Jinming; Wu, Kai; Wang, Jian-Ping
2016-05-01
Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.
Cubic ice and large humidity with respect to ice in cold cirrus clouds
NASA Astrophysics Data System (ADS)
Bogdan, A.; Loerting, T.
2009-04-01
Recently several studies have reported about the possible formation of cubic ice in upper-tropospheric cirrus ice clouds and its role in the observed elevated relative humidity with respect to hexagonal ice, RHi, within the clouds. Since cubic ice is metastable with respect to stable hexagonal ice, its vapour pressure is higher. A key issue in determining the ratio of vapour pressures of cubic ice Pc and hexagonal ice Ph is the enthalpy of transformation from cubic to hexagonal ice Hcâh. By dividing the two integrated forms of the Clausius-Clapeyron equation for cubic ice and hexagonal ice, one obtains the relationship (1): ln Pc-- ln P*c-=--(Hcâh--) Ph P*h R 1T-- 1T* (1) from which the importance of Hcâh is evident. In many literature studies the approximation (2) is used: ln Pc-= Hc-âh. Ph RT (2) Using this approximated form one can predict the ratio of vapour pressures by measuring Hcâh. Unfortunately, the measurement of Hcâh is difficult. First, the enthalpy difference is very small, and the transition takes place over a broad temperature range, e.g., between 230 K and 260 K in some of our calorimetry experiments. Second, cubic ice (by contrast to hexagonal ice) can not be produced as a pure crystal. It always contains hexagonal stacking faults, which are evidenced by the (111)-hexagonal Bragg peak in the powder diffractogram. If the number of hexagonal stacking faults in cubic ice is high, then one could even consider this material as hexagonal ice with cubic stacking faults. Using the largest literature value of the change of enthalpy of transformation from cubic to hexagonal ice, Hcâh ? 160 J/mol, Murphy and Koop (2005) calculated that Pc would be ~10% higher than that of hexagonal ice Phat 180 K - 190 K, which agrees with the measurements obtained later by Shilling et al. (2006). Based on this result Shilling et al. concluded that "the formation of cubic ice at T < 202 K may significantly contribute to the persistent in
Unit quaternions and the Bloch sphere
NASA Astrophysics Data System (ADS)
Wharton, K. B.; Koch, D.
2015-06-01
The spinor representation of spin-1/2 states can equally well be mapped to a single unit quaternion, yielding a new perspective despite the equivalent mathematics. This paper first demonstrates a useable map that allows Bloch-sphere rotations to be represented as quaternionic multiplications, simplifying the form of the dynamical equations. Left-multiplications generally correspond to non-unitary transformations, providing a simpler (essentially classical) analysis of time-reversal. But the quaternion viewpoint also reveals a surprisingly large broken symmetry, as well as a potential way to restore it, via a natural expansion of the state space that has parallels to second order fermions. This expansion to ‘second order qubits’ would imply either a larger gauge freedom or a natural space of hidden variables.
Orbifolds, defects and sphere partition function
NASA Astrophysics Data System (ADS)
Hosomichi, Kazuo
2016-02-01
Gauge theories in the presence of codimension two vortex defects are known to be related to the theories on orbifolds. By using this relation we study the localized path integrals of 2D {N}=(2,2) SUSY gauge theories with point-like vortex defects. We present a formula for the correlation functions of vortex defects inserted at the north and the south poles of squashed spheres. For Abelian gauge theories the correlators are locally constant as functions of the parameters of the defect, but exhibit discontinuity at some threshold values determined from the R-charges of the matter multiplets. For non-Abelian gauge groups the correlators depend non-trivially on the types of gauge symmetry breaking due to the defects.
A Bonner Sphere Spectrometer for pulsed fields.
Aza, E; Dinar, N; Manessi, G P; Silari, M
2016-02-01
The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828
Mechanical Characterization of Partially Crystallized Sphere Packings
NASA Astrophysics Data System (ADS)
Hanifpour, M.; Francois, N.; Vaez Allaei, S. M.; Senden, T.; Saadatfar, M.
2014-10-01
We study grain-scale mechanical and geometrical features of partially crystallized packings of frictional spheres, produced experimentally by a vibrational protocol. By combining x-ray computed tomography, 3D image analysis, and discrete element method simulations, we have access to the 3D structure of internal forces. We investigate how the network of mechanical contacts and intergranular forces change when the packing structure evolves from amorphous to near perfect crystalline arrangements. We compare the behavior of the geometrical neighbors (quasicontracts) of a grain to the evolution of the mechanical contacts. The mechanical coordination number Zm is a key parameter characterizing the crystallization onset. The high fluctuation level of Zm and of the force distribution in highly crystallized packings reveals that a geometrically ordered structure still possesses a highly random mechanical backbone similar to that of amorphous packings.
Aging dynamics of colloidal hard sphere glasses.
Martinez, V A; Bryant, G; van Megen, W
2010-09-21
We report the results of dynamic light scattering measurements of the coherent intermediate scattering function (ISF) of glasses of colloidal hard spheres for several volume fractions and a range of scattering vectors around the primary peak of the static structure factor. The ISF shows a clear crossover from an initial fast decay to a slower nonstationary decay. Aging is quantified in several different ways. However, regardless of the method chosen, the perfect "aged" glass is approached in a power law fashion. In particular the coupling between the fast and slow decays, as measured by the degree of stretching of the ISF at the crossover, also decreases algebraically with waiting time. The nonstationarity of this coupling implies that even the fastest detectable processes are themselves nonstationary. PMID:20866156
Zhang, Youjin Yao, Chengpeng; Fan, Yun; Zhou, Maozhong
2014-11-15
Highlights: • Orthorhombic PrCrO{sub 3} cubic particles were prepared by a simple and facile one-step hydrothermal method. • The possible formation mechanism of PrCrO{sub 3} cubic particles was proposed. • The as-synthesized PrCrO{sub 3} exhibited behaviors of magnetic transition and negative magnetization. - Abstract: Orthorhombic PrCrO{sub 3} cubic particles were synthesized by a simple and facile one-step hydrothermal method of processing temperature 280 °C for 7 days. The products prepared in this paper have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM). The magnetic properties of the final sample are also studied. The XRD pattern shows the pure orthorhombic phase for PrCrO{sub 3} particles, the XPS and FTIR results further demonstrate the purity and composition of the product. FESEM images show cubic morphology for the PrCrO{sub 3} particles. The possible growth mechanism for PrCrO{sub 3} cubic particles is proposed. Through the investigation of magnetic properties, it can be seen that the orthorhombic PrCrO{sub 3} cubic particles exhibit behaviors of magnetic transition and negative magnetization. The Néel temperature is about 232 K and the magnetic hysteresis loop under 4 K shows that the coercivity (H{sub C}) and remanence (M{sub r}) is about 1728 Oe and 4.88 emu/g, respectively.
Preliminary Tests in the Supersonic Sphere
NASA Technical Reports Server (NTRS)
Baker, John E.
1947-01-01
This report presents preliminary data obtained in the Langley supersonic sphere. The supersonic sphere is essentially a whirling mechanism enclosed in a steel shell which can be filled with either air or Freon gas. The test models for two-dimensional study are of propeller form having the same plan form and diameter but varying only in the airfoil shape and thickness ratio. Torque coefficients for the 16-006, 65-110, and the 15 percent thick ellipse models are presented, as well as pressure distributions on a circular-arc supersonic airfoil section having a maximum thickness of 10 percent chord at the 1/3-chord position. Torque coefficients were measured in both Freon and air on the 15 percent thick ellipse, and the data obtained in air and Freon are found to be in close agreement. The torque coefficients for the three previously mentioned models showed large differences in magnitude at tip Mach numbers above 1, the model with the thickest airfoil section having the largest torque coefficient. Pressure distribution on the previously mentioned circular-arc airfoil section are presented at Mach numbers of 0.69, 1.26, and 1.42. At Mach numbers of 1.26 and 1.42 the test section is in the mixed flow region where both subsonic and supersonic speeds occur on the airfoil. No adequate theory has been developed for this condition of mixed flow, but the experimental data have been compared with values of pressure based on Ackeret's theory. The experimental data obtained at a Mach number of 1.26 on the rear portion of the airfoil section agree fairly well with the values calculated by Ackeret's theory. At a Mach number of 1.42 a larger percentage of the airfoil is in supersonic flow, and the experimental data for the entire airfoil agree fairly well with the values obtained using Ackeret's theory.
Cherenkov and Scintillation Properties of Cubic Zirconium
NASA Technical Reports Server (NTRS)
Christl, M.J.; Adams, J.H.; Parnell, T.A.; Kuznetsov, E.N.
2008-01-01
Cubic zirconium (CZ) is a high index of refraction (n =2.17) material that we have investigated for Cherenkov counter applications. Laboratory and proton accelerator tests of an 18cc sample of CZ show that the expected fast Cherenkov response is accompanied by a longer scintillation component that can be separated by pulse shaping. This presents the possibility of novel particle spectrometers which exploits both properties of CZ. Other high index materials being examined for Cherenkov applications will be discussed. Results from laboratory tests and an accelerator exposure will be presented and a potential application in solar energetic particle instruments will be discussed
Craniofacial reconstruction using rational cubic ball curves.
Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R U; Yahya, Zainor Ridzuan
2015-01-01
This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632
Craniofacial Reconstruction Using Rational Cubic Ball Curves
Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan
2015-01-01
This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632
Orbital Motion of Electrically Charged Spheres in Microgravity
ERIC Educational Resources Information Center
Banerjee, Shubho; Andring, Kevin; Campbell, Desmond; Janeski, John; Keedy, Daniel; Quinn, Sean; Hoffmeister, Brent
2008-01-01
The similar mathematical forms of Coulomb's law and Newton's law of gravitation suggest that two uniformly charged spheres should be able to orbit each other just as two uniform spheres of mass are known to do. In this paper we describe an experiment that we performed to demonstrate such an orbit. This is the first published account of a…
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An...
21 CFR 886.3320 - Eye sphere implant.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Eye sphere implant. 886.3320 Section 886.3320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3320 Eye sphere implant. (a) Identification. An...
The Essentialist Roots of the Public Sphere: A Feminist Critique.
ERIC Educational Resources Information Center
Griffin, Cindy L.
1996-01-01
Explores the essentialist influences on the public sphere from a feminist perspective, suggesting that an essentialist ideology informs the public/private distinction. Argues that the public sphere is not strictly a result of historical changes or economic influences but is also dependent on an essentialist view of women and men. (PA)
Torsional oscillations of a sphere in a Stokes flow
NASA Astrophysics Data System (ADS)
Box, F.; Thompson, A. B.; Mullin, T.
2015-12-01
The results of an experimental investigation into a sphere performing torsional oscillations in a Stokes flow are presented. A novel experimental set-up was developed, which enabled the motion of the sphere to be remotely controlled through application of an oscillatory magnetic field. The response of the sphere to the applied field was characterised in terms of the viscous, magnetic and gravitational torques acting on the sphere. A mathematical model of the system was developed, and good agreement was found between experimental, numerical and theoretical results. The flow resulting from the motion of the sphere was measured, and the fluid velocity was found to have an inverse square dependence on radial distance from the sphere. The good agreement between measurements and the analytical solutions for both fluid velocity and angular displacement of the sphere indicates that the flow may be considered Stokesian, thus providing an excellent basis for experimental and theoretical characterisation of hydrodynamic interactions between multiple oscillating spheres at low Reynolds number.
Meteor ablation spheres from deep-sea sediments
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Brownlee, D. E.; Bunch, T. E.; Hodge, P. W.; Kyte, F. T.
1978-01-01
Spheres from mid-Pacific abyssal clays (0 to 500,000 yrs old), formed from particles that completely melted and subsequently recrystallized as they separated from their meteoroid bodies, or containing relict grains of parent meteoroids that did not experience any melting were analyzed. The spheres were readily divided into three groups using their dominant mineralogy. The Fe-rich spheres were produced during ablation of Fe and metal-rich silicate meteoroids. The glassy spheres are considerably more Fe-rich than the silicate spheres. They consist of magnetite and an Fe glass which is relatively low in Si. Bulk compositions and relict grains are useful for determining the parent meteoroid types for the silicate spheres. Bulk analyses of recrystallized spheres show that nonvolatile elemental abundances are similar to chondrite abundances. Analysis of relict grains identified high temperature minerals associated with a fine-grained, low temperature, volatile-rich matrix. The obvious candidates for parent meteoroids of this type of silicate sphere is a carbonaceous chondrite.
49 CFR 1.23 - Spheres of primary responsibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 1 2010-10-01 2010-10-01 false Spheres of primary responsibility. 1.23 Section 1.23 Transportation Office of the Secretary of Transportation ORGANIZATION AND DELEGATION OF POWERS AND DUTIES Office of the Secretary § 1.23 Spheres of primary responsibility. (a) Secretary and Deputy Secretary. Overall planning, direction,...
Experimental investigation of flow past a sphere with trip
NASA Astrophysics Data System (ADS)
Deshpande, Rahul; Desai, Aditya; Kanti, Vivek; Mittal, Sanjay
2015-11-01
The flow over a smooth sphere and a sphere with a trip was experimentally investigated in the Reynolds number range 1 × 105 to 5 × 105 through unsteady force measurements. The size of the trip is 1.5 percent of the diameter D of the sphere and measurements are made for its streamwise location from the stagnation point for 10, 20 and 30 degrees. The statistics of the drag and lateral forces were studied for a range of subcritical to supercritical Reynolds numbers to understand the effect of a trip on the critical flow regime of a sphere. Two different flow characteristics are observed over the sphere surface depending on the streamwise location of the trip. For subcritical Reynolds numbers, a significant mean side force is observed in the direction of the trip side of the sphere. On gradually increasing the Reynolds number, the flow over the sphere enters the critical regime and the direction of the side force reverses from the trip side to the non - trip side of the sphere which continues to be observed well within the early supercritical regime. The authors would like to thank the efforts put in by Mr. Sharad Saxena and Mr. Akhilesh Pal from National Wind Tunnel Facility, IIT - Kanpur in conducting the experiments.
Regions of attraction between like-charged conducting spheres
NASA Astrophysics Data System (ADS)
Lekner, John
2016-06-01
Two positively charged conducting spheres have been shown to attract at close enough range, unless they have a charge ratio that would result from contact. We give analytical results for the charge ratio at which the cross-over between electrostatic attraction and repulsion occurs, as a function of the sphere separation.
Social Justice and Education in the Public and Private Spheres
ERIC Educational Resources Information Center
Power, Sally; Taylor, Chris
2013-01-01
This paper explores the complex relationship between social justice and education in the public and private spheres. The politics of education is often presented as a battle between left and right, the state and the market. In this representation, the public and the private spheres are neatly aligned on either side of the line of battle, and…
Squeeze flow between a sphere and a textured wall
NASA Astrophysics Data System (ADS)
Chastel, T.; Mongruel, A.
2016-02-01
The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.
Segregation of Fluidized Binary Hard-Sphere Systems Under Gravity
NASA Astrophysics Data System (ADS)
Kim, Soon-Chul
We have derived an analytic expression for the contact value of the local density of binary hard-sphere systems under gravity. We have obtained the crossover conditions for the Brazil-nut type segregation of binary hard-sphere mixtures and binary hard-sphere chain mixtures from the segregation criterion, where the segregation occurs when the density (or the pressure) of the small spheres at the bottom is higher than that of the large spheres, or vice versa. For the binary hard-sphere chain mixtures, the crossover condition for the segregation depends on the number of monomers composed of hard-sphere chains as well as the mass and the diameter of each species. The fundamental-measure theories (FMTs) and local density approximation (LDA) are employed to examine the crossover condition for the segregation of the gravity-induced hard-sphere mixtures. The calculated results show that the LDA does not explain the density oscillation near the bottom, whereas the modified fundamental-measure theory (MFMT) compares with molecular dynamics simulations.
Computational Analysis of Wake Field Flow between Multiple Identical Spheres
NASA Astrophysics Data System (ADS)
Brand, Wesley; Greenslit, Morton; Klassen, Zach; Hastings, Jay; Matson, William
2014-11-01
It is well understood both that objects moving through a fluid perturb the motion of nearby objects in the same fluid and that some configurations of objects moving through a fluid have little inter-object perturbation, such as a flock of birds flying in a V-formation. However, there is presently no known method for predicting what configurations of objects will be stable while moving through a fluid. Previous work has failed to find such stable configurations because of the computational complexity of finding individual solutions. In this research, the motions of two spheres in water were simulated and combinations of those simulations were used to extrapolate the motions of multiple spheres and to find configurations where the lateral forces on each sphere were negligible and the vertical forces on each sphere were equivalent. Two and three sphere arrangements were simulated in COMSOL Multiphysics and Mathematica was used both to demonstrate that combinations of two sphere cases are identical to three sphere cases and to identify stable configurations of three or more spheres. This new approach is expected to simplify optimization of aerodynamic configurations and applications such as naval and aerospace architecture and racecar driving. Advisor.
Dual-Purpose Millikan Experiment with Polystyrene Spheres
ERIC Educational Resources Information Center
Wall, C. N.; Christensen, F. E.
1975-01-01
This procedure, using polystyrene spheres of specified diameter, renders the Millikan oil drop experiment more accurate than the conventional procedure of the polystyrene spheres, eliminates size estimation error, and removes the guesswork involved in assigning proper index integers to the observed charges. (MLH)
Mesoscale assembly of NiO nanosheets into spheres
Zhang Meng; Yan Guojin; Hou Yonggai; Wang Chunhua
2009-05-15
NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 deg. C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products' morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from {approx}70 to {approx}200 m{sup 2} g{sup -1}. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g{sup -1}. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity. - Graphical abstract: The mesoscale assembly of NiO nanosheets into spheres have been achieved by a solvothermal method. N{sub 2} adsorption/desorption isotherms show the S{sub BET} of NiO is tunable. NiO spheres show large discharge capacity and slow capacity-fading rate.
Seeded Synthesis of Monodisperse Core-Shell and Hollow Carbon Spheres.
Gil-Herrera, Luz Karime; Blanco, Álvaro; Juárez, Beatriz H; López, Cefe
2016-08-01
Monodisperse carbon spheres between 500 and 900 nm are hydrothermally synthesized from glucose on polystyrene seeds. Control over temperature, time, glucose concentration, and seed size yields hybrid spheres without aggregation and no additional spheres population. Pyrolysis transforms the hybrid into hollow carbon spheres preserving monodispersity. This approach provides a basis for functional carbon spheres applicable in photonics and energy storage. PMID:27337299
Design of cubic-phase optical elements using subwavelength microstructures.
Mirotznik, Mark S; van der Gracht, Joseph; Pustai, David; Mathews, Scott
2008-01-21
We describe a design methodology for synthesizing cubic-phase optical elements using two-dimensional subwavelength microstructures. We combined a numerical and experimental approach to demonstrate that by spatially varying the geometric properties of binary subwavelength gratings it is possible to produce a diffractive element with a cubic-phase profile. A test element was designed and fabricated for operation in the LWIR, approximately lambda=10.6 microm. Experimental results verify the cubic-phase nature of the element. PMID:18542199
Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond
NASA Astrophysics Data System (ADS)
Berthier, Ludovic; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki
2016-06-01
We implement and optimize a particle-swap Monte Carlo algorithm that allows us to thermalize a polydisperse system of hard spheres up to unprecedentedly large volume fractions, where previous algorithms and experiments fail to equilibrate. We show that no glass singularity intervenes before the jamming density, which we independently determine through two distinct nonequilibrium protocols. We demonstrate that equilibrium fluid and nonequilibrium jammed states can have the same density, showing that the jamming transition cannot be the end point of the fluid branch.
Equilibrium Sampling of Hard Spheres up to the Jamming Density and Beyond.
Berthier, Ludovic; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki
2016-06-10
We implement and optimize a particle-swap Monte Carlo algorithm that allows us to thermalize a polydisperse system of hard spheres up to unprecedentedly large volume fractions, where previous algorithms and experiments fail to equilibrate. We show that no glass singularity intervenes before the jamming density, which we independently determine through two distinct nonequilibrium protocols. We demonstrate that equilibrium fluid and nonequilibrium jammed states can have the same density, showing that the jamming transition cannot be the end point of the fluid branch. PMID:27341260
NASA Astrophysics Data System (ADS)
Oyarzún, Bernardo; van Westen, Thijs; Vlugt, Thijs J. H.
2013-05-01
The liquid crystal phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids are studied by constant pressure Monte Carlo simulations. An extensive study on the phase behavior of linear fluids with a length of 7, 8, 9, 10, 11, 12, 13, 14, 15, and 20 beads is carried out. The phase behavior of partially flexible fluids with a total length of 8, 10, 14, and 15 beads and with different lengths for the linear part is also determined. A precise description of the reduced pressure and of the packing fraction change at the isotropic-nematic coexistence was achieved by performing long simulation runs. For linear fluids, a maximum in the isotropic to nematic packing fraction change is observed for a chain length of 15 beads. The infinite dilution solubility of hard spheres in linear and partially flexible hard-sphere chain fluids is calculated by the Widom test-particle insertion method. To identify the effect of chain connectivity and molecular anisotropy on free volume, solubility is expressed relative to that of hard spheres in a hard sphere fluid at same packing fraction as relative Henry's law constants. A linear relationship between relative Henry's law constants and packing fraction is observed for all linear fluids. Furthermore, this linearity is independent of liquid crystal ordering and seems to be independent of chain length for linear chains of 10 beads and longer. The same linear relationship was observed for the solubility of hard spheres in nematic forming partially flexible fluids for packing fractions up to a value slightly higher than the nematic packing fraction at the isotropic-nematic coexistence. At higher packing fractions, the small flexibility of these fluids seems to improve solubility in comparison with the linear fluids.
Sampling theorems and compressive sensing on the sphere
NASA Astrophysics Data System (ADS)
McEwen, Jason D.; Puy, Gilles; Thiran, Jean-Philippe; Vandergheynst, Pierre; Van De Ville, Dimitri; Wiaux, Yves
2011-09-01
We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.
An integrating sphere to measure CD from difficult samples
Castiglioni; Albertini
2000-05-01
Integrating spheres are widely used with UV-Vis and occasionally with infrared spectrophotometers to measure different types of samples, either in transmission mode (scattered transmission accessories) or in total/diffuse reflectance mode. We built a prototype sphere of the demountable type, which fits easily the sample compartment of a commercial CD spectropolarimeter, requiring neither any alignment nor the use of a dedicated photomultiplier. Samples can be inserted either at the sphere entrance (for scattered transmission mode) or in the center of the sphere (for total reflectance experiments). Selected experimental data are presented to evaluate sphere efficiency, its wavelength range and results with a single sample in different forms. Copyright 2000 Wiley-Liss, Inc. PMID:10790200
Pool boiling from rotating and stationary spheres in liquid nitrogen
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
Optical pulse propagation via whispering gallery modes in glass spheres
Whitten, W.B.; Shaw, R.W.; Barnes, M.D.; Ramsey, J.M.
1997-12-01
Early in this century, Rayleigh showed that waves could propagate close to the wall of a spherical cavity with very little loss as long as the wavelength was small compared to the cavity circumference. The treatment was primarily for acoustic waves, modeling the whispering gallery effect, but he pointed out that electromagnetic waves should behave similarly. Study of the optical properties of dielectric spheres has received new interest with improvements in optical instrumentation and the emergency of new applications for high-Q resonators. It has recently been shown that optical pulses propagating in whispering gallery modes can be treated analogously to pulses in a fiber optic waveguide. Since the optical fields extend beyond the surface of the sphere, the sphere`s environment could alter propagation properties such as cavity ringdown time. The authors describe here some time and frequency-domain measurements of picosecond pulses in glass spheres of millimeter dimension and discuss potential analytical applications.
Debye series for light scattering by a multilayered sphere.
Li, Renxian; Han, Xiange; Jiang, Huifen; Ren, Kuan Fang
2006-02-20
We have derived the formula for the Debye-series decomposition for light scattering by a multilayered sphere. This formulism permits the mechanism of light scattering to be studied. An efficient algorithm is introduced that permits stable calculation for a large sphere with many layers. The formation of triple first-order rainbows by a three-layered sphere and single-order rainbows and the interference of different-order rainbows by a sphere with a gradient refractive index, are then studied by use of the Debye model and Mie calculation. The possibility of taking only one single mode or several modes for each layer is shown to be useful in the study of the scattering characteristics of a multilayered sphere and in the measurement of the sizes and refractive indices of particles. PMID:16523791
The Physics of Hard Spheres Experiment on MSL-1: Required Measurements and Instrument Performance
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Lant, Christian T.; Ling, Jerri S.
1998-01-01
The Physics of HArd Spheres Experiment (PHaSE), one of NASA Lewis Research Center's first major light scattering experiments for microgravity research on complex fluids, flew on board the Space Shuttle's Microgravity Science Laboratory (MSL-1) in 1997. Using colloidal systems of various concentrations of micron-sized plastic spheres in a refractive index-matching fluid as test samples, illuminated by laser light during and after crystallization, investigations were conducted to measure the nucleation and growth rate of colloidal crystals as well as the structure, rheology, and dynamics of the equilibrium crystal. Together, these measurements support an enhanced understanding of the nature of the liquid-to-solid transition. Achievement of the science objectives required an accurate experimental determination of eight fundamental properties for the hard sphere colloidal samples. The instrument design met almost all of the original measurement requirements, but with compromise on the number of samples on which data were taken. The instrument performs 2-D Bragg and low angle scattering from 0.4 deg. to 60 deg., dynamic and single-channel static scattering from 10 deg. to 170 deg., rheology using fiber optics, and white light imaging of the sample. As a result, PHaSE provided a timely microgravity demonstration of critical light scattering measurement techniques and hardware concepts, while generating data already showing promise of interesting new scientific findings in the field of condensed matter physics.
Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres.
Santos, Andrés; Yuste, Santos B; López de Haro, Mariano; Odriozola, Gerardo; Ogarko, Vitaliy
2014-04-01
A recent proposal in which the equation of state of a polydisperse hard-sphere mixture is mapped onto that of the one-component fluid is extrapolated beyond the freezing point to estimate the jamming packing fraction ϕJ of the polydisperse system as a simple function of M1M3/M22, where Mk is the kth moment of the size distribution. An analysis of experimental and simulation data of ϕJ for a large number of different mixtures shows a remarkable general agreement with the theoretical estimate. To give extra support to the procedure, simulation data for seventeen mixtures in the high-density region are used to infer the equation of state of the pure hard-sphere system in the metastable region. An excellent collapse of the inferred curves up to the glass transition and a significant narrowing of the different out-of-equilibrium glass branches all the way to jamming are observed. Thus, the present approach provides an extremely simple criterion to unify in a common framework and to give coherence to data coming from very different polydisperse hard-sphere mixtures. PMID:24827171
Low pressure growth of cubic boron nitride films
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
Phase transitions at high pressure in tetracyanoethylene
NASA Astrophysics Data System (ADS)
Mukhopadhyay, R.; Deb, S. K.; Das, Amitabh; Chaplot, S. L.
2009-11-01
We report in situ x-ray diffraction studies in tetracyanoethylene (TCNE) at high pressure using diamond anvil cell (DAC) at Elettra synchrotron source, Trieste, Italy. Experiments were performed with both the polymorphic phases (monoclinic and cubic) of TCNE as the starting phase. While starting with monoclinic (the high temperature stable) TCNE, it was found that the Bragg peaks get broadened with increase of pressure and above 5 GPa only few broad peaks remained to be observed. On release of pressure from 6.4 GPa, when the sample started turning black, the diffraction pattern at ambient pressure corresponds to cubic, the other crystalline phase of TCNE. Results reconfirm the monoclinic to cubic transition at high pressure but via an intermediate 'disordered' phase. This settles a number of conflicting issues. TCNE represents only system, which undergoes transition from one crystalline to another crystalline phase via a 'disordered' metastable phase at high pressure. When the starting phase was cubic (the low temperature stable) no apparent phase transition was observed up to 10.8 GPa.
Fluctuation/correlation effects in symmetric diblock copolymers: on the order-disorder transition.
Zong, Jing; Wang, Qiang
2013-09-28
Using fast off-lattice Monte Carlo simulations with experimentally accessible fluctuations, we reported the first systematic study unambiguously quantifying the shift of the order-disorder transition (ODT) χ* of symmetric diblock copolymers from the mean-field prediction χ(MF)*. Our simulations are performed in a canonical ensemble with variable box lengths to eliminate the restriction of periodic boundary conditions on the lamellar period, and give the most accurate data of χ* and bulk lamellar period reported to date. Exactly the same model system (Hamiltonian) is used in both our simulations and mean-field theory; the ODT shift is therefore due to the fluctuations/correlations neglected by the latter. While χ*/χ(MF)*-1∝N(-k) is found with N denoting the invariant degree of polymerization, k decreases around the N-value corresponding to the face-centered cubic close packing of polymer segments as hard spheres, indicating the short-range correlation effects. PMID:24089804
Mechanical properties for irradiated face-centred cubic nanocrystalline metals
Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.
2015-01-01
In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091
ERIC Educational Resources Information Center
Statfeld, Jenna L.
2011-01-01
Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…
Recovering functions defined on the unit sphere by integration on a special family of sub-spheres
NASA Astrophysics Data System (ADS)
Salman, Yehonatan
2016-05-01
The aim of this article is to derive a reconstruction formula for the recovery of C1 functions, defined on the unit sphere {{{S}}}^{n - 1} , given their integrals on a special family of n - 2 dimensional sub-spheres. For a fixed point overline{a} strictly inside {{{S}}}^{n - 1} , each sub-sphere in this special family is obtained by intersection of {{{S}}}^{n - 1} with a hyperplane passing through overline{a} . The case overline{a} = 0 results in an inversion formula for the special case of integration on great spheres (i.e., Funk transform). The limiting case where pin {{{S}}}^{n - 1} and overline{a}→ p results in an inversion formula for the special case of integration on spheres passing through a common point in {{{S}}}^{n - 1}.
Experimental study on combustion of a methane hydrate sphere
NASA Astrophysics Data System (ADS)
Yoshioka, Tomoki; Yamamoto, Yuji; Yokomori, Takeshi; Ohmura, Ryo; Ueda, Toshihisa
2015-10-01
The combustion behavior of a methane hydrate sphere under normal gravity is experimentally investigated. The initial diameter of the sphere is 20 mm. Variation in temperature at the center of the sphere ( T c) is measured with a K-type thermocouple at ignition temperatures ( T c,i) from 193 to 253 K at 20 K intervals. Variation in the near-surface temperature of the sphere ( T s) is measured at ignition temperatures ( T s,i) from 233 to 263 K at 10 K intervals. Two combustion phases are observed. When the hydrate is ignited, a stable flame envelope is formed around the sphere (phase 1). In phase 1, the surface of the sphere is dry. After a few seconds, water formed by dissociation of the methane hydrate appears on the surface and methane bubbles are formed by methane ejected from inside the sphere (phase 2), thus destabilizing the flame and causing local extinction. Methane bubbles move down along the surface and merge into a large methane bubble at the bottom of the sphere. This bubble bursts, releasing methane to form a temporary flame, and the water drops from the hydrate sphere. Water on the surface is cooled by the hydrate inside, and an ice shell confines the methane gas that dissociated inside the sphere. Because the dissociation occurs continuously inside the hydrate, the inner pressure gradually increases and at some instant, the ice cracks and methane gas is ejected from the cracks, which results in a micro-explosion with a flame. In phase 1, the surface temperature is below the freezing point of water, and so the surface remains dry and a stable flame envelope is formed; in phase 2, the surface temperature is above the freezing point, and so water appears on the surface. When the temperature at the center of the sphere is lower (193, 213, or 233 K), some methane hydrate remains even after flame extinction because heat transfer from the flame decreases in phase 2 as a result of local extinction. The diameter of the sphere decreases during combustion in
On the preparation, characterization, and application of Janus spheres
NASA Astrophysics Data System (ADS)
Cui, Jingqin
Surface-anisotropic Janus particles are a new class of materials with interesting properties that have attracted great attention recently. There have been many reports on the manufacture of Janus particles. However, most of them employ the traditional high-cost vapor phase deposition to obtain an asymmetric surface modification of particles. In this thesis, a novel templating process is developed for the manufacturing of Janus spheres via the economic and mild electroless deposition (ELD) method. Templated micron- and submicron-sized polystyrene (PS) spheres are modified with a silver cap composed of 50-200 nm nanoparticles (NPs) through the ELD process. The deposits are found to be stable over time and under physical treatment. Further, the study determines that the substrate sphere curvature influences the ELD modification due to the functional group coverage and distribution as well as the size ratio of the substrate sphere to the NPs deposit. Gold, palladium and titanium oxide particles are successfully deposited onto PS spheres using the same templating process and nanoparticle synthesis methods from literatures in the electroless/wet chemical deposition. Modifications obtained with the ELD conditions studied exhibit a rough surface compared to the vapor-phase modified surfaces. The surface roughness is controlled by varying the ELD reaction conditions to adjust the amount of deposit and the size distribution of the NPs deposited. The assembly of Janus spheres with smooth caps produces planar 2-D structures while spheres with rougher caps tend to form 3-D cluster structures, implying that the surface morphology has an effect on the sphere-sphere interactions. The assembly of new dual-cap/mono-belt Janus particles prepared by combining the vapor phase and ELD processes confirms that the surface roughness influences the orientation of the Janus spheres during assembly. Janus spheres are then incorporated into electroactive polymers as fillers to enhance the
Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting
2011-01-01
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear. PMID:22078069
Transition metal catalysis in confined spaces.
Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H
2015-01-21
Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container. PMID:25340992
Collective excitations in soft-sphere fluids.
Bryk, Taras; Gorelli, Federico; Ruocco, Giancarlo; Santoro, Mario; Scopigno, Tullio
2014-10-01
Despite that the thermodynamic distinction between a liquid and the corresponding gas ceases to exist at the critical point, it has been recently shown that reminiscence of gaslike and liquidlike behavior can be identified in the supercritical fluid region, encoded in the behavior of hypersonic waves dispersion. By using a combination of molecular dynamics simulations and calculations within the approach of generalized collective modes, we provide an accurate determination of the dispersion of longitudinal and transverse collective excitations in soft-sphere fluids. Specifically, we address the decreasing rigidity upon density reduction along an isothermal line, showing that the positive sound dispersion, an excess of sound velocity over the hydrodynamic limit typical for dense liquids, displays a nonmonotonic density dependence strictly correlated to that of thermal diffusivity and kinematic viscosity. This allows rationalizing recent observation parting the supercritical state based on the Widom line, i.e., the extension of the coexistence line. Remarkably, we show here that the extremals of transport properties such as thermal diffusivity and kinematic viscosity provide a robust definition for the boundary between liquidlike and gaslike regions, even in those systems without a liquid-gas binodal line. Finally, we discuss these findings in comparison with recent results for Lennard-Jones model fluid and with the notion of the "rigid-nonrigid" fluid separation lines. PMID:25375488
C{sub 60}: Sphere or polyhedron?
Haddon, R.C.
1997-02-19
In the original publication on the subject, C{sub 60} was depicted with the aid of a soccer ball, but this representation soon gave way to the familiar line drawing of chemical bonds between nucleii. To a large extent the dichotomy in the representation of the fullerenes remains today, and it is the purpose of this paper to pose and address the question that appears in the title. Of course, in reality the answer is well-known, and neither the sphere nor the polyhedron represent C{sub 60}, which like other molecules exists as a collection of nuclei with an associated distribution of electron density. Nevertheless, it is of interest to consider which of these conventional representations is most relevant for the fullerenes and in particular the language most appropriate to the description of the shape of these molecules and the geometry of the carbon atoms. The analysis presented here shows that topology of the molecule is paramount, and hence, C{sub 60} (and the fullerenes) are best modeled as polyhedra. 16 refs., 3 figs.
Measurement of Neutron Transmission Through Iron Spheres
Massey, T.N.; Grimes, S.M.; Wenner, M.T.; Haghighat, Alireza; Adams, James M.; Carlson, Allan D.
2005-05-24
We have measured the transmission of neutrons through iron spheres with several different neutron sources. The D(d,n) reaction and the 15N(n,p) reaction were found to be the best candidates for nearly monoenergetic sources at energies below 11 MeV. We have used a quasi monoenergetic source with 3.0-, 5.0-, and 7.0-MeV deuterons incident on a deuteron gas cell and 5.1-MeV protons incident on a 15N gas cell. The Ohio University Beam Swinger Facility was used in these measurements. This allowed a single fixed detector in a well-shielded time-of-flight (TOF) tunnel to be used for measurements at all angles. This allows a great reduction in the background from room scattered neutrons. The detector, either NE-213 or lithium glass, was calibrated relative to the neutron spectrum from the B(d,n) or the Al(d,n) source reaction. These spectra have been measured relative to the primary neutron standard, 235U(n, f). The transmitted neutrons have been measured for all source reactions at several angles. The data will be reported as the number of neutrons versus time-of-flight since multiple scattering does not allow the energy to be determined accurately by time-of-flight. We have also measured the source reaction at several angles to enhance the modeling of the source spectrum.
Universally optimal distribution of points on spheres
NASA Astrophysics Data System (ADS)
Cohn, Henry; Kumar, Abhinav
2007-01-01
We study configurations of points on the unit sphere that minimize potential energy for a broad class of potential functions (viewed as functions of the squared Euclidean distance between points). Call a configuration sharp if there are m distances between distinct points in it and it is a spherical (2m-1) -design. We prove that every sharp configuration minimizes potential energy for all completely monotonic potential functions. Examples include the minimal vectors of the E_8 and Leech lattices. We also prove the same result for the vertices of the 600 -cell, which do not form a sharp configuration. For most known cases, we prove that they are the unique global minima for energy, as long as the potential function is strictly completely monotonic. For certain potential functions, some of these configurations were previously analyzed by Yudin, Kolushov, and Andreev; we build on their techniques. We also generalize our results to other compact two-point homogeneous spaces, and we conclude with an extension to Euclidean space.
Forming MOFs into spheres by use of molecular gastronomy methods.
Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard
2014-07-14
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. PMID:24964774
Extrinsic Calibration of Camera Networks Using a Sphere
Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; van Haerenborgh, Dirk; van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried
2015-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use. PMID:26247950
Radar Imaging of Spheres in 3D using MUSIC
Chambers, D H; Berryman, J G
2003-01-21
We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.
Synthesis and characterization of oil-chitosan composite spheres.
Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru Mihai; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting
2013-01-01
Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (iron-oxide embedded oil-chitosan composites), and 1.69 ± 0.1 mm (epirubicin and iron oxide encapsulated oil-chitosan composites), respectively. Due to their superparamagnetic properties, the iron-oxide embedded oil-chitosan composites could be guided by a magnet. A lipophilic drug (epirubicin) could be loaded in the spheres with encapsulation rate measured to be 72.25%. The lipophilic fluorescent dye rhodamine B was also loadable in the spheres with red fluorescence being observed under a fluorescence microscope. We have developed a novel approach to an in situ process for fabricating oil-chitosan composite spheres with dual encapsulation properties, which are potential multifunctional drug carriers. PMID:23681059
Alternative approach of cell encapsulation by Volvox spheres.
Teong, Benjamin; Manousakas, Ioannis; Chang, Shwu Jen; Huang, Han Hsiang; Ju, Kuen-Cheng; Kuo, Shyh Ming
2015-10-01
Volvox sphere is a bio-mimicking concept of a biomaterial structure design able to encapsulate chemicals, drugs and/or cells. The aim of this study was to prepare Volvox spheres encapsulating AML12 liver cells and mesenchymal stem cells (MSCs) via a high voltage electrostatic field system. The results demonstrated that AML12 liver cells and MSCs could be successfully encapsulated into the inner spheres and the outer sphere of the Volvox spheres. The improved cell viability of MSCs was achieved by the addition of collagen and polyethylene glycol into the preparation components of the Volvox spheres. Collagen material potentially provides extracellular matrix-like structure for cell adhesion while polyethylene glycol provides a void/loose space for permeability of metabolites. The encapsulated MSCs were able to differentiate into hepatocytes or hepatocyte-like cells and express liver cell markers including albumin, alpha feto-protein and cytokeratin 18. The encapsulated cells secreted albumin to about 140 ng on day 14. Based on these observations, we conclude that Volvox spheres can be used as an alternative approach to encapsulate multiple types of cells, here AML12 hepatocyte cell line and MSCs. Nevertheless, efforts are still needed to improve the viability of the encapsulated cells and increase the differentiation of MSCs into functional liver cells. PMID:26117741
Extrinsic Calibration of Camera Networks Using a Sphere.
Guan, Junzhi; Deboeverie, Francis; Slembrouck, Maarten; van Haerenborgh, Dirk; van Cauwelaert, Dimitri; Veelaert, Peter; Philips, Wilfried
2015-01-01
In this paper, we propose a novel extrinsic calibration method for camera networks using a sphere as the calibration object. First of all, we propose an easy and accurate method to estimate the 3D positions of the sphere center w.r.t. the local camera coordinate system. Then, we propose to use orthogonal procrustes analysis to pairwise estimate the initial camera relative extrinsic parameters based on the aforementioned estimation of 3D positions. Finally, an optimization routine is applied to jointly refine the extrinsic parameters for all cameras. Compared to existing sphere-based 3D position estimators which need to trace and analyse the outline of the sphere projection in the image, the proposed method requires only very simple image processing: estimating the area and the center of mass of the sphere projection. Our results demonstrate that we can get a more accurate estimate of the extrinsic parameters compared to other sphere-based methods. While existing state-of-the-art calibration methods use point like features and epipolar geometry, the proposed method uses the sphere-based 3D position estimate. This results in simpler computations and a more flexible and accurate calibration method. Experimental results show that the proposed approach is accurate, robust, flexible and easy to use. PMID:26247950
First-principles generalized gradient approximation + U study of cubic CuAl2O4
NASA Astrophysics Data System (ADS)
Liu, Qi-Jun; Liu, Zheng-Tang
2011-08-01
We have investigated the electronic, magnetic, mechanical, and optical properties in cubic CuAl2O4 by a first-principles ultrasoft pseudopotential of the plane-wave within the density-functional theory (DFT) plus the generalized gradient approximation (GGA) + U (Hubbard parameter) formalism. We find the polarized hole dz2 character induced the dz2 magnetic orbital ordering and the p-d hybridization results in the covalent bonding between Cu and O. The origins of electrons transitions in dielectric function are consistent with electronic structure aroused by crystal-field and Janhn-Teller effect.
In Situ Synthesis of Uranium Carbide and its High Temperature Cubic Phase
Reiche, Helmut Matthias; Vogel, Sven C.
2015-03-25
New in situ data for the U-C system are presented, with the goal of improving knowledge of the phase diagram to enable production of new ceramic fuels. The none quenchable, cubic, δ-phase, which in turn is fundamental to computational methods, was identified. Rich datasets of the formation synthesis of uranium carbide yield kinetics data which allow the benchmarking of modeling, thermodynamic parameters etc. The order-disorder transition (carbon sublattice melting) was observed due to equal sensitivity of neutrons to both elements. This dynamic has not been accurately described in some recent simulation-based publications.
NASA Astrophysics Data System (ADS)
Borghi, F.; Sogne, E.; Lenardi, C.; Podestà, A.; Merlini, M.; Ducati, C.; Milani, P.
2016-08-01
Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.
Volume dependence of Anderson hybridization in cubic CeCd and CeAg
Monachesi, P. ); Andreani, L.C. ); Continenza, A. ); McMahan, A.K. )
1993-05-15
We have undertaken a first-principles theoretical study of the Anderson hybridization in cubic CeCd and CeAg as a function of volume reduction. We present results for the hybridization width [Delta]([epsilon]) in both the [ital J]=5/2 multiplet and in the [Gamma][sub 8], [Gamma][sub 7] crystal field states of the [ital f][sup 1] Ce configuration. We also calculate the hybridization contribution to the magnetic transition temperature. This is found to increase with pressure but is smaller than the experimental values, indicating that the Coulomb exchange contribution to the magnetic coupling is not negligible in these compounds.
Volume dependence of Anderson hybridization in cubic CeCd and CeAg
Monachesi, P.; Continenza, A. . Dipt. di Fisica); Andreani, L.C. ); McMahan, A.K. )
1992-09-01
We have undertaken a first-principles theoretical study of the Anderson hybridization in cubic CeCd and CeAg as a function of volume reduction. We present results for the hybridization width [Delta]([epsilon]) in both the J = 5/2 multiplet and in the [Gamma][sub 8], [Gamma][sub 7] crystal field states of the f[sup 1] Ce configuration. We also calculate the hybridization contribution to the magnetic transition temperature. This is found to increase with pressure but is smaller than the experimental values, indicating that the Coulomb exchange contribution to the magnetic coupling is not negligible in these compounds.
Volume dependence of Anderson hybridization in cubic CeCd and CeAg
Monachesi, P.; Continenza, A.; Andreani, L.C.; McMahan, A.K.
1992-09-01
We have undertaken a first-principles theoretical study of the Anderson hybridization in cubic CeCd and CeAg as a function of volume reduction. We present results for the hybridization width {Delta}({epsilon}) in both the J = 5/2 multiplet and in the {Gamma}{sub 8}, {Gamma}{sub 7} crystal field states of the f{sup 1} Ce configuration. We also calculate the hybridization contribution to the magnetic transition temperature. This is found to increase with pressure but is smaller than the experimental values, indicating that the Coulomb exchange contribution to the magnetic coupling is not negligible in these compounds.
Ground state, phonon spectrum, and superconducting properties of the cubic inverse perovskite CuNNi3
NASA Astrophysics Data System (ADS)
Tütüncü, H. M.; Srivastava, G. P.
2014-12-01
Using a first-principles approach, based on pseudopotentials and the density functional theory, we have investigated the origin of superconductivity in the cubic inverse perovskite CuNNi3. The electronic results reveal that the states around the Fermi level are mainly derived from Ni d orbitals. The average electron phonon coupling constant and the logarithmically averaged frequency are found to be 0.678 and 165.53 K, respectively. The superconducting transition temperature is estimated as 3.34 K, in good agreement with the experimentally reported value of 3.2 K. We thus conclude that this material is a conventional phonon-mediated superconductor.
Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films
2010-01-01
Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration. PMID:20672132
Pronounced negative thermal expansion from a simple structure : Cubic ScF{sub 3}.
Greve, B. K.; Martin, K. L.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Wilkinson, A. P.; X-Ray Science Division; Georgia Inst. of Tech.
2010-10-19
Scandium trifluoride maintains a cubic ReO{sub 3} type structure down to at least 10 K, although the pressure at which its cubic to rhombohedral phase transition occurs drops from >0.5 GPa at {approx}300 K to 0.1-0.2 GPa at 50 K. At low temperatures it shows strong negative thermal expansion (NTE) (60-110 K, {alpha}{sub l} {approx} -14 ppm K{sup -1}). On heating, its coefficient of thermal expansion (CTE) smoothly increases, leading to a room temperature CTE that is similar to that of ZrW{sub 2}O{sub 8} and positive thermal expansion above {approx}1100 K. While the cubic ReO{sub 3} structure type is often used as a simple illustration of how negative thermal expansion can arise from the thermally induced rocking of rigid structural units, ScF{sub 3} is the first material with this structure to provide a clear experimental illustration of this mechanism for NTE.
Structure and optical properties of cubic gallium oxynitride synthesized by solvothermal route
Oberländer, Andreas; Kinski, Isabel; Zhu, Wenliang; Pezzotti, Giuseppe; Michaelis, Alexander
2013-04-15
Cubic gallium oxynitride was synthesized using a solvothermal processing route. Crystal structure, chemical composition, optical properties and the influence of heat treatment in either reactive or inert atmospheres have been investigated. Despite a strongly distorted lattice revealed using X-ray diffraction, the Raman active modes of a cubic gallium oxynitride structure could be observed. With diffusive reflectance UV–Vis spectroscopy a band gap at around 4.8 eV has been observed. Additionally, cathodoluminescence spectroscopy exhibited observable luminescence caused by defect-related transitions within the optical gap. Cathodoluminescence and photoluminescence spectra collected after heat treatments showed significant changes in the defect structure. In particular, for annealing in ammonia the main spectral modifications were related to the substitution of oxygen by nitrogen on anion sites. - Graphical abstract: CL spectra of gallium oxynitride: As-prepared and heat-treated at temperatures of 500 °C in different atmospheres. Highlights: ► Raman spectrum of cubic gallium oxynitride. ► Experimental determination of optical band gap. ► Shift of band gap energy due to heat treatment. ► Nitrogen incorporation leads to deep level acceptor states. ► Red shifted luminescence spectrum.
Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders
NASA Astrophysics Data System (ADS)
He, Hong-Jian; Ren, Jing; Yao, Weiming
2016-01-01
Despite the discovery of a Higgs boson h (125 GeV) at the LHC run 1, its self-interaction has fully evaded direct experimental probe so far. Such self-interaction is vital for electroweak symmetry breaking, vacuum stability, and electroweak phase transition. It is a most likely place to encode new physics beyond the standard model. We parametrize such new physics by model-independent dimension-six effective operators and study their tests via Higgs pair production at hadron colliders. We analyze three major di-Higgs production channels at the parton level and compare the parameter dependence of total cross sections and kinematic distributions at the LHC (14 TeV) and p p (100 TeV) hadron collider. We further perform full simulations for the di-Higgs production channel g g →h h →b b ¯γ γ and its backgrounds at the p p (100 TeV) hadron collider. We construct four kinds of benchmark points and study the sensitivities to probing different regions of the parameter space of cubic Higgs interactions. We find that for a one-parameter analysis and with a 3 ab-1 (30 ab-1 ) integrated luminosity, the g g →h h →b b ¯γ γ channel can measure the SM cubic Higgs coupling and the derivative cubic Higgs coupling to an accuracy of about 13% (4.2%) and 5% (1.6%), respectively.
A smoothing algorithm using cubic spline functions
NASA Technical Reports Server (NTRS)
Smith, R. E., Jr.; Price, J. M.; Howser, L. M.
1974-01-01
Two algorithms are presented for smoothing arbitrary sets of data. They are the explicit variable algorithm and the parametric variable algorithm. The former would be used where large gradients are not encountered because of the smaller amount of calculation required. The latter would be used if the data being smoothed were double valued or experienced large gradients. Both algorithms use a least-squares technique to obtain a cubic spline fit to the data. The advantage of the spline fit is that the first and second derivatives are continuous. This method is best used in an interactive graphics environment so that the junction values for the spline curve can be manipulated to improve the fit.
Black holes in a cubic Galileon universe
NASA Astrophysics Data System (ADS)
Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T.
2016-09-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.
Preparation of nuclear fuel spheres by flotation-internal gelation
Haas, P.A.; Fowler, V.L.; Lloyd, M.H.
1984-12-21
A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.
Hollow carbon spheres in microwaves: Bio inspired absorbing coating
NASA Astrophysics Data System (ADS)
Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F. Y.; Pasc, A.; Ballweg, T.; Mandel, K.; Szczurek, A.; Fierro, V.; Celzard, A.
2016-01-01
The electromagnetic response of a heterostructure based on a monolayer of hollow glassy carbon spheres packed in 2D was experimentally surveyed with respect to its response to microwaves, namely, the Ka-band (26-37 GHz) frequency range. Such an ordered monolayer of spheres mimics the well-known "moth-eye"-like coating structures, which are widely used for designing anti-reflective surfaces, and was modelled with the long-wave approximation. Based on the experimental and modelling results, we demonstrate that carbon hollow spheres may be used for building an extremely lightweight, almost perfectly absorbing, coating for Ka-band applications.
Preparation and characterization of activated carbon aerogel spheres
NASA Astrophysics Data System (ADS)
Liu, Ning; Liu, Fengshou
2014-03-01
Activated carbon aerogel spheres (A-CAS) were successfully prepared by imposing KOH activation on aerogel spheres. It was found that the activation treatment did not destroy the order of the surface of the carbon aerogel spheres (CAS), but it improved the pore structure and adsorption performance of the products. With increasing burn-off, the amount of mesopores first decreased and then increased, with the amount of micropores continuously increasing. The highest measured BET surface area and micropore surface area reached 1198 and 786 m2/g, respectively. The adsorption capacity of benzene organic vapour on the A-CAS is more than eight times as large as that on CAS.
High pressure gas spheres for neutron and photon experiments
NASA Astrophysics Data System (ADS)
Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.
2009-09-01
High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.
Potential Polymeric Sphere Construction Materials for a Spacecraft Electrostatic Shield
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.; Smith, Trent; Williams, Martha; Youngquist, Robert; Mendell, Wendell
2006-01-01
An electrostatic shielding concept for spacecraft radiation protection under NASA s Exploration Systems Research and Technology Program was evaluated for its effectiveness and feasibility. The proposed shield design is reminiscent of a classic quadrupole with positively and negatively charged spheres surrounding the spacecraft. The project addressed materials, shield configuration, power supply, and compared its effectiveness to that of a passive shield. The report herein concerns the identification of commercially available materials that could be used in sphere fabrication. It was found that several materials were needed to potentially construct the spheres for an electrostatic shield operating at 300 MV.
From Ewald sphere to Ewald shell in nonlinear optics
NASA Astrophysics Data System (ADS)
Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.
Preparation of nuclear fuel spheres by flotation-internal gelation
Haas, Paul A.; Fowler, Victor L.; Lloyd, Milton H.
1987-01-01
A simplified internal gelation process for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85.degree. C.) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column.
Submicrometer-sized hollow nickel spheres synthesized by autocatalytic reduction
Deng Yida . E-mail: denyda@sjtu.edu.cn; Zhao Ling; Liu Lei; Shen Bin; Hu Wenbin
2005-10-06
A facile method to fabricate submicrometer-sized hollow nickel spheres by autocatalyzing the redox reaction around a sacrificial colloidal particle surface is presented in this paper. The size distribution of these spheres can be controlled by regulating the concentration of the alkali solution. The hollow nickel particles were characterized by field emission scanning electron microscopy, transmission electron microscopy and X-ray powder diffraction. The hollow spheres produced by this process may have potential applications in many fields, including chemistry, biotechnology and materials science.
Lectures on the scattering of light. [by dielectric sphere
NASA Technical Reports Server (NTRS)
Saxon, D. S.
1974-01-01
The exact (Mie) theory for the scattering of a plane wave by a dielectric sphere is presented. Since this infinite series solution is computationally impractical for large spheres, another formulation is given in terms of an integral equation valid for a bounded, but otherwise general array of scatterers. This equation is applied to the scattering by a single sphere, and several methods are suggested for approximating the scattering cross section in closed form. A tensor scattering matrix is introduced, in terms of which some general scattering theorems are derived. The application of the formalism to multiple scattering is briefly considered.
Simulation of flow past a sphere in a stratified fluid
NASA Astrophysics Data System (ADS)
de Stadler, Matthew; Sarkar, Sutanu
2011-11-01
Direct numerical simulation is used to simulate spatially-evolving flow past a sphere in a stratified fluid. The immersed boundary method is used to treat the sphere inside the domain. The main objective of this study is to characterize the near wake region. Statistics of interest include the drag coefficient, separation angle, Strouhal number, and the spatial evolution of the velocity fluctuations and the defect velocity. In addition to quantitative statistics, visualizations of the vortex structures in the wake will also be provided and discussed. Results are compared and contrasted with previous experimental and numerical data for unstratified and stratified flow past a sphere.
Motion of a porous sphere in a spherical container
NASA Astrophysics Data System (ADS)
Srinivasacharya, D.
2005-08-01
The creeping motion of a porous sphere at the instant it passes the center of a spherical container has been investigated. The Brinkman's model for the flow inside the porous sphere and the Stokes equation for the flow in the spherical container were used to study the motion. The stream function (and thus the velocity) and pressure (both for the flow inside the porous sphere and inside the spherical container) are calculated. The drag force experienced by the porous spherical particle and wall correction factor is determined. To cite this article: D. Srinivasacharya, C. R. Mecanique 333 (2005).
Ellipsometric study of cubic SiC
NASA Technical Reports Server (NTRS)
Alterovitz, Samuel A.; Shoemaker, Neil S.; Powell, J. A.
1990-01-01
Variable angle spectroscopic ellipsometry (VASE) was applied to cubic SiC. This technique gives absolute values of the refractive index (n) and the extinction coefficient (k) of a substrate and/or a thin film of unknown material. The samples were grown by chemical vapor deposition (CVD) on p-type silicon. The substrate was aligned either on the (001) axis or 1 degree of (001). Several growth temperatures and growth durations were used. The samples were divided into two groups: (1) thick films of order 10 microns grown near optimal conditions of temperature, flow, and gas ratio; and (2) thin films of order 100 A grown at various temperatures. The ellipsometric results for samples in group 1 were analyzed using a two-phase model (substrate and ambient). Results show that for wavelengths in the visible, the refractive index of these CVD samples is equal to that reported for single crystal cubic SiC, within the experimental error, which is on the order of 1 percent. However, the extinction coefficient has a relatively large value, even above the band gap. The absorption is sample dependent and has a broad peak in the visible. The results for samples in group 2 were analyzed using a three-phase model (substrate, film, and ambient). The dielectric functions of the film, deducted from the measured n and k, were further analyzed using the effective medium approximation. The results show that the films contain 30 to 40 vol. percent amorphous silicon, i.e., silicon with only short-range order.
NASA Astrophysics Data System (ADS)
Salcedo-Reyes, Juan Carlos
2012-01-01
A quantitative kinematic analysis, of the refraction properties of face-centered-cubic and hexagonal close-packed 250 nm-SiO2-based colloidal crystals, was performed using the plane wave expansion method. The angle-dependent effective refractive index, for different frequencies, was calculated taking into account the continuity of the tangential component of the wave vector across the interface and the energy conservation principle as well. The results demonstrate that the unusual optical properties, of the close packed SiO2-based colloidal crystals, depend strongly on the sphere-packing symmetry rather than from the material itself.
Structural disorder and anomalous water diffusion in random packing of spheres
NASA Astrophysics Data System (ADS)
Gabrielli, Andrea; Capuani, Silvia; Palombo, Marco; Servedio, Vito D. P.; Ruocco, Giancarlo
2014-03-01
Nowadays Nuclear Magnetic Resonance diffusion (dNMR) measurements of water molecules in heterogeneous systems have broad applications in material science, biophysics and medicine. Up to now, microstructural rearrangement in media has been experimentally investigated by studying the diffusion coefficient (D(t)) behavior in the tortuosity limit. However, this method is not able to describe structural disorder and transitions in complex systems. In this talk we show that, according to the continuous time random walk framework, the dNMR measurable parameter α, quantifying the anomalous regime of D(t) , provides a quantitative characterization of structural disorder and structural transition in heterogeneous systems. This is demonstrated by comparing α measurements obtained in random packed monodisperse micro-spheres with Molecular Dynamics simulations of disordered porous media and 3D Monte Carlo simulation of particles diffusion in these kind of systems. Experimental results agree well with simulations that correlate the most used parameters and functions characterizing the disorder in porous media.
Direct measurement of the free energy of aging hard sphere colloidal glasses.
Zargar, Rojman; Nienhuis, Bernard; Schall, Peter; Bonn, Daniel
2013-06-21
The nature of the glass transition is one of the most important unsolved problems in condensed matter physics. The difference between glasses and liquids is believed to be caused by very large free energy barriers for particle rearrangements; however, so far it has not been possible to confirm this experimentally. We provide the first quantitative determination of the free energy for an aging hard sphere colloidal glass. The determination of the free energy allows for a number of new insights in the glass transition, notably the quantification of the strong spatial and temporal heterogeneity in the free energy. A study of the local minima of the free energy reveals that the observed variations are directly related to the rearrangements of the particles. Our main finding is that the probability of particle rearrangements shows a power law dependence on the free energy changes associated with the rearrangements similar to the Gutenberg-Richter law in seismology. PMID:23829762
Misquitta, Y.; Caffrey, M.
2003-01-01
The in meso method for membrane protein crystallization uses a lipidic cubic phase as the hosting medium. The cubic phase provides a lipid bilayer into which the protein presumably reconstitutes and from which protein crystals nucleate and grow. The solutions used to spontaneously form the protein-enriched cubic phase often contain significant amounts of detergents that were employed initially to purify and to solubilize the membrane protein. By virtue of their surface activity, detergents have the potential to impact on the phase properties of the in meso system and, by extension, the outcome of the crystallization process. The purpose of this study was to quantify the effects that a popular series of nonionic detergents, the n-alkyl-β-d-glucopyranosides, have on the phase behavior of hydrated monoolein, the lipid upon which the in meso method is based. Phase identity and phase microstructure were characterized by small-angle x-ray diffraction on samples prepared to mimic in meso crystallization conditions. Measurements were made in the 0–40°C range. Samples prepared in the cooling direction allow for the expression of metastability, a feature of liquid crystalline phases that might be exploited in low-temperature crystallization. The results show that the cubic phase is relatively insensitive to small amounts of alkyl glucosides. However, at higher levels the detergents trigger a transition to the lamellar phase in a temperature- and salt concentration-dependent manner. These effects have important implications for in meso crystallization. A diffraction-based method for assaying detergents is presented. PMID:14581209
Hydrothermal vents and methane seeps: Rethinking the sphere of influence
Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les
2016-01-01
regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization.
Turbulent mixing in a precessing sphere
Goto, Susumu Shimizu, Masaki; Kawahara, Genta
2014-11-15
By numerically simulating turbulent flows at high Reynolds numbers in a precessing sphere, we propose a method to enhance the mixing of a fluid confined within a smooth cavity by its rotational motion alone. To precisely evaluate the mixing efficiency, we extend the quantification method proposed by Danckwerts [“The definition and measurement of some characteristics of mixtures,” Appl. Sci. Res. A 3, 279–296 (1952)] to the case in which only a finite number of fluid particle trajectories can be known. Our accurate numerical tracking of fluid particles in the flow, which is controlled by the Reynolds number (an indicator of the spin rate) and the Poincaré number (the precession rate), shows the following results. First, the mixing process on the time scale normalized by the spin period is independent of the Reynolds number as long as it is high enough for the flow to be developed turbulence. Second, fastest mixing is achieved under weak precession (Poincaré number ≈0.1); in such cases, perfect mixing requires only 10–15 spins of the container. Third, the power to sustain turbulence is a weakly increasing function of the Poincaré number, and the energy efficiency of the mixing is also maximized when the Poincaré number is about 0.1. Fourth, efficient mixing driven by the weak precession arises from the effective cooperation of complex large-scale flow and small-scale turbulence, which itself is sustained by the large-scale flow.
Non-hard sphere thermodynamic perturbation theory
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2011-08-01
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of fex - ref, chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established.
TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE
Cébron, D.; Hollerbach, R. E-mail: r.hollerbach@leeds.ac.uk
2014-07-01
Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.
Tidally Driven Dynamos in a Rotating Sphere
NASA Astrophysics Data System (ADS)
Cébron, D.; Hollerbach, R.
2014-07-01
Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker & Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere.
Finding the Finite Groups of Symmetries of the Sphere.
ERIC Educational Resources Information Center
Senechal, Marjorie
1990-01-01
Presented is a way of extending the list of rotation groups to include all finite subgroups of symmetries of the sphere, up to conjugation in its full group. Included is Klein's method for enumeration of the finite subgroups. (KR)
Method for producing dustless graphite spheres from waste graphite fines
Pappano, Peter J; Rogers, Michael R
2012-05-08
A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.
Analysis of integrating sphere performance for IR enhanced DT layering
Stephens, R.B.,; Collins, G.W.
1997-06-01
Absorbed IR energy can supplement the beta decay energy from DT ice to improve the driving force toward uniform layers. A significant problem with this approach has been to deliver the added IR energy with sufficient uniformity to enhance rather than destroy the uniformity of the ice layers. Computer modeling has indicated that one can achieve {approximately}1% uniformity in the angular variation of the absorbed power using an integrating sphere containing holes large enough to allow external inspection of the ice layer uniformity. The power required depends on the integrating sphere size, a 25 mm diameter sphere requires {approximately}35 mW of IR to deposit as much energy in the ice as the 50 mW/cm{sup 3}(35 pW total) received from tritium decay in DT. Power absorbed in the plastic can cause unacceptable ice-layer non-uniformities for the integrating sphere design considered here.
Mechanism of drag reduction by dimples on a sphere
NASA Astrophysics Data System (ADS)
Choi, Jin; Jeon, Woo-Pyung; Choi, Haecheon
2006-04-01
In this Letter we present a detailed mechanism of drag reduction by dimples on a sphere such as golf-ball dimples by measuring the streamwise velocity above the dimpled surface. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in the generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with a high momentum near the wall and overcomes a strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay the main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e., a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder.
Jets generated by a sphere moving vertically in stratified fluids
NASA Astrophysics Data System (ADS)
Hanazaki, Hideshi; Okino, Shinya; Nakamura, Shota; Akiyama, Shinsaku
2013-11-01
Unsteady development of buoyant jets generated by a sphere moving vertically at constant speeds in stratified fluids is investigated. Initially, the sphere simply drags light upper fluids or isopycnal surfaces as it goes down, as long as the molecular diffusion of density is negligible. In the succeeding period, molecular diffusion of density in the boundary layer on the sphere surface becomes increasingly significant, especially in the lower hemisphere. Then, the density is no longer conserved and a vertical jet starts from the rear/upper stagnation point of the sphere, since the fluid particle of altered but small density tends to go back to its original height. Strength and radius of those jets depend significantly on stratification (Froude number), as well as the Reynolds number and the Schmidt number. These mechanisms are investigated by numerical simulations and measurements by laser induced fluorescence (LIF).
Liquid trampolines: droplets and spheres bouncing off soap films
NASA Astrophysics Data System (ADS)
Courbin, Laurent; Dubail, Jerome; Crotiere, Suzie; Quere, David
2005-11-01
We report on the impact of rigid spheres and liquid droplets on soap films. These systems exhibit a rich variety of dynamics including bouncing and adhesion. In the case of drop impact, at low speeds the drops bounce, while for intermediate speeds the drops can pass through the film without the film breaking. The bouncing can be analyzed using mechanical models. In the case of the impact of rigid spheres, by tuning the physical property of the surface of the impacting sphere, which may or may not be surrounded by a skin of oil, we experimentally observe two distinct regimes: the solid sphere can bounce off of the fluid film or get entrapped. In all cases the film can be considered an absorber of kinetic energy. Finally, the possibility of tuning the bounce of an object will be presented.
Transport properties of highly asymmetric hard-sphere mixtures.
Bannerman, Marcus N; Lue, Leo
2009-04-28
The static and dynamic properties of binary mixtures of hard spheres with a diameter ratio of sigma(B)/sigma(A)=0.1 and a mass ratio of m(B)/m(A)=0.001 are investigated using event driven molecular dynamics. The contact values of the pair correlation functions are found to compare favorably with recently proposed theoretical expressions. The transport coefficients of the mixture, determined from simulation, are compared to the predictions of the revised Enskog theory using both a third-order Sonine expansion and direct simulation Monte Carlo. Overall, the Enskog theory provides a fairly good description of the simulation data, with the exception of systems at the smallest mole fraction of larger spheres (x(A)=0.01) examined. A "fines effect" was observed at higher packing fractions, where adding smaller spheres to a system of large spheres decreases the viscosity of the mixture; this effect is not captured by the Enskog theory. PMID:19405594
Transport properties of highly asymmetric hard-sphere mixtures
NASA Astrophysics Data System (ADS)
Bannerman, Marcus N.; Lue, Leo
2009-04-01
The static and dynamic properties of binary mixtures of hard spheres with a diameter ratio of σB/σA=0.1 and a mass ratio of mB/mA=0.001 are investigated using event driven molecular dynamics. The contact values of the pair correlation functions are found to compare favorably with recently proposed theoretical expressions. The transport coefficients of the mixture, determined from simulation, are compared to the predictions of the revised Enskog theory using both a third-order Sonine expansion and direct simulation Monte Carlo. Overall, the Enskog theory provides a fairly good description of the simulation data, with the exception of systems at the smallest mole fraction of larger spheres (xA=0.01) examined. A "fines effect" was observed at higher packing fractions, where adding smaller spheres to a system of large spheres decreases the viscosity of the mixture; this effect is not captured by the Enskog theory.
Dyadic Green's function of a cluster of spheres.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2007-11-01
The electric dyadic Green's function (dGf) of a cluster of spheres is obtained by application of the superposition principle, dyadic algebra, and the indirect mode-matching method. The analysis results in a set of linear equations for the unknown, vector, wave amplitudes of the dGf; that set is solved by truncation and matrix inversion. The theory is exact in the sense that no simplifying assumptions are made in the analytical steps leading to the dGf, and it is general in the sense that any number, position, size and electrical properties can be considered for the spheres that cluster together. The point source can be anywhere, even within one of the spheres. Energy conservation, reciprocity, and other tests prove that this solution is correct. Numerical results are presented for an electric Hertz dipole radiating in the presence of an array of rexolite spheres, which manifests lensing and beam-forming capabilities. PMID:17975570