Science.gov

Sample records for cuin gase2 thin

  1. Preparation of Device-Quality Cu(In, Ga)Se2 Thin Films Deposited by Coevaporation with Composition Monitor

    NASA Astrophysics Data System (ADS)

    Kohara, Naoki; Negami, Takayuki; Nishitani, Mikihiko; Wada, Takahiro

    1995-09-01

    The chemical composition of Cu(In, Ga)Se2 (CIGS) thin film was monitored in real time during the physical vapor deposition. The temperature of growing CIGS film was found to depend on the composition ratio of Cu/(In+Ga) when the film was deposited under constant heating power. The composition monitoring system can be easily applied to a 3-stage deposition process of the CIGS films. The solar cells (active area: 1 cm2) fabricated by using the obtained CIGS absorber layer showed an efficiency of 15.4% under standard AM 1.5 illumination.

  2. Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models

    NASA Astrophysics Data System (ADS)

    Frisk, C.; Platzer-Björkman, C.; Olsson, J.; Szaniawski, P.; Wätjen, J. T.; Fjällström, V.; Salomé, P.; Edoff, M.

    2014-12-01

    Highly efficient Cu(In,Ga)(S,Se)2 photovoltaic thin film solar cells often have a compositional variation of Ga to In in the absorber layer, here described as a Ga-profile. In this work, we have studied the role of Ga-profiles in four different models based on input data from electrical and optical characterizations of an in-house state-of-the-art Cu(In,Ga)Se2 (CIGS) solar cell with power conversion efficiency above 19%. A simple defect model with mid-gap defects in the absorber layer was compared with models with Ga-dependent defect concentrations and amphoteric defects. In these models, optimized single-graded Ga-profiles have been compared with optimized double-graded Ga-profiles. It was found that the defect concentration for effective Shockley-Read-Hall recombination is low for high efficiency CIGS devices and that the doping concentration of the absorber layer, chosen according to the defect model, is paramount when optimizing Ga-profiles. For optimized single-graded Ga-profiles, the simulated power conversion efficiency (depending on the model) is 20.5-20.8%, and the equivalent double-graded Ga-profiles yield 20.6-21.4%, indicating that the bandgap engineering of the CIGS device structure can lead to improvements in efficiency. Apart from the effects of increased doping in the complex defect models, the results are similar when comparing the complex defect models to the simple defect models.

  3. Correlation of structure parameters of absorber layer with efficiency of Cu(In, Ga)Se2 solar cell

    NASA Astrophysics Data System (ADS)

    Balboul, M. R.; Schock, H. W.; Fayak, S. A.; El-Aal, A. Abdel; Werner, J. H.; Ramadan, A. A.

    2008-08-01

    Polycrystalline Cu(In, Ga)Se2 with Ga-content x=Ga/(In+Ga) ranging from 0.0 (CuInSe2) to 1.0 (CuGaSe2) in heterojunction thin film solar cells were grown by multi-source evaporation. Solar cells with a highest efficiency of η=15.3% need a composition of x≈0.2. At this composition, the c/ a ratio of the lattice constants for the tetragonal lattice equals c/ a=2, indicating ideal tetragonality. These results suggest that low electronic defect densities occur at x≈0.2, due to the smallest possible crystallographic distortion of the tetragonal lattice at this composition. Cells with high efficiencies require grain sizes above 145 nm and a high preferred orientation (P204/P220 pole density ratio) for the grains.

  4. Substrate temperature optimization for Cu(In, Ga)Se2 solar cells on flexible stainless steels

    NASA Astrophysics Data System (ADS)

    Liang, X.; Zhu, H.; Chen, J.; Zhou, D.; Zhang, C.; Guo, Y.; Niu, X.; Li, Z.; Mai, Y.

    2016-04-01

    Cu(In, Ga)Se2 (CIGS) thin films are deposited on flexible stainless steel (SS) substrates using the so called 3-stage co-evaporation process at different substrate temperatures ranging from 440 °C to 640 °C during the 2nd stage and the 3rd stage (TS2). The effects of TS2 on the properties of CIGS thin films are systematically investigated. It is found by secondary ion mass spectrometry measurement that CIGS thin films deposited at different TS2 show different Ga/(Ga + In) ratio (GGI) profiles along the growth direction. High TS2 facilitates the grain growth and leads to larger grain size. However, high TS2 worsens the spectral response of CIGS solar cells in the long wavelength range, which is partly attributed to the too much iron atom diffusion from the SS substrates into the CIGS thin films. All CIGS thin films show (112) preferred orientations with a shift to higher angle due to variation of compositions. A shoulder-like two-peak structure of (112) and (220/204) peaks appears for CIGS thin films deposited at lower TS2. Conversion efficiency of 11.3% is obtained for CIGS thin film solar cells deposited at the TS2 of 500 °C.

  5. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT. PMID:26726401

  6. Ga content and thickness inhomogeneity effects on Cu(In, Ga)Se2 solar modules

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaobo; Cheng, Tzu-Huan; Liu, Chee Wee

    2016-07-01

    The fluctuation of Ga content and absorption layer thickness of Cu(In, Ga)Se2 (CIGS) solar modules is investigated by 3-dimensional numerical simulation. The band gap of CIGS is increased by the increasing Ga content, and the residual compressive strain. Strain effect worsens the degradation of the power conversion efficiency of CIGS module in addition to Ga fluctuation. The intracell Ga fluctuation degrades the open circuit voltage due to the minimum open circuit voltage in the parallel configuration, and also affects the short circuit current due to the Ga-dependent light absorption. The intercell Ga fluctuation leads to a more significant degradation for CIGS solar module efficiency than the intracell Ga fluctuation due to the additional degradation of the fill factor. The thickness fluctuation has a small effect on open circuit voltage, but causes strong degradation of short circuit current and fill factor, which leads to a more significant degradation on power conversion efficiency than Ga fluctuation to the same fluctuation percentage. In reality, the thickness can be tightly controlled within the fluctuation of 5% or less. [Figure not available: see fulltext.

  7. Optoelectronic Investigation of Sb-Doped Cu(In, Ga)Se2

    SciTech Connect

    Mansfield, Lorelle M.; Kuciauskas, Darius; Dippo, Patricia; Li, Jian V.; Bowers, Karen; To, Bobby; DeHart, Clay; Ramanathan, Kannan

    2015-06-14

    Doping Cu(In,Ga)Se2 (CIGS) thin films with Sb can provide large grains at lower processing temperatures than are normally required. In this study, we incorporated Sb into the precursor of a two-step selenization process. We saw enhanced grain size and improved device performance compared to similarly processed CIGS films made without Sb. The optoelectronic properties of the Sb-doped CIGS films were examined with photoluminescence (PL) and admittance spectroscopy. These techniques allowed us to evaluate the origin of a lower-energy PL peak that is not typically seen in CIGS.

  8. Improvement of Pre-Annealed Cu(In, Ga)Se2 Absorbers for High Efficiency.

    PubMed

    Youn, Sung-Min; Kim, Jin-Hyeok; Jeong, Chaehwan

    2016-05-01

    We used a DC-sputtering method to deposit the precursor (Cu3Ga/In) onto Mo with 1 um thick/soda-lime glass (SLG). We moved it onto a graphite crucible for the pre-annealing process, and the pressure of the process tube was about 10 torr without Ar gas flow. The crucible in quartz tube was heated by halogen lamp to 250 degrees C for 30 min, and then raised to 550 degrees C for 10 min under a selenium atmosphere. To complete the solar cells, a buffer layer of 50 nm CdS was then deposited by chemical bath deposition (CBD), followed by a double layer (high resistivity/low resistivity) of RF sputtered i-ZnO/Al-ZnO thin films. The Al front contacts were deposited by thermal evaporator. PMID:27483860

  9. Structural and optical studies on antimony and zinc doped CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Ben Rabeh, M.; Chaglabou, N.; Kanzari, M.; Rezig, B.

    2009-11-01

    The influence of Zn and Sb impurities on the structural, optical and electrical properties of CuInS2 thin films on corning 7059 glass substrates was studied. Undoped and Zn or Sb doped CuInS2 thin films were deposited by thermal evaporation method and annealed in vacuum at temperature of 450 ∘C Undoped thin films were grown from CuInS2 powder using resistively heated tungsten boats. Zn species was evaporated from a thermal evaporator all together to the CuInS2 powder and Sb species was mixed in the starting powders. The amount of the Zn or Sb source was determined to be in the range 0-4 wt% molecular weight compared with the CuInS2 alloy source. The films were studied by means of X-ray diffraction (XRD), Optical reflection and transmission and resistance measurements. The films thicknesses were in the range 450-750 nm. All the Zn: CuInS2 and Sb: CuInS2 thin films have relatively high absorption coefficient between 104 cm-1 and 105 cm-1 in the visible and the near-IR spectral range. The bandgap energies are in the range of 1.472-1.589 eV for Zn: CuInS2 samples and 1.396-1.510 eV for the Sb: CuInS2 ones. The type of conductivity of these films was determined by the hot probe method. Furthermore, we found that Zn and Sb-doped CuInS2 thin films exhibit P type conductivity and we predict these species can be considered as suitable candidates for use as acceptor dopants to fabricate CuInS2-based solar cells.

  10. Elemental depth profiling in Cu(In, Ga)Se 2 solar cells using micro-PIXE on a bevelled section

    NASA Astrophysics Data System (ADS)

    Spemann, D.; Otte, K.; Lorenz, M.; Butz, T.

    2005-04-01

    Cu(In, Ga)Se2 (CIGS) solar cells deposited on polyimide foils by the Solarion company in a web-coater based process using sputter and evaporation techniques were investigated in the ion beam laboratory LIPSION of the University of Leipzig by means of Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) using a 2.25 MeV proton microbeam. From these measurements the composition of the absorber as well as the lateral homogeneity and the film thicknesses of the individual layers of the solar cell could be determined under some reasonable assumptions. Quantitative depth profiling of the individual elements was performed by micro-PIXE measurements on a bevelled section of a CIGS solar cell prepared by ion beam etching. It revealed small concentration-depth-gradients for Cu, In, Ga and Se within the CIGS absorber layer. Furthermore, a remarkable amount of Cd from the overlying CdS buffer layer was found to be present in the absorber layer. Secondary Neutral Mass Spectrometry (SNMS) measurements were applied on the same samples for comparison.

  11. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  12. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-01-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells. PMID:26679958

  13. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

    PubMed Central

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-01-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells. PMID:26679958

  14. Effects of the CuS phase on the growth and properties of CuInS2 thin films

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Han, Anjun; Liu, Zhengxin; Sugiyama, Mutsumi

    2016-01-01

    CuInS2 thin films were prepared by sulfurization using a less hazardous liquid, metal-organic ditertiarybutylsulfide, on soda-lime glass substrates. Single-phase chalcopyrite CuInS2 films were obtained after 15 min at 515 °C. The obtained CuInS2 films were repeatedly sulfurized under different sulfurization conditions. The characteristics of these CuInS2 films were determined by X-ray diffraction (XRD) and photoluminescence (PL) spectra analyses. The secondary impurity phase such as CuS was confirmed from XRD patterns. The growth mechanism of intrinsic defects related to the secondary phase is discussed in this paper.

  15. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  16. Modification of light absorption in thin CuInS2 films by sprayed Au nanoparticles.

    PubMed

    Katerski, Atanas; Kärber, Erki; Acik, Ilona Oja; Dolgov, Leonid; Mere, Arvo; Sildos, Ilmo; Mikli, Valdek; Krunks, Malle

    2014-12-01

    The chemical spray pyrolysis method was used to deposit CuInS2 (CIS) thin films and Au nanoparticles (NPs) in two configurations: glass/Au-NP layer covered with CuInS2 film (Au-NP/CIS) and glass/CuInS2 films covered with Au-NP layer (CIS/Au-NP). According to X-ray diffraction (XRD), the spray of 2 mM HAuCl4 aqueous solution with a volume of 2.5 to 15 ml onto a glass substrate at 340°C results in metallic Au nanoparticles with a similar mean crystallite size in the range of 30 - 38 nm. The mean crystallite sizes remain in the range of 15 - 20 nm when grown onto a CIS film. The prepared films show plasmonic light absorption with increasing intensity in the spectral range of 500- 800 nm when increasing the volume of HAuCl4 solution sprayed. When compared to bare CIS on glass, the absorptance was increased ca. 4.5 times in the case of glass/Au-NP/CIS and ca. 3 times in the case of glass/CIS/Au-NP configuration. The glass/Au-NP/CIS configuration had an advantage since Au-NP could be embedded without chemically damaging the CIS. PMID:26088996

  17. Synthesis of nanostructured CuInS2 thin films and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Luo, Fazhi; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang; Liu, Jun

    2016-03-01

    CuInS2 (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of "nanosheet array" and "flower-like microsphere" were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS2 nanostructure competitive as counter electrode in DSSCs.

  18. Characteristics of Ga-Rich Cu(In, Ga)Se2 Solar Cells Grown on Ga-Doped ZnO Back Contact.

    PubMed

    Sun, Qian; Kim, Kyoung-Bo; Jeon, Chan-Wook

    2016-05-01

    Wide bandgap Cu(In,Ga)Se2 (CIGS) thin films were deposited on Ga-rich Ga:ZnO (GZO) or MoN/GZO by single-stage co-evaporation. CIGS/TCO interface phases, such as resistive n-type Ga2O3, which are likely to have formed during the high temperature growth of Ga-rich CIGS, can deteriorate the solar cell performance. Although some Ga accumulation was observed in both of the CIGS/GZO and CIGS/MoN/GZO interfaces formed at 520 degrees C, the Ga oxide layer was absent. On the other hand, their current-voltage characteristics showed strong roll-over behavior regardless of the MoN diffusion barrier. The strong Schottky barrier formation at the CLGS/GZO junction due to the low work function of GZO, was attributed to current blocking at a high forward bias. PMID:27483870

  19. Effects of Antimony Doping on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    NASA Astrophysics Data System (ADS)

    Yatsushiro, Yuta; Nakakoba, Hiroya; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of antimony (Sb) doping into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Sb thin layers were deposited onto Mo-coated sodalime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency improved with the Sb doping when the SLG substrates were used. However, little or no effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that Sb doping is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  20. Effects of Bi Incorporation on Cu(In1-x,Gax)Se2 Thin Films and Solar Cells

    NASA Astrophysics Data System (ADS)

    Nakakoba, Hiroya; Yatsushiro, Yuta; Mise, Takahiro; Kobayashi, Taizo; Nakada, Tokio

    2012-10-01

    The effects of bismuth (Bi) incorporation into Cu(In1-x,Gax)Se2 (CIGS) thin films and solar cells have been investigated. 10-50-nm-thick Bi thin layers were deposited onto Mo-coated soda-lime glass (SLG) and SiOx-coated SLG substrates by vacuum evaporation. CIGS thin films were then deposited by a three-stage process at substrate temperatures of 450-550 °C. The grain growth of CIGS thin films was enhanced, and the open-circuit voltage and hence the conversion efficiency was improved by the Bi incorporation when the SLG substrates were used. However, little effect was observed when the alkali barrier SiOx layer was deposited on SLG substrates. As a result, we found that the Bi incorporation is beneficial for improving the cell performance when sodium exists simultaneously in CIGS layers.

  1. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  2. Composition Control of CuInSe2 Thin Films Using Cu/In Stacked Structure in Coulometric Controlled Electrodeposition Process.

    PubMed

    Kwon, Yong Hun; Do, Hyun Woo; Kim, Hyoungsub; Cho, Hyung Koun

    2015-10-01

    Cu/In bi-metal stacked structures were prepared on Mo coated soda lime glass substrates using electrodeposition method. These metallic precursors were selenized at 550 °C for 60 min to synthesize the CuInSe2 (CIS) thin films in a thermal evaporator chamber with an Se overpressure atmosphere. The composition ratios of CIS thin films were systematically controlled using the coulometric method of the electrodeposition, where the accumulated coulomb of In layers was varied from 1062 to 6375 mC/cm2. As a result, the stoichiometric CIS film was obtained in the Cu/In coulomb ratio of 0.6. Highly crystallized CIS films were produced from the liquid Cu-Se phase in the Cu/In coulomb ratio of ≥0.6. In contrast, the crystallinity and grain size were degraded in the In-rich region. We found that the Cu/In composition ratio of CIS films was linearly proportional to the precursor thickness determined by the coulomb ratio. PMID:26726424

  3. Photon induced facile synthesis and growth of CuInS2 absorber thin film for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Jiu, Jinting; Suganuma, Katsuaki

    2016-04-01

    In this paper, we demonstrate the use of high intensity pulsed light technique for the synthesis of phase pure CuInS2 (CIS) thin film at room temperature. The intense pulse of light is used to induce sintering of binary sulfides CuS and In2S3 to produce CIS phase without any direct thermal treatment. Light energy equivalent to the 706 mJ/cm2 is found to be the best energy to convert the CIS precursor film deposited at room temperature into CIS pure phase and well crystalline film. The CIS absorber film thus prepared is useful in making printed solar cell at room temperature on substrate with large area.

  4. Characterization of CuInS2 thin films prepared from materials grown by using the mechanochemical method and their photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Akaki, Yoji; Sugimoto, Kanta; Nakamura, Shigeyuki; Yamaguchi, Toshiyuki; Yoshino, Kenji

    2015-08-01

    Cu-In-S thin films were deposited on glass substrates using single-source thermal evaporation with ternary compounds as source materials. Polycrystalline CuInS2 powder grown using the mechanochemical method was employed as the source material. After deposition, the films were annealed in H2S gas at different temperatures from 250 to 500 °C for 60 min. X-ray diffraction patterns indicated that single-phase CuInS2 was formed when annealed above 400 °C. The grain size of the crystals in thin films was approximately 0.2 to 2.0 µm. The best Al/ZnO:Al/ZnO/CdS/CuInS2/Mo solar cell had an open-circuit voltage of 360 mV, a short-circuit current density of 18.6 mA/cm2, and a fill factor of 35.5%, resulting in 2.38% efficiency.

  5. Surface sulfurization on MBE-grown Cu(In1-x,Gax)Se2 thin films and devices

    NASA Astrophysics Data System (ADS)

    Khatri, Ishwor; Matsuyama, Isamu; Yamaguchi, Hiroshi; Fukai, Hirofumi; Nakada, Tokio

    2015-08-01

    Molecular beam epitaxy (MBE) grown Cu(In1-x,Gax)Se2 (CIGS) thin films were sulfurized at temperatures of 450-550 °C for 30 min in a 10% H2S-N2 mixture gas. The micro-roughness together with the S diffusion in the CIGS surfaces increased with increasing sulfurization temperature. Both near-band-edge PL intensity and decay time of the CIGS absorber layer enhanced after sulfurization. PL sub-peak around 80 meV below the main peak almost disappeared after sulfurization above 500 °C, which is expected due to the occupation of Se vacancies (Vse) with S. The open-circuit voltage (Voc), hence conversion efficiency, improved after sulfurization. The photovoltaic performance of the solar cells was consistent with PL intensity. Moreover, it is found for the first time from the SIMS analysis that the Cu atoms were depleted at the surface of CIGS layer after sulfurization, which could result in the improved Voc.

  6. Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency.

    PubMed

    Ahn, Sejin; Choi, Yoo Jeong; Kim, Kyunhwan; Eo, Young-Joo; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Yoon, Kyunghoon

    2013-07-01

    CuInSe2 (CISe) absorber layers for thin-film solar cells were fabricated through the selenization of amorphous Cu-In-S nanoparticles, which were prepared by using a low-temperature colloidal process within one minute without any external heating. Two strategies for obtaining highly dense CISe absorber films were used in this work; the first was the modification of nanoparticle surface through chelate complexation with ethanolamine, and the second strategy utilized the lattice expansion that occurred when S atoms in the precursor particles were replaced with Se during selenization. The synergy of these two strategies allowed formation of highly dense CISe thin films, and devices fabricated using the absorber layer demonstrated efficiencies of up to 7.94% under AM 1.5G illumination without an anti-reflection coating. PMID:23681958

  7. Effects of Sulfurization Temperature on Cu(In, Ga)S2 Thin Film Solar Cell Performance by Rapid Thermal Process.

    PubMed

    Kim, Kilim; Kim, Dongjin; Ahn, Kyung-Jun; Jeong, Cheahwan

    2016-05-01

    Cu(In, Ga)S2 (CIGS) absorbers were prepared using two-step process. Cu-In-Ga precursors were deposited by sputtering method and then were sulfurized by rapid thermal process based on H2S gas. Sulfurization temperature was changed from 470 degrees C to 510 degrees C. As the processing temperature increased, larger grains and denser absorbers were observed. The polycrystalline chalcopyrite structure of CuInGaS2 was shown in all samples, and their XRD peak was dominantly observed at (112) direction. CIGS thin film solar cells were fabricated with wide-bandgap absorbers obtained by varying sulfurization temperature. The best efficiency was shown with the processing temperature of 490 degrees C and 8.93% with 1.507 eV of wide optical bandgap. PMID:27483834

  8. Transport properties of CuIn(1-x)Al(x)Se2/AZnO heterostructure for low cost thin film photovoltaics.

    PubMed

    Murali, Banavoth; Krupanidhi, S B

    2014-02-01

    CuIn(1-x)Al(x)Se2 (CIASe) thin films were grown by a simple sol-gel route followed by annealing under vacuum. Parameters related to the spin-orbit (ΔSO) and crystal field (ΔCF) were determined using a quasi-cubic model. Highly oriented (002) aluminum doped (2%) ZnO, 100 nm thin films, were co-sputtered for CuIn(1-x)Al(x)Se2/AZnO based solar cells. Barrier height and ideality factor varied from 0.63 eV to 0.51 eV and 1.3186 to 2.095 in the dark and under 1.38 A.M 1.5 solar illumination respectively. Current-voltage characteristics carried out at 300 K were confined to a triangle, exhibiting three limiting conduction mechanisms: Ohms law, trap-filled limit curve and SCLC, with 0.2 V being the cross-over voltage, for a quadratic transition from Ohm's to Child's law. Visible photodetection was demonstrated with a CIASe/AZO photodiode configuration. Photocurrent was enhanced by one order from 3 × 10(-3) A in the dark at 1 V to 3 × 10(-2) A upon 1.38 sun illumination. The optimized photodiode exhibits an external quantum efficiency of over 32% to 10% from 350 to 1100 nm at high intensity 17.99 mW cm(-2) solar illumination. High responsivity Rλ ~ 920 A W(-1), sensitivity S ~ 9.0, specific detectivity D* ~ 3 × 10(14) Jones, make CIASe a potential absorber for enhancing the forthcoming technological applications of photodetection. PMID:24336980

  9. Effect of swift heavy ion irradiation on the physical properties of CuIn(S 0.4Se 0.6) 2 alloy thin films prepared by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chavhan, S. D.; Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Ahire, R. R.; Borse, S. V.; Khairnar, R. S.; Jadhav, K. M.; Singh, F.; Sharma, Ramphal

    2008-06-01

    Alloy thin films of CuIn(S 0.4Se 0.6) 2 material were deposited using the solution growth technique. The various deposition parameters such as pH of solution, time, concentration of ions and temperature have been optimized for the device grade thin films. The as-deposited films were annealed in a rapid thermal annealing (RTA) system at 450 °C in air for 5 min and subjected to high-energy Ag ion irradiations. Ag ion irradiation has been performed with an energy of 100 MeV at a fluency of 5×10 12 ions/cm 2 on the thin film. The changes in optical and electrical properties that occurred before and after post-deposition treatments in CuIn(S 0.4Se 0.6) 2 thin films were studied using X-ray diffraction (XRD) and AFM; increase in crystallinity was observed after annealing and irradiation. In addition, structural damages were observed in irradiated thin films. After annealing and irradiation, the surface roughness was seen to be increased. Decrease in resistivity was observed, which is consistent with the optical energy band gap. The results are explained by considering the high energy deposited due to the electronic energy loss upon irradiation, which modified the properties of the material.

  10. Development of sputtering systems for large-area deposition of CuIn1-xGaxSe1-ySy thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Jahagirdar, Anant H.; Kadam, Ankur A.; Patil, Harshad P.; Kulkarni, Sachin S.

    2003-07-01

    CuIn1-xGaxSe1-ySy (CIGS) thin-film modules are expected to become cheaper than crystalline silicon modules within 5 yr. At present, commissioning and reaching full production of thin film modules is delayed because of nonavailability of turnkey manufacturing plants. Very few universities are conducting research on development of PV plants. CIGS thin-film solar cells are being prepared routinely at Florida Solar Energy Center (FSEC) on glass and metallic foil substrates for terrestrial and space applications. Earlier, the substrate size was limited to 3×3 cm2. This article presents results of development of large-area sputtering systems for preparation of large (15.2×15.2 cm2) CIGS thin-film solar cells. The facilities have the potential of serving as a nucleus of a pilot plant for fabrication of CIGS minimodules. Initial problems of bowing of the brass diaphragm, restriction of effective water flow and consequent heating of the target material were resolved by increasing the thickness of the backing plate and redesigning the structural members. Thickness uniformity was improved by modifying the magnetic field distribution in the middle 15 cm portion of the 10.2×30.5 cm2 magnetron sputtering sources by selectively removing nickel-coated soft-iron pieces at the rear. This resulted in Mo layer thickness uniformity of +/-3% over 10.2×10.2 cm2. The magnetic field was boosted at extremities to avoid precipitous ~15% drop beyond 10.2 cm. With this, thickness uniformities of +/-2.5% for Mo and +/-4.5% for ZnO over 12.7×10.2 cm2 have been achieved however with a continuing drop beyond 12.7 cm width. Modifying the magnetic field to achieve better distribution by preferentially removing soft irons pieces and also boosting of the magnetic field at the ends are two new concepts introduced and successfully utilized in this study. Scaling up of the large-area uniform deposition of metallic precursor layers was a challenging task. The efforts were directed towards obtaining

  11. Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.

    2005-01-01

    The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.

  12. Effects of Cu/In compositional ratio on the characteristics of CuInS2 absorber layers prepared by sulfurization of metallic precursors

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hwan; Shin, Seung Wook; Han, Jun Hee; Lee, Jeong Yong; Kang, Myeong Gil; Agawane, G. L.; Yun, Jae Ho; Moon, Jong Ha; Kim, Jin Hyeok

    2012-04-01

    This paper investigates the effects of the Cu/In compositional ratio on morphological, structural and optical properties of CuInS2 (CIS) absorber layers formed by sulfurization of In/Cu stacked precursors. In/Cu stacked precursors were prepared on Mo-coated soda-lime glass substrates by DC magnetron sputtering method. The Cu/In compositional ratio in the precursor thin film was varied from 0.55 to 1.44. The as-deposited stacked precursor thin films were sulfurized using a tubular furnace annealing system in a mixture of N2 (95%) + H2S (5%) atmosphere at 450°C for 1 hour. X-ray diffraction patterns and Raman spectra results showed that the sulfurized thin films contained both tetragonal CIS and a Cu-based secondary phase, except for the film with a Cu/In compositional ratio of 0.55. Field emission-scanning electron microscopy study showed that the microstructure of the sulfurized CIS thin films became denser with increasing Cu/In compositional ratio. Optical properties of the CIS thin films showed that all the CIS thin films had a good absorption coefficient over 104 cm-1 in the visible region. The direct band gap energy of the sulfurized CIS thin films decreased from 1.39 eV to 1.08 eV with increasing Cu/In compositional ratio. These results demonstrated the effect of the Cu/In compositional ratio on the properties of the CIS thin films and the consequent importance of precisely controlling the metal ratio in the precursor film in order to control the properties of absorber layers in thin film solar cells.

  13. Synthesis and Characterization of the First Liquid Single Source Precursors for the Deposition of Ternary Chalcopyrite (CuInS2) Thin Film Materials

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius

    2002-01-01

    Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.

  14. The optical and structural properties of CuIn1- x Ga x Se2 thin films fabricated with various Ga contents by using the co-evaporation technique

    NASA Astrophysics Data System (ADS)

    Jo, Hyun-Jun; Kim, Dae-Hwan; Kim, Chan; Hwang, Dae-Kue; Sung, Shi-Joon; Kim, Jeong-Hwa; Bae, In-Ho

    2012-05-01

    The purpose of the present study is to investigate the optical and the structural properties of CuIn1- x Ga x Se2 (CIGS) thin films with various Ga/[In+Ga] ratios grown by using the coevaporation technique. The Ga ratios were 0, 0.15, 0.29, 0.40, 0.56, 0.73, and 1. As the Ga/[In+Ga] ratio increased, the grain size of CIGS films decreased, and the X-ray diffraction (XRD) peaks of the CIGS films progressively shifted to higher diffraction angles. In the cross-sectional scanning electron microscopy (SEM) images, the grain size of the CIGS thin films near the molybdenum electrode was smaller than it was near the CIGS surface. These results indicate that the diffusion rates of elements were different. The photocurrent (PC) spectra also showed that the band gap energy of the CIGS films increased as the Ga/[In+Ga] ratio increased. Accordingly, the short-circuit current density (J SC ) linearly decreased, and the open-circuit voltage (V OC ) increased and saturated at high Ga/[In+Ga] ratios ( x > 0.4) due to the defects on the CIGS films surface. A correlation between the Ga/[In+Ga] ratio and the number of surface defects for the CIGS films is discussed.

  15. Reliability Investigation of Cu/In TLP Bonding

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Bum; Hwang, How-Yuan; Rhee, Min-Woo

    2015-01-01

    Die-attach bonding was evaluated using a transient liquid phase (TLP) bonding method on a Cu/In, Au/In and Cu-Sn3Ag metal stack. TLP bonding is a relatively low cost process since thin layers of material are used and, at the same time, has higher reliability due to the good thermal resistance of the intermetallic compounds (IMCs) formed. The bonded samples were aged at 300°C for 500 h and thermal cycled from -40°C to 125°C for 500 cycles. The results showed that the shear strength of the Cu/In joint was higher than that of the Au/In joint with increasing aging time. Cu/In specimens on a ceramic substrate also showed good reliability results during the thermal cycling test. Even though Cu/In TLP bonding is not popular in conventional electronics, it is suitable for high temperature electronics due to the simplicity of the IMC formation.

  16. Application of ICP-OES to the determination of CuIn(1-x)Ga(x)Se2 thin films used as absorber materials in solar cell devices.

    PubMed

    Fernández-Martínez, Rodolfo; Caballero, Raquel; Guillén, Cecilia; Gutiérrez, María Teresa; Rucandio, María Isabel

    2005-05-01

    CuIn(1-x)Ga(x)Se2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:15702309

  17. Optical and structural properties of nanostructured CuIn0.7Ga0.3(Se(1-x)Te(x))2 chalcopyrite thin films--effect of stoichiometry and annealing.

    PubMed

    Fiat, Songül; Polat, Ismail; Bacaksiz, Emin; Cankaya, Güven; Koralli, Panagiota; Manolakos, Demitrios E; Kompitsas, Michael

    2014-07-01

    The aim of this work was to study the dependence of the optical, structural and morphological properties of CuIn0.7Ga0.3(Se(1-x)Te(x))2 (briefly CIGSeTe) thin films for two different stoichiometries (for x = 0.2 and 0.8). The films have been deposited onto soda lime glass (SLG) substrates by the e-beam evaporation technique. The films showed high absorption and revealed optical band gaps ranging from 1.17 eV to 1.06 eV for x = 0 with highest annealing temperatute at 525 degrees C and 1.12 eV to 1.02 eV for x = 0.8 and with highest annealed temperature at 600 degrees C. These results were correlated with the microstructural analysis by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and X-ray diffractometry (XRD). The linear dependence of the lattice parameters as a function of Se and Te contents was examined. X-ray diffraction analyses showed that the films had the single phase chalcopyrite structure. The lattice parameters (a and c) varied linearly with the increase in Te content x from x = 0.2 to x = 0.8. The peak correspondng to the (1 1 2) plane orientation of the films increased with annealing process. Also, SEM images showed that both the grains size and the RMS (root mean square) values increased with annealing and higher Te amount that caused grains aggregation. The relative 600 degrees C elemental composition present in the deposited CIGS films have been measured by using energy dispersive X-ray analysis (EDX). PMID:24757973

  18. Growth, structural and optical properties of non-stoichiometric CuIn(S1-xSex)2 thin films deposited by solution growth technique for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Chavhan, S.; Sharma, R.

    2006-04-01

    Polycrystalline thin films of p-CuIn(S1-xSex)2 have been deposited by a solution growth technique. The deposition parameters such as pH, temperature and time have been optimized. In order to achieve uniformity of thin film, triethanolamine (TEA) has been used. As deposited films have been annealed at 450 °C in air for 5 min. The surface morphology, compositional ratio, structural properties have been studied by SEM, EDAX and XRD technique, respectively. It has been found that films have chalcopyrite structure with the lattice parameters a=5.28 Å and c=11.45 Å at composition x=0.5. The grain size of all composition x measured from SEM and XRD is varied in between 450 and 520 nm. The optical transmittance spectra have been recorded in the range 350 1000 nm. The absorption coefficient has been calculated at the absorption edge for each of the composition x and it is in the range of 104 cm-1. The material shows the direct allowed band gap, which varies from 1.07 to 1.44 eV with change in composition (0≤x≤1.0). These parameters are useful for the photovoltaic application.

  19. Influence of laser wavelength on the laser induced breakdown spectroscopy measurement of thin CuIn 1- xGaxSe2 solar cell films

    NASA Astrophysics Data System (ADS)

    Kim, Chan Kyu; In, Jung Hwan; Lee, Seok Hee; Jeong, Sungho

    2013-10-01

    Laser induced breakdown spectroscopy (LIBS) measurement of thin CuInxGa 1- xSe2 (CIGS) films (1.2-1.9 μm) with varying Ga to In ratios was carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength Nd:YAG lasers (τ = 5 ns, spot diameter = 150 μm, top-hat profile) in air. The concentration ratios of Ga to In, xGa ≡ Ga/(Ga + In), of the CIGS samples ranged from 0.027 to 0.74 for which the band gap varied nearly proportionally to xGa from 0.96 to 1.42. It was found that the LIBS signal of 1064 nm (1.17 eV) wavelength laser was significantly influenced by xGa, whereas that of the 532 nm (2.34 eV) laser was consistent for all values of xGa. The observed dependency of the LIBS signal intensity on the laser wavelength was attributed to the large difference of photon energy of the two wavelengths that changed the absorption of incident laser energy by the film. The 532 nm wavelength was found to be advantageous for multi-shot analysis that enabled depth profile analysis of the thin CIGS films and for improving measurement precision by averaging the multi-shot LIBS spectra.

  20. Charge-carrier dynamics in polycrystalline thin-film CuIn1-xGaxSe2 photovoltaic devices after pulsed laser excitation: Interface and space-charge region analysis

    NASA Astrophysics Data System (ADS)

    Kuciauskas, Darius; Li, Jian V.; Kanevce, Ana; Guthrey, Harvey; Contreras, Miguel; Pankow, Joel; Dippo, Pat; Ramanathan, Kannan

    2015-05-01

    We used time-resolved photoluminescence (TRPL) spectroscopy to analyze time-domain and spectral-domain charge-carrier dynamics in CuIn1-xGaxSe2 (CIGS) photovoltaic (PV) devices. This new approach allowed detailed characterization for the CIGS/CdS buffer interface and for the space-charge region. We find that dynamics at the interface is dominated by diffusion, where the diffusion rate is several times greater than the thermionic emission or interface recombination rate. In the space-charge region, the electric field of the pn junction has the largest effect on the carrier dynamics. Based on the minority-carrier (electron) drift-rate dependence on the electric field strength, we estimated drift mobility in compensated CuIn1-xGaxSe2 (with x ≈ 0.3) as 22 ± 2 cm2(Vs)-1. Analysis developed in this study could be applied to evaluate interface and junction properties of PV and other electronic devices. For CIGS PV devices, TRPL spectroscopy could contribute to understanding effects due to absorber compositional grading, which is one of the focus areas in developing record-efficiency CIGS solar cells.

  1. Correlations of Cu(In, Ga)Se2 Imaging with Device Performance, Defects, and Microstructural Properties

    SciTech Connect

    Johnston, S.; Unold, T.; Repins, I.; Kanevce, A.; Zaunbrecher, K.; Yan, F.; Li, J. V.; Dippo, P.; Sundaramoorthy, R.; Jones, K. M.; To, B.

    2012-07-01

    Camera imaging techniques have been used for the characterization of Cu(In,Ga)Se{sub 2} (CIGS) solar cells. Photoluminescence (PL) imaging shows brightness variations after the deposition of the CIGS layer that persist through CdS deposition and subsequent processing steps to finish the devices. PL and electroluminescence imaging on finished cells show a correlation to the devices corresponding efficiency and open-circuit voltage (V{sub OC}), and dark defect-related spots correspond to bright spots on images from illuminated lock-in thermography (LIT) and forward-bias dark LIT. These image-detected defect areas are weak diodes and shunts. Imaging provides locations of defects detrimental to solar cell performance. Some of these defects are analyzed in more detail by scanning electron microscopy using cross-sectional views.

  2. Role of deposition time on structural, optical and electrical properties of In-rich Cu-In-S spinel films grown by electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Gannouni, M.; Ben Assaker, I.; Chtourou, R.

    2013-09-01

    CuIn5S8 spinel films were grown at different deposition times onto (ITO)-coated glass substrates using a one-step electrodeposition route of In-rich Cu-In-S system. A contribution to the knowledge of thickness (or deposition time) dependence of structural, morphological, optical, and electrical properties of CuIn5S8 thin film is reported. According to these studies, when the deposition time is extended beyond 10 min, X-ray diffraction pattern has indicated a growth mode along the (3 1 1) plane which is consistent with the CuIn5S8 cubic spinel structure. XRD peaks broaden and shift depending on film thicknesses which are presumably due to strain and size effect. From AFM analysis, nucleus density, size, roughness, as well as film thickness have increased with increasing deposition time from 1 to 30 min. Through optical measurements, both values of transmittance and band gap have decreased respectively from approximately (˜77%) to (˜40%) and from 2.75 eV to 1.53 eV with the increase of deposition time. The film deposited at 15 min shows a minimum electrical resistivity of about 3.12 × 10-3 Ω cm. It is also reported that by controlling the electrodeposition time, n-type or p-type conductivity of CuIn5S8 could be adjusted.

  3. A High Yield Synthesis of Chalcopyrite CuInS2 Nanoparticles with Exceptional Size Control

    SciTech Connect

    Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; Margulieux, Kelsey R.; Westover, Richard D.; Lau, Lisa D.; Long, Gary; Bajracharya, Cyril; Wang, Chong M.; Thurber, Aaron P.; Punnoose, Alex; Rodriguez, Rene G.; Pak, Joshua J.

    2009-12-29

    Various I-III-VI2 semiconductor materials have been identified as promising photovoltaic materials [1, 2]. Recently, quantum dot (QD) based solar cells have attracted much attention due to their potential to replace thin film devices [3-5]. One of the major advantages of employing QDs is by simply changing the particle size they can be tuned to absorb specific wavelengths ranging from visible to infrared wavelengths [6]. Furthermore, with careful design of photovoltaic (PV) devices incorporating various sizes of nanoparticles in multiple layers, one may achieve increased solar energy absorption in one device [7, 8]. In order to facilitate QD based multilayer devices, synthetic strategies that can deliver QDs in high yields with precise size control are essential. One of the strategies to prepare QDs is to prepare nanoparticles from molecular single source precursors (SSPs), which contain all necessary elements in a single molecule. In recent years, there have been several reports on the formation of CuInS2 nanoparticles through the decomposition of SSPs using thermolysis [9-14], photolysis [18], and microwave irradiation [16]. However, many of these procedures require a combination of long reaction times (10 to 24 hours) and high reaction temperatures (often exceeding 200 °C) with very little information regarding overall yields. Microwave-assisted growth of nanoparticles is generally favorable over traditional thermolysis as microwave irradiation overcomes local intermediaries and increases the microscopic temperature of the reaction [17] thus exhibiting greater homogeneity in the overall reaction temperature. This allows for nanoparticles with diameters of a few nanometers can be prepared [18], dramatic decreases in reaction times, improved product purities, all forms of precursors can be used, and reactions exhibit high reproducibility and yields [19]. For CuInS2 QDs, the Wannier-Mott bulk exciton radius is approximately 8 nm with a bandgap of 1.45 eV and QDs

  4. A Novel Method for Preparation of Zn-Doped CuInS2 Solar Cells and Their Photovoltaic Performance

    PubMed Central

    Peng, Cheng-Hsiung; Hwang, Chyi-Ching

    2013-01-01

    In this study, a novel method was proposed to synthesize high quality Zn-doped CuInS2 nanocrystals under high frequency magnetic field at ambient conditions. The magnetic Zn-doping gave superparamagnetic heating of the resulting nanocrystals via magnetic induction, causing an accelerating growth rate of the doped CuInS2 under ambient conditions faster than conventional autoclave synthesis. Shape evolution of the Zn-doped CuInS2 nanocrystals from initially spherical to pyramidal, to cubic, and finally to a bar geometry was detected as a function of time of exposure to magnetic induction. These colloidal solvents with different shaped nanocrystals were further used as “nanoink” to fabricate a simple thin film solar device; the best efficiency we obtained of these crystals was 1.01% with a 1.012 μm thickness absorber layer (bar geometry). The efficiency could be promoted to 1.44% after the absorber was thickened to 2.132 μm. PMID:24453908

  5. Improved Photovoltaic Characteristics and Grain Boundary Potentials of CuIn0.7Ga0.3Se2 Thin Films Spin-Coated by Na-Dissolved Nontoxic Precursor Solution.

    PubMed

    Choi, Ik Jin; Jang, Jin Woo; Mohanty, Bhaskar Chandra; Lee, Seung Min; Cho, Yong Soo

    2016-07-13

    This work introduces the incorporation of Na into the nontoxic precursor solution of CIGS to improve photovoltaic cell performance with the optimized benefits of Na. The extensive incorporation range of 0.05 to 0.5 mol % Na is used for the simple spin-coating process of high quality absorber thin films. A cell efficiency of ∼8.21%, which corresponds to an improvement of ∼10.2% compared to the reference sample, is achieved for the 0.25 mol % Na sample with enhanced open-circuit voltage and fill factor. The improvement was further analyzed as related to InCu defects and grain boundary potentials. PMID:27355408

  6. The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2003-01-01

    Ternary single-source precursors were used to deposit CuInS2 thin films using chemical spray pyrolysis. We investigated the effect of the film composition on texture, secondary phase formation, and grain size. As-grown films were most often In-rich. They became more (204/220)-oriented as indium concentration increased, and always contained a yet unidentified secondary phase. The (112)-prefened orientation became more pronounced as the film composition became more Cu-rich. The secondary phase was determined to be an In-rich compound based on composition analysis and Raman spectroscopy. In addition, as-grown Cu-rich (112)-oriented films did not exhibit the In-rich compound. Depositing a thin Cu layer prior to the growth of CuInS2 increased the maximum grain size from - 0.5 micron to - 1 micron, and prevented the formation of the In-rich secondary phase.

  7. Local Structure of CuIn3Se5

    SciTech Connect

    Chang, C. H.; Wei, S. H.; Leyarovska, N.; Johnson, J. W.; Zhang, S. B.; Stanbery, B. J.; Anderson, T. J.

    2000-01-01

    The results of a detailed EXAFS study of the Cu-K, In-K, and Se-K edges CuIn3Se5 are reported. The Cu and In first nearest neighbor local structures were found to be almost identical to those in CuInSe2.

  8. Charge Dynamics in Solution-Processed Nanocrystalline CuInS2 Solar Cells.

    PubMed

    Halpert, Jonathan E; Morgenstern, Frederik S F; Ehrler, Bruno; Vaynzof, Yana; Credgington, Dan; Greenham, Neil C

    2015-06-23

    We investigate charge dynamics in solar cells constructed using solution-processed layers of CuInS2 (CIS) nanocrystals (NCs) as the electron donor and CdS as the electron acceptor. By using time-resolved spectroscopic techniques, we are able to observe photoinduced absorptions that we attribute to the mobile hole carriers in the NC film. In combination with transient photocurrent and photovoltage measurements, we monitor charge dynamics on time scales from 300 fs to 1 ms. Carrier dynamics are investigated for devices with CIS layers composed of either colloidally synthesized 1,3-benzenedithiol-capped nanocrystals or in situ sol-gel synthesized thin films as the active layer. We find that deep trapping of holes in the colloidal NC cells is responsible for decreases in the open-circuit voltage and fill factor as compared to those of the sol-gel synthesized CIS/CdS cell. PMID:25951125

  9. Strong two-photon absorption of CuInS2/ZnS quantum dots with various Cu/In ratios

    NASA Astrophysics Data System (ADS)

    Dai, Qian; Zhang, Xiong; Wang, Shuchang; Huang, Bo; Zhang, Jiayu; Cui, Yiping

    2015-08-01

    The CuInS2 (CIS)/ZnS quantum dot (QD) samples with various Cu/In ratios have been synthesized and characterized. The effective two-photon absorption (TPA) coefficients for a series of CIS/ZnS core/shell QDs were measured by Z-scan technique. It was found that the TPA coefficients and quantum yields (QYs) of these samples were enhanced dramatically as the Cu/In ratio was decreased, and saturated at a Cu/In ratio of 1/4. A QY as high as 79% was achieved at a Cu/In ratio of 1/4. The effects of surface states and photon-induced dipole moment were demonstrated to be responsible for the optical nonlinear features of the colloidal core/shell QDs.

  10. Nanocrystalline CuInS2 And CuInSe2 via Low-Temperature Pyrolysis Of Single-Source Molecular Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2002-01-01

    Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.

  11. Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.

    1998-01-01

    Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.

  12. Formulation and Characterization of CuIn1-xGaxSe2 Ink for Gravure Offset Printing

    NASA Astrophysics Data System (ADS)

    Kim, Inyoung; Han, Hyun-Suk; Kwak, Sun-Woo; Yu, Jong-Su; Kim, Bongmin; Jang, Yunseok; Lee, Taik-Min

    2013-05-01

    CuIn1-xGaxSe2 (CIGS) paste for gravure offset printing was formulated by changing the amount of additives to determine the critical factor for gravure offset printing quality. With the addition of poly(vinyl pyrrolidone) (PVP), the viscosity and yield stress of CIGS ink decreased and shear thinning behavior disappeared. However, PVP effectively enhanced ink cohesion and elastic modulus, which critically affected the printability of the CIGS paste. Intense pulsed light (IPL) treatment in air made the microstructure of CIGS film denser without a phase change or oxidation. The gravure offset printing technique and IPL treatment were considered a good combination for a continuous and fast CIGS film growth process.

  13. Investigations on electron beam evaporation of a ball-milled Cu(In1- x Ga x )Se2 powder

    NASA Astrophysics Data System (ADS)

    Alamri, S. N.; Alsadi, H. F.

    2015-07-01

    CuIn1- x Ga x Se (CIGS) powder was synthesized via the direct reaction of elemental copper, indium, gallium and selenium using ball milling. CIGS thin films were deposited onto glass substrates by using electron beam deposition at different substrate temperatures ranging from 200 ℃ to 500 ℃. The effect of substrate temperature on the structure, surface morphology and optical properties of the films were investigated by using X-ray diffraction, energy dispersive X-ray analysis, atomic force microscopy and optical spectroscopy. Increasing the substrate temperature improved the crystallinity of the films; in addition, the (112) preferred orientation became stronger, the grain size increased from 222 Å to 414 Å and the unit cell volume increased from 350.4 Å3 to 384.1 Å3. The stoichiometry of the films varied with the substrate temperature. The optical properties, band gap and refractive index were reduced as the substrate temperature was increased.

  14. Light-stimulated carrier dynamics of CuInS2/CdS heterotetrapod nanocrystals.

    PubMed

    Sakamoto, Masanori; Inoue, Koki; Okano, Makoto; Saruyama, Masaki; Kim, Sungwon; So, Yeong-Gi; Kimoto, Koji; Kanemitsu, Yoshihiko; Teranishi, Toshiharu

    2016-05-14

    We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal. PMID:27118533

  15. The influence of pre-heating temperature on the CIGS thin film growth and device performance prepared in cracked-Se atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Guangmin; Liu, Wei; Liu, Yiming; Lin, Shuping; Li, Xiaodong; Zhang, Yi; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2015-10-01

    The influence of pre-heating temperature on cracked-selenized Cu(In, Ga)Se2 (CIGS) films’ structure, growth kinetics, and photovoltaic performance is investigated. The ‘large island grains’ on the upper surface are the precursors of Cu2-xSe and finally evolve into Cu2-xSe as the pre-heating temperature increases to 400 °C. The ‘large island grains’, as well as In2Se3, are considered to be two decisive factors in forming CIGS as they facilitate the diffusion of cracked-Se into the thin films, because they make the films more incompact and suppress the fast formation of complete single CuInSe2 (CIS) during the 2nd heating. Stoichiometric CIGS thin films without a bi-layer structure and phase separation can be achieved by adjusting the appropriate pre-heating temperature. The performance of the solar cells is mainly influenced by the current leakage caused by small grains and cavities near the CIGS/Mo back contact.

  16. Low-cost and large-scale synthesis of CuInS2 and CuInS2/ZnS quantum dots in diesel

    NASA Astrophysics Data System (ADS)

    Thuy, Nguyen Thi Minh; Chi, Tran Thi Kim; Thuy, Ung Thi Dieu; Liem, Nguyen Quang

    2014-11-01

    In this paper, we present the results of the syntheses of CuInS2 (CIS) and CIS/ZnS core/shell quantum dots (QDs) by heating-up method using diesel as the high boiling-point reaction solvent. The influences of the synthesis parameters, namely the reaction temperature, growth time and the Cu:In molar ratio to the structure and optical properties of the obtained QDs were systematically investigated. CIS QDs were synthesised at the reaction temperatures of 200-230 °C for 5-45 min and the Cu:In molar ratios of 0.5:1-1.5:1. The optical characteristics from absorption and photoluminescence spectra have been used as indicators to the quality of the synthesised QDs, showing clearly that the highest quality CIS QDs were obtained at the reaction temperature of 210 °C for 15 min with the Cu:In molar ratio of 1:1. For such QDs, their mean size of 3.5 nm was determined directly from the transmission electron microscopy (TEM) image and calculated from their XRD pattern.

  17. Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer.

    PubMed

    Yang, Wooseok; Oh, Yunjung; Kim, Jimin; Kim, Hyunchul; Shin, Hyunjung; Moon, Jooho

    2016-01-13

    Although copper-based chalcopyrite materials such as CuInS2 have been considered promising photocathodes for solar water splitting, the fabrication route for a nanostructure with vertical orientation has not yet been developed. Here, a fabrication route for vertically aligned CuInS2 nanorod arrays from an aqueous solution using anodic aluminum oxide template-assisted growth and transfer is presented. The nanorods exhibit a phase-pure CuInS2 chalcopyrite structure and cathodic photocurrent response without co-catalyst loading. Small particles of CdS and ZnS were conformally decorated onto CuInS2 nanorods using a successive ion layer adsorption and reaction method. With surface modification of CdS/ZnS, the photoelectrochemical properties of CuInS2 nanorod arrays are enhanced via flat-band potential shift, as determined by analyses of onset potential and Mott-Schottky plots. PMID:26645722

  18. Charge carrier loss mechanisms in CuInS2/ZnO nanocrystal solar cells.

    PubMed

    Scheunemann, Dorothea; Wilken, Sebastian; Parisi, Jürgen; Borchert, Holger

    2016-06-28

    Heterojunction solar cells based on colloidal nanocrystals (NCs) have shown remarkable improvements in performance in the last decade, but this progress is limited to merely two materials, PbS and PbSe. However, solar cells based on other material systems such as copper-based compounds show lower power conversion efficiencies and much less effort has been made to develop a better understanding of factors limiting their performance. Here, we study charge carrier loss mechanisms in solution-processed CuInS2/ZnO NC solar cells by combining steady-state measurements with transient photocurrent and photovoltage measurements. We demonstrate the presence of an extraction barrier at the CuInS2/ZnO interface, which can be reduced upon illumination with UV light. However, trap-assisted recombination in the CuInS2 layer is shown to be the dominant decay process in these devices. PMID:27250665

  19. Pressure effect on the structural and electronic properties of CuInS2

    NASA Astrophysics Data System (ADS)

    Adetunji, B. I.

    2016-05-01

    The pressure dependence of the bond length and energy gap in chalcopyrite CuInS2 between 0 and 40 GPa has been investigated using pseudopotentials plane-wave method within the generalized gradient approximation for the exchange-correlation potential. We found that the bond length decreases as the pressure increases. Also, the energy gap of CuInS2 expands as the pressure increases with a rate of 10.693 meV/GPa. The linear pressure coefficient calculated is approximately half the reported experimental value of 23 meV/GPA. Our calculated bulk modulus of 68.7 GPa is in good agreement with the available experimental and theoretical values. The present calculations show that the d-electrons of Cu ions are one of the important factors that dominate the contributions to the I-VI bonds and the energy gap in CuInS2.

  20. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin.

    PubMed

    Leach, Alice D P; Macdonald, Janet E

    2016-02-01

    The capacity of fluorescent colloidal semiconductor nanocrystals for commercial application has led to the development of nanocrystals with nontoxic constituent elements as replacements for the currently available Cd- and Pb-containing systems. CuInS2 is a good candidate material because of its direct band gap in the near-infrared spectral region and large optical absorption coefficient. The ternary nature, flexible stoichiometry, and different crystal structures of CuInS2 lead to a range of optoelectronic properties, which have been challenging to elucidate. In this Perspective, the optoelectronic properties of CuInS2 nanocrystals are described and what is known of their origin is discussed. We begin with an overview of their synthesis, structure, and mechanism of formation. A complete discussion of the tunable luminescence properties and the radiative decay mechanism of this system is then presented. Finally, progress toward application of these "green" nanocrystals is summarized. PMID:26758860

  1. Red and blue shifts of spectral luminescence band of CuInS2 nanothermometers

    NASA Astrophysics Data System (ADS)

    Skaptsov, Alexander A.; Novikova, Anastasia S.; Galushka, Viktor V.; Markin, Alexey V.; Kochubey, Vyacheslav I.; Goryacheva, Irina Y.

    2016-04-01

    Control methods of temperature fields inside a tissue during laser photothermolysis are an important point to develop biomedical applications of thermal destructions of cancer. One of the most promising approaches to measure and to control of temperature is the application of luminescence nanothermometers such as CuInS2 nanoparticles. Temperature measurement can be carried out by determination of the maximum of the luminescence band. Thus, we have investigated the influence of exposure time and temperature on the position of the maximum of the luminescence band of CuInS2 nanoparticles.

  2. Structural and optical analysis of single phase CuInS2 nanocrystals for solar cell applications

    NASA Astrophysics Data System (ADS)

    Sivagami, A. D.; Sarma, Bornali; Sarma, Arun

    2016-01-01

    Nanostructured phase pure CuInS2 particles have been successfully synthesized by solid state melt growth method. The crystallographic structure, morphological, chemical composition and optical properties of synthesized sample have been characterized by various analytical techniques, includes X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray (EDAX), UV-vis-NIR diffuse reflectance spectroscopy and photoluminescence spectroscopy. From the XRD spectra chalcopyrite structure of CuInS2 sample with phase pure nano particles is confirmed. Annealing promotes the grain size and crystallinity of the CuInS2 sample and is clearly indicated by XRD analysis. The optical band gap energy of CuInS2 sample is calculated to be 2.61 eV, which has also been confirmed by photoluminescence spectroscopy. SEM micrograph shows that the CuInS2 sample is composed of particles ranges from 25-50 nm in size. Annealed sample confirms the increase of particle size up to 85 nm. Compositional stability of CuInS2 phase pure nano particles have been studied by thermo gravimetric analysis. The effect of annealing temperatures on the structural and morphological properties of CuInS2 nanocrystals synthesized by solid state reactions has also been studied in this report.

  3. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties.

    PubMed

    Zhong, Haizheng; Lo, Shun S; Mirkovic, Tihana; Li, Yunchao; Ding, Yuqin; Li, Yongfang; Scholes, Gregory D

    2010-09-28

    CuInS2 nanocrystals are viewed as very good candidates for solar harvesting and light emitting applications. Here we report an optimized noninjection method for the synthesis of monodisperse pyramidal CuInS2 nanocrystals with sizes ranging from 3 to 8 nm. This synthetic route is able to yield large amounts of high quality nanoparticles, usually in the gram scale for one batch experiment. The structure and surface studies showed that the resulting nanocrystals are pyramids of CuInS2 tetragonal phase with well-defined facets, while their surface is functionalized with dodecanethiol capping ligands. Spectroscopic and electrochemical measurements revealed size-dependent optical and electrical properties of CuInS2 nanocrystals, demonstrating quantum confinement effects in these systems. The size-dependent optical bandgaps of CuInS2 nanocrystals were found to be consistent with the finite-depth well effective mass approximation (EMA) calculations, which provide a convenient method to estimate the diameter of CuInS2 pyramids. Additionally we have also determined some important physical parameters, including bandgaps and energy levels, for this system, which are crucial for the integration of CuInS2 nanocrystals in potential device applications. PMID:20815394

  4. Light-stimulated carrier dynamics of CuInS2/CdS heterotetrapod nanocrystals

    NASA Astrophysics Data System (ADS)

    Sakamoto, Masanori; Inoue, Koki; Okano, Makoto; Saruyama, Masaki; Kim, Sungwon; So, Yeong-Gi; Kimoto, Koji; Kanemitsu, Yoshihiko; Teranishi, Toshiharu

    2016-05-01

    We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal.We synthesized a heterotetrapod composed of a chalcopyrite(ch)-CuInS2 core and wurtzite(w)-CdS arms and elucidated its optical properties and light-stimulated carrier dynamics using fs-laser flash photolysis. The CuInS2/CdS heterotetrapod possessed quasi-type II band alignment, which caused much longer-lived charge separation than that in the isolated CuInS2 nanocrystal. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01097k

  5. Facile synthesis of nanocrystalline wurtzite Cu-In-S by amine-assisted decomposition of precursors

    SciTech Connect

    Bera, Pulakesh; Il Seok, Sang

    2010-08-15

    Phase-pure ternary wurtzite Cu-In-S nanocrystals have been synthesized by a simple amine-assisted decomposition of mixed precursor complexes derived from S-methyl dithiocarbazate (SMDTC) at a relatively low temperature without using any external surfactant. The crystal phase, morphology, crystal lattice, and chemical composition of the as-prepared products were analyzed by using X-ray diffraction, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX). The optical properties show the pronounced quantum confinement effect in nanocrystals. A possible growth mechanism has been suggested for the formation of anisotropic wurtzite Cu-In-S It is believed that a combined effect of the chelating amine and precursors containing CH{sub 3}S unit plays a key role in the formation of the metastable phase of wurtzite Cu-In-S. - Graphical abstract: Phase-pure ternary wurtzite Cu-In-S nanocrystals have been synthesized by a simple amine-assisted decomposition of mixed precursor complexes derived from S-methyl dithiocarbazate (SMDTC) at a relatively low temperature.

  6. Synthesis, Characterization and Decomposition Studies of Tris(N,N-dibenzyldithiocarbamato) Indium(III): Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  7. Formation of CuInSSe thin films by conventional two-stage process

    NASA Astrophysics Data System (ADS)

    Shrotriya, Vipin; Rajaram, P.

    2016-05-01

    We have fabricated Crystalline CuInSSe thin films on glass substrate by conventional two-stage process. In first stage CuInS2 thin films have been grown on glass substrate by spray pyrolysis method at constant temperature 320°C. The CuCl2, InCl3, and thiourea were used as source materials for the Cu, In, and S precursors respectively and the Cu/In ratio is kept at 1.0. In second stage the precursor films of CuInS2 are selenized to get CuInSSe. The grown thin films of CuInS2 and CuInSSe were characterized by XRD, SEM and optical studies. The average crystallite size of the CISS thin films is found to be in the range 10-20 nm, using the Scherrer formula. The band gap value of the CuInSSe films is found to be 1.26 eV.

  8. Caractérisations structurale et morphologique des couches minces de CuInS2 et d'In-S "airless spray"

    NASA Astrophysics Data System (ADS)

    Kamoun, N.; Belgacem, S.; Amlouk, M.; Bennaceur, R.; Abdelmoula, K.; Belhadj Amara, A.

    1994-03-01

    We have prepared CuInS2 thin layers by airless spray "S.P.A." in order to use them as an absorber in a photovoltaic cell. The X-ray diffraction analysis has showed that these layers are well crystallized with a privileged (112) principal orientation for a ratio of the concentrations in the pulverized solution x=frac[Cu^I][In^{III]}=1.1. After heat treatment under vacuum the crystallization have been clearly improved. The structural analysis of the thin CuInS2 layers have revealed that a secondary phases of In2S3 and In6S7 are present. Thus we have realized by the same technique thin In-S layers whose structural and morphological properties have been studied. This analysis has showed that the In-S layers are well crystallized for a ratio y=frac[In^{3+]}[S^{2-]}=0.6 in the spray solution. The In-S layers are essentially formed by a β-In2S3 material. Although the In6S7 phase appears to the detriment of β-In2S3 phase for y= 0.75. Nous avons préparé des couches minces de CuInS2, par pulvérisation chimique réactive sans air "P.S.A.", en vue de leur utilisation en tant qu'absorbeur dans un dispositif photovoltaïque. L'analyse par diffraction X a montré que ces couches sont bien cristallisées et que l'orientation principale (112) est privilégiée pour un rapport de concentrations x=frac[Cu^I]{[In^{III}]}=1,1 dans la solution à pulvériser. Après le traitement thermique sous vide la cristallisation est nettement améliorée. L'analyse structurale des couches minces de CuInS2 a révélé que ces couches renferment des phases secondaires d'In2S3 et d'In6S7. Ainsi nous avons réalisé par la même technique "P.S.A.", des couches minces d'In-S dont nous avons étudié les propriétés structurales et morphologiques, Cette analyse a montré que les couches d'In-S sont bien cristallisées. Pour un rapport de concentrations en solution de pulvérisation y=frac[In^{3+]}[S^{2-]}=0,6 les couches d'In-S sont surtout formées du matériau β-In2S3. Alors que la phase In6S7

  9. Enhanced photocatalytic hydrogen evolution activity of CuInS2 loaded TiO2 under solar light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Changjiang; Xi, Zhenhao; Fang, Wenzhang; Xing, Mingyang; Zhang, Jinlong

    2015-03-01

    In this paper, p-n type CuInS2/TiO2 particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p-n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS2 on the surface of TiO2, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS2/TiO2 heterostructure. UV-vis diffuse reflectance spectroscopy (UV-vis DRS) was used to investigate the optical properties of the CuInS2/TiO2 particles. The DRS results indicated that both the p-n type structure and CuInS2 acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS2/TiO2 particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO2 (Degussa P25).

  10. CuInS2-Sensitized Quantum Dot Solar Cell. Electrophoretic Deposition, Excited-State Dynamics, and Photovoltaic Performance.

    PubMed

    Santra, Pralay K; Nair, Pratheesh V; George Thomas, K; Kamat, Prashant V

    2013-03-01

    Ternary metal chalcogenides such as CuInS2 offer new opportunities to design quantum dot solar cells (QDSC). Chemically synthesized CuInS2 quantum dots (particle diameter, 2.6 nm) have been successfully deposited within the mesoscopic TiO2 film using electrophoretic deposition (150 V cm(-1) dc field). The primary photoinduced process of electron injection from excited CuInS2 into TiO2 occurs with a rate constant of 5.75 × 10(11) s(-1). The TiO2/CuInS2 films are photoactive and produce anodic photocurrent with a power conversion efficiency of 1.14%. Capping the TiO2/CuInS2 film with a CdS layer decreases the interfacial charge recombination and thus offers further improvement in the power conversion efficiency (3.91%). The synergy of using CdS as a passivation layer in the composite film is also evident from the increased external quantum efficiency of the electrode in the red region where only CuInS2 absorbs the incident light. PMID:26281925

  11. Optical characterization of CuIn5S8 crystals by ellipsometry measurements

    NASA Astrophysics Data System (ADS)

    Isik, Mehmet; Gasanly, Nizami

    2016-04-01

    Optical properties of CuIn5S8 crystals grown by Bridgman method were investigated by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficients were obtained from the analysis of ellipsometry experiments performed in the 1.2-6.2 eV spectral region. Analysis of spectral dependence of the absorption coefficient revealed the existence of direct band gap transitions with energy 1.53 eV. Wemple-DiDomenico and Spitzer-Fan models were used to find the oscillator energy, dispersion energy, zero-frequency refractive index and high-frequency dielectric constant values. Structural properties of the CuIn5S8 crystals were investigated using X-ray diffraction and energy dispersive spectroscopy analysis.

  12. MoS2 Nanosheet-Modified CuInS2 Photocatalyst for Visible-Light-Driven Hydrogen Production from Water.

    PubMed

    Yuan, Yong-Jun; Chen, Da-Qin; Huang, Yan-Wei; Yu, Zhen-Tao; Zhong, Jia-Song; Chen, Ting-Ting; Tu, Wen-Guang; Guan, Zhong-Jie; Cao, Da-Peng; Zou, Zhi-Gang

    2016-05-10

    Exploiting photocatalysts respond to visible light is of huge challenge for photocatalytic H2 production. Here, we synthesize a new composite material consisting of few-layer MoS2 nanosheets grown on CuInS2 surface as an efficient photocatalyst for solar H2 generation. The photocatalytic results demonstrate that the 3 wt % MoS2 /CuInS2 photocatalyst exhibits the highest H2 generation rate of 316 μmol h(-1)  g(-1) under visible light irradiation, which is almost 28 times higher than that of CuInS2 . Importantly, the MoS2 /CuInS2 photocatalyst shows a much higher photocatalytic activity than that of Pt-loaded CuInS2 photocatalyst. The enhanced photocatalytic activities of MoS2 /CuInS2 photocatalysts can be attributed to the improved charge separation at the interface of MoS2 and CuInS2, which is demonstrated by the significant enhancement of photocurrent responses in MoS2 /CuInS2 photoelectrodes. This work presents a noble-metal-free photocatalyst that responds to visible light for solar H2 generation. PMID:27062042

  13. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.

    PubMed

    Chang, Jia-Yaw; Lin, Jie-Mo; Su, Li-Fong; Chang, Chia-Fu

    2013-09-11

    This article describes a CuInS2 quantum dot (QD)-sensitized solar cell (QDSSC) with a multilayered architecture and a cascaded energy-gap structure fabricated using a successive ionic-layer adsorption and reaction process. We initially used different metal chalcogenides as interfacial buffer layers to improve unmatched band alignments between the TiO2 and CuInS2 QD sensitizers. In this design, the photovoltaic performance, in terms of the short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and power conversion efficiency (PCE), was significantly improved. Both JSC and VOC were improved in CuInS2-based QDSSCs in the presence of interfacial buffer layers because of proper band alignment across the heterointerface and the negative band edge movement of TiO2. The PCE of CuInS2-based QDSSCs containing In2Se3 interfacial buffer layers was 1.35%, with JSC=5.83 mA/cm2, VOC=595 mV, and FF=39.0%. We also examined the use of alternative CdS and CdSe hybrid-sensitized layers, which were sequentially deposited onto the In2Se3/CuInS2 configuration for creating favorable cascaded energy-gap structures. Both JSC (11.3 mA cm(-2)) and FF (47.3%) for the CuInS2/CdSe hybrid-sensitized cells were higher than those for CuInS2-based cells (JSC=5.83 mA cm(-2) and FF=39.0%). In addition, the hybrid-sensitized cells had PCEs that were 1.3 times those of cells containing identically pretreated In2Se3 interfacial buffer layers. Additionally, we determined that ZnSe served as a good passivation layer on the surface of CuInS2/CdSe hybrid-sensitized QDs, prevented current leakage from the QDs to electrolytes, and lowered interfacial charge recombination. Under simulated illumination (AM 1.5, 100 mW cm(-2)), multilayered QDSSCs with distinct architectures delivered a maximum external quantum efficiency of 80% at 500 nm and a maximum PCE of 4.55%, approximately 9 times that of QDSSCs fabricated with pristine CuInS2. PMID:23937511

  14. Cu1.94S-Assisted Growth of Wurtzite CuInS2 Nanoleaves by In Situ Copper Sulfidation.

    PubMed

    Cai, Chunqi; Zhai, Lanlan; Zou, Chao; Li, Zhensong; Zhang, Lijie; Yang, Yun; Huang, Shaoming

    2015-12-01

    Wurtzite CuInS2 nanoleaves were synthesized by Cu1.94S-assisted growth. By observing the evolution of structures and phases during the growth process, Cu1.94S nanocrystals were found to be formed after uninterrupted oxidation and sulfidation of copper nanoparticles at the early stage, serving as catalysts to introduce the Cu and In species into CuInS2 nanoleaves growth for inherent property of fast ionic conductor. The obtained CuInS2 nanoleaves were characterized by scanning transmission electron microscopy, transmission electron microscopy, fast Fourier transform, X-ray diffraction, and energy dispersive X-ray spectroscopy mapping. The enhancement of photoresponsive current of CuInS2 nanoleaf film, evaluated by I-V curves of nanoleaf film, is believed to be attributed to the fast carrier transport benefit from the nature of single crystalline of CuInS2 nanoleaves. PMID:26173675

  15. Crystallographic and optical properties and band structures of CuInSe2, CuIn3Se5, and CuIn5Se8 phases in Cu-poor Cu2Se-In2Se3 pseudo-binary system

    NASA Astrophysics Data System (ADS)

    Maeda, Tsuyoshi; Gong, Weiyan; Wada, Takahiro

    2016-04-01

    We prepared CuInSe2 and Cu-poor Cu-In-Se (CIS) phases such as CuIn3Se5 and CuIn5Se8 in the composition of (1 - x)Cu2Se-(x)In2Se3 with 0.5 ≤ x ≤ 1.0. The crystal structure of the sample changed from chalcopyrite-type CuInSe2 to hexagonal CuIn5Se8 through stannite-type CuIn3Se5 with increasing x (decreasing Cu/In ratio). The band-gap energies of Cu-poor CIS samples, i.e., CuIn3Se5 (1.17 eV) and CuIn5Se8 (1.22-1.24 eV), are larger than that of chalcopyrite-type CuInSe2 (0.99 eV). The energy levels of the valence band maxima (VBMs) were estimated from the ionization energy by photoemission yield spectroscopy (PYS) measurements. The energy levels of the VBMs of the Cu-poor CIS samples decrease rapidly with decreasing Cu/In ratio. The ionization energy of stannite-type CuIn3Se5 is 0.4 eV larger than that of chalcopyrite-type CuInSe2. The ionization energy of CuIn5Se8 is 0.1-0.3 eV larger than that of CuIn3Se5. These results show that the energy position of the VBM from the vacuum level of Cu-poor CIS phases, such as CuIn3Se5 and CuIn5Se8, is deeper than that of CuInSe2. To understand the electronic structure of Cu-poor CIS compounds, we performed first-principles band structure calculations on stannite-type CuIn5Se8 and a reference compound, tetragonal chalcopyrite-type CuInSe2, using the HSE06 nonlocal screened hybrid density functional. The calculated band-gap energy of tetragonal stannite-type CuIn5Se8 (1.19 eV) is larger than that of chalcopyrite-type CuInSe2 (0.94 eV).

  16. Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires

    PubMed Central

    2014-01-01

    Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm. PACS 61.46. + w; 61.41.e; 81.15.Fg; 81.07.b PMID:25520597

  17. Pulsed laser deposition of single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Li, Hui; Zhu, Yan-Yan; Guan, Lei-Lei; Li, Yan-Li; Sun, Jian; Ying, Zhi-Feng; Wu, Jia-Da; Xu, Ning

    2014-12-01

    Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm.

  18. Effects of europium substitution for In on structure and photoelectric properties of CuIn1-xEuxTe2

    NASA Astrophysics Data System (ADS)

    Nie, Xiaomeng; Guo, Yongquan

    2016-01-01

    The structures and optical and electric properties of europium doped CuIn1-xEuxTe2 have been studied systematically using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectrum (EDS), ultraviolet and visible spectrophotometer (UV-vis), and standard four-probe method. The studies reveal that the minor europium doping into CuIn1-xEuxTe2 could still stabilize the chalcopyrite structure in a solid solution of x=0.1. The lattice parameters are going up with increasing the content of europium in CuIn1-xEuxTe2 due to the size effect at In site. The structural refinement confirms that Eu partly substitutes for In and occupies the 4b crystal position. SEM morphologies show that the europium doping into CuIn1-xEuxTe2 can fine the grains from the largely agglomerated state to the uniformly separated state. The electrical resistivities of single phase CuIn1-xEuxTe2 follow a mixture model of hopping conductivity and variable range hopping conductivity. The absorption band-gaps of CuIn1-xEuxTe2 at room temperature tend to increase with increasing Eu content. CuIn1-xEuxTe2 might be a good candidate for photovoltaic cell.

  19. Dynamic electrical conduction in p-type CuIn3Se5

    NASA Astrophysics Data System (ADS)

    Essaleh, L.; Marín, G.; Wasim, S. M.; Alimoussa, A.; Bourial, A.

    2016-04-01

    In this work, ac electrical conductivity measurements were studied for the first time in p type bulk ternary semiconductor compound CuIn3Se5. The dynamic electrical conductivity is analyzed in the frequency range 20 Hz to 1 MHz and temperature from 308 K to 500 K. The relaxation times for the grain and grain boundaries were studied from the second derivative of electric modulus versus frequency at various temperatures. The relaxation time is found to decrease with increasing temperature and to obey the Arrhenius relationship. The values of activation energies for conduction and relaxation times are obtained.

  20. Composition-dependent photoluminescence properties of CuInS2/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Hua, Jie; Du, Yuwei; Wei, Qi; Yuan, Xi; Wang, Jin; Zhao, Jialong; Li, Haibo

    2016-06-01

    CuInS2/ZnS (CIS/ZnS) core/shell quantum dots (QDs) with various Cu/In ratios were synthesized using the hot-injection method, and their photoluminescence (PL) properties were investigated by measuring steady-state and time-resolved PL spectroscopy. The emission peak of the CIS/ZnS QDs were tuned from 680 to 580 nm by decreasing the Cu/In precursor ratio from 1/1 to 1/9. As the Cu/In ratio decreases, the PL lifetimes and PL quantum yields (QYs) of CIS/ZnS core/shell QDs increased firstly and then decreased. Two dominant radiative recombination processes were postulated to analyze composition-dependent PL properties, including the recombination from a quantized conduction band to deep defects state and donor-acceptor pair (DAP) recombination. The decrease of PL efficiency resulted from high density defects and traps, which formed at the interface between CIS core and ZnS shell due to the large off-stoichiometry composition. The PL intensity and peak energy for CIS/ZnS core/shell QDs as a function of temperature were also provided. The thermal quenching further confirmed that the PL emission of CIS/ZnS QDs did not come from the recombination of excitons but from the recombination of many kinds of intrinsic defects inside the QDs as emission centers.

  1. Insight into the core-shell structures of Cu-In-S microspheres

    NASA Astrophysics Data System (ADS)

    Wochnik, Angela S.; Frank, Anna; Heinzl, Christoph; Häusler, Jonas; Schneider, Julian; Hoffmann, Ramona; Matich, Sonja; Scheu, Christina

    2013-12-01

    In this study we report about the inner and outer structure of CuInS2 microspheres which might be used e.g. in pastes for simple, low-cost solar cell preparation, as well as in electrodes for light-driven water splitting. The microspheres are synthesized via a mild, template-free solvothermal synthesis route and characterised by electron and focused ion beam microscopy, X-ray diffraction, inductively coupled plasma atomic emission and energy dispersive X-ray spectroscopy. The investigations of cross sections prepared by focused ion beam showed that the spheres consist of compact cores and flaky surface structures. Depending on the reaction time, the core possesses a stoichiometric or Cu-rich chemical composition surrounded by an In-rich shell. The flaky surface always comprises a stoichiometric composition in tetragonal chalcopyrite crystal structure, whereas the other areas additionally show minor contributions of CuS, and CuInS2 in hexagonal wurtzite structure. The presence of different phases can be beneficial for future applications since they offer different absorption behaviour in the visible range.

  2. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  3. Sulfide nanocrystal inks for dense Cu(In1-xGa(x))(S1-ySe(y))2 absorber films and their photovoltaic performance.

    PubMed

    Guo, Qijie; Ford, Grayson M; Hillhouse, Hugh W; Agrawal, Rakesh

    2009-08-01

    Recent developments in the colloidal synthesis of high quality nanocrystals have opened up new routes for the fabrication of low-cost efficient photovoltaic devices. Previously, we demonstrated the utility of CuInSe(2) nanocrystals in the fabrication of CuInSe(2) thin film solar cells. In those devices, sintering the nanocrystal film yields a relatively dense CuInSe(2) film with some void space inclusions. Here, we present a general approach toward eliminating void space in sintered nanocrystal films by utilizing reactions that yield a controlled volume expansion of the film. This is demonstrated by first synthesizing a nanocrystal ink composed of Cu(In(1-x)Ga(x))S(2) (CIGS). After nanocrystal film formation, the nanocrystals are exposed to selenium vapor during which most of the sulfur is replaced by selenium. Full replacement produces a approximately 14.6% volume expansion and reproducibly leads to good dense device-quality CIGSSe absorber films with reduced inclusion of void space. Solar cells made using the CIGSSe absorber films fabricated by this method showed a power conversion efficiency of 4.76% (5.55% based on the active nonshadowed area) under standard AM1.5 illumination. PMID:19518118

  4. Preparation of monolithic cu(In0.7Ga0.3)Se2 nanopowders and subsequent fabrication of sintered CIGS films.

    PubMed

    Song, Bong-Geun; Jung, Jae Hee; Bae, Gwi-Nam; Park, Hyung-Ho; Park, Jong-Ku; Cho, So-Hye

    2013-09-01

    Cu(In,Ga)Se2 (CIGS) is a compound semiconductor and is one of the most attractive light-absorbing materials for use in thin film solar cells. Among the various approaches to prepare CIGS thin films, the powder process offers an extremely simple and materials-efficient method. Here, we report the mechano-chemical preparation of CIGS compound powders suitable for fabrication of CIGS films by a powder process. We found that the CIGS phase was formed from the elemental powders of Cu, In, and Se and liquid Ga using high energy milling process with a milling time as short as 40 min at 200 rpm due to a self-accelerating exothermic reaction. The morphology and size of the CIGS powders changed with a function of the milling speed (100-300 rpm), leading to an optimal condition of milling at 200 rpm for 120 min. We also found that it was difficult to obtain a monolithic phase of the CIGS powders without severe particle aggregation by mechano-chemical milling alone. Therefore, in combination with the milling, subsequent heat-treatment at 300 degrees C was performed, which successfully provided monolithic CIGS nanopowders suitable for powder process. When a thin film was fabricated from the monolithic CIGS nanopowders, a highly dense film with large crystalline grains was obtained. The CIGS film preserved its chemical composition of CuIn0.7Ga0.3Se2 after sintering as evidenced by Raman spectroscopy, EDS and SAED pattern of transmission electron microscopy. The film was also found suitable for a light absorbing layer of CIGS solar cells with its band gap energy of 1.14 eV evaluated by transmittance spectroscopy. PMID:24205596

  5. Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Bingkun; Zhong, Haizheng; Wang, Meixu; Liu, Ruibin; Zou, Bingsuo

    2013-03-01

    Here we explored the possibility of using CuInS2-based nanocrystals as colour converting materials for light-emitting applications. Using a mixture of red and green emissive CuInS2-based nanocrystals, we successfully fabricated high colour rendering white light-emitting diodes with surface mounted devices and high-power types. The devices exhibit improved luminous efficiency, high colour rendering index and tunable colour temperature. In particular, the low-power surface mounted devices have a luminous efficiency of ~70 lm W-1, CRI of ~95 and tunable colour temperature of 4600-5600 K, which makes the CuInS2-based nanocrystals promising candidates for commercial applications.Here we explored the possibility of using CuInS2-based nanocrystals as colour converting materials for light-emitting applications. Using a mixture of red and green emissive CuInS2-based nanocrystals, we successfully fabricated high colour rendering white light-emitting diodes with surface mounted devices and high-power types. The devices exhibit improved luminous efficiency, high colour rendering index and tunable colour temperature. In particular, the low-power surface mounted devices have a luminous efficiency of ~70 lm W-1, CRI of ~95 and tunable colour temperature of 4600-5600 K, which makes the CuInS2-based nanocrystals promising candidates for commercial applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33613a

  6. Investigation of the size-property relationship in CuInS2 quantum dots.

    PubMed

    Akdas, T; Walter, J; Segets, D; Distaso, M; Winter, B; Birajdar, B; Spiecker, E; Peukert, W

    2015-11-21

    In this work we investigated fundamental properties of CuInS2 quantum dots in dependence of the particle size distribution (PSD). Size-selective precipitation (SSP) with acetone as poor solvent was performed as an adequate post-processing step. Our results provide deep insight into the correlation between particle size and various optical characteristics as bandgap energy, absorption and emission features and the broadness of the emission signal. These structure-property relationships are only achieved due to the unique combination of different analytical techniques. Our study reveals that the removal of 10 wt% of smallest particles from the feed results in an enhancement of the emission signal. This improvement is ascribed to a decreased quenching of the emission in larger particles. Our results reveal the impact of PSDs on the properties and the performance of an ensemble of multicomponent QDs and anticipate the high potential of controlling PSDs by well-developed post-processing. PMID:26469399

  7. Enhanced Optical Properties of Cu-In-S Quantum Dots with Zn Addition

    NASA Astrophysics Data System (ADS)

    Chi, Tran Thi Kim; Thuy, Ung Thi Dieu; Huyen, Tran Thi Thuong; Thuy, Nguyen Thi Minh; Le, Nguyen Thi; Liem, Nguyen Quang

    2016-05-01

    Quaternary Cu-In-Zn-S (CIZS) alloy quantum dots (QDs) have been chemically synthesized by a hydrothermal method at 120°C and heating-up method using diesel as a high-boiling-point reaction solvent at 220°C. The resulting CuInS2 (CIS) QDs with small Zn addition of 10% into the precursors possessed tetragonal structure, spherical morphology, and small size of 3 nm, as characterized by x-ray diffraction (XRD) analysis, Raman spectroscopy, and high-resolution transmission electron microscopy (HR-TEM). The absorption (Abs) and photoluminescence (PL) spectra of the CIZS alloy QDs both shifted to shorter wavelength (higher energy) in comparison with CIS QDs. The absorption edge and PL peak of the CIZS alloy QDs shifted to shorter wavelength, and the corresponding intensity increased with decreasing temperature in the range of 15 K to 300 K.

  8. Synthesis of cadmium-free quantum dots based on CuInS2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Novikova, Anastasiya S.; Goftman, Valentina V.; Goryacheva, Irina Y.

    2016-04-01

    We report an efficient synthesis Cd-free CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) using low toxic precursors and investigation of their optical properties. The nanocrystals have been obtained via reaction between the acetate salts of the corresponding metals and elemental sulfur in the presence of dodecanethiol in octadecene media at 220°C. Influence of various experimental variables, including temperature, time, ratio of Cu and In precursors were investigated. Thus, it was shown that the photoluminescence (PL) emission wavelength can be tuned by conveniently changing the stoichiometric ratio of the components. The plain CIS nanocrystals did show PL emission but with quite low PL quantum yield (QY). In order to increase the QY of QD luminescence by compensation of the surface defects of QDs cores, the process of covering with ZnS shells was done. During shelling process, increasing of QY and blue shift of emission maximum were detected.

  9. Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation

    SciTech Connect

    Gardner, Joseph S.; Shurdha, Endrit; Wang, Chong M.; Lau, Lisa D.; Rodriguez, Rene G.; Pak, Joshua J.

    2008-04-01

    The properties of CuInS2 semi-conductor nanoparticles make them attractive materials for use in next-generation photovoltaics. We have prepared CuInS2 nanoparticles from single source precursors via microwave irradiation. Microwave irradiation methods have allowed us to increase the efficiency of preparation of these materials by providing uniform heating and rapid reaction times. The synergistic effect of varying thiol capping ligand concentrations as well as reaction temperatures and times resulted in fine control of nanoparticle growth in the 3–5 nm size range. Investigation of the photophysical properties of the colloidal nanoparticles were performed using electronic absorption and luminescence emission spectroscopy. Qualitative nanoparticles sizes were determined from the photoluminescence (PLE) data and compared to HRTEM images.

  10. Synthesis of highly photo-stable CuInS2/ZnS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Ma, Jingwei; Liu, Mingming; Li, Zhichun; Li, Liang

    2015-09-01

    CuInS2 quantum dots are considered near-ideal fluorophores based on their bright emission and low toxicity. However, CuInS2 quantum dots are still bothered by their sensitivity to surface chemistry and chemical environment. Traditionally, the CIS QDs require an additional coating process to be encapsulated inside silica sphere or organic polymer. Up till now, few works have been made concerning improving the intrinsic stability of CIS QDs. In an effort to improve the stability of CuInS2 quantum dots, we came up with a new method by increasing the ZnS shell thickness. These QDs were characterized by photoluminescence, HRTEM, XRD and XRF analysis. We investigated the influence of ZnS shell thickness on the ambient stability of CIS/ZnS QDs. The results demonstrated that a thicker ZnS shell helped significantly improve both photostability and chemical stability of the QDs. Finally, the thick shell QDs were dispersed into transparent polymer matrix and fabricated into a LED device, which also gave much more stability compared with conventional QDs.

  11. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots

    PubMed Central

    Li, Chen; Chen, Wei; Wu, Dan; Quan, Dunhang; Zhou, Ziming; Hao, Junjie; Qin, Jing; Li, Yiwen; He, Zhubing; Wang, Kai

    2015-01-01

    Luminescent solar concentrator (LSC) incorporated with quantum dots (QDs) have been widely regarded as one of the most important development trends of cost-effective solar energy. In this study, for the first time we report a new QDs-LSC integrated with heavy metal free CuInS2/ZnS core/shell QDs with large Stokes shift and high optical efficiency. The as-prepared CuInS2/ZnS QDs possess advantages of high photoluminescence quantum yield of 81% and large Stocks shift more than 150 nm. The optical efficiency of CuInS2/ZnS QDs-LSC reaches as high as 26.5%. Moreover, the power conversion efficiency of the QDs-LSC-PV device reaches more than 3 folds to that of pure PMMA-PV device. Furthermore, the PV device is able to harvest 4.91 folds solar energy with the assistance of this new CuInS2/ZnS QDs-LSC for the same size c-Si PV cell. The results demonstrate that this new CuInS2/ZnS QDs-LSC provides a promising way for the high efficiency, nonhazardous and low cost solar energy. PMID:26642815

  12. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Li, Chen; Chen, Wei; Wu, Dan; Quan, Dunhang; Zhou, Ziming; Hao, Junjie; Qin, Jing; Li, Yiwen; He, Zhubing; Wang, Kai

    2015-12-01

    Luminescent solar concentrator (LSC) incorporated with quantum dots (QDs) have been widely regarded as one of the most important development trends of cost-effective solar energy. In this study, for the first time we report a new QDs-LSC integrated with heavy metal free CuInS2/ZnS core/shell QDs with large Stokes shift and high optical efficiency. The as-prepared CuInS2/ZnS QDs possess advantages of high photoluminescence quantum yield of 81% and large Stocks shift more than 150 nm. The optical efficiency of CuInS2/ZnS QDs-LSC reaches as high as 26.5%. Moreover, the power conversion efficiency of the QDs-LSC-PV device reaches more than 3 folds to that of pure PMMA-PV device. Furthermore, the PV device is able to harvest 4.91 folds solar energy with the assistance of this new CuInS2/ZnS QDs-LSC for the same size c-Si PV cell. The results demonstrate that this new CuInS2/ZnS QDs-LSC provides a promising way for the high efficiency, nonhazardous and low cost solar energy.

  13. Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots.

    PubMed

    Li, Chen; Chen, Wei; Wu, Dan; Quan, Dunhang; Zhou, Ziming; Hao, Junjie; Qin, Jing; Li, Yiwen; He, Zhubing; Wang, Kai

    2015-01-01

    Luminescent solar concentrator (LSC) incorporated with quantum dots (QDs) have been widely regarded as one of the most important development trends of cost-effective solar energy. In this study, for the first time we report a new QDs-LSC integrated with heavy metal free CuInS2/ZnS core/shell QDs with large Stokes shift and high optical efficiency. The as-prepared CuInS2/ZnS QDs possess advantages of high photoluminescence quantum yield of 81% and large Stocks shift more than 150 nm. The optical efficiency of CuInS2/ZnS QDs-LSC reaches as high as 26.5%. Moreover, the power conversion efficiency of the QDs-LSC-PV device reaches more than 3 folds to that of pure PMMA-PV device. Furthermore, the PV device is able to harvest 4.91 folds solar energy with the assistance of this new CuInS2/ZnS QDs-LSC for the same size c-Si PV cell. The results demonstrate that this new CuInS2/ZnS QDs-LSC provides a promising way for the high efficiency, nonhazardous and low cost solar energy. PMID:26642815

  14. Integration of CuInS2-based nanocrystals for high efficiency and high colour rendering white light-emitting diodes.

    PubMed

    Chen, Bingkun; Zhong, Haizheng; Wang, Meixu; Liu, Ruibin; Zou, Bingsuo

    2013-04-21

    Here we explored the possibility of using CuInS2-based nanocrystals as colour converting materials for light-emitting applications. Using a mixture of red and green emissive CuInS2-based nanocrystals, we successfully fabricated high colour rendering white light-emitting diodes with surface mounted devices and high-power types. The devices exhibit improved luminous efficiency, high colour rendering index and tunable colour temperature. In particular, the low-power surface mounted devices have a luminous efficiency of ~70 lm W(-1), CRI of ~95 and tunable colour temperature of 4600-5600 K, which makes the CuInS2-based nanocrystals promising candidates for commercial applications. PMID:23503592

  15. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots.

    PubMed

    Sun, Jianhui; Ikezawa, Michio; Wang, Xiuying; Jing, Pengtao; Li, Haibo; Zhao, Jialong; Masumoto, Yasuaki

    2015-05-14

    Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots (CIS QDs) was studied by means of femtosecond transient-absorption (TA) and nanosecond time-resolved photoluminescence (PL) spectroscopy. Under strong excitation, the TA dynamics in CIS QDs is well described by a simple rate equation including single-carrier trapping, free-to-bound recombination, and trap-assisted Auger recombination. Under weak excitation, on the other hand, the PL decays of the QDs are composed of a short-lived component caused by surface trapping and a long-lived one caused by free-to-bound recombination. It is found that the surface trapping accelerates markedly with decreasing QD size while the free-to-bound radiative recombination hardly depends on the QD size. Besides this, we observed both a decrease in the PL lifetimes and a dynamic spectral redshift, which are attributed to the surface trapping and the coexistent inhomogeneous broadening in CIS QDs. The spectral redshift becomes less pronounced in CIS/ZnS core/shell QDs because of the suppression of the fast nonradiative recombination caused by the passivation of the surface traps. These results give clear evidence that the free-to-bound model is appropriate for interpreting the optical properties of CIS QDs. PMID:25728207

  16. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  17. Photoluminescence of CuInS2 nanocrystals: effect of surface modification

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin

    2011-09-01

    We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb

  18. Investigations of CuInSe sub 2 thin films and contacts

    SciTech Connect

    Nicolet, M.A. )

    1991-10-01

    This report describes research into electrical contacts for copper indium diselenide (CuInSe{sub 2}) polycrystalline thin films used for solar cell applications. Molybdenum contacts have historically been the most promising for heterojunction solar cells. This program studied contact stability by investigating thermally induced bilayer reactions between molybdenum and copper, indium, and selenium. Because selenization is widely used to fabricate CuInSe{sub 2} thin films for photovoltaic cells, a second part of the program investigated how the morphologies, phases, and reactions of pre-selenization Cu-In structures are affected by the deposition process and heat treatments. 7 refs., 6 figs.

  19. Spectroscopic and electronic structure of the CuIn, AgIn, CuGa and AgGa diatomics

    NASA Astrophysics Data System (ADS)

    Oranges, T.; Musolino, V.; Toscano, M.; Russo, N.

    1990-06-01

    Electronic, geometrical and spectroscopic properties of heteronuclear CuIn, AgIn, CuGa and AgGa diatomics have been investigated employing LCGTO-MP-LSD method. For all the molecules the ground state has been found to be the1Σ one followed by3Π,1Π and3Σ low-lying electronic state respectively. The geometric and electronic parameters are in reasonable agreement with the available experimental data. The chemical bond in the molecules has a single bond character due to the valence bond couplings between the Cu 4 s (or Ag 5 s) and the Ga 4 p (or In 5 p) electrons.

  20. In-situ investigation of Cu-In-Se reactions by thin film calorimetry

    SciTech Connect

    Wolf, D.; Mueller, G.

    1998-12-31

    Studies of the reaction path during annealing of Cu-In-Se thin films for solar cell absorbers have been limited up to now to ex-situ analyses of the phase composition by X-Ray Diffraction (XRD) after processing by a specific temperature-time program. As an indirect method, the application of ex-situ XRD /is not sufficient for the determination of reaction temperatures and reaction times for setting up a general model of CIS-formation. The authors show in this paper that the use of a calorimetric method (Thin film Calorimetry, TFC) offers the advantage of a direct (in-situ) observation of thin film reactions. Special care is taken to use film thicknesses of practical interest for industrial application (1.5--3 {micro}m). In a first step the authors show results of binary reactions in the Cu-In, In-Se and Cu-Se systems. Their knowledge is necessary for understanding the processes involved in the ternary CIS-layers. It turned out that thin Cu-In and Cu-Se films react already at room temperature and behave as predicted by the bulk equilibrium phase diagrams during heating. In-Se thin films show prominent exothermic reactions starting with the melting of In. The first phase to be formed is generally In{sub 2}Se which is then converted to more Se-rich compounds. In ternary Cu-In-Se films (Cu/In = 1.00) the authors observe transitions of the Cu-Se-system which can be attributed to the decomposition of CuSe{sub 2} and CuSe. Consequences for the model of improved CIS-growth by a Cu-Se flux agent are discussed.

  1. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Kasick, Michael P.

    2004-01-01

    Solar energy is the most abundant form of energy in many terrestrial and extraterrestrial environments. Often in extraterrestrial environments sunlight is the only readily available form of energy. Thus the ability to efficiently harness solar energy is one of the ultimate goals in the design of space power systems. The essential component that converts solar energy into electrical energy in a solar energy based power system is the photovoltaic cell. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While silicon is a well understood technology and yields high efficiency, there are inherent disadvantages to using single crystal materials. The requirements of weight, large planar surfaces, and high manufacturing costs make large silicon cells prohibitively expensive for use in certain applications. Because of silicon s disadvantages, there is considerable ongoing research into alternative photovoltaic technologies. In particular, thin film photovoltaic technologies exhibit a promising future in space power systems. While they are less mature than silicon, the better radiation hardness, reduced weight, ease of manufacturing, low material cost, and the ability to use virtually any exposed surface as a substrate makes thin film technologies very attractive for space applications. The research group lead by Dr. Hepp has spent several years researching copper indium disulfide as an absorber material for use in thin film photovoltaic cells. While the group has succeeded in developing a single source precursor for CuInS2 as well as a unique method of aerosol assisted chemical vapor deposition, the resulting cells have not achieved adequate efficiencies. While efficiencies of 11 % have been demonstrated with CuInS2 based cells, the cells produced by this group have shown efficiencies of approximately 1 %. Thus, current research efforts are turning towards the analysis of the individual layers of these cells, as well as the junctions between

  2. Pulsed laser deposition of CuInS2 quantum dots on one-dimensional TiO2 nanorod arrays and their photoelectrochemical characteristics

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Chen, Wenyuan; Guo, Hongjian; Yu, Limin; Li, Bo; Jia, Junhong

    2016-06-01

    In the typical solution-based synthesis of colloidal quantum dots (QDs), it always resorts to some surface treatment, ligand exchange processing or post-synthesis processing, which might involve some toxic chemical regents injurious to the performance of QD sensitized solar cells. In this work, the CuInS2 QDs are deposited on the surface of one-dimensional TiO2 nanorod arrays by the pulsed laser deposition (PLD) technique. The CuInS2 QDs are coated on TiO2 nanorods without any ligand engineering, and the performance of the obtained CuInS2 QD sensitized solar cells is optimized by adjusting the laser energy. An energy conversion efficiency of 3.95% is achieved under one sun illumination (AM 1.5, 100 mW cm-2). The improved performance is attributed to enhanced absorption in the longer wavelength region, quick interfacial charge transfer and few chance of carrier recombination with holes for CuInS2 QD-sensitized solar cells. Moreover, the photovoltaic device exhibits high stability in air without any specific encapsulation. Thus, the PLD technique could be further applied for the fabrication of QDs or other absorption materials.

  3. A novel aptamer functionalized CuInS2 quantum dots probe for daunorubicin sensing and near infrared imaging of prostate cancer cells.

    PubMed

    Lin, Zihan; Ma, Qiang; Fei, Xiaofang; Zhang, Hao; Su, Xingguang

    2014-03-25

    In this paper, a novel daunorubicin (DNR)-loaded MUC1 aptamer-near infrared (NIR) CuInS2 quantum dot (DNR-MUC1-QDs) conjugates were developed, which can be used as a targeted cancer imaging and sensing system. After the NIR CuInS2 QDs conjugated with the MUC1 aptamer-(CGA)7, DNR can intercalate into the double-stranded CG sequence of the MUC1-QDs. The incorporation of multiple CG sequences within the stem of the aptamers may further increase the loading efficiency of DNR on these conjugates. DNR-MUC1-QDs can be used to target prostate cancer cells. We evaluated the capacity of MUC1-CuInS2 QDs for delivering DNR to cancer cells in vitro, and its binding affinity to MUC1-positive and MUC1-negative cells. This novel aptamer functionalized QDs bio-nano-system can not only deliver DNR to the targeted prostate cancer cells, but also can sense DNR by the change of photoluminescence intensity of CuInS2 QDs, which concurrently images the cancer cells. The quenched fluorescence intensity of MUC1-QDs was proportional to the concentration of DNR in the concentration ranges of 33-88 nmol L(-1). The detection limit (LOD) for DNR was 19 nmol L(-1). We demonstrate the specificity and sensitivity of this DNR-MUC1-QDs probe as a cancer cell imaging, therapy and sensing system in vitro. PMID:24626403

  4. Preparation and characterization of CuInS2 absorber layers by sol-gel method for solar cell applications

    NASA Astrophysics Data System (ADS)

    Amerioun, M. H.; Ghazi, M. E.; Izadifard, M.; Bahramian, B.

    2016-04-01

    CuInSe2 , CuInS2 ( CIS2 and CuInGaS2 alloys and their compounds with band gaps between 1.05 and 1.7eV are absorbance materials based on chalcopyrite, in which, because of their suitable direct band gap, high absorbance coefficient and short carrier diffusion are used as absorbance layers in solar cells. In this work, the effects of decrease in p H and thickness variation on characteristics of the CIS2 absorber layers, grown by spin coating on glass substrates, are investigated. Furthermore by using thiourea as a sulphur source in solvent, the sulfurization of layers was done easier than other sulfurization methods. Due to the difficulty in dissolving thiourea in the considered solvent that leads to a fast deposition during the dissolving process, precise conditions are employed in order to prepare the solution. In fact, this procedure can facilitate the sulfurization process of CuIn layers. The results obtained from this investigation indicate reductions in absorbance and band gap in the visible region of the spectrum as a result of decrease in p H. Finally, conductivity of layers is studied by the current vs. voltage curve that represents reduction of electrical resistance with decrease and increase in p H and thickness, respectively.

  5. A High-Yield Synthesis of Chalcopyrite CuIn S 2 Nanoparticles with Exceptional Size Control

    DOE PAGESBeta

    Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; Margulieux, Kelsey R.; Westover, Richard D.; Lau, Lisa; Long, Gary; Bajracharya, Cyril; Wang, Chongmin; Thurber, Aaron; et al

    2009-01-01

    We repormore » t high-yield and efficient size-controlled syntheses of Chalcopyrite CuIn S 2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100 ° C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100 ° C to 200 ° C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1 H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuIn S 2 nanoparticles.« less

  6. Three-dimensional morphology of CuInS2:P3HT hybrid blends for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Krause, Christopher; Scheunemann, Dorothea; Parisi, Jürgen; Borchert, Holger

    2015-11-01

    Despite potential advantages, the performance of hybrid solar cells with colloidal nanocrystals remains low compared to pure organic solar cells, in particular, when Cd- and Pb-free nanocrystals are employed. To understand this discrepancy, we analyzed possible limiting factors of the performance of hybrid solar cells with CuInS2 nanoparticles and the polymer poly(3-hexylthiophene) (P3HT). Optimizing the thickness of the active layer indicated that charge transport limits the performance of the solar cells. Since charge transport is among others influenced by the morphology of the bulk heterojunction layer, we performed a detailed analysis of the blend morphology. Therefore, we used electron tomography which provides three-dimensional information on the interpenetrating network formed by the hybrid CuInS2:P3HT system. Using statistical methods, we analyzed the distribution of the nanoparticles inside the polymer matrix and the structure of the percolation paths. We found that the morphology appears well suited for application in hybrid solar cells, meaning that other factors must be the bottleneck. Therefore, we investigated in a second step the influence of a post-deposition ligand exchange with acetic acid. This strategy resulted in a strong relative improvement of the solar cell performance, although absolute performance parameters remain low in comparison to hybrid solar cells with colloidal cadmium or lead chalcogenide nanocrystals.

  7. Soluble precursors for CuInSe2, CuIn(1-x)Ga(x)Se2, and Cu2ZnSn(S,Se)4 based on colloidal nanocrystals and molecular metal chalcogenide surface ligands.

    PubMed

    Jiang, Chengyang; Lee, Jong-Soo; Talapin, Dmitri V

    2012-03-21

    We report a new platform for design of soluble precursors for CuInSe(2) (CIS), Cu(In(1-x)Ga(x))Se(2) (CIGS), and Cu(2)ZnSn(S,Se)(4) (CZTS) phases for thin-film potovoltaics. To form these complex phases, we used colloidal nanocrystals (NCs) with metal chalcogenide complexes (MCCs) as surface ligands. The MCC ligands both provided colloidal stability and represented essential components of target phase. To obtain soluble precursors for CuInSe(2), we used Cu(2-x)Se NCs capped with In(2)Se(4)(2-) MCC surface ligands or CuInSe(2) NCs capped with {In(2)Cu(2)Se(4)S(3)}(3-) MCCs. A mixture of Cu(2-x)Se and ZnS NCs, both capped with Sn(2)S(6)(4-) or Sn(2)Se(6)(4-) ligands was used for solution deposition of CZTS films. Upon thermal annealing, the inorganic ligands reacted with NC cores forming well-crystallized pure ternary and quaternary phases. Solution-processed CIS and CZTS films featured large grain size and high phase purity, confirming the prospects of this approach for practical applications. PMID:22329720

  8. Investigations of CuInSe2 Thin Films and Contacts: Annual Subcontract Report, 1 January 1990 - 28 February 1991

    SciTech Connect

    Nicolet, M. A.

    1991-10-01

    This report describes research into electrical contacts for copper indium diselenide (CulnSe2) polycrystalline thin films used for solar cell applications. Molybdenum contacts have historically been the most promising for heterojunction solar cells. This program studied contact stability by investigating thermally induced bilayer reactions between molybdenum and copper, indium, and selenium. Because selenization is widely used to fabricate CulnSe2 thin films for photovoltaic cells, a second part of the program investigated how the morphologies, phases, and reactions of pre-selenization Cu-In structures are affected by the deposition process and heat treatments.

  9. Highly stable CuInS2@ZnS:Al core@shell quantum dots: the role of aluminium self-passivation.

    PubMed

    Rao, Pinhua; Yao, Wei; Li, Zhichun; Kong, Long; Zhang, Wenqi; Li, Liang

    2015-05-25

    A simple approach was introduced to enhance the photostability of CuInS2@ZnS core@shell quantum dots (QDs) by doping aluminium into the ZnS shell. Aluminium in the as-prepared QDs was oxidized to Al2O3, which formed a passivation oxide layer that effectively prevents photo-degradation of QDs during long-term light irradiation. PMID:25913396

  10. Influence of copper to indium atomic ratio on the properties of Cu-In-Te based thin-film solar cells prepared by low-temperature co-evaporation

    SciTech Connect

    Mise, Takahiro; Nakada, Tokio

    2012-09-15

    The influence of copper to indium atomic ratio (Cu/In) on the properties of Cu-In-Te based thin films and solar cells was investigated. The films (Cu/In = 0.38-1.17) were grown on both bare and Mo-coated soda-lime glass substrates at 250 Degree-Sign C by single-step co-evaporation using a molecular beam epitaxy system. Highly (112)-oriented CuInTe{sub 2} films were obtained at Cu/In ratios of 0.84-0.99. However, stoichiometric and Cu-rich films showed a poor film structure with high surface roughness. The films consist of polyhedron-shaped grains, which are related to the coexistence of a Cu{sub 2-x}Te phase, and significant evidence for the coexistence of the Cu{sub 2-x}Te phase in the stoichiometric and Cu-rich films is presented. KCN treatment was performed for the films in order to remove the Cu{sub 2-x}Te phase. The stoichiometric CuInTe{sub 2} thin films exhibited a high mobility above 50 cm{sup 2}/V s at room temperature after the KCN treatment. A preliminary solar cell fabricated using a 1.4-{mu}m-thick Cu-poor CuInTe{sub 2} thin film (Cu/In = 0.84, E{sub g} = 0.988 eV) yielded a total-area efficiency of 2.10%. The photovoltaic performance of the cell was improved after long-term ambient aging in dark conditions.

  11. Advances in thin-film solar cells for lightweight space photovoltaic power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Flood, Dennis J.

    1989-01-01

    The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuIn Se2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuIn Se2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

  12. Totally solution-processed CuInS2 solar cells based on chloride inks: reduced metastable phases and improved current density

    NASA Astrophysics Data System (ADS)

    Dehghani, Mehdi; Behjat, Abbas; Tajabadi, Fariba; Taghavinia, Nima

    2015-03-01

    Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. These Cd-free devices are structured by FTO/TiO2/In2S3/CIS/carbon, where TiO2 and In2S3 are deposited by spray pyrolysis, and a CIS film is deposited using spin-coating followed by annealing at 250 °C. The pasted carbon layer is utilized as the anode. No further sulfurization or selenization is employed. The Cu/In ratio in the ink is found as a critical factor affecting the morphology and crystallinity of the film as well as the photovoltaic performance of the device. An optimum Cu/In = 1.05 results in large-grain films with sharp diffraction peaks and, subsequently, optimal series resistance and shunt conductance. It is also found that the chloride-based ink results in CIS films with considerably reduced metastable phases, compared to the conventional acetate-based inks. A current density of 23.6 mA cm-2 is obtained for the best devices, leading to a conversion efficiency of 4.1%.

  13. Temporal Distributions of Optical Energy Transitions and Photoluminescence Quenching in CuInS2 with ZnS Capping and Alloy

    NASA Astrophysics Data System (ADS)

    Rice, Quinton; Raut, Sangram; Kim, Wan-Joong; Rich, Ryan; Fudala, Rafal; Abdel-Fattah, Mahmoud; Tabibi, Bagher; Gryczynski, Ignacy; Gryczynski, Zygmunt; Jung, Sungsoo; Seo, Jaetae

    2014-05-01

    The semiconductor nanocrystals of CuInS2 are of great interest for optoelectronic and biomedical applications, because of no intrinsic toxicity related to the heavy metals of cadmium or lead chalcogenide nanomaterials, large tunability, and high color purity. The photonic energy evolution of CuInS2 quantum dots includes surface-trapped state recombination and defect-related donor-acceptor transition. The interface defect states of CuInS2/ZnS and quantum confinement modification of ZnCuInS2 adjust the temporal evolution of photonic transitions. The temporal evolution of shorter lifetime at surface-trapped states or interface states and longer lifetime at intrinsic defect-related states are widely distributed with relative distinct probabilities through the entire PL spectral region. The temperature-resolved PL reveals that the surface or interface-trapped electrons are thermally active even at low temperatures, but the electrons at intrinsic defect-related states are relatively stable. Acknowledgement: The work at HU is supported by NSF HRD-1137747 and ARO W911NF-11-1-0177.

  14. Synthesis of Hydrophilic CuInS2/ZnS Quantum Dots with Different Polymeric Shells and Study of Their Cytotoxicity and Hemocompatibility.

    PubMed

    Speranskaya, Elena S; Sevrin, Chantal; De Saeger, Sarah; Hens, Zeger; Goryacheva, Irina Yu; Grandfils, Christian

    2016-03-30

    In this work, there is a detailed description of the whole process of biocompatible CIS/ZnS QDs production. Special attention was paid to the stability of QDs against photooxidation. It was shown that Cu/In ratio greatly affected not only nanocrystals PLQYs but photostability as well. CIS/ZnS QDs with Cu/In = 1:4 ratio showed high photostability under UV illumination both in toluene and aqueous solutions. Meanwhile, photoluminescence of CIS/ZnS QDs with Cu/In = 1:1 ratio was completely quenched after several hours under UV illumination, though their initial QY was as high as 40% with peak maximum at 740 nm. QDs were transferred to water by polymer encapsulation and were subsequently modified with polyethers Jeffamines, cheap analogues of PEG-derivatives. Three types of hydrophilic QDs differing in size, PEG content, and surface charge were obtained for further investigation and comparison of their cytotoxicity and hemocompatibility. It was shown that both leucocytes size distribution and coagulation activation change after introduction of polyethers into QDs polymeric shell, while red blood cells and platelets size distribution as well as hemolysis rate did not show any different results among different QDs and the polymer itself. All three types of QDs showed only slight cytotoxicity. Confocal microscopy proves penetration of hydrophilic CIS/ZnS QDs inside cells, so the low QDs cytotoxocity cannot be explained by low cellular uptake of the QDs and indicated low QDs toxicity in general. PMID:26963807

  15. Development of CIGS2 Thin Films on Ultralightweight Flexible Large Area Foil Sunstrates

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    The development of thin film solar cells is aimed at reducing the costs for photovoltaic systems. Use of thin film technology and thin foil substrate such as 5-mil thick stainless steel foil or 1-mil thick Ti would result in considerable costs savings. Another important aspect is manufacturing cost. Current single crystal technology for space power can cost more than $ 300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn1-xGaxS2 (CIGS2), CuIn(1-x)Ga(x)Se(2-y)S(y) (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite for example, the array manufacturing cost alone may exceed $ 2 million. Moving to thin film technology could reduce this expense to less than $ 500K. Earlier publications have demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6 in x 4 in) substrates. This paper presents the developmental study of achieving stress free Mo coating; uniform coatings of Mo back contact and metallic precursors. The paper also presents the development of sol gel process, refurbishment of selenization/sulfurization furnace, chemical bath deposition (CBD) for n-type CdS and scrubber for detoxification of H2S and H2Se gases.

  16. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  17. Structural, optical, and electrical properties of pulsed laser deposition CIGSS thin films

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Bin; Kang, Y. Zhen-Feng; Fan, Yue; Xiao, Ling-ling; Bo, Qing-Rui; Ding, Tie-Zhu

    2015-12-01

    High-quality CuIn0.75Ga0.25(Se0.75S0.25)2 (CIGSS) thin films were synthesized on the soda-lime glass (SLG) substrates by pulsed laser deposition. The structural and optical properties of CIGSS thin films were studied by experiments and theoretical calculations. XRD result reveals that the films are of chalcopyrite structure. The experiments and theory show that CIGSS is a semiconductor with a direct band gap. The direct band gap energy of the deposited CIGSS thin films are in the solar energy range. The band structure and density of states of the CIGSS crystals were studied by the first principles density functional theory. The experimental data and theoretical data have demonstrated good agreement.

  18. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius

    2003-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  19. CuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.-C.; Banger, Kulbinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2004-01-01

    Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) prepared in-house. Films with either (112) or (204/220) preferred orientation were obtained, and compositional analysis showed that (112)-oriented films contained more copper than (204/220)-oriented films. Using X-ray diffraction, the signature of chalcopyrite structure was often confirmed for (112)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always accompanied by a secondary phase, which was identified as an unknown In-rich compound from the results of post-growth annealing, etching experiments, and Raman spectroscopic data. By increasing Cu to In ratio in the film, (112)-oriented films were obtained with a maximum grain size of about 0.5 micrometers, and their X-ray diffractions did not show any observable signature of the In secondary phase. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 omega cm and 30 omega cm, and an optical band gap of 1.46eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.

  20. Bright, stable, and water-soluble CuInS2/ZnS nanocrystals passivated by cetyltrimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Lee, Jun; Han, Chang-Soo

    2015-03-01

    We report a highly bright and stable aqueous dispersion of CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) using surfactant-assisted microemulsion and cold treatment. CIS/ZnS NCs were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. To stabilize the optical properties of hydrophobic CIS/ZnS NCs, cetyltrimethylammonium bromide (CTAB) was chosen as a matrix for aqueous phase transfer. As the result, a high quantum yield (QY) of 56.0% and excellent photostability were acquired in aqueous media. For removing excessive surfactants, cold treatment (4°C) of the CTAB-water solution was adopted to prevent further agglomeration of CIS/ZnS NCs, which could secure high stability over 6 months (less 2% reduction in QY). The optical features and structure of the obtained CTAB stabilized CIS/ZnS (CTAB-CIS/ZnS) NCs have been characterized by UV-vis and photoluminescence (PL) spectroscopies, XRD, XPS, EDX, and TEM. The high stability and PL of water soluble CTAB-CIS/ZnS NCs suggest their potential in nanoelectronics and bioapplications.

  1. Synthesis of magnetofluorescence Gd-doped CuInS2/ZnS quantum dots with enhanced longitudinal relaxivity.

    PubMed

    Chang, Jia-Yaw; Chen, Guan-Rong; Li, Jyun-Dong

    2016-03-01

    In this paper, we describe the rapid microwave-assisted synthesis of Gd(3+)-doped CuInS2 (Gd:CIS) quaternary quantum dots (q-dots), which integrate the functions of optical fluorescence and magnetic resonance imaging. Through passivation of ZnS shells around Gd:CIS cores, high-quality and robust photostable Gd:CIS/ZnS core/shell q-dots with enhanced quantum yields were obtained. The intensity and peak-to-peak linewidth of the electron spin resonance (EPR) signal were found to vary depending on the Gd(3+) concentration of Gd:CIS/ZnS. Benefiting from the incorporation of paramagnetic Gd(3+) ions, the formed q-dots exhibited well-resolved and strong signals of electron paramagnetic resonance and provided significant contrast enhancement in T1-weighted images owing to the remarkably high longitudinal relaxivity (r1 = 55.90 mM(-1) s(-1)) and low r2/r1 ratio (1.42), which are significantly higher than those of commercially available T1 contrast agents. We expect that this facile one-pot synthetic strategy can be extended to the preparation of other Cu-based sulfide quaternary nanomaterials. PMID:26887889

  2. High efficiency copper ternary thin film solar cells

    SciTech Connect

    Basol, B.M.; Kapur, V.K. )

    1991-04-01

    This report describes work to develop a high efficiency, thin film CuInSe{sub 2} solar cell using a potentially low-cost process. The technique used in this development program is a two-stage process. The two-stage process involves depositing the metallic elements of the CuInSe{sub 2} compound (i.e., Cu and In) on a substrate in the form of stacked layers, and then selenizing this stacked metallic film in an atmosphere containing Se. Early results showed that the electrodeposition/selenization technique could yield CuInSe{sub 2} films with good electrical and optical properties on small-area substrates. This report concentrates on the later half of the research effort; this portion was directed toward developing a two-stage process using evaporated Cu-In layers. The selenization technique has the potential of yielding solar cells with efficiencies in excess of 15 percent. 7 refs., 12 figs.

  3. Inkjet Printed Metallizations for Cu(In1-xGax)Se2 Photovoltaic Cells

    SciTech Connect

    Hersh, P. A.; Curtis, C. J.; van Hest, M. F. A. M.; Kreuder, J. J.; Pasquarelli, R.; Miednaer, A.; Ginley, D. S.

    2011-12-01

    This study reports the inkjet printing of Ag front contacts on Aluminum doped Zinc Oxide (AZO)/intrinsic Zinc Oxide (i-ZnO)/CdS/Cu(In{sub 1-x}Ga{sub x})Se{sub 2} (CIGS)/Mo thin film photovoltaic cells. The printed Ag contacts are being developed to replace the currently employed evaporated Ni/Al bi-layer contacts. Inkjet deposition conditions were optimized to reduce line resistivity and reduce contact resistance to the Al:ZnO layer. Ag lines printed at a substrate temperature of 200 C showed a line resistivity of 2.06 {mu}{Omega} {center_dot} cm and a contact resistance to Al:ZnO of 8.2 {+-} 0.2 m{Omega} {center_dot} cm{sup 2} compared to 6.93 {+-} 0.3 m{Omega} {center_dot} cm{sup 2} for thermally evaporated contacts. These deposition conditions were used to deposit front contacts onto high quality CIGS thin film photovoltaic cells. The heating required to print the Ag contacts caused the performance to degrade compared to similar devices with evaporated Ni/Al contacts that were not heated. Devices with inkjet printed contacts showed 11.4% conversion efficiency compared to 14.8% with evaporated contacts. Strategies to minimize heating, which is detrimental for efficiency, during inkjet printing are proposed.

  4. Optical constants of Cu(In, Ga)Se{sub 2} for arbitrary Cu and Ga compositions

    SciTech Connect

    Minoura, Shota; Kodera, Keita; Nakane, Akihiro; Fujiwara, Hiroyuki; Maekawa, Takuji; Niki, Shigeru

    2015-05-21

    The optical constants of Cu(In, Ga)Se{sub 2} (CIGS)-based polycrystalline layers with different Cu and Ga compositions are parameterized completely up to a photon energy of 6.5 eV assuming several Tauc-Lorentz transition peaks. Based on the modeled optical constants, we establish the calculation procedure for the CIGS optical constants in a two-dimensional compositional space of (Cu, Ga) by taking the composition-induced shift of the critical point energies into account. In particular, we find that the variation of the CIGS optical constants with the Cu composition can be modeled quite simply by a spectral-averaging method in which the dielectric function of the target Cu composition is estimated as a weighted average of the dielectric functions with higher and lower Cu compositions. To express the effect of the Ga composition, on the other hand, an energy shift model reported earlier is adopted. Our model is appropriate for a wide variety of CIGS-based materials having different Cu and Ga compositions, although the modeling error increases slightly at lower Cu compositions [Cu/(In + Ga) < 0.69]. From our model, the dielectric function, refractive index, extinction coefficient, and absorption coefficient for the arbitrary CIGS composition can readily be obtained. The optical database developed in this study is applied further for spectroscopic ellipsometry analyses of CIGS layers fabricated by single and multi-stage coevaporation processes. We demonstrate that the compositional and structural characterizations of the CIGS-based layers can be performed from established analysis methods.

  5. Ternary Precursors for Depositing I-III-VI2 Thin Films for Solar Cells via Spray CVD

    NASA Technical Reports Server (NTRS)

    Banger, K. K.; Hollingsworth, J. A.; Jin, M. H.-C.; Harris, J. D.; Duraj, S. A.; Smith, M.; Scheiman, D.; Bohannan, E. W.; Switzer, J. A.; Buhro, W. E.

    2002-01-01

    The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power (W/kg). Thin-film fabrication studies demonstrate that ternary single source precursors (SSP's) can be used in either a hot or cold-wall spray chemical vapour deposition (CVD) reactor, for depositing CuInS2, CuGaS2, and CuGaInS2 at reduced temperatures (400 to 450 C), which display good electrical and optical properties suitable for photovoltaic (PV) devices. X-ray diffraction studies, energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM) confirmed the formation of the single phase CIS, CGS, CIGS thin-films on various substrates at reduced temperatures.

  6. Singlet-Triplet Splittings in the Luminescent Excited States of Colloidal Cu(+):CdSe, Cu(+):InP, and CuInS2 Nanocrystals: Charge-Transfer Configurations and Self-Trapped Excitons.

    PubMed

    Knowles, Kathryn E; Nelson, Heidi D; Kilburn, Troy B; Gamelin, Daniel R

    2015-10-14

    The electronic and magnetic properties of the luminescent excited states of colloidal Cu(+):CdSe, Cu(+):InP, and CuInS2 nanocrystals were investigated using variable-temperature photoluminescence (PL) and magnetic circularly polarized luminescence (MCPL) spectroscopies. The nanocrystal electronic structures were also investigated by absorption and magnetic circular dichroism (MCD) spectroscopies. By every spectroscopic measure, the luminescent excited states of all three materials are essentially indistinguishable. All three materials show very similar broad PL line widths and large Stokes shifts. All three materials also show similar temperature dependence of their PL lifetimes and MCPL polarization ratios. Analysis shows that this temperature dependence reflects Boltzmann population distributions between luminescent singlet and triplet excited states with average singlet-triplet splittings of ∼1 meV in each material. These similarities lead to the conclusion that the PL mechanism in CuInS2 NCs is fundamentally different from that of bulk CuInS2 and instead is the same as that in Cu(+)-doped NCs, which are known to luminesce via charge-transfer recombination of conduction-band electrons with copper-localized holes. The luminescence of CuInS2 nanocrystals is explained well by invoking exciton self-trapping, in which delocalized photogenerated holes contract in response to strong vibronic coupling at lattice copper sites to form a luminescent excited state that is essentially identical to that of the Cu(+)-doped semiconductor nanocrystals. PMID:26389577

  7. Nanocrystalline CuInSSe thin films by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Shrotriya, Vipin; Rajaram, P.

    2016-05-01

    Crystalline CuInSSe thin films have been deposited on glass substrate by chemical bath deposition technique. The CuCl2, InCl3, thiourea and SeO2 were used as source materials for the Cu2+, In3+, S2- and Se2- ions and the Cu/In ratio was kept at 1.0. EDC was used as a complexing agent. The XRD, Scanning Electron Microscope (SEM), Energy Dispersive Analysis of X-Ray (EDAX) and Optical transmission studies were used for structural analysis, surface morphology, elemental analysis and optical band gap, of the grown thin films respectively. The deposition parameters such as pH, deposition temperature and deposition time were optimized.

  8. Optimizing the synthesis of red- and near-infrared CuInS2 and AgInS2 semiconductor nanocrystals for bioimaging.

    PubMed

    Liu, Liwei; Hu, Rui; Law, Wing-Chueng; Roy, Indrajit; Zhu, Jing; Ye, Ling; Hu, Siyi; Zhang, Xihe; Yong, Ken-Tye

    2013-10-21

    This work reports the study of optimization of the reaction parameters on the synthesis of high quality CuInS2 and AgInS2 nanocrystals for bioimaging applications. The concentration of reaction precursors (e.g. Ag, Cu, In and S) plays a key role in determining the emission profile of these ternary quantum dots (QDs). By carefully varying the precursor compositions, the emission of QD can be tuned from red to near infrared (NIR) region. Taking the advantages of NIR emission, which possesses minimal absorption in biological tissues, we have also prepared water-dispersible CuInS2/ZnS and AgInS2/ZnS nanocrystals and demonstrated the high biocompatibility for both deep tissue penetration and tumor targeting. The QDs were stabilized in Pluronic F127 block copolymer micelles, offering us optically and colloidally stable contrast agents for in vitro and in vivo imaging. Two-photon excitation of QD has also been demonstrated, accomplishing a NIR-to-NIR transaction. This study devotes the key steps in promoting the use of ternary QDs as low-toxic, photostable, and cadmium-free semiconductor nanocrystal formulation for multiple imaging applications. PMID:23967444

  9. Fabrication of MnFe2O4-CuInS2/ZnS Magnetofluorescent Nanocomposites and Their Characterization

    PubMed Central

    Demillo, Violeta G.; Liao, Mingxia; Zhu, Xiaoshan; Redelman, Doug; Publicover, Nelson G.; Hunter, Kenneth W.

    2014-01-01

    Magnetofluorescent nanocomposites (MFNCs) providing a single nanoscale platform with multimodal properties are gaining momentum in biological manipulation, biomedical imaging and therapy. In this work, we report the preparation of MFNCs integrating MnFe2O4 magnetic nanoparticles (MNPs), CuInS2/ZnS quantum dots (QDs) and poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-PLGA) in a tetrahydrofuran (THF)/water solvent system. Through sonication and quick solvent displacement, multiple nanoparticles of each type are co-encapsulated within the hydrophobic core of PEG-PLGA micelles. The developed fabrication process is simple and fast. Moreover, due to the low toxicity of CuInS2/ZnS QDs, the fabrication process is environmentally benign. The fabricated MFNCs were further characterized regarding their fundamental physical, chemical and biological properties. Results reveal that the MFNCs possess high (Mn + Fe) recovery rates, and the optical properties and magnetic relaxivity of the MFNCs are sensitive to the MNP:QD mass ratios in the fabrication. Furthermore, the MFNCs present excellent stability in aqueous solutions, minimal cytotoxicity, and capability for bioconjugation. This study opens an avenue for the MFNCs to be employed in broad biological or biomedical applications. PMID:25484523

  10. Thin Film Solar Cells: Organic, Inorganic and Hybrid

    NASA Technical Reports Server (NTRS)

    Dankovich, John

    2004-01-01

    Thin film solar cells are an important developing resource for hundreds of applications including space travel. In addition to being more cost effective than traditional single crystal silicon cells, thin film multi-crystaline cells are plastic and light weight. The plasticity of the cells allows for whole solar panels to be rolled out from reams. Organic layers are being investigated in order to increase the efficiency of the cells to create an organic / inorganic hybrid cell. The main focus of the group is a thin film inorganic cell made with the absorber CuInS2. So far the group has been successful in creating the layer from a single-source precursor. They also use a unique method of film deposition called chemical vapor deposition for this. The general makeup of the cell is a molybdenum back contact with the CuInS2 layer, then CdS, ZnO and aluminum top contacts. While working cells have been produced, the efficiency so far has been low. Along with quantum dot fabrication the side project of this that is currently being studied is adding a polymer layer to increase efficiency. The polymer that we are using is P3OT (Poly(3-octylthiopene-2,5-diyll), retroregular). Before (and if) it is added to the cell, it must be understood in itself. To do this simple diodes are being constructed to begin to look at its behavior. The P3OT is spin coated onto indium tin oxide and silver or aluminum contacts are added. This method is being studied in order to find the optimal thickness of the layer as well as other important considerations that may later affect the composition of the finished solar cell. Because the sun is the most abundant renewable, energy source that we have, it is important to learn how to harness that energy and begin to move away from our other depleted non-renewable energy sources. While traditional silicon cells currently create electricity at relatively high efficiencies, they have drawbacks such as weight and rigidness that make them unattractive

  11. Large magnetoresistance in Heusler-alloy-based epitaxial magnetic junctions with semiconducting Cu(In0.8Ga0.2)Se2 spacer

    NASA Astrophysics Data System (ADS)

    Kasai, S.; Takahashi, Y. K.; Cheng, P.-H.; Ikhtiar, Ohkubo, T.; Kondou, K.; Otani, Y.; Mitani, S.; Hono, K.

    2016-07-01

    We investigated the structure and magneto-transport properties of magnetic junctions using a Co2Fe(Ga0.5Ge0.5) Heusler alloy as ferromagnetic electrodes and a Cu(In0.8Ga0.2)Se2 (CIGS) semiconductor as spacers. Owing to the semiconducting nature of the CIGS spacer, large magnetoresistance (MR) ratios of 40% at room temperature and 100% at 8 K were obtained for low resistance-area product (RA) values between 0.3 and 3 Ω μm2. Transmission electron microscopy observations confirmed the fully epitaxial growth of the chalcopyrite CIGS layer, and the temperature dependence of RA indicated that the large MR was due to spin dependent tunneling.

  12. Nanocrystalline Chalcopyrite Materials (CuInS2 and CuInSe2) via Low-Temperature Pyrolysis of Molecular Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2003-01-01

    Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.

  13. The Effect of Film Composition on the Texture and Grain Size of CuInS2 Prepared by Spray Pyrolysis

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.-C.; Banger, Kulbinder K.; Harris, Jerry D.; Hepp, Aloysius F.

    2003-01-01

    CuInS2 was deposited by spray pyrolysis using single-source precursors synthesized in-house. Films with either (112) or (204/220) preferred orientation always showed Cu-rich and In-rich composition respectively. The In-rich (204/220)-oriented films always contained a secondary phase evaluated as an In-rich compound, and the hindrance of (112)-oriented grain growth was confirmed by glancing angle X-ray diffraction. In conclusion, only the Cu-rich (112)-oriented films with dense columnar grains can be prepared without the secondary In-rich compound. The effect of extra Cu on the grain size and the solar cell results will be also presented.

  14. Synthesis and Nanostructures of Metal Selenide Precursors for Cu(In,Ga)Se2 Thin-Film Solar Cells.

    PubMed

    Cha, Ji-Hyun; Noh, Se Jin; Jung, Duk-Young

    2015-07-20

    A nanoink solution-based process was developed as a low-costing method for the fabrication of Cu(In,Ga)Se2 (CIGSe) thin-film photovoltaic cells. The sonochemical synthesis of CIGSe nanocrystals of the nanoink through step-by-step mixing of the reactants was investigated. To achieve the ideal stoichiometry of Cu(In0.7 Ga0.3 )Se2 to tune the bandgap and to fabricate high-efficiency photovoltaic cells, the synthetic parameters, the concentration of hydrazine, and the amount used of the gallium precursor were investigated. As the hydrazine concentration increased, gallium loss was observed in the CIGSe product. The gallium content in the reactant mixture strongly affected the metal stoichiometry of the prepared CIGSe nanocrystals. The nanoink solution based fabrication of thin-film photovoltaic cells was also explored, and the resulting device showed a conversion efficiency of 5.17 %. PMID:25959012

  15. Near-Infrared Emitting CuInSe2/CuInS2 Dot Core/Rod Shell Heteronanorods by Sequential Cation Exchange

    PubMed Central

    2015-01-01

    The direct synthesis of heteronanocrystals (HNCs) combining different ternary semiconductors is challenging and has not yet been successful. Here, we report a sequential topotactic cation exchange (CE) pathway that yields CuInSe2/CuInS2 dot core/rod shell nanorods with near-infrared luminescence. In our approach, the Cu+ extraction rate is coupled to the In3+ incorporation rate by the use of a stoichiometric trioctylphosphine-InCl3 complex, which fulfills the roles of both In-source and Cu-extracting agent. In this way, Cu+ ions can be extracted by trioctylphosphine ligands only when the In–P bond is broken. This results in readily available In3+ ions at the same surface site from which the Cu+ is extracted, making the process a direct place exchange reaction and shifting the overall energy balance in favor of the CE. Consequently, controlled cation exchange can occur even in large and anisotropic heterostructured nanocrystals with preservation of the size, shape, and heterostructuring of the template NCs into the product NCs. The cation exchange is self-limited, stopping when the ternary core/shell CuInSe2/CuInS2 composition is reached. The method is very versatile, successfully yielding a variety of luminescent CuInX2 (X = S, Se, and Te) quantum dots, nanorods, and HNCs, by using Cd-chalcogenide NCs and HNCs as templates. The approach reported here thus opens up routes toward materials with unprecedented properties, which would otherwise remain inaccessible. PMID:26449673

  16. Nd:YAG laser ablation characteristics of thin CIGS solar cell films

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kim, C. K.; In, J. H.; Kim, D. S.; Ham, H. J.; Jeong, S. H.

    2013-12-01

    This work reports that the ablation characteristics of thin CuIn1- x Ga x Se2 (CIGS) solar cell film differ significantly with elemental composition and laser pulse energy. From in situ shadowgraphs measured during Nd:YAG laser (1,064 nm) irradiation of CIGS films and crater morphologies, it was found that strong surface evaporation is dominant for low Ga concentration films of which band gap is well below the photon energy. As the band gap of CIGS film becomes close to or over the laser photon energy due to increased Ga content, surface absorption diminishes and at low laser energy, laser heating of the film plays an important role. It is demonstrated that for the CIGS films with Ga/(Ga + In) ratio being approximately over 0.2, the laser irradiation leads to solid phase removal of the film due to thermomechanical fracture at low laser energy but to ablative evaporation at elevated energy.

  17. Thin-Film Solar Cells on Metal Foil Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved

  18. Rapid composition analysis of compound semiconductor thin film solar cell by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kim, C. K.; In, J. H.; Jeong, S. H.

    2014-03-01

    The characteristics of laser-induced breakdown spectroscopy (LIBS) such as short measurement time and no sample preparation provide clear advantages over other analytical techniques for rapid elemental analysis at manufacturing sites where the composition of products need to be determined in real-time for process monitoring or quality control. Thin film solar cells based on CuIn1-xGaxSe2 (CIGS), polycrystalline compound semiconductor material, have unique advantages of high efficiency (>20%), long-term stability, and low manufacturing cost over other types of solar cell. The electrical and optical properties of the thin CIGS films are closely related to the concentration ratios among its major constituent elements Cu, In, Ga and Se such as Ga/(Ga + In) and Cu/(Ga + In), and thus an accurate measurement of the composition of CIGS thin films has been an issue among CIGS solar cell researchers, requiring a fast and reliable technique for composition analysis. This paper presents the results of nanosecond (ns) and femtosecond (fs) laser based LIBS analysis of thin CIGS films. The critical issues for LIBS analysis of CIGS thin films such are discussed in comparison with ns- and fs-LIBS measurement results. The calibration of LIBS signal intensity ratios with respect to reference concentration data is carried out and the results of optimal line selection for LIBS analysis, depth profiling capability, and reproducibility are discussed.

  19. Subpicosecond Exciton Dynamics and Biexcitonic Feature in Colloidal CuInS2 Nanocrystals: Role of In-Cu Antisite Defects.

    PubMed

    Debnath, Tushar; Maiti, Sourav; Maity, Partha; Ghosh, Hirendra N

    2015-09-01

    Charge carrier dynamics of multinary quantum dots like CuInS2 (CIS) nanocrystals (NCs) is not clearly understood, especially in ultrafast time scales. Herein we have synthesized colloidal CIS NCs that show defect-induced emission between donor (antisite) and acceptor (internal/surface) states as indicated from steady-state and time-resolved photoluminescence (PL) measurements. Subpicosecond transient absorption (TA) spectra of CIS NCs reveal a gradient of electronic states that exists above the conduction band edge. The electron cooling rate has been determined to be ∼0.1-0.15 eV/ps. The cascade of electron cooling dynamics was monitored after following the TA kinetics at different electronic states. Interestingly, the kinetics at the antisite state unveil a biexcitonic feature, which has been enlightened through a probe-induced biexciton mechanism. With progressively higher fluence (⟨N⟩), the biexciton binding energy increases, and the electron cooling to the antisite state considerably slows down. Extra energy released during Auger recombination of bi/multiexcitons are used to re-excite the electron to a further high energy level, resulting in longer electron cooling time to the antisite states. PMID:26273721

  20. Enhancing the light absorbance of polymer solar cells by introducing pulsed laser-deposited CuIn0.8Ga0.2Se2 nanoparticles

    PubMed Central

    2014-01-01

    Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm2. The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures. PACS 61.46. + w; 61.41.e; 81.15.Fg; 81.07.b PMID:24994961

  1. Blue copper proteins: Synthesis, spectra, and structures of CuIN3(SR) and CuIIN3(SR) active site analogues

    PubMed Central

    Thompson, Jeffery S.; Marks, Tobin J.; Ibers, James A.

    1977-01-01

    The reaction of Cu(SR) or [Cu(SR)][ClO4] derivatives (SR = p-nitrobenzenethiolate or O-ethylcysteinate) with potassium hydrotris(3,5-dimethyl-1-pyrazolyl)borate produces redox pairs of the stoichiometry CuIN3(SR) and CuIIN3(SR). These complexes are well-defined synthetic approximations to the proposed N3S binding sites of blue (type 1) copper electron transfer proteins. The compounds were investigated by a variety of chemical and spectral (optical, resonance Raman, and electron paramagnetic resonance) techniques; the complex K[Cu(hydrotris(3,5-dimethyl-1-pyrazolyl)borate)(p- NO2C6H4S]-2 acetone was also studied by single-crystal x-ray diffraction methods. The spectrochemical characteristics of the CuIIN3(SR) species are in large part similar to the native system and thus provide some perspective regarding the origin of the unique type 1 spectral parameters and electron transfer properties. PMID:16592426

  2. Surface Modification of Polycrystalline Cu(In,Ga)Se2 Thin-Film Solar Cell Absorber Surfaces for PEEM Measurements

    SciTech Connect

    Wilks, R. G.; Contreras, M. A.; Lehmann, S.; Herrero-Albillos, J.; Bismaths, L. T.; Kronast, F.; Noufi, R.; Bar, M.

    2011-01-01

    We present a thorough examination of the {micro}m-scale topography of Cu(In, Ga)Se{sub 2} ('CIGSe') thin-film solar cell absorbers using different microscopy techniques. We specifically focus on the efficacy of preparing smooth sample surfaces - by etching in aqueous bromine solution - for a spatially resolved study of their chemical and electronic structures using photoelectron emission microscopy (PEEM). The etching procedure is shown to reduce the CIGSe surface roughness from ca. 40 to 25 nm after 40s etching, resulting in an increase in the quality of the obtained PEEM images. Furthermore we find that the average observed grain size at the etched surfaces appears larger than at the unetched surfaces. Using a liftoff procedure, it is additionally shown that the backside of the absorber is flat but finely patterned, likely due to being grown on the finely-structured Mo back contact.

  3. Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell

    NASA Astrophysics Data System (ADS)

    Chen, Guilin; Yuan, Chenchen; Liu, Jiwan; Huang, Zhigao; Chen, Shuiyuan; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2015-02-01

    Oxides nanoparticles-based process is one of the successful approaches to CuIn1-xGaxSe2 (CIGS) formation. To explore systematically the possibility of application of the similar methods to high quality Cu2ZnSnS4 (CZTS), an oxides nanoparticles-based process for preparation of CZTS films is described. The CZTS films are prepared by sulfurizing oxides precursor. Thermodynamic appreciation of sulfurization of oxides precursor is first studied. The development of the CZTS formation with increasing temperature is also investigated. Through optimizing the sulfurization, phase-pure CZTS films with very large grains are obtained. The loss of tin can be avoided, due to the stability of oxides. Finally, preliminary CZTS thin-film solar cells with efficiencies of 1.47% have been fabricated. This study provides basis for low-cost and large area CZTS solar cells.

  4. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  5. Growth and characterization of Cu(In,Ga)Se2 thin films by nanosecond and femtosecond pulsed laser deposition

    PubMed Central

    2014-01-01

    In this work, CuIn1 - x Ga x Se2 (CIGS) thin films were prepared by nanosecond (ns)- and femtosecond (fs)-pulsed laser deposition (PLD) processes. Different film growth mechanisms were discussed in perspective of the laser-produced plasmas and crystal structures. The fs-PLD has successfully improved the inherent flaws, Cu2 - x Se, and air voids ubiquitously observed in ns-PLD-derived CIGS thin films. Moreover, the prominent antireflection and excellent crystalline structures were obtained in the fs-PLD-derived CIGS thin films. The absorption spectra suggest the divergence in energy levels of radiative defects brought by the inhomogeneous distribution of elements in the fs-PLD CIGS, which has also been supported by comparing photoluminescence (PL) spectra of ns- and fs-PLD CIGS thin films at 15 K. Finally, the superior carrier transport properties in fs-PLD CIGS were confirmed by fs pump-probe spectroscopy and four-probe measurements. The present results indicate a promising way for preparing high-quality CIGS thin films via fs-PLD. PMID:24959108

  6. Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1991--15 January 1992

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E.

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  7. Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor

    NASA Astrophysics Data System (ADS)

    Lee, Jun; Han, Chang-Soo

    2014-02-01

    We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV-vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

  8. The composition effect on the optical properties of aqueous synthesized Cu-In-S and Zn-Cu-In-S quantum dot nanocrystals.

    PubMed

    Zhang, Butian; Wang, Yucheng; Yang, Chengbin; Hu, Siyi; Gao, Yuan; Zhang, Yiping; Wang, Yue; Demir, Hilmi Volkan; Liu, Liwei; Yong, Ken-Tye

    2015-10-14

    Multiternary quantum dots (QDs), because of the large degree of freedom in their structure and composition, have a wide tunability in their bandgap but also exhibit an increased uncertainty and complexity in their optical properties. In this work, we synthesized the ternary Cu-In-S (CIS) and quaternary Zn-Cu-In-S (ZCIS) QDs with different composition ratios via a facile aqueous route. The CIS QDs show multi-peak photoluminescence with their peak intensity dependent on the Cu : In ratio, which was illustrated using a donor-acceptor pair recombination process. Upon incorporation of Zn into the CIS QDs under similar conditions, the acquired ZCIS QDs exhibit blue-shifted photoluminescence (PL) spectra with an enhanced emission intensity and a narrowed spectral width (∼100 nm). A comparative study reveals that, reducing the Cu : In ratio in the CIS QDs and increasing the Zn content in the alloyed ZCIS QDs are both feasible strategies for bandgap engineering, although the influences on optical properties of the QDs were different. The XRD and EDX spectra revealed that the widening of the bandgap of the ZCIS QDs was correlated with the alloyed nanostructures and the preferential substitution of Cu by Zn. Compared to the Cu : In ratio variation, incorporation of Zn into CIS QDs is an effective strategy to achieve a more homogeneous absorption band and a wide range of emission wavelength tunability. After ZnS shell coating, the ZCIS/ZnS QDs show a further enhanced PL intensity with a prolonged fluorescence lifetime. Unlike CIS QDs, the blue shift in PL upon the shell growth was not pronounced for ZCIS QDs, for which a surface reconstruction mechanism was proposed and discussed. Finally, the as-prepared ZCIS/ZnS QDs were employed for in vitro cell imaging and exhibited good biocompatibility to macrophage cells. PMID:26349413

  9. Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor

    PubMed Central

    2014-01-01

    We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents. PMID:24533662

  10. Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses.

    PubMed

    Pein, Andreas; Baghbanzadeh, Mostafa; Rath, Thomas; Haas, Wernfried; Maier, Eugen; Amenitsch, Heinz; Hofer, Ferdinand; Kappe, C Oliver; Trimmel, Gregor

    2011-01-01

    The formation of copper indium disulfide nanoparticles via the oleylamine route using copper iodide, indium chloride, and elemental sulfur has been investigated by applying conventional thermal heating as well as microwave irradiation. Oleylamine thereby acts as a capping ligand as well as a solvent. In an initial set of experiments, the onset of the reaction was determined to be around 115 °C by an in situ X-ray study using Synchrotron radiation. Using comparatively low synthesis temperatures of 120 °C, it is already possible to obtain nanoparticles of 2-4 nm with both heating methods but with irregular shape and size distribution. By applying higher temperatures of 220 °C, more crystalline and larger nanoparticles were obtained with slight differences in crystallite size and size distribution depending on the synthesis route. The size of the nanoparticles is in the range of 3-10 nm depending on the heating time. Using microwave irradiation, it is possible to obtain nanoparticles in only 90 s of total synthesis time. Control experiments to probe a nonthermal microwave effect were carried out ensuring an identical experimental setup, including the heating profile, the stirring rate, and the volume and concentration of the solutions. These experiments clearly demonstrate that for the preparation of CuInS(2) nanoparticles described herein no differences between conventional and microwave heating could be observed when performed at the same temperature. The nanoparticles obtained by microwave and thermal methods have the same crystal phase, primary crystallite size, shape, and size distribution. In addition, they show no significant differences concerning their optical properties. PMID:21141832

  11. Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant.

    PubMed

    Yan, Lili; Li, Zhichun; Sun, Mingxing; Shen, Guoqing; Li, Liang

    2016-08-10

    Semiconductor quantum dots (QDs) are suitable light absorbers for photocatalysis because of their unique properties. However, QDs generally suffer from poor photochemical stability against air, limiting their applications in photocatalysis. In this study, a stable solar-light-driven QDs-containing photocatalytic film was developed to facilitate photocatalytic degradation of the soil fumigant 1,3-dichloropropene (1,3-D). Highly stable CuInS2/ZnS:Al core/shell QDs (CIS/ZnS:Al QDs) were synthesized by doping Al into the ZnS shell and controlling ZnS:Al shell thickness; the CIS/ZnS:Al QDs were subsequently combined with TiO2 to form a CIS/ZnS:Al-TiO2 photocatalyst. The optimized ZnS:Al shell thickness for 1,3-D photodegradation was approximately 1.3 nm, which guaranteed and balanced the good photocatalytic activity and stability of the CIS/ZnS:Al-TiO2 photocatalyst. The photodegradation efficiency of 1,3-D can be maintained up to more than 80% after five cycles during recycling experiment. When CIS/ZnS:Al-TiO2 was deposited as photocatalytic film on a flexible polyethylene terephthalate substrate, over 99% of cis-1,3-D and 98% of trans-1,3-D were depleted as they passed through the film during 15 h of irradiation under natural solar light. This study demonstrated that the stable CIS/ZnS:Al-TiO2 photocatalyst both in powder and film form is a promising agent for photodegradation and emission reduction of soil fumigants. PMID:27414776

  12. Interaction of ultra-short laser pulses with CIGS and CZTSe thin films

    NASA Astrophysics Data System (ADS)

    Gečys, P.; Markauskas, E.; Dudutis, J.; Račiukaitis, G.

    2014-01-01

    The thin-film solar cell technologies based on complex quaternary chalcopyrite and kesterite materials are becoming more attractive due to their potential for low production costs and optimal spectral performance. As in all thin-film technologies, high efficiency of small cells might be maintained with the transition to larger areas when small segments are interconnected in series to reduce photocurrent and related ohmic losses in thin films. Interconnect formation is based on the three scribing steps, and the use of a laser is here crucial for performance of the device. We present our simulation and experimental results on the ablation process investigations in complex CuIn1- x Ga x Se2 (CIGS) and Cu2ZnSn(S,Se)4 (CZTSe) cell's films using ultra-short pulsed infrared (~1 μm) lasers which can be applied to the damage-free front-side scribing processes. Two types of processes were investigated—direct laser ablation of ZnO:Al/CIGS films with a variable pulse duration of a femtosecond laser and the laser-induced material removal with a picosecond laser in the ZnO:Al/CZTSe structure. It has been found that the pulse energy and the number of laser pulses have a significantly stronger effect on the ablation quality in ZnO:Al/CIGS thin films rather than the laser pulse duration. For the thin-film scribing applications, it is very important to carefully select the processing parameters and use of ultra-short femtosecond pulses does not have a significant advantage compared to picosecond laser pulses. Investigations with the ZnO:Al/CZTSe thin films showed that process of the absorber layer removal was triggered by a micro-explosive effect induced by high pressure of sublimated material due to a rapid temperature increase at the molybdenum-CZTSe interface.

  13. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  14. New Layered Structures of Cuprous Chalcogenides as Thin Film Solar Cell Materials: Cu2Te and Cu2Se

    SciTech Connect

    Nguyen, Manh; Choi, Jin-Ho; Zhao, Xin; Wang, Cai-Zhuang; Zhang, Zhenyu; Ho, Cai-Ming

    2013-10-01

    The stable crystal structures of two cuprous chalcogenides of Cu2X (X = Te or Se) are predicted using an adaptive genetic algorithm in combination with first-principles density functional theory calculations. Both systems are found to prefer a unique and previously unrecognized layered structure, with the total energies much lower than all structures proposed in the literature so far. The newly discovered structures are further shown to be dynamically and mechanically stable, and possess electronic properties consistent with existing experimental observations. In particular, their layered nature is expected to prevail over other structural forms at the interfaces of thin-film solar cells, and knowledge about the precise atomic structures of the interfaces is a prerequisite for achieving long-term stability and high efficiency of CdTe and Cu(In; Ga)Se2 solar cells.

  15. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... of this montage is a natural-color view of the Caribbean Sea east of the Yucatan Peninsula as seen by MISR's most steeply ... - Thin, feathery clouds of ice crystals over the Caribbean Sea. project:  MISR category:  gallery ...

  16. The effects of KCN etching on Cu-rich epitaxial CuInSe{sub 2} thin films

    SciTech Connect

    Fons, P.; Niki, S.; Yamada, A.; Kurafuji, T.; Nishitani, M.; Wada, T.

    1996-12-31

    A series of Cu-rich CuInSe{sub 2} epitaxial thin films were grown by molecular beam epitaxy on GaAs(001) substrates from elemental sources at a growth temperature of 450 C. All samples were grown with an excess of Cu. Electron microprobe analysis (EPMA) indicated a Cu/In ratio of about 2.1--2.6 in the as-grown films. Additionally, the Se/(In+Cu) ratio was observed to be {approximately}0.95 indicating that the films were slightly Se poor. These Cu-rich samples were etched in a KCN solution for periods ranging from 30 seconds to 3 minutes. EPMA measurements indicated that the bulk Cu/In ratio was reduced to {approximately}0.92 in all films regardless of etching time. Atomic force microscopy (AFM) was used to characterize the topology of each sample before and after etching. These measurements indicated that the precipitates present on the as-grown films were removed and large nearly isotropic holes were etched into the sample to a depth of over 1,000 {angstrom} even for etching times as short as 30 seconds. The samples were also evaluate both before and after etching using a Phillips MRD diffractometer with parallel beam optics and a 18,000 watt Cu rotating anode X-ray source in the chalcopyrite [001] , [101], and [112] directions. A peak was observed at {approximately}15 degrees in the [001] scan after etching consistent with the presence of the ordered vacancy compound, CuIn{sub 2}Se{sub 5}.

  17. Study of the laser scribing of molybdenum thin films fabricated using different deposition techniques

    NASA Astrophysics Data System (ADS)

    Schneller, Eric; Dhere, Neelkanth G.; Shimada, Juliana; Kar, Aravinda

    2013-09-01

    Monolithic cell interconnection is a technique used in solar devices to allow for interconnection of adjacent cells through patterning of the thin films during fabrication. In the case of CuIn1-xGaxSe2-ySy (CIGS) solar cells, Molybdenum is commonly used as the back contact. Patterning of this layer is required in the interconnection scheme to electrically isolate adjacent cells. Laser scribing has been adopted for patterning of this layer. This paper reports on the effect of the molybdenum thin film deposition technique, and the resulting film properties, on the characteristic of the laser scribe. Films were deposited using DC magnetron sputtering over a range of working gas pressures and powers as well as in single and multilayer configurations. It was found that the residual stress within the film lead to significantly different laser ablation processes. This required independent tuning of the laser processing parameters to create a clean, defect free scribe for different samples. Experimentation was carried out using both film-side and glass-side processing. It was shown that glass-side processing leads to a reduction in cracks and delamination originating from the scribe. The processing conditions that produced successful scribe lines for the various films are presented and discussed.

  18. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  19. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.

    PubMed

    Klein, Andreas

    2015-04-10

    Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers. There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new

  20. Cu(In,Ga)S2, Thin-Film Solar Cells Prepared by H2S Sulfurization of CuGa-In Precursor

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Kulkarni, Shashank R.; Chavan, Sanjay S.; Ghongadi, Shantinath R.

    2005-01-01

    Thin-film CuInS2 solar cell is the leading candidate for space power because of bandgap near the optimum value for AM0 solar radiation outside the earth's atmosphere, excellent radiation hardness, and freedom from intrinsic degradation mechanisms unlike a-Si:H cells. Ultra-lightweight thin-film solar cells deposited on flexible polyimide plastic substrates such as Kapton(trademark), Upilex(trademark), and Apical(trademark) have a potential for achieving specific power of 1000 W/kg, while the state-of-art specific power of the present day solar cells is 66 W/kg. This paper describes the preparation of Cu-rich CuIn(sub 1-x)Ga(sub x)S(sub 2) (CIGS2) thin films and solar cells by a process of sulfurization of CuGa-In precursor similar to that being used for preparation of large-compact-grain CuIn(sub 1-x)Ga(sub x)Se2 thin films and efficient solar cells at FSEC PV Materials Lab.

  1. In situ analysis of elemental depth distributions in thin films by combined evaluation of synchrotron x-ray fluorescence and diffraction

    SciTech Connect

    Mainz, R.; Klenk, R.

    2011-06-15

    In this work we present a method for the in situ analysis of elemental depth distributions in thin films using a combined evaluation of synchrotron x-ray fluorescence and energy-dispersive x-ray diffraction signals. We recorded diffraction and fluorescence signals simultaneously during the reactive annealing of thin films. By means of the observed diffraction signals, the time evolution of phases in the thin films during the annealing processes can be determined. We utilized this phase information to parameterize the depth distributions of the elements in the films. The time-dependent fluorescence signals were then taken to determine the parameters representing the parameterized depth distributions. For this latter step, we numerically calculated the fluorescence intensities for a given set of depth distributions. These calculations handle polychromatic excitation and arbitrary functions of depth distributions and take into account primary and secondary fluorescence. Influences of lateral non-uniformities of the films, as well as the accuracy limits of the method, are investigated. We apply the introduced method to analyze the evolution of elemental depth distributions and to quantify the kinetic parameters during a synthesis process of CuInS{sub 2} thin films via the reactive annealing of Cu-In precursors in a sulfur atmosphere.

  2. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    NASA Astrophysics Data System (ADS)

    Lehmann, Jascha; Lehmann, Sebastian; Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch.; Bär, Marcus; Sadewasser, Sascha

    2014-12-01

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for "realistic" surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is - apart from a slight change in surface composition - identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  3. Thin Films

    NASA Astrophysics Data System (ADS)

    Naffouti, Wafa; Nasr, Tarek Ben; Mehdi, Ahmed; Kamoun-Turki, Najoua

    2014-11-01

    Titanium dioxide (TiO2) thin films were synthesized on glass substrates by spray pyrolysis. The effect of solution flow rate on the physical properties of the films was investigated by use of x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy (AFM), and spectrophotometry techniques. XRD analysis revealed the tetragonal anatase phase of TiO2 with highly preferred (101) orientation. AFM images showed that grain size on top of TiO2 thin films depended on solution flow rate. An indirect band gap energy of 3.46 eV was determined by means of transmission and reflection measurements. The envelope method, based on the optical transmission spectrum, was used to determine film thickness and optical constants, for example real and imaginary parts of the dielectric constant, refractive index, and extinction coefficient. Ultraviolet and visible photoluminescence emission peaks were observed at room temperature. These peaks were attributed to the intrinsic emission and to the surface defect states, respectively.

  4. Thin Films

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Bahari, Ali; Gholipur, Reza

    2014-11-01

    Effect of annealing temperature on the characteristics of sol-gel-driven Ta ax La(1- a) x O y thin film spin-coated on Si substrate as a high- k gate dielectric was studied. Ta ax La(1- a) x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3 x La0.7 x Oy film had an amorphous structure. Therefore, Ta0.3 x La0.7 x O y film was chosen to continue the present studies. The morphology of Ta0.3 x La0.7 x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3 x La0.7 x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance-voltage ( C- V) and current density-voltage ( J- V) measurements and the Tauc method. The obtained results demonstrated that Ta0.3 x La0.7 x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10-6 A/cm2 at 1 V).

  5. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  6. CIGSS Thin Film Solar Cells: Final Subcontract Report, 10 October 2001-30 June 2005

    SciTech Connect

    Dhere, N. G.

    2006-02-01

    This report describes the I-III-VI2 compounds that are developing into a promising material to meet the energy requirement of the world. CuInSe2 (CIS) and its alloy with Ga and S have shown long-term stability and highest conversion efficiency of 19.5%. Among the various ways of preparing CuIn1-xGaxSe2-ySy (CIGSS)/CdS thin-film solar cells, co-evaporation and sputtering techniques are the most promising. Sputtering is an established process for very high-throughput manufacturing. ARCO Solar, now Shell Solar, pioneered the work in CIS using the sputtering technique. The two-stage process developed by ARCO Solar involved sputtering of a copper and indium layer on molybdenum-coated glass as the first step. In the second step, the copper-indium layers were exposed to a selenium-bearing gas such as hydrogen selenide (H2Se) mixed with argon. The hydrogen selenide breaks down and leaves selenium, which reacts and mixes with the copper and indium in such a way to produce very high-quality CIS absorber layer. Sputtering technology has the added advantage of being easily scaled up and promotes roll-to-roll production on flexible substrates. Preliminary experiments were carried out. ZnO/ZnO:Al deposition by RF magnetron sputtering and CdS deposition by chemical-bath deposition are being carried out on a routine basis.

  7. XPS and Raman study of slope-polished Cu(In,Ga)Se2 thin films

    NASA Astrophysics Data System (ADS)

    Beak, Gun Yeol; Jeon, Chan-Wook

    2016-05-01

    The growth of quality Cu(In,Ga)Se2 photovoltaic absorber without secondary phases is very important for improving the solar cell efficiency. Although X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy can identify the secondary phases, they provide insufficient information because of their insufficient resolution and complexity in analysis. In general, normal Raman spectroscopy is better for the analysis of secondary phases. On the other hand, the Raman signal provides information for film depths of less than 300 nm, and the Raman information cannot represent the properties of the entire film. In this regard, the authors introduce a new way of identifying secondary phases in Cu(In,Ga)Se2 films using depth Raman analysis. The as-prepared film was polished using a dimple grinder, which expanded a 2 μm thick film to approximately 1 mm, which is more than sufficient to resolve the depth distribution. Raman analysis indicated that the Cu(In,Ga)Se2 film showed different secondary phases, such as CuIn3Se5, InSe and CuSe, present in different depths of the film, whereas XPS provided complex information about the phases. Overall, the present study emphasizes that the Raman depth profile is more efficient for the identification of secondary phases in Cu(In,Ga)Se2 thin films than XPS and XRD. [Figure not available: see fulltext.

  8. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    NASA Astrophysics Data System (ADS)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  9. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos.

    PubMed

    Chetty, S Shashank; Praneetha, S; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A Vadivel

    2016-01-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale "sustainable" MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI). PMID:27188464

  10. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  11. Investigation of Au9+ swift heavy ion irradiation on CdS/CuInSe2 thin films

    NASA Astrophysics Data System (ADS)

    Joshi, Rajesh A.; Taur, Vidya S.; Singh, Fouran; Sharma, Ramphal

    2013-10-01

    In the present manuscript we report about the preparation of CdS/CuInSe2 heterojunction thin films by chemical ion exchange method and investigation of 120 MeV Au9+ swift heavy ions (SHI) irradiation effect on its physicochemical as well as optoelectronic properties. These pristine (as grown) samples are irradiated with 120 MeV Au9+ SHI of 5×1011 and 5×1012 ions/cm2 fluencies and later on characterized for structural, compositional, morphological, optical and I-V characteristics. X-ray diffraction (XRD) pattern obtained from pristine and irradiated films shows considerable modifications in peak intensity as well as rising of some new peaks, corresponding to In2Se3, Cu3Se2 and CuIn2Se3 materials. Transmission electron microscope (TEM) images show decrease in grain size upon increase in irradiation ion fluencies, which is also supported from the observation of random and uneven distribution of nano-grains as confirmed through scanning electron microscope (SEM) images. Presence of Cd, Cu, In, S and Se in energy dispersive X-ray spectrum analysis (EDAX) confirms the expected and observed elemental composition in thin films, the absorbance peaks are related to band to band transitions and spin orbit splitting while energy band gap is observed to increase from 1.36 for pristine to 1.53 eV for SHI irradiated thin films and I-V characteristics under illumination to 100 mW/cm2 light source shows enhancement in conversion efficiency from 0.26 to 1.59% upon irradiation.

  12. Ce-doped YAG nanophosphor and red emitting CuInS2/ZnS core/shell quantum dots for warm white light-emitting diode with high color rendering index.

    PubMed

    Aboulaich, Abdelhay; Michalska, Martyna; Schneider, Raphaël; Potdevin, Audrey; Deschamps, Jérôme; Deloncle, Rodolphe; Chadeyron, Geneviève; Mahiou, Rachid

    2014-01-01

    In this work, we report the solvothermal synthesis of Ce-doped YAG (YAG:Ce) nanoparticles (NPs) and their association with a free-Cd CuInS2/ZnS (CIS/ZnS) core/shell QDs for application into white light emitting diode (WLED). 1500 °C-annealed YAG:Ce NPs and CIS/ZnS core/shell QDs exhibited intense yellow and red emissions band with maxima at 545 and 667 nm, respectively. Both YAG:Ce nanophosphor and CIS/ZnS QDs showed high photoluminescence quantum yield (PL QY) of about 50% upon 460 nm excitation. YAG:Ce nanophosphor layer and bilayered YAG:Ce nanophosphor-CIS/ZnS QDs were applied on blue InGaN chip as converter wavelength to achieve WLED. While YAG:Ce nanophosphor converter layer showed low color rendering index (CRI) and cold white light, bilayered YAG:Ce nanophosphor-CIS/ZnS QDs displayed higher CRI of about 84 and warm white light with a correlated color temperature (CCT) of 2784 K. WLED characteristics were measured as a function of forward current from 20 to 1200 mA. The white light stability of bilayered nanophosphor-QDs-based WLED operated at 200 mA was also studied as a function of operating time up to 40 h. Interestingly, CRI and CCT of such device tend to remain constant after 7 h of operating time suggesting that layer-by-layer structure of YAG:Ce phosphor and red-emitting CIS/ZnS QDs could be a good solution to achieve stable warm WLED, especially when high current density is applied. PMID:24320991

  13. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    PubMed Central

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-01-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI). PMID:27188464

  14. Influence of a Boron Precursor on the Growth and Optoelectronic Properties of Electrodeposited Zinc Oxide Thin Film.

    PubMed

    Tsin, Fabien; Thomere, Angélica; Bris, Arthur Le; Collin, Stéphane; Lincot, Daniel; Rousset, Jean

    2016-05-18

    Highly transparent and conductive materials are required for many industrial applications. One of the interesting features of ZnO is the possibility to dope it using different elements, hence improving its conductivity. Results concerning the zinc oxide thin films electrodeposited in a zinc perchlorate medium containing a boron precursor are presented in this study. The addition of boron to the electrolyte leads to significant effects on the morphology and crystalline structure as well as an evolution of the optical properties of the material. Varying the concentration of boric acid from 0 to 15 mM strongly improves the compactness of the deposit and increases the band gap from 3.33 to 3.45 eV. Investigations were also conducted to estimate and determine the influence of boric acid on the electrical properties of the ZnO layers. As a result, no doping effect effect by boron was demonstrated. However, the role of boric acid on the material quality has also been proven and discussed. Boric acid strongly contributes to the growth of high quality electrodeposited zinc oxide. The high doping level of the film can be attributed to the perchlorate ions introduced in the bath. Finally, a ZnO layer electrodeposited in a boron rich electrolyte was tested as front contact of a Cu(In, Ga)(S, Se)2 based solar cell. An efficiency of 12.5% was measured with a quite high fill factor (>70%) which confirms the high conductivity of the ZnO thin film. PMID:27111517

  15. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  16. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  17. Electrochemical thinning of silicon

    DOEpatents

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  18. Electrochemical thinning of silicon

    SciTech Connect

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  19. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  20. Growth and optoelectronic characteristic of n-Si/p-CuIn(S 1-xSe x) 2 thin-film solar cell by solution growth technique

    NASA Astrophysics Data System (ADS)

    Chavhan, S.; Sharma, R.

    2006-07-01

    The p-CuIn(S 1-xSe x) 2 (CISS) thin films have been grown on n-Si substrate by solution growth technique. The deposition parameters, such as pH (10.5), deposition time (60 min), deposition temperature (50 °C), and concentration of bath solution (0.1 M) were optimized. Elemental analysis of the p-CuIn(S 1-xSe x) 2 thin film was confirmed by energy-dispersive analysis of X-ray (EDAX). The SEM study of absorber layer shows the uniform morphology of film as well as the continuous smooth deposition onto the n-Si substrates, whose grain size is 130 nm. CuIn(S 1-xSe x) 2 ( x=0.5) reveals (1 1 2) orientation peak and exhibits the chalcopyrite structure with lattice constant a=5.28 Å and c=11.45 Å. The J- V characteristics were measured in dark and light. The device parameters have been calculated for solar cell fabrication, V=411.09 mV, and J=14.55 mA. FF=46.55% and η=4.64% under an illumination of 60 mW/cm 2. The J- V characteristics of the device under dark condition were also studied and the ideality factor was calculated, which is equal to 2.2 for n-Si/p-CuIn(S 0.5Se 0.5) 2 heterojunction thin film.

  1. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  2. Thin film metrology.

    PubMed

    Nitsch, Gerald; Flinn, Gregory

    2007-10-01

    Thin film metrology is suitable for characterising and performing quality control of a variety of coatings and films used in medical applications. The capabilities of today's systems are described. PMID:18078184

  3. Super Thin Ceramic Coatings

    NASA Video Gallery

    New technology being developed at NASA's Glenn Research Center creates super thin ceramic coatings on engine components. The Plasma Spray – Physical Vapor Deposition (PS-PVD) rig uses a powerful ...

  4. Line Thinning Algorithm

    NASA Astrophysics Data System (ADS)

    Feigin, G.; Ben-Yosef, N.

    1983-10-01

    A thinning algorithm, of the banana-peel type, is presented. In each iteration pixels are attacked from all directions (there are no sub-iterations), and the deletion criteria depend on the 24 nearest neighbours.

  5. Multifunctional thin film surface

    SciTech Connect

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  6. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  7. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  8. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  9. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  10. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  11. Investigation of bulk hybrid heterojunction solar cells based on Cu(In,Ga)Se2 nanocrystals

    PubMed Central

    2013-01-01

    This work presents the systematic studies of bulk hybrid heterojunction solar cells based on Cu(In, Ga)Se2 (CIGS) nanocrystals (NCs) embedded in poly(3-hexylthiophene) matrix. The CIGS NCs of approximately 17 nm in diameter were homogeneously blended with P3HT layer to form an active layer of a photovoltaic device. The blend ratios of CIGS NCs to P3HT, solvent effects on thin film morphologies, interface between P3HT/CIGS NCs and post-production annealing of devices were investigated, and the best performance of photovoltaic devices was measured under AM 1.5 simulated solar illumination (100 mW/cm2). PMID:23870036

  12. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  13. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  14. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  15. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  16. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  17. CIGS2 Thin-Film Solar Cells on Flexible Foils for Space Power

    NASA Technical Reports Server (NTRS)

    Dhere, Neelkanth G.; Ghongadi, Shantinath R.; Pandit, Mandar B.; Jahagirdar, Anant H.; Scheiman, David

    2002-01-01

    CuIn(1-x)Ga(x)S2 (CIGS2) thin-film solar cells are of interest for space power applications because of the near optimum bandgap for AM0 solar radiation in space. CIGS2 thin film solar cells on flexible stainless steel (SS) may be able to increase the specific power by an order of magnitude from the current level of 65 Wkg(sup -1). CIGS solar cells are superior to the conventional silicon and gallium arsenide solar cells in the space radiation environment. This paper presents research efforts for the development of CIGS2 thin-film solar cells on 127 micrometers and 20 micrometers thick, bright-annealed flexible SS foil for space power. A large-area, dual-chamber, inline thin film deposition system has been fabricated. The system is expected to provide thickness uniformity of plus or minus 2% over the central 5" width and plus or minus 3% over the central 6" width. During the next phase, facilities for processing larger cells will be acquired for selenization and sulfurization of metallic precursors and for heterojunction CdS layer deposition both on large area. Small area CIGS2 thin film solar cells are being prepared routinely. Cu-rich Cu-Ga/In layers were sputter-deposited on unheated Mo-coated SS foils from CuGa (22%) and In targets. Well-adherent, large-grain Cu-rich CIGS2 films were obtained by sulfurization in a Ar: H2S 1:0.04 mixture and argon flow rate of 650 sccm, at the maximum temperature of 475 C for 60 minutes with intermediate 30 minutes annealing step at 120 C. Samples were annealed at 500 C for 10 minutes without H2S gas flow. The intermediate 30 minutes annealing step at 120 C was changed to 135 C. p-type CIGS2 thin films were obtained by etching the Cu-rich layer segregated at the surface using dilute KCN solution. Solar cells were completed by deposition of CdS heterojunction partner layer by chemical bath deposition, transparent-conducting ZnO/ZnO: Al window bilayer by RF sputtering, and vacuum deposition of Ni/Al contact fingers through metal

  18. Treading on Thin Water.

    ERIC Educational Resources Information Center

    Haley, Richard D.

    1985-01-01

    Provides a simple introduction to animals whose habitat is the thin surface film of water. Describes adaptive mechanisms of water striders, whirlygigs and riffle bugs and suggests ways to observe them in the wild or as aquarium animals. Includes basic demonstrations of the nature of surface tension. (JHZ)

  19. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  20. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  1. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  2. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  3. Structure and interface chemistry of MoO3 back contacts in Cu(In,Ga)Se2 thin film solar cells

    NASA Astrophysics Data System (ADS)

    Simchi, Hamed; McCandless, Brian E.; Meng, T.; Shafarman, William N.

    2014-01-01

    Molybdenum oxide (MoO3) is considered as a possible primary back contact for Cu(InGa)Se2 thin film solar cells for its potential as a transparent back contact for superstrate and bifacial devices. MoO3 films were deposited on Mo or ITO-coated soda lime glass substrates by reactive rf sputtering in an ambient of Ar + O2 with O2/(O2 + Ar) = 35% on which Cu(In0.7Ga0.3)Se2 alloy absorber layers were deposited using multi-source elemental evaporation. Scanning Electron Microscopy studies showed uniform coverage of the as-deposited MoO3 layer and good adhesion was obtained in all cases. X-ray Photoelectron Spectroscopy depth profile analysis showed that MoSe2 was not formed at the Cu(InGa)Se2 interface with either the Mo-MoO3 or ITO-MoO3 back contacts. Determination of the valence band offsets showed that the MoO3 layer at the interface changes the energy band alignment with Cu(InGa)Se2, producing a primary contact with lower valence band offset than ITO. Cu(In,Ga)Se2 thin film solar cells prepared using an as-deposited Mo-MoO3 back contact yielded a best conversion efficiency of 14%, with VOC = 647 mV, JSC = 28.4 mA/cm2, and FF = 78.1%. Cells with ITO-MoO3 back contact showed a best efficiency of 12%, with VOC = 642 mV, JSC = 26.8 mA/cm2, and FF = 69.2%.

  4. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  5. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  6. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  7. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  8. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  9. Shear-thinning Fluid

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  10. Advanced thin film thermocouples

    NASA Astrophysics Data System (ADS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-10-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  11. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  12. Ultra-Thin, Flexible Electronics

    NASA Technical Reports Server (NTRS)

    Holland, Brian; McPherson, Ryan; Zhang, Tan; Hou, Zhenwei; Dean, Robert; Johnson, R. Wayne; DelCastillo, Linda; Moussessian, Alina

    2008-01-01

    Thinned die can be used to realize ultra-thin flexible electronics for applications such as conformal and wearable electronics. Three techniques have been developed to achieve this goal using thinned die: die flip chip bonded onto flexible substrates, die laminated onto LCP films, and die embedded in polyimide. A key to achieving each of these techniques is the thinning of die to a thickness of 50 microns or thinner. Conventional CMP processing can be used to thin to 50 microns. At 50 microns, the active die become flexible and must be handled by temporarily bonding them to a holder die, for further processing. Once bonded face down to the holder die, the active die can be further thinned by DRIE etching the exposed backside. The thinned die can then been packaged in or on the flexible substrate.

  13. Thin film superconductor magnetic bearings

    SciTech Connect

    Weinberger, B.R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft that is subject to a load (L) and rotatable around an axis of rotation, a magnet mounted to the shaft, and a stator in proximity to the shaft. The stator has a superconductor thin film assembly positioned to interact with the magnet to produce a levitation force on the shaft that supports the load (L). The thin film assembly includes at least two superconductor thin films and at least one substrate. Each thin film is positioned on a substrate and all the thin films are positioned such that an applied magnetic field from the magnet passes through all the thin films. A similar bearing in which the thin film assembly is mounted on the shaft and the magnet is part of the stator also can be constructed. 8 figs.

  14. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  15. Evaporated VOx Thin Films

    NASA Astrophysics Data System (ADS)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  16. Thin, Lightweight Solar Cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  17. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  18. Polycrystalline thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Ullal, H. S.; Mitchell, R. L.

    Significant progress has recently been made towards improving the efficiencies of polycrystalline thin-film solar cells and modules using CuInSe2 and CdTe. The history of using CuInSe2 and CdTe for solar cells is reviewed. Initial outdoor stability tests of modules are encouraging. Progress in semiconductor deposition techniques has also been substantial. Both CuInSe2 and CdTe are positioned for commercialization during the 1990s. The major participants in developing these materials are described. The US DOE/SERI (Solar Energy Research Institute) program recognizes the rapid progress and important potential of polycrystalline thin films to meet ambitious cost and performance goals. US DOE/SERI is in the process of funding an initiative in this area with the goal of ensuring US leadership in the development of these technologies. The polycrystalline thin-film module development initiative, the modeling and stability of the devices, and health and safety issues are discussed.

  19. thin films as absorber

    NASA Astrophysics Data System (ADS)

    González, J. O.; Shaji, S.; Avellaneda, D.; Castillo, G. A.; Das Roy, T. K.; Krishnan, B.

    2014-09-01

    Photovoltaic structures were prepared using AgSb(S x Se1- x )2 as absorber and CdS as window layer at various conditions via a hybrid technique of chemical bath deposition and thermal evaporation followed by heat treatments. Silver antimony sulfo selenide thin films [AgSb(S x Se1- x )2] were prepared by heating multilayers of sequentially deposited Sb2S3/Ag dipped in Na2SeSO3 solution, glass/Sb2S3/Ag/Se. For this, Sb2S3 thin films were deposited from a chemical bath containing SbCl3 and Na2S2O3. Then, Ag thin films were thermally evaporated on glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of dipping was varied as 3, 4 and 5 h. Two different heat treatments, one at 350 °C for 20 min in vacuum followed by a post-heat treatment at 325 °C for 2 h in Ar, and the other at 350 °C for 1 h in Ar, were applied to the multilayers of different configurations. X-ray diffraction results showed the formation of AgSb(S x Se1- x )2 thin films as the primary phase and AgSb(S,Se)2 and Sb2S3 as secondary phases. Morphology and elemental detection were done by scanning electron microscopy and energy dispersive X-ray analysis. X-ray photoelectron spectroscopic studies showed the depthwise composition of the films. Optical properties were determined by UV-vis-IR transmittance and reflection spectral analysis. AgSb(S x Se1- x )2 formed at different conditions was incorporated in PV structures glass/FTO/CdS/AgSb(S x Se1- x )2/C/Ag. Chemically deposited post-annealed CdS thin films of various thicknesses were used as window layer. J- V characteristics of the cells were measured under dark and AM1.5 illumination. Analysis of the J- V characteristics resulted in the best solar cell parameters of V oc = 520 mV, J sc = 9.70 mA cm-2, FF = 0.50 and η = 2.7 %.

  20. On the theory of thin and thin-walled rods

    NASA Technical Reports Server (NTRS)

    Dzhanelidze, G Y

    1951-01-01

    Through the work of V. Z. Vlasov a theory of thin-walled rods has been established that is widely applicable in practice. This theory was extended by A. A. Umanski to thin-walled rods of closed profile section. The authors based their work on the concepts of the modern theory of shells. An attempt is made herein to construct a theory of thin-walled rods including the classical theory of deformation of thin rods by making use of a kinematic assumption.

  1. Ureilite Thin Section Preparation

    NASA Technical Reports Server (NTRS)

    Harrington, R.; Righter, K.

    2014-01-01

    Preparing thin and thick sections of ureilite type meteorites is a challenge that can confound even the most experienced section preparer. A common characteristic of these samples is the presence of carbon phases, particularly nanodiamonds, in the matrix along silicate grain boundaries, fractures, and cleavage plains [1]. The extreme hardness of the nanodiamonds presents a challenge to the section preparer in the form of high surface relief on the section. This hard material also causes considerable wear and tear on equipment and materials that are used for making the sections. These issues will be discussed and potentially helpful measures will be presented.

  2. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  3. Method for thinning specimen

    DOEpatents

    Follstaedt, David M.; Moran, Michael P.

    2005-03-15

    A method for thinning (such as in grinding and polishing) a material surface using an instrument means for moving an article with a discontinuous surface with an abrasive material dispersed between the material surface and the discontinuous surface where the discontinuous surface of the moving article provides an efficient means for maintaining contact of the abrasive with the material surface. When used to dimple specimens for microscopy analysis, a wheel with a surface that has been modified to produce a uniform or random discontinuous surface significantly improves the speed of the dimpling process without loss of quality of finish.

  4. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  5. Polycrystalline thin-films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.

    1986-02-01

    This annual report summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Major subcontracted work in this area has concentrated on development of CuInSe2 and CdTe technologies. During FY 1985, major progress was achieved by subcontractors in: (1) developing a new, low-cost method of fabricating CuInSe2, and (2) improving the efficiency of CuInSe2 devices by about 10% (relative). The report also lists research planned to meet the Department of Energy's goals in these technologies.

  6. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  7. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  8. Center for thin film studies

    NASA Astrophysics Data System (ADS)

    Shannon, Robert P.; Gibson, Ursula J.

    1987-11-01

    This report covers the first year of operation of the URI Thin Film Center (TFC), and describes a diverse array of studies on thin-film materials, substrates, and their processing and analysis. Individual efforts are highlighted in sections on nucleation studies, ion-assisted deposition, Rutherford backscattering spectrometry, Brillouin scattering, a continuum theory of the evolution of structure in thin films, a study of polishing parameters relevant to the preparation of substrates, and the setup of a characterization facility for the Center.

  9. The thin eggshell problem

    USGS Publications Warehouse

    Stickel, L.F.; Rhodes, L.I.

    1970-01-01

    It has long been known that DDT and related chemicals can impair the reproduction of birds. In early years of organochlorine pesticide use, widespread mortality occurred immediately following heavy applications of these chemicals, and survivors contained substantial amounts of toxicant in their tissues. Repopulation from untreated areas tended to conceal the extent of the effects. DDT and dieldrin have become ubiquitous and the original source of the chemicals producing bird deaths often cannot be traced. The extent of sublethal effects cannot be fully appraised, although laboratory experiments continually reveal new and potentially deleterious physiological reactions. Thin eggshells have become prevalent among certain declining species of predatory birds. Shell thinning and associated reproductive effects have been produced experimentally in mallard ducks and in sparrow hawks. Coturnix quail fed dietary dosages of p,p'-DDT produced fewer eggs than did untreated birds and the eggs had thinner shells. Hatchability was not significantly altered. Comparisons between these results and those obtained in other studies indicate significant species differences.

  10. Cortical thinning in psychopathy

    PubMed Central

    Ly, Martina; Motzkin, Julian C.; Philippi, Carissa L.; Kirk, Gregory R.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael

    2013-01-01

    Objective Psychopathy is a personality disorder associated with severely antisocial behavior and a host of cognitive and affective deficits. The neuropathological basis of the disorder has not been clearly established. Cortical thickness is a sensitive measure of brain structure that has been used to identify neurobiological abnormalities in a number of psychiatric disorders. The purpose of this study is to evaluate cortical thickness and corresponding functional connectivity in criminal psychopaths. Method Using T1 MRI data, we computed cortical thickness maps in a sample of adult male prison inmates selected based on psychopathy diagnosis (n=21 psychopathic inmates, n=31 non-psychopathic inmates). Using rest-fMRI data from a subset of these inmates (n=20 psychopathic inmates, n=20 non-psychopathic inmates), we then computed functional connectivity within networks exhibiting significant thinning among psychopaths. Results Relative to non-psychopaths, psychopaths exhibited significantly thinner cortex in a number of regions, including left insula and dorsal anterior cingulate cortex, bilateral precentral gyrus, bilateral anterior temporal cortex, and right inferior frontal gyrus. These neurostructural differences were not due to differences in age, IQ, or substance abuse. Psychopaths also exhibited a corresponding reduction in functional connectivity between left insula and left dorsal anterior cingulate cortex. Conclusions Psychopathy is associated with a distinct pattern of cortical thinning and reduced functional connectivity. PMID:22581200

  11. Thin-film microextraction.

    PubMed

    Bruheim, Inge; Liu, Xiaochuan; Pawliszyn, Janusz

    2003-02-15

    The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%. PMID:12622398

  12. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  13. Ultra-Lightweight Hybrid Thin-Film Solar Cells: A Survey of Enabling Technologies for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; McNatt, Jeremiah S.; Bailey, Sheila G.; Dickman, John E.; Raffaelle, Ryne P.; Landi, Brian J.; Anctil, Annick; DiLeo, Roberta; Jin, Michael H.-C.; Lee, Chung-Young; Friske, Theresa J.; Sun, Sam-S.; Zhang, Cheng; Choi, S.; Ledbetter, Abram; Seo, Kang; Bonner, Carl E.; Banger, Kulbinder K.; Castro, Stephanie L.; Rauh, David

    2007-01-01

    The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for fabricating solar arrays with high mass specific power (W/kg). Next generation thin-film technologies may well involve a revolutionary change in materials to organic-based devices. The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We will explore a cross-section of in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. Research at University of Texas at Arlington focuses on the fabrication and use of poly(isothianaphthene-3,6-diyl) in solar cells. We describe efforts at Norfolk State University to design, synthesize and characterize block copolymers. A collaborative team between EIC Laboratories, Inc. and the University of Florida is investigating multijunction polymer solar cells to more effectively utilize solar radiation. The National Aeronautics and Space Administration (NASA)/Ohio Aerospace Institute (OAI) group has undertaken a thermal analysis of potential metallized substrates as well as production of nanoparticles of CuInS2 and CuInSe2 in good yield at moderate temperatures via decomposition of single-source precursors. Finally, preliminary work at the Rochester Institute of Technology (R.I.T.) to assess the impact on performance of solar cells of temperature and carbon nanotubes is reported. Technologies that must be developed to enable ultra-lightweight solar arrays include: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. For NASA applications, any solar cell or array technology must not only meet

  14. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  15. Polysilicon thin films and interfaces

    SciTech Connect

    Kamins, T. ); Raicu, B. ); Thompson, C.V. )

    1990-01-01

    This volume contains the proceedings of a symposium on polysilicon thin films and interfaces, held as part of the 1990 Materials Research Society Spring Meeting. Topics covered include: crystal grown fo silicon and germanium wafers for photovoltaic devices, microanalysis of tungsten silicide interface, thermal processing of polysilicon thin films, and electrical and optical properties of polysilicon sheets for photovoltaic devices.

  16. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  17. Non-H{sub 2}Se, ultra-thin CuInSe{sub 2} devices. Annual subcontract report, November 10, 1992--November 9, 1993

    SciTech Connect

    Delahoy, A.E.; Britt, J.; Faras, F.; Kiss, Z.

    1994-09-01

    This report describes advances made during Phase II (November 10, 1992-November 9, 1993) of a three-phase, cost-shared subcontract whose ultimate goal is the demonstration of thin film CuInSe{sub 2} photovoltaic modules prepared by methods adaptable to safe, high yield, high volume manufacturing. At the end of Phase I, EPV became one of the first groups to clear the 10% efficiency barrier for CIS cells prepared by non-H{sub 2}Se selenization. During Phase II a total area efficiency of 12.5% was achieved for a 1 cm{sup 2} cell. The key achievement of Phase II was the production of square foot CIS modules without the use of H{sub 2}Se. This is seen as a crucial step towards the commercialization of CIS. Using a novel interconnect technology, EPV delivered an 8.0% aperture area efficiency mini-module and a 6.2% aperture area efficiency 720 cm{sub 2} module to NREL. On the processing side, advances were made in precursor formation and the selenization profile, both of which contributed to higher quality CIS. The higher band gap quaternary chalcopyrite material CuIn(S{sub x}, Se{sub 1{minus}X}){sub 2} was prepared and 8% cells were fabricated using this material. Device analysis revealed a correlation between long wavelength quantum efficiency and the CIS Cu/In ratio. Temperature dependent studies highlighted the need for high V{sub OC} devices to minimize the impact of the voltage drop at operating temperature. Numerical modeling of module performance was performed in order to identify the correct ZnO sheet resistance for modules. Efforts in Phase III will focus on increase of module efficiency to 9-10%, initiation of an outdoor testing program, preparation of completely uniform CIS plates using second generation selenization equipment, and exploration of alternative precursors for CIS formation.

  18. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  19. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  20. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  1. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  2. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  3. Polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  4. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  5. Synthesis and Characterization of Chalcopyrite (CuInS2 and CuhInSe2) Colloidal Nanoparticles for Optoelectronic Applications via Low-Temperature Pyrolysis of Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.

    2003-01-01

    Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.

  6. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  7. Learning unit: Thin lenses

    NASA Astrophysics Data System (ADS)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  8. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  9. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra. PMID:26900756

  10. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)